WorldWideScience

Sample records for temperature rise due

  1. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  2. Temperature rise due to mechanical energy dissipation in undirectional thermoplastic composites(AS4/PEEK)

    Science.gov (United States)

    Georgious, I. T.; Sun, C. T.

    1992-01-01

    The history of temperature rise due to internal dissipation of mechanical energy in insulated off-axis uniaxial specimens of the unidirectional thermoplastic composite (AS4/PEEK) has been measured. The experiment reveals that the rate of temperature rise is a polynomial function of stress amplitude: It consists of a quadratic term and a sixth power term. This fact implies that the specific heat of the composite depends on the stretching its microstructure undergoes during deformation. The Einstein theory for specific heat is used to explain the dependence of the specific heat on the stretching of the microstructure.

  3. Multi-scale predictions of massive conifer mortality due to chronic temperature rise

    Science.gov (United States)

    McDowell, N. G.; Williams, A. P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.; Mackay, D. S.; Ogee, J.; Domec, J. C.; Allen, C. D.; Fisher, R. A.; Jiang, X.; Muss, J. D.; Breshears, D. D.; Rauscher, S. A.; Koven, C.

    2016-03-01

    Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April-August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted >=50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.

  4. Can human local activities worsen the rise of temperature due to Climate Change?

    Science.gov (United States)

    Mateos, E.; Santana, J.; Deeb, A.; Grünwaldt, A.; Prieto, R.

    2013-12-01

    Several studies have shown a global scale temperature rise which in consequence, have brought up the need to propose various impact scenarios for this change on the planet and its life forms. Climate changes have a direct effect on human activities. Particularly these alterations have a negative impact on economy which in turn affects the most vulnerable and marginal population on developing nations. In a recent study based on 30 years climatological observed temperature in ten Mexican watersheds, from the period between 1970 and 1999, positive trend on maximum temperature were found in all watersheds. At each watershed at least 10 climatological stations from the net operated by the National Meteorological Service (Servicio Meterologico Nacional), whose data are maintained in the CLICOM database (Computerized Climate database), were selected. The climatological stations have at least 70% valid data per decade. In eight watersheds a maximum temperature trend oscillates between +0.5 to +1 oC every 30 years with a 95% confidence level. Nonetheless, in Rio Bravo and Rio Verde watersheds the tendencies are +1.75 and +2.75 oC over 30 years. The result in these two last watersheds evinces that: 1) there are fragile systems; 2) the human activities have a strong impact in those places, and 3) a principal anthropogenic influence on temperature rise is the change in land use. Temperature rised on Jalostitlan within Rio Verde watershed

  5. Potential decline in geothermal energy generation due to rising temperatures under climate change scenarios

    Science.gov (United States)

    Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.

    2016-12-01

    Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.

  6. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    Directory of Open Access Journals (Sweden)

    H. Trimmel

    2018-01-01

    Full Text Available Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land–water interfaces and their ecological functioning in aquatic environments.

  7. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    Science.gov (United States)

    Trimmel, Heidelinde; Weihs, Philipp; Leidinger, David; Formayer, Herbert; Kalny, Gerda; Melcher, Andreas

    2018-01-01

    Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land-water interfaces and their ecological functioning in aquatic environments.

  8. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    International Nuclear Information System (INIS)

    Bharathan, D.; Nix, G.

    2001-01-01

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures

  9. Tube temperature rise limits: Boiling considerations

    Energy Technology Data Exchange (ETDEWEB)

    Vanderwater, R.G.

    1952-03-26

    A revision of tube power limits based on boiling considerations was presented earlier. The limits were given on a basis of tube power versus header pressure. However, for convenience of operation, the limits have been converted from tube power to permissible water temperature rise. The permissible {triangle}t`s water are given in this document.

  10. Temperature rise and stress induced by microcracks in accelerating structures

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2010-12-01

    Full Text Available The temperature rise and induced stress due to Ohmic heating in the vicinity of microcracks on the walls of high-gradient accelerating structures are considered. The temperature rise and induced stress depend on the orientation of the crack with respect to the rf magnetic field, the shape of the crack, and the power and duration of the rf pulse. Under certain conditions the presence of cracks can double the temperature rise over that of a smooth surface. Stress at the bottom of the cracks can be several times larger than that of the case when there are no cracks. We study these effects both analytically and by computer simulation. It is shown that the stress in cracks is maximal when the crack depth is on the order of the thermal penetration depth.

  11. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    Science.gov (United States)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  12. Mixotrophic organisms become more heterotrophic with rising temperature

    NARCIS (Netherlands)

    Wilken, S.; Huisman, J.; Naus-Wiezer, S.; van Donk, E.

    2013-01-01

    The metabolic theory of ecology predicts that temperature affects heterotrophic processes more strongly than autotrophic processes. We hypothesized that this differential temperature response may shift mixotrophic organisms towards more heterotrophic nutrition with rising temperature. The hypothesis

  13. Effects of environment temperature rise on marine life. Bibliographic study

    International Nuclear Information System (INIS)

    Ancellin, J.; Eustache, M.; Vilquin, A.

    1973-12-01

    The effects of a temperature rise in the marine environment resulting from thermal wastes have already been covered by many studies. A body of data acquired on this subject, in the biological field, experimentally and in situ are reviewed. To this are added data concerning the major effects associated with the use of cooling systems, drag effect exerted on organisms by the pumping system and consequences due to the use of anti-fouling substances, as well as some ideas concerning the potential use of thermal wastes in the field of aquaculture [fr

  14. Rising Temperatures Reduce Global Wheat Production

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; hide

    2015-01-01

    Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32? degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.

  15. Rising Sludge in Secondary Settlers Due to Denitrification

    DEFF Research Database (Denmark)

    Henze, Mogens; Dupont, Rene; Grau, Peter

    1993-01-01

    High suspended solids concentrations in settler effluents can be caused by rising sludge, which is the effect of flotation of solids by nitrogen gas resulting from biological denitrification. Many factors influence the nitrogen gas bubble evolution. The most important factor is the rate...

