WorldWideScience

Sample records for temperature scaling relation

  1. Interannual variability of Central European mean temperature in January / February and its relation to the large-scale circulation

    International Nuclear Information System (INIS)

    Werner, P.C.; Storch, H. von

    1993-01-01

    The Central European temperature distribution field, as given by 11 stations (Fanoe, Hamburg, Potsdam, Jena, Frankfurt, Uccle, Hohenpeissenberg, Praha, Wien, Zuerich and Geneve), is analysed with respect to its year-to-year variability. January-February (JF) average temperatures are considered for the interval 1901-80. An Orthogonal Function (EOF) analysis reveals that the JF temperature variability is almost entirely controlled by one EOF with uniform sign. The second EOF represents only 7% of the total variance and describes a north-south gradient. The time coefficient of the first EOF is almost stationary whereas the second pattern describes a slight downward trend at the northern stations and a slight upward trend at the southern stations. The relationship of the temperature field to the large-scale circulation, represented by the North Atlantic/European sea-level pressure (SLP) field, is investigated by means of a Canonical Correlation (CCA) Analysis. Two CCA pairs are identified which account for most of the temperature year-to-year variance and which suggest plausible mechanisms. The CCA pairs fail, however, to consistently link the long-term temperature trends to changes in the large-scale circulation. In the output of a 100-year run with a coupled atmosphere-ocean model (ECHAM1/LSG), the same CCA pairs are found but the strength of the link between Central European temperature and North Atlantic SLP is markedly weaker than in the observed data. (orig.)

  2. Studies Related to the Oregon State University High Temperature Test Facility: Scaling, the Validation Matrix, and Similarities to the Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Paul D. Bayless; Richard W. Johnson; William T. Taitano; James R. Wolf; Glenn E. McCreery

    2010-09-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is

  3. Temperature/electric field scaling in Ferroelectrics

    International Nuclear Information System (INIS)

    Hajjaji, Abdelowahed; Guyomar, Daniel; Pruvost, Sebastien; Touhtouh, Samira; Yuse, Kaori; Boughaleb, Yahia

    2010-01-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation (Δθ) as an electric field equivalent ΔE eq =(α+2βxP(E,θ 0 ))xΔθ. Consequently, this was also the case for the relationship between the entropy (Γ) and polarization (P). Rhombohedral Pb(Mg 1/3 Nb 2/3 ) 0.75 Ti 0.25 O 3 ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d 31 ) under an electrical field replacing the temperature variation (Δθ) by ΔE/(α+2βxp(E,θ 0 )). Inversely, predictions of the piezoelectric properties (d 31 ) as a function of temperature were permitted using purely only electrical measurements.

  4. Temperature/electric field scaling in Ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Hajjaji, Abdelowahed, E-mail: Hajjaji12@gmail.co [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Guyomar, Daniel; Pruvost, Sebastien [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Touhtouh, Samira [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco); Yuse, Kaori [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Boughaleb, Yahia [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco)

    2010-07-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation ({Delta}{theta}) as an electric field equivalent {Delta}E{sub eq}=({alpha}+2{beta}xP(E,{theta}{sub 0}))x{Delta}{theta}. Consequently, this was also the case for the relationship between the entropy ({Gamma}) and polarization (P). Rhombohedral Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.75}Ti{sub 0.25}O{sub 3} ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d{sub 31}) under an electrical field replacing the temperature variation ({Delta}{theta}) by {Delta}E/({alpha}+2{beta}xp(E,{theta}{sub 0})). Inversely, predictions of the piezoelectric properties (d{sub 31}) as a function of temperature were permitted using purely only electrical measurements.

  5. Optimal renormalization scales and commensurate scale relations

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lu, H.J.

    1996-01-01

    Commensurate scale relations relate observables to observables and thus are independent of theoretical conventions, such as the choice of intermediate renormalization scheme. The physical quantities are related at commensurate scales which satisfy a transitivity rule which ensures that predictions are independent of the choice of an intermediate renormalization scheme. QCD can thus be tested in a new and precise way by checking that the observables track both in their relative normalization and in their commensurate scale dependence. For example, the radiative corrections to the Bjorken sum rule at a given momentum transfer Q can be predicted from measurements of the e+e - annihilation cross section at a corresponding commensurate energy scale √s ∝ Q, thus generalizing Crewther's relation to non-conformal QCD. The coefficients that appear in this perturbative expansion take the form of a simple geometric series and thus have no renormalon divergent behavior. The authors also discuss scale-fixed relations between the threshold corrections to the heavy quark production cross section in e+e - annihilation and the heavy quark coupling α V which is measurable in lattice gauge theory

  6. Local-scale and watershed-scale determinants of summertime urban stream temperatures

    Science.gov (United States)

    Derek B. Booth; Kristin A. Kraseski; C. Rhett. Jackson

    2014-01-01

    The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local-scale and watershed-scale factors on summer temperatures in urban streams, hundreds of near-instantaneous temperature measurements throughout...

  7. Temperature Scaling Law for Quantum Annealing Optimizers.

    Science.gov (United States)

    Albash, Tameem; Martin-Mayor, Victor; Hen, Itay

    2017-09-15

    Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.

  8. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  9. Modified dispersion relations, inflation, and scale invariance

    Science.gov (United States)

    Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward

    2018-02-01

    For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.

  10. Temperature scaling method for Markov chains.

    Science.gov (United States)

    Crosby, Lonnie D; Windus, Theresa L

    2009-01-22

    The use of ab initio potentials in Monte Carlo simulations aimed at investigating the nucleation kinetics of water clusters is complicated by the computational expense of the potential energy determinations. Furthermore, the common desire to investigate the temperature dependence of kinetic properties leads to an urgent need to reduce the expense of performing simulations at many different temperatures. A method is detailed that allows a Markov chain (obtained via Monte Carlo) at one temperature to be scaled to other temperatures of interest without the need to perform additional large simulations. This Markov chain temperature-scaling (TeS) can be generally applied to simulations geared for numerous applications. This paper shows the quality of results which can be obtained by TeS and the possible quantities which may be extracted from scaled Markov chains. Results are obtained for a 1-D analytical potential for which the exact solutions are known. Also, this method is applied to water clusters consisting of between 2 and 5 monomers, using Dynamical Nucleation Theory to determine the evaporation rate constant for monomer loss. Although ab initio potentials are not utilized in this paper, the benefit of this method is made apparent by using the Dang-Chang polarizable classical potential for water to obtain statistical properties at various temperatures.

  11. A molecular-scale study on the role of lactic acid in new particle formation: Influence of relative humidity and temperature

    Science.gov (United States)

    Li, Hao; Kupiainen-Määttä, Oona; Zhang, Haijie; Zhang, Xiuhui; Ge, Maofa

    2017-10-01

    It is well established that oxidation products of volatile organic compounds (VOCs) play a major role in atmospheric new-particle formation (NPF). However, the mechanism of their effect and the corresponding influence under various atmospheric conditions remain unclear. Meanwhile, considering the difficulty of experiment in determining the water content of the cluster and performing at low temperature, we combine Density Functional Theory (DFT) and Atmospheric Clusters Dynamic Code (ACDC) model to investigate a multicomponent system involving lactic acid (LA) and atmospheric nucleation precursors (sulfuric acid (SA), dimethylamine (DMA), water (W)) under a wide range of atmospheric conditions (relative humidity (RH) from 20% to 100%, temperature (T) from 220 K to 300 K). Conformational analysis shows that LA could enhance NPF in two direction due to its two highly oxidized function groups. Then, the results from ACDC simulation present a direct evidence of its enhancement effect on NPF when the concentration of LA is larger than 1010 molecules cm-3 . The corresponding enhancement strength presents a positive dependence on its concentrations and a negative dependence on RH and T, respectively. Besides, LA·nW (n = 0-1) reflect their enhancement effect on the cluster growth paths by acting as ;bridge;, which contributes to pure SA-DMA-W-based clusters by evaporating LA contained clusters. The corresponding contribution presents a positive dependence on the concentration of LA, RH and T, respectively. We hope our study could provide theoretical clues to better understand the characteristic of NPF in polluted area, where NPF commonly involves oxidized organics, sulfuric acid, amine and water.

  12. The relative controls of temperature, soil moisture, and plant functional group on soil CO2 efflux at diel, seasonal, and annual scales

    Science.gov (United States)

    Soil respiration (Rsoil) is a dominant, but variable, contributor to ecosystem CO2 efflux. Understanding how variations in major environmental drivers, like temperature and available moisture, might regulate Rsoil has become extremely relevant. Plant functional-type diversity makes such assessments ...

  13. Systematic investigation of gridding-related scaling effects on annual statistics of daily temperature and precipitation maxima: A case study for south-east Australia

    OpenAIRE

    Francia B. Avila; Siyan Dong; Kaah P. Menang; Jan Rajczak; Madeleine Renom; Markus G. Donat; Lisa V. Alexander

    2015-01-01

    Using daily station observations over the period 1951–2013 in a region of south-east Australia, we systematically compare how the horizontal resolution, interpolation method and order of operation in generating gridded data sets affect estimates of annual extreme indices of temperature and precipitation maxima (hottest and wettest days). Three interpolation methods (natural neighbors, cubic spline and angular distance weighting) are used to calculate grids at five different horizontal gridded...

  14. Temperature sensitivity of respiration scales with organic matter recalcitrance

    Science.gov (United States)

    Craine, J. M.; Fierer, N.; McLauchlan, K. K.

    2010-12-01

    Microbial decomposition of soil organic matter is a key process in determining the carbon sequestration potential of ecosystems and carbon fluxes to the atmosphere. Since microbial decomposition is highly sensitive to short-term changes in temperature, predicting the temperature sensitivity of microbial decomposition is critical to predicting future atmospheric carbon dioxide concentrations and feedbacks to anthropogenic warming. Fundamental principles of enzyme kinetics, embodied in the carbon-quality temperature hypothesis, predict that the temperature sensitivity of microbial decomposition should increase with increasing biochemical recalcitrance of a substrate. To test the generality of this principle, we measured the temperature sensitivity of microbial respiration of soil organic matter with serial short-term temperature manipulations over 365 days for 28 North American soils. When joined with data from similar studies that represent a wide variety of contrasts, we show that the temperature sensitivity of organic matter decomposition scales with biochemical recalcitrance. With physico-chemical protection likely an important covariate for relating plant and soil organic matter decomposition scalars, biochemically recalcitrant organic matter is highly susceptible to short-term increases in temperature, a key link in predicting the effects of warming on carbon cycling.

  15. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  16. On the evolution of cluster scaling relations

    International Nuclear Information System (INIS)

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-01-01

    Understanding the evolution of scaling relations between the observable properties of clusters and their total mass is key to realizing their potential as cosmological probes. In this study, we investigate whether the evolution of cluster scaling relations is affected by the spurious evolution of mass caused by the evolving reference density with respect to which halo masses are defined (pseudo-evolution). We use the relation between mass, M, and velocity dispersion, σ, as a test case, and show that the deviation from the M-σ relation of cluster-sized halos caused by pseudo-evolution is smaller than 10% for a wide range of mass definitions. The reason for this small impact is a tight relation between the velocity dispersion and mass profiles, σ(relation is generically expected for a variety of density profiles, as long as halos are in approximate Jeans equilibrium. Thus, as the outer 'virial' radius used to define the halo mass, R, increases due to pseudo-evolution, halos approximately preserve their M-σ relation. This result highlights the fact that tight scaling relations are the result of tight equilibrium relations between radial profiles of physical quantities. We find exceptions at very small and very large radii, where the profiles deviate from the relations they exhibit at intermediate radii. We discuss the implications of these results for other cluster scaling relations and argue that pseudo-evolution should have a small effect on most scaling relations, except for those that involve the stellar masses of galaxies. In particular, we show that the relation between stellar-mass fraction and total mass is affected by pseudo-evolution and is largely shaped by it for halo masses ≲ 10 14 M ☉ .

  17. Origins of scaling relations in nonequilibrium growth

    International Nuclear Information System (INIS)

    Escudero, Carlos; Korutcheva, Elka

    2012-01-01

    Scaling and hyperscaling laws provide exact relations among critical exponents describing the behavior of a system at criticality. For nonequilibrium growth models with a conserved drift, there exist few of them. One such relation is α + z = 4, found to be inexact in a renormalization group calculation for several classical models in this field. Herein, we focus on the two-dimensional case and show that it is possible to construct conserved surface growth equations for which the relation α + z = 4 is exact in the renormalization group sense. We explain the presence of this scaling law in terms of the existence of geometric principles dominating the dynamics. (paper)

  18. Scaling relations for eddy current phenomena

    International Nuclear Information System (INIS)

    Dodd, C.V.; Deeds, W.E.

    1975-11-01

    Formulas are given for various electromagnetic quantities for coils in the presence of conductors, with the scaling parameters factored out so that small-scale model experiments can be related to large-scale apparatus. Particular emphasis is given to such quantities as eddy current heating, forces, power, and induced magnetic fields. For axially symmetric problems, closed-form integrals are available for the vector potential and all the other quantities obtainable from it. For unsymmetrical problems, a three-dimensional relaxation program can be used to obtain the vector potential and then the derivable quantities. Data on experimental measurements are given to verify the validity of the scaling laws for forces, inductances, and impedances. Indirectly these also support the validity of the scaling of the vector potential and all of the other quantities obtained from it

  19. Density-temperature scaling of the fragility in a model glass-former

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Sengupta, Shiladitya; Sastry, Srikanth

    2013-01-01

    . Such a scaling, referred to as density-temperature (DT) scaling, is exact for liquids with inverse power law (IPL) interactions but has also been found to be approximately valid in many non-IPL liquids. We have analyzed the consequences of DT scaling on the density dependence of the fragility in a model glass......Dynamical quantities e.g. diffusivity and relaxation time for some glass-formers may depend on density and temperature through a specific combination, rather than independently, allowing the representation of data over ranges of density and temperature as a function of a single scaling variable......-former. We find the density dependence of kinetic fragility to be weak, and show that it can be understood in terms of DT scaling and deviations of DT scaling at low densities. We also show that the Adam-Gibbs relation exhibits DT scaling and the scaling exponent computed from the density dependence...

  20. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  1. Cosmology and cluster halo scaling relations

    NARCIS (Netherlands)

    Araya-Melo, Pablo A.; van de Weygaert, Rien; Jones, Bernard J. T.

    2009-01-01

    We explore the effects of dark matter and dark energy on the dynamical scaling properties of galaxy clusters. We investigate the cluster Faber-Jackson (FJ), Kormendy and Fundamental Plane (FP) relations between the mass, radius and velocity dispersion of cluster-sized haloes in cosmological N-body

  2. Universal Scaling Relations in Scale-Free Structure Formation

    Science.gov (United States)

    Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.

    2018-04-01

    A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.

  3. Heritage and scale: settings, boundaries and relations

    DEFF Research Database (Denmark)

    Harvey, David

    2015-01-01

    of individuals and communities, towns and cities, regions, nations, continents or globally – becomes ever more important. Partly reflecting this crisis of the national container, researchers have sought opportunities both through processes of ‘downscaling’, towards community, family and even personal forms...... relations. This paper examines how heritage is produced and practised, consumed and experienced, managed and deployed at a variety of scales, exploring how notions of scale, territory and boundedness have a profound effect on the heritage process. Drawing on the work of Doreen Massey and others, the paper...

  4. The scaling of stress distribution under small scale yielding by T-scaling method and application to prediction of the temperature dependence on fracture toughness

    International Nuclear Information System (INIS)

    Ishihara, Kenichi; Hamada, Takeshi; Meshii, Toshiyuki

    2017-01-01

    In this paper, a new method for scaling the crack tip stress distribution under small scale yielding condition was proposed and named as T-scaling method. This method enables to identify the different stress distributions for materials with different tensile properties but identical load in terms of K or J. Then by assuming that the temperature dependence of a material is represented as the stress-strain relationship temperature dependence, a method to predict the fracture load at an arbitrary temperature from the already known fracture load at a reference temperature was proposed. This method combined the T-scaling method and the knowledge “fracture stress for slip induced cleavage fracture is temperature independent.” Once the fracture load is predicted, fracture toughness J c at the temperature under consideration can be evaluated by running elastic-plastic finite element analysis. Finally, the above-mentioned framework to predict the J c temperature dependency of a material in the ductile-to-brittle temperature distribution was validated for 0.55% carbon steel JIS S55C. The proposed framework seems to have a possibility to solve the problem the master curve is facing in the relatively higher temperature region, by requiring only tensile tests. (author)

  5. Improved scaling of temperature-accelerated dynamics using localization

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Yunsic; Amar, Jacques G. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States)

    2016-07-07

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N{sup 3} where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary “bottlenecks” to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N{sup 1/2}. Some additional possible methods to improve the scaling of TAD are also discussed.

  6. Improved scaling of temperature-accelerated dynamics using localization

    International Nuclear Information System (INIS)

    Shim, Yunsic; Amar, Jacques G.

    2016-01-01

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N 3 where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary “bottlenecks” to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N 1/2 . Some additional possible methods to improve the scaling of TAD are also discussed.

  7. Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations

    Science.gov (United States)

    Mantz, A.; Allen, S. W.

    2011-01-01

    Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.

  8. Diode temperature sensor array for measuring and controlling micro scale surface temperature

    International Nuclear Information System (INIS)

    Han, Il Young; Kim, Sung Jin

    2004-01-01

    The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, thermal finger print, Micro PCR(Polymer Chain Reaction), TAS and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 array of diodes(1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters (1K) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  9. Design and Modelling of Small Scale Low Temperature Power Cycles

    DEFF Research Database (Denmark)

    Wronski, Jorrit

    he work presented in this report contributes to the state of the art within design and modelling of small scale low temperature power cycles. The study is divided into three main parts: (i) fluid property evaluation, (ii) expansion device investigations and (iii) heat exchanger performance......-oriented Modelica code and was included in the thermo Cycle framework for small scale ORC systems. Special attention was paid to the valve system and a control method for variable expansion ratios was introduced based on a cogeneration scenario. Admission control based on evaporator and condenser conditions...

  10. Monitoring of full scale tensegrity skeletons under temperature change

    OpenAIRE

    KAWAGUCHI, Ken'ichi; OHYA, Shunji

    2009-01-01

    p. 224-231 Strain change in the members of full-scale tensegrity skeletons has been monitored for eight years. The one-day data of one of the tensegrity frame on the hottest and the coldest day in the record are reported and discussed. Kawaguchi, K.; Ohya, S. (2009). Monitoring of full scale tensegrity skeletons under temperature change. Symposium of the International Association for Shell and Spatial Structures. Editorial Universitat Politècnica de València. http://hdl.handle.net/10...

  11. Stress- and temperature-dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics

    International Nuclear Information System (INIS)

    Yimnirun, R; Wongsaenmai, S; Wongmaneerung, R; Wongdamnern, N; Ngamjarurojana, A; Ananta, S; Laosiritaworn, Y

    2007-01-01

    Effects of electric field-frequency, electric field-amplitude, mechanical stress, and temperature on the hysteresis area, especially the scaling form, were investigated in soft lead zirconate titanate (PZT) bulk ceramics. The hysteresis area was found to depend on the frequency and field-amplitude with the same set of exponents as the power-law scaling for both with and without stresses. The inclusion of stresses into the power-law was obtained in the form of σ=0 > ∝ f -0.25 E 0 σ 0.45 which indicates the difference in energy dissipation between the under-stress and stress-free conditions. The power-law temperature scaling relations were obtained for hysteresis area (A) and remanent polarization P r , while the coercivity E C was found to scale linearly with temperature T. The three temperature scaling relations were also field-dependent. At fixed field amplitude E 0 , the scaling relations take the forms of ∝ T -1.1024 , P r ∼T -1.2322 and (E C0 - E C ) ∼T

  12. Symmetric scaling properties in global surface air temperature anomalies

    Science.gov (United States)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  13. X-Ray Scaling Relations of Early-type Galaxies

    Science.gov (United States)

    Babyk, Iu. V.; McNamara, B. R.; Nulsen, P. E. J.; Hogan, M. T.; Vantyghem, A. N.; Russell, H. R.; Pulido, F. A.; Edge, A. C.

    2018-04-01

    X-ray luminosity, temperature, gas mass, total mass, and their scaling relations are derived for 94 early-type galaxies (ETGs) using archival Chandra X-ray Observatory observations. Consistent with earlier studies, the scaling relations, L X ∝ T 4.5±0.2, M ∝ T 2.4±0.2, and L X ∝ M 2.8±0.3, are significantly steeper than expected from self-similarity. This steepening indicates that their atmospheres are heated above the level expected from gravitational infall alone. Energetic feedback from nuclear black holes and supernova explosions are likely heating agents. The tight L X –T correlation for low-luminosity systems (i.e., below 1040 erg s‑1) are at variance with hydrodynamical simulations, which generally predict higher temperatures for low-luminosity galaxies. We also investigate the relationship between total mass and pressure, Y X = M g × T, finding M\\propto {Y}X0.45+/- 0.04. We explore the gas mass to total mass fraction in ETGs and find a range of 0.1%–1.0%. We find no correlation between the gas-to-total mass fraction with temperature or total mass. Higher stellar velocity dispersions and higher metallicities are found in hotter, brighter, and more massive atmospheres. X-ray core radii derived from β-model fitting are used to characterize the degree of core and cuspiness of hot atmospheres.

  14. Combined scale effects for effective brazing at low temperatures

    Directory of Open Access Journals (Sweden)

    Bartout D.

    2012-12-01

    Full Text Available In modern joining technology, the focus is on effective brazing and soldering of temperature sensitive materials. Here, as well as in diffusion welding processes the needed thermal energy is externally realized in the joint zone. This produces a heating of the whole joining parts, since in laminar joining the thermal energy is transported in interior by thermal conduction. An excess of critical temperatures or tolerable impact periods in wide parts of materials and respectively components is often not avoidable. This leads to thermal damages. In this point of view nanotechnology shows promising possibilities as scale effects and their resulting thermophysical effects such as melting temperature reduction and high diffusion rates can be used for providing a self-propagating high-temperature synthesis at room temperature. After ignition by an external energy source a self-propagating exothermic reaction is started. By producing a multilayer system with alternately arranged nanoscaled layers of e.g. Al and Ni the resulting thin foil can be used as heat source for melting the braze or solder material within the joining zone without any external preheating. Due to the high process velocities up to 30 m/s and the local heat input significant thermal influences on the joined parts are not detectable.

  15. Large-scale tides in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Ip, Hiu Yan; Schmidt, Fabian, E-mail: iphys@mpa-garching.mpg.de, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-02-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the 'separate universe' paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.

  16. Data scaling and temperature calibration in time-resolved photocrystallographic experiments

    DEFF Research Database (Denmark)

    Schmøkel, Mette Stokkebro; Kaminski, Radoslaw; Benedict, Jason B.

    2010-01-01

    -steady-state experiments conducted at conventional sources, but not negligible in synchrotron studies in which very short laser exposures may be adequate. The relative scaling of the light-ON and light-OFF data and the correction for temperature differences between the two sets are discussed....

  17. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    Science.gov (United States)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  18. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  19. Scaling Relations of Starburst-driven Galactic Winds

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Ryan [Department of Chemistry and Physics, Augusta University, Augusta, GA 30912 (United States); Cecil, Gerald; Heitsch, Fabian, E-mail: rytanner@augusta.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States)

    2017-07-10

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.

  20. Scaling Relations of Starburst-driven Galactic Winds

    International Nuclear Information System (INIS)

    Tanner, Ryan; Cecil, Gerald; Heitsch, Fabian

    2017-01-01

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.

  1. Surface temperature and evapotranspiration: application of local scale methods to regional scales using satellite data

    International Nuclear Information System (INIS)

    Seguin, B.; Courault, D.; Guerif, M.

    1994-01-01

    Remotely sensed surface temperatures have proven useful for monitoring evapotranspiration (ET) rates and crop water use because of their direct relationship with sensible and latent energy exchange processes. Procedures for using the thermal infrared (IR) obtained with hand-held radiometers deployed at ground level are now well established and even routine for many agricultural research and management purposes. The availability of IR from meteorological satellites at scales from 1 km (NOAA-AVHRR) to 5 km (METEOSAT) permits extension of local, ground-based approaches to larger scale crop monitoring programs. Regional observations of surface minus air temperature (i.e., the stress degree day) and remote estimates of daily ET were derived from satellite data over sites in France, the Sahel, and North Africa and summarized here. Results confirm that similar approaches can be applied at local and regional scales despite differences in pixel size and heterogeneity. This article analyzes methods for obtaining these data and outlines the potential utility of satellite data for operational use at the regional scale. (author)

  2. Global scaling analysis for the pebble bed advanced high temperature reactor

    International Nuclear Information System (INIS)

    Blandford, E.D.; Peterson, P.F.

    2009-01-01

    Scaled Integral Effects Test (IET) facilities play a critical role in the design certification process of innovative reactor designs. Best-estimate system analysis codes, which minimize deliberate conservatism, require confirmatory data during the validation process to ensure an acceptable level of accuracy as defined by the regulator. The modular Pebble Bed Advanced High Temperature Reactor (PB-AHTR), with a nominal power output of 900 MWth, is the most recent UC Berkeley design for a liquid fluoride salt cooled, solid fuel reactor. The PB-AHTR takes advantage of technologies developed for gas-cooled high temperature thermal and fast reactors, sodium fast reactors, and molten salt reactors. In this paper, non-dimensional scaling groups and similarity criteria are presented at the global system level for a loss of forced circulation transient, where single-phase natural circulation is the primary mechanism for decay heat removal following a primary pump trip. Due to very large margin to fuel damage temperatures, the peak metal temperature of primary-loop components was identified as the key safety parameter of interest. Fractional Scaling Analysis (FSA) methods were used to quantify the intensity of each transfer process during the transient and subsequently rank them by their relative importance while identifying key sources of distortion between the prototype and model. The results show that the development of a scaling hierarchy at the global system level informs the bottom-up scaling analysis. (author)

  3. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape?

    Science.gov (United States)

    Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.

    2016-04-01

    Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.

  4. Temperature scaling in a dense vibrofluidized granular material.

    Science.gov (United States)

    Sunthar, P; Kumaran, V

    1999-08-01

    The leading order "temperature" of a dense two-dimensional granular material fluidized by external vibrations is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The temperature is determined by relating the source of energy due to the vibrating surface and the energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, are in error.

  5. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    Science.gov (United States)

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty

  6. Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Field

    NARCIS (Netherlands)

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J.; Spinelli, P.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H.; Koekemoer, A.

    2013-01-01

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10

  7. Scale-Independent Relational Query Processing

    Science.gov (United States)

    2013-10-04

    source options are also available, including Postgresql, MySQL , and SQLite. These mod- ern relational databases are generally very complex software systems...and Their Application to Data Stream Management. IGI Global, 2010. [68] George Reese. Database Programming with JDBC and Java , Second Edition. Ed. by

  8. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  9. Integrated flow and temperature modeling at the catchment scale

    DEFF Research Database (Denmark)

    Loinaz, Maria Christina; Davidsen, Hasse Kampp; Butts, Michael

    2013-01-01

    –groundwater dynamics affect stream temperature. A coupled surface water–groundwater and temperature model has therefore been developed to quantify the impacts of land management and water use on stream flow and temperatures. The model is applied to the simulation of stream temperature levels in a spring-fed stream...

  10. Special relativity at the quantum scale.

    Directory of Open Access Journals (Sweden)

    Pui K Lam

    Full Text Available It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry. Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's "checker-board" trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1 the quantum version of the postulates of special relativity and (2 the appropriate quantum "coordinates". This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.

  11. Special relativity at the quantum scale.

    Science.gov (United States)

    Lam, Pui K

    2014-01-01

    It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's "checker-board" trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum "coordinates". This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.

  12. Impact of the Dominant Large-scale Teleconnections on Winter Temperature Variability over East Asia

    Science.gov (United States)

    Lim, Young-Kwon; Kim, Hae-Dong

    2013-01-01

    Monthly mean geopotential height for the past 33 DJF seasons archived in Modern Era Retrospective analysis for Research and Applications reanalysis is decomposed into the large-scale teleconnection patterns to explain their impacts on winter temperature variability over East Asia. Following Arctic Oscillation (AO) that explains the largest variance, East Atlantic/West Russia (EA/WR), West Pacific (WP) and El Nino-Southern Oscillation (ENSO) are identified as the first four leading modes that significantly explain East Asian winter temperature variation. While the northern part of East Asia north of 50N is prevailed by AO and EA/WR impacts, temperature in the midlatitudes (30N-50N), which include Mongolia, northeastern China, Shandong area, Korea, and Japan, is influenced by combined effect of the four leading teleconnections. ENSO impact on average over 33 winters is relatively weaker than the impact of the other three teleconnections. WP impact, which has received less attention than ENSO in earlier studies, characterizes winter temperatures over Korea, Japan, and central to southern China region south of 30N mainly by advective process from the Pacific. Upper level wave activity fluxes reveal that, for the AO case, the height and circulation anomalies affecting midlatitude East Asian winter temperature is mainly located at higher latitudes north of East Asia. Distribution of the fluxes also explains that the stationary wave train associated with EA/WR propagates southeastward from the western Russia, affecting the East Asian winter temperature. Investigation on the impact of each teleconnection for the selected years reveals that the most dominant teleconnection over East Asia is not the same at all years, indicating a great deal of interannual variability. Comparison in temperature anomaly distributions between observation and temperature anomaly constructed using the combined effect of four leading teleconnections clearly show a reasonable consistency between

  13. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  14. MHD model including small-scale perturbations in a plasma with temperature variations

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhailovskii, A.B.

    1996-01-01

    The possibility is studied of using a hydrodynamic model to describe a magnetized plasma with density and temperature variations on scales that are arbitrary with respect to the ion Larmor radius. It is shown that the inertial component of the transverse ion thermal flux should be taken into account. This component is found from the collisionless kinetic equation. It can also be obtained from the equations of the Grad type. A set of two-dimensional hydrodynamic equations for ions is obtained with this component taken into account. These equations are used to derive model hydrodynamic expressions for the density and temperature variations. It is shown that, for large-scale perturbations (when the wavelengths are longer than the ion Larmor radius), the expressions derived coincide with the corresponding kinetic expressions and, for perturbations on sub-Larmor scales (when the wavelengths are shorter than the Larmor radius), they agree qualitatively. Hydrodynamic dispersion relations are derived for several types of drift waves with arbitrary wavenumbers. The range of applicability of the MHD model is determined from a comparison of these dispersion relations with the kinetic ones. It is noted that, on the basis of results obtained, drift effects can be included in numerical MHD codes for studying plasma instabilities in high-temperature regimes in tokamaks

  15. Scaling future tropical cyclone damage with global mean temperature

    Science.gov (United States)

    Geiger, T.; Bresch, D.; Frieler, K.

    2017-12-01

    Tropical cyclones (TC) are one of the most damaging natural hazards and severely affectmany countries around the globe each year. Their nominal impact is projected to increasesubstantially as the exposed coastal population grows, per capita income increases, andanthropogenic climate change manifests. The magnitude of this increase, however, variesacross regions and is obscured by the stochastic behaviour of TCs, so far impeding arigorous quantification of trends in TC damage with global mean temperature (GMT) rise. Here, we build on the large sample of spatially explicit TCs simulations generated withinISIMIP(2b) for 1) pre-industrial conditions, 2) the historical period, and 3) future projectionsunder RCP2.6 and RCP6.0 to estimate future TC damage assuming fixed present-daysocio-economic conditions or SSP-based future projections of population patterns andincome. Damage estimates will be based on region-specific empirical damage modelsderived from reported damages and accounting for regional characteristics of vulnerability.Different combinations of 1) socio-economic drivers with pre-industrial climate or 2) changingclimate with fixed socio-economic conditions will be used to derive functional relationshipsbetween regionally aggregated changes in damages on one hand and global meantemperature and socio-economic predictors on the other hand. The obtained region-specific scaling of future TC damage with GMT provides valuable inputfor IPCC's special report on the impacts of global warming of 1.5°C by quantifying theincremental changes in impact with global warming. The approach allows for an update ofdamage functions used in integrated assessment models, and contributes to assessing theadequateness of climate mitigation and adaptation strategies.

  16. Empirical Mode Decomposition on the sphere: application to the spatial scales of surface temperature variations

    Directory of Open Access Journals (Sweden)

    N. Fauchereau

    2008-06-01

    Full Text Available Empirical Mode Decomposition (EMD is applied here in two dimensions over the sphere to demonstrate its potential as a data-adaptive method of separating the different scales of spatial variability in a geophysical (climatological/meteorological field. After a brief description of the basics of the EMD in 1 then 2 dimensions, the principles of its application on the sphere are explained, in particular via the use of a zonal equal area partitioning. EMD is first applied to an artificial dataset, demonstrating its capability in extracting the different (known scales embedded in the field. The decomposition is then applied to a global mean surface temperature dataset, and we show qualitatively that it extracts successively larger scales of temperature variations related, for example, to topographic and large-scale, solar radiation forcing. We propose that EMD can be used as a global data-adaptive filter, which will be useful in analysing geophysical phenomena that arise as the result of forcings at multiple spatial scales.

  17. Estimates of the temperature flux-temperature gradient relation above a sea floor

    NARCIS (Netherlands)

    Cimatoribus, A.; van Haren, H.

    2016-01-01

    The relation between the ux of temperature (or buoyancy), the verti-cal temperature gradient and the height above the bottom, is investigatedin an oceanographic context, using high-resolution temperature measure-ments. The model for the evolution of a strati?ed layer by Balmforthet al. (1998) is

  18. Global hydrobelts: improved reporting scale for water-related issues?

    Science.gov (United States)

    Meybeck, M.; Kummu, M.; Dürr, H. H.

    2012-08-01

    Questions related to water such as its availability, water needs or stress, or management, are mapped at various resolutions at the global scale. They are reported at many scales, mostly along political or continental boundaries. As such, they ignore the fundamental heterogeneity of the hydroclimate and the natural boundaries of the river basins. Here, we describe the continental landmasses according to eight global-scale hydrobelts strictly limited by river basins, defined at a 30' (0.5°) resolution. The belts were defined and delineated, based primarily on the annual average temperature (T) and runoff (q), to maximise interbelt differences and minimise intrabelt variability. The belts were further divided into 29 hydroregions based on continental limits. This new global puzzle defines homogeneous and near-contiguous entities with similar hydrological and thermal regimes, glacial and postglacial basin histories, endorheism distribution and sensitivity to climate variations. The Mid-Latitude, Dry and Subtropical belts have northern and southern analogues and a general symmetry can be observed for T and q between them. The Boreal and Equatorial belts are unique. The hydroregions (median size 4.7 Mkm2) contrast strongly, with the average q ranging between 6 and 1393 mm yr-1 and the average T between -9.7 and +26.3 °C. Unlike the hydroclimate, the population density between the North and South belts and between the continents varies greatly, resulting in pronounced differences between the belts with analogues in both hemispheres. The population density ranges from 0.7 to 0.8 p km-2 for the North American Boreal and some Australian hydroregions to 280 p km-2 for the Asian part of the Northern Mid-Latitude belt. The combination of population densities and hydroclimate features results in very specific expressions of water-related characteristics in each of the 29 hydroregions. Our initial tests suggest that hydrobelt and hydroregion divisions are often more

  19. Batch scale storage of sprouting foods by irradiation combined with natural low temperature; pt. 2

    International Nuclear Information System (INIS)

    Byun, M.W.; Lee, C.H.; Cho, H.O.; Kwon, J.H.; Yang, H.S.

    1982-01-01

    Two varieties of potatoes, Irish cobbler and Shimabara stored for seven and nine months respectively by irradiation combined with natural low temperature (year-round temperature change: 2-17degC) on a batch scale were investigated on the suitability for processing of potato chip. Nine months after storage, irradiated potatoes (Irish cobbler) tended to maintain somewhat better texture and sensory quality than untreated in potatoe chip processing. Peel rate, closely related to potato chip yield, of untreated potatoes were 20-25% higher than those of irradiated and Agtron color determination of potato chip from both irradiated were commercially acceptable. Preservation of potatoes by irradiation combined with natural low temperature was evaluated as an alternative method of the supply for raw materials of potato chip processing in the off-season in Korea. (Author)

  20. Mental disease-related emergency admissions attributable to hot temperatures.

    Science.gov (United States)

    Lee, Suji; Lee, Hwanhee; Myung, Woojae; Kim, E Jin; Kim, Ho

    2018-03-01

    The association between high temperature and mental disease has been the focus of several studies worldwide. However, no studies have focused on the mental disease burden attributable to hot temperature. Here, we aim to quantify the risk attributed to hot temperatures based on the exposure-lag-response relationship between temperature and mental diseases. From data on daily temperature and emergency admissions (EA) for mental diseases collected from 6 major cities (Seoul, Incheon, Daejeon, Daegu, Busan, and Gwangju in South Korea) over a period of 11years (2003-2013), we estimated temperature-disease associations using a distributed lag non-linear model, and we pooled the data by city through multivariate meta-analysis. Cumulative relative risk and attributable risks were calculated for extreme hot temperatures, defined as the 99th percentile relative to the 50th percentile of temperatures. The strongest association between mental disease and high temperature was seen within a period of 0-4days of high temperature exposure. Our results reveal that 14.6% of EA for mental disease were due to extreme hot temperatures, and the elderly were more susceptible (19.1%). Specific mental diseases, including anxiety, dementia, schizophrenia, and depression, also showed significant risk attributed to hot temperatures. Of all EA for anxiety, 31.6% were attributed to extremely hot temperatures. High temperature was responsible for an attributable risk for mental disease, and the burden was higher in the elderly. This finding has important implications for designing appropriate public health policies to minimize the impact of high temperature on mental health. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Commensurate scale relations and the Abelian correspondence principle

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1998-06-01

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scales, independent of the choice of intermediate renormalization scheme or other theoretical conventions. A prominent example is the generalized Crewther relation which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. Commensurate scale relations also provide an extension of the standard minimal subtraction scheme which is analytic in the quark masses, has non-ambiguous scale-setting properties, and inherits the physical properties of the effective charge α V (Q 2 ) defined from the heavy quark potential. The author also discusses a property of perturbation theory, the Abelian correspondence principle, which provides an analytic constraint on non-Abelian gauge theory for N C → 0

  2. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    The effects of temperature and relative humidity on the growth of Helminthosporium fulvum were investigated. Various temperature regimes of 10oC, 15oC, 20oC, 25oC, 30oC, 35oC and 40¢ªC were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. fulvum was obtained at 25¢ªC ...

  3. SCALING LAWS AND TEMPERATURE PROFILES FOR SOLAR AND STELLAR CORONAL LOOPS WITH NON-UNIFORM HEATING

    International Nuclear Information System (INIS)

    Martens, P. C. H.

    2010-01-01

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of active regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a set of temperature- and pressure-dependent heating functions that encompass heating concentrated at the footpoints, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution-not sufficiently to be of significant diagnostic value-and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the Rosner-Tucker-Vaiana scaling law (P 0 L ∼ T 3 max ) depending on the specific heating function. Furthermore, quasi-static solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the results to a set of solutions for strands with a functionally prescribed variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are accurate and stable.

  4. Effects of temperature and relative humidity on DNA methylation.

    Science.gov (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  5. Commensurate scale relations: Precise tests of quantum chromodynamics without scale or scheme ambiguity

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lu, H.J.

    1994-10-01

    We derive commensurate scale relations which relate perturbatively calculable QCD observables to each other, including the annihilation ratio R e+ e - , the heavy quark potential, τ decay, and radiative corrections to structure function sum rules. For each such observable one can define an effective charge, such as α R (√s)/π ≡ R e+ e - (√s)/(3Σe q 2 )-1. The commensurate scale relation connecting the effective charges for observables A and B has the form α A (Q A ) α B (Q B )(1 + r A/Bπ / αB + hor-ellipsis), where the coefficient r A/B is independent of the number of flavors ∫ contributing to coupling renormalization, as in BLM scale-fixing. The ratio of scales Q A /Q B is unique at leading order and guarantees that the observables A and B pass through new quark thresholds at the same physical scale. In higher orders a different renormalization scale Q n* is assigned for each order n in the perturbative series such that the coefficients of the series are identical to that of a invariant theory. The commensurate scale relations and scales satisfy the renormalization group transitivity rule which ensures that predictions in PQCD are independent of the choice of an intermediate renormalization scheme C. In particular, scale-fixed predictions can be made without reference to theoretically constructed singular renormalization schemes such as MS. QCD can thus be tested in a new and precise way by checking that the effective charges of observables track both in their relative normalization and in their commensurate scale dependence. The commensurate scale relations which relate the radiative corrections to the annihilation ratio R e + e - to the radiative corrections for the Bjorken and Gross-Llewellyn Smith sum rules are particularly elegant and interesting

  6. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L. E.

    2015-01-01

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary. PMID:26259555

  7. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  8. Non-Abelian gauge field theory in scale relativity

    International Nuclear Information System (INIS)

    Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry

    2006-01-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description

  9. Analysis of air temperature and relative humidity: study of microclimates

    OpenAIRE

    Elis Dener Lima Alves; Marcelo Sacardi Biudes

    2012-01-01

    Understanding the variability of climate elements in time and space is fundamental to the knowledge of the dynamics of microclimate. Thus, the objective was to analyze the variability of air temperature and relative humidity on the Cuiabá campus of the Federal University of Mato Grosso, and, through the clustering technique, to analyze the formation of groups to propose a zoning microclimate in the area study. To this end, collection data of air temperature and relative humidity at 15 points ...

  10. Scale relativity: from quantum mechanics to chaotic dynamics.

    Science.gov (United States)

    Nottale, L.

    Scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, which consists in generalizing Einstein's principle of relativity to the case of scale transformations of resolutions. We recall here how it leads one to the concept of fractal space-time, and to introduce a new complex time derivative operator which allows to recover the Schrödinger equation, then to generalize it. In high energy quantum physics, it leads to the introduction of a Lorentzian renormalization group, in which the Planck length is reinterpreted as a lowest, unpassable scale, invariant under dilatations. These methods are successively applied to two problems: in quantum mechanics, that of the mass spectrum of elementary particles; in chaotic dynamics, that of the distribution of planets in the Solar System.

  11. Effects of particle shape and temperature on compaction of copper powder at micro scale

    Directory of Open Access Journals (Sweden)

    Chang Chao-Cheng

    2017-01-01

    Full Text Available This study investigated the effects of particle shape and temperature on the compaction of copper powder at micro scale. Copper powder particles were compressed inside a cylindrical die cavity with 2 mm diameter to form compacts with about 3 mm height. Two kinds of particle shapes, spherical and dendritic, and two forming temperatures, room temperature and 400 °C, were considered in the experiments. Some of the produced compacts were further sintered at 600 °C. The study also used simple upsetting tests to investigate the characteristics of the deformation of the compacts under compressive stresses. The results showed that the compacts produced at room temperature demonstrated brittle deformations. However, by increasing the forming temperature to 400 °C, ductile deformations have been observed on the compacts of dendritic particles. Furthermore, the sintering treatment resulted in increases in dimensions, decreases in relative density and hardness, and an increase in ductility. It also led to pore growths which have been seen on scanning-electron microscope images. These phenomena were most significant in the dendritic powder compacts which were produced at 400 °C and treated by the sintering process.

  12. The spatial extent of rainfall events and its relation to precipitation scaling

    NARCIS (Netherlands)

    Lochbihler, K.U.; Lenderink, Geert; Siebesma, A.P.

    2017-01-01

    Observations show that subdaily precipitation extremes increase with dew point temperature at a rate exceeding the Clausius-Clapeyron (CC) relation. The understanding of this so-called super CC scaling is still incomplete, and observations of convective cell properties could provide important

  13. Constraints on Dark Energy, Observable-mass Scaling Relations, Neutrino Properties and Gravity from Galaxy Clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    Using a data set of 238 cluster detections drawn from the ROSAT All-Sky Survey and X-ray follow-up observations from the Chandra X-ray Observatory and/or ROSAT for 94 of those clusters we obtain tight constraints on dark energy, both luminosity-mass and temperature-mass scaling relations, neutrin...

  14. 3He melting pressure temperature scale

    DEFF Research Database (Denmark)

    Halperin, W.P.; Archie, C.N.; Richardson, R.C.

    1976-01-01

    temperatures. The A feature of the melting curve which suggests itself as a thermometric fixed point is found to be T//A equals 2. 75 plus or minus 0. 11 mK. The agreement between this value and independent measurements of T//A, based on nuclear or electronic paramagnetism, Johnson noise thermometry...

  15. Performance ceramic red mass containing mill scale of rolling in different firing temperatures

    International Nuclear Information System (INIS)

    Meller, J.G.; Arnt, A.B.C; Rocha, M.R.

    2014-01-01

    This study aimed to evaluate the performance of the properties of samples of red clay with addition of mill scale steel. This residue consists of oxides of iron has the function replace pigments used in ceramic materials. The mechanical strength of the sintered material can be associated with reactions that occur during sintering, leading to the formation of compounds provided with good mechanical characteristics, particle size of the components and the structure of the dough piece after the compactation. After chemical and microstructural characterization diffraction and fluorescence X-rays, this residue was added in the proportion of 1.45% of a commercial ceramic mass. The formulations were subjected to different temperatures and performance of the formulations was evaluated for physical characteristics: loss on ignition, linear firing shrinkage, water absorption, flexural strength by 3 and intensity of tone. The loss on ignition and linear firing shrinkage tests relate to the sintering temperature with the performance of the tested formulations. (author)

  16. Batch scale strength of garlic by irradiation combined with natural low temperature

    International Nuclear Information System (INIS)

    Cho, H.O.; Kwon, J.H.; Byun, M.W.

    1984-01-01

    An attempt was made on the development of a commercial scale storage method of garlic by irradiation. Irradiated garlics with 50, 100 and 150 Gy were stored at natural low temperature storage room (12±6°C, 75-85% RH) and the physicochemical properties during the 10 months storage were investigated. The unirradiated garlic was mostly sprouted after 8 months storage, whereas the sprouting of all irradiated groups was completely inhibited until 10 months storage, The rotting rate and weigh loss of garlic after 10 months storage were reduced by 25 to 54% at 100 Gy irradiation compared with those of an unirradiated group. The moisture content remained relatively constant during the whole storage period. The total sugar content was increased with storage period. Ascorbic acid content was also decreased until 8 months storage but its content was rapidly increased along with sprouting. Garlic was marketable after 10 months storage by 100 Gy irradiation combined with natural low temperature. (author)

  17. Investigation of the dew-point temperature scale maintained at the MIKES

    Science.gov (United States)

    Heinonen, Martti

    1999-01-01

    For the investigation of the dew-point temperature scale realized by the MIKES primary dew-point generator, a two-pressure generator and a dew-point indicator based on condensation in a cooled coil were constructed and tested. In addition, a chilled mirror hygrometer was validated by means of an uncertainty analysis. The comparison of these systems was focused on the dew-point temperature range from 0957-0233/10/1/010/img1 to 0957-0233/10/1/010/img2 but measurements were made up to 0957-0233/10/1/010/img3. The generator systems were compared using a dew-point comparator based on two relative humidity sensors. According to the results of the comparisons, the differences between the measurement systems were less than 0957-0233/10/1/010/img4, while the expanded uncertainty of the MIKES generator was between 0957-0233/10/1/010/img5 and 0957-0233/10/1/010/img6. The uncertainty of the other systems was from 0957-0233/10/1/010/img7 to 0957-0233/10/1/010/img8. It was concluded that the dew-point temperature scale was not dependent on the realization method.

  18. Reproducible, large-scale production of thallium-based high-temperature superconductors

    International Nuclear Information System (INIS)

    Gay, R.L.; Stelman, D.; Newcomb, J.C.; Grantham, L.F.; Schnittgrund, G.D.

    1990-01-01

    This paper reports on the development of a large scale spray-calcination technique generic to the preparation of ceramic high-temperature superconductor (HTSC) powders. Among the advantages of the technique is that of producing uniformly mixed metal oxides on a fine scale. Production of both yttrium and thallium-based HTSCs has been demonstrated using this technique. In the spray calciner, solutions of the desired composition are atomized as a fine mist into a hot gas. Evaporation and calcination are instantaneous, yielding an extremely fine, uniform oxide powder. The calciner is 76 cm in diameter and can produce metal oxide powder at relatively large rates (approximately 100 g/h) without contamination

  19. Planck-scale-modified dispersion relations in FRW spacetime

    Science.gov (United States)

    Rosati, Giacomo; Amelino-Camelia, Giovanni; Marcianò, Antonino; Matassa, Marco

    2015-12-01

    In recent years, Planck-scale modifications of the dispersion relation have been attracting increasing interest also from the viewpoint of possible applications in astrophysics and cosmology, where spacetime curvature cannot be neglected. Nonetheless, the interplay between Planck-scale effects and spacetime curvature is still poorly understood, particularly in cases where curvature is not constant. These challenges have been so far postponed by relying on an ansatz, first introduced by Jacob and Piran. We propose here a general strategy of analysis of the effects of modifications of the dispersion relation in Friedmann-Robertson-Walker spacetimes, applicable both to cases where the relativistic equivalence of frames is spoiled ("preferred-frame scenarios") and to the alternative possibility of "DSR-relativistic theories," theories that are fully relativistic but with relativistic laws deformed so that the modified dispersion relation is observer independent. We show that the Jacob-Piran ansatz implicitly assumes that spacetime translations are not affected by the Planck scale, while under rather general conditions, the same Planck-scale quantum-spacetime structures producing modifications of the dispersion relation also affect translations. Through the explicit analysis of one of the effects produced by modifications of the dispersion relation, an effect amounting to Planck-scale corrections to travel times, we show that our concerns are not merely conceptual but rather can have significant quantitative implications.

  20. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    OpenAIRE

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and li...

  1. Temperature effects explain continental scale distribution of cyanobacterial toxins

    OpenAIRE

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and li...

  2. An allometric scaling relation based on logistic growth of cities

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2014-01-01

    Highlights: • An allometric scaling based on logistic process can be used to model urban growth. • The traditional allometry is based on exponential growth instead of logistic growth. • The exponential allometry represents a local scaling of urban growth. • The logistic allometry represents a global scaling of urban growth. • The exponential allometry is an approximation relation of the logistic allometry. - Abstract: The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed “exponential allometry”, which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the above mentioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed “logistic allometry”. The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective

  3. Risk of Cardiovascular Morbidity and Mortality in Relation to Temperature

    Science.gov (United States)

    Mathes, Robert; Ito, Kazuhiko; Matte, Thomas

    2013-01-01

    Objective To examine the effects of temperature on cardiovascular-related (CVD) morbidity and mortality among New York City (NYC) residents. Introduction Extreme temperatures are consistently shown to have an effect on CVD-related mortality [1, 2]. A large multi-city study of mortality demonstrated a cold-day and hot-day weather effect on CVD-related deaths, with the larger impact occurring on the coldest days [3]. In contrast, the association between weather and CVD-related morbidity is less clear [4, 5]. The purpose of this study is to characterize the effect of temperature on CVD-related emergency department (ED) visits, hospitalizations, and mortality on a large, heterogeneous population. Additionally, we conducted a sensitivity analysis to determine the impact of air pollutants, specifically fine particulates (PM2.5) and ozone (O3), along with temperature, on CVD outcomes. Methods We analyzed daily weather conditions, ED visits classified as CVD-related based on chief complaint text, hospitalizations, and natural cause deaths that occurred in NYC between 2002 and 2006. ED visits were obtained from data reported daily to the city health department for syndromic surveillance. Inpatient admissions were obtained from the Statewide Planning and Research Cooperative System, a data reporting system developed by New York State. Mortality data were obtained from the NYC Office of Vital Statistics. Data for PM2.5 and O3 were obtained from all available air quality monitors within the five boroughs of NYC. To estimate risk of CVD morbidity and mortality, we used generalized linear models using a Poisson distribution to calculate relative risks (RR) and 95% confidence intervals (CI). A non-linear distributed lag was used to model mean temperature in order to allow for its effect on the same day and on subsequent days. Models were fit separately for cold season (October through March) and warm season (April through September) given season may modify the effect on CVD

  4. The mass-temperature relation for clusters of galaxies

    DEFF Research Database (Denmark)

    Hjorth, J.; Oukbir, J.; van Kampen, E.

    1998-01-01

    A tight mass-temperature relation, M(r)/r proportional to T-x, is expected in most cosmological models if clusters of galaxies are homologous and the intracluster gas is in global equilibrium with the dark matter. We here calibrate this relation using eight clusters with well-defined global tempe...... redshift, the relation represents a new tool for determination of cosmological parameters, notably the cosmological constant Lambda....

  5. Understanding the Complexity of Temperature Dynamics in Xinjiang, China, from Multitemporal Scale and Spatial Perspectives

    Directory of Open Access Journals (Sweden)

    Jianhua Xu

    2013-01-01

    Full Text Available Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD, classical statistics, and geostatistics. The main conclusions are as follows (1 The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2 The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3 The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.

  6. United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms and Model Representation

    Science.gov (United States)

    Black, R. X.

    2017-12-01

    We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.

  7. Functional Independent Scaling Relation for ORR/OER Catalysts

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Dickens, Colin F.

    2016-01-01

    reactions. Here, we show that the oxygen-oxygen bond in the OOH* intermediate is, however, not well described with the previously used class of exchange-correlation functionals. By quantifying and correcting the systematic error, an improved description of gaseous peroxide species versus experimental data...... and a reduction in calculational uncertainty is obtained. For adsorbates, we find that the systematic error largely cancels the vdW interaction missing in the original determination of the scaling relation. An improved scaling relation, which is fully independent of the applied exchange-correlation functional...

  8. Vulnerability to temperature-related mortality in Seoul, Korea

    International Nuclear Information System (INIS)

    Son, Ji-Young; Anderson, G Brooke; Bell, Michelle L; Lee, Jong-Tae

    2011-01-01

    Studies indicate that the mortality effects of temperature may vary by population and region, although little is known about the vulnerability of subgroups to these risks in Korea. This study examined the relationship between temperature and cause-specific mortality for Seoul, Korea, for the period 2000-7, including whether some subgroups are particularly vulnerable with respect to sex, age, education and place of death. The authors applied time-series models allowing nonlinear relationships for heat- and cold-related mortality, and generated exposure-response curves. Both high and low ambient temperatures were associated with increased risk for daily mortality. Mortality risk was 10.2% (95% confidence interval 7.43, 13.0%) higher at the 90th percentile of daily mean temperatures (25 deg. C) compared to the 50th percentile (15 deg. C). Mortality risk was 12.2% (3.69, 21.3%) comparing the 10th (-1 deg. C) and 50th percentiles of temperature. Cardiovascular deaths showed a higher risk to cold, whereas respiratory deaths showed a higher risk to heat effect, although the differences were not statistically significant. Susceptible populations were identified such as females, the elderly, those with no education, and deaths occurring outside of a hospital for heat- and cold-related total mortality. Our findings provide supportive evidence of a temperature-mortality relationship in Korea and indicate that some subpopulations are particularly vulnerable.

  9. An allometric scaling relation based on logistic growth of cities

    Science.gov (United States)

    Chen, Yanguang

    2014-08-01

    The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed "exponential allometry", which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the abovementioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed "logistic allometry". The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective.

  10. Nickel-titanium alloys: stress-related temperature transitional range.

    Science.gov (United States)

    Santoro, M; Beshers, D N

    2000-12-01

    The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.

  11. Violence-Related Attitudes and Beliefs: Scale Construction and Psychometrics

    Science.gov (United States)

    Brand, Pamela A.; Anastasio, Phyllis A.

    2006-01-01

    The 50-item Violence-Related Attitudes and Beliefs Scale (V-RABS) includes three subscales measuring possible causes of violent behavior (environmental influences, biological influences, and mental illness) and four subscales assessing possible controls of violent behavior (death penalty, punishment, prevention, and catharsis). Each subscale…

  12. Work related injuries and associated factors among small scale ...

    African Journals Online (AJOL)

    Objective: This study aims to assess the magnitude of work related injury and associated factors among small scale industrial workers in Mizan-Aman town, Bench Maji Zone, Southwest Ethiopia. Method: A cross-sectional study design was conducted from February to May, 2016. Data was collected using a structured face to ...

  13. Statistical analysis of the effects of relative humidity and temperature ...

    African Journals Online (AJOL)

    Meteorological data from the Department of Satellite Application Facility on Climate Monitoring (CMSAF), DWD Germany have been used to study and investigate the effect of relative humidity and temperature on refractivity in twenty six locations grouped into for climatic regions aloft Nigeria (Coastal, Guinea savannah, ...

  14. Quasi-pions with temperature dependent dispersion relation

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    1995-01-01

    We construct the procedure to calculate thermodynamical functions for a system of quasi-particles with temperature dependent dispersion relation. Two models for the hot quasi-pion system are considered to illustrate the importance of thermodynamical self consistency requirements. 8 refs., 9 figs

  15. Effect of Temperature and Relative Humidity on the Growth of ...

    African Journals Online (AJOL)

    were used to determine the temperature effect on the growth of H. fulvum. Maximum growth of H. ... The fungus showed maximum growth at 92.5 and 100% relative humidity. .... recommended that fruits and vegetables should be stored at low ...

  16. Temperature as a diagnostic for the drift scale test

    International Nuclear Information System (INIS)

    Lin, W; Wagoner, J; Ballard, S

    2000-01-01

    The United States Department of Energy (DOE) is investigating Yucca Mountain, Nevada, for its feasibility as a potential deep geological repository of high-level nuclear waste. In a deep geological repository, the radioactive decay heat released from high-level nuclear waste will heat up the rock mass. The heat will mobilize pore water in the rock mass by evaporation, and even boiling, if the thermal load is great enough. The water vapor/steam will flow away from the heat source because of pressure and thermal gradients and the effects of buoyancy force. The vapor/steam may flow along fractures or highly permeable zones and condense into liquid water in the cooler regions. Gravity and fracture network will control the drainage of the condensed water. Some of the water may flow back toward the waste package and reevaporated. This thermal-hydrological (TH) process will affect the amount of water that may come into contact with the waste package. Water is the main concern for the integrity of the waste package and the waste form, and the potential transport of radioactive nuclides. Thermally driven chemical and mechanical processes may affect the TH process. The coupled thermal-hydrological-mechanical-chemical (THMC) processes need to be understood before the performance of a repository can be adequately predicted. DOE is conducting field thermal tests to provide data for validating the model of the coupled THMC processes. Therefore, understanding the processes revealed by a field thermal test is essential for the model validation. This paper presents examples that temperature measurement is an effective tool for understanding the TH process

  17. Leveraging a temperature-tunable, scale-like microstructure to produce multimodal, supersensitive sensors

    KAUST Repository

    Tai, Yanlong; Bera, Tushar Kanti; Yang, Zhenguo; Lubineau, Gilles

    2017-01-01

    The microstructure of a flexible film plays an important role in its sensing capability. Here, we fabricate a temperature-dependent wrinkled single-walled carbon nanotube (SWCNT)/polydimethyl-siloxane (PDMS) film (WSPF) and a wrinkle-dependent scale

  18. Scaling of spectra in grid turbulence with a mean cross-stream temperature gradient

    Science.gov (United States)

    Bahri, Carla; Arwatz, Gilad; Mueller, Michael E.; George, William K.; Hultmark, Marcus

    2014-11-01

    Scaling of grid turbulence with a constant mean cross-stream temperature gradient is investigated using a combination of theoretical predictions, DNS, and experimental data. Conditions for self-similarity of the governing equations and the scalar spectrum are investigated, which reveals necessary conditions for self-similarity to exist. These conditions provide a theoretical framework for scaling of the temperature spectrum as well as the temperature flux spectrum. One necessary condition, predicted by the theory, is that the characteristic length scale describing the scalar spectrum must vary as √{ t} for a self-similar solution to exist. In order to investigate this, T-NSTAP sensors, specially designed for temperature measurements at high frequencies, were deployed in a heated passive grid turbulence setup together with conventional cold-wires, and complementary DNS calculations were performed to complement and complete the experimental data. These data are used to compare the behavior of different length scales and validate the theoretical predictions.

  19. The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art

    Science.gov (United States)

    Pellicer, Julio; Amparo Gilabert, M.; Lopez-Baeza, Ernesto

    1999-07-01

    A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day. It is shown that in the temperature interval between the melting point of ice and the boiling point of water, the Celsius and Kelvin scales, both born centigrade by definition and actually become so afterwards by experimental determination as well, are not so any longer, either by definition or by experimental determination.

  20. Relative scale and the strength and deformability of rock masses

    Science.gov (United States)

    Schultz, Richard A.

    1996-09-01

    The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.

  1. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  2. Process assessment of small scale low temperature methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hendriyana [Chemical Engineering Department, Faculty of Engineering, Jenderal Achmad Yani Univerity (Indonesia); Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia); Susanto, Herri, E-mail: herri@che.itb.ac.id; Subagjo [Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia)

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy

  3. Process assessment of small scale low temperature methanol synthesis

    International Nuclear Information System (INIS)

    Hendriyana; Susanto, Herri; Subagjo

    2015-01-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H 2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H 2 for increasing H 2 /CO ratio. CO 2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic

  4. The initial development of the Pregnancy-related Anxiety Scale.

    Science.gov (United States)

    Brunton, Robyn J; Dryer, Rachel; Saliba, Anthony; Kohlhoff, Jane

    2018-05-30

    Pregnancy-related anxiety is a distinct anxiety characterised by pregnancy-specific concerns. This anxiety is consistently associated with adverse birth outcomes, and obstetric and paediatric risk factors, associations generally not seen with other anxieties. The need exists for a psychometrically sound scale for this anxiety type. This study, therefore, reports on the initial development of the Pregnancy-related Anxiety Scale. The item pool was developed following a literature review and the formulation of a definition for pregnancy-related anxiety. An Expert Review Panel reviewed the definition, item pool and test specifications. Pregnant women were recruited online (N=671). Using a subsample (N=262, M=27.94, SD=4.99), fourteen factors were extracted using Principal Components Analysis accounting for 63.18% of the variance. Further refinement resulted in 11 distinct factors. Confirmatory Factor Analysis further tested the model with a second subsample (N=369, M=26.59, SD=4.76). After additional refinement, the resulting model was a good fit with nine factors (childbirth, appearance, attitudes towards childbirth, motherhood, acceptance, anxiety, medical, avoidance, and baby concerns). Internal consistency reliability was good with the majority of subscales exceeding α=.80. The Pregnancy-related Anxiety Scale is easy to administer with higher scores indicative of greater pregnancy-related anxiety. The inclusion of reverse-scored items is a potential limitation with poorer reliability evident for these factors. Although still in its development stage, the Pregnancy-related Anxiety Scale will eventually be useful both clinically (affording early intervention) and in research settings. Copyright © 2018 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  5. The mass-temperature relation for clusters of galaxies

    DEFF Research Database (Denmark)

    Hjorth, J.; Oukbir, J.; van Kampen, E.

    1998-01-01

    A tight mass-temperature relation, M(r)/r proportional to T-x, is expected in most cosmological models if clusters of galaxies are homologous and the intracluster gas is in global equilibrium with the dark matter. We here calibrate this relation using eight clusters with well-defined global...... with wide-held HST imaging could provide a sensitive test of the normalization and intrinsic scatter of the relation, resulting in a powerful and expedient way of measuring masses of clusters of galaxies. In addition, as M(r)/r las derived from lensing) is dependent on the cosmological model at high...

  6. Characterizing Temperature Variability and Associated Large Scale Meteorological Patterns Across South America

    Science.gov (United States)

    Detzer, J.; Loikith, P. C.; Mechoso, C. R.; Barkhordarian, A.; Lee, H.

    2017-12-01

    South America's climate varies considerably owing to its large geographic range and diverse topographical features. Spanning the tropics to the mid-latitudes and from high peaks to tropical rainforest, the continent experiences an array of climate and weather patterns. Due to this considerable spatial extent, assessing temperature variability at the continent scale is particularly challenging. It is well documented in the literature that temperatures have been increasing across portions of South America in recent decades, and while there have been many studies that have focused on precipitation variability and change, temperature has received less scientific attention. Therefore, a more thorough understanding of the drivers of temperature variability is critical for interpreting future change. First, k-means cluster analysis is used to identify four primary modes of temperature variability across the continent, stratified by season. Next, composites of large scale meteorological patterns (LSMPs) are calculated for months assigned to each cluster. Initial results suggest that LSMPs, defined using meteorological variables such as sea level pressure (SLP), geopotential height, and wind, are able to identify synoptic scale mechanisms important for driving temperature variability at the monthly scale. Some LSMPs indicate a relationship with known recurrent modes of climate variability. For example, composites of geopotential height suggest that the Southern Annular Mode is an important, but not necessarily dominant, component of temperature variability over southern South America. This work will be extended to assess the drivers of temperature extremes across South America.

  7. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    Science.gov (United States)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-09-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.

  8. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  9. Scaling Relations between Gas and Star Formation in Nearby Galaxies

    Science.gov (United States)

    Bigiel, Frank; Leroy, Adam; Walter, Fabian

    2011-04-01

    High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.

  10. Temperature-Related Death and Illness. Chapter 2

    Science.gov (United States)

    Sarofim, Marcus C.; Saha, Shubhayu; Hawkins, Michelle D.; Mills, David M.; Hess, Jeremy; Horton, Radley; Kinney, Patrick; Schwartz, Joel; St. Juliana, Alexis

    2016-01-01

    Based on present-day sensitivity to heat, an increase of thousands to tens of thousands of premature heat-related deaths in the summer and a decrease of premature cold-related deaths in the winter are projected each year as a result of climate change by the end of the century. Future adaptation will very likely reduce these impacts (see Changing Tolerance to Extreme Heat Finding). The reduction in cold-related deaths is projected to be smaller than the increase in heat-related deaths in most regions. Days that are hotter than usual in the summer or colder than usual in the winter are both associated with increased illness and death. Mortality effects are observed even for small differences from seasonal average temperatures. Because small temperature differences occur much more frequently than large temperature differences, not accounting for the effect of these small differences would lead to underestimating the future impact of climate change. An increase in population tolerance to extreme heat has been observed over time. Changes in this tolerance have been associated with increased use of air conditioning, improved social responses, and or physiological acclimatization, among other factors. Expected future increases in this tolerance will reduce the projected increase in deaths from heat. Older adults and children have a higher risk of dying or becoming ill due to extreme heat. People working outdoors, the socially isolated and economically disadvantaged, those with chronic illnesses, as well as some communities of color, are also especially vulnerable to death or illness.

  11. Boundary layers and scaling relations in natural thermal convection

    Science.gov (United States)

    Shishkina, Olga; Lohse, Detlef; Grossmann, Siegfried

    2017-11-01

    We analyse the boundary layer (BL) equations in natural thermal convection, which includes vertical convection (VC), where the fluid is confined between two differently heated vertical walls, horizontal convection (HC), where the fluid is heated at one part of the bottom plate and cooled at some other part, and Rayleigh-Benard convection (RBC). For BL dominated regimes we derive the scaling relations of the Nusselt and Reynolds numbers (Nu, Re) with the Rayleigh and Prandtl numbers (Ra, Pr). For VC the scaling relations are obtained directly from the BL equations, while for HC they are derived by applying the Grossmann-Lohse theory to the case of VC. In particular, for RBC with large Pr we derive Nu Pr0Ra1/3 and Re Pr-1Ra2/3. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  12. Testing general relativity at cosmological scales: Implementation and parameter correlations

    International Nuclear Information System (INIS)

    Dossett, Jason N.; Ishak, Mustapha; Moldenhauer, Jacob

    2011-01-01

    The testing of general relativity at cosmological scales has become a possible and timely endeavor that is not only motivated by the pressing question of cosmic acceleration but also by the proposals of some extensions to general relativity that would manifest themselves at large scales of distance. We analyze here correlations between modified gravity growth parameters and some core cosmological parameters using the latest cosmological data sets including the refined Cosmic Evolution Survey 3D weak lensing. We provide the parametrized modified growth equations and their evolution. We implement known functional and binning approaches, and propose a new hybrid approach to evolve the modified gravity parameters in redshift (time) and scale. The hybrid parametrization combines a binned redshift dependence and a smooth evolution in scale avoiding a jump in the matter power spectrum. The formalism developed to test the consistency of current and future data with general relativity is implemented in a package that we make publicly available and call ISiTGR (Integrated Software in Testing General Relativity), an integrated set of modified modules for the publicly available packages CosmoMC and CAMB, including a modified version of the integrated Sachs-Wolfe-galaxy cross correlation module of Ho et al. and a new weak-lensing likelihood module for the refined Hubble Space Telescope Cosmic Evolution Survey weak gravitational lensing tomography data. We obtain parameter constraints and correlation coefficients finding that modified gravity parameters are significantly correlated with σ 8 and mildly correlated with Ω m , for all evolution methods. The degeneracies between σ 8 and modified gravity parameters are found to be substantial for the functional form and also for some specific bins in the hybrid and binned methods indicating that these degeneracies will need to be taken into consideration when using future high precision data.

  13. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    Science.gov (United States)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  14. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    Science.gov (United States)

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  15. Electron spectroscopy on high-temperature superconductors and related compounds

    International Nuclear Information System (INIS)

    Knupfer, M.

    1994-01-01

    In the last two classes of materials have been discovered which distinguish themselves due to a transition into the superconducting state at relatively high temperatures. These are the cuprate superconductors and the alkali metal doped fullerenes. In this work the electronic structure of representatives of these materials, undoped and Ca-doped YBa 2 Cu 4 O 8 and A 3 C 60 (A=K, Rb), has been investigated using electron energy-loss spectroscopy and photoemission spectroscopy. (orig.) [de

  16. Large scale obscuration and related climate effects open literature bibliography

    International Nuclear Information System (INIS)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ''Nuclear Winter Controversy'' in the early 1980's. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest

  17. Large scale obscuration and related climate effects open literature bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  18. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome.

    Science.gov (United States)

    Geurts, Marjolein; Scheijmans, Féline E V; van Seeters, Tom; Biessels, Geert J; Kappelle, L Jaap; Velthuis, Birgitta K; van der Worp, H Bart

    2016-11-21

    High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days.

  19. Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces

    International Nuclear Information System (INIS)

    Fields, Meredith; Tsai, Charlie; Chen, Leanne D.; Abild-Pedersen, Frank; Nørskov, Jens K.; Chan, Karen

    2017-01-01

    Molybdenum phosphide (MoP), a well-documented catalyst for applications ranging from hydrotreating reactions to electrochemical hydrogen evolution, has yet to be mapped from a more fundamental perspective, particularly in the context of transition-metal scaling relations. In this work, we use periodic density functional theory to extend linear scaling arguments to doped MoP surfaces and understand the behavior of the phosphorus active site. The derived linear relationships for hydrogenated C, N, and O species on a variety of doped surfaces suggest that phosphorus experiences a shift in preferred bond order depending on the degree of hydrogen substitution on the adsorbate molecule. This shift in phosphorus hybridization, dependent on the bond order of the adsorbate to the surface, can result in selective bond weakening or strengthening of chemically similar species. As a result, we discuss how this behavior deviates from transition-metal, sulfide, carbide, and nitride scaling relations, and we discuss potential applications in the context of electrochemical reduction reactions.

  20. Carbon diffusion behavior in molybdenum at relatively low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Yutaka, E-mail: hiraoka@dap.ous.ac.j [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Imamura, Kyosuke [Graduate School of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Kadokura, Takanori; Yamamoto, Yoshiharu [Materials Research Department, A.L.M.T. Corp., 2 Iwasekoshi-machi, Toyama 931-8543 (Japan)

    2010-01-07

    Purpose of this study is to investigate the carbon diffusion behavior in pure molybdenum at relatively low temperatures by means of fracture surface observation. Carbon addition was performed at a temperature of 1273-1373 K with the heating time being changed. Fracture surface of the specimen after carbon addition was examined using SEM and the carbon diffusion distance was estimated from the change of fracture mode as a function of the distance from the surface. Results are summarized as follows. First, the carbon diffusion distance increased approximately linearly with the increase of heating time from 1.2 to 10.8 ks. This relationship does not agree with that obtained at much higher temperatures. From Arrhenius plots of the slope of the straight line and the temperature, activation energy was calculated (155 kJ/mol). Secondly, the carbon diffusion distance estimated in this study was generally larger than that simulated using the data of Rudman, particularly at a longer heating time.

  1. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  2. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  3. A hybrid downscaling procedure for estimating the vertical distribution of ambient temperature in local scale

    Science.gov (United States)

    Yiannikopoulou, I.; Philippopoulos, K.; Deligiorgi, D.

    2012-04-01

    The vertical thermal structure of the atmosphere is defined by a combination of dynamic and radiation transfer processes and plays an important role in describing the meteorological conditions at local scales. The scope of this work is to develop and quantify the predictive ability of a hybrid dynamic-statistical downscaling procedure to estimate the vertical profile of ambient temperature at finer spatial scales. The study focuses on the warm period of the year (June - August) and the method is applied to an urban coastal site (Hellinikon), located in eastern Mediterranean. The two-step methodology initially involves the dynamic downscaling of coarse resolution climate data via the RegCM4.0 regional climate model and subsequently the statistical downscaling of the modeled outputs by developing and training site-specific artificial neural networks (ANN). The 2.5ox2.5o gridded NCEP-DOE Reanalysis 2 dataset is used as initial and boundary conditions for the dynamic downscaling element of the methodology, which enhances the regional representivity of the dataset to 20km and provides modeled fields in 18 vertical levels. The regional climate modeling results are compared versus the upper-air Hellinikon radiosonde observations and the mean absolute error (MAE) is calculated between the four grid point values nearest to the station and the ambient temperature at the standard and significant pressure levels. The statistical downscaling element of the methodology consists of an ensemble of ANN models, one for each pressure level, which are trained separately and employ the regional scale RegCM4.0 output. The ANN models are theoretically capable of estimating any measurable input-output function to any desired degree of accuracy. In this study they are used as non-linear function approximators for identifying the relationship between a number of predictor variables and the ambient temperature at the various vertical levels. An insight of the statistically derived input

  4. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  5. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    Science.gov (United States)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  6. Field-scale permeability and temperature of volcanic crust from borehole data: Campi Flegrei, southern Italy

    Science.gov (United States)

    Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer

    2018-05-01

    We report combined measurements of petrophysical and geophysical parameters for a 501-m deep borehole located on the eastern side of the active Campi Flegrei caldera (Southern Italy), namely (i) in situ permeability by pumping tests, (ii) laboratory-determined permeability of the drill core, and (iii) thermal gradients by distributed fiber optic and thermocouple sensors. The borehole was drilled during the Campi Flegrei Deep Drilling Project (in the framework of the International Continental Scientific Drilling Program) and gives information on the least explored caldera sector down to pre-caldera deposits. The results allow comparative assessment of permeability obtained from both borehole (at depth between 422 a 501 m) and laboratory tests (on a core sampled at the same depth) for permeability values of 10-13 m2 (borehole test) and 10-15 m2 (laboratory test) confirm the scale-dependency of permeability at this site. Additional geochemical and petrophysical determinations (porosity, density, chemistry, mineralogy and texture), together with gas flow measurements, corroborate the hypothesis that discrepancies in the permeability values are likely related to in-situ fracturing. The continuous distributed temperature profile points to a thermal gradient of about 200 °C km-1. Our findings (i) indicate that scale-dependency of permeability has to be carefully considered in modelling of the hydrothermal system at Campi Flegrei, and (ii) improve the understanding of caldera dynamics for monitoring and mitigation of this very high volcanic risk area.

  7. Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal nacellid limpets to climate change.

    Directory of Open Access Journals (Sweden)

    Simon A Morley

    Full Text Available The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna, New Zealand (Cellana ornata, Australia (C. tramoserica and Singapore (C. radiata, were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of "duration tenacity", which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (T(opt increased from 1.0°C (N. concinna to 14.3°C (C. ornata to 18.0°C (an average for the optimum range of C. tramoserica to 27.6°C (C. radiata. The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CT(max and T(opt over habitat temperature. However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their

  8. Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal nacellid limpets to climate change.

    Science.gov (United States)

    Morley, Simon A; Martin, Stephanie M; Day, Robert W; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A S; Peck, Lloyd S

    2012-01-01

    The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of "duration tenacity", which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (T(opt)) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CT(max) and T(opt) over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their

  9. Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Hong, Sung Deok; Park, Hong Yoon

    2011-01-01

    The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at 950 .deg. C to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype

  10. Examining Similarity Structure: Multidimensional Scaling and Related Approaches in Neuroimaging

    Directory of Open Access Journals (Sweden)

    Svetlana V. Shinkareva

    2013-01-01

    Full Text Available This paper covers similarity analyses, a subset of multivariate pattern analysis techniques that are based on similarity spaces defined by multivariate patterns. These techniques offer several advantages and complement other methods for brain data analyses, as they allow for comparison of representational structure across individuals, brain regions, and data acquisition methods. Particular attention is paid to multidimensional scaling and related approaches that yield spatial representations or provide methods for characterizing individual differences. We highlight unique contributions of these methods by reviewing recent applications to functional magnetic resonance imaging data and emphasize areas of caution in applying and interpreting similarity analysis methods.

  11. Fractional Nottale's Scale Relativity and emergence of complexified gravity

    International Nuclear Information System (INIS)

    EL-Nabulsi, Ahmad Rami

    2009-01-01

    Fractional calculus of variations has recently gained significance in studying weak dissipative and nonconservative dynamical systems ranging from classical mechanics to quantum field theories. In this paper, fractional Nottale's Scale Relativity (NSR) for an arbitrary fractal dimension is introduced within the framework of fractional action-like variational approach recently introduced by the author. The formalism is based on fractional differential operators that generalize the differential operators of conventional NSR but that reduces to the standard formalism in the integer limit. Our main aim is to build the fractional setting for the NSR dynamical equations. Many interesting consequences arise, in particular the emergence of complexified gravity and complex time.

  12. A possible mechanism relating increased soil temperature to forest decline

    International Nuclear Information System (INIS)

    Tomlinson, G.H.

    1993-01-01

    Nutrient cations are removed from the soil by uptake in biomass, and by leaching as a result of soil acidification. Such acidification results from acid deposition and/or from HNO 3 formed by mineralization and nitrification of humus, when at a rate in excess of the tree's nutritional requirements. This has been found to occur during and following periods of increased temperature and reduced rainfall. The cumulative loss of either Ca 2+ , Mg 2+ or K + by one or more of these processes, if greater than the amount released from the specific minerals in that soil, leads to nutrient deficiency, fine root mortality, poor growth, and eventually to die-back. Trees growing in soils derived from specific minerals in which there is a strong imbalance in the elements from which the exchangeable nutrients are formed, are vulnerable to nutrient deficiency. This paper discusses the relevance of earlier studies, when considered in relation to more recent findings. In Hawaii there have been frequent periods of increased temperature and drought resulting from the El Nino Southern Oscillation. This fact, when considered in relation to the relatively low K content, and its imbalance with Ca and Mg in the lava and volcanic ash on which the trees have grown, could result in K deficiency in the declining ohia trees. It is possible that the unusual periods of increased temperature and drought which have occurred in certain other localized areas may have led to the decline symptoms recently observed. In view of the threat of global warming, this possibility should be investigated. 39 refs., 3 figs., 2 tabs

  13. Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

    Science.gov (United States)

    Truong, N.; Rasia, E.; Mazzotta, P.; Planelles, S.; Biffi, V.; Fabjan, D.; Beck, A. M.; Borgani, S.; Dolag, K.; Gaspari, M.; Granato, G. L.; Murante, G.; Ragone-Figueroa, C.; Steinborn, L. K.

    2018-03-01

    We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YX. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500 > 1014 M⊙E(z)-1, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z ˜ 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z = 2 are 10 per cent lower with respect to z = 0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z = 0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YX is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.

  14. Improving Shade Modelling in a Regional River Temperature Model Using Fine-Scale LIDAR Data

    Science.gov (United States)

    Hannah, D. M.; Loicq, P.; Moatar, F.; Beaufort, A.; Melin, E.; Jullian, Y.

    2015-12-01

    Air temperature is often considered as a proxy of the stream temperature to model the distribution areas of aquatic species water temperature is not available at a regional scale. To simulate the water temperature at a regional scale (105 km²), a physically-based model using the equilibrium temperature concept and including upstream-downstream propagation of the thermal signal was developed and applied to the entire Loire basin (Beaufort et al., submitted). This model, called T-NET (Temperature-NETwork) is based on a hydrographical network topology. Computations are made hourly on 52,000 reaches which average 1.7 km long in the Loire drainage basin. The model gives a median Root Mean Square Error of 1.8°C at hourly time step on the basis of 128 water temperature stations (2008-2012). In that version of the model, tree shadings is modelled by a constant factor proportional to the vegetation cover on 10 meters sides the river reaches. According to sensitivity analysis, improving the shade representation would enhance T-NET accuracy, especially for the maximum daily temperatures, which are currently not very well modelized. This study evaluates the most efficient way (accuracy/computing time) to improve the shade model thanks to 1-m resolution LIDAR data available on tributary of the LoireRiver (317 km long and an area of 8280 km²). Two methods are tested and compared: the first one is a spatially explicit computation of the cast shadow for every LIDAR pixel. The second is based on averaged vegetation cover characteristics of buffers and reaches of variable size. Validation of the water temperature model is made against 4 temperature sensors well spread along the stream, as well as two airborne thermal infrared imageries acquired in summer 2014 and winter 2015 over a 80 km reach. The poster will present the optimal length- and crosswise scale to characterize the vegetation from LIDAR data.

  15. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  16. Temperature and heat flux scaling laws for isoviscous, infinite Prandtl number mixed heating convection.

    Science.gov (United States)

    Vilella, Kenny; Deschamps, Frederic

    2018-04-01

    Thermal evolution of terrestrial planets is controlled by heat transfer through their silicate mantles. A suitable framework for modelling this heat transport is a system including bottom heating (from the core) and internal heating, e.g., generated by secular cooling or by the decay of radioactive isotopes. The mechanism of heat transfer depends on the physical properties of the system. In systems where convection is able to operate, two different regimes are possible depending on the relative amount of bottom and internal heating. For moderate internal heating rates, the system is composed of active hot upwellings and cold downwellings. For large internal heating rates, the bottom heat flux becomes negative and the system is only composed of active cold downwellings. Here, we build theoretical scaling laws for both convective regimes following the approach of Vilella & Kaminski (2017), which links the surface heat flux and the temperature jump across both the top and bottom thermal boundary layer (TBL) to the Rayleigh number and the dimensionless internal heating rate. Theoretical predictions are then verified against numerical simulations performed in 2D and 3D-Cartesian geometry, and covering a large range of the parameter space. Our theoretical scaling laws are more successful in predicting the thermal structure of systems with large internal heating rates than that of systems with no or moderate internal heating. The differences between moderate and large internal heating rates are interpreted as differences in the mechanisms generating thermal instabilities. We identified three mechanisms: conductive growth of the TBL, instability impacting, and TBL erosion, the last two being present only for moderate internal heating rates, in which hot plumes are generated at the bottom of the system and are able to reach the surface. Finally, we apply our scaling laws to the evolution of the early Earth, proposing a new model for the cooling of the primordial magma ocean

  17. Relative air temperature analysis external building on Gowa Campus

    Science.gov (United States)

    Mustamin, Tayeb; Rahim, Ramli; Baharuddin; Jamala, Nurul; Kusno, Asniawaty

    2018-03-01

    This study aims to data analyze the relative temperature and humidity of the air outside the building. Data retrieval taken from weather monitoring device (monitoring) Vaisala, RTU (Remote Terminal Unit), Which is part of the AWS (Automatic Weather Stations) Then Processing data processed and analyzed by using Microsoft Excel program in the form of graph / picture fluctuation Which shows the average value, standard deviation, maximum value, and minimum value. Results of data processing then grouped in the form: Daily, and monthly, based on time intervals every 30 minutes. The results showed Outside air temperatures in March, April, May and September 2016 Which entered in the thermal comfort zone according to SNI standard (Indonesian National Standard) only at 06.00-10.00. In late March to early April Thermal comfort zone also occurs at 15.30-18.00. The highest maximum air temperature occurred in September 2016 at 11.01-11.30 And the lowest minimum value in September 2016, time 6:00 to 6:30. The result of the next analysis shows the level of data conformity with thermal comfort zone based on SNI (Indonesian National Standard) every month.

  18. Response of surface air temperature to small-scale land clearing across latitudes

    International Nuclear Information System (INIS)

    Zhang, Mi; Wang, Wei; Lee, Xuhui; Yu, Guirui; Wang, Huimin; Han, Shijie; Yan, Junhua; Zhang, Yiping; Li, Yide; Ohta, Takeshi; Hirano, Takashi; Kim, Joon; Yoshifuji, Natsuko

    2014-01-01

    Climate models simulating continental scale deforestation suggest a warming effect of land clearing on the surface air temperature in the tropical zone and a cooling effect in the boreal zone due to different control of biogeochemical and biophysical processes. Ongoing land-use/cover changes mostly occur at local scales (hectares), and it is not clear whether the local-scale deforestation will generate temperature patterns consistent with the climate model results. Here we paired 40 and 12 flux sites with nearby weather stations in North and South America and in Eastern Asia, respectively, and quantified the temperature difference between these paired sites. Our goal was to investigate the response of the surface air temperature to local-scale (hectares) land clearing across latitudes using the surface weather stations as proxies for localized land clearing. The results show that north of 10°N, the annual mean temperature difference (open land minus forest) decreases with increasing latitude, but the temperature difference shrinks with latitude at a faster rate in the Americas [−0.079 (±0.010) °C per degree] than in Asia [−0.046 (±0.011) °C per degree]. Regression of the combined data suggests a transitional latitude of about 35.5°N that demarks deforestation warming to the south and cooling to the north. The warming in latitudes south of 35°N is associated with increase in the daily maximum temperature, with little change in the daily minimum temperature while the reverse is true in the boreal latitudes. (paper)

  19. Spectral properties and scaling relations in off diagonally disordered chains

    International Nuclear Information System (INIS)

    Ure, J.E.; Majlis, N.

    1987-07-01

    We obtain the localization length L as a function of the energy E and the disorder width W for an off-diagonally disordered chain. This is done performing numerical simulations involving the continued fraction representations of the transfer matrix. The scaling relation L=W s is obtained with values of the exponent s in agreement with calculations of other authors. We also obtain the relation L ∼ |E| v for E → 0, and use it in the Herbert-Spencer-Thouless formula for L to describe the singularity of the density of states near E=0. We show that the slightest diagonal disorder obliterates this singularity. A practical method is presented to calculate the Green function by exploiting its continued fraction expansion. (author). 20 refs, 4 figs

  20. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    DEFF Research Database (Denmark)

    Huber, D.; Bedding, T.R.; Stello, D.

    2011-01-01

    ), and oscillation amplitudes. We show that the difference of the Δν-νmax relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M) s......We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν...... scaling nor the revised scaling relation by Kjeldsen & Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of ~25%. The residuals show...

  1. OBSERVED SCALING RELATIONS FOR STRONG LENSING CLUSTERS: CONSEQUENCES FOR COSMOLOGY AND CLUSTER ASSEMBLY

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Moustakas, Leonidas A.; Natarajan, Priyamvada

    2010-01-01

    Scaling relations of observed galaxy cluster properties are useful tools for constraining cosmological parameters as well as cluster formation histories. One of the key cosmological parameters, σ 8 , is constrained using observed clusters of galaxies, although current estimates of σ 8 from the scaling relations of dynamically relaxed galaxy clusters are limited by the large scatter in the observed cluster mass-temperature (M-T) relation. With a sample of eight strong lensing clusters at 0.3 8 , but combining the cluster concentration-mass relation with the M-T relation enables the inclusion of unrelaxed clusters as well. Thus, the resultant gains in the accuracy of σ 8 measurements from clusters are twofold: the errors on σ 8 are reduced and the cluster sample size is increased. Therefore, the statistics on σ 8 determination from clusters are greatly improved by the inclusion of unrelaxed clusters. Exploring cluster scaling relations further, we find that the correlation between brightest cluster galaxy (BCG) luminosity and cluster mass offers insight into the assembly histories of clusters. We find preliminary evidence for a steeper BCG luminosity-cluster mass relation for strong lensing clusters than the general cluster population, hinting that strong lensing clusters may have had more active merging histories.

  2. Relative frequencies and significance of faecal coliforms as indicators related to water temperature.

    Science.gov (United States)

    Auban, E G; Ripolles, A A; Domarco, M J

    1983-01-01

    The faecal coliforms at different sites of a hypereutrophic lake near Valencia (Albufera) were identified and their relative amounts established along an annual cycle. Using lauryl tryptose broth at 35 degrees C, followed by incubation at 44.4 degrees C in 2% brilliant green bile, Escherichia coli and Klebsiella pneumoniae are practically the only coliforms present. A positive correlation was found between the water temperature and the relative amount of these two coliforms: K. pneumoniae predominates at high water temperatures, whereas E. coli shows preponderance during the cold period. The role of K. pneumoniae as the only faecal indicator under the circumstances described in the work is emphasized and discussed.

  3. Gauge-independent scales related to the Standard Model vacuum instability

    International Nuclear Information System (INIS)

    Espinosa, J.R.; Garny, M.; Konstandin, T.; Riotto, A.

    2016-08-01

    The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about 10"1"1 GeV. However, such a scale is unphysical as it is not gauge invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.

  4. Gauge-Independent Scales Related to the Standard Model Vacuum Instability

    CERN Document Server

    Espinosa, Jose R.; Konstandin, Thomas; Riotto, Antonio

    2017-01-01

    The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about $10^{11}$ GeV. However, such a scale is unphysical as it is not gauge-invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.

  5. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  6. The MUSIC of galaxy clusters - II. X-ray global properties and scaling relations

    Science.gov (United States)

    Biffi, V.; Sembolini, F.; De Petris, M.; Valdarnini, R.; Yepes, G.; Gottlöber, S.

    2014-03-01

    We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) data set. We focus on a sub-sample of 179 clusters at redshift z ˜ 0.11, with 3.2 × 1014 h-1 M⊙ mass. We employed the X-ray photon simulator PHOX to obtain synthetic Chandra observations and derive observable-like global properties of the intracluster medium (ICM), as X-ray temperature (TX) and luminosity (LX). TX is found to slightly underestimate the true mass-weighted temperature, although tracing fairly well the cluster total mass. We also study the effects of TX on scaling relations with cluster intrinsic properties: total (M500 and gas Mg,500 mass; integrated Compton parameter (YSZ) of the Sunyaev-Zel'dovich (SZ) thermal effect; YX = Mg,500 TX. We confirm that YX is a very good mass proxy, with a scatter on M500-YX and YSZ-YX lower than 5 per cent. The study of scaling relations among X-ray, intrinsic and SZ properties indicates that simulated MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving TX. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting TX and, particularly, LX.

  7. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    time , the heating effectiveness η, and the energy offset W(0). Considering both the temperature profile responses and the global transport scaling, the constant heat pinch or excess temperature gradient model is found to best characterize the present JET data. Finally, new methods are proposed......The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically...... in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...

  8. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    International Nuclear Information System (INIS)

    Kertész, K.; Piszter, G.; Jakab, E.; Bálint, Zs.; Vértesy, Z.; Biró, L.P.

    2014-01-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales

  9. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, K., E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Piszter, G. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Jakab, E. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1525 Budapest, P O Box 17 (Hungary); Bálint, Zs. [Hungarian Natural History Museum, H-1088, Budapest, Baross utca 13 (Hungary); Vértesy, Z.; Biró, L.P. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary)

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales.

  10. Single-field consistency relations of large scale structure

    International Nuclear Information System (INIS)

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko; Vernizzi, Filippo

    2013-01-01

    We derive consistency relations for the late universe (CDM and ΛCDM): relations between an n-point function of the density contrast δ and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale δ. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe

  11. Ambiguous tests of general relativity on cosmological scales

    International Nuclear Information System (INIS)

    Zuntz, Joe; Baker, Tessa; Ferreira, Pedro G.; Skordis, Constantinos

    2012-01-01

    There are a number of approaches to testing General Relativity (GR) on linear scales using parameterized frameworks for modifying cosmological perturbation theory. It is sometimes assumed that the details of any given parameterization are unimportant if one uses it as a diagnostic for deviations from GR. In this brief report we argue that this is not necessarily so. First we show that adopting alternative combinations of modifications to the field equations significantly changes the constraints that one obtains. In addition, we show that using a parameterization with insufficient freedom significantly tightens the apparent theoretical constraints. Fundamentally we argue that it is almost never appropriate to consider modifications to the perturbed Einstein equations as being constraints on the effective gravitational constant, for example, in the same sense that solar system constraints are. The only consistent modifications are either those that grant near-total freedom, as in decomposition methods, or ones which map directly to a particular part of theory space

  12. The Relation between Cosmological Redshift and Scale Factor for Photons

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Shuxun, E-mail: tshuxun@mail.bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Department of Physics, Wuhan University, Wuhan 430072 (China)

    2017-09-10

    The cosmological constant problem has become one of the most important ones in modern cosmology. In this paper, we try to construct a model that can avoid the cosmological constant problem and have the potential to explain the apparent late-time accelerating expansion of the universe in both luminosity distance and angular diameter distance measurement channels. In our model, the core is to modify the relation between cosmological redshift and scale factor for photons. We point out three ways to test our hypothesis: the supernova time dilation; the gravitational waves and its electromagnetic counterparts emitted by the binary neutron star systems; and the Sandage–Loeb effect. All of this method is feasible now or in the near future.

  13. Ocular Surface Temperature in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Andrea Sodi

    2014-01-01

    Full Text Available Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320. The ocular surface temperature (OST of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272. OST in AMD patients was significantly lower than in controls (P>0.05. Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD.

  14. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

    Directory of Open Access Journals (Sweden)

    P. Porada

    2016-09-01

    Full Text Available Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is, therefore, crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg. The model simulates bryophyte and lichen cover on upland sites. Wetlands are not included. We take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the region north of 50° N under the current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme, including a dynamic bryophyte and lichen model, will

  15. High temperature electrochemistry related to light water reactor corrosion

    International Nuclear Information System (INIS)

    Nagy, Gabor; Kerner, Zsolt; Balog, Janos; Schiller, Robert

    2004-01-01

    The present work deals with corrosion problems related to conditions which prevail in a WWER primary circuit. We had a two-fold aim: (A) electrochemical methods were applied to characterise the hydrothermally produced oxides of the cladding material (Zr-1%Nb) of nuclear fuel elements used in Russian made power reactors of WWER type, and (B) a number of possible reference electrodes were investigated with a view to high temperature applications. (A) Test specimens made of the cladding material, Zr-1%Nb, were immersed into an autoclave, filled with an aqueous solution typical to a WWER primary circuit, and were treated for different periods of time up to 28 weeks. The electrode potentials were measured and electrochemical impedance spectra (EIS) were taken regularly both as a function of oxidation time and temperature. This rendered information on the overall kinetics of oxide growth. By combining in situ and ex situ impedance measurements, with a particular view of the temperature dependence of EIS, we concluded that the high frequency region of impedance spectra is relevant to the presence of oxide layer on the alloy. This part of the spectra was treated in terms of a parallel CPE||R ox equivalent circuit (CPE denoting constant phase element, R ox ohmic resistor). The CPE element was understood as a dispersive resistance in terms of the continuous time random walk theory by Scher and Lax. This enabled us to tell apart electrical conductance and oxide growth with a model of charge transfer and recombination within the oxide layer as rate determining steps. (B) Three types of reference electrodes were tested within the framework of the LIRES EU5 project: (i) external Ag/AgCl, (ii) Pt/Ir alloy and (iii) Pd(Pt) double polarised active electrode. The most stable of the electrodes was found to be the Pt/Ir one. The Ag/AgCl electrode showed good stability after an initial period of some days, while substantial drifts were found for the Pd(Pt) electrode. EIS spectra of the

  16. Topoclimatic modeling for minimum temperature prediction at a regional scale in the Central Valley of Chile

    International Nuclear Information System (INIS)

    Santibáñez, F.; Morales, L.; Fuente, J. de la; Cellier, P.; Huete, A.

    1997-01-01

    Spring frost may strongly affect fruit production in the Central Valley of Chile. Minimum temperatures are spatially variable owing to topography and soil conditions. A methodology for forecasting minimum temperature at a regional scale in the Central Valley of Chile, integrating spatial variability of temperature under radiative frost conditions, has been developed. It uses simultaneously a model for forecasting minimum temperatures at a reference station using air temperature and humidity measured at 6 pm, and topoclimatic models, based on satellite infra-red imagery (NOAA/AVHRR) and a digital elevation model, to extend the prediction at a regional scale. The methodological developments were integrated in a geographic information system for geo referencing of a meteorological station with satellite imagery and modeled output. This approach proved to be a useful tool for short range (12 h) minimum temperature prediction by generating thermal images over the Central Valley of Chile. It may also be used as a tool for frost risk assessment, in order to adapt production to local climatological conditions. (author)

  17. Nano-viscosity of supercooled liquid measured by fluorescence correlation spectroscopy: Pressure and temperature dependence and the density scaling

    Science.gov (United States)

    Meier, G.; Gapinski, J.; Ratajczyk, M.; Lettinga, M. P.; Hirtz, K.; Banachowicz, E.; Patkowski, A.

    2018-03-01

    The Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.

  18. Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K. [eds.

    1994-05-01

    A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

  19. Field and temperature scaling of the critical current density in commercial REBCO coated conductors

    CERN Document Server

    Senatore, Carmine; Bonura, Marco; Kulich, Miloslav; Mondonico, Giorgio

    2016-01-01

    Scaling relations describing the electromagnetic behaviour of coated conductors (CCs) greatly simplify the design of REBCO-based devices. The performance of REBCO CCs is strongly influenced by fabrication route, conductor architecture and materials, and these parameters vary from one manufacturer to the others. In the present work we have examined the critical surface for the current density, Jc(T,B,θ ), of coated conductors from six different manufacturers: American Superconductor Co. (US), Bruker HTS GmbH (Germany), Fujikura Ltd. (Japan), SuNAM Co. Ltd. (Korea), SuperOx ZAO (Russia) and SuperPower Inc. (US). Electrical transport and magnetic measurements were performed at temperatures between 4.2 K and 77 K and in magnetic field up to 19 T. Experiments were conducted at three different orientations of the field with respect to the crystallographic c-axis of the REBCO layer, θ = 0deg , 45deg and 90deg , in order to probe the angular anisotropy of Jc. In spite of the large variability of CCs performance, ...

  20. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant.

    Science.gov (United States)

    Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian

    2018-04-17

    In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of temperature and concentration principle on gypsum scaling in desalination units

    International Nuclear Information System (INIS)

    Ben Ahmed, Samia; Tlili, Mohamed; Ben Amor, Mohamed

    2009-01-01

    Tunisia (North Africa) is currently confronted to the crucial problem of the public, agricultural and industrial feed water supply, in particular in the center and south areas. Production of fresh water by seawater and brackish water desalination has proved to be an alternative for these regions. However, all the desalination processes are based on the concentration principle of waters already presented higher salinity. So, scale problem can occurs by the accumulation of minerals such as CaCO 3 and CaSO 4 . These salts form hard and strongly adhering deposits on the surfaces and their formation is favoured by the decrease of their solubility with increasing temperature. The main object of this investigation is the study and the control of calcium sulphate deposition causes and conditions in the thermal desalination plant. For this purpose, the effect of different water temperatures (30-90 degree) and saturation states (3-10), on homogeneous nucleation and growth of gypsum, variety usually met, was examined. Gypsum was precipitated by mixing aqueous CaCl 2 and Na 2 SO 4 solutions. It was found that, with increasing temperature or supersaturation, the induction time decreases and the growth rate increases. At the same saturation state, the effect of temperature on reducing induction time is more significant for T<50 degree whereas the growth rate of gypsum crystals is more influenced when the temperature exceeds 50 degree. This value can be considered as a critical temperature; once reached the gypsum scaling threat becomes serious. By using classical nucleation theory, the interfacial tension and the nucleation rate values were estimated. It was shown that the interfacial tension is, as well, temperature dependent. The calculation of nucleation rate showed that: i) by increasing temperature, the number of formed nuclei does not change. The effect of this parameter is limited at the kinetic of formation and growth of these nuclei, ii) the water concentration

  2. Effect of primordial non-Gaussianities on galaxy clusters scaling relations

    Science.gov (United States)

    Trindade, A. M. M.; da Silva, Antonio

    2017-07-01

    Galaxy clusters are a valuable source of cosmological information. Their formation and evolution depends on the underlying cosmology and on the statistical nature of the primordial density fluctuations. Here we investigate the impact of primordial non-Gaussianities (PNG) on the scaling properties of galaxy clusters. We performed a series of hydrodynamic N-body simulations featuring adiabatic gas physics and different levels of non-Gaussianity within the Λ cold dark matter framework. We focus on the T-M, S-M, Y-M and YX-M scalings relating the total cluster mass with temperature, entropy and Sunyaev-Zeld'ovich integrated pressure that reflect the thermodynamic state of the intracluster medium. Our results show that PNG have an impact on cluster scalings laws. The scalings mass power-law indexes are almost unaffected by the existence of PNG, but the amplitude and redshift evolution of their normalizations are clearly affected. Changes in the Y-M and YX-M normalizations are as high as 22 per cent and 16 per cent when fNL varies from -500 to 500, respectively. Results are consistent with the view that positive/negative fNL affect cluster profiles due to an increase/decrease of cluster concentrations. At low values of fNL, as suggested by present Planck constraints on a scale invariant fNL, the impact on the scaling normalizations is only a few per cent. However, if fNL varies with scale, PNG may have larger amplitudes at clusters scales; thus, our results suggest that PNG should be taken into account when cluster data are used to infer or forecast cosmological parameters from existing or future cluster surveys.

  3. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  4. Effects of different vegetation on temperature in an urban building environment. Micro-scale numerical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Guenter [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    2012-08-15

    A three-dimensional micro-scale model is used to study the effects of various greenery on temperature in a built-up environment. Green design elements like roofs and facades, lawns in courtyards and single trees are studied individually as well as in various combinations. Measures for comparison are temperatures at 2 m height and mean temperatures for the urban atmosphere up to the building height. Different types of greenery can reduce local temperatures up to 15 K during specific daytime hours. However, this extraordinary effect is restricted to a short time and especially to the direct surroundings, while an impact over larger distances is small. Roof and facade greenery have hardly any influence on temperature at the 2 m level but reduce daytime heating of the urban atmosphere to a minor degree, while the relevance of trees is more or less limited to the shadow effect. A significant decrease in urban temperatures can be achieved only with a large number of very different individual green elements. The largest effect on the urban atmosphere was simulated for a change in albedo resulting in a temperature decrease of some degrees around noon. (orig.)

  5. The long-range correlation and evolution law of centennial-scale temperatures in Northeast China.

    Science.gov (United States)

    Zheng, Xiaohui; Lian, Yi; Wang, Qiguang

    2018-01-01

    This paper applies the detrended fluctuation analysis (DFA) method to investigate the long-range correlation of monthly mean temperatures from three typical measurement stations at Harbin, Changchun, and Shenyang in Northeast China from 1909 to 2014. The results reveal the memory characteristics of the climate system in this region. By comparing the temperatures from different time periods and investigating the variations of its scaling exponents at the three stations during these different time periods, we found that the monthly mean temperature has long-range correlation, which indicates that the temperature in Northeast China has long-term memory and good predictability. The monthly time series of temperatures over the past 106 years also shows good long-range correlation characteristics. These characteristics are also obviously observed in the annual mean temperature time series. Finally, we separated the centennial-length temperature time series into two time periods. These results reveal that the long-range correlations at the Harbin station over these two time periods have large variations, whereas no obvious variations are observed at the other two stations. This indicates that warming affects the regional climate system's predictability differently at different time periods. The research results can provide a quantitative reference point for regional climate predictability assessment and future climate model evaluation.

  6. Ambient temperature effects on growth of milkfish (Chanos chanos) at aquaculture scale in Blanakan, West Java

    Science.gov (United States)

    A'yun, Q.; Takarina, N. D.

    2017-07-01

    Growth and survival of fishes can be influenced by temperature [1]. Variation among size like weight and length could be the preference how temperature works on growth of fishes [2]. This could be key factor in determining in production as well as market demand since people like heavy and large fishes. The main purpose of this study was to determine the effects of temperature on the growth of milkfish (Chanos Chanos) on weight and length parameters in fish farms Blanakan. This study conducted to assess the optimal temperature for the growth of fish of different sizes to optimize the culture conditions for raising milkfishes in scale cultivation in Blanakan, West Java. Milkfishes were reared in the aquaculture Blanakan ponds because they can adapt very well. The weight and length of milkfishes were measured together with water temperature. The results showed the temperature min (tmin) and max (tmax) were ranged from 29-35 °C. Based on the result, there were significant differences in mean weight (p = 0.00) between temperature with the fish reared in tmax group having the lowest mean weight (99.87±11.51 g) and fish reared in tmin group having the highest mean weight (277.17±33.76 g). Likewise, the significant differences were also observed in mean length (p = 0.00) between temperature with the fish reared in tmax group having the lowest mean length (176.50±12.50 mm) and fish reared in tmin group having the highest mean length (183.60±23.86 mm). Therefore, this paper confirmed the significant effects of temperature on the fish growth reared in aquaculture ponds. More, maintaining aquaculture to lower temperature can be considered as way to keep growth of milkfish well.

  7. Relating quality of life to Glasgow outcome scale health states.

    Science.gov (United States)

    Kosty, Jennifer; Macyszyn, Luke; Lai, Kevin; McCroskery, James; Park, Hae-Ran; Stein, Sherman C

    2012-05-01

    There has recently been a call for the adoption of comparative effectiveness research (CER) and related research approaches for studying traumatic brain injury (TBI). These methods allow researchers to compare the effectiveness of different therapies in producing patient-oriented outcomes of interest. Heretofore, the only measures by which to compare such therapies have been mortality and rate of poor outcome. Better comparisons can be made if parametric, preference-based quality-of-life (QOL) values are available for intermediate outcomes, such as those described by the Glasgow Outcome Scale Extended (GOSE). Our objective was therefore to determine QOL for the health states described by the GOSE. We interviewed community members at least 18 years of age using the standard gamble method to assess QOL for descriptions of GOSE scores of 2-7 derived from the structured interview. Linear regression analysis was also performed to assess the effect of age, gender, and years of education on QOL. One hundred and one participants between the ages of 18 and 83 were interviewed (mean age 40 ± 19 years), including 55 men and 46 women. Functional impairment and QOL showed a strong inverse relationship, as assessed by both linear regression and the Spearman rank order coefficient. No consistent effect or age, gender, or years of education was seen. As expected, QOL decreased with functional outcome as described by the GOSE. The results of this study will provide the groundwork for future groups seeking to apply CER methods to clinical studies of TBI.

  8. Development and Validation of a PTSD-Related Impairment Scale

    Science.gov (United States)

    2012-06-01

    Social Adjustment Scale (SAS-SR) (58] Dyadic Adjustment Scale (DAS) [59] Life Stressors and Social Resources Inventory ( LISRES ) [60] 3...measure that gauges on- 200 Social Resources lnven- 2. Spouse/partner going life stressors and social resources tory ( LISRES ; Moos & 3. Finances as well...measures (e.g., ICF checklist, LISRES ; Moos, Penn, & Billings, 1988) may nor be practical or desirable in many healthcare settings or in large-scale

  9. Nanometer-scale temperature measurements of phase change memory and carbon nanomaterials

    Science.gov (United States)

    Grosse, Kyle Lane

    This work investigates nanometer-scale thermometry and thermal transport in new electronic devices to mitigate future electronic energy consumption. Nanometer-scale thermal transport is integral to electronic energy consumption and limits current electronic performance. New electronic devices are required to improve future electronic performance and energy consumption, but heat generation is not well understood in these new technologies. Thermal transport deviates significantly at the nanometer-scale from macroscopic systems as low dimensional materials, grain structure, interfaces, and thermoelectric effects can dominate electronic performance. This work develops and implements an atomic force microscopy (AFM) based nanometer-scale thermometry technique, known as scanning Joule expansion microscopy (SJEM), to measure nanometer-scale heat generation in new graphene and phase change memory (PCM) devices, which have potential to improve performance and energy consumption of future electronics. Nanometer-scale thermometry of chemical vapor deposition (CVD) grown graphene measured the heat generation at graphene wrinkles and grain boundaries (GBs). Graphene is an atomically-thin, two dimensional (2D) carbon material with promising applications in new electronic devices. Comparing measurements and predictions of CVD graphene heating predicted the resistivity, voltage drop, and temperature rise across the one dimensional (1D) GB defects. This work measured the nanometer-scale temperature rise of thin film Ge2Sb2Te5 (GST) based PCM due to Joule, thermoelectric, interface, and grain structure effects. PCM has potential to reduce energy consumption and improve performance of future electronic memory. A new nanometer-scale thermometry technique is developed for independent and direct observation of Joule and thermoelectric effects at the nanometer-scale, and the technique is demonstrated by SJEM measurements of GST devices. Uniform heating and GST properties are observed for

  10. Continental-Scale Temperature Reconstructions from the PAGES 2k Network

    Science.gov (United States)

    Kaufman, D. S.

    2012-12-01

    We present a major new synthesis of seven regional temperature reconstructions to elucidate the global pattern of variations and their association with climate-forcing mechanisms over the past two millennia. To coordinate the integration of new and existing data of all proxy types, the Past Global Changes (PAGES) project developed the 2k Network. It comprises nine working groups representing eight continental-scale regions and the oceans. The PAGES 2k Consortium, authoring this paper, presently includes 79 representatives from 25 countries. For this synthesis, each of the PAGES 2k working groups identified the proxy climate records for reconstructing past temperature and associated uncertainty using the data and methodologies that they deemed most appropriate for their region. The datasets are from 973 sites where tree rings, pollen, corals, lake and marine sediment, glacier ice, speleothems, and historical documents record changes in biologically and physically mediated processes that are sensitive to temperature change, among other climatic factors. The proxy records used for this synthesis are available through the NOAA World Data Center for Paleoclimatology. On long time scales, the temperature reconstructions display similarities among regions, and a large part of this common behavior can be explained by known climate forcings. Reconstructed temperatures in all regions show an overall long-term cooling trend until around 1900 C.E., followed by strong warming during the 20th century. On the multi-decadal time scale, we assessed the variability among the temperature reconstructions using principal component (PC) analysis of the standardized decadal mean temperatures over the period of overlap among the reconstructions (1200 to 1980 C.E.). PC1 explains 35% of the total variability and is strongly correlated with temperature reconstructions from the four Northern Hemisphere regions, and with the sum of external forcings including solar, volcanic, and greenhouse

  11. Losses of radionuclides related to high temperature ashing

    International Nuclear Information System (INIS)

    Carlsson, G.

    1985-01-01

    When measuring radionuclides in samples from the environment of nuclear power plants, a sample preparation step, such as high temperature ashing is often necessary. Althoug much used, this method is subject to controversy because of the risk of losses of several elements. A study, including the ashing of synthetically prepared samples has been undertaken. Controlled and moderate temperature rise rate and a final temperature not exceeding 550 deg. C has been shown vital for recovery

  12. Relation between temperature and mortality in thirteen Spanish cities

    OpenAIRE

    Iñiguez, Carmen; Ballester, Ferran; Ferrándiz, Juan; Pérez Hoyos, Santiago; Sáez Zafra, Marc; López Estudillo, Antonio

    2010-01-01

    In this study we examined the shape of the association between temperature and mortality in 13 Spanish cities representing a wide range of climatic and socio-demographic conditions. The temperature value linked with minimum mortality (MMT) and the slopes before and after the turning point (MMT) were calculated. Most cities showed a V-shaped temperature-mortality relationship. MMTs were generally higher in cities with warmer climates. Cold and heat effects also depended on climate: effects wer...

  13. Critical scaling of a jammed system after a quench of temperature.

    Science.gov (United States)

    Otsuki, Michio; Hayakawa, Hisao

    2012-09-01

    Critical behavior of soft repulsive particles after quench of temperature near the jamming transition is numerically investigated. It is found that the plateau of the mean-square displacement of tracer particles and the pressure satisfy critical scaling laws. The critical density for the jamming transition depends on the protocol to prepare the system, while the values of the critical exponents which are consistent with the prediction of a phenomenology are independent of the protocol.

  14. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar

    2015-07-21

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.

  15. Three dimensional numerical simulation of a full scale CANDU reactor moderator to study temperature fluctuations

    International Nuclear Information System (INIS)

    Sarchami, Araz; Ashgriz, Nasser; Kwee, Marc

    2014-01-01

    Highlights: • 3D model of a Candu reactor is modeled to investigate flow distribution. • The results show the temperature distribution is not symmetrical. • Temperature contours show the hot regions at the top left-hand side of the tank. • Interactions of momentum flows and buoyancy flows create circulation zones. • The results indicate that the moderator tank operates in the buoyancy driven mode. -- Abstract: Three dimensional numerical simulations are conducted on a full scale CANDU Moderator and transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified. Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows in the center region of the tank, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold; (ii) low amplitude are in the core of the tank; (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities

  16. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    Science.gov (United States)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  17. Influence of sintering temperature in red ceramic with addition of mill scale

    International Nuclear Information System (INIS)

    Arnt, A.B.C.; Rocha, M.R.; Bernardin, A.M.; Meller, J.G.

    2010-01-01

    This study aimed to evaluate the influence of sintering temperature in a red ceramic body with the addition of mill scale. This residue consists of oxides of iron had to replace the function of pigments used in ceramic materials. After chemical characterization, by X-ray diffraction, X-ray fluorescence and scanning electron microscopy, this residue was added at a rate of 5% in commercial ceramic past. The formulations were subjected to different burn temperatures of around 950 deg C, 1000 deg C and 1200 deg C. The formulations were evaluated for physical loss to fire, linear firing shrinkage, water absorption and flexural strength by 3 and intensity of tone. The results indicate that the different firing temperatures influence the strength and stability of tone in the formulations tested. (author)

  18. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    1999-01-01

    model that does not account for bed hydrodynamics. The pilot-scale test run results, obtained in the test runs of the sulfur removal process with real coal gasifier gas, have been used for parameter estimation. The validity of the reactor model for commercial-scale design applications is discussed.......Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale......-up. Steady-state kinetic reactor models are needed for reactor sizing, and dynamic models can be used for process control design and operator training. The regenerative sulfur removal process to be studied in this paper consists of two side-by-side fluidized bed reactors operating at temperatures of 400...

  19. Observing the temperature of the big bang through large scale structure

    Science.gov (United States)

    Ferreira, Pedro G.; Magueijo, João

    2008-09-01

    It is an interesting possibility that the Universe underwent a period of thermal equilibrium at very early times. One expects a residue of this primordial state to be imprinted on the large scale structure of space time. In this paper, we study the morphology of this thermal residue in a universe whose early dynamics is governed by a scalar field. We calculate the amplitude of fluctuations on large scales and compare it with the imprint of vacuum fluctuations. We then use the observed power spectrum of fluctuations on the cosmic microwave background to place a constraint on the temperature of the Universe before and during inflation. We also present an alternative scenario, where the fluctuations are predominantly thermal and near scale-invariant.

  20. Millennial-scale temperature change velocity in the continental northern Neotropics.

    Science.gov (United States)

    Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana

    2013-01-01

    Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical

  1. Millennial-scale temperature change velocity in the continental northern Neotropics.

    Directory of Open Access Journals (Sweden)

    Alexander Correa-Metrio

    Full Text Available Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk

  2. 1D-Var temperature retrievals from microwave radiometer and convective scale model

    Directory of Open Access Journals (Sweden)

    Pauline Martinet

    2015-12-01

    Full Text Available This paper studies the potential of ground-based microwave radiometers (MWR for providing accurate temperature retrievals by combining convective scale numerical models and brightness temperatures (BTs. A one-dimensional variational (1D-Var retrieval technique has been tested to optimally combine MWR and 3-h forecasts from the French convective scale model AROME. A microwave profiler HATPRO (Humidity and Temperature PROfiler was operated during 6 months at the meteorological station of Bordeaux (Météo France. MWR BTs were monitored against simulations from the Atmospheric Radiative Transfer Simulator 2 radiative transfer model. An overall good agreement was found between observations and simulations for opaque V-band channels but large errors were observed for channels the most affected by liquid water and water vapour emissions (51.26 and 52.28 GHz. 1D-Var temperature retrievals are performed in clear-sky and cloudy conditions using a screening procedure based on cloud base height retrieval from ceilometer observations, infrared radiometer temperature and liquid water path derived from the MWR observations. The 1D-Var retrievals were found to improve the AROME forecasts up to 2 km with a maximum gain of approximately 50 % in root-mean-square-errors (RMSE below 500 m. They were also found to outperform neural network retrievals. A static bias correction was proposed to account for systematic instrumental errors. This correction was found to have a negligible impact on the 1D-Var retrievals. The use of low elevation angles improves the retrievals up to 12 % in RMSE in cloudy-sky in the first layers. The present implementation achieved a RMSE with respect to radiosondes within 1 K in clear-sky and 1.3 K in cloudy-sky conditions for temperature.

  3. New SCALE-4 features related to cross-section processing

    International Nuclear Information System (INIS)

    Petrie, L.M.; Landers, N.F.; Greene, N.M.; Parks, C.V.

    1991-01-01

    The SCALE code system has a standardized scheme for processing problem-dependent cross section from problem-independent waste libraries. Some improvements and new capabilities in the processing scheme have been incorporated into the new Version 4 release of the SCALE system. The new features include the capability to consider annular cylindrical and spherical unit cells, and improved Dancoff factor formulation, and changes to the NITAWL-II module to perform resonance self-shielding with reference to infinite dilute values. A review of these major changes in the cross-section processing scheme for SCALE-4 is presented in this paper

  4. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Energent Corporation, Santa Ana, CA (United States)

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  5. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  6. Trends in mean maximum temperature, mean minimum temperature and mean relative humidity for Lautoka, Fiji during 2003 – 2013

    Directory of Open Access Journals (Sweden)

    Syed S. Ghani

    2017-12-01

    Full Text Available The current work observes the trends in Lautoka’s temperature and relative humidity during the period 2003 – 2013, which were analyzed using the recently updated data obtained from Fiji Meteorological Services (FMS. Four elements, mean maximum temperature, mean minimum temperature along with diurnal temperature range (DTR and mean relative humidity are investigated. From 2003–2013, the annual mean temperature has been enhanced between 0.02 and 0.080C. The heating is more in minimum temperature than in maximum temperature, resulting in a decrease of diurnal temperature range. The statistically significant increase was mostly seen during the summer months of December and January. Mean Relative Humidity has also increased from 3% to 8%. The bases of abnormal climate conditions are also studied. These bases were defined with temperature or humidity anomalies in their appropriate time sequences. These established the observed findings and exhibited that climate has been becoming gradually damper and heater throughout Lautoka during this period. While we are only at an initial phase in the probable inclinations of temperature changes, ecological reactions to recent climate change are already evidently noticeable. So it is proposed that it would be easier to identify climate alteration in a small island nation like Fiji.

  7. Regional scale ecological risk assessment: using the relative risk model

    National Research Council Canada - National Science Library

    Landis, Wayne G

    2005-01-01

    ...) in the performance of regional-scale ecological risk assessments. The initial chapters present the methodology and the critical nature of the interaction between risk assessors and decision makers...

  8. Statistical analysis of the effects of relative humidity and temperature ...

    African Journals Online (AJOL)

    Isreal

    and temperature on radio refractivity over Nigeria using satellite data ... refractive index of air causes adverse effects such as multipath ... decreased power levels at the receiver and to increased ... the southern and central part of Nigeria.

  9. Calculation of coolant temperature sensitivity related to thermohydraulic parameters

    International Nuclear Information System (INIS)

    Silva, F.C. da; Andrade Lima, F.R. de

    1985-01-01

    It is verified the viability to apply the generalized Perturbation Theory (GPT) in the calculation of sensitivity for thermal-hydraulic problems. It was developed the TEMPERA code in FORTRAN-IV to transient calculations in the axial temperature distribution in a channel of PWR reactor and the associated importance function, as well as effects of variations of thermalhydraulic parameters in the coolant temperature. The results are compared with one which were obtained by direct calculation. (M.C.K.) [pt

  10. Chemical equilibria relating the isotopic hydrogens at low temperatures

    International Nuclear Information System (INIS)

    Pyper, J.W.; Souers, P.C.

    1976-01-01

    Hydrogen fusion will require a fuel mixture of liquefied or frozen D 2 and T 2 . The composition of this fuel mixture is described by the equilibrium constant K/sub DT/. The theory of isotopic exchange reactions is discussed as applied to the hydrogen isotopes. A literature survey of the values of K/sub HD/, K/sub HT/, and K/sub DT/ found no values of K/sub DT/ for temperatures below 25 0 K and no values of K/sub HD/ and K/sub HT/ for temperatures below 50 0 K. The existing data are critically evaluated, and simplified formulas for the three equilibrium constants in the temperature range 50 to 300 0 K are derived from them. Harmonic approximation theory with rotational correction was used to calculate values of K/sub HD/, K/sub HT/, and K/sub DT/ in the temperature range 4.2 to 50 0 K. It is found that K/sub DT/ = 2.995 exp(-10.82/T) in the temperature range 16.7 to 33.3 0 K to an accuracy of 1%. Tables, graphs, and equations of K/sub HD/, K/sub HT/, and K/sub DT/ are given for the temperature range 4.2 to 50 0 K. 27 references, 14 tables, 8 figures

  11. Effect of temperature downshifts on a bench-scale hybrid A/O system: Process performance and microbial community dynamics.

    Science.gov (United States)

    Zhou, Hexi; Li, Xiangkun; Chu, Zhaorui; Zhang, Jie

    2016-06-01

    Effect of temperature downshifts on process performance and bacterial community dynamics was investigated in a bench-scale hybrid A/O system treating real domestic wastewater. Results showed that the average COD removal in this system reached 90.5%, 89.1% and 90.3% for Run 1 (25 °C), Run 2 (15 °C) and Run 3 (10 °C), respectively, and variations in temperature barely affected the effluent COD concentration. The average removal efficiencies of NH4(+)-N were 98.4%, 97.8%, 95.7%, and that of TN were 77.1%, 61.8%, 72% at 25 °C, 15 °C and 10 °C, respectively. Although the hybrid system was subjected to low temperature, this process effectively removed NH4(+)-N and TN even at 10 °C with the average effluent concentrations of 2.4 mg/L and 14.3 mg/L, respectively. Results from high-throughput sequencing analysis revealed that when the operation temperature decreased from 25 °C to 10 °C, the richness and diversity indexes of the system decreased in the sludge samples, while underwent an increase in the biofilm samples. Furthermore, the major heterotrophic bacteria consisted of Lewinella, Lutimonas, Chitinophaga and Fluviicola at 10 °C, which could be central to effective COD removal at low temperature. Additionally, Azospira, one denitrifying-related genus increased from 0.4% to 4.45% in the biofilm samples, with a stable TN removal in response to temperature downshifts. Nitrosomonas and Nitrospira increased significantly in the biofilm samples, implying that the attached biofilm contributed to more nitrification at low temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Small-Scale High Temperature Melter-1 (SSHTM-1) Data Package. Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This appendix provides the data for Alternate HTM Flowsheet 2 (Glycolic Acid) melter feed preparation activities in both the laboratory- and small-scale testing. The first section provides an outline of this appendix. The melter feed preparation data are presented in the next two main sections, laboratory melter feed preparation data and small-scale melter feed preparation data. Section 3.0 provides the laboratory data which is discussed in the main body of the Small-Scale High Temperature-1 (SSHTM-1) Data Package, milestone C95-02.02Y. Section 3.1 gives the flowsheet in outline form as used in the laboratory-scale tests. This section also includes the ``Laboratory Melter Feed Preparation Activity Log`` which gives A chronological account of the test in terms of time, temperature, slurry pH, and specific observations about slurry appearance, acid addition rates, and samples taken. The ``Laboratory Melter Feed Preparation Activity Log`` provides a road map to the reader by which all the activity and data from the laboratory can be easily accessed. A summary of analytical data is presented next, section 3.2, which covers starting materials and progresses to the analysis of the melter feed. The next section, 3.3, characterizes the off-gas generation that occurs during the slurry processing. The following section, 3.4, provides the rheology data gathered including gram waste oxide loading information for the various slurries tested. The final section, 3.5, includes data from standard crucible redox testing. Section 4.0 provides the small-scale data in parallel form to section 3.0. Section 5.0 concludes with the references for this appendix.

  13. Giant molecular cloud scaling relations: the role of the cloud definition

    Science.gov (United States)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  14. Prediction and experimental determination of the solubility of exotic scales at high temperatures - Zinc sulfide

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2016-01-01

    The presence of "exotic" scale such as Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) in HP/HT reservoirs has been identified. "Exotic" scale materials come as a new challenge in HP/HT reservoirs. This has led to the development of more advanced tools to predict their behavior...... at extreme conditions. The aim of this work is to include ZnS into the group of scale materials that can be modeled with the Extended UNIQUAC model. Solubility data for ZnS are scarce in the open literature. In order to improve the available data, we study the experimental behavior of ZnS solubility at high...... temperatures. The determination of the solubility of ZnS is carried out at temperatures up to 250°C. Zinc sulfide (99.99%) and ultra-pure water are placed in a vial in a reduced oxygen atmosphere. The sample is placed in a controlled bath and stirred until equilibrium is attained. The suspension is filtered...