  16. Experimentation and Prediction of Temperature Rise in Turning ...

    African Journals Online (AJOL)

    Experimentation and Prediction of Temperature Rise in Turning Process using Response Surface Methodology. ... Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ...

  17. 46 CFR 111.20-5 - Temperature rise.

    Science.gov (United States)

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Transformer Construction, Installation, and Protection § 111.20-5 Temperature rise. (a) The... than 40 degrees C, the transformer must be derated so that the total temperature stated in this section...

  18. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang

    2010-01-01

    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  19. Investigating sea level rise due to global warming in the teaching laboratory using Archimedes’ principle

    International Nuclear Information System (INIS)

    Hughes, Stephen; Pearce, Darren

    2015-01-01

    A teaching laboratory experiment is described that uses Archimedes’ principle to precisely investigate the effect of global warming on the oceans. A large component of sea level rise is due to the increase in the volume of water due to the decrease in water density with increasing temperature. Water close to 0 °C is placed in a beaker and a glass marble hung from an electronic balance immersed in the water. As the water warms, the weight of the marble increases as the water is less buoyant due to the decrease in density. In the experiment performed in this paper a balance with a precision of 0.1 mg was used with a marble 40.0 cm 3 and mass of 99.3 g, yielding water density measurements with an average error of −0.008 ± 0.011%. (paper)

  20. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  1. Tooth Whitening And Temperature Rise With Two Bleaching Activation Methods

    International Nuclear Information System (INIS)

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-01-01

    To measure the tooth whitening and the surface and Intrapulpal temperature increase in vitro on freshly extracted upper human central incisors after chemical, Zoom AP light and diode laser activated bleaching. Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n = 10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel, for three applications of 15 min each. Group II was bleached with high intensity advanced power Zoom activation light (Zoom AP), for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 Watt diode laser for three applications of 30 sec each. The whitening degree was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and Intrapulpal. The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Chemical bleaching produces the same whitening effect as Zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than Zoom AP light. Diode laser used to activate bleaching gels is not considered dangerous to the vitality of dental pulp using power settings of 2 W.

  2. The Impact of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, E.; Horton, R. M.; Thompson, T. R.

    2017-12-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10-30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high tempera- tures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  3. Determination of Temperature Rise and Temperature Differentials of CEMII/B-V Cement for 20MPa Mass Concrete using Adiabatic Temperature Rise Data

    Science.gov (United States)

    Chee Siang, GO

    2017-07-01

    Experimental test was carried out to determine the temperature rise characteristics of Portland-Fly-Ash Cement (CEM II/B-V, 42.5N) of Blaine fineness 418.6m2/kg and 444.6m2/kg respectively for 20MPa mass concrete under adiabatic condition. The estimation on adiabatic temperature rise by way of CIRIA C660 method (Construction Industry Research & Information Information) was adopted to verify and validate the hot-box test results by simulating the heat generation curve of the concrete under semi-adiabatic condition. Test result found that Portland fly-ash cement has exhibited decrease in the peak value of temperature rise and maximum temperature rise rate. The result showed that the temperature development and distribution profile, which is directly contributed from the heat of hydration of cement with time, is affected by the insulation, initial placing temperature, geometry and size of concrete mass. The mock up data showing the measured temperature differential is significantly lower than the technical specifications 20°C temperature differential requirement and the 27.7°C limiting temperature differential for granite aggregate concrete as stipulated in BS8110-2: 1985. The concrete strength test result revealed that the 28 days cubes compressive strength was above the stipulated 20MPa characteristic strength at 90 days. The test demonstrated that with proper concrete mix design, the use of Portland flyash cement, combination of chilled water and flake ice, and good insulation is effective in reducing peak temperature rise, temperature differential, and lower adiabatic temperature rise for mass concrete pours. As far as the determined adiabatic temperature rise result was concern, the established result could be inferred for in-situ thermal properties of 20MPa mass concrete application, as the result could be repeatable on account of similar type of constituent materials and concrete mix design adopted for permanent works at project site.

  4. Dissipation of mechanical work and temperature rise in AS4/PEEK thermoplastic composite

    Science.gov (United States)

    Georgiou, I.; Sun, C. T.

    1990-01-01

    The dissipated mechanical work per cycle of sinusoidal stress in the thermoplastic composite material AS4/PEEK was measured as a function of stress amplitude for fixed frequency and fiber orientation. The experimental result shows that the dissipated work per cycle is proportional to the square of the stress amplitude. Using the concept of the equivalent isotropic material, it is shown that the relaxation modulus satisfies a proportionality condition. Also, the rate of temperature rise due to sinusoidal stresses has been measured as a function of stress amplitude. The result shows that the rate of temperature rise is not proportional to the square of the stress amplitude.

  5. Hot spots of wheat yield decline with rising temperatures.

    Science.gov (United States)

    Asseng, Senthold; Cammarano, Davide; Basso, Bruno; Chung, Uran; Alderman, Phillip D; Sonder, Kai; Reynolds, Matthew; Lobell, David B

    2017-06-01

    Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production. © 2016 John Wiley & Sons Ltd.

  6. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins.

    Science.gov (United States)

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.

  7. Doubling of coastal flooding frequency within decades due to sea-level rise

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L.; Fletcher, Charles H.; Frazer, Neil; Erikson, Li; Storlazzi, Curt D.

    2017-01-01

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  8. Doubling of coastal flooding frequency within decades due to sea-level rise.

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L; Fletcher, Charles H; Frazer, Neil; Erikson, Li; Storlazzi, Curt D

    2017-05-18

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  9. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    Science.gov (United States)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  10. An experimental investigation of temperature rise during compaction of pharmaceutical powders.