  15. Leveraging a temperature-tunable, scale-like microstructure to produce multimodal, supersensitive sensors

    KAUST Repository

    Tai, Yanlong

    2017-05-31

    The microstructure of a flexible film plays an important role in its sensing capability. Here, we fabricate a temperature-dependent wrinkled single-walled carbon nanotube (SWCNT)/polydimethyl-siloxane (PDMS) film (WSPF) and a wrinkle-dependent scale-like SWCNT/PDMS film (SSPF) successfully, and address the formation and evolution mechanisms of each film. The low elastic modulus and high coefficient of thermal expansion of the PDMS layer combined with the excellent piezoresistive behavior of the SWCNT film motivated us to investigate how the scale-like microstructure of the SSPF could be used to design multimodal-sensing devices with outstanding capabilities. The results show that SSPFs present supersensitive performance in mechanical loading (an effective sensitivity of up to 740.7 kPa-1) and in temperature (a tunable thermal index of up to 29.9 × 103 K). These exceptional properties were demonstrated in practical applications in a programmable flexile pressure sensor, thermal/light monitor or switch, etc., and were further explained through the macroscopic and microscopic piezoresistive behaviors of scale-like SWCNT coatings.

  16. Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations

    Science.gov (United States)

    Xie, Z.

    2015-12-01

    In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.

  17. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  18. Relation between Wet-Bulb Globe Temperature and Thermal Work Limit Indices with Body Core Temperature

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2018-06-01

    Full Text Available Occupational exposure to heat stress in casting and smelting industries can cause adverse health effects on employees who working in such industries. The present study was set to assess the correlation and agreement of heat stress indices, including wet bulb globe temperature (WBGT, and thermal work limit (TWL, and the deep body temperature indices in workers of several casting and smelting industries located in the vicinity of Tehran, Iran. In This cross-sectional study 40 workers randomly selected and were examined. WBGT and TWL were the indices used for assessing heat stress, and the tympanic temperature and the oral temperature were measured as the heat strain indices. The correlation and agreement of indices were measured using SPSS vs.16. The results of the assessment of WBGT, TWL, the tympanic temperature, and oral temperature showed that 80, 17.5, 40, and 32.5 percent of workers exposed to heat stress higher than permissible limits proposed by standard bodies. Moreover, the present study showed that the significant correlation coefficient between heat stress and heat strain indices was in the range of 0.844- 0.869. Further, there was observed a good agreement between TWL and heat strain indices. The agreement between TWL and the oral temperature was 0.63 (P-value≤ 0.001 and between TWL and tympanic temperature was 0.612 (P-value≤ 0.001. However, the agreement between WBGT and heat strain indices was not satisfactory. These values were 0.154 (P-value ≥ 0.068 and 0.215 (P-value≥ 0.028 for the oral temperature and the tympanic temperature, respectively. The TWL index had a better agreement than WBGT with heat strain indices so TWL index is the better choice for assessing the heat stress in casting and metal smelting industries.

  19. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; hide

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  20. Relation between Temperature and Mortality in Thirteen Spanish Cities

    Directory of Open Access Journals (Sweden)

    Marc Sáez

    2010-08-01

    Full Text Available In this study we examined the shape of the association between temperature and mortality in 13 Spanish cities representing a wide range of climatic and socio-demographic conditions. The temperature value linked with minimum mortality (MMT and the slopes before and after the turning point (MMT were calculated. Most cities showed a V-shaped temperature-mortality relationship. MMTs were generally higher in cities with warmer climates. Cold and heat effects also depended on climate: effects were greater in hotter cities but lesser in cities with higher variability. The effect of heat was greater than the effect of cold. The effect of cold and MMT was, in general, greater for cardio-respiratory mortality than for total mortality, while the effect of heat was, in general, greater among the elderly.

  1. Mantle temperature as a control on the time scale of thermal evolution of extensional basins

    DEFF Research Database (Denmark)

    Petersen, K. D.; Armitage, J. J.; Nielsen, S. B.

    2015-01-01

    and continues for more than 800 Myr. The longevity of basin subsidence in the continental interior can therefore be explained by variation of mantle temperature. An additional cause of the longevity of subsidence is related to the equilibrium thickness of the lithosphere which is increased by the local...

  2. Local-scale analysis of temperature patterns over Poland during heatwave events

    Science.gov (United States)

    Krzyżewska, Agnieszka; Dyer, Jamie

    2018-01-01

    Heatwaves are predicted to increase in frequency, duration, and severity in the future, including over Central Europe where populations are sensitive to extreme temperature. This paper studies six recent major heatwave events over Poland from 2006 through 2015 using regional-scale simulations (10-km grid spacing, hourly frequency) from the Weather Research and Forecast (WRF) model to define local-scale 2-m temperature patterns. For this purpose, a heatwave is defined as at least three consecutive days with maximum 2-m air temperature exceeding 30 °C. The WRF simulations were validated using maximum daily 2-m temperature observations from 12 meteorological stations in select Polish cities, which were selected to have even spatial coverage across the study area. Synoptic analysis of the six study events shows that the inflow of tropical air masses from the south is the primary driver of heatwave onset and maintenance, the highest temperatures (and most vulnerable areas) occur over arable land and artificial surfaces in central and western Poland, while coastal areas in the north, mountain areas in the south, and forested and mosaic areas of smaller fields and pastures of the northwest, northeast, and southeast are less affected by prolonged periods of elevated temperatures. In general, regional differences in 2-m temperature between the hottest and coolest areas is about 2-4 °C. Large urban areas like Warsaw, or the large complex of artificial areas in the conurbation of Silesian cities, are also generally warmer than surrounding areas by roughly 2-4 °C, and even up to 6 °C, especially during the night. Additionally, hot air from the south of Poland flows through a low-lying area between two mountain ranges (Sudetes and Carpathian Mountains)—the so-called Moravian Gate—hitting densely populated urban areas (Silesian cities) and Cracow. These patterns occur only during high-pressure synoptic conditions with low cloudiness and wind and without any active fronts

  3. Development of temperature related thermal neutron scattering database for MCNP

    International Nuclear Information System (INIS)

    Mei Longwei; Cai Xiangzhou; Jiang Dazhen; Chen Jingen; Guo Wei

    2013-01-01

    Based on ENDF/B-Ⅶ neutron library, the thermal neutron scattering library S(α, β) for molten salt reactor moderators was developed. The temperatures of this library were chose as the characteristic temperature of the molten salt reactor. The cross section of the thermal neutron scattering of ACE format was investigated, and this library was also validated by the benchmarks of ICSBEP. The uncertainties shown in the validation were in reasonable range when compared with the thermal neutron scattering library tmccs which included in the MCNP data library. It was proved that the thermal neutron scattering library processed in this study could be used in the molten salt reactor design. (authors)

  4. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales.

    Science.gov (United States)

    Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega

    2016-06-07

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.

  5. Quantum Critical Scaling and Temperature-Dependent Logarithmic Corrections in the Spin-Half Heisenberg Chain

    International Nuclear Information System (INIS)

    Starykh, O.; Singh, R.; Sandvik, A.

    1997-01-01

    Low temperature dynamics of the S=(1)/(2) Heisenberg chain is studied via a simple ansatz generalizing the conformal mapping and analytic continuation procedures to correlation functions with multiplicative logarithmic factors. Closed form expressions for the dynamic susceptibility and the NMR relaxation rates 1/T 1 and 1/T 2G are obtained, and are argued to improve the agreement with recent experiments. Scaling in q/T and ω/T are violated due to these logarithmic terms. Numerical results show that the logarithmic corrections are very robust. While not yet in the asymptotic low temperature regime, they provide striking qualitative confirmation of the theoretical results. copyright 1997 The American Physical Society

  6. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    Energy Technology Data Exchange (ETDEWEB)

    Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Yang, Z. J. [Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02129 (United States)

    2016-11-15

    Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  7. Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence

    OpenAIRE

    Schmitt , François G

    2005-01-01

    Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their p...

  8. Analysis of a computational benchmark for a high-temperature reactor using SCALE

    International Nuclear Information System (INIS)

    Goluoglu, S.

    2006-01-01

    Several proposed advanced reactor concepts require methods to address effects of double heterogeneity. In doubly heterogeneous systems, heterogeneous fuel particles in a moderator matrix form the fuel region of the fuel element and thus constitute the first level of heterogeneity. Fuel elements themselves are also heterogeneous with fuel and moderator or reflector regions, forming the second level of heterogeneity. The fuel elements may also form regular or irregular lattices. A five-phase computational benchmark for a high-temperature reactor (HTR) fuelled with uranium or reactor-grade plutonium has been defined by the Organization for Economic Cooperation and Development, Nuclear Energy Agency (OECD NEA), Nuclear Science Committee, Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles. This paper summarizes the analysis results using the latest SCALE code system (to be released in CY 2006 as SCALE 5.1). (authors)

  9. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging.

    Science.gov (United States)

    Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten

    2007-10-01

    We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.

  10. Multi-scale kinetic description of granular clusters: invariance, balance, and temperature

    Science.gov (United States)

    Capriz, Gianfranco; Mariano, Paolo Maria

    2017-12-01

    We discuss a multi-scale continuum representation of bodies made of several mass particles flowing independently each other. From an invariance procedure and a nonstandard balance of inertial actions, we derive the balance equations introduced in earlier work directly in pointwise form, essentially on the basis of physical plausibility. In this way, we analyze their foundations. Then, we propose a Boltzmann-type equation for the distribution of kinetic energies within control volumes in space and indicate how such a distribution allows us to propose a definition of (granular) temperature along processes far from equilibrium.

  11. Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature

    International Nuclear Information System (INIS)

    Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu

    2014-01-01

    Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T 2 scales as n γ . The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging

  12. Transient characteristics of current lead losses for the large scale high-temperature superconducting rotating machine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Park, S. I.; Kim, D. J.; Kim, H. M.; Lee, H. G.; Yoon, Y. S.; Jo, Y. S.; Yoon, K. Y.

    2014-01-01

    To minimize most heat loss of current lead for high-temperature superconducting (HTS) rotating machine, the choice of conductor properties and lead geometry - such as length, cross section, and cooling surface area - are one of the various significant factors must be selected. Therefore, an optimal lead for large scale of HTS rotating machine has presented before. Not let up with these trends, this paper continues to improve of diminishing heat loss for HTS part according to different model. It also determines the simplification conditions for an evaluation of the main flux flow loss and eddy current loss transient characteristics during charging and discharging period.

  13. Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Ilas, Dan [ORNL; Kelly, Ryan P [ORNL; Sunny, Eva E [ORNL

    2012-08-01

    This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

  14. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    Science.gov (United States)

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions.

  15. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Han, T. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-07

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.

  16. Exploiting the atmosphere's memory for monthly, seasonal and interannual temperature forecasting using Scaling LInear Macroweather Model (SLIMM)

    Science.gov (United States)

    Del Rio Amador, Lenin; Lovejoy, Shaun

    2016-04-01

    Traditionally, most of the models for prediction of the atmosphere behavior in the macroweather and climate regimes follow a deterministic approach. However, modern ensemble forecasting systems using stochastic parameterizations are in fact deterministic/ stochastic hybrids that combine both elements to yield a statistical distribution of future atmospheric states. Nevertheless, the result is both highly complex (both numerically and theoretically) as well as being theoretically eclectic. In principle, it should be advantageous to exploit higher level turbulence type scaling laws. Concretely, in the case for the Global Circulation Models (GCM's), due to sensitive dependence on initial conditions, there is a deterministic predictability limit of the order of 10 days. When these models are coupled with ocean, cryosphere and other process models to make long range, climate forecasts, the high frequency "weather" is treated as a driving noise in the integration of the modelling equations. Following Hasselman, 1976, this has led to stochastic models that directly generate the noise, and model the low frequencies using systems of integer ordered linear ordinary differential equations, the most well-known are the Linear Inverse Models (LIM). For annual global scale forecasts, they are somewhat superior to the GCM's and have been presented as a benchmark for surface temperature forecasts with horizons up to decades. A key limitation for the LIM approach is that it assumes that the temperature has only short range (exponential) decorrelations. In contrast, an increasing body of evidence shows that - as with the models - the atmosphere respects a scale invariance symmetry leading to power laws with potentially enormous memories so that LIM greatly underestimates the memory of the system. In this talk we show that, due to the relatively low macroweather intermittency, the simplest scaling models - fractional Gaussian noise - can be used for making greatly improved forecasts

  17. Global surface temperature in relation to northeast monsoon rainfall ...

    Indian Academy of Sciences (India)

    is observed that the meridional gradient in surface air temperature anomalies between Europe and ... Surface air tempera- ture is one of the factors that influence monsoon variability. The distribution of surface air temper- ature over land and sea determines the locations ..... Asia, north Indian Ocean, northeast Russia and.

  18. Recommended temperature and relative humidity for storage of ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... RED GINGER (Alpinia purpurata (Vieill.) Schum). Upon arrival at the treatment shed (packing house), the stems should be placed in clean water; this practice increases durability by helping to reduce the temperature of the same and facilitate cleaning. The remaining leaves should be removed. The leaves ...

  19. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  20. Variations in VLT/UVES-based OH rotational temperatures for time scales from hours to 15 years

    Science.gov (United States)

    Noll, Stefan; Kimeswenger, Stefan; Proxauf, Bastian; Kausch, Wolfgang; Unterguggenberger, Stefanie; Jones, Amy M.

    2017-04-01

    Hydroxyl (OH) emission is an important tracer of the climate, chemistry, and dynamics of the Earth's mesopause region. However, the relation of intensity variations in different OH lines is not well understood yet. This is critical for the most popular use of OH lines: the estimate of ambient temperatures based on transitions at low rotational levels of the same band. It is possible that the measured variability of the derived rotational temperature does not coincide with changes in the ambient temperature. Such differences can be caused by varying deviations from the local thermodynamic equilibrium (LTE) for the population distribution over the considered rotational levels. The non-LTE effects depend on the ratio of the thermalising collisions (mostly related to molecular oxygen) and competing radiative transitions or collisions without thermalisation of the rotational level distribution. Therefore, significant changes in the vertical structure of excited OH and its main quenchers can affect the temperature measurements. We have investigated the variability of OH rotational temperatures and the corresponding contributions of non-LTE effects for different OH bands and time scales up to 15 years based on data of the high-resolution echelle spectrograph UVES at the Very Large Telescope at Cerro Paranal in Chile. In order to link the measured rotational temperatures with the structure of the OH emission layer, we have also studied OH emission and kinetic temperature profiles from the multi-channel radiometer SABER on the TIMED satellite taken between 2002 and 2015. The results show that non-LTE contributions can significantly affect the OH rotational temperatures. Their variations can be especially strong during the night and for high upper vibrational levels of the transitions, where amplitudes of several Kelvins can be measured. They appear to be weak if long-term variations such as those caused by the solar cycle are investigated. These differences in the response

  1. THE EVOLUTION OF BLACK HOLE SCALING RELATIONS IN GALAXY MERGERS

    International Nuclear Information System (INIS)

    Johansson, Peter H.; Burkert, Andreas; Naab, Thorsten

    2009-01-01

    We study the evolution of black holes (BHs) on the M BH -σ and M BH -M bulge planes as a function of time in disk galaxies undergoing mergers. We begin the simulations with the progenitor BH masses being initially below (Δlog M BH,i ∼ -2), on (Δlog M BH,i ∼ 0), and above (Δlog M BH,i ∼ 0.5) the observed local relations. The final relations are rapidly established after the final coalescence of the galaxies and their BHs. Progenitors with low initial gas fractions (f gas = 0.2) starting below the relations evolve onto the relations (Δlog M BH,f ∼ -0.18), progenitors on the relations stay there (Δlog M BH,f ∼ 0), and finally progenitors above the relations evolve toward the relations, but still remain above them (Δlog M BH,f ∼ 0.35). Mergers in which the progenitors have high initial gas fractions (f gas = 0.8) evolve above the relations in all cases (Δlog M BH,f ∼ 0.5). We find that the initial gas fraction is the prime source of scatter in the observed relations, dominating over the scatter arising from the evolutionary stage of the merger remnants. The fact that BHs starting above the relations do not evolve onto the relations indicates that our simulations rule out the scenario in which overmassive BHs evolve onto the relations through gas-rich mergers. By implication our simulations thus disfavor the picture in which supermassive BHs develop significantly before their parent bulges.

  2. Mantle temperature as a control on the time scale of thermal evolution of extensional basins

    DEFF Research Database (Denmark)

    Petersen, Kenni Dinesen; Armitage, J.J.; Nielsen, S.B.

    2015-01-01

    Abstract Extension of the lithosphere, the thermo-mechanical boundary layer above the convecting mantle, is followed by cooling and subsidence. The timescale of oceanic basin subsidence is ∼100 Myr whereas basins of the continental interior often subside continuously for more than 200 Myr after...... rifting. Using numerical modelling, we show how these diverse rifting scenarios are unified when accounting for varying mantle potential temperature. At a temperature of 1300 °C, cooling is plate-like with nearly exponential subsidence as observed in oceanic basins. At 1200 °C, subsidence is almost linear...... and continues for more than 800 Myr. The longevity of basin subsidence in the continental interior can therefore be explained by variation of mantle temperature. An additional cause of the longevity of subsidence is related to the equilibrium thickness of the lithosphere which is increased by the local...

  3. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

    Science.gov (United States)

    Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong

    2014-01-01

    A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

  4. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  5. An exponential universal scaling law for the volume pinning force of high temperature superconductors

    International Nuclear Information System (INIS)

    Hampshire, D.P.

    1993-01-01

    The exponential magnetic field dependence of the critical current density (J c (B,T)) found in many high temperature superconductors, given by: J c (B,T) α(T)exp(-B/β(T)) where α(T) and β(T) are functions of temperature alone, necessarily implies a Universal Scaling Law for the volume pinning force (F p ) of the form: F p /F PMAX exp(+1).(B/β(T)).exp(-B/β(T)). If the Upper Critical Field is not explicitly measured but is artificially determined by smooth extrapolation of J c (B,T) to zero on a linear J c (B,T) vs B plot, this exponential scaling law can be closely approximated by the Kramer dependence given by: F p /F PMAX C.b p .(1-b) q where p = 0.5, q = 2, C ∼ 3.5 and b = B/B C2 (T). The implications for flux pinning studies are discussed. (orig.)

  6. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Precision Scaling Relations for Disk Galaxies in the Local Universe

    Science.gov (United States)

    Lapi, A.; Salucci, P.; Danese, L.

    2018-05-01

    We build templates of rotation curves as a function of the I-band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about 550 local disk-dominated galaxies with high-quality measurements of the optical radius R opt and of the corresponding rotation velocity V opt. Specifically, we determine the stellar M ⋆ and halo M H masses, the halo size R H and velocity scale V H, and the specific angular momenta of the stellar j ⋆ and dark matter j H components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak-lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with 1σ dispersion around the mean relationships of less than 0.1 dex. We thus set new standard local relationships that must be reproduced by detailed physical models, which offer a basis for improving the subgrid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.

  8. Incidence of lesions on Fungiidae corals in the eastern Red Sea is related to water temperature and coastal pollution

    KAUST Repository

    Furby, K.A.

    2014-07-01

    As sea surface temperatures rise and the global human population increases, large-scale field observations of marine organism health and water quality are increasingly necessary. We investigated the health of corals from the family Fungiidae using visual observations in relation to water quality and microbial biogeochemistry parameters along 1300 km of the Red Sea coast of Saudi Arabia. At large scales, incidence of lesions caused by unidentified etiology showed consistent signs, increasing significantly from the northern to southern coast and positively correlated to annual mean seawater temperatures. Lesion abundance also increased to a maximum of 96% near the populous city of Jeddah. The presence of lesioned corals in the region surrounding Jeddah was strongly correlated with elevated concentrations of ammonium and changes in microbial communities that are linked to decreased water quality. This study suggests that both high seawater temperatures and nutrient pollution may play an indirect role in the formation of lesions on corals. © 2014 Elsevier Ltd.

  9. Incidence of lesions on Fungiidae corals in the eastern Red Sea is related to water temperature and coastal pollution

    KAUST Repository

    Furby, K.A.; Apprill, A.; Cervino, J.M.; Ossolinski, J.E.; Hughen, K.A.

    2014-01-01

    As sea surface temperatures rise and the global human population increases, large-scale field observations of marine organism health and water quality are increasingly necessary. We investigated the health of corals from the family Fungiidae using visual observations in relation to water quality and microbial biogeochemistry parameters along 1300 km of the Red Sea coast of Saudi Arabia. At large scales, incidence of lesions caused by unidentified etiology showed consistent signs, increasing significantly from the northern to southern coast and positively correlated to annual mean seawater temperatures. Lesion abundance also increased to a maximum of 96% near the populous city of Jeddah. The presence of lesioned corals in the region surrounding Jeddah was strongly correlated with elevated concentrations of ammonium and changes in microbial communities that are linked to decreased water quality. This study suggests that both high seawater temperatures and nutrient pollution may play an indirect role in the formation of lesions on corals. © 2014 Elsevier Ltd.

  10. Evaluating Vegetation Type Effects on Land Surface Temperature at the City Scale

    Science.gov (United States)

    Wetherley, E. B.; McFadden, J. P.; Roberts, D. A.

    2017-12-01

    Understanding the effects of different plant functional types and urban materials on surface temperatures has significant consequences for climate modeling, water management, and human health in cities. To date, doing so at the urban scale has been complicated by small-scale surface heterogeneity and limited data. In this study we examined gradients of land surface temperature (LST) across sub-pixel mixtures of different vegetation types and urban materials across the entire Los Angeles, CA, metropolitan area (4,283 km2). We used AVIRIS airborne hyperspectral imagery (36 m resolution, 224 bands, 0.35 - 2.5 μm) to estimate sub-pixel fractions of impervious, pervious, tree, and turfgrass surfaces, validating them with simulated mixtures constructed from image spectra. We then used simultaneously imaged LST retrievals collected at multiple times of day to examine how temperature changed along gradients of the sub-pixel mixtures. Diurnal in situ LST measurements were used to confirm image values. Sub-pixel fractions were well correlated with simulated validation data for turfgrass (r2 = 0.71), tree (r2 = 0.77), impervious (r2 = 0.77), and pervious (r2 = 0.83) surfaces. The LST of pure pixels showed the effects of both the diurnal cycle and the surface type, with vegetated classes having a smaller diurnal temperature range of 11.6°C whereas non-vegetated classes had a diurnal range of 16.2°C (similar to in situ measurements collected simultaneously with the imagery). Observed LST across fractional gradients of turf/impervious and tree/impervious sub-pixel mixtures decreased linearly with increasing vegetation fraction. The slopes of decreasing LST were significantly different between tree and turf mixtures, with steeper slopes observed for turf (p < 0.05). These results suggest that different physiological characteristics and different access to irrigation water of urban trees and turfgrass results in significantly different LST effects, which can be detected at

  11. Soil organic matter dynamics and CO2 fluxes in relation to landscape scale processes: linking process understanding to regional scale carbon mass-balances

    Science.gov (United States)

    Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas

    2014-05-01

    In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.

  12. Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings.

    Science.gov (United States)

    Iwata, Masaki; Otaki, Joji M

    2016-02-01

    Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fire Related Temperature Resistance of Fly Ash Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Jeyalakshmi R.

    2017-01-01

    Full Text Available The study presented in this paper is on the effect of heat treatment on fly ash based geopolymer mortar synthesized from fly ash (Class F –Low lime using alkaline binary activator solution containing sodium hydroxide (18 M and sodium silicate solution (MR 2.0, cured at 80oC for 24 h. 7 days aged specimen heated at elevated temperature (200°C, 400°C, 600°C and 800°C for the sustained period of 2hrs. The TGA/DTA analysis and thermal conductivity measurement as per ASTM C113 were carried out besides the compressive strengths. The thermal stability of the fly ash mortar at elevated temperature was found to be high as reflected in the observed value of f800°C/f30°C being more than 1 and this ratio was raised to about 1.3 with the addition of 2% Zirconium di oxide (ZrO2. No visible cracks were found on the specimens with and without ZrO2 when 800°C was sustained for 4 hrs in smaller specimens of size: 50 mm diameter x 100 mm height and in also bigger size specimens: 22 cm × 11 cm × 7 cm specimens. TGA/DTA analysis of the geopolymer paste showed that the retention of mass was around 90%. The addition of ZrO2 improved thermal resistance. The micro structure of the matrix found to be intact even at elevated temperature that was evident from the FESEM studies.

  14. Flame spread and smoke temperature of full-scale fire test of car fire

    Directory of Open Access Journals (Sweden)

    Dayan Li

    2017-09-01

    Full Text Available Full-scale experiments using two 4-door sedan passenger cars, placed side by side in the reverse direction, were carried out to establish the burning behavior and describe the spread of fire to adjacent car. The temperature was measured by thermocouples. Radiant heat flux was measured with heat flux gauge placed at a distance of 5 m, at the right side of the car. Four cameras were placed inside the car and in the fire test room recording burning behavior during the test. Engine compartment was ignited by a sponge dipped with little gasoline. During the experiment, the ignition was initiated in the engine compartment of car I and approximately 20 min were enough time for fire to spread into the second car. Fully-developed burning of two cars occurred at 29 min. It was observed that the flame spread through car roof faster than through the bottom of car compartment. The fire followed a slow rate spread from engine compartment to car cab. The temperature inside the car peaked at the point of 900 °C. The peak smoke temperatures at every location were measured at the range of 89–285 °C. The smoke production at the time of 11 min to 15 min 50 s of fire was 1.76 m3/s, which was obtained through indirect calculation method.

  15. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    Science.gov (United States)

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Batch scale storage of sprouting foods by irradiation combined with natural low temperature; pt. 1

    International Nuclear Information System (INIS)

    Cho, H.O.; Kwon, J.H.; Yang, H.S.; Byun, M.W.; Lee, C.H.

    1982-01-01

    In order to develop the commercial storage method of potatoes by irradiation combined with natural low temperature, two varieties of potatoes, Irish cobbler and Shimabara were stored at natural low temperature storage room (450x650x250cm; year round temperature change, 2-17 degC; 70-85% R.H.) on a batch scale followed by irradiation with optimum dose level. Irish cobbler and Shimabara were 100% sprouted after 3 months storage in control, whereas in 15Krad irradiated group, sprouting was completely inhibited at Irish cobbler for 9 months storage, and at Shimabara for 12 months. The extent of loss due to rot attack after 9 months storage was 6% in control, 6-8% in 10-15Krad irradiated group at Irish cobbler and weight loss was 16.5% in control, 5.1-5.6% in irradiated group, whereas rotting rate of Shimabara after 12 months storage was 100% in control, 15% in irradiated group and the weight loss of its was 12.6% in control, 7.3-7.4% in irradiated group. The moisture content in whole storage period of two varieties were 72-82% without remarkable changes. The total sugar and ascorbic acid contents were slightly decreased according to the dose increase and elapse of storage period, whereas reducing sugar content was increased. Irish cobbler was 90% markrtable after 9 months storage and 85% in Shimabara after 12 months storage. (Author)

  17. The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations.

    Science.gov (United States)

    Montoya, Joseph H; Tsai, Charlie; Vojvodic, Aleksandra; Nørskov, Jens K

    2015-07-08

    The electrochemical production of NH3 under ambient conditions represents an attractive prospect for sustainable agriculture, but electrocatalysts that selectively reduce N2 to NH3 remain elusive. In this work, we present insights from DFT calculations that describe limitations on the low-temperature electrocatalytic production of NH3 from N2 . In particular, we highlight the linear scaling relations of the adsorption energies of intermediates that can be used to model the overpotential requirements in this process. By using a two-variable description of the theoretical overpotential, we identify fundamental limitations on N2 reduction analogous to those present in processes such as oxygen evolution. Using these trends, we propose new strategies for catalyst design that may help guide the search for an electrocatalyst that can achieve selective N2 reduction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Flow characteristics of a pilot-scale high temperature, short time pasteurizer.

    Science.gov (United States)

    Tomasula, P M; Kozempel, M F

    2004-09-01

    In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.

  19. What spatial scales are believable for climate model projections of sea surface temperature?

    Science.gov (United States)

    Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.

    2014-09-01

    Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (coral bleaching frequency and other marine processes linked to SST warming.

  20. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    Science.gov (United States)

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required.

  1. AIRS Observations Based Evaluation of Relative Climate Feedback Strengths on a GCM Grid-Scale

    Science.gov (United States)

    Molnar, G. I.; Susskind, J.

    2012-12-01

    Climate feedback strengths, especially those associated with moist processes, still have a rather wide range in GCMs, the primary tools to predict future climate changes associated with man's ever increasing influences on our planet. Here, we make use of the first 10 years of AIRS observations to evaluate interrelationships/correlations of atmospheric moist parameter anomalies computed from AIRS Version 5 Level-3 products, and demonstrate their usefulness to assess relative feedback strengths. Although one may argue about the possible usability of shorter-term, observed climate parameter anomalies for estimating the strength of various (mostly moist processes related) feedbacks, recent works, in particular analyses by Dessler [2008, 2010], have demonstrated their usefulness in assessing global water vapor and cloud feedbacks. First, we create AIRS-observed monthly anomaly time-series (ATs) of outgoing longwave radiation, water vapor, clouds and temperature profile over a 10-year long (Sept. 2002 through Aug. 2012) period using 1x1 degree resolution (a common GCM grid-scale). Next, we evaluate the interrelationships of ATs of the above parameters with the corresponding 1x1 degree, as well as global surface temperature ATs. The latter provides insight comparable with more traditional climate feedback definitions (e. g., Zelinka and Hartmann, 2012) whilst the former is related to a new definition of "local (in surface temperature too) feedback strengths" on a GCM grid-scale. Comparing the correlation maps generated provides valuable new information on the spatial distribution of relative climate feedback strengths. We argue that for GCMs to be trusted for predicting longer-term climate variability, they should be able to reproduce these observed relationships/metrics as closely as possible. For this time period the main climate "forcing" was associated with the El Niño/La Niña variability (e. g., Dessler, 2010), so these assessments may not be descriptive of longer

  2. ALGORITHM FOR DYNAMIC SCALING RELATIONAL DATABASE IN CLOUDS

    Directory of Open Access Journals (Sweden)

    Alexander V. Boichenko

    2014-01-01

    Full Text Available This article analyzes the main methods of scalingdatabases (replication, sharding and their supportat the popular relational databases and NoSQLsolutions with different data models: document-oriented, key-value, column-oriented and graph.The article presents an algorithm for the dynamicscaling of a relational database (DB, that takesinto account the specifics of the different types of logic database model. This article was prepared with the support of RFBR (grant № 13-07-00749.

  3. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R. [INAF/IRA, via Gobetti 101, I-40129 Bologna (Italy); Ettori, S. [INAF/Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Pratt, G. W. [Laboratoire AIM, IRFU/Service dAstrophysique-CEA/DSM-CNRS-Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Dolag, K. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Markevitch, M. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the

  4. Projecting future temperature-related mortality in three largest Australian cities

    International Nuclear Information System (INIS)

    Guo, Yuming; Li, Shanshan; Liu, De Li; Chen, Dong; Williams, Gail; Tong, Shilu

    2016-01-01

    We estimated net annual temperature-related mortality in Brisbane, Sydney and Melbourne in Australia using 62 global climate model projections under three IPPC SRES CO_2 emission scenarios (A2, A1B and B1). In all cities, all scenarios resulted in increases in summer temperature-related deaths for future decades, and decreases in winter temperature-related deaths. However, Brisbane and Sydney will increase the net annual temperature-related deaths in the future, while a slight decrease will happen in Melbourne. Additionally, temperature-related mortality will largely increase beyond the summer (including January, February, March, November and December) in Brisbane and Sydney, while temperature-related mortality will largely decrease beyond the winter in Melbourne. In conclusion, temperature increases for Australia are expected to result in a decreased burden of cold-related mortality and an increased burden of heat-related mortality, but the balance of these differences varied by city. In particular, the seasonal patterns in temperature-related deaths will be shifted. - Temperature increases result in a decreased burden of cold-related mortality and an increased burden of heat-related mortality, but the balance of these differences varied by city in Australia.

  5. Orbital-scale Central Arctic Ocean Temperature Records from Benthic Foraminiferal δ18O and Ostracode Mg/Ca Ratios

    Science.gov (United States)

    Keller, K.; Cronin, T. M.; Dwyer, G. S.; Farmer, J. R.; Poirier, R. K.; Schaller, M. F.

    2017-12-01

    Orbital-scale climate variability is often amplified in the polar region, for example in changes in seawater temperature, sea-ice cover, deep-water formation, ecosystems, heat storage and carbon cycling. Yet, the relationship between the Arctic Ocean and global climate remains poorly understood due largely to limited orbital-scale paleoclimate records, the complicated nature of sea-ice response to climate and limited abundance of deep sea biological proxies. Here we reconstruct central Arctic Ocean bottom temperatures over the last 600 kyr using ostracode Mg/Ca ratios (genus Krithe) and benthic foraminiferal oxygen isotope ratios (δ18Obf - I. teretis, O. tener, P. bulloides, C. reniforme, C. wuellerstorfi) in six sediment cores recovered from the Mendeleev and Northwind Ridges (700- 2726 m water depth). We examined glacial-interglacial cycles in Arctic seawater temperatures and Arctic δ18Obf chronostratigraphy to reconcile effects of changing bottom water temperature, ice volume and regional hydrography on δ18Obf records. Results show lower ( 10-12 mmol/mol) interglacial and higher ( 16-23 mmol/mol) glacial Mg/Ca ratios, signifying intermediate depth ocean warming during glacials of up to 2 ºC. These temperature maxima are likely related to a deepening of the halocline and the corresponding deeper influence of warm Atlantic water. Glacial-interglacial δ18Obf ranges are smaller in the Arctic ( 0.8-1‰ VPDB) than in the global ocean ( 1.8 ‰). However, when the distinct glacial-interglacial temperature histories of the Arctic (glacial warming) and global ocean (glacial cooling) are accounted for, both Arctic and global ocean seawater δ18O values (δ18Osw) exhibit similar 1.2-1.3 ‰ glacial-interglacial ranges. Thus, Arctic δ18Obf confirms glacial Arctic warming inferred from ostracode Mg/Ca. This study will discuss the strengths and limitations of applying paired Mg/Ca and oxygen isotope proxies in reconstructing more robust paleoceanographic changes in the

  6. Forsterite Shock Temperatures and Entropy: New Scaling Laws for Impact Melting and Vaporization

    Science.gov (United States)

    Davies, E.; Root, S.; Kraus, R. G.; Townsend, J. P.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Fratanduono, D.; Millot, M. A.; Mattsson, T. R.; Hanshaw, H. L.

    2017-12-01

    The observed masses, radii and temperatures of thousands of extra-solar planets have challenged our theoretical understanding of planet formation and planetary structures. Planetary materials are subject to extreme pressures and temperatures during formation and within the present-day interiors of large bodies. Here, we focus on improving understanding of the physical properties of rocky planets for calculations of internal structure and the outcomes of giant impacts. We performed flyer plate impact experiments on forsterite [Mg2SiO4] on the Z-Machine at Sandia National Laboratory and decaying shock temperature measurements at the Omega EP laser at U. Rochester. At Z, planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Using available static and dynamic thermodynamic data, we calculate absolute entropy and heat capacity along the forsterite shock Hugoniot. Entropy and heat capacity on the Hugoniot are larger than previous estimates. Our data constrain the thermodynamic properties of forsterite liquid at high pressures and temperatures and the amount of melt and vapor produced during impact events. For an ambient pressure of 1 bar, shock-vaporization begins upon reaching the liquid region on the forsterite Hugoniot (about 200 GPa). Using hydrocode simulations of giant impacts between rocky planets with forsterite mantles and iron cores and the new experimentally-constrained forsterite shock entropy, we present a new scaling law for the fraction of mantle that is melted or vaporized by the initial shock wave. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Prepared by LLNL under Contract DE-AC52-07NA27344. Prepared by the Center

  7. Regional scaling of annual mean precipitation and water availability with global temperature change

    Science.gov (United States)

    Greve, Peter; Gudmundsson, Lukas; Seneviratne, Sonia I.

    2018-03-01

    Changes in regional water availability belong to the most crucial potential impacts of anthropogenic climate change, but are highly uncertain. It is thus of key importance for stakeholders to assess the possible implications of different global temperature thresholds on these quantities. Using a subset of climate model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), we derive here the sensitivity of regional changes in precipitation and in precipitation minus evapotranspiration to global temperature changes. The simulations span the full range of available emission scenarios, and the sensitivities are derived using a modified pattern scaling approach. The applied approach assumes linear relationships on global temperature changes while thoroughly addressing associated uncertainties via resampling methods. This allows us to assess the full distribution of the simulations in a probabilistic sense. Northern high-latitude regions display robust responses towards wetting, while subtropical regions display a tendency towards drying but with a large range of responses. Even though both internal variability and the scenario choice play an important role in the overall spread of the simulations, the uncertainty stemming from the climate model choice usually accounts for about half of the total uncertainty in most regions. We additionally assess the implications of limiting global mean temperature warming to values below (i) 2 K or (ii) 1.5 K (as stated within the 2015 Paris Agreement). We show that opting for the 1.5 K target might just slightly influence the mean response, but could substantially reduce the risk of experiencing extreme changes in regional water availability.

  8. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  9. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    Science.gov (United States)

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.

  10. Multi scale study of the plasticity at low temperature in α-iron: application for the cleavage

    International Nuclear Information System (INIS)

    Chaussidon, J.

    2007-10-01

    An accident inside a nuclear power plant may lead to the cleavage of the nuclear vessel made of bainitic steel. In order to understand the origin of this fracture, we studied BCC-iron plasticity at low temperature using numerical simulations at different scales. Molecular Dynamics simulations show the high dependency of screw dislocation motion with temperature and stress. Results from these simulations were added to experiment data to develop a new Dislocation Dynamics code dedicated to BCC iron at low temperature. The code was used to model plasticity into a ferritic lath for various temperatures. This work confirms that cleavage is favoured by low temperatures. (author)

  11. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.; Bedding, T. R.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Hekker, S. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Mosser, B. [LESIA, CNRS, Universite Pierre et Marie Curie, Universite Denis, Diderot, Observatoire de Paris, 92195 Meudon cedex (France); Verner, G. A.; Elsworth, Y. P.; Hale, S. J.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Bonanno, A. [INAF Osservatorio Astrofisico di Catania (Italy); Buzasi, D. L. [Eureka Scientific, 2452 Delmer Street Suite 100, Oakland, CA 94602-3017 (United States); Campante, T. L. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Kallinger, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Silva Aguirre, V. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); De Ridder, J. [Instituut voor Sterrenkunde, K.U.Leuven (Belgium); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191, Gif-sur-Yvette (France); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR 8617, Universite Paris Sud, 91405 Orsay Cedex (France); Frandsen, S. [Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Houdek, G., E-mail: dhuber@physics.usyd.edu.au [Institute of Astronomy, University of Vienna, 1180 Vienna (Austria); and others

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen and Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  12. Finite-Size Scaling in a Two-Temperature Lattice Gas: a Monte Carlo Study of Critical Properties

    DEFF Research Database (Denmark)

    Larsen, Heine; Præstgaard, Eigil; Zia, R.K.P.

    1994-01-01

    We present computer studies of the critical properties of an Ising lattice gas driven to a non-equilibrium steady state by coupling to two temperature baths. Anisotropic scaling, a dominant feature near criticality, is used as a tool to extract the values of the critical temperature and some expo...

  13. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  14. Reduction of statistic scale applied to data of the CCM3 to generate data of temperature of the air in surface

    International Nuclear Information System (INIS)

    Molina Lizcano Alicia; Bernal Suarez, Nestor Ricardo; Martinez Collantes, Jorge; Pabon Jose Daniel; Vega Rodriguez, Emel

    2000-01-01

    The technique is applied of statistical down scaling to find the relations between the variables simulated by a Climate Community Model, in its third version (CCM3) available on the closest grid points near three stations in the Guajira region in north-eastern Colombia, and the surface temperature at those stations. As training (or calibrating)period we chose the years from 1969 to 1990, while the phase of assessment was from 1991 to 1998. The method used was the canonical correlation analysis (CCA) The results were good insofar as the relations obtained approximate satisfactorily the real behaviour of the surface air temperature at the three stations

  15. Oscillating red giants in eclipsing binary systems: empirical reference value for asteroseismic scaling relation

    Science.gov (United States)

    Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.

    2018-05-01

    The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.

  16. Time Scales of the European Surface Air Temperature Variability: The Role of the 7-8 Year Cycle

    Czech Academy of Sciences Publication Activity Database

    Jajcay, Nikola; Hlinka, Jaroslav; Kravtsov, S.; Tsonis, A.A.; Paluš, Milan

    2016-01-01

    Roč. 43, č. 2 (2016), s. 902-909 ISSN 0094-8276 R&D Projects: GA MŠk LH14001 Institutional support: RVO:67985807 Keywords : 7-8 year cycle * air temperature variability * annual cycle amplitude * cross-scale interactions * seasonality * time scales Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.253, year: 2016

  17. Projections of Seasonal Patterns in Temperature- Related Deaths for Manhattan, New York

    Science.gov (United States)

    Li, Tiantian; Horton, Radley M.; Kinney, Patrick L.

    2013-01-01

    Global average temperatures have been rising for the past half-century, and the warming trend has accelerated in recent decades. Further warming is expected over the next few decades, with significant regional variations. These warming trends will probably result in more frequent, intense and persistent periods of hot temperatures in summer, and generally higher temperatures in winter. Daily death counts in cities increase markedly when temperatures reach levels that are very high relative to what is normal in a given location. Relatively cold temperatures also seem to carry risk. Rising temperatures may result in more heat-related mortality but may also reduce cold-related mortality, and the net impact on annual mortality remains uncertain. Here we use 16 downscaled global climate models and two emissions scenarios to estimate present and future seasonal patterns in temperature-related mortality in Manhattan, New York. All 32 projections yielded warm-season increases and cold-season decreases in temperature-related mortality, with positive net annual temperature-related deaths in all cases. Monthly analyses showed that the largest percentage increases may occur in May and September. These results suggest that, over a range of models and scenarios of future greenhouse gas emissions, increases in heat-related mortality could outweigh reductions in cold-related mortality, with shifting seasonal patterns.

  18. Natural-Scale Lava Flow Experiments on Video: Variations with Temperature, Slope, and Effusion Rate

    Science.gov (United States)

    Karson, J. A.; Wysocki, R.; Edwards, B. R.; Lev, E.

    2013-12-01

    Investigations of active basaltic lava flows and analog materials show that flow dynamics and final flow morphology are strongly determined by the rapidly evolving rheology of the lava crust which constrains the downslope advance of the lava flow. The non-dimensional factor Ψ (ratio of the time scale of crust formation to advective heat loss) provides a useful means of comparing different flows. The key parameters that control Ψ include the melt viscosity, temperature, effusion rate, and slope. Experimental lava flows, up to several meters long created in the Syracuse University Lava Project permit these variables to be investigated independently and in combination in volume-limited flows (Pele), that provide additional information on lava crust development. New, continuous flow (cooling-limited) experiments show downslope variations under constant flow conditions.

  19. Space-Time Dynamics of Soil Moisture and Temperature: Scale issues

    Science.gov (United States)

    Mohanty, Binayak P.; Miller, Douglas A.; Th.vanGenuchten, M.

    2003-01-01

    The goal of this project is to gain further understanding of soil moisture/temperature dynamics at different spatio-temporal scales and physical controls/parameters.We created a comprehensive GIS database, which has been accessed extensively by NASA Land Surface Hydrology investigators (and others), is located at the following URL: http://www.essc.psu.edu/nasalsh. For soil moisture field experiments such as SGP97, SGP99, SMEX02, and SMEX03, cartographic products were designed for multiple applications, both pre- and post-mission. Premission applications included flight line planning and field operations logistics, as well as general insight into the extent and distribution of soil, vegetation, and topographic properties for the study areas. The cartographic products were created from original spatial information resources that were imported into Adobe Illustrator, where the maps were created and PDF versions were made for distribution and download.

  20. Digital simulation of a commercial scale high temperature gas-cooled reactor (HTGR) steam power plant

    International Nuclear Information System (INIS)

    Ray, A.; Bowman, H.F.

    1978-01-01

    A nonlinear dynamic model of a commercial scale high temperature gas-cooled reactor (HTGR) steam power plant was derived in state-space form from fundamental principles. The plant model is 40th order, time-invariant, deterministic and continuous-time. Numerical results were obtained by digital simulation. Steady-state performance of the nonlinear model was verified with plant heat balance data at 100, 75 and 50 percent load levels. Local stability, controllability and observability were examined in this range using standard linear algorithms. Transfer function matrices for the linearized models were also obtained. Transient response characteristics of 6 system variables for independent step distrubances in 2 different input variables are presented as typical results

  1. Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu, E-mail: xypan@aphy.iphy.ac.cn

    2014-01-01

    Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T{sub 2} scales as n{sup γ}. The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging.

  2. Scale dependency of American marten (Martes americana) habitat relations [Chapter 12

    Science.gov (United States)

    Andrew J. Shirk; Tzeidle N. Wasserman; Samuel A. Cushman; Martin G. Raphael

    2012-01-01

    Animals select habitat resources at multiple spatial scales; therefore, explicit attention to scale-dependency when modeling habitat relations is critical to understanding how organisms select habitat in complex landscapes. Models that evaluate habitat variables calculated at a single spatial scale (e.g., patch, home range) fail to account for the effects of...

  3. Relation between Euclidean and real time calculations of Green functions at finite temperature

    International Nuclear Information System (INIS)

    Bochkarev, A.

    1993-01-01

    We find a relation between the semiclassical approximation of the temperature (Matsubara) two-point correlator and the corresponding classical Green function in real time at finite temperature. The anharmonic oscillator at finite temperature is used to illustrate our statement, which is however of rather general origin

  4. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    Science.gov (United States)

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  5. Sudden transitions and scaling behavior of geometric quantum correlation for two qubits in quantum critical environments at finite temperature

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2014-01-01

    We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)

  6. Confinement and the Glass Transition Temperature in Supported Polymer Films: Molecular Weight, Repeat Unit Modification, and Cooperativity Length Scale Investigations

    Science.gov (United States)

    Mundra, Manish K.

    2005-03-01

    It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.

  7. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    Science.gov (United States)

    Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team

    2003-04-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T

  8. Centennial-Scale Relationship Between the Southern Hemisphere Westerly Winds and Temperature

    Science.gov (United States)

    Hodgson, D. A.; Perren, B.; Roberts, S. J.; Sime, L. C.; Verleyen, E.; Van Nieuwenhuyze, W.; Vyverman, W.

    2017-12-01

    Recent changes in the intensity and position of the Southern Hemisphere Westerly Winds (SHW) have been implicated in a number of important physical changes in the Southern High Latitudes. These include changes in the efficiency of the Southern Ocean CO2 sink through alterations in ocean circulation, the loss of Antarctic ice shelves through enhanced basal melting, changes in Antarctic sea ice extent, and warming of the Antarctic Peninsula. Many of these changes have far-reaching implications for global climate and sea level rise. Despite the importance of the SHW in global climate, our current understanding of the past and future behaviour of the westerly winds is limited by relatively few reconstructions and measurements of the SHW in their core belt over the Antarctic Circumpolar Current; the region most relevant to Southern Ocean air-sea gas exchange. The aim of this study was to reconstruct changes in the relative strength of the SHW at Marion Island, one of a small number of sub-Antarctic islands that lie in the core of the SHWs. We applied independent diatom- and geochemistry- based methods to track past changes in relative wind intensity. This mutiproxy approach provides a validation that the proxies are responding to the external forcing (the SHW) rather than local (e.g. precipitation ) or internal dynamics. Results show that that the strength of the SHW are intrinsically linked to extratropical temperatures over centennial timescales, with warmer temperatures driving stronger winds. Our findings also suggest that large variations in the path and intensity of the westerly winds are driven by relatively small variations in temperature over these timescales. This means that with continued climate warming, even in the absence of anthropogenic ozone-depletion, we should anticipate large shifts in the SHW, causing stronger, more poleward-intensified winds in the decades and centuries to come, with attendant impacts on ocean circulation, ice shelf stability, and

  9. Relative importance of climate changes at different time scales on net primary productivity-a case study of the Karst area of northwest Guangxi, China.

    Science.gov (United States)

    Liu, Huiyu; Zhang, Mingyang; Lin, Zhenshan

    2017-10-05

    Climate changes are considered to significantly impact net primary productivity (NPP). However, there are few studies on how climate changes at multiple time scales impact NPP. With MODIS NPP product and station-based observations of sunshine duration, annual average temperature and annual precipitation, impacts of climate changes at different time scales on annual NPP, have been studied with EEMD (ensemble empirical mode decomposition) method in the Karst area of northwest Guangxi, China, during 2000-2013. Moreover, with partial least squares regression (PLSR) model, the relative importance of climatic variables for annual NPP has been explored. The results show that (1) only at quasi 3-year time scale do sunshine duration and temperature have significantly positive relations with NPP. (2) Annual precipitation has no significant relation to NPP by direct comparison, but significantly positive relation at 5-year time scale, which is because 5-year time scale is not the dominant scale of precipitation; (3) the changes of NPP may be dominated by inter-annual variabilities. (4) Multiple time scales analysis will greatly improve the performance of PLSR model for estimating NPP. The variable importance in projection (VIP) scores of sunshine duration and temperature at quasi 3-year time scale, and precipitation at quasi 5-year time scale are greater than 0.8, indicating important for NPP during 2000-2013. However, sunshine duration and temperature at quasi 3-year time scale are much more important. Our results underscore the importance of multiple time scales analysis for revealing the relations of NPP to changing climate.

  10. Scaling relation and regime map of explosive gas–liquid flow of binary Lennard-Jones particle system

    KAUST Repository

    Inaoka, Hajime

    2012-02-01

    We study explosive gasliquid flows caused by rapid depressurization using a molecular dynamics model of Lennard-Jones particle systems. A unique feature of our model is that it consists of two types of particles: liquid particles, which tend to form liquid droplets, and gas particles, which remain supercritical gaseous states under the depressurization realized by simulations. The system has a pipe-like structure similar to the model of a shock tube. We observed physical quantities and flow regimes in systems with various combinations of initial particle number densities and initial temperatures. It is observed that a physical quantity Q, such as pressure, at position z measured along a pipe-like system at time t follows a scaling relation Q(z,t)=Q(zt) with a scaling function Q(ζ). A similar scaling relation holds for time evolution of flow regimes in a system. These scaling relations lead to a regime map of explosive flows in parameter spaces of local physical quantities. The validity of the scaling relations of physical quantities means that physics of equilibrium systems, such as an equation of state, is applicable to explosive flows in our simulations, though the explosive flows involve highly nonequilibrium processes. In other words, if the breaking of the scaling relations is observed, it means that the explosive flows cannot be fully described by physics of equilibrium systems. We show the possibility of breaking of the scaling relations and discuss its implications in the last section. © 2011 Elsevier B.V. All rights reserved.

  11. The cooling law and the search for a good temperature scale, from Newton to Dalton

    Energy Technology Data Exchange (ETDEWEB)

    Besson, Ugo, E-mail: ugo.besson@unipv.it [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)

    2011-03-15

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and discusses the relationships between the research on cooling laws and the definition of a temperature scale, as it was treated in Newton's article and in the work of Dalton, including Dalton's search for the absolute zero of temperature. It is shown that these scientists considered the exponential cooling law as a fundamental principle rather than a conjecture to be tested by means of experiments. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and Dalton. The topic is developed in a way that can be suitable for both undergraduate students and general physicists.

  12. The cooling law and the search for a good temperature scale, from Newton to Dalton

    International Nuclear Information System (INIS)

    Besson, Ugo

    2011-01-01

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and discusses the relationships between the research on cooling laws and the definition of a temperature scale, as it was treated in Newton's article and in the work of Dalton, including Dalton's search for the absolute zero of temperature. It is shown that these scientists considered the exponential cooling law as a fundamental principle rather than a conjecture to be tested by means of experiments. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and Dalton. The topic is developed in a way that can be suitable for both undergraduate students and general physicists.

  13. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    Science.gov (United States)

    McDowell, N. G.; Williams, A. P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.; Mackay, D. S.; Ogee, J.; Domec, J. C.; Allen, C. D.; Fisher, R. A.; Jiang, X.; Muss, J. D.; Breshears, D. D.; Rauscher, S. A.; Koven, C.

    2016-03-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April-August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted >=50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  14. Local properties of the large-scale peaks of the CMB temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander (Spain)

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.

  15. High temperature CO2 capture of hydroxyapatite extracted from tilapia scales

    Directory of Open Access Journals (Sweden)

    Oscar H. Ojeda-Niño

    2017-11-01

    Full Text Available Hydroxyapatite (HAp was obtained from tilapia scales by two extraction methods: direct calcination and acid-base treatment. The physicochemical characteristics of the obtained HAps were evaluated by thermogravimetric analysis, X-ray fluorescence, X-ray diffraction, scanning electron microscopy, surface area, infrared spectroscopy, and basicity measurement at 298 K by CO2-pulse titration. Furthermore, the CO2 capture capacity of the solids at high temperature was also determined. Both methods showed the presence of a HAp phase although significant differences in the properties of the solids were found. The HAp obtained by direct calcination exhibited a lower crystallinity and a greater surface area and basicity than the HAp obtained by the acid-base treatment. These features were correlated with the solid’s CO2 capture capacity. In this work, CO2 capture capacity values for HAp yielded by calcination ranged from 2.5 to 3.2 mg CO2 /g captured at 973 K, and for the acid-base treatment-derived HAp, CO2 capture capacity values between 1.2 to 2.5 mg CO2 /g were recorded. These results reveal the potential of HAps extracted from tilapia scales as solids with high CO2 capture capacity, thermal stability, and capture/release cycles reversibility.

  16. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    Science.gov (United States)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus

  17. Small-scale gravity waves in ER-2 MMS/MTP wind and temperature measurements during CRYSTAL-FACE

    Directory of Open Access Journals (Sweden)

    L. Wang

    2006-01-01

    Full Text Available Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs at the aircraft's flight level (typically ~20 km altitude. For a given flight segment, the S-transform (a Gaussian wavelet transform was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of ~5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, ~20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.

  18. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  19. Decadal-scale teleconnection between South Atlantic SST and southeast Australia surface air temperature in austral summer

    Science.gov (United States)

    Xue, Jiaqing; Li, Jianping; Sun, Cheng; Zhao, Sen; Mao, Jiangyu; Dong, Di; Li, Yanjie; Feng, Juan

    2018-04-01

    Austral summer (December-February) surface air temperature over southeast Australia (SEA) is found to be remotely influenced by sea surface temperature (SST) in the South Atlantic at decadal time scales. In austral summer, warm SST anomalies in the southwest South Atlantic induce concurrent above-normal surface air temperature over SEA. This decadal-scale teleconnection occurs through the eastward propagating South Atlantic-Australia (SAA) wave train triggered by SST anomalies in the southwest South Atlantic. The excitation of the SAA wave train is verified by forcing experiments based on both linear barotropic and baroclinic models, propagation pathway and spatial scale of the observed SAA wave train are further explained by the Rossby wave ray tracing analysis in non-uniform basic flow. The SAA wave train forced by southwest South Atlantic warming is characterized by an anomalous anticyclone off the eastern coast of the Australia. Temperature diagnostic analyses based on the thermodynamic equation suggest anomalous northerly flows on western flank of this anticyclone can induce low-level warm advection anomaly over SEA, which thus lead to the warming of surface air temperature there. Finally, SST-forced atmospheric general circulation model ensemble experiments also demonstrate that SST forcing in the South Atlantic is associated with the SAA teleconnection wave train in austral summer, this wave train then modulate surface air temperature over SEA on decadal timescales. Hence, observations combined with numerical simulations consistently demonstrate the decadal-scale teleconnection between South Atlantic SST and summertime surface air temperature over SEA.

  20. Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    M. G. McKellar; J. E. O'Brien; E. A. Harvego; J. S. Herring

    2007-01-01

    This report presents results from the development and optimization of a reference commercial scale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 - 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm-cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics

  1. Detection of Variations in Air Temperature at Different Time Scales During the Period 1889-1998 at Firenze, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.V. [Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad, Hyderabad, 500059, Andhra Pradesh (India); Bindi, M. [DISAT-UNIFI, P.le delle Cascine 18, 50144, Firenze (Italy); Crisci, A. [LaMMA-Laboratorio per la Meteorologia, Climatologia e la Modellistica Ambientale, Campi Bisenzio (Italy); Maracchi, G. [IATA-CNR, P.le delle Cascine 18, 50144 Firenze (Italy)

    2005-09-01

    In an attempt to contribute to studies on global climatic change, 110 years of temperature data for Firenze, Italy, were analysed. Means and trends of annual and monthly temperatures (minimum, maximum and average) were analysed at three different time scales: short (20 years), medium (36-38 years) and long (55 years). Comparative changes in extreme events viz. frosts in the first and second parts of the 20th century were also analysed. At short time scales, climatic change was found in minimum and average temperatures but not in maximum temperatures. At all three time scales, the annual means of minimum, maximum and average temperatures were significantly warmer in the last part than in the early part of the 20th century. The monthly mean temperatures showed significant warming of winter months. Over the last four decades, minimum, maximum and average temperatures had warmed by 0.4, 0.43 and 0.4C per decade, respectively, and if this trend continues, they will be warmer by 4C by the end of the 21st century. The significant decline in days with subzero temperatures and frosts in the last half of the 20th century, further substantiated the occurrence of climate change at this site.

  2. Magnetic hysteresis scaling in thulium: Implication of irreversibility-related scaling for soliton wall motion in an Ising system

    International Nuclear Information System (INIS)

    Kobayashi, Satoru

    2013-01-01

    We report low-field magnetic hysteresis scaling in thulium with strong uniaxial anisotropy. A power-law hysteresis scaling with an exponent of 1.13±0.02 is found between hysteresis loss and remanent flux density of minor loops in the low-temperature ferrimagnetic phase. This exponent value is slightly lower than 1.25–1.4 observed previously for ferromagnets and helimagnets. Unlike spiral and/or Bloch walls with a finite transition width, typical for Dy, Tb, and Ho with planar anisotropy, a soliton wall with a sudden phase shift between neighboring domains may dominate in Tm due to its Ising-like character. The observations imply the presence of universality class of hysteresis scaling that depends on the type of magnetic anisotropy. - Highlights: ► We observe magnetic hysteresis scaling in thulium with a power law exponent of 1.13. ► Irreversibility of soliton walls dominates owing to its strong uniaxial anisotropy. ► The exponent is lower than those for Bloch wall and spiral wall. ► The results imply the presence of universality class that depends on the wall type.

  3. Estimating relations between temperature, relative humidity as independed variables and selected water quality parameters in Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2018-03-01

    Full Text Available In Egypt, Lake Manzala is the largest and the most productive lake of northern coastal lakes. In this study, the continuous measurements data of the Real Time Water Quality Monitoring stations in Lake Manzala were statistically analyzed to measure the regional and seasonal variations of the selected water quality parameters in relation to the change of air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature, relative humidity and quantities and qualities of the drainage water that discharge into the lake. An empirical positive relation was found between air temperature and the relative humidity and pH, EC and TDS and negative relation with DO. There is no significant effect on the other two parameters of turbidity and chlorophyll.

  4. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Yvo); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait (Henri); M.A.A. van Walderveen (Marianne); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (Wouter); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  5. Relation between the concentration of defects and the temperature on a crystal

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A T.V.; Cilense, M [UNESP, Araraquara (Brazil). Inst. de Quimica; Garlipp, W [Sao Paulo Univ., Sao Carlos (Brazil). Escola de Engenharia

    1982-01-01

    Following the basic thermodynamics principles, the relation between the concentration of defects and the temperature on a crystal was established. In the case of vacancies, the relation between the changes in the resistivity and the absolute quench temperature was also obtained.

  6. High-Temperature Structural Analysis of a Small-Scale Prototype of a Process Heat Exchanger (IV) - Macroscopic High-Temperature Elastic-Plastic Analysis -

    International Nuclear Information System (INIS)

    Song, Kee Nam; Hong, Sung Deok; Park, Hong Yoon

    2011-01-01

    A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X was scheduled for testing in a small-scale gas loop at the Korea Atomic Energy Research Institute. In this study, as a part of the evaluation of the high-temperature structural integrity of the PHE prototype, high-temperature structural analysis modeling, and macroscopic thermal and elastic-plastic structural analysis of the PHE prototype were carried out under the gas-loop test conditions as a preliminary qwer123$ study before carrying out the performance test in the gas loop. The results obtained in this study will be used to design the performance test setup for the modified PHE prototype

  7. Development of a versatile high-temperature short-time (HTST) pasteurization device for small-scale processing of cell culture medium formulations.

    Science.gov (United States)

    Floris, Patrick; Curtin, Sean; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan

    2018-07-01

    The compatibility of CHO cell culture medium formulations with all stages of the bioprocess must be evaluated through small-scale studies prior to scale-up for commercial manufacturing operations. Here, we describe the development of a bespoke small-scale device for assessing the compatibility of culture media with a widely implemented upstream viral clearance strategy, high-temperature short-time (HTST) treatment. The thermal stability of undefined medium formulations supplemented with soy hydrolysates was evaluated upon variations in critical HTST processing parameters, namely, holding times and temperatures. Prolonged holding times of 43 s at temperatures of 110 °C did not adversely impact medium quality while significant degradation was observed upon treatment at elevated temperatures (200 °C) for shorter time periods (11 s). The performance of the device was benchmarked against a commercially available mini-pilot HTST system upon treatment of identical formulations on both platforms. Processed medium samples were analyzed by untargeted LC-MS/MS for compositional profiling followed by chemometric evaluation, which confirmed the observed degradation effects caused by elevated holding temperatures but revealed comparable performance of our developed device with the commercial mini-pilot setup. The developed device can assist medium optimization activities by reducing volume requirements relative to commercially available mini-pilot instrumentation and by facilitating fast throughput evaluation of heat-induced effects on multiple medium lots.

  8. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective

    Science.gov (United States)

    Schroeer, K.; Kirchengast, G.

    2018-06-01

    Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.

  9. Eye and Ear Temperature Using Infrared Thermography Are Related to Rectal Temperature in Dogs at Rest or With Exercise.

    Science.gov (United States)

    Zanghi, Brian M

    2016-01-01

    Rectal body temperature (BT) has been documented in exercising dogs to monitor thermoregulation, heat stress risk, and performance during physical activity. Eye (BT eye ) and ear (BT ear ) temperature measured with infrared thermography (IRT) were compared to rectal (BT rec ) temperature as the reference method and assess alternative sites to track hyperthermia, possibly to establish BT eye IRT as a passive and non-contact method. BT measures were recorded at 09:00, 11:30, 12:30, and 02:30 from Labrador Retrievers ( N  = 16) and Beagles ( N  = 16) while sedentary and with 30-min play-exercise (pre- and 0, 15, 30-min post-exercise). Total exercise locomotor activity counts were recorded to compare relative intensity of play-exercise between breeds. BT rec , BT eye , and BT ear were measured within 5 min of the target time. Each BT method was analyzed by analysis of variance for main effects of breed and time. Method differences were compared using Bland-Altman plots and linear regression. Sedentary BT differed by breed for BT rec ( p  dogs with sedentary or exercise activity. The relationship between BT eye and BT rec improved when monitoring exercise hyperthermia ( r  = 0.674) versus measures at rest ( r  = 0.381), whereas BT ear was significantly related to BT rec regardless of activity ( r  = 0.615-0.735). Although BT readings were significantly related, method bias ( p  temperature and enables effective monitoring of BT changes at rest, with exercise, and between breeds. However, ear, and not eye, temperature is a better reflection of rectal temperature.

  10. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    DEFF Research Database (Denmark)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael

    2012-01-01

    with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total...... inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor...... of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly...

  11. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    Science.gov (United States)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  12. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.

    2002-01-01

    Significant density dependence of the energy confinement time as described in the ISS95 scaling has been demonstrated in the extended parameter regimes in LHD. However, recent experiments have indicated that this density dependence is lost at a certain density under specific conditions. This paper discusses the cause of this saturation and related characteristics of anomalous transport. The saturation of the energy confinement time is observed in the density ramp-up phase of NBI heated plasmas. In contrast to the global energy confinement time, the local heat conduction coefficient still indicates the temperature dependence which is a companion to the density dependence of the energy confinement time. The apparent contradiction between the global confinement and the local transport can be attributed to the change of the heat deposition profile. Through this study, the response of temperature and density profiles to the heat deposition profile is highlighted, which is contrasted to the concept of stiffness or profile consistency observed in tokamaks. The major anomalous transport models based on ITG/TEM and interchange/ballooning modes are assessed. (author)

  13. Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a High Spatio-Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Nicholas Clinton

    2014-08-01

    Full Text Available Phenology response to climatic variables is a vital indicator for understanding changes in biosphere processes as related to possible climate change. We investigated global phenology relationships to precipitation and land surface temperature (LST at high spatial and temporal resolution for calendar years 2008–2011. We used cross-correlation between MODIS Enhanced Vegetation Index (EVI, MODIS LST and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN gridded rainfall to map phenology relationships at 1-km spatial resolution and weekly temporal resolution. We show these data to be rich in spatiotemporal information, illustrating distinct phenology patterns as a result of complex overlapping gradients of climate, ecosystem and land use/land cover. The data are consistent with broad-scale, coarse-resolution modeled ecosystem limitations to moisture, temperature and irradiance. We suggest that high-resolution phenology data are useful as both an input and complement to land use/land cover classifiers and for understanding climate change vulnerability in natural and anthropogenic landscapes.

  14. High-Resolution Wellbore Temperature Logging Combined with a Borehole-Scale Heat Budget: Conceptual and Analytical Approaches to Characterize Hydraulically Active Fractures and Groundwater Origin

    Directory of Open Access Journals (Sweden)

    Guillaume Meyzonnat

    2018-01-01

    Full Text Available This work aims to provide an overview of the thermal processes that shape wellbore temperature profiles under static and dynamic conditions. Understanding of the respective influences of advection and conduction heat fluxes is improved through the use of a new heat budget at the borehole scale. Keeping in mind the thermal processes involved, a qualitative interpretation of the temperature profiles allows the occurrence, the position, and the origin of groundwater flowing into wellbores from hydraulically active fractures to be constrained. With the use of a heat budget developed at the borehole scale, temperature logging efficiency has been quantitatively enhanced and allows inflow temperatures to be calculated through the simultaneous use of a flowmeter. Under certain hydraulic or pumping conditions, both inflow intensities and associated temperatures can also be directly modelled from temperature data and the use of the heat budget. Theoretical and applied examples of the heat budget application are provided. Applied examples are shown using high-resolution temperature logging, spinner flow metering, and televiewing for three wells installed in fractured bedrock aquifers in the St-Lawrence Lowlands, Quebec, Canada. Through relatively rapid manipulations, thermal measurements in such cases can be used to detect the intervals or discrete positions of hydraulically active fractures in wellbores, as well as the existence of ambient flows with a high degree of sensitivity, even at very low flows. Heat budget calculations at the borehole scale during pumping indicate that heat advection fluxes rapidly dominate over heat conduction fluxes with the borehole wall. The full characterization of inflow intensities provides information about the distribution of hydraulic properties with depth. The full knowledge of inflow temperatures indicates horizons that are drained from within the aquifer, providing advantageous information on the depth from which

  15. Regional-scale winter-spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jianping; Zhang, Qi-Bin; Lv, Lixin; Zhang, Chao [Institute of Botany, Chinese Academy of Sciences, State Key Laboratory of Vegetation and Environmental Change, Beijing (China)

    2012-08-15

    Winter-spring cold extreme is a kind of serious natural disaster for southeastern China. As such events are recorded in discrete documents, long and continuous records are required to understand their characteristics and driving forces. Here we report a regional-scale winter-spring (January-April) temperature reconstruction based on a tree-ring network of pine trees (Pinus massoniana) from five sampling sites over a large spatial scale (25-29 N, 111-115 E) in southeastern China. The regional tree-ring chronology explains 48.6% of the instrumental temperature variance during the period 1957-2008. The reconstruction shows six relatively warm intervals (i.e., {proportional_to}1849-1855, {proportional_to}1871-1888, {proportional_to}1909-1920, {proportional_to}1939-1944, {proportional_to}1958-1968, 1997-2007) and five cold intervals (i.e., {proportional_to}1860-1870, {proportional_to}1893-1908, {proportional_to}1925-1934, {proportional_to}1945-1957, {proportional_to}1982-1996) during 1849-2008. The last decade and the 1930s were the warmest and coldest decades, respectively, in the past 160 years. The composite analysis of 500-hPa geopotential height fields reveals that distinctly different circulation patterns occurred in the instrumental and pre-instrumental periods. The winter-spring cold extremes in southeastern China are associated with Ural-High ridge pattern for the instrumental period (1957-2008), whereas the cold extremes in pre-instrumental period (1871-1956) are associated with North circulation pattern. (orig.)

  16. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature

    Science.gov (United States)

    Zhang, Ling; Zhao, Yuda; Lin, Ziyuan; Gu, Fangyuan; Lau, Shu Ping; Li, Li; Chai, Yang

    2015-08-01

    Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology-tailored Ag nanostructures, which is significant to the controllable fabrication of Ag nanostructures and fundamental understanding of the growth kinetics.Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology

  17. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    Science.gov (United States)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  18. Identifying food-related life style segments by a cross-culturally valid scaling device

    DEFF Research Database (Denmark)

    Brunsø, Karen; Grunert, Klaus G.

    1994-01-01

    -related life style in a cross-culturally valid way. To this end, we have col-lected a pool of 202 items, collected data in three countries, and have con-structed scales based on cross-culturally stable patterns. These scales have then been subjected to a number of tests of reliability and vali-dity. We have...... then applied the set of scales to a fourth country, Germany, based on a representative sample of 1000 respondents. The scales had, with a fe exceptions, moderately good reliabilities. A cluster ana-ly-sis led to the identification of 5 segments, which differed on all 23 scales....

  19. Scheme-Independent Predictions in QCD: Commensurate Scale Relations and Physical Renormalization Schemes

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    1998-01-01

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scale, such as the ''generalized Crewther relation'', which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. All non-conformal effects are absorbed by fixing the ratio of the respective momentum transfer and energy scales. In the case of fixed-point theories, commensurate scale relations relate both the ratio of couplings and the ratio of scales as the fixed point is approached. The relations between the observables are independent of the choice of intermediate renormalization scheme or other theoretical conventions. Commensurate scale relations also provide an extension of the standard minimal subtraction scheme, which is analytic in the quark masses, has non-ambiguous scale-setting properties, and inherits the physical properties of the effective charge α V (Q 2 ) defined from the heavy quark potential. The application of the analytic scheme to the calculation of quark-mass-dependent QCD corrections to the Z width is also reviewed

  20. The underestimated role of temperature-oxygen relationship in large-scale studies on size-to-temperature response.

    Science.gov (United States)

    Walczyńska, Aleksandra; Sobczyk, Łukasz

    2017-09-01

    The observation that ectotherm size decreases with increasing temperature (temperature-size rule; TSR) has been widely supported. This phenomenon intrigues researchers because neither its adaptive role nor the conditions under which it is realized are well defined. In light of recent theoretical and empirical studies, oxygen availability is an important candidate for understanding the adaptive role behind TSR. However, this hypothesis is still undervalued in TSR studies at the geographical level. We reanalyzed previously published data about the TSR pattern in diatoms sampled from Icelandic geothermal streams, which concluded that diatoms were an exception to the TSR. Our goal was to incorporate oxygen as a factor in the analysis and to examine whether this approach would change the results. Specifically, we expected that the strength of size response to cold temperatures would be different than the strength of response to hot temperatures, where the oxygen limitation is strongest. By conducting a regression analysis for size response at the community level, we found that diatoms from cold, well-oxygenated streams showed no size-to-temperature response, those from intermediate temperature and oxygen conditions showed reverse TSR, and diatoms from warm, poorly oxygenated streams showed significant TSR. We also distinguished the roles of oxygen and nutrition in TSR. Oxygen is a driving factor, while nutrition is an important factor that should be controlled for. Our results show that if the geographical or global patterns of TSR are to be understood, oxygen should be included in the studies. This argument is important especially for predicting the size response of ectotherms facing climate warming.

  1. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    Directory of Open Access Journals (Sweden)

    Gilson Morales

    2010-12-01

    Full Text Available This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects considering the eco-design theory. Moreover, the scale allowed classifying the materials and processes environmental impact through four score categories which resulted in a single final impact score. It was concluded that the EI scale could be cheap, accessible, and relevant tool for environmental impact controlling and reduction, allowing the planning and material specification to minimize the construction negative effects caused in the environment.

  2. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    Science.gov (United States)

    Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan

    2003-12-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to

  3. Trapped Bose-Einstein condensates with Planck-scale induced deformation of the energy-momentum dispersion relation

    International Nuclear Information System (INIS)

    Briscese, F.

    2012-01-01

    We show that harmonically trapped Bose-Einstein condensates can be used to constrain Planck-scale physics. In particular we prove that a Planck-scale induced deformation of the Minkowski energy-momentum dispersion relation δE≃ξ 1 mcp/2M p produces a shift in the condensation temperature T c of about ΔT c /T c 0 ≃10 -6 ξ 1 for typical laboratory conditions. Such a shift allows to bound the deformation parameter up to |ξ 1 |≤10 4 . Moreover we show that it is possible to enlarge ΔT c /T c 0 and improve the bound on ξ 1 lowering the frequency of the harmonic trap. Finally we compare the Planck-scale induced shift in T c with similar effects due to interboson interactions and finite size effects.

  4. Variability of OH rotational temperatures on time scales from hours to 15 years by kinetic temperature variations, emission layer changes, and non-LTE effects

    Science.gov (United States)

    Noll, Stefan

    2016-07-01

    Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.

  5. Scaling relations in elastic scattering cross sections between multiply charged ions and hydrogen

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    1991-01-01

    Differential elastic scattering cross sections of bare ions from hydrogen are calculated using the eikonal approximation. The results satisfy a scaling relation involving the scattering angle, the ion charge and a factor related to the ion mass. A semiclassical explanation in terms of a distant collision hypothesis for small scattering angle is proposed. A unified picture of related scaling rules found in direct processes is discussed. (author)

  6. Projections of temperature-related excess mortality under climate change scenarios.

    Science.gov (United States)

    Gasparrini, Antonio; Guo, Yuming; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Huber, Veronika; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Matus Correa, Patricia; Valdes Ortega, Nicolas; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Jaakkola, Jouni J K; Ryti, Niilo R I; Pascal, Mathilde; Goodman, Patrick G; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Diaz, Magali; Cesar Cruz, Julio; Seposo, Xerxes; Kim, Ho; Tobias, Aurelio; Iñiguez, Carmen; Forsberg, Bertil; Åström, Daniel Oudin; Ragettli, Martina S; Guo, Yue Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L; Dang, Tran Ngoc; Van, Dung Do; Heaviside, Clare; Vardoulakis, Sotiris; Hajat, Shakoor; Haines, Andy; Armstrong, Ben

    2017-12-01

    Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes. Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related

  7. Evaluation of anti-scale property of CrN coatings at high temperature and high pressure

    International Nuclear Information System (INIS)

    Honda, Tomomi; Iwai, Yoshiro; Uno, Ryoji; Yoshinaga, Shigeki

    2007-01-01

    It is well known that oxide scale which adheres to the inner wall of the nozzle in nuclear power plant causes a serious problem. This study was carried out to obtain the knowledge about initiation and deposition behavior of oxide scale on the surface of SUS304 stainless steel and the evaluation of anti-scale property of chromium nitride (CrN) coatings at high temperature and high pressure. SUS304 stainless steel and CrN coating specimens were heated in water up to 200degC for more than 250 hours. Obtained results are summarized as follows. Initiation of the scale started from corrosive part of SUS304 stainless steel and the scale grows by deposition of magnetite particles. CrN coating can be applied to prevent the initiation and deposition of oxide scale. (author)

  8. The Morphology, Dynamics and Potential Hotspots of Land Surface Temperature at a Local Scale in Urban Areas

    Directory of Open Access Journals (Sweden)

    Jiong Wang

    2015-12-01

    Full Text Available Current characterization of the Urban Heat Island (UHI remains insufficient to support the effective mitigation and adaptation of increasing temperatures in urban areas. Planning and design strategies are restricted to the investigation of temperature anomalies at a city scale. By focusing on Land Surface Temperature of Wuhan, China, this research examines the temperature variations locally where mitigation and adaptation would be more feasible. It shows how local temperature anomalies can be identified morphologically. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. They are first considered as noisy observations of the latent temperature patterns. The continuous latent patterns of the temperature are then recovered from these discrete observations by using the non-parametric Multi-Task Gaussian Process Modeling. The Multi-Scale Shape Index is then applied in the area of focus to extract the local morphological features. A triplet of shape, curvedness and temperature is formed as the criteria to extract local heat islands. The behavior of the local heat islands can thus be quantified morphologically. The places with critical deformations are identified as hotpots. The hotspots with certain yearly behavior are further associated with land surface composition to determine effective mitigation and adaptation strategies. This research can assist in the temperature and planning field on two levels: (1 the local land surface temperature patterns are characterized by decomposing the variations into fundamental deformation modes to allow a process-based understanding of the dynamics; and (2 the characterization at local scale conforms to planning and design conventions where mitigation and adaptation strategies are supposed to be more practical. The weaknesses and limitations of the study are addressed in the closing section.

  9. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    OpenAIRE

    Gilson Morales; Antonio Edésio Jungles; Sheila Elisa Scheidemantel Klein; Juliana Guarda

    2010-01-01

    This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects consid...

  10. Conformal Symmetry as a Template:Commensurate Scale Relations and Physical Renormalization Schemes

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    1999-01-01

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scale, such as the ''generalized Crewther relation'', which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. We show how conformal symmetry provides a template for such QCD predictions, providing relations between observables which are present even in theories which are not scale invariant. All non-conformal effects are absorbed by fixing the ratio of the respective momentum transfer and energy scales. In the case of fixed-point theories, commensurate scale relations relate both the ratio of couplings and the ratio of scales as the fixed point is approached. In the case of the α V scheme defined from heavy quark interactions, virtual corrections due to fermion pairs are analytically incorporated into the Gell-Mann Low function, thus avoiding the problem of explicitly computing and resuming quark mass corrections related to the running of the coupling. Applications to the decay width of the Z boson, the BFKL pomeron, and virtual photon scattering are discussed

  11. Downscaling the Impacts of Large-Scale LUCC on Surface Temperature along with IPCC RCPs: A Global Perspective

    Directory of Open Access Journals (Sweden)

    Xiangzheng Deng

    2014-04-01

    Full Text Available This study focuses on the potential impacts of large-scale land use and land cover changes (LUCC on surface temperature from a global perspective. As important types of LUCC, urbanization, deforestation, cultivated land reclamation, and grassland degradation have effects on the climate, the potential changes of the surface temperature caused by these four types of large-scale LUCC from 2010 to 2050 are downscaled, and this issue analyzed worldwide along with Representative Concentration Pathways (RCPs of the Intergovernmental Panel on Climate Change (IPCC. The first case study presents some evidence of the effects of future urbanization on surface temperature in the Northeast megalopolis of the United States of America (USA. In order to understand the potential climatological variability caused by future forest deforestation and vulnerability, we chose Brazilian Amazon region as the second case study. The third selected region in India as a typical region of cultivated land reclamation where the possible climatic impacts are explored. In the fourth case study, we simulate the surface temperature changes caused by future grassland degradation in Mongolia. Results show that the temperature in built-up area would increase obviously throughout the four land types. In addition, the effects of all four large-scale LUCC on monthly average temperature change would vary from month to month with obviously spatial heterogeneity.

  12. Suicide-Related Experiences Among Blacks: An Empirical Test of a Suicide Potential Scale

    Science.gov (United States)

    Wenz, Friedrich V.

    1978-01-01

    Developing a Suicide Potential Scale for a number of socially differentiated, stratified census tract populations in a northern city, this paper argues that scores on this scale are related to actual suicidal behavior. These data support the position that variation in suicide among blacks is mainly determined by economic status. (Author)

  13. Eye and Ear Temperature using Infrared Thermography are Related to Rectal Temperature in Dogs at Rest or With Exercise

    Directory of Open Access Journals (Sweden)

    Brian Michael Zanghi

    2016-12-01

    Full Text Available Rectal body temperature (BT has been documented in exercising dogs to monitor thermoregulation, heat stress risk, and performance during physical activity. Eye (BTeye and ear (BTear temperature measured with infrared thermography (IRT were compared to rectal (BTrec temperature as the reference method and assess alternative sites to track hyperthermia, possibly to establish BTeye IRT as a passive and non-contact method. BT measures were recorded at 09:00, 11:30, 12:30, and 02:30 from Labrador Retrievers (N=16 and Beagles (N=16 while sedentary and with 30-min play-exercise (pre- and 0, 15, 30-min post-exercise. Total exercise locomotor activity counts were recorded to compare relative intensity of play-exercise between breeds. BTrec, BTeye, and BTear were measured within 5 min of the target time. Each BT method was analyzed by ANOVA for main effects of breed and time. Method differences were compared using Bland-Altman plots and linear regression. Sedentary BT differed by breed for BTrec (p<0.0001, BTear (p<0.0001, and BTeye (p=0.06 with Labs having on average 0.3-0.8oC higher BT compared to Beagles. Readings also declined over time for BTeye (p<0.0001 and BTear (p<0.0001, but not for BTrec (p=0.63 for both breeds. Total exercise (30-min activity counts did not differ (p=0.53 between breeds. Time and breed interaction was significant in response to exercise for both BTrec and BTear (p=0.035 and p=0.005, respectively, with a marginal interaction (p=0.09 for BTeye. All 3 methods detected hyperthermia with Labs having a higher increase compared to Beagles. Both BTear and BTeye were significantly (p<0.0001 related to BTrec in all dogs with sedentary or exercise activity. The relationship between BTeye and BTrec improved when monitoring exercise hyperthermia (r=0.674 versus measures at rest (r=0.381, whereas BTear was significantly related to BTrec regardless of activity (r=0.615-0.735. Although BT readings were significantly related, method bias (p<0

  14. Diagnostic values for skin temperature assessment to detect diabetes-related foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; Prijs, Miranda; van Baal, Jeff G.; Liu, C.; van der Heijden, Ferdinand; Bus, Sicco A.

    2014-01-01

    Skin temperature assessment is a promising modality for early detection of diabetic foot problems, but its diagnostic value has not been studied. Our aims were to investigate the diagnostic value of different cutoff skin temperature values for detecting diabetes-related foot complications such as

  15. Diagnostic values for skin temperature assessment to detect diabetes-related foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; Prijs, Miranda; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2014-01-01

    Abstract Background: Skin temperature assessment is a promising modality for early detection of diabetic foot problems, but its diagnostic value has not been studied. Our aims were to investigate the diagnostic value of different cutoff skin temperature values for detecting diabetes-related foot

  16. Adaptation of a pattern-scaling approach for assessment of local (village/valley) scale water resources and related vulnerabilities in the Upper Indus Basin

    Science.gov (United States)

    Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.