    Science.gov (United States)

    Krok, Alexander; Mirtic, Andreja; Reynolds, Gavin K; Schiano, Serena; Roberts, Ron; Wu, Chuan-Yu

    2016-11-20

    During pharmaceutical powder compaction, temperature rise in the compressed powder can affect physiochemical properties of the powder, such as thermal degradation and change in crystallinity. Thus, it is of practical importance to understand the effect of process conditions and material properties on the thermal response of pharmaceutical formulations during compaction. The aim of this study was to examine the temperature rise of pharmaceutical powders during tableting, in particular, to explore how the temperature rise depends on material properties, compression speed and tablet shape. Three grades of microcrystalline cellulose (MCC) were considered: MCC Avicel pH 101, MCC Avicel pH 102 and MCC DG. These powders were compressed using a compaction simulator at various compaction speeds (10-500mm/s). Flat faced, shallow convex and normal convex tablets were produced and temperature distributions on the surface of theses tablets upon ejection were examined using an infrared thermoviewer. It was found that an increase in the compaction speed led to an increase in the average surface temperature. A higher surface temperature was induced when the powder was compressed into a tablet with larger surface curvature. This was primarily due to the increasing degree of powder deformation (i.e. the volume reduction) and the effect of interparticule/wall friction. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.

    Science.gov (United States)

    Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M

    2017-01-24

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

  12. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions. (author)

  13. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2008-01-01

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions

  14. Operating experiences since rise-to-power test in high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Watanabe, Shuji; Motegi, Toshihiro; Kawano, Shuichi; Kameyama, Yasuhiko; Sekita, Kenji; Kawasaki, Kozo

    2007-03-01

    The rise-to-power test of the High Temperature Engineering Test Reactor (HTTR) was actually started in April 2000. The rated thermal power of 30MW and the rated reactor outlet coolant temperature of 850degC were achieved in the middle of Dec. 2001. After that, the reactor thermal power of 30MW and the reactor outlet coolant temperature of 950degC were achieved in the final rise-to-power test in April 2004. After receiving the operation licensing at 850degC, the safety demonstration tests have conducted to demonstrate inherent safety features of the HTGRs as well as to obtain the core and plant transient data for validation of safety analysis codes and for establishment of safety design and evaluation technologies. This paper summarizes the HTTR operating experiences for six years from start of the rise-to-power test that are categorized into (1) Operating experiences related to advanced gas-cooled reactor design, (2) Operating experiences for improvement of the performance, (3) Operating experiences due to fail of system and components. (author)

  15. Comparison of temperature rise in the pulp chamber with different light curing units: An in-vitro study.

    Science.gov (United States)

    Rajesh Ebenezar, A V; Anilkumar, R; Indira, R; Ramachandran, S; Srinivasan, M R

    2010-07-01

    This in vitro study was designed to measure and compare the temperature rise in the pulp chamber with different light curing units. The study was done in two settings-in-vitro and in-vivo simulation. In in-vitro setting, 3mm and 6mm acrylic spacers with 4mm tip diameter thermocouple was used and six groups were formed according to the light curing source- 3 Quartz-Tungsten-Halogen (QTH) units and 3 Light-Emitting-Diode (LED) units. For the LED units, three modes of curing like pulse-cure mode, fast mode and ramp mode were used. For in-vivo simulation, 12 caries free human third molar tooth with fused root were used. K-type thermocouple with 1 mm tip diameter was used. Occlusal cavity was prepared, etched, rinsed with water and blot dried; bonding agent was applied and incremental curing of composite was done. Thermal emission for each light curing agent was noted. Temperature rise was very minimal in LED light cure units than in QTH light cure units in both the settings. Temperature rise was minimal at 6mm distance when compared to 3 mm distance. Among the various modes, fast mode produces the less temperature rise. Temperature rise in all the light curing units was well within the normal range of pulpal physiology. Temperature rise caused due to light curing units does not result in irreversible pulpal damage.

  16. Projections of rapidly rising surface temperatures over Africa under low mitigation

    International Nuclear Information System (INIS)

    Engelbrecht, Francois; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Adegoke, Jimmy; Thatcher, Marcus; McGregor, John; Katzfey, Jack; Werner, Micha; Ichoku, Charles; Gatebe, Charles

    2015-01-01

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4–6 °C over the subtropics and 3–5 °C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional dowscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of

  17. Assessment of Hammocks (Petenes) Resilience to Sea Level Rise Due to Climate Change in Mexico

    Science.gov (United States)

    Posada Vanegas, Gregorio; de Jong, Bernardus H. J.

    2016-01-01

    There is a pressing need to assess resilience of coastal ecosystems against sea level rise. To develop appropriate response strategies against future climate disturbances, it is important to estimate the magnitude of disturbances that these ecosystems can absorb and to better understand their underlying processes. Hammocks (petenes) coastal ecosystems are highly vulnerable to sea level rise linked to climate change; their vulnerability is mainly due to its close relation with the sea through underground drainage in predominantly karstic soils. Hammocks are biologically important because of their high diversity and restricted distribution. This study proposes a strategy to assess resilience of this coastal ecosystem when high-precision data are scarce. Approaches and methods used to derive ecological resilience maps of hammocks are described and assessed. Resilience models were built by incorporating and weighting appropriate indicators of persistence to assess hammocks resilience against flooding due to climate change at “Los Petenes Biosphere Reserve”, in the Yucatán Peninsula, Mexico. According to the analysis, 25% of the study area is highly resilient (hot spots), whereas 51% has low resilience (cold spots). The most significant hot spot clusters of resilience were located in areas distant to the coastal zone, with indirect tidal influence, and consisted mostly of hammocks surrounded by basin mangrove and floodplain forest. This study revealed that multi-criteria analysis and the use of GIS for qualitative, semi-quantitative and statistical spatial analyses constitute a powerful tool to develop ecological resilience maps of coastal ecosystems that are highly vulnerable to sea level rise, even when high-precision data are not available. This method can be applied in other sites to help develop resilience analyses and decision-making processes for management and conservation of coastal areas worldwide. PMID:27611802

  18. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    Science.gov (United States)

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.