    2010-05-01

    sites for medium-scale infrastructure projects. These catchments are placed in their context within the hydrological regime classification using the spatial data and (remote sensing) observations as well as river gauging measurements. The study assesses the degree of similarity with the larger basins of the same hydrological regime. This assessment focuses on the measured response to observed climate variable anomalies. The smallest scale considered is comprised of a number of case studies at the ungauged village/valley scale. These examples are based on the delineation of areas to which specific communities (villages) have customary (riparian) water rights. These examples were suggested by non-governmental organisations working on grassroots economic development initiatives and small-scale infrastructure projects in the region. The direct observations available for these subcatchments are limited to spatial data (elevation, snow parameters). The challenge at this level is to accurately extrapolate areal values (precipitation, temperature, runoff) from point observations at the basin scale. The study assesses both the degree of similarity in the distribution of spatial parameters to the larger gauged basins and the interannual variability (spatial heterogeneity) of remotely-sensed snow cover and snow-water-equivalent at this subcatchment scale. Based upon the characterisation of spatial and interannual variability at these three spatial scales, the challenges facing local water resource managers and infrastructure operators are enumerated. Local vulnerabilities include, but are not limited to, varying thresholds in irrigation water requirements based on crop-type, minimum base flows for micro-hydropower generation during winter (high load) months and relatively small but growing demand for domestic water usage. In conclusion the study posits potential strategies for managing interannual variability and potential emerging trends. Suggested strategies are guided by the

  17. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  18. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  19. 2002 Status of the Armed Forces Survey - Workplace and Gender Relations: Report on Scales and Measures

    National Research Council Canada - National Science Library

    Ormerod, Alayne

    2003-01-01

    ...: Workplace and Gender Relations Survey (2002 WGR). This report describes advances from previous surveys and presents results on scale development as obtained from 19,960 respondents to this survey...

  20. Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang

    2017-05-01

    Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.

  1. Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.

    Science.gov (United States)

    Mendoza, Carlos I; Santamaría-Holek, I; Pérez-Madrid, A

    2015-09-14

    The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the classical Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation (GSER) in which the effective temperature replaces the temperature of the heat bath. This relation then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are known. On the other hand, the temporary cluster formation induced by confinement and attractive interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the GSER allows to obtain an effective temperature that is smaller than the temperature of the heat bath. Additionally, we provide a simple expression based on a differential effective medium theory that allows to calculate the diffusion coefficient at short and long times. Comparison of our results with experiments and simulations for suspensions of hard and porous spheres shows an excellent agreement in all cases.

  2. In-situ Air Temperature and Relative Humidity in Greenbelt, MD, 2013-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set describes the temperature and relative humidity at 12 locations around Goddard Space Flight Center in Greenbelt MD at 15 minute intervals between...

  3. models of hourly dry bulb temperature and relative humidity of key

    African Journals Online (AJOL)

    user

    3: Worst cases of MFE for Dry bulb temperature and Relative humidity. Fig. 4: Best cases of ... the Second Joint International Conference of. University of Ilorin, Ilorin, Nigeria and University ... Erbs, D. G., “Models and Applications for Weather.

  4. Who is Distressed Applying the Diabetes Related Distress Scale in a Diabetes Clinic

    Science.gov (United States)

    2017-06-09

    59 MDW /SGVU SUBJECT: Professional Presentation Approval 7APR 2017 1. Your paper, entitled Who is Distressed? Applying the Diabetes -Related Distress...Scale in A Diabetes Clinic presented at/published to American Diabetes Association 2017 Meeting, San Francisco, CA (National Conference), 9-16 June...as a publication/presentation, a new 59 MOW Form 3039 must be submitted for review and approval.) Using the Diabetes -Related Distress Scale in

  5. Ice nucleation onto Arizona test dust at cirrus temperatures: effect of temperature and aerosol size on onset relative humidity.

    Science.gov (United States)

    Kanji, Z A; Abbatt, J P D

    2010-01-21

    The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC) was used to study ice formation onto monodisperse Arizona Test Dust (ATD) particles. The onset relative humidity with respect to ice (RH(i)) was measured as a function of temperature in the range 251-223 K for 100 nm ATD particles. It was found that for 0.1% of the particles to freeze, water saturation was required at all temperatures except 223 K where particles activated at RH(i) below water saturation. At this temperature, where deposition mode freezing is occurring, we find that the larger the particle size, the lower the onset RH(i). We also demonstrate that the total number of particles present may influence the onset RH(i) observed. The surface area for ice activation, aerosol size, and temperature must all be considered when reporting onset values of ice formation onto ATD mineral dust particles. In addition, we calculate nucleation rates and contact angles of ice germs with ATD aerosols which indicate that there exists a range of active sites on the surface with different efficiencies for activating ice formation.

  6. The effect of temperature and relative humidity on survival of unfed hyalomma impeltatum (acarina: ixodidae)

    OpenAIRE

    Hagras, Ahmed E. E. [احمد الوزير هجرس; Babiker, A. A.; Khalil, G. M.

    1991-01-01

    This work investigates survival of unfed Hyalomma impeltatum in which 8089 larvae, 3946 nymphs, 2058 males and 2304 females held at different combinations of temperature (21, 25, 29 and 34°C) and relative humidity (RH) (32, 52, 75 and 97%) levels. Survival was significantly improved with rise in RH and fall in temperature in all stages. The magnitude of the effect of RH and temperature on survival varied significantly between stages. Changes in RH and temperature had a stronger impact on surv...

  7. Scaling Relations for the Thermal Structure of Segmented Oceanic Transform Faults

    Science.gov (United States)

    Wolfson-Schwehr, M.; Boettcher, M. S.; Behn, M. D.

    2015-12-01

    Mid-ocean ridge-transform faults (RTFs) are a natural laboratory for studying strike-slip earthquake behavior due to their relatively simple geometry, well-constrained slip rates, and quasi-periodic seismic cycles. However, deficiencies in our understanding of the limited size of the largest RTF earthquakes are due, in part, to not considering the effect of short intra-transform spreading centers (ITSCs) on fault thermal structure. We use COMSOL Multiphysics to run a series of 3D finite element simulations of segmented RTFs with visco-plastic rheology. The models test a range of RTF segment lengths (L = 10-150 km), ITSC offset lengths (O = 1-30 km), and spreading rates (V = 2-14 cm/yr). The lithosphere and upper mantle are approximated as steady-state, incompressible flow. Coulomb failure incorporates brittle processes in the lithosphere, and a temperature-dependent flow law for dislocation creep of olivine activates ductile deformation in the mantle. ITSC offsets as small as 2 km affect the thermal structure underlying many segmented RTFs, reducing the area above the 600˚C isotherm, A600, and thus the size of the largest expected earthquakes, Mc. We develop a scaling relation for the critical ITSC offset length, OC, which significantly reduces the thermal affect of adjacent fault segments of length L1 and L2. OC is defined as the ITSC offset that results in an area loss ratio of R = (Aunbroken - Acombined)/Aunbroken - Adecoupled) = 63%, where Aunbroken = C600(L1+L2)1.5V-0.6 is A600 for an RTF of length L1 + L2; Adecoupled = C600(L11.5+L21.5)V-0.6 is the combined A600 of RTFs of lengths L1 and L2, respectively; and Acombined = Aunbroken exp(-O/ OC) + Adecoupled (1-exp(-O/ OC)). C600 is a constant. We use OC and kinematic fault parameters (L1, L2, O, and V) to develop a scaling relation for the approximate seismogenic area, Aseg, for each segment of a RTF system composed of two fault segments. Finally, we estimate the size of Mc on a fault segment based on Aseg. We

  8. A Picea crassifolia Tree-Ring Width-Based Temperature Reconstruction for the Mt. Dongda Region, Northwest China, and Its Relationship to Large-Scale Climate Forcing.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available The historical May-October mean temperature since 1831 was reconstructed based on tree-ring width of Qinghai spruce (Picea crassifolia Kom. collected on Mt. Dongda, North of the Hexi Corridor in Northwest China. The regression model explained 46.6% of the variance of the instrumentally observed temperature. The cold periods in the reconstruction were 1831-1889, 1894-1901, 1908-1934 and 1950-1952, and the warm periods were 1890-1893, 1902-1907, 1935-1949 and 1953-2011. During the instrumental period (1951-2011, an obvious warming trend appeared in the last twenty years. The reconstruction displayed similar patterns to a temperature reconstruction from the east-central Tibetan Plateau at the inter-decadal timescale, indicating that the temperature reconstruction in this study was a reliable proxy for Northwest China. It was also found that the reconstruction series had good consistency with the Northern Hemisphere temperature at a decadal timescale. Multi-taper method spectral analysis detected some low- and high-frequency cycles (2.3-2.4-year, 2.8-year, 3.4-3.6-year, 5.0-year, 9.9-year and 27.0-year. Combining these cycles, the relationship of the low-frequency change with the Pacific Decadal Oscillation (PDO, North Atlantic Oscillation (NAO and Southern Oscillation (SO suggested that the reconstructed temperature variations may be related to large-scale atmospheric-oceanic variations. Major volcanic eruptions were partly reflected in the reconstructed temperatures after high-pass filtering; these events promoted anomalous cooling in this region. The results of this study not only provide new information for assessing the long-term temperature changes in the Hexi Corridor of Northwest China, but also further demonstrate the effects of large-scale atmospheric-oceanic circulation on climate change in Northwest China.

  9. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    International Nuclear Information System (INIS)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-01-01

    Highlights: • A 1/8th geometric-scale test facility that models the VHTR hot plenum is proposed. • Geometric scaling analysis is introduced for VHTR to analyze air-ingress accident. • Design calculations are performed to show that accident phenomenology is preserved. • Some analyses include time scale, hydraulic similarity and power scaling analysis. • Test facility has been constructed and shake-down tests are currently being carried out. - Abstract: A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time

  10. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  11. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    Science.gov (United States)

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  12. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Kyle L. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Pop, Eric [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  13. Advanced technologies related to a high temperature superconductor for small laboratory experiments

    International Nuclear Information System (INIS)

    Ogawa, Yuichi; Mito, Toshiyuki; Yanagi, Nagato

    2006-01-01

    Advanced technologies related to a high temperature superconductor materials and small refrigerator are reviewed. Mini-RT/RT-1 is designed and constructed as a plasma examination device. The element technology of low temperature apparatus, the results of performance tests and application examples are explained. The superconductors such as Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) for the low temperature phase, Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) for the high temperature phase, and YBa 2 Cu 3 O y (YBCO or Y123) are described. Advanced 4K-Giford-Mcmahon (GM) refrigerator on the market put superconductor coil made of low temperature superconductor metals to practical use and extends its application field. Small laboratory is able to experiment on the high temperature superconductor materials. (S.Y.)

  14. Length scales in glass-forming liquids and related systems: a review

    International Nuclear Information System (INIS)

    Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth

    2016-01-01

    The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed. (review article)

  15. A multi-scale approach of mechanical and transport properties of cementitious materials under rises of temperature

    International Nuclear Information System (INIS)

    Caratini, G.

    2012-01-01

    The modern industrial activities (storage of nuclear waste, geothermal wells, nuclear power plants,...) can submit cementitious materials to some extreme conditions, for example at temperatures above 200 C. This level of temperature will induce phenomena of dehydration in the cement paste, particularly impacting the CSH hydrates which led to the mechanical cohesion. The effects of these temperatures on the mechanical and transport properties have been the subject of this thesis.To understand these effects, we need to take into account the heterogeneous, porous, multi-scale aspects of these materials. To do this, micro-mechanics and homogenization tools based on the Eshelby problem's solution were used. Moreover, to support this multi-scale modeling, mechanical testing based on the theory of porous media were conducted. The measurements of modulus compressibility, permeability and porosity under confining pressure were used to investigate the mechanisms of degradation of these materials during thermal loads up to 400 C. (author)

  16. The development and psychometric analysis of the Chinese HIV-Related Fatigue Scale.

    Science.gov (United States)

    Li, Su-Yin; Wu, Hua-Shan; Barroso, Julie

    2016-04-01

    To develop a Chinese version of the human immunodeficiency virus-related Fatigue Scale and examine its reliability and validity. Fatigue is found in more than 70% of people infected with human immunodeficiency virus. However, a scale to assess fatigue in human immunodeficiency virus-positive people has not yet been developed for use in Chinese-speaking countries. A methodologic study involving instrument development and psychometric evaluation was used. The human immunodeficiency virus-related Fatigue Scale was examined through a two-step procedure: (1) translation and back translation and (2) psychometric analysis. A sample of 142 human immunodeficiency virus-positive patients was recruited from the Infectious Disease Outpatient Clinic in central Taiwan. Their fatigue data were analysed with Cronbach's α for internal consistency. Two weeks later, the data of a random sample of 28 patients from the original 142 were analysed for test-retest reliability. The correlation between the World Health Organization Quality of Life Assessment-Human Immunodeficiency Virus and the Chinese version of the human immunodeficiency virus-related Fatigue Scale was analysed for concurrent validity. The Chinese version of the human immunodeficiency virus-related Fatigue Scale scores of human immunodeficiency virus-positive patients with highly active antiretroviral therapy and those without were compared to demonstrate construct validity. The internal consistency and test-retest reliability of the Chinese version of the human immunodeficiency virus-related Fatigue Scale were 0·97 and 0·686, respectively. In regard to concurrent validity, a negative correlation was found between the scores of the Chinese version of the human immunodeficiency virus-related Fatigue Scale and the World Health Organization Quality of Life Assessment-Human Immunodeficiency Virus. Additionally, the Chinese version of the human immunodeficiency virus-related Fatigue Scale could be used to effectively

  17. Smoke flow temperature beneath tunnel ceiling for train fire at subway station: Reduced-scale experiments and correlations

    International Nuclear Information System (INIS)

    Meng, Na; Wang, Qiang; Liu, Zhaoxia; Li, Xiao; Yang, He

    2017-01-01

    Highlights: • Reduced-scale experiments on train fire at subway station. • Smoke flow temperature beneath tunnel ceiling measured and correlated. • Effect of platform-tunnel conjunction door type on smoke temperature is clarified. - Abstract: This paper is to investigate the smoke flow temperature beneath tunnel ceiling for a train on fire stopping besides a subway station. Experiments were carried out in a reduced-scale (1:10) subway station model to study the maximum smoke temperature and the longitudinal temperature distribution beneath the tunnel ceiling by considering platform-tunnel conjunction doors of two types: the full-seal platform screen door (PSD) and the full-height safety door. For the maximum temperature beneath the tunnel ceiling, it is found to be well correlated non-dimensionally with heat release rate by a 3.65 and a 2.92 power law function for the full-seal platform screen door and the full-height safety door, respectively. For the longitudinal temperature distribution along the tunnel ceiling, it can be well correlated by an exponential function for both types of platform-tunnel conjunction doors. Concerning the effect of the door type, the maximum temperature is lower and the longitudinal temperature decays faster for full-height safety door than that for full-seal PSD. This is due to that with the full-height safety door, the effective width of the tunnel ceiling is widened, which results in more heat losses from the smoke flow to the ceiling.

  18. The Coral Reef Temperature Anomaly Database (CoRTAD) - Global, 4 km, Sea Surface Temperature and Related Thermal Stress Metrics for 1985-2005 (NODC Accession 0044419)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  19. Qualification of a full plant nodalization for the prediction of the core exit temperature through a scaling methodology

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu; Martínez-Quiroga, V., E-mail: victor.martinez.quiroga@upc.edu; Reventós, F., E-mail: francesc.reventos@upc.edu

    2016-11-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Qualification of full scale nuclear reactors by means of a scaling methodology. • Scaling of RELAP5 calculations to full scale power plants. - Abstract: System codes and their necessary power plant nodalizations are an essential step in thermal hydraulic safety analysis. In order to assess the safety of a particular power plant, in addition to the validation and verification of the code, the nodalization of the system needs to be qualified. Since most existing experimental data come from scaled-down facilities, any qualification process must therefore address scale considerations. The Group of Thermal Hydraulic Studies at Technical University of Catalonia has developed a scaling-up methodology (SCUP) for the qualification of full-scale nodalizations through a systematic procedure based on the extrapolation of post-test simulations of Integral Test Facility experiments. In the present work, the SCUP methodology will be employed to qualify the nodalization of the AscóNPP, a Pressurized Water Reactor (PWR), for the reproduction of an important safety phenomenon which is the effectiveness of the Core Exit Temperature (CET) as an Accident Management (AM) indicator. Given the difficulties in placing measurements in the core region, CET measurements are used as a criterion for the initiation of safety operational procedures during accidental conditions in PWR. However, the CET response has some limitation in detecting inadequate core cooling simply because the measurement is not taken in the position where the cladding exposure occurs. In order to apply the SCUP methodology, the OECD/NEA ROSA-2 Test 3, an SBLOCA in the hot leg, has been selected as a starting point. This experiment was conducted at the Large Scale Test Facility (LSTF), a facility operated by the Japanese Atomic Energy Agency (JAEA) and was focused on the assessment of the effectiveness of AM actions triggered by

  20. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation

    International Nuclear Information System (INIS)

    Lobell, David B; Burke, Marshall B

    2008-01-01

    Estimates of climate change impacts are often characterized by large uncertainties that reflect ignorance of many physical, biological, and socio-economic processes, and which hamper efforts to anticipate and adapt to climate change. A key to reducing these uncertainties is improved understanding of the relative contributions of individual factors. We evaluated uncertainties for projections of climate change impacts on crop production for 94 crop-region combinations that account for the bulk of calories consumed by malnourished populations. Specifically, we focused on the relative contributions of four factors: climate model projections of future temperature and precipitation, and the sensitivities of crops to temperature and precipitation changes. Surprisingly, uncertainties related to temperature represented a greater contribution to climate change impact uncertainty than those related to precipitation for most crops and regions, and in particular the sensitivity of crop yields to temperature was a critical source of uncertainty. These findings occurred despite rainfall's important contribution to year-to-year variability in crop yields and large disagreements among global climate models over the direction of future regional rainfall changes, and reflect the large magnitude of future warming relative to historical variability. We conclude that progress in understanding crop responses to temperature and the magnitude of regional temperature changes are two of the most important needs for climate change impact assessments and adaptation efforts for agriculture

  1. Variation in mortality of ischemic and hemorrhagic strokes in relation to high temperature

    Science.gov (United States)

    Lim, Youn-Hee; Kim, Ho; Hong, Yun-Chul

    2013-01-01

    Outdoor temperature has been reported to have a significant influence on the seasonal variations of stroke mortality, but few studies have investigated the effect of high temperature on the mortality of ischemic and hemorrhagic strokes. The main study goal was to examine the effect of temperature, particularly high temperature, on ischemic and hemorrhagic strokes. We investigated the association between outdoor temperature and stroke mortality in four metropolitan cities in Korea during 1992-2007. We used time series analysis of the age-adjusted mortality rate for ischemic and hemorrhagic stroke deaths by using generalized additive and generalized linear models, and estimated the percentage change of mortality rate associated with a 1°C increase of mean temperature. The temperature-responses for the hemorrhagic and ischemic stroke mortality differed, particularly in the range of high temperature. The estimated percentage change of ischemic stroke mortality above a threshold temperature was 5.4 % (95 % CI, 3.9-6.9 %) in Seoul, 4.1 % (95 % CI, 1.6-6.6 %) in Incheon, 2.3 % (-0.2 to 5.0 %) in Daegu and 3.6 % (0.7-6.6 %) in Busan, after controlling for daily mean humidity, mean air pressure, day of the week, season, and year. Additional adjustment of air pollution concentrations in the model did not change the effects. Hemorrhagic stroke mortality risk significantly decreased with increasing temperature without a threshold in the four cities after adjusting for confounders. These findings suggest that the mortality of hemorrhagic and ischemic strokes show different patterns in relation to outdoor temperature. High temperature was harmful for ischemic stroke but not for hemorrhagic stroke. The risk of high temperature to ischemic stroke did not differ by age or gender.

  2. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling.

    Science.gov (United States)

    Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A

    2012-10-01

    The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.

  3. Factors associated with metabolic syndrome and related medical costs by the scale of enterprise in Korea.

    Science.gov (United States)

    Kong, Hyung-Sik; Lee, Kang-Sook; Yim, Eun-Shil; Lee, Seon-Young; Cho, Hyun-Young; Lee, Bin Na; Park, Jee Young

    2013-10-21

    The purpose of this study was to identify the risk factors of metabolic syndrome (MS) and to analyze the relationship between the risk factors of MS and medical cost of major diseases related to MS in Korean workers, according to the scale of the enterprise. Data was obtained from annual physical examinations, health insurance qualification and premiums, and health insurance benefits of 4,094,217 male and female workers who underwent medical examinations provided by the National Health Insurance Corporation in 2009. Logistic regression analyses were used to the identify risk factors of MS and multiple regression was used to find factors associated with medical expenditures due to major diseases related to MS. The study found that low-income workers were more likely to work in small-scale enterprises. The prevalence rate of MS in males and females, respectively, was 17.2% and 9.4% in small-scale enterprises, 15.9% and 8.9% in medium-scale enterprises, and 15.9% and 5.5% in large-scale enterprises. The risks of MS increased with age, lower income status, and smoking in small-scale enterprise workers. The medical costs increased in workers with old age and past smoking history. There was also a gender difference in the pattern of medical expenditures related to MS. Health promotion programs to manage metabolic syndrome should be developed to focus on workers who smoke, drink, and do little exercise in small scale enterprises.

  4. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model

    Science.gov (United States)

    Thogmartin, W.E.; Knutson, M.G.

    2007-01-01

    Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.

  5. In situ synchrotron X-ray diffraction study of surface scale formation during CO2 corrosion of carbon steel at temperatures up to 90 oC

    International Nuclear Information System (INIS)

    Ingham, B.; Ko, M.; Kear, G.; Kappen, P.; Laycock, N.; Kimpton, J.A.; Williams, D.E.

    2010-01-01

    In situ synchrotron X-ray diffraction was used to follow the formation of corrosion product scales on carbon steel in CO 2 saturated brine at temperatures from 40 to 90 o C. The corrosion process was accelerated by applying a small anodic current, and in selected tests a scale inhibitor, amino trimethylene phosphonic acid (ATMPA), was added. Siderite was identified as the major phase in the scale formed in all conditions. With increasing temperature, the scale formation rate increased, while the scale thickness and crystallite size decreased. Above 60 o C, the scale became increasingly protective. The scale thickness and crystallite size decreased with increasing ATMPA concentration.

  6. Temporal relation between temperature change and FDG uptake in brown adipose tissue

    International Nuclear Information System (INIS)

    Kim, SunHee; Krynyckyi, Borys R.; Machac, Josef; Kim, Chun K.

    2008-01-01

    It has been reported that the prevalence of 18 F fluorodeoxyglucose (FDG) uptake in brown adipose tissue (BAT) is related to outdoor temperature, i.e., more frequent during the colder periods of the year. The purpose of this study was to assess the temporal relationship between BAT FDG uptake and temperature. We correlated the prevalence of BAT with average temperatures (divided into five temperature ranges) of seven different durations. One thousand four hundred ninety-five consecutive FDG Positron emission tomography (PET) studies in 1,159 patients (566 male and 593 female, mean age = 60.4 years) were retrospectively reviewed. FDG uptake with distinct patterns compatible with BAT was identified by a consensus of two readers. The local daily average temperature from January 2000 to November 2003 (beginning 60 days before the date of first PET scan) were obtained, and 2-, 3-, 7-, 14-, 30-, and 60-day average temperatures before the date of a PET study were calculated. The prevalence of BAT FDG uptake was correlated with these various average temperatures. The daily, 2-day, 3-day, and 7-day average temperature had an inverse relation with the prevalence of BAT, i.e., the lower the temperature, the higher prevalence of BAT. When the temperature was averaged over 14 days or longer, this inverse relationship between the temperature and the prevalence of BAT was no longer preserved. Our data suggest that increased FDG uptake in BAT occurs more often as an acute response to cold weather (1-7 days) rather than to prolonged periods of average cold weather. (orig.)

  7. New parametrization for the scale dependent growth function in general relativity

    International Nuclear Information System (INIS)

    Dent, James B.; Dutta, Sourish; Perivolaropoulos, Leandros

    2009-01-01

    We study the scale-dependent evolution of the growth function δ(a,k) of cosmological perturbations in dark energy models based on general relativity. This scale dependence is more prominent on cosmological scales of 100h -1 Mpc or larger. We derive a new scale-dependent parametrization which generalizes the well-known Newtonian approximation result f 0 (a)≡(dlnδ 0 /dlna)=Ω(a) γ (γ=(6/11) for ΛCDM) which is a good approximation on scales less than 50h -1 Mpc. Our generalized parametrization is of the form f(a)=(f 0 (a)/1+ξ(a,k)), where ξ(a,k)=(3H 0 2 Ω 0m )/(ak 2 ). We demonstrate that this parametrization fits the exact result of a full general relativistic evaluation of the growth function up to horizon scales for both ΛCDM and dynamical dark energy. In contrast, the scale independent parametrization does not provide a good fit on scales beyond 5% of the horizon scale (k≅0.01h -1 Mpc).

  8. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  9. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  10. Scaling relations for soliton compression and dispersive-wave generation in tapered optical fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2018-01-01

    In this paper, scaling relations for soliton compression in tapered optical fibers are derived and discussed. The relations allow simple and semi-accurate estimates of the compression point and output noise level, which is useful, for example, for tunable dispersive-wave generation with an agile ...

  11. Scaling relations between structure and rheology of ageing casein particle gels

    NARCIS (Netherlands)

    Mellema, M.

    2000-01-01

    Mellema, M. (Michel), Scaling relations between structure and rheology of ageing casein particle gels , PhD Thesis, Wageningen University, 150 + 10 pages, references by chapter, English and Dutch summaries (2000).

    The relation between (colloidal)

  12. Scale relation in logσ - logε diagrams for Zry-4

    International Nuclear Information System (INIS)

    Cuniberti, A.M.; Picasso, A.C.

    1991-01-01

    The stress relaxation assay allows access to information about plastic behaviour of the corresponding material. This work describes a stress relaxation test carried out on polycrystalline Zry-4 at 293 K to verify the existence of a scale relation related to the plastic state equation. (Author) [es

  13. Using relational databases for improved sequence similarity searching and large-scale genomic analyses.

    Science.gov (United States)

    Mackey, Aaron J; Pearson, William R

    2004-10-01

    Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.

  14. DISK GALAXY SCALING RELATIONS IN THE SFI++: INTRINSIC SCATTER AND APPLICATIONS

    International Nuclear Information System (INIS)

    Saintonge, Amelie; Spekkens, Kristine

    2011-01-01

    We study the scaling relations between the luminosities, sizes, and rotation velocities of disk galaxies in the SFI++, with a focus on the size-luminosity (RL) and size-rotation velocity (RV) relations. Using isophotal radii instead of disk scale lengths as a size indicator, we find relations that are significantly tighter than previously reported: the correlation coefficients of the template RL and RV relations are r = 0.97 and r= 0.85, respectively, which rival that of the more widely studied LV (Tully-Fisher) relation. The scatter in the SFI++ RL relation is 2.5-4 times smaller than previously reported for various samples, which we attribute to the reliability of isophotal radii relative to disk scale lengths. After carefully accounting for all measurement errors, our scaling relation error budgets are consistent with a constant intrinsic scatter in the LV and RV relations for velocity widths log W ∼> 2.4, with evidence for increasing intrinsic scatter below this threshold. The scatter in the RL relation is consistent with constant intrinsic scatter that is biased by incompleteness at the low-L end. Possible applications of the unprecedentedly tight SFI++ RV and RL relations are investigated. Just like the Tully-Fisher relation, the RV relation can be used as a distance indicator: we derive distances to galaxies with primary Cepheid distances that are accurate to 25%, and reverse the problem to measure a Hubble constant H 0 = 72 ± 7 km s -1 Mpc -1 . Combining the small intrinsic scatter of our RL relation (ε int = 0.034 ± 0.001log [h -1 kpc]) with a simple model for disk galaxy formation, we find an upper limit in the range of disk spin parameters that is a factor of ∼7 smaller than that of the halo spin parameters predicted by cosmological simulations. This likely implies that the halos hosting Sc galaxies have a much narrower distribution of spin parameters than previously thought.

  15. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.; Kinoshita, M.

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  16. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  17. Climate risk assessment in museums : degradation risks determined from temperature and relative humidity data

    NARCIS (Netherlands)

    Martens, M.H.J.

    2012-01-01

    The main subject of this thesis is the determination of climate risks to objects in museums on the basis of measured and/or simulated temperature and relative humidity data. The focus is on the quantification of climate related risks for the preservation quality of indoor climate in Dutch museums.

  18. High-Temperature Structural Analysis of a Small-Scale PHE Prototype under the Test Condition of a Small-Scale Gas Loop

    International Nuclear Information System (INIS)

    Song, K.; Hong, S.; Park, H.

    2012-01-01

    A process heat exchanger (PHE) is a key component for transferring the high-temperature heat generated from a very high-temperature reactor (VHTR) to a chemical reaction for the massive production of hydrogen. The Korea Atomic Energy Research Institute has designed and assembled a small-scale nitrogen gas loop for a performance test on VHTR components and has manufactured a small-scale PHE prototype made of Hastelloy-X alloy. A performance test on the PHE prototype is underway in the gas loop, where different kinds of pipelines connecting to the PHE prototype are tested for reducing the thermal stress under the expansion of the PHE prototype. In this study, to evaluate the high-temperature structural integrity of the PHE prototype under the test condition of the gas loop, a realistic and effective boundary condition imposing the stiffness of the pipelines connected to the PHE prototype was suggested. An equivalent spring stiffness to reduce the thermal stress under the expansion of the PHE prototype was computed from the bending deformation and expansion of the pipelines connected to the PHE. A structural analysis on the PHE prototype was also carried out by imposing the suggested boundary condition. As a result of the analysis, the structural integrity of the PHE prototype seems to be maintained under the test condition of the gas loop.

  19. A low Fermi scale from a simple gaugino-scalar mass relation

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, F. [International School for Advanced Studies, Trieste (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    In supersymmetric extensions of the Standard Model, the Fermi scale of electroweak symmetry breaking is determined by the pattern of supersymmetry breaking. We present an example, motivated by a higher-dimensional GUT model, where a particular mass relation between the gauginos, third-generation squarks and Higgs fields of the MSSM leads to a Fermi scale smaller than the soft mass scale. This is in agreement with the measured Higgs boson mass. The {mu} parameter is generated independently of supersymmetry breaking, however the {mu} problem becomes less acute due to the little hierarchy between the soft mass scale and the Fermi scale as we argue. The resulting superparticle mass spectra depend on the localization of quark and lepton fields in higher dimensions. In one case, the squarks of the first two generations as well as the gauginos and higgsinos can be in the range of the LHC. Alternatively, only the higgsinos may be accessible at colliders. The lightest superparticle is the gravitino.

  20. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason; McCabe, Matthew; Sharma, Ashish

    2015-01-01

    precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985

  1. Closely related freshwater macrophyte species, Ceratophyllum demersum and C. submersum, differ in temperature response

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Sorrell, Brian Keith; Brix, Hans

    2014-01-01

    1. The importance of temperature responses of photosynthesis and respiration in determining species distributions was compared in two closely related freshwater macrophytes, Ceratophyllum demersum and C. submersum. The two species differed significantly in response to temperature in the short...... and distributional patterns corresponded well with the long-term (weeks) results obtained, but with some important deviations. The long-term responses of the two species to low temperature (12 °C) were more similar than expected. In contrast, high temperature (35 °C), which stimulated photosynthesis in C. submersum...... in the short term, inhibited photosynthesis in the long term and resulted in lower growth rates of C. submersum, both compared to C. demersum and to growth rates at intermediate temperatures (18 and 25 °C). 3. The long-term acclimation strategy differed between the two species. Ceratophyllum demersum achieved...

  2. Working memory performance inversely predicts spontaneous delta and theta-band scaling relations.

    Science.gov (United States)

    Euler, Matthew J; Wiltshire, Travis J; Niermeyer, Madison A; Butner, Jonathan E

    2016-04-15

    Electrophysiological studies have strongly implicated theta-band activity in human working memory processes. Concurrently, work on spontaneous, non-task-related oscillations has revealed the presence of long-range temporal correlations (LRTCs) within sub-bands of the ongoing EEG, and has begun to demonstrate their functional significance. However, few studies have yet assessed the relation of LRTCs (also called scaling relations) to individual differences in cognitive abilities. The present study addressed the intersection of these two literatures by investigating the relation of narrow-band EEG scaling relations to individual differences in working memory ability, with a particular focus on the theta band. Fifty-four healthy adults completed standardized assessments of working memory and separate recordings of their spontaneous, non-task-related EEG. Scaling relations were quantified in each of the five classical EEG frequency bands via the estimation of the Hurst exponent obtained from detrended fluctuation analysis. A multilevel modeling framework was used to characterize the relation of working memory performance to scaling relations as a function of general scalp location in Cartesian space. Overall, results indicated an inverse relationship between both delta and theta scaling relations and working memory ability, which was most prominent at posterior sensors, and was independent of either spatial or individual variability in band-specific power. These findings add to the growing literature demonstrating the relevance of neural LRTCs for understanding brain functioning, and support a construct- and state-dependent view of their functional implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Temperature oscillation and the sloshing motion of the large-scale circulation in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Xi, Heng-Dong; Chen, Xin; Xia, Ke-Qing

    2017-11-01

    We report an experimental study of the temperature oscillation and the sloshing motion of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard convection in water. Temperature measurements were made in aspect ratio one cylindrical cell by probes put in fluid and embedded in the sidewall simultaneously, and located at the 1/4, 1/2 and 3/4 heights of the convection cell. The results show that the temperature measured in fluid contains information of both the LSC and the signature of the hot and cold plumes, while the temperature measured in sidewall only contains information of the LSC. It is found that the sloshing motion of the LSC can be measured by both the temperatures in fluid and in sidewall. We also studies the effect of cell tilting on the temperature oscillation and sloshing motion of the LSC. It is found that both the amplitude and the frequency of the temperature oscillation (and the sloshing motion) increase when the tilt angle increases, while the off-center distance of the sloshing motion of the LSC remains unchanged. This work is supported by the NSFC of China (Grant Nos. 11472094 and U1613227), the RGC of Hong Kong SAR (Grant No. 403712) and the 111 project of China (Grant No. B17037).

  4. Summer planetary-scale oscillations: aura MLS temperature compared with ground-based radar wind

    Directory of Open Access Journals (Sweden)

    C. E. Meek

    2009-04-01

    Full Text Available The advent of satellite based sampling brings with it the opportunity to examine virtually any part of the globe. Aura MLS mesospheric temperature data are analysed in a wavelet format for easy identification of possible planetary waves (PW and aliases masquerading as PW. A calendar year, 2005, of eastward, stationary, and westward waves at a selected latitude is shown in separate panels for wave number range −3 to +3 for period range 8 h to 30 days (d. Such a wavelet analysis is made possible by Aura's continuous sampling at all latitudes 82° S–82° N. The data presentation is suitable for examination of years of data. However this paper focuses on the striking feature of a "dish-shaped" upper limit to periods near 2 d in mid-summer, with longer periods appearing towards spring and fall, a feature also commonly seen in radar winds. The most probable cause is suggested to be filtering by the summer jet at 70–80 km, the latter being available from ground based medium frequency radar (MFR. Classically, the phase velocity of a wave must be greater than that of the jet in order to propagate through it. As an attempt to directly relate satellite and ground based sampling, a PW event of period 8d and wave number 2, which appears to be the original rather than an alias, is compared with ground based radar wind data. An appendix discusses characteristics of satellite data aliases with regard to their periods and amplitudes.

  5. Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives

    Science.gov (United States)

    Yapuncich, Gabriel S; Boyer, Doug M

    2014-01-01

    The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample

  6. Study of thermoelectric power of Co-B liquid quenched amorphous alloys at relatively high temperature

    International Nuclear Information System (INIS)

    Naqvi, S.M.N.R.; Rizvi, S.D.H.; Raza, S.M.; Rizvi, S.; Hussain, A.; Rehman, F.

    1999-01-01

    Measurements of thermoelectric power TEP were carried out for the samples of Co-1 alloy with appropriate compositions of constitutions in the temperature range, 350K< T<760K. The analysis of data shows an inverse Gaussian profile. Ziman theoretical model was used to fit the resistivity data which shows an agreement. Dynamic recovery processes as well as formation of vacancies, interstials, intersection of basal dislocations and indeed pyramidal interlocking of dislocations for seeding scattering centers are responsible for residual TEP at relatively high temperatures Co-B LQA alloys also undergo into other structural changes at such temperatures. (author)

  7. Effect of the irradiation temperature and relative humidity on PVG dosifilm

    International Nuclear Information System (INIS)

    Jia Haishun; Chen Wenxiu; Shen Yuxin

    1999-01-01

    The effect of environmental factors, such as irradiation temperature and relative humidity, on the PVG dosifilm irradiated by EB was tested. Experiments show that the temperature coefficient of irradiated PVG dosifilm was 0.008 deg. C -1 from 20 deg. C to 55 deg. C, and the humidity coefficient was 0.006 per r.h. (%) from r.h. 0% to 76%. The PVG dosifilm can be used as a routine dosimeter for dose measurement for low-energy EB processing. The absorbed dose values for various irradiation temperature and humidity can be corrected based on experimental data. (author)

  8. Preliminary Laboratory-scale Study Temperature Shape Memory Alloy for Sensor Application

    International Nuclear Information System (INIS)

    Tippayakul, C.; Petchrak, A.; Wetchagarun, S.

    2014-01-01

    One of the most widespread uses of radiotracers in the industrial applications is the leak detection of the systems. This technique can be applied, for example, to detect leak in heat exchangers or along buried industrial pipelines. Thailand Institute of Nuclear Technology (TINT) is currently conducting R&D on this technique aiming to promote the radiotracer use in Thailand. In this paper, a preliminary study of the leak detection using radiotracer on laboratory-scale was presented. Br-82 was selected for this work due to its chemical property, its suitable half-life and its on-site availability. The radiotracer in form of NH4Br powder was irradiated in Thai Research Reactor (TRR-1/M1) to produce Br-82. The irradiated target was subsequently prepared in the form of aqueous solution in a hot cell ready for injection into the experimental system as the radiotracer. A relatively simplified experimental setup was used with three NaI detectors being placed along the pipelines to measure system flow rate and to detect the leakage from the piping system. The results obtained from the radiotracer technique were compared to those measured by other methods. It is found that the flow rate obtained from the radiotracer technique agreed well with the one obtained from the flow meter. The leak rate result, however, showed discrepancy between results obtained from two different measuring methods indicating that the simplified experimental setup was not adequate for the leak rate study. Hence, further study with more elaborate experimental setup was required before applying this technique in the actual industrial system.

  9. Rapid, high-temperature, field test method for evaluation of geothermal calcium carbonate scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1986-09-01

    A new test method is described that allows the rapid field testing of calcium carbonate scale inhibitors at 500/sup 0/F (260/sup 0/C). The method evolved from use of a full-flow test loop on a well with a mass flow rate of about 1 x 10/sup 6/ lbm/hr (126 kg/s). It is a simple, effective way to evaluate the effectiveness of inhibitors under field conditions. Five commercial formulations were chosen for field evaluation on the basis of nonflowing, laboratory screening tests at 500/sup 0/F (260/sup 0/C). Four of these formulations from different suppliers controlled calcium carbonate scale deposition as measured by the test method. Two of these could dislodge recently deposited scale that had not age-hardened. Performance-profile diagrams, which were measured for these four effective inhibitors, show the concentration interrelationship between brine calcium and inhibitor concentrations at which the formulations will and will not stop scale formation in the test apparatus. With these diagrams, one formulation was chosen for testing on the full-flow brine line. The composition was tested for 6 weeks and showed a dramatic decrease in the scaling occurring at the flow-control valve. This scaling was about to force a shutdown of a major, long-term flow test being done for reservoir economic evaluations. The inhibitor stopped the scaling, and the test was performed without interruption.

  10. Psychological effects of relational job characteristics: validation of the scale for hospital nurses.

    Science.gov (United States)

    Santos, Alda; Castanheira, Filipa; Chambel, Maria José; Amarante, Michael Vieira; Costa, Carlos

    2017-07-01

    This study validates the Portuguese version of the psychological effects of the relational job characteristics scale among hospital nurses in Portugal and Brazil. Increasing attention has been given to the social dimension of work, following the transition to a service economy. Nevertheless, and despite the unquestionable relational characteristics of nursing work, scarce research has been developed among nurses under a relational job design framework. Moreover, it is important to develop instruments that study the effects of relational job characteristics among nurses. We followed Messick's framework for scale validation, comprising the steps regarding the response process and internal structure, as well as relationships with other variables (work engagement and burnout). Statistical analysis included exploratory factor analysis and confirmatory factor analysis. The psychological effects of the relational job characteristics scale provided evidence of good psychometric properties with Portuguese and Brazilian hospital nurses. Also, the psychological effects of the relational job characteristics are associated with nurses' work-related well-being: positively with work engagement and negatively concerning burnout. Hospitals that foster the relational characteristics of nursing work are contributing to their nurses' work-related well-being, which may be reflected in the quality of care and patient safety. © 2017 John Wiley & Sons Ltd.

  11. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    Science.gov (United States)

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  12. Large-scale circulation departures related to wet episodes in north-east Brazil

    Science.gov (United States)

    Sikdar, Dhirendra N.; Elsner, James B.

    1987-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  13. Large-scale circulation departures related to wet episodes in northeast Brazil

    Science.gov (United States)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  14. Does a General Temperature-Dependent Q10 Model of Soil Respiration Exist at Biome and Global Scale?

    Institute of Scientific and Technical Information of China (English)

    Hua CHEN; Han-Qin TIAN

    2005-01-01

    Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity)function in ecosystem models. Q10is usually treated as a constant of 2 in these models, although Q10 value of SR often decreases with increasing temperatures. It remains unclear whether a general temperaturedependent Q10 model of SR exists at biome and global scale. In this paper, we have compiled the long-term Q10 data of 38 SR studies ranging from the Boreal, Temperate, to Tropical/Subtropical biome on four continents.Our analysis indicated that the general temperature-dependent biome Q10 models of SR existed, especially in the Boreal and Temperate biomes. A single-exponential model was better than a simple linear model in fitting the average Q10 values at the biome scale. Average soil temperature is a better predictor of Q10 value than average air temperature in these models, especially in the Boreal biome. Soil temperature alone could explain about 50% of the Q10 variations in both the Boreal and Temperate biome single-exponential Q10 model. Q10 value of SR decreased with increasing soil temperature but at quite different rates among the three biome Q10 models. The k values (Q10 decay rate constants) were 0.09, 0.07, and 0.02/℃ in the Boreal, Temperate, and Tropical/Subtropical biome, respectively, suggesting that Q10 value is the most sensitive to soil temperature change in the Boreal biome, the second in the Temperate biome, and the least sensitive in the Tropical/Subtropical biome. This also indirectly confirms that acclimation of SR in many soil warming experiments probably occurs. The k value in the "global" single-exponential Q10 model which combined both the Boreal and Temperate biome data set was 0.08/℃. However, the global general temperature-dependent Q10model developed using the data sets of the three biomes is not adequate for predicting Q10 values of SR globally.The existence of the general temperature-dependent Q10 models of SR in the Boreal and

  15. Temporal scale of the action of temperature and photoperiod on the xylogenesis at the treeline

    OpenAIRE

    Rossi S; Deslauriers A

    2007-01-01

    The possible role and interaction of two ecological factors, photoperiod and temperature, on xylogenesis of conifers growing at treeline are review. In cold climates, temperature is one of the major factors regulating metabolic activities of plants and influencing onset and rate of cell production during the growing period. However, photoperiod was found to act as a signal regulating the timing of maximum growth rate and synchronizing radial growth at annual level. During tree-ring formation,...

  16. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    Science.gov (United States)

    Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.

    2018-03-01

    As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin surface

  17. Analysis of TRMM-LIS Lightning and Related Microphysics Using a Cell-Scale Database

    Science.gov (United States)

    Leroy, Anita; Petersen, Walter A.

    2010-01-01

    Previous studies of tropical lightning activity using Tropical Rainfall Measurement Mission (TRMM) Lightning Imaging Sensor (LIS) data performed analyses of lightning behavior over mesoscale "feature" scales or over uniform grids. In order to study lightning and the governing ice microphysics intrinsic to thunderstorms at a more process-specific scale (i.e., the scale over which electrification processes and lightning occur in a "unit" thunderstorm), a new convective cell-scale database was developed by analyzing and refining the University of Utah's Precipitation Features database and retaining precipitation data parameters computed from the TRMM precipitation radar (PR), microwave imager (TMI) and LIS instruments. The resulting data base was to conduct a limited four-year study of tropical continental convection occurring over the Amazon Basin, Congo, Maritime Continent and the western Pacific Ocean. The analysis reveals expected strong correlations between lightning flash counts per cell and ice proxies, such as ice water path, minimum and average 85GHz brightness temperatures, and 18dBz echo top heights above the freezing level in all regimes, as well as regime-specific relationships between lighting flash counts and PR-derived surface rainfall rates. Additionally, radar CFADs were used to partition the 3D structure of cells in each regime at different flash counts. The resulting cell-scale analyses are compared to previous mesoscale feature and gridded studies wherever possible.

  18. Psychometric properties of the satisfaction with food-related Life Scale

    DEFF Research Database (Denmark)

    Schnettler, Berta; Miranda, Horacio; Sepúlveda, José

    2013-01-01

    with proportional attachment per city. Results: The results of the confirmatory factor analysis showed an adequate level of internal consistency and a good fit (root mean square error of approximation ¼ 0.071, goodness-of-fit index ¼ 0.95, adjusted goodness-of-fit index ¼ 0.92) to the SWFL data (1-dimensional......Objective: To evaluate the psychometric properties of the Satisfaction with Food-related Life (SWFL) scale and its relation to the Satisfaction with Life Scale (SWLS) in southern Chile. Methods: A survey was applied to a sample of 316 persons in the principal cities of southern Chile distributed...

  19. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    International Nuclear Information System (INIS)

    Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France

    2014-01-01

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures in 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in

  20. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Adam-Poupart, Ariane [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Smargiassi, Audrey [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Institut national de santé publique du Québec (INSPQ), Montreal, QC (Canada); Busque, Marc-Antoine; Duguay, Patrice [Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC (Canada); Fournier, Michel [Direction de santé publique, Agence de la santé et des services sociaux de Montréal, Montreal, QC (Canada); Zayed, Joseph [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC (Canada); Labrèche, France, E-mail: labreche.france@irsst.qc.ca [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC (Canada)

    2014-10-15

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures in 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in

  1. High resolution dynamical downscaling of air temperature and relative humidity: performance assessment of WRF for Portugal

    Science.gov (United States)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Air temperature and relative humidity are two of the atmospheric variables with higher impact on human and natural systems, contributing to define the stress/comfortable conditions, affecting the productivity and health of the individuals as well as diminishing the resilience to other environmental hazards. Atmospheric regional models, driven by large scale forecasts from global circulation models, are the best way to reproduce such environmental conditions in high space-time resolution. This study is focused on the performance assessment of the WRF mesoscale model to perform high resolution dynamical downscaling for Portugal with three two-way nested grids, at 60 km, 20 km and 5 km horizontal resolution. The simulations of WRF models were produced with different initial and boundary forcing conditions. The NCEP-FNL Operational Global Analysis data available on 1-degree by 1-degree grid every six hours and ERA-Interim reanalyses dataset were used to drive the models. Two alternative configurations of the WRF model, including planetary boundary, layer schemes, microphysics, land-surface models, radiation schemes, were used and tested within the 5 km spatial resolution domain. Simulations of air temperature and relative humidity were produced for January and July of 2016 and compared with the observed datasets provided by the Instituto Português do Mar e da Atmosfera (IPMA) for 83 weather stations. Different performance measures of bias, precision, and accuracy were used, namely normalized bias, standard deviation, mean absolute error, root mean square error, bias of root mean square error as well as correlation based measures (e.g., coefficient of determination) and goodness of fit measures (index of agreement). Main conclusions from the obtained results reveal: (i) great similarity between the spatial patterns of the simulated and observed fields; (ii) only small differences between simulations produced with ERA-Interim and NCEP-FNL, in spite of some differences

  2. Development of data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector

    International Nuclear Information System (INIS)

    Sahu, S.; Sahu, P.K.; Bhuyan, M.R.; Biswas, S.; Mohanty, B.

    2014-01-01

    At IoP-NISER an initiative has been taken to build and test micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects. Temperature (t), atmospheric pressure (p) and relative humidity (RH) monitor and recording is very important for gas filled detector development. A data logger to monitor and record the ambient parameters such as temperature, relative humidity and pressure has been developed. With this data logger continuous recording of t, p, RH and time stamp can be done with a programmable sampling interval. This data is necessary to correct the gain of a gas filled detector

  3. Interannual Variability in the Position and Strength of the East Asian Jet Stream and Its Relation to Large - scale Circulation

    Science.gov (United States)

    Chan, Duo; Zhang, Yang; Wu, Qigang

    2013-04-01

    East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.

  4. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  5. Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    M.S. Sohal; J.E. O' Brien; C.M. Stoots; J. J. Hartvigsen; D. Larsen; S. Elangovan; J.S. Herring; J.D. Carter; V.I. Sharma; B. Yildiz

    2009-05-01

    An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: • Delamination of the O2-electrode and bond layer on the steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites

  6. Progress in generating fracture data base as a function of loading rate and temperature using small-scale tests

    International Nuclear Information System (INIS)

    Couque, H.; Hudak, S.J. Jr.

    1993-01-01

    Structural integrity assessment of nuclear pressure vessels requires small specimen fracture testing to generate data over a wide range of material loading, and temperature conditions. Small scale testing is employed since extensive testing is required including small radiation embrittled samples from nuclear surveillance capsules. However, current small scale technology does not provide the needed dynamic fracture toughness relevant to the crack arrest/reinitiation events that may occur during pressurized thermal shock transients following emergency shutdown. This paper addresses the generation of this much needed dynamic toughness data using a novel experimental-computational approach involving a coupled pressure bars (CPB) technique and a viscoplastic dynamic fracture code. CPB data have been generated to testing temperatures never before reached: 37 to 100 degrees C -- 60 to 123 degrees C above the nil ductility transition temperature. Fracture behavior of pressure vessel steel from lower shelf to upper shelf temperatures and previous toughness estimates for the 10 6 MPa√m s -1 loading rate regime are assessed in light of the new CPB data. 26 refs., 14 figs., 3 tabs

  7. Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature

    Science.gov (United States)

    Leschke, Hajo; Sobolev, Alexander V.; Spitzer, Wolfgang

    2016-07-01

    The leading asymptotic large-scale behaviour of the spatially bipartite entanglement entropy (EE) of the free Fermi gas infinitely extended in multidimensional Euclidean space at zero absolute temperature, T = 0, is by now well understood. Here, we present and discuss the first rigorous results for the corresponding EE of thermal equilibrium states at T> 0. The leading large-scale term of this thermal EE turns out to be twice the first-order finite-size correction to the infinite-volume thermal entropy (density). Not surprisingly, this correction is just the thermal entropy on the interface of the bipartition. However, it is given by a rather complicated integral derived from a semiclassical trace formula for a certain operator on the underlying one-particle Hilbert space. But in the zero-temperature limit T\\downarrow 0, the leading large-scale term of the thermal EE considerably simplifies and displays a {ln}(1/T)-singularity which one may identify with the known logarithmic enhancement at T = 0 of the so-called area-law scaling. birthday of the ideal Fermi gas.

  8. SQDFT: Spectral Quadrature method for large-scale parallel O(N) Kohn-Sham calculations at high temperature

    Science.gov (United States)

    Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; Pask, John E.

    2018-03-01

    We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method for O(N) Kohn-Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw-Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw-Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. We further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect O(N) scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.

  9. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding.

    Science.gov (United States)

    Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang

    2018-06-19

    In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  10. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xuming Pang

    2018-06-01

    Full Text Available In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  11. Accuracy of a digital weight scale relative to the nintendo wii in measuring limb load asymmetry.

    Science.gov (United States)

    Kumar, Ns Senthil; Omar, Baharudin; Joseph, Leonard H; Hamdan, Nor; Htwe, Ohnmar; Hamidun, Nursalbiyah

    2014-08-01

    [Purpose] The aim of the present study was to investigate the accuracy of a digital weight scale relative to the Wii in limb loading measurement during static standing. [Methods] This was a cross-sectional study conducted at a public university teaching hospital. The sample consisted of 24 participants (12 with osteoarthritis and 12 healthy) recruited through convenient sampling. Limb loading measurements were obtained using a digital weight scale and the Nintendo Wii in static standing with three trials under an eyes-open condition. The limb load asymmetry was computed as the symmetry index. [Results] The accuracy of measurement with the digital weight scale relative to the Nintendo Wii was analyzed using the receiver operating characteristic (ROC) curve and Kolmogorov-Smirnov test (K-S test). The area under the ROC curve was found to be 0.67. Logistic regression confirmed the validity of digital weight scale relative to the Nintendo Wii. The D statistics value from the K-S test was found to be 0.16, which confirmed that there was no significant difference in measurement between the equipment. [Conclusion] The digital weight scale is an accurate tool for measuring limb load asymmetry. The low price, easy availability, and maneuverability make it a good potential tool in clinical settings for measuring limb load asymmetry.

  12. Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons

    Directory of Open Access Journals (Sweden)

    Grimm Eleanor R

    2008-07-01

    Full Text Available Abstract Background Transient hyperthermic shifts in body temperature have been linked to the endogenous hormone calcitonin gene-related peptide (CGRP, which can increase sympathetic activation and metabolic heat production. Recent studies have demonstrated that these centrally mediated responses may result from CGRP dependent changes in the activity of thermoregulatory neurons in the preoptic and anterior regions of the hypothalamus (POAH. Results Using a tissue slice preparation, we recorded the single-unit activity of POAH neurons from the adult male rat, in response to temperature and CGRP (10 μM. Based on the slope of firing rate as a function of temperature, neurons were classified as either warm sensitive or temperature insensitive. All warm sensitive neurons responded to CGRP with a significant decrease in firing rate. While CGRP did not alter the firing rates of some temperature insensitive neurons, responsive neurons showed an increase in firing rate. Conclusion With respect to current models of thermoregulatory control, these CGRP dependent changes in firing rate would result in hyperthermia. This suggests that both warm sensitive and temperature insensitive neurons in the POAH may play a role in producing this hyperthermic shift in temperature.

  13. Crystallization speed of salbutamol as a function of relative humidity and temperature.

    Science.gov (United States)

    Zellnitz, Sarah; Narygina, Olga; Resch, Christian; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-07-15

    Spray dried salbutamol sulphate and salbutamol base particles are amorphous as a result of spray drying. As there is always the risk of recrystallization of amorphous material, the aim of this work is the evaluation of the temperature and humidity dependent recrystallization of spray dried salbutamol sulphate and base. Therefore in-situ Powder X-ray Diffraction (PXRD) studies of the crystallization process at various temperature (25 and 35 °C) and humidity (60%, 70%, 80%, 90% relative humidity) conditions were performed. It was shown that the crystallization speed of salbutamol sulphate and base is a non-linear function of both temperature and relative humidity. The higher the relative humidity the higher is the crystallization speed. At 60% relative humidity salbutamol base as well as salbutamol sulphate were found to be amorphous even after 12 h, however samples changed optically. At 70% and 90% RH recrystallization of salbutamol base is completed after 3 h and 30 min and recrystallization of salbutamol sulphate after 4h and 1h, respectively. Higher temperature (35 °C) also leads to increased crystallization speeds at all tested values of relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air

    Directory of Open Access Journals (Sweden)

    Luciane Bastistella

    2018-02-01

    Full Text Available New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens, Cyclobalanopsis glauca, Trigonostemon huangmosun, and Bambusa vulgaris, and involved five relative humidity conditions (22, 43, 75, 84, and 90%, two mass samples (0.1 and 1 g, and two particle sizes (powder and piece. Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  15. Air temperature and relative humidity in Dome Fuji Station buildings, East Antarctic ice sheet, in 2003

    Directory of Open Access Journals (Sweden)

    Takao Kameda

    2008-06-01

    Full Text Available In order to clarify the living condition in Dome Fuji Station in 2003, air temperature and relative humidity in the station were measured. Thermocouples with data logger and a ventilated psychrometer were used for the measurements. Average air temperature from February 11, 2003 to January 14, 2004 (missing period: July 19 to August 17 in the Dome Fuji Station buildings were as follows: Generator room 24.7℃, Dining room 23.5℃, Observation room 21.1℃, Dormitory room 18.2℃, Corridor 18.2℃, Food storage 8.2℃ and Old ice coring site -51.3℃. Average outside air temperature (1.5m height from the snow surface during the period was -54.4℃. A remarkable increase of outside air temperature (+30℃ at maximum due to a blocking high event was observed from October 31, 2003 to November 10, 2003 at Dome Fuji, during which increase of air temperature from 5 to 8°C in the station buildings was recorded. Snow on the station buildings was partly melted and some of the melted water penetrated into the station. This was the only time snow melted during the wintering over party's stay at the station. Average relative humidity in the station buildings obtained using a small humidifier was about 25%; the relative humidity without using the humidifier ranged from 9.0 to 22.9%.

  16. Temperature-dependent nucleation and capture-zone scaling of C 60 on silicon oxide

    Science.gov (United States)

    Groce, M. A.; Conrad, B. R.; Cullen, W. G.; Pimpinelli, A.; Williams, E. D.; Einstein, T. L.

    2012-01-01

    Submonolayer films of C 60 have been deposited on ultrathin SiO 2 films for the purpose of characterizing the initial stages of nucleation and growth as a function of temperature. Capture zones extracted from the initial film morphology were analyzed using both the gamma and generalized Wigner distributions. The calculated critical nucleus size i of the C 60 islands was observed to change over the temperature range 298 K to 483 K. All fitted values of i were found to be between 0 and 1, representing stable monomers and stable dimers, respectively. With increasing temperature of film preparation, we observed i first increasing through this range and then decreasing. We discuss possible explanations of this reentrant-like behavior.

  17. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Stefanie eMeyer

    2013-07-01

    Full Text Available The Guaymas Basin (Gulf of California hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit to life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml-1 d-1 at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T<10°C, medium (10°C≤T<40°C or hot (T≥40°C temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

  18. Relation of temperature and humidity to the risk of recurrent gout attacks.

    Science.gov (United States)

    Neogi, Tuhina; Chen, Clara; Niu, Jingbo; Chaisson, Christine; Hunter, David J; Choi, Hyon; Zhang, Yuqing

    2014-08-15

    Gout attack risk may be affected by weather (e.g., because of volume depletion). We therefore examined the association of temperature and humidity with the risk of recurrent gout attacks by conducting an internet-based case-crossover study in the United States (in 2003-2010) among subjects with a diagnosis of gout who had 1 or more attacks during 1 year of follow-up. We examined the association of temperature and humidity over the prior 48 hours with the risk of gout attacks using a time-stratified approach and conditional logistic regression. Among 632 subjects with gout, there was a significant dose-response relationship between mean temperature in the prior 48 hours and the risk of subsequent gout attack (P = 0.01 for linear trend). Higher temperatures were associated with approximately 40% higher risk of gout attack compared with moderate temperatures. There was a reverse J-shaped relationship between mean relative humidity and the risk of gout attacks (P = 0.03 for quadratic trend). The combination of high temperature and low humidity had the greatest association (odds ratio = 2.04, 95% confidence interval: 1.26, 3.30) compared with moderate temperature and relative humidity. Thus, high ambient temperature and possibly extremes of humidity were associated with an increased risk of gout attack, despite the likelihood that individuals are often in climate-controlled indoor environments. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. An LTE effective temperature scale for red supergiants in the Magellanic clouds

    Science.gov (United States)

    Tabernero, H. M.; Dorda, R.; Negueruela, I.; González-Fernández, C.

    2018-05-01

    We present a self-consistent study of cool supergiants (CSGs) belonging to the Magellanic clouds. We calculated stellar atmospheric parameters using LTE KURUCZ and MARCS atmospheric models for more than 400 individual targets by fitting a careful selection of weak metallic lines. We explore the existence of a Teff scale and its implications in two different metallicity environments (each Magellanic cloud). Critical and in-depth tests have been performed to assess the reliability of our stellar parameters (i.e. internal error budget, NLTE systematics). In addition, several Monte Carlo tests have been carried out to infer the significance of the Teff scale found. Our findings point towards a unique Teff scale that seems to be independent of the environment.

  20. Temporal scale of the action of temperature and photoperiod on the xylogenesis at the treeline

    Directory of Open Access Journals (Sweden)

    Rossi S

    2007-01-01

    Full Text Available The possible role and interaction of two ecological factors, photoperiod and temperature, on xylogenesis of conifers growing at treeline are review. In cold climates, temperature is one of the major factors regulating metabolic activities of plants and influencing onset and rate of cell production during the growing period. However, photoperiod was found to act as a signal regulating the timing of maximum growth rate and synchronizing radial growth at annual level. During tree-ring formation, both factors are crucial but with different levels of interaction. Some recent findings about xylogenesis in cold environments are described and discussed

  1. On the mass-coupling relation of multi-scale quantum integrable models

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltán; Balog, János [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Ito, Katsushi [Department of Physics, Tokyo Institute of Technology,2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Satoh, Yuji [Institute of Physics, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Tóth, Gábor Zsolt [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2016-06-13

    We determine exactly the mass-coupling relation for the simplest multi-scale quantum integrable model, the homogenous sine-Gordon model with two independent mass-scales. We first reformulate its perturbed coset CFT description in terms of the perturbation of a projected product of minimal models. This representation enables us to identify conserved tensor currents on the UV side. These UV operators are then mapped via form factor perturbation theory to operators on the IR side, which are characterized by their form factors. The relation between the UV and IR operators is given in terms of the sought-for mass-coupling relation. By generalizing the Θ sum rule Ward identity we are able to derive differential equations for the mass-coupling relation, which we solve in terms of hypergeometric functions. We check these results against the data obtained by numerically solving the thermodynamic Bethe Ansatz equations, and find a complete agreement.

  2. Effect of incubation temperatures for inactivation of Escherichia coli and related bacteria after gamma-irradiation

    International Nuclear Information System (INIS)

    Nakauma, Makoto; Ito, Hitoshi; Tada, Mikiro

    2000-01-01

    Irradiated fresh meat or fishery products have been expected to store and distribute under refrigerated temperature below 10degC. From previous reports, growth of coliform bacteria in these products were suppressed by gamma-irradiation below expected doses obtained at 30-37degC. This research was performed to observe the irradiation effect on the inactivation of Escherichia coli and related bacteria at different incubation temperatures of 10-40degC on plate agar after irradiation. From this study, D10 values of all strains decreased 17- 45% at 10degC compared with maximum D10 values at 30- 40degC. Radiation sensitivities were related to the ability to grow at low temperatures in which psychrotrophic type E. coli A4-1 indicated most sensitive to radiation, next of Salmonella enteritidis YK-2, E. coli S2, B4 whereas most resistant at Enterobacter agglomerans K3-1. (author)

  3. Effect of incubation temperatures for inactivation of Escherichia coli and related bacteria after gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakauma, Makoto; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Tada, Mikiro [Okayama Univ. (Japan). Faculty of Agriculture

    2000-09-01

    Irradiated fresh meat or fishery products have been expected to store and distribute under refrigerated temperature below 10degC. From previous reports, growth of coliform bacteria in these products were suppressed by gamma-irradiation below expected doses obtained at 30-37degC. This research was performed to observe the irradiation effect on the inactivation of Escherichia coli and related bacteria at different incubation temperatures of 10-40degC on plate agar after irradiation. From this study, D10 values of all strains decreased 17- 45% at 10degC compared with maximum D10 values at 30- 40degC. Radiation sensitivities were related to the ability to grow at low temperatures in which psychrotrophic type E. coli A4-1 indicated most sensitive to radiation, next of Salmonella enteritidis YK-2, E. coli S2, B4 whereas most resistant at Enterobacter agglomerans K3-1. (author)

  4. Nonuniqueness of the two-temperature Saha equation and related considerations

    International Nuclear Information System (INIS)

    Giordano, D.; Capitelli, M.

    2002-01-01

    The present paper contains considerations relative to the long debated thermodynamic derivation of two-temperature Saha equations. The main focus of our discourse is on the dependence of the multitemperature equilibrium conditions on the constraints imposed on the thermodynamic system. We also examine the following key issues related to that dependence: correspondence between constraints and equilibrium-equation forms that have appeared in the literature; presumed dominance of the free-electron translational temperature in the two-temperature expression of the equilibrium constant of the ionization reaction A A + +e - ; disagreement between the derivation methods based on, respectively, the extended second law of classical thermodynamics and axiomatic thermodynamics; and plausibility of the existence of entropic constraints

  5. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.

    1994-01-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam-mixtures to undergo detonations and, equally important, to support design of the larger-scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperature between 300K and 650K at a fixed pressure of 0.1 MPa. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K to 650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments. Experiments were conducted to measure the rate of hydrogen oxidation in the absence of ignition sources at temperatures of 500K and 650K, for hydrogen-air mixtures of 15% and 50%, and for a mixture of equimolar hydrogen-air and 30% steam at 650K. The rate of hydrogen oxidation was found to be significant at 650K. Reduction of hydrogen concentration by chemical reaction from 50 to 44% hydrogen, and from 15 to 11% hydrogen, were observed on a time frame of minutes. The DeSoete rate equation predicts the 50% experiment very well, but greatly underestimates the reaction rate of the lean mixtures

  6. Renormalization group and relations between scattering amplitudes in a theory with different mass scales

    International Nuclear Information System (INIS)

    Gulov, A.V.; Skalozub, V.V.

    2000-01-01

    In the Yukawa model with two different mass scales the renormalization group equation is used to obtain relations between scattering amplitudes at low energies. Considering fermion-fermion scattering as an example, a basic one-loop renormalization group relation is derived which gives possibility to reduce the problem to the scattering of light particles on the external field substituting a heavy virtual state. Applications of the results to problem of searching new physics beyond the Standard Model are discussed [ru

  7. The Work-Related Quality of Life Scale for Higher Education Employees

    Science.gov (United States)

    Edwards, Julian A.; Van Laar, Darren; Easton, Simon; Kinman, Gail

    2009-01-01

    Previous research suggests that higher education employees experience comparatively high levels of job stress. A range of instruments, both generic and job-specific, has been used to measure stressors and strains in this occupational context. The Work-related Quality of Life (WRQoL) scale is a measure designed to capture perceptions of the working…

  8. Planck early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500 - N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-r...

  9. Intrinsic symmetry of the scaling laws and generalized relations for critical indices

    International Nuclear Information System (INIS)

    Plechko, V.N.

    1982-01-01

    It is shown that the scating taws for criticat induces can be expressed as a consequence of a simple symmetry principle. Heuristic relations for critical induces of generalizing scaling laws for the case of arbitrary order parameters are presented, which manifestiy have a symmetric form and include the standard scalling laws as a particular case

  10. How covalence breaks adsorption-energy scaling relations and solvation restores them

    DEFF Research Database (Denmark)

    Vallejo, Federico Calle; Krabbe, Alexander; García Lastra, Juan Maria

    2017-01-01

    It is known that breaking the scaling relations between the adsorption energies of *O, *OH, and *OOH is paramount in catalyzing more efficiently the reduction of O2 in fuel cells and its evolution in electrolyzers. Taking metalloporphyrins as a case study, we evaluate here the adsorption energies...

  11. Scaling of lifting forces in relation to object size in whole body lifting

    NARCIS (Netherlands)

    Kingma, I.; van Dieen, J.H.; Toussaint, H.M.

    2005-01-01

    Subjects prepare for a whole body lifting movement by adjusting their posture and scaling their lifting forces to the expected object weight. The expectancy is based on visual and haptic size cues. This study aimed to find out whether lifting force overshoots related to object size cues disappear or

  12. An empirical velocity scale relation for modelling a design of large mesh pelagic trawl

    NARCIS (Netherlands)

    Ferro, R.S.T.; Marlen, van B.; Hansen, K.E.

    1996-01-01

    Physical models of fishing nets are used in fishing technology research at scales of 1:40 or smaller. As with all modelling involving fluid flow, a set of rules is required to determine the geometry of the model and its velocity relative to the water. Appropriate rules ensure that the model is

  13. Thermodynamic relations in high temperature and high pressure physics of solids

    International Nuclear Information System (INIS)

    Kumar, Munish

    1998-01-01

    Various possible simple relations based on the exact and approximate thermodynamic relations are derived. These relations can be used to investigate the variation of unit cell volume under the effect of pressure and temperature. Thermal expansivity and compressibility can be investigated directly at any pressure or temperature, or through the knowledge of equation of state (EOS). A relation to determine Anderson-Grueneisen parameter δ T under the effect of pressure is predicted. It is discussed that δ T is independent of pressure and thus Murnaghan equation of state works well in low pressure ranges, while the variation of δ T under high pressure should be taken into account. The product of coefficient of volume thermal expansion and bulk modulus remains constant, is correct at high pressure, provided that the pressure dependence of δ T is considered. (author)

  14. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  15. Population growth and development of Liposcelis pearmani (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    Science.gov (United States)

    Aminatou, B A; Gautam, S G; Opit, G P; Talley, J; Shakya, K

    2011-08-01

    Psocids of genus Liposcelis are now considered serious pests of stored products. We investigated the effects of eight temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, and 40.0°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis pearmani Lienhard. L. pearmani did not survive at 37.5 and 40.0°C, at all relative humidities tested; at 43% RH, at all temperatures tested; and at 55% RH, at 32.5 and 35°C. The greatest population growth was recorded at 32.5°C and 75% RH (32-fold growth). L. pearmani males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 17, 63, and 20%, respectively. Female L. pearmani have two to five instars, and the percentages of females with two, three, four, and five instars were 5, 39, 55, and 1%, respectively. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. pearmani cannot survive at temperatures >35.0°C; does not thrive at low relative humidities (55%), at temperatures above 25°C; and has a high optimum relative humidity for population growth (75%). Therefore, we expect it to have a more limited distribution compared with other Liposcelis species. These data provide a better understanding of how temperature and RH may influence L. pearmani population dynamics and can be used in population growth models to help develop effective management strategies for this psocid, and to predict its occurrence.

  16. Continental distribution as a forcing factor for global-scale temperature

    Energy Technology Data Exchange (ETDEWEB)

    Barron, E J; Thompson, S L; Hay, W W

    1984-08-16

    Since the advent of the continental drift hypothesis, changing continental geometries have been proposed as an explanation for long-term temperature variability. The climatic influence of a few specific past geographies has been investigated quantitatively, but these studies do not indicate the potential temperature variability due to continental positions. This problem has been examined only with simple climate models having limiting assumptions such as no cloud cover. Here idealized continental geometries are used as boundary conditions in a simulation using a general circulation model (GCM) of the atmosphere. The range in model simulated globally-averaged surface temperature is 7.4 K with a difference in polar surface temperature of up to 34 K. The simulations suggest a substantial climatic sensitivity to continental positions with the coldest global climate when land masses are in high latitudes. Although the simulations have not captured theoretical limits of climatic variability due to continental positions, present-day geography is near the cold end of this spectrum. 20 references, 1 figure.

  17. Study of Volcanic Activity at Different Time Scales Using Hypertemporal Land Surface Temperature Data

    NARCIS (Netherlands)

    Pavlidou, Efthymia; Hecker, Chris; van der Werff, Harald; van der Meijder, Mark

    2017-01-01

    We apply a method for detecting subtle spatiotemporal signal fluctuations to monitor volcanic activity. Whereas midwave infrared data are commonly used for volcanic hot spot detection, our approach utilizes hypertemporal longwave infrared-based land surface temperature (LST) data. Using LST data of

  18. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    DEFF Research Database (Denmark)

    Olsen, Jeppe Miki Busk; Madsen, Jens; Nielsen, Anders Henry

    2016-01-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity...

  19. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    KAUST Repository

    Zhou, Jian

    2015-07-02

    Highly conductive polymer fibers are key components in the design of multifunctional textiles. Measuring the voltage/temperature relationships of these fibers is very challenging due to their very small diameters, making it impossible to rely on classical temperature sensing techniques. These fibers are also so fragile that they cannot withstand any perturbation from external measurement systems. We propose here, a non-contact temperature measurement technique based on fiber Bragg gratings (FBGs). The heat exchange is carefully controlled between the probed fibers and the sensing FBG by promoting radiation and convective heat transfer rather than conduction, which is known to be poorly controlled. We demonstrate our technique on a highly conductive Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures the temperature of the polymer fibers when subjected to electrical loading. © 2015 IOP Publishing Ltd.

  20. Sporulation of Bremia lactucae affected by temperature, relative humidity, and wind in controlled conditions

    NARCIS (Netherlands)

    Su, H.; Bruggen, van A.H.C.; Subbarao, K.V.; Scherm, H.

    2004-01-01

    The effects of temperature (5 to 25degreesC), relative humidity (81 to 100%), wind speed (0 to 1.0 in s(-1)), and their interactions on sporulation of Bremia lactucae on lettuce cotyledons were investigated in controlled conditions. Sporulation was affected significantly (P <0.0001) by

  1. Effect of frozen storage temperature on quality-related changes in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Burgaard, Maria Garver; Jørgensen, Bo M.

    2011-01-01

    The effect of frozen storage temperature on quality-related parameters of rainbow trout (Oncorhynchus mykiss) muscle was studied in the interval from -10 to -80°C on samples stored for 1 to 18 months. The following quantities were measured: drip loss, water holding capacity and water distribution...

  2. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    1999-01-01

    This paper deals with autogenous deformation and autogenous relative humidity change (RH change) in hardening cement paste. Theoretical considerations and experimental data are presented, which elucidate the influence of temperature on these properties. This is an important subject in the control...

  3. Circadian and age-related modulation of thermoception and temperature regulation: mechanisms and functional implications.

    NARCIS (Netherlands)

    van Someren, E.J.W.; Raymann, RJEM; Scherder, E.J.A.; Daanen, H.A.M.; Swaab, D.F.

    2002-01-01

    At older ages, the circadian rhythm of body temperature shows a decreased amplitude, an advanced phase, and decreased stability. The present review evaluates to what extent these changes may result from age-related deficiencies at several levels of the thermoregulatory system, including

  4. Circadian and age-related modulation of thermoreception and temperature regulation: mechanisms and functional implications

    NARCIS (Netherlands)

    van Someren, Eus J. W.; Raymann, Roy J. E. M.; Scherder, Erik J. A.; Daanen, Hein A. M.; Swaab, Dick F.

    2002-01-01

    At older ages, the circadian rhythm of body temperature shows a decreased amplitude, an advanced phase, and decreased stability. The present review evaluates to what extent these changes may result from age-related deficiencies at several levels of the thermoregulatory system, including

  5. Spatial variability of night temperatures at a fine scale over the Stellenbosch wine district, South Africa

    Directory of Open Access Journals (Sweden)

    Valérie Bonnardot

    2012-03-01

    Significance and impact of the study: In the context of climate change, it is crucial to improve knowledge of current climatic conditions at fine scale during periods of grapevine growth and berry ripening in order to have a baseline from which to work when discussing and considering future local adaptations to accommodate to a warmer environnement.

  6. The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles

    Science.gov (United States)

    White, M.; Sayma, A. I.

    2015-08-01

    Low temperature organic Rankine cycles offer a promising technology for the generation of power from low temperature heat sources. Small-scale systems (∼10kW) are of significant interest, however there is a current lack of commercially viable expanders. For a potential expander to be economically viable for small-scale applications it is reasonable to assume that the same expander must have the ability to be implemented within a number of different ORC applications. It is therefore important to design and optimise the cycle considering the component performance, most notably the expander, both at different thermodynamic conditions, and using alternative organic fluids. This paper demonstrates a novel modelling methodology that combines a previously generated turbine performance map with cycle analysis to establish at what heat source conditions optimal system performance can be achieved using an existing turbine design. The results obtained show that the same turbine can be effectively utilised within a number of different ORC applications by changing the working fluid. By selecting suitable working fluids, this turbine can be used to convert pressurised hot water at temperatures between 360K and 400K, and mass flow rates between 0.45kg/s and 2.7kg/s, into useful power with outputs between 1.5kW and 27kW. This is a significant result since it allows the same turbine to be implemented into a variety of applications, improving the economy of scale. This work has also confirmed the suitability of the candidate turbine for a range of low temperature ORC applications.

  7. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale

    Science.gov (United States)

    Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.

  8. NGC 1275: An Outlier of the Black Hole-Host Scaling Relations

    Directory of Open Access Journals (Sweden)

    Eleonora Sani

    2018-02-01

    Full Text Available The active galaxy NGC 1275 lies at the center of the Perseus cluster of galaxies, being an archetypal BH-galaxy system that is supposed to fit well with the MBH-host scaling relations obtained for quiescent galaxies. Since it harbors an obscured AGN, only recently our group has been able to estimate its black hole mass. Here our aim is to pinpoint NGC 1275 on the less dispersed scaling relations, namely the MBH-σ⋆ and MBH−Lbul planes. Starting from our previous work (Ricci et al., 2017a, we estimate that NGC 1275 falls well outside the intrinsic dispersion of the MBH-σ⋆ plane being 1.2 dex (in black hole mass displaced with respect to the scaling relations. We then perform a 2D morphological decomposition analysis on Spitzer/IRAC images at 3.6 μm and find that, beyond the bright compact nucleus that dominates the central emission, NGC 1275 follows a de Vaucouleurs profile with no sign of significant star formation nor clear merger remnants. Nonetheless, its displacement on the MBH−L3.6,bul plane with respect to the scaling relation is as high as observed in the MBH-σ⋆. We explore various scenarios to interpret such behaviors, of which the most realistic one is the evolutionary pattern followed by NGC 1275 to approach the scaling relation. We indeed speculate that NGC 1275 might be a specimen for those galaxies in which the black holes adjusted to its host.

  9. Development and psychometric testing of the Nursing Workplace Relational Environment Scale (NWRES).

    Science.gov (United States)

    Duddle, Maree; Boughton, Maureen

    2009-03-01

    The aim of this study was to develop and test the psychometric properties of the Nursing Workplace Relational Environment Scale (NWRES). A positive relational environment in the workplace is characterised by a sense of connectedness and belonging, support and cooperation among colleagues, open communication and effectively managed conflict. A poor relational environment in the workplace may contribute to job dissatisfaction and early turnover of staff. Quantitative survey. A three-stage process was used to design and test the NWRES. In Stage 1, an extensive literature review was conducted on professional working relationships and the nursing work environment. Three key concepts; collegiality, workplace conflict and job satisfaction were identified and defined. In Stage 2, a pool of items was developed from the dimensions of each concept and formulated into a 35-item scale which was piloted on a convenience sample of 31 nurses. In Stage 3, the newly refined 28-item scale was administered randomly to a convenience sample of 150 nurses. Psychometric testing was conducted to establish the construct validity and reliability of the scale. Exploratory factor analysis resulted in a 22-item scale. The factor analysis indicated a four-factor structure: collegial behaviours, relational atmosphere, outcomes of conflict and job satisfaction which explained 68.12% of the total variance. Cronbach's alpha coefficient for the NWRES was 0.872 and the subscales ranged from 0.781-0.927. The results of the study confirm the reliability and validity of the NWRES. Replication of this study with a larger sample is indicated to determine relationships among the subscales. The results of this study have implications for health managers in terms of understanding the impact of the relational environment of the workplace on job satisfaction and retention.

  10. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    International Nuclear Information System (INIS)

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-01-01

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique

  11. Wave-particle duality through an extended model of the scale relativity theory

    International Nuclear Information System (INIS)

    Ioannou, P D; Nica, P; Agop, M; Paun, V; Vizureanu, P

    2008-01-01

    Considering that the chaotic effect of associated wave packet on the particle itself results in movements on the fractal (continuous and non-differentiable) curves of fractal dimension D F , wave-particle duality through an extension of the scale relativity theory is given. It results through an equation of motion for the complex speed field, that in a fractal fluid, the convection, dissipation and dispersion are reciprocally compensating at any scale (differentiable or non-differentiable). From here, for an irrotational movement, a generalized Schroedinger equation is obtained. The absence of dispersion implies a generalized Navier-Stokes type equation, whereas, for the irrotational movement and the fractal dimension, D F = 2, the usual Schroedinger equation results. The absence of dissipation implies a generalized Korteweg-de Vries type equation. In such conjecture, at the differentiable scale, the duality is achieved through the flowing regimes of the fractal fluid, i.e. the wave character by means of the non-quasi-autonomous flowing regime and the particle character by means of the quasi-autonomous flowing regime. These flowing regimes are separated by '0.7 structure'. At the non-differentiable scale, a fractal potential acts as an energy accumulator and controls through the coherence the duality. The correspondence between the differentiable and non-differentiable scales implies a Cantor space-time. Moreover, the wave-particle duality implies at any scale a fractal.

  12. Scale-Dependent Assessment of Relative Disease Resistance to Plant Pathogens

    Directory of Open Access Journals (Sweden)

    Peter Skelsey

    2014-03-01

    Full Text Available Phenotyping trials may not take into account sufficient spatial context to infer quantitative disease resistance of recommended varieties in commercial production settings. Recent ecological theory—the dispersal scaling hypothesis—provides evidence that host heterogeneity and scale of host heterogeneity interact in a predictable and straightforward manner to produce a unimodal (“humpbacked” distribution of epidemic outcomes. This suggests that the intrinsic artificiality (scale and design of experimental set-ups may lead to spurious conclusions regarding the resistance of selected elite cultivars, due to the failure of experimental efforts to accurately represent disease pressure in real agricultural situations. In this model-based study we investigate the interaction of host heterogeneity and scale as a confounding factor in the inference from ex-situ assessment of quantitative disease resistance to commercial production settings. We use standard modelling approaches in plant disease epidemiology and a number of different agronomic scenarios. Model results revealed that the interaction of heterogeneity and scale is a determinant of relative varietal performance under epidemic conditions. This is a previously unreported phenomenon that could provide a new basis for informing the design of future phenotyping platforms, and optimising the scale at which quantitative disease resistance is assessed.

  13. Progress in scale-up of second-generation high-temperature superconductors at SuperPower Inc

    International Nuclear Information System (INIS)

    Xie, Y.-Y.; Knoll, A.; Chen, Y.; Li, Y.; Xiong, X.; Qiao, Y.; Hou, P.; Reeves, J.; Salagaj, T.; Lenseth, K.; Civale, L.; Maiorov, B.; Iwasa, Y.; Solovyov, V.; Suenaga, M.; Cheggour, N.; Clickner, C.; Ekin, J.W.; Weber, C.; Selvamanickam, V.