  19. Temperature rise and Heat build up inside a parked Car

    Science.gov (United States)

    Coady, Rose; Maheswaranathan, Ponn

    2001-11-01

    We have studied the heat build up inside a parked car under the hot summer Sun. Inside and outside temperatures were monitored every ten seconds from 9 AM to about 4 PM for a 2000 Toyota Camry parked in a Winthrop University parking lot without any shades or trees. Two PASCO temperature sensors, one inside the car and the other outside the car, are used along with PASCO-750 interface to collect the data. Data were collected under the following conditions while keeping track of the outside weather: fully closed windows, slightly open windows, half way open windows, fully open windows, and with window shades inside and outside. Inside temperatures reached as high as 150 degrees Fahrenheit on a sunny day with outside high temperature of about 100 degrees Fahrenheit. These results will be presented along with results from car cover and window tint manufacturers and suggestions to keep your car cool next time you park it under the Sun.

  20. Evaluation of temperature rise in a tissue mimicking material during HIFU exposure

    International Nuclear Information System (INIS)

    Maruvada, S; Liu, Y; Herman, B A; Harris, G R

    2011-01-01

    In pre-clinical testing it is essential to characterize clinical high intensity focused ultrasound (HIFU) devices using tissue-mimicking materials (TMMs) with well known characteristics, including temperature rise and cavitation properties. The purpose of this study was to monitor cavitation behavior and correlate its effect with temperature rise in a HIFU TMM containing an embedded thermocouple. A 75-μm fine wire thermocouple was embedded in a hydrogel-based TMM previously developed for HIFU. HIFU at 1.1 and 3.3 MHz was focused at the thermocouple junction. Focal pressures from 1-11 MPa were applied and the temperature profiles were recorded. Three hydrophones were used to monitor cavitation activity during sonication. A hydrophone confocal with the HIFU transducer and a cylindrical hydrophone lateral to the HIFU beam were used as passive cavitation detectors for spectral analysis of signals, and a needle hydrophone placed beyond the HIFU focus was used to record changes in the pressure amplitude due to blockage by bubbles at or near the focus. B-mode imaging scans were employed to visualize bubble presence during sonication. In a separate measurement, schlieren imaging was used to monitor the change in field distribution behind the TMM. All hydrophone methods correlated well with cavitation in the TMM.

  1. Evaluation of temperature rise in a tissue mimicking material during HIFU exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maruvada, S; Liu, Y; Herman, B A; Harris, G R, E-mail: subha.maruvada@fda.hhs.gov [Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Ave., Bldg., Silver Spring, MD 20993 (United States)

    2011-02-01

    In pre-clinical testing it is essential to characterize clinical high intensity focused ultrasound (HIFU) devices using tissue-mimicking materials (TMMs) with well known characteristics, including temperature rise and cavitation properties. The purpose of this study was to monitor cavitation behavior and correlate its effect with temperature rise in a HIFU TMM containing an embedded thermocouple. A 75-{mu}m fine wire thermocouple was embedded in a hydrogel-based TMM previously developed for HIFU. HIFU at 1.1 and 3.3 MHz was focused at the thermocouple junction. Focal pressures from 1-11 MPa were applied and the temperature profiles were recorded. Three hydrophones were used to monitor cavitation activity during sonication. A hydrophone confocal with the HIFU transducer and a cylindrical hydrophone lateral to the HIFU beam were used as passive cavitation detectors for spectral analysis of signals, and a needle hydrophone placed beyond the HIFU focus was used to record changes in the pressure amplitude due to blockage by bubbles at or near the focus. B-mode imaging scans were employed to visualize bubble presence during sonication. In a separate measurement, schlieren imaging was used to monitor the change in field distribution behind the TMM. All hydrophone methods correlated well with cavitation in the TMM.

  2. Temperature rise produced by different light-curing units through dentin.

    Science.gov (United States)

    Yazici, A Rüya; Müftü, Ali; Kugel, Gerard

    2007-11-01

    This study investigated the temperature rise caused by different light curing units and the temperature increase in dentin of different thicknesses. Dentin discs of 1.0 and 2.0 mm thicknesses were prepared from extracted human mandibular molars. Temperatures were recorded directly at the surface of the light guide tip, under dentin discs with different thicknesses, and through a sandwich composed of 2 mm thick cured composite and dentin using a K-type thermocouple. The curing units used were two quartz-tungsten-halogen lights (Spectrum and Elipar Trilight-ET) and a light-emitting diode (LED). The highest temperature rise was observed under a Mylar strip using ET standard mode. Under 1 and 2 mm thick dentin barriers, the lowest temperature rise was measured for the LED curing light. Significant differences in temperature rise existed among all curing units except between the Spectrum and ET exponential modes under a 1 mm thick dentin barrier with cured composite. Temperature rises were insignificant between the Spectrum and ET exponential modes and between two modes of Trilight when the same experimental setup was used under a 2 mm thick dentin barrier. For all curing units, temperature elevation through 2 mm of dentin was less than for 1 mm of dentin thickness. The ET standard mode produced the highest and the LED produced the lowest temperature rise for all tested conditions. The thickness of dentin and light-curing unit might affect temperature transmission.

  3. A study on plastic strain accumulation caused by traveling of temperature distribution synchronizing with temperature rise

    International Nuclear Information System (INIS)

    Okajima, Satoshi

    2016-01-01

    The prevention of excessive deformation by thermal ratcheting is important in the design of high-temperature components of fast breeder reactors (FBR). This includes evaluation methods for a new type of thermal ratcheting caused by an axial traveling of temperature distribution, which corresponds to moving-up of liquid sodium surface in startup phase. Long range traveling of the axial temperature distribution brings flat plastic deformation profile in wide range. Therefore, at the center of this range, residual stress that brings shakedown behavior does not accumulate. As a result, repeating of this temperature traveling brings continuous accumulation of the plastic strain, even if there is no primary stress. In contrast, in the case with short range traveling, residual stress is caused by constraint against elastic part, and finally it results in shakedown. Because of this mechanism, we supposed that limit for the shakedown behavior depends on distance from the elastic part (i.e. half length of region with plastic deformation). In this paper, we examined characteristics of the accumulation of the plastic strain caused by realistic heat transients, namely, traveling of temperature distribution synchronizing with temperature rise. This examination was based on finite element analyses using elastic-perfectly plastic material. As a result, we confirmed that the shakedown limit depends not on the traveling range of the temperature distribution but the plastic deformation range, which was predicted by the elastic analysis. In the actual application, we can control the plastic deformation range by changing rate of the moving-up of liquid sodium surface. (author)

  4. On rising temperature trends at Dehradun in Doon valley of ...

    Indian Academy of Sciences (India)

    temperature changes at Dehradun city by analyzing the time series data of annual maximum, minimum and mean ... Moreover, about 80% of future economic growth will occur in cities ... Assessing the impacts of urbanization and land ... tant business, educational and cultural destination ... Tourism and transportation. 203.0.

  5. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2005-02-01

    Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.

  6. Coastal vertebrate exposure to predicted habitat changes due to sea level rise

    Science.gov (United States)

    Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel; Moore, Clinton; Cooper, Robert J.

    2015-01-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species’ fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species’ foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  7. VARIATION OF CHART DATUM TOWARDS MARITIME DELIMITATION DUE TO RISING SEA LEVEL

    Directory of Open Access Journals (Sweden)

    A. R. M. Faizuddin

    2017-10-01

    Full Text Available The importance of Chart Datum in hydrographic surveying is inarguable because its determination is part of the process to obtain the actual depth of bathymetry. The Chart Datum has a relationship with the determination of base points because any uncertainty of the base points would definitely cause uncertainty to the determination of the maritime baseline. If there is any doubt on the baselines, it will then cause doubt on the maritime zones as well which includes the equidistant line that forms the border between the two countries. However, due to the ongoing rising sea level, there has been some variations of the Chart Datum in some areas in Malaysia. This research discusses about the variation of Mean Sea Level and Chart Datum for the tide gauge stations at Geting, Cendering, Sedili and Tioman at East Coast and Kukup, Langkawi, Lumut and Penang at the West Coast of Peninsular Malaysia. The tidal analysis was carried out by using the 23 years of data beginning at 1993 to 2015. The observed tidal data for 23 years were processed and analysed by using GeoTide software. In this research, the Harmonic Analysis technique was used in order to calculate the values of Mean Sea Level and the Chart Datum while the slope of the shoreline is modelled by using Global Mapper. The linear trend of the Mean Sea Level and the Chart Datum was analysed to determine the increase of the annual sea level in millimetres accuracy and also to determine the variation of the Chart Datum for each tidal station and its impact towards maritime baseline. The result has shown that the linear trend of sea level rise varies from 24 millimetres per year up to 168 millimetres per year at the East Coast and 24 millimetres per year up to 96 millimetres per year at the West Coast of Peninsular Malaysia. As for the maritime baseline, results has indicated that there exist shifting in the horizontal which are varies from 1.564 metres per year to 3.299 metres per year at the East Coast

  8. Variation of Chart Datum Towards Maritime Delimitation due to Rising Sea Level

    Science.gov (United States)

    Faizuddin, A. R. M.; Razali, M. M.

    2017-10-01

    The importance of Chart Datum in hydrographic surveying is inarguable because its determination is part of the process to obtain the actual depth of bathymetry. The Chart Datum has a relationship with the determination of base points because any uncertainty of the base points would definitely cause uncertainty to the determination of the maritime baseline. If there is any doubt on the baselines, it will then cause doubt on the maritime zones as well which includes the equidistant line that forms the border between the two countries. However, due to the ongoing rising sea level, there has been some variations of the Chart Datum in some areas in Malaysia. This research discusses about the variation of Mean Sea Level and Chart Datum for the tide gauge stations at Geting, Cendering, Sedili and Tioman at East Coast and Kukup, Langkawi, Lumut and Penang at the West Coast of Peninsular Malaysia. The tidal analysis was carried out by using the 23 years of data beginning at 1993 to 2015. The observed tidal data for 23 years were processed and analysed by using GeoTide software. In this research, the Harmonic Analysis technique was used in order to calculate the values of Mean Sea Level and the Chart Datum while the slope of the shoreline is modelled by using Global Mapper. The linear trend of the Mean Sea Level and the Chart Datum was analysed to determine the increase of the annual sea level in millimetres accuracy and also to determine the variation of the Chart Datum for each tidal station and its impact towards maritime baseline. The result has shown that the linear trend of sea level rise varies from 24 millimetres per year up to 168 millimetres per year at the East Coast and 24 millimetres per year up to 96 millimetres per year at the West Coast of Peninsular Malaysia. As for the maritime baseline, results has indicated that there exist shifting in the horizontal which are varies from 1.564 metres per year to 3.299 metres per year at the East Coast and from 1

  9. Relationship of pressure to temperature rise in overfilled cylinders

    International Nuclear Information System (INIS)

    Barber, E.J.

    1979-01-01

    Mild steel pressure vessels containing uranium hexafluoride are heated in 96-inch diameter autoclaves to allow the feed material to enter the gaseous diffusion process equipment for enrichment in the uranium 235 isotope. For purposes of safety analysis it is necessary to establish the ability of the instrumentation to shut off the steam supply to the autoclave prior to cylinder rupture if the cylinder has been overfilled. To make this determination requires estimates of the rate of change of pressure with respect to change of temperature at constant volume as a function of the temperature at which the ullage disappears. The paper presents the calculations for the estimation of this rate of change for liquid uranium hexafluoride using the ratio of the coefficients of expansion and compressibility using empirical liquid density data and the Eyring equation of state for liquids. 5 figs. (MB)

  10. Increased costs to US pavement infrastructure from future temperature rise

    Science.gov (United States)

    Underwood, B. Shane; Guido, Zack; Gudipudi, Padmini; Feinberg, Yarden

    2017-10-01

    Roadway design aims to maximize functionality, safety, and longevity. The materials used for construction, however, are often selected on the assumption of a stationary climate. Anthropogenic climate change may therefore result in rapid infrastructure failure and, consequently, increased maintenance costs, particularly for paved roads where temperature is a key determinant for material selection. Here, we examine the economic costs of projected temperature changes on asphalt roads across the contiguous United States using an ensemble of 19 global climate models forced with RCP 4.5 and 8.5 scenarios. Over the past 20 years, stationary assumptions have resulted in incorrect material selection for 35% of 799 observed locations. With warming temperatures, maintaining the standard practice for material selection is estimated to add approximately US$13.6, US$19.0 and US$21.8 billion to pavement costs by 2010, 2040 and 2070 under RCP4.5, respectively, increasing to US$14.5, US$26.3 and US$35.8 for RCP8.5. These costs will disproportionately affect local municipalities that have fewer resources to mitigate impacts. Failing to update engineering standards of practice in light of climate change therefore significantly threatens pavement infrastructure in the United States.

  11. Temperature rise of the mask-resist assembly during LIGA exposure

    International Nuclear Information System (INIS)

    Ting, Aili

    2004-01-01

    Deep X-ray lithography on PMMA resist is used in the LIGA process. The resist is exposed to synchrotron X-rays through a patterned mask and then is developed in a liquid developer to make high aspect ratio microstructures. The limitations in dimensional accuracies of the LIGA generated microstructure originate from many sources, including synchrotron and X-ray physics, thermal and mechanical properties of mask and resist, and from the kinetics of the developer. This work addresses the thermal analysis and temperature rise of the mask-resist assembly during exposure in air at the Advanced Light Source (ALS) synchrotron. The concern is that dimensional errors generated at the mask and the resist due to thermal expansion will lower the accuracy of the lithography. We have developed a three-dimensional finite-element model of the mask and resist assembly that includes a mask with absorber, a resist with substrate, three metal holders, and a water-cooling block. We employed the LIGA exposure-development software LEX-D to calculate volumetric heat sources generated in the assembly by X-ray absorption and the commercial software ABAQUS to calculate heat transfer including thermal conduction inside the assembly, natural and forced convection, and thermal radiation. at assembly outer and/or inner surfaces. The calculations of assembly maximum temperature. have been compared with temperature measurements conducted at ALS. In some of these experiments, additional cooling of the assembly was produced by forced nitrogen flow ('nitrogen jets') directed at the mask surface. The temperature rise in the silicon mask and the mask holder comes directly from the X-ray absorption, but nitrogen jets carry away a significant portion of heat energy from the mask surface, while natural convection carries away negligibly small amounts energy from the holder. The temperature rise in PMMA resist is mainly from heat conducted from the silicon substrate backward to the resist and from the inner

  12. Evaluation of the behavior of brick tile masonry and mortar due to capillary rise of moisture

    Directory of Open Access Journals (Sweden)

    Camino, M. S.

    2014-06-01

    Full Text Available For a better understanding of the behaviour of old brick masonry in facing the rising damp problem, multiple tests were made in the laboratory: water absorption, moisture content, apparent porosity, temperature and thermal camera imaging on brick masonry and its components: brick and mortar. This has allowed us to determine which of the previous tests is the best in predicting the behaviour of a real wall. In addition, the tests have also helped in defining a process to evaluate the moisture content of walls in a buildings, which is important for heritage restoration projects.Para un mejor conocimiento del comportamiento de las fábricas antiguas de ladrillo frente a la ascensión capilar de agua, se han realizado en laboratorio ensayos de absorción de agua, de contenido de humedad, de porosidad aparente, de temperatura e imágenes con cámara termográfica sobre muros de fábrica y sus materiales componentes: ladrillo y argamasa. Ello ha permitido inferir cuál es el ensayo realizado a los ladrillos que mejor predice el comportamiento del muro real. También ha permitido definir un procedimiento para evaluar el contenido de humedad de fábricas existentes, importante para los proyectos de restauración del patrimonio construido.

  13. Optimization of Process Parameters During End Milling and Prediction of Work Piece Temperature Rise

    Directory of Open Access Journals (Sweden)

    Bhirud N.L.

    2017-09-01

    Full Text Available During the machining processes, heat gets generated as a result of plastic deformation of metal and friction along the tool–chip and tool–work piece interface. In materials having high thermal conductivity, like aluminium alloys, large amount of this heat is absorbed by the work piece. This results in the rise in the temperature of the work piece, which may lead to dimensional inaccuracies, surface damage and deformation. So, it is needed to control rise in the temperature of the work piece. This paper focuses on the measurement, analysis and prediction of work piece temperature rise during the dry end milling operation of Al 6063. The control factors used for experimentation were number of flutes, spindle speed, depth of cut and feed rate. The Taguchi method was employed for the planning of experimentation and L18 orthogonal array was selected. The temperature rise of the work piece was measured with the help of K-type thermocouple embedded in the work piece. Signal to noise (S/N ratio analysis was carried out using the lower-the-better quality characteristics. Depth of cut was identified as the most significant factor affecting the work piece temperature rise, followed by spindle speed. Analysis of variance (ANOVA was employed to find out the significant parameters affecting the work piece temperature rise. ANOVA results were found to be in line with the S/N ratio analysis. Regression analysis was used for developing empirical equation of temperature rise. The temperature rise of the work piece was calculated using the regression equation and was found to be in good agreement with the measured values. Finally, confirmation tests were carried out to verify the results obtained. From the confirmation test it was found that the Taguchi method is an effective method to determine optimised parameters for minimization of work piece temperature.

  14. Curie temperature rising by fluorination for Sm2Fe17

    Directory of Open Access Journals (Sweden)

    Matahiro Komuro

    2013-02-01

    Full Text Available Fluorine atoms can be introduced to Sm2Fe17 using XeF2 below 423 K. The resulting fluorinated Sm2Fe17 powders have ferromagnetic phases containing Sm2Fe17FY1(0temperature from 403 K for Sm2Fe17 to 675 K. This increase can be explained by the magneto-volume effect.

  15. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites.

    Science.gov (United States)

    Baroudi, Kusai; Silikas, Nick; Watts, David C

    2009-01-01

    The aim of this study was to investigate the pulpal temperature rise induced during the polymerization of flowable and non-flowable composites using light-emitting diode (LED) and halogen (quartz-tungsten-halogen) light-curing units (LCUs). Five flowable and three non-flowable composites were examined. Pulpal temperature changes were recorded over 10 min in a sample primary tooth by a thermocouple. A conventional quartz-tungsten-halogen source and two LEDs, one of which was programmable, were used for light curing the resin composites. Three repetitions per material were made for each LCU. There was a wide range of temperature rises among the materials (P < 0.05). Temperature rises ranged between 1.3 degrees C for Filtek Supreme irradiated by low-power LED and 4.5 degrees C for Grandio Flow irradiated by high-power LED. The highest temperature rises were observed with both the LED high-power and soft-start LCUs. The time to reach the exothermic peak varied significantly between the materials (P < 0.05). Pulpal temperature rise is related to both the radiant energy output from LCUs and the polymerization exotherm of resin composites. A greater potential risk for heat-induced pulp damage might be associated with high-power LED sources. Flowable composites exhibited higher temperature rises than non-flowable materials, because of higher resin contents.

  16. Rising incidence of thyroid cancer in Singapore not solely due to micropapillary subtype.

    Science.gov (United States)

    Shulin, J H; Aizhen, J; Kuo, S M; Tan, W B; Ngiam, K Y; Parameswaran, R

    2018-04-01

    Introduction The annual incidence of thyroid cancer is known to vary with geographic area, age and gender. The increasing incidence of thyroid cancer has been attributed to increase in detection of micropapillary subtype, among other factors. The aim of the study was to investigate time trends in the incidence of thyroid cancer in Singapore, an iodine-sufficient area. Materials and methods Data retrieved from the Singapore National Cancer Registry on all thyroid cancers that were diagnosed from 1974 to 2013 were reviewed. We studied the time trends of thyroid cancer based on gender, race, pathology and treatment modalities where available. Results The age-standardised incidence rate of thyroid cancer increased to 5.6/100,000 in 2013 from 2.5/100,000 in 1974. Thyroid cancer appeared to be more common in women, with a higher incidence in Chinese and Malays compared with Indians. Papillary carcinoma is the most common subtype. The percentage of papillary microcarcinoma has remained relatively stable at around 38% of all papillary cancers between 2007 and 2013. Although the incidence of thyroid cancer has increased since 1974, the mortality rate has remained stable. Conclusion This trend of increase in incidence of thyroid cancer in Singapore compares with other published series; however, the rise seen was not solely due to micropapillary type. Thyroid cancer was also more common in Chinese and Malays compared with Indians for reasons that needs to be studied further.

  17. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2

    NARCIS (Netherlands)

    Boer, H.J. de; Lammertsma, E.I.; Wagner-Cremer, F.; Dilcher, D.L.; Wassen, M.J.; Dekker, S.C.

    2011-01-01

    Plant physiological adaptation to the global rise in atmospheric CO 2 concentration (CO2) is identified as a crucial climatic forcing. To optimize functioning under rising CO2, plants reduce the diffusive stomatal conductance of their leaves (gs) dynamically by closing stomata and structurally by

  18. Evaluation of temperature rise with different curing methods and units in two composite resins

    Directory of Open Access Journals (Sweden)

    Tabatabaei M

    2006-01-01

    Full Text Available Background and Aim: The majority of commercial curing units in dentistry are of halogen lamp type. The new polymerizing units such as blue LED are introduced in recent years. One of the important side effects of light curing is the temperature rise in composite resin polymerization which can affect the vitality of tooth pulp. The purpose of this study was to evaluate the temperature rise in two different composite resins during polymerization with halogen lamps and blue LED. Materials and Methods: This experimental study investigated the temperature rise in two different composites (Hybrid, Tetric Ceram/Nanofilled, Filteke Supreme of A2 shade polymerized with two halogen lamps (Coltolux 50, 350 mW/cm2 and Optilux 501 in standard, 820 mW/cm2 and Ramp, 100-1030 mW/cm2 operating modes and one blue LED with the intensity of 620 mW/cm2. Five samples for each group were prepared and temperature rise was monitored using a k-type thermocouple. Data were analyzed by one-way ANOVA, two-way ANOVA and Tukey HSD tests with P<0.05 as the limit of significance. Results: Light curing units and composite resins had statistically significant influence on the temperature rise (p<0.05. Significantly, lower temperature rise occurred in case of illumination with Coltolux 50.There was no significant difference between Optilux 501 in standard curing mode and LED. Tetric Ceram showed higher temperature rise. Conclusion: According to the results of this study the high power halogen lamp and LED could produce significant heat which may be harmful to the dental pulp.

  19. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  20. Feedback circuit application for multiple fluid temperature rise or drop; Visestruko dizanje i spustanje temperature fluida povratnom spregom

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M [Tehnoloski fakultet Novi Sad (Yugoslavia); Stefanovic, M [Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia); Blagojevic, B [MaSinski fakultet, Nis (Yugoslavia); Stoiljkovic, S [Tehnoloski fakultet, Leskovac (Yugoslavia)

    1995-07-01

    Multiplication of temperature rise or drop is proposed and explained by Feedback method. Application of this method is proposed for different elementary processes of temperature variation (non isothermal processes). The paper points to possibilities of increasing performance of existing apparatuses and new ways for performing heating or cooling. (author)

  1. Feedback circuit application for multiple fluid temperature rise or drop; Visestruko dizanje i spustanje temperature fluida povratnom spregom

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M [Tehnoloski fakultet Novi Sad (Yugoslavia); Stefanovic, M [Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia); Blagojevic, B [MaSinski fakultet, Nis (Yugoslavia); Stoiljkovic, S [Tehnoloski fakultet, Leskovac (Yugoslavia)

    1996-12-31

    Multiplication of temperature rise or drop is proposed and explained by Feedback method. Application of this method is proposed for different elementary processes of temperature variation (non isothermal processes). The paper points to possibilities of increasing performance of existing apparatuses and new ways for performing heating or cooling. (author.) 2 refs. 3 figs. 1 tabs.

  2. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    Science.gov (United States)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  3. Acute intraparenchymal spinal cord injury in a cat due to high-rise syndrome.

    Science.gov (United States)

    Cruz-Arámbulo, Robert; Nykamp, Stephanie

    2012-03-01

    A 9-year-old spayed female Bengal Red cat was evaluated for high-rise syndrome. The cat had paraplegia of the hind limbs, intact reflexes and pain perception, and hyperesthesia in the caudal thoracic area. Mentation, cranial nerve function, forelimb proprioceptive responses, and spinal reflexes were normal. There were no abnormalities on radiographs or computed tomography scan, but magnetic resonance imaging revealed a hyperintense intraparenchymal spinal cord lesion on T2-weighted and T2 fat saturation images.

  4. Acute intraparenchymal spinal cord injury in a cat due to high-rise syndrome

    OpenAIRE

    Cruz–Arámbulo, Robert; Nykamp, Stephanie

    2012-01-01

    A 9-year-old spayed female Bengal Red cat was evaluated for high-rise syndrome. The cat had paraplegia of the hind limbs, intact reflexes and pain perception, and hyperesthesia in the caudal thoracic area. Mentation, cranial nerve function, forelimb proprioceptive responses, and spinal reflexes were normal. There were no abnormalities on radiographs or computed tomography scan, but magnetic resonance imaging revealed a hyperintense intraparenchymal spinal cord lesion on T2-weighted and T2 fat...

  5. An observational study on the temperature rising effects in water warming canal and water warming pond

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. B.; Hong, S. B. [Rural Development Cooperation, Seoul (Korea, Republic of)

    1990-09-15

    The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18°C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1. The degree of the rise of the water temperature can be decided by θ{sub x} = θ{sub 0} + K (L/(v * h)) * (T - θ{sub 0}) Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2. A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was θ{sub x1} = 16.5 + 15.9 (1-e{sup -0.00018x}), θ{sub x2} = 18.8 + 8.4(1-e{sup -0.000298x}) for the type I. and θ{sub x} = 19.6 + 12.8 (1-e{sup -0.00041x}) for the type II. 3. It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4. In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made; Y = 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5. A monthly variation of the water temperature in the water warming

  6. Temperature rise induced by various light curing units through human dentin.

    Science.gov (United States)

    Dogan, Arife; Hubbezoglu, Ihsan; Dogan, Orhan Murat; Bolayir, Giray; Demir, Hakan

    2009-05-01

    This study investigated temperature rises caused by different light curing units (LCUs) in dentin of different thicknesses. The different LCUs tested in this study were namely: quartz-tungsten-halogen (QTH) (Heliolux DLX) LCU, plasma arc (PAC) (Apollo 95E Elite) LCU, and light emitting diode (LED) (Mini LED) in standard curing mode as well as pulse and soft-start modes. One hundred and forty dentin disks of 0.5, 1, 1.5, and 2 mm thickness were prepared from mandibular molars (n=7). Temperatures were recorded using a L-type thermocouple in direct contact with the light guide tip. For all curing units/modes, dentin thickness was inversely proportional to temperature rise and that QTH light gave significantly higher values compared to PAC and LED in all the test conditions. The highest temperature rise was observed under 0.5-mm-thick dentin disk with QTH, whereas the lowest temperature rise was registered with LED light in pulse mode under 2-mm-thick dentin.

  7. Frictional Performance and Temperature Rise of a Mining Nonasbestos Brake Material during Emergency Braking

    Directory of Open Access Journals (Sweden)

    Jiusheng Bao

    2015-01-01

    Full Text Available By simulating emergency braking conditions of mine hoisters, tribological experiments of a mining nonasbestos brake material sliding on E355CC steel friction disc investigated a pad-on-disc friction tester. It is shown that, under combined influence of braking velocity and pressure, the lubricating film and micro-convex-apices on wear surface would have complex physicochemical reactions which make the instant friction coefficient rise gradually while the instant surface temperature rises first and then falls. With the antifriction effect from lubricating film and the desquamating of composite materials, the mean friction coefficient decreases first, then rises, and decreases again with the increasing of initial braking velocity. And with the existence of micro-convex-apices and variation from increment ratio of load and actual contacting area, it rises first and then falls with the increasing of braking pressure. However, the mean surface temperature rises obviously with the increasing of both initial braking velocity and braking pressure for growth of transformed kinetic energy. It is considered that the friction coefficient cannot be considered as a constant when designing brake devices for mine hoisters. And special attention should be paid to the serious influence of surface temperature on tribological performance