    2005-01-01

    SuperPower is focused on scaling up second-generation (2-G) high-temperature superconductor (HTS) technology to pilot-scale manufacturing. The emphasis of this program is to develop R and D solutions for scale-up issues in pilot-scale operations to lay the foundation for a framework for large-scale manufacturing. Throughput continues to be increased in all process steps including substrate polishing, buffer and HTS deposition. 2-G HTS conductors have been produced in lengths up to 100 m. Process optimization with valuable information provided by several unique process control and quality-control tools has yielded performances of 6000-7000 A m (77 K, 0 T) in 50-100 m lengths using two HTS fabrication processes: metal organic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD). Major progress has been made towards the development of practical conductor configurations. Modifications to the HTS fabrication process have resulted in enhanced performance in magnetic fields. Industrial slitting and electroplating processes have been successfully adopted to fabricate tapes in width of 4 mm and with copper stabilizer for cable and coil applications. SuperPower's conductor configuration has yielded excellent mechanical properties and overcurrent carrying capability. Over 60 m of such practical conductors with critical current over 100 A/cm-width have been delivered to Sumitomo Electric Industries, Ltd. for prototype cable construction

  14. Progress in scale-up of second-generation high-temperature superconductors at SuperPower Inc

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.-Y. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States)]. E-mail: yxie@igc.com; Knoll, A. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Chen, Y. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Li, Y. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Xiong, X. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Qiao, Y. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Hou, P. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Reeves, J. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Salagaj, T. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Lenseth, K. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Civale, L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maiorov, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Iwasa, Y. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Solovyov, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Suenaga, M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Cheggour, N. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Clickner, C. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Ekin, J.W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Weber, C. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Selvamanickam, V. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States)

    2005-10-01

    SuperPower is focused on scaling up second-generation (2-G) high-temperature superconductor (HTS) technology to pilot-scale manufacturing. The emphasis of this program is to develop R and D solutions for scale-up issues in pilot-scale operations to lay the foundation for a framework for large-scale manufacturing. Throughput continues to be increased in all process steps including substrate polishing, buffer and HTS deposition. 2-G HTS conductors have been produced in lengths up to 100 m. Process optimization with valuable information provided by several unique process control and quality-control tools has yielded performances of 6000-7000 A m (77 K, 0 T) in 50-100 m lengths using two HTS fabrication processes: metal organic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD). Major progress has been made towards the development of practical conductor configurations. Modifications to the HTS fabrication process have resulted in enhanced performance in magnetic fields. Industrial slitting and electroplating processes have been successfully adopted to fabricate tapes in width of 4 mm and with copper stabilizer for cable and coil applications. SuperPower's conductor configuration has yielded excellent mechanical properties and overcurrent carrying capability. Over 60 m of such practical conductors with critical current over 100 A/cm-width have been delivered to Sumitomo Electric Industries, Ltd. for prototype cable construction.

  15. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.

    2011-03-22

    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down. However, the scatter between ML and Mw at small magnitudes is usually large and the resulting scaling relations are therefore uncertain. In an attempt to reduce these uncertainties, we first analyze the ML versus Mw relation based on 195 events, induced by the stimulation of a geothermal reservoir below the city of Basel, Switzerland. Values of ML range from 0.7 to 3.4. From these data we derive a scaling of ML ~ 1:5Mw over the given magnitude range. We then compare peak Wood-Anderson amplitudes to the low-frequency plateau of the displacement spectra for six sequences of similar earthquakes in Switzerland in the range of 0:5 ≤ ML ≤ 4:1. Because effects due to the radiation pattern and to the propagation path between source and receiver are nearly identical at a particular station for all events in a given sequence, the scatter in the data is substantially reduced. Again we obtain a scaling equivalent to ML ~ 1:5Mw. Based on simulations using synthetic source time functions for different magnitudes and Q values estimated from spectral ratios between downhole and surface recordings, we conclude that the observed scaling can be explained by attenuation and scattering along the path. Other effects that could explain the observed magnitude scaling, such as a possible systematic increase of stress drop or rupture velocity with moment magnitude, are masked by attenuation along the path.

  16. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation

    Directory of Open Access Journals (Sweden)

    Natal'ya V. Burmasheva

    2017-12-01

    Full Text Available In this paper a new exact solution of an overdetermined system of Oberbeck–Boussinesq equations that describes a stationary shear flow of a viscous incompressible fluid in an infinite layer is under study. The given exact solution is a generalization of the Ostroumov–Birich class for a layered unidirectional flow. In the proposed solution, the horizontal velocities depend only on the transverse coordinate z. The temperature field and the pressure field are three-dimensional. In contradistinction to the Ostroumov–Birich solution, in the solution presented in the paper the horizontal temperature gradients are linear functions of the $z$ coordinate. This structure of the exact solution allows us to find a nontrivial solution of the Oberbeck–Boussinesq equations by means of the identity zero of the incompressibility equation. This exact solution is suitable for investigating large-scale flows of a viscous incompressible fluid by quasi-two-dimensional equations. Convective fluid motion is caused by the setting of tangential stresses on the free boundary of the layer. Inhomogeneous thermal sources are given on both boundaries. The pressure in the fluid at the upper boundary coincides with the atmospheric pressure. The paper focuses on the study of temperature and pressure fields, which are described by polynomials of three variables. The features of the distribution of the temperature and pressure profiles, which are polynomials of the seventh and eighth degree, respectively, are discussed in detail. To analyze the properties of temperature and pressure, algebraic methods are used to study the number of roots on a segment. It is shown that the background temperature and the background pressure are nonmonotonic functions. The temperature field is stratified into zones that form the thermocline and the thermal boundary layer near the boundaries of the fluid layer. Investigation of the properties of the pressure field showed that it is stratified

  17. Correlation between δ18O in precipitation and surface air temperature on different time-scale in China

    International Nuclear Information System (INIS)

    Zhang Lin; Chen Zongyu; Nie Zhenlong; Liu Fuliang; Jia Yankun; Zhang Xiangyang

    2008-01-01

    The relation between isotopic compositions of precipitation and surface air temperature provides a unique tool for paleoclimate studies, among which the relation between long term changes in δ 18 O of precipitation and surface air temperature at different stations or in a given location seems to be the most appropriate to paleoclimatic reconstructions. Analysis was conducted on monthly and annual mean δ 18 O content of precipitation and surface air temperature at spatial and fixed locations by using the data of China (1985-2002) in Global Network of Isotopes in Precipitation (GNIP) Database. This study shows that there is a positive correlation between δ 18 O of precipitation and surface air temperature for stations located in north of 34 degree-36 degree N latitudes. The seasonal δ 18 O-temperature gradient derived from the monthly data of 12 stations in northern China is about 0.034% degree C -1 . The δ 18 O-temperature gradient, however, derived from the long term annual mean data of 13 stations, is about 0.052% degree C -1 , which is substantially larger than the seasonal gradient. (authors)

  18. Effect of the temperature and relative humidity in dosemeters used for personnel monitoring

    International Nuclear Information System (INIS)

    Antonio Filho, J.

    1982-12-01

    The systematics of the combined effect of temperature and humidity on photographic dosimeters of the type Agfa-Gevaert, Kodak type II, III and the thermoluminescent dosimeters LiF:Mg,Ti (TLD-100, Harshaw), D-CaSO 4 :Dy-0,4 (Teledyne), e CaSO 4 :Dy+NaCl (IPEN), used in personal monitoring in Brazil was investigated, in the temperature range of 20 0 C to 50 0 C and relative humidity of 65% to 95%, in order to determine the best manner of utilization of these detectors in Brazilian climatic conditions. The dosimeters were studied in different forms of packing-sheet such as aluminezed paper and polyethylene. For the determination of the systematics, the dosimeters were irradiated in three conditions: before, during and after of storage in climatic chambers to a maximum period of 60 days. It was found that the dosimetric filmes and thermoluminescent dosimeter CaSO 4 :Dy+NaCl without protection, presented a high dependence to temperature and humidity, and when protected presented good results. Therefore, the best manner of utilization of these monitors in environments with relative humidity and temperature greater them 75% and 30 0 C respectively, is achieved with the protection of aluminized paper. The LiF:Mg,Ti and D+CaSO 4 :Dy-0,4 dosimeters can be utilized in their original form because they presented low dependence with humidity and temperature in the range studied. (Author) [pt

  19. Vertical distribution and temperature relations of sheathing mycorrhizas of Betula spp. growing on coal spoil

    Energy Technology Data Exchange (ETDEWEB)

    Ingleby, K.; Last, F.T.; Mason, P.A.

    1985-10-01

    Naturally-occurring fine roots (<2 mm dia.) of Betula spp. were sampled to a depth of 30 cm at seven locations on each of two transects across a heap of coal spoil in parts subject to after-burn. In the top 20 cm of substrate, 87% of the root pieces occurred. Irrespective of depth, sheathing mycorrhizas were found on 83% of the roof pieces. While the percentages of Paxillus-type mycorrhizas decreased with soil depth, those of a Scleroderma-type significantly increased. Total numbers of mycorrhizas counted at the end-of-season were independent of substrate temperatures. However, numbers of Paxillus-type mycorrhizas were inversely related to both annual mean and spring substrate temperatures, whereas those of the Scleroderma- type were directly related. Vegetative cultures of Scleroderma citrinum grew on an agar medium at 30 C, whereas those of Paxillus involutus did not; at lower temperatures the two fungi responded similarly to temperature changes. The evidence suggests that the observed patterns of mycorrhizal development reflect the changing competitive abilities of Scleroderma and Paxillus and/or host influences at different temperatures in the range 8-16 C.

  20. Temperature and Heat-Related Mortality Trends in the Sonoran and Mojave Desert Region

    Directory of Open Access Journals (Sweden)

    Polioptro F. Martinez-Austria

    2017-03-01

    Full Text Available Extreme temperatures and heat wave trends in five cities within the Sonoran Desert region (e.g., Tucson and Phoenix, Arizona, in the United States and Ciudad Obregon and San Luis Rio Colorado, Sonora; and Mexicali, Baja California, in Mexico and one city within the Mojave Desert region (e.g., Las Vegas, Nevada were assessed using field data collected from 1950 to 2014. Instead of being selected by watershed, the cities were selected because they are part of the same arid climatic region. The data were analyzed for maximum temperature increases and the trends were confirmed statistically using Spearman’s nonparametric test. Temperature trends were correlated with the mortality information related with extreme heat events in the region. The results showed a clear trend of increasing maximum temperatures during the months of June, July, and August for five of the six cities and statically confirmed using Spearman’s rho values. Las Vegas was the only city where the temperature increase was not confirmed using Spearman’s test, probably because it is geographically located outside of the Sonoran Desert or because of its proximity to the Hoover Dam. The relationship between mortality and temperature was analyzed for the cities of Mexicali, Mexico and Phoenix. Arizona.

  1. Threshold Evaluation of Emergency Risk Communication for Health Risks Related to Hazardous Ambient Temperature.

    Science.gov (United States)

    Liu, Yang; Hoppe, Brenda O; Convertino, Matteo

    2018-04-10

    Emergency risk communication (ERC) programs that activate when the ambient temperature is expected to cross certain extreme thresholds are widely used to manage relevant public health risks. In practice, however, the effectiveness of these thresholds has rarely been examined. The goal of this study is to test if the activation criteria based on extreme temperature thresholds, both cold and heat, capture elevated health risks for all-cause and cause-specific mortality and morbidity in the Minneapolis-St. Paul Metropolitan Area. A distributed lag nonlinear model (DLNM) combined with a quasi-Poisson generalized linear model is used to derive the exposure-response functions between daily maximum heat index and mortality (1998-2014) and morbidity (emergency department visits; 2007-2014). Specific causes considered include cardiovascular, respiratory, renal diseases, and diabetes. Six extreme temperature thresholds, corresponding to 1st-3rd and 97th-99th percentiles of local exposure history, are examined. All six extreme temperature thresholds capture significantly increased relative risks for all-cause mortality and morbidity. However, the cause-specific analyses reveal heterogeneity. Extreme cold thresholds capture increased mortality and morbidity risks for cardiovascular and respiratory diseases and extreme heat thresholds for renal disease. Percentile-based extreme temperature thresholds are appropriate for initiating ERC targeting the general population. Tailoring ERC by specific causes may protect some but not all individuals with health conditions exacerbated by hazardous ambient temperature exposure. © 2018 Society for Risk Analysis.

  2. Honey bee forager thoracic temperature inside the nest is tuned to broad-scale differences in recruitment motivation.

    Science.gov (United States)

    Sadler, Nik; Nieh, James C

    2011-02-01

    Insects that regulate flight muscle temperatures serve as crucial pollinators in a broad range of ecosystems, in part because they forage over a wide span of temperatures. Honey bees are a classic example and maintain their thoracic muscles at temperatures (T(th)) tuned to the caloric benefits of floral resources. Using infrared thermography, we tested the hypothesis that forager motivation to recruit nestmates for a food source is positively correlated with T(th). We trained bees to a sucrose feeder located 5-100 m from the nest. Recruiting foragers had a significantly higher average T(th) (2.7°C higher) when returning from 2.5 mol l(-1) sucrose (65% w/w) than when returning from 1.0 mol l(-1) sucrose (31% w/w). Foragers exhibited significantly larger thermal fluctuations the longer they spent inside the nest between foraging trips. The difference between maximum and minimum temperatures during a nest visit (T(range)) increased with total duration of the nest visit (0.7°C increase per additional min spent inside the nest). Bees that recruited nestmates (waggle or round danced) were significantly warmer, with a 1.4-1.5 times higher ΔT(th) (difference between T(th) and nest ambient air temperature) than bees who tremble danced or simply walked on the nest floor without recruiting between foraging bouts. However, recruiter T(th) was not correlated with finer-scale measures of motivation: the number of waggle dance circuits or waggle dance return phase duration. These results support the hypothesis that forager T(th) within the nest is correlated to broad-scale differences in foraging motivation.

  3. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    Science.gov (United States)

    Roadhouse, Emily A.

    The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely

  4. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    Directory of Open Access Journals (Sweden)

    A. C. Adolph

    2018-03-01

    Full Text Available As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of −0.4 °C, spanning a range of temperatures from −35 to −5 °C (RMSE  =  1.6 °C and mean bias  =  −0.7 °C prior to cloud masking. For our study area and time series

  5. Stress and adhesion of chromia-rich scales on ferritic stainless steels in relation with spallation

    Directory of Open Access Journals (Sweden)

    A. Galerie

    2004-03-01

    Full Text Available The relation between chromia scale spallation during oxidation or cooling down of ferritic stainless steels is generally discussed in terms of mechanical stresses induced by volume changes or differential thermal expansion. In the present paper, growth and thermal stress measurements in scales grown on different ferritic steel grades have shown that the main stress accumulation occurs during isothermal scale growth and that thermal stresses are of minor importance. However, when spallation occurs, it is always during cooling down. Steel-oxide interface undulation seems to play a major role at this stage, thus relating spallation to the metal mechanical properties, thickness and surface preparation. A major influence on spallation of the minor stabilizing elements of the steels was observed which could not be related to any difference in stress state. Therefore, an original inverted blister test was developed to derive quantitative values of the metal-oxide adhesion energy. These values clearly confirmed that this parameter was influenced by scale thickness and by minor additions, titanium greatly increasing adhesion whereas niobium decreased it.

  6. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  7. UPDATED MASS SCALING RELATIONS FOR NUCLEAR STAR CLUSTERS AND A COMPARISON TO SUPERMASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Scott, Nicholas; Graham, Alister W.

    2013-01-01

    We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M NC , correlates most tightly with the host galaxy's velocity dispersion: log M NC = (2.11 ± 0.31)log (σ/54) + (6.63 ± 0.09), but has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M NC ∝M 0.55±0.15 Gal,dyn ; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.

  8. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  9. Universal scaling behaviors of meteorological variables’ volatility and relations with original records

    Science.gov (United States)

    Lu, Feiyu; Yuan, Naiming; Fu, Zuntao; Mao, Jiangyu

    2012-10-01

    Volatility series (defined as the magnitude of the increments between successive elements) of five different meteorological variables over China are analyzed by means of detrended fluctuation analysis (DFA for short). Universal scaling behaviors are found in all volatility records, whose scaling exponents take similar distributions with similar mean values and standard deviations. To reconfirm the relation between long-range correlations in volatility and nonlinearity in original series, DFA is also applied to the magnitude records (defined as the absolute values of the original records). The results clearly indicate that the nonlinearity of the original series is more pronounced in the magnitude series.

  10. Measuring emotions during epistemic activities: the Epistemically-Related Emotion Scales.

    Science.gov (United States)

    Pekrun, Reinhard; Vogl, Elisabeth; Muis, Krista R; Sinatra, Gale M

    2017-09-01

    Measurement instruments assessing multiple emotions during epistemic activities are largely lacking. We describe the construction and validation of the Epistemically-Related Emotion Scales, which measure surprise, curiosity, enjoyment, confusion, anxiety, frustration, and boredom occurring during epistemic cognitive activities. The instrument was tested in a multinational study of emotions during learning from conflicting texts (N = 438 university students from the United States, Canada, and Germany). The findings document the reliability, internal validity, and external validity of the instrument. A seven-factor model best fit the data, suggesting that epistemically-related emotions should be conceptualised in terms of discrete emotion categories, and the scales showed metric invariance across the North American and German samples. Furthermore, emotion scores changed over time as a function of conflicting task information and related significantly to perceived task value and use of cognitive and metacognitive learning strategies.

  11. Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations

    International Nuclear Information System (INIS)

    Grosswendt, B.; Roos, M.

    1989-01-01

    In electron dosimetry energy parameters are used with values evaluated from ranges in water. The electron ranges in water may be deduced from ranges measured in solid phantoms. Several procedures recommended by national and international organisations differ both in the scaling of the ranges and in the energy-range relations for water. Using the Monte Carlo method the application of different procedures for electron energies below 10 MeV is studied for different phantom materials. It is shown that deviations in the range scaling and in the energy-range relations for water may accumulate to give energy errors of several per cent. In consequence energy-range relations are deduced for several solid phantom materials which enable a single-step energy determination. (author)

  12. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature.

    Science.gov (United States)

    Hasan, Yaser; Briggs, William; Matschegewski, Claudia; Ordon, Frank; Stützel, Hartmut; Zetzsche, Holger; Groen, Simon; Uptmoor, Ralf

    2016-07-01

    QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.

  13. The effect of water contamination on the dew-point temperature scale realization with humidity generators

    Science.gov (United States)

    Vilbaste, M.; Heinonen, M.; Saks, O.; Leito, I.

    2013-08-01

    The purpose of this paper is to study the effect of contaminated water in the context of humidity generators. Investigation of different methods to determine the drop in dew-point temperature due to contamination and experiments on actual contamination rates are reported. Different methods for calculating the dew-point temperature effect from electrical conductivity and density measurements are studied with high-purity water and aqueous solutions of NaCl and LiCl. The outcomes of the calculation methods are compared with the results of direct humidity measurements. The results show that the often applied Raoult's law based calculation method is in good agreement with other methods. For studying actual contamination, water samples were kept in glass, plastic, copper and stainless-steel vessels for up to 13 months to investigate natural ionic and organic contamination in vessels with different wall materials. The amount of ionic contamination was found to be higher in copper and glass vessels than in stainless-steel and plastic vessels. The amount of organic contamination was found to be highest in the plastic vessel. In all the cases, however, the corresponding drop in dew-point temperature due to natural contamination was found to be below 0.1 mK. The largest rate of change of dew-point temperature was 26 µK/month. Thus, if proper cleanness is maintained in a humidity generator the effect of contamination of water in the saturator is insignificant compared with the major uncertainty components even in the most accurate generators today.

  14. Decadal-to-century timescale variability of regional and hemispheric scale temperature

    International Nuclear Information System (INIS)

    Jones, P.D.

    1994-01-01

    The fact that the surface temperature of the globe has warmed by 0.3--0.6 C since the mid-nineteenth century is an important piece of evidence in the ''global warming'' debate. What is the magnitude of this warming? Where has it been greatest? How unusual is the recent warming in the context of paleoclimatic reconstructions since A.D. 1500? This article seeks to address these issues by briefly reviewing the available literature

  15. OSMOTIC COEFFICIENTS, SOLUBILITIES, AND DELIQUESCENCE RELATIONS IN MIXED AQUEOUS SALT SOLUTIONS AT ELEVATED TEMPERATURE

    International Nuclear Information System (INIS)

    M.S. Gruszkiewicz; D.A. Palmer

    2006-01-01

    While thermodynamic properties of pure aqueous electrolytes are relatively well known at ambient temperature, there are far fewer data for binary systems extending to elevated temperatures and high concentrations. There is no general theoretically sound basis for prediction of the temperature dependence of ionic activities, and consequently temperature extrapolations based on ambient temperature data and empirical equations are uncertain and require empirical verification. Thermodynamic properties of mixed brines in a wide range of concentrations would enhance the understanding and precise modeling of the effects of deliquescence of initially dry solids in humid air in geological environments and in modeling the composition of waters during heating, cooling, evaporation or condensation processes. These conditions are of interest in the analysis of waters on metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada. The results obtained in this project will be useful for modeling the long-term evolution of the chemical environment, and this in turn is useful for the analysis of the corrosion of waste packages. In particular, there are few reliable experimental data available on the relationship between relative humidity and composition that reveals the eutonic points of the mixtures and the mixture deliquescence RH. The deliquescence RH for multicomponent mixtures is lower than that of pure component or binary solutions, but is not easy to predict quantitatively since the solutions are highly nonideal. In this work we used the ORNL low-temperature and high-temperature isopiestic facilities, capable of precise measurements of vapor pressure between ambient temperature and 250 C for determination of not only osmotic coefficients, but also solubilities and deliquescence points of aqueous mixed solutions in a range of temperatures. In addition to standard solutions of CaCl 2 , LiCl, and NaCl used as references, precise direct

  16. A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales

    International Nuclear Information System (INIS)

    Trouet, V; Diaz, H F; Wahl, E R; Viau, A E; Graham, R; Graham, N; Cook, E R

    2013-01-01

    We present two reconstructions of annual average temperature over temperate North America: a tree-ring based reconstruction at decadal resolution (1200–1980 CE) and a pollen-based reconstruction at 30 year resolution that extends back to 480 CE. We maximized reconstruction length by using long but low-resolution pollen records and applied a three-tier calibration scheme for this purpose. The tree-ring-based reconstruction was calibrated against instrumental annual average temperatures on annual and decadal scale, it was then reduced to a lower resolution, and was used as a calibration target for the pollen-based reconstruction. Before the late-19th to the early-21st century, there are three prominent low-frequency periods in our extended reconstruction starting at 480 CE, notably the Dark Ages cool period (about 500–700 CE) and Little Ice Age (about 1200–1900 CE), and the warmer medieval climate anomaly (MCA; about 750–1100 CE). The 9th and the 11th century are the warmest centuries and they constitute the core of the MCA in our reconstruction, a period characterized by centennial-scale aridity in the North American West. These two warm peaks are slightly warmer than the baseline period (1904–1980), but nevertheless much cooler than temperate North American temperatures during the early-21st century. (letter)

  17. The tunnel sealing experiment: The construction and performance of full scale clay and concrete bulkheads at elevated pressure and temperature

    International Nuclear Information System (INIS)

    Martino, J.B.; Dixon, D.A.; Vignal, B.; Fujita, T.

    2006-01-01

    Concepts for deep geologic disposal of radioactive waste, as proposed by many international organizations, include bulkheads or plugs in the shaft, or at the entrances to disposal rooms, or both. The seals are primarily to prevent groundwater transport of radioisotopes along underground openings but also provide a measure of security by restricting tunnel access. The safety of the respective disposal systems relies on the combined performance of the natural barriers (host rock) and engineered barriers (the waste form, the waste container, the buffer barrier, the room, tunnel and shaft backfill and sealing materials). To understand the functionality of these systems it is important to study them in whole or in part at full scale. One such study was the Tunnel Sealing Experiment (TSX), a full-scale tunnel seal component study. The TSX showed it is possible to construct tunnel seals that limit axial flow under high hydraulic gradient and elevated temperature. The clay and concrete bulkheads had seepage rates of 1 mL/min and 10 mL/min at ambient temperature. Elevated temperatures caused a further decrease in seepage past the concrete bulkhead to approximately 2-3 mL/min. (author)

  18. MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y.; Lazar, M.; Poedts, S. [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Heverlee (Belgium); Viñas, A., E-mail: yana.maneva@wis.kuleuven.be [NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD 20771 (United States)

    2016-11-20

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons, unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma β and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  19. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  20. Mixing the Solar Wind Proton and Electron Scales: Effects of Electron Temperature Anisotropy on the Oblique Proton Firehose Instability

    Science.gov (United States)

    Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.

    2016-01-01

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  1. A new scaling law for temperature variance profile in the mixing zone of turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Wang, Yin; Xu, Wei; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger

    2017-11-01

    We report a combined experimental and numerical study of the scaling properties of the temperature variance profile η(z) along the central z axis of turbulent Rayleigh-Bénard convection in a thin disk cell and an upright cylinder of aspect ratio unity. In the mixing zone outside the thermal boundary layer region, the measured η(z) is found to scale with the cell height H in both cells and obey a power law, η(z) (z/H)ɛ, with the obtained values of ɛ being very close to -1. Based on the experimental and numerical findings, we derive a new equation for η(z) in the mixing zone, which has a power-law solution in good agreement with the experimental and numerical results. Our work thus provides a common framework for understanding the effect of boundary layer fluctuations on the scaling properties of the temperature variance profile in turbulent Rayleigh-Bénard convection. This work was supported in part by Hong Kong Research Grants Council.

  2. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    Science.gov (United States)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected

  3. Scaling Green-Kubo Relation and Application to Three Aging Systems

    Directory of Open Access Journals (Sweden)

    A. Dechant

    2014-02-01

    Full Text Available The Green-Kubo formula relates the spatial diffusion coefficient to the stationary velocity autocorrelation function. We derive a generalization of the Green-Kubo formula that is valid for systems with long-range or nonstationary correlations for which the standard approach is no longer valid. For the systems under consideration, the velocity autocorrelation function ⟨v(t+τv(t⟩ asymptotically exhibits a certain scaling behavior and the diffusion is anomalous, ⟨x^{2}(t⟩≃2D_{ν}t^{ν}. We show how both the anomalous diffusion coefficient D_{ν} and the exponent ν can be extracted from this scaling form. Our scaling Green-Kubo relation thus extends an important relation between transport properties and correlation functions to generic systems with scale-invariant dynamics. This includes stationary systems with slowly decaying power-law correlations, as well as aging systems, systems whose properties depend on the age of the system. Even for systems that are stationary in the long-time limit, we find that the long-time diffusive behavior can strongly depend on the initial preparation of the system. In these cases, the diffusivity D_{ν} is not unique, and we determine its values, respectively, for a stationary or nonstationary initial state. We discuss three applications of the scaling Green-Kubo relation: free diffusion with nonlinear friction corresponding to cold atoms diffusing in optical lattices, the fractional Langevin equation with external noise recently suggested to model active transport in cells, and the Lévy walk with numerous applications, in particular, blinking quantum dots. These examples underline the wide applicability of our approach, which is able to treat very different mechanisms of anomalous diffusion.

  4. Simulation of atmospheric temperature inversions over greater cairo using the MM5 Meso-Scale atmospheric model

    International Nuclear Information System (INIS)

    Kandil, H.A.; Elhadidi, B.M.; Kader, A. A.; Moaty, A.A.; Sherif, A.O.

    2006-01-01

    Air pollution episodes have been recorded in Cairo, during the fall season, since 1999, as a result of specific meteorological conditions combined with large quantity of pollutants created by several ground-based sources. The main reason for the smog-like episodes (black clouds) is adverse weather conditions with low and variable winds, high humidity and strong temperature inversions in the few-hundred meters above the ground. The two important types of temperature inversion affecting the air pollution are surface or ground (radiation) inversion and subsidence (elevated) inversion. The surface temperature inversion is associated with a rapid decrease in the ground surface temperature with the simultaneous existence of warm air in the lower troposphere. The inversion develops at dusk and continues until the surface warms again the following day. Pollutants emitted during the night are caught under this i nversion lid. S ubsidence inversion forms when warm air masses move over colder air masses. The inversion develops with a stagnating high-pressure system (generally associated with fair weather). Under these conditions, the pressure gradient becomes progressively weaker so that winds become light. These light winds greatly reduce the horizontal transport and dispersion of pollutants. At the same time, the subsidence inversion acts as a barrier to the vertical dispersion of the pollutants. In this study, the Penn State/NCAR meso -scale model (MM5) is used to simulate the temperature inversion phenomenon over Greater Cairo region during the fall season of 2004. Accurate computations of the heat transfer at the surface are needed to capture this phenomenon. This can only be achieved by high-resolution simulations in both horizontal and vertical directions. Hence, for accurate simulation of the temperature inversion over Greater Cairo, four nested domains of resolutions of 27 km, 9 km, 3 km and 1 km, respectively, were used in the horizontal planes. Furthermore, 42

  5. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    1997-01-01

    This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical

  6. Cultural adaptation of the Tuberculosis-related stigma scale to Brazil.

    Science.gov (United States)

    Crispim, Juliane de Almeida; Touso, Michelle Mosna; Yamamura, Mellina; Popolin, Marcela Paschoal; Garcia, Maria Concebida da Cunha; Santos, Cláudia Benedita Dos; Palha, Pedro Fredemir; Arcêncio, Ricardo Alexandre

    2016-06-01

    The process of stigmatization associated with TB has been undervalued in national research as this social aspect is important in the control of the disease, especially in marginalized populations. This paper introduces the stages of the process of cultural adaptation in Brazil of the Tuberculosis-related stigma scale for TB patients. It is a methodological study in which the items of the scale were translated and back-translated with semantic validation with 15 individuals of the target population. After translation, the reconciled back-translated version was compared with the original version by the project coordinator in Southern Thailand, who approved the final version in Brazilian Portuguese. The results of the semantic validation conducted with TB patients enable the identification that, in general, the scale was well accepted and easily understood by the participants.

  7. The resource-based relative value scale and physician reimbursement policy.

    Science.gov (United States)

    Laugesen, Miriam J

    2014-11-01

    Most physicians are unfamiliar with the details of the Resource-Based Relative Value Scale (RBRVS) and how changes in the RBRVS influence Medicare and private reimbursement rates. Physicians in a wide variety of settings may benefit from understanding the RBRVS, including physicians who are employees, because many organizations use relative value units as productivity measures. Despite the complexity of the RBRVS, its logic and ideal are simple: In theory, the resource usage (comprising physician work, practice expense, and liability insurance premium costs) for one service is relative to the resource usage of all others. Ensuring relativity when new services are introduced or existing services are changed is, therefore, critical. Since the inception of the RBRVS, the American Medical Association's Relative Value Scale Update Committee (RUC) has made recommendations to the Centers for Medicare & Medicaid Services on changes to relative value units. The RUC's core focus is to develop estimates of physician work, but work estimates also partly determine practice expense payments. Critics have attributed various health-care system problems, including declining and growing gaps between primary care and specialist incomes, to the RUC's role in the RBRVS update process. There are persistent concerns regarding the quality of data used in the process and the potential for services to be overvalued. The Affordable Care Act addresses some of these concerns by increasing payments to primary care physicians, requiring reevaluation of the data underlying work relative value units, and reviewing misvalued codes.

  8. No relation between body temperature and arterial recanalization at three days in patients with acute ischaemic stroke

    NARCIS (Netherlands)

    M. Geurts (Marjolein); H.B. Van Der Worp (H. Bart); A.D. Horsch (Alexander D.); L.J. Kappelle (Jaap); G.J. Biessels (Geert Jan); B.K. Velthuis (Birgitta); C.B. Majoie (Charles); Y.B.W.E.M. Roos; L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); K.E. Droogh-De Greve; H.P. Bienfait (Henri); M.A.A. van Walderveen (Marianne); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (Wouter); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); J. Bot (Joseph); M.C. Visser (Marieke); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); T. van Seeters (Tom); A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels; L.J. Kappelle; J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2015-01-01

    textabstractBackground: Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization. Methods: We included 278 patients with acute ischaemic stroke within nine

  9. Testing the Abbreviated Food Technology Neophobia Scale and its relation to satisfaction with food-related life in university students.

    Science.gov (United States)

    Schnettler, Berta; Grunert, Klaus G; Miranda-Zapata, Edgardo; Orellana, Ligia; Sepúlveda, José; Lobos, Germán; Hueche, Clementina; Höger, Yesli

    2017-06-01

    The aims of this study were to test the relationships between food neophobia, satisfaction with food-related life and food technology neophobia, distinguishing consumer segments according to these variables and characterizing them according to willingness to purchase food produced with novel technologies. A survey was conducted with 372 university students (mean aged=20.4years, SD=2.4). The questionnaire included the Abbreviated version of the Food Technology Neophobia Scale (AFTNS), Satisfaction with Life Scale (SWLS), and a 6-item version of the Food Neophobia Scale (FNS). Using confirmatory factor analysis, it was confirmed that SWFL correlated inversely with FNS, whereas FNS correlated inversely with AFTNS. No relationship was found between SWFL and AFTNS. Two main segments were identified using cluster analysis; these segments differed according to gender and family size. Group 1 (57.8%) possessed higher AFTNS and FNS scores than Group 2 (28.5%). However, these groups did not differ in their SWFL scores. Group 1 was less willing to purchase foods produced with new technologies than Group 2. The AFTNS and the 6-item version of the FNS are suitable instruments to measure acceptance of foods produced using new technologies in South American developing countries. The AFTNS constitutes a parsimonious alternative for the international study of food technology neophobia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. INFLUENCE OF TEMPERATURE AND RELATIVE HUMIDITY ON THE STUDDED AGARICUS BLAZEI MURRILL MUSHROOM COMPOST

    Directory of Open Access Journals (Sweden)

    Sándor Rózsa

    2017-12-01

    Full Text Available Almond mushroom, Agaricus blazei Murrill, is the so-called secondary saprophyte, developing on partially processed substrate, in which microorganisms reduced complex ligno-cellulose compounds. Numerous authors have shown that due to the similar life cycle in the cultivation of almond mushroom technologies developed for white button mushroom may be applied. However, almond mushroom requires high temperature and high humidity as well as access to light to form fruiting bodies. In Brazil, due to the advantageous climatic conditions this species is frequently grown outdoors; however, in other countries - mainly due to its high temperature requirements - such cultivation system is risky and may only be successful during very warm summers. In this study, we analyzed four kind of compost studded by Agaricus blazei Murrill mushroom mycelium. We recorded every hour the air and compost temperature and the air relative humidity. The best studded compost was the classical, followed by synthetic and then by the mixt compost.

  11. Temperature and rainfall are related to fertility rate after spring artificial insemination in small ruminants

    Science.gov (United States)

    Abecia, J. A.; Arrébola, F.; Macías, A.; Laviña, A.; González-Casquet, O.; Benítez, F.; Palacios, C.

    2016-10-01

    A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly ( P goats and sheep.

  12. The development and validation of the Relational Self-Esteem Scale.

    Science.gov (United States)

    Du, Hongfei; King, Ronnel B; Chi, Peilian

    2012-06-01

    According to the tripartite model of the self (Brewer & Gardner, 1996), the self consists of three aspects: personal, relational, and collective. Correspondingly, individuals can achieve a sense of self-worth through their personal attributes (personal self-esteem), relationship with significant others (relational self-esteem), or social group membership (collective self-esteem). Existing measures on personal and collective self-esteem are available in the literature; however, no scale exists that assesses relational self-esteem. The authors developed a scale to measure individual differences in relational self-esteem and tested it with two samples of Chinese university students. Between and within-network approaches to construct validation were used. The scale showed adequate internal consistency reliability and results of the confirmatory factor analysis showed good fit. It also exhibited meaningful correlations with theoretically relevant constructs in the nomological network. Implications and directions for future research are discussed. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  13. Evaluating broad scale patterns among related species using resource experiments in tropical hummingbirds.

    Science.gov (United States)

    Weinstein, Ben G; Graham, Catherine H

    2016-08-01

    A challenge in community ecology is connecting biogeographic patterns with local scale observations. In Neotropical hummingbirds, closely related species often co-occur less frequently than expected (overdispersion) when compared to a regional species pool. While this pattern has been attributed to interspecific competition, it is important to connect these findings with local scale mechanisms of coexistence. We measured the importance of the presence of competitors and the availability of resources on selectivity at experimental feeders for Andean hummingbirds along a wide elevation gradient. Selectivity was measured as the time a bird fed at a feeder with a high sucrose concentration when presented with feeders of both low and high sucrose concentrations. Resource selection was measured using time-lapse cameras to identity which floral resources were used by each hummingbird species. We found that the increased abundance of preferred resources surrounding the feeder best explained increased species selectivity, and that related hummingbirds with similar morphology chose similar floral resources. We did not find strong support for direct agonism based on differences in body size or phylogenetic relatedness in predicting selectivity. These results suggest closely related hummingbird species have overlapping resource niches, and that the intensity of interspecific competition is related to the abundance of those preferred resources. If these competitive interactions have negative demographic effects, our results could help explain the pattern of phylogenetic overdispersion observed at regional scales. © 2016 by the Ecological Society of America.

  14. Explaining growth variation over large spatial scales: Effects of temperature and food on walleye growth

    DEFF Research Database (Denmark)

    Mosgaard, Thomas; Venturelli, Paul; Lester, Nigel P.

    2012-01-01

    freshwater fish species in North America. We then use length at age data from yellow perch (Perca flavescens) to identify the mechanisms behind the remaining variation in the length at age – temperature relationship for walleye. A positive perch – walleye relationship indicates that the mechanism behind......Most fishes exhibit strong spatial variation in growth. Because fish growth and production are tightly linked, quantifying and explaining variation in growth can mean the difference between successful management and unforeseen collapse. However, disentangling the factors that are responsible...

  15. Temperature-induced strain release via rugae on the nanometer and micrometer scale in graphene monolayer

    Czech Academy of Sciences Publication Activity Database

    Verhagen, Timotheus; Valeš, Václav; Frank, Otakar; Kalbáč, Martin; Vejpravová, Jana

    2017-01-01

    Roč. 119, Aug (2017), s. 483-491 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : graphene * wrinkle * low temperature Raman mapping * strain * doping * thermal expansion Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Physical chemistry (UFCH-W) Impact factor: 6.337, year: 2016

  16. Optimization of instant powdered chicken feet broth’s drying temperature and time on pilot plant scale production

    Science.gov (United States)

    Hidayati, N.; Widyaningsih, T. D.

    2018-03-01

    Chicken feet by-product of chicken industries amounted to approximately 65,894 tons/year commonly used as broths. These by-products are potentially produced into an instant form as an anti-inflammatory functional food on industrial scale. Therefore, it is necessary to optimize the critical parameters of the drying process. The aim of this study was to determine the optimum temperature and time of instant powdered chicken feet broth’s drying on pilot plant scale, to find out product’s comparison of the laboratory and pilot plant scale, and to assess financial feasibility of the business plan. The optimization of pilot plant scale’s research prepared and designed with Response Surface Methodology-Central Composite Design. The optimized factors were powdered broth’s drying temperature (55°C, 60°C, 65°C) and time (10 minutes, 11 minutes, 12 minutes) with the response observed were water and chondroitin sulphate content. The optimum condition obtained was drying process with temperature of 60.85°C for 10,05 minutes resulting in 1.90 ± 0.02% moisture content, 32.48 ± 0.28% protein content, 12.05 ± 0.80% fat content, 28.92 ± 0.09 % ash content, 24.64 ± 0.52% carbohydrate content, 1.26 ± 0.05% glucosamine content, 0.99 ± 0.23% chondroitin sulphate content, 50.87 ± 1.00% solubility, 8.59 ± 0.19% water vapour absorption, 0.37% levels of free fatty acid, 13.66 ± 4.49% peroxide number, lightness of 60.33 ± 1.24, yellowness of 3.83 ± 0.26 and redness of 21.77 ± 0.42. Financial analysis concluded that this business project was feasible to run.

  17. Vegetation types alter soil respiration and its temperature sensitivity at the field scale in an estuary wetland.

    Directory of Open Access Journals (Sweden)

    Guangxuan Han

    Full Text Available Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively. During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m(-2 s(-1, followed by the Suaeda salsa site (0.77 µmol CO2 m(-2 s(-1 and the bare soil site (0.41 µmol CO2 m(-2 s(-1. The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland.

  18. Vegetation Types Alter Soil Respiration and Its Temperature Sensitivity at the Field Scale in an Estuary Wetland

    Science.gov (United States)

    Han, Guangxuan; Xing, Qinghui; Luo, Yiqi; Rafique, Rashad; Yu, Junbao; Mikle, Nate

    2014-01-01

    Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil) in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q 10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively). During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m−2 s−1), followed by the Suaeda salsa site (0.77 µmol CO2 m−2 s−1) and the bare soil site (0.41 µmol CO2 m−2 s−1). The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland. PMID:24608636

  19. Precipitation-productivity Relation in Grassland in Northern China: Investigations at Multiple Spatiotemporal Scales

    Science.gov (United States)

    Hu, Z.

    2017-12-01

    Climate change is predicted to cause dramatic variability in precipitation regime, not only in terms of change in annual precipitation amount, but also in precipitation seasonal distribution and precipitation event characteristics (high frenquency extrem precipitation, larger but fewer precipitation events), which combined to influence productivity of grassland in arid and semiarid regions. In this study, combining remote sensing products with in-situ measurements of aboveground net primary productivity (ANPP) and gross primary productivity (GPP) data from eddy covariance system in grassland of northern China, we quantified the effects of spatio-temporal vairation in precipitation on productivity from local sites to region scale. We found that, for an individual precipitation event, the duration of GPP-response to the individual precipitation event and the maximum absolute GPP response induced by the individual precipitation event increased linearly with the size of precipitation events. Comparison of the productivity-precipitation relationships between multi-sites determined that the predominant characteristics of precipitation events (PEC) that affected GPP differed remarkably between the water-limited temperate steppe and the temperature-limited alpine meadow. The number of heavy precipitation events (>10 mm d-1) was the most important PEC to impact GPP in the temperate steppe through affecting soil moisture at different soil profiles, while precipitation interval was the factor that affected GPP most in the alpine meadow via its effects on temperature. At the region scale, shape of ANPP-precipitation relationship varies with distinct spatial scales, and besides annual precipitation, precipitation seasonal distribution also has comparable impacts on spatial variation in ANPP. Temporal variability in ANPP was lower at both the dry and wet end, and peaked at a precipitation of 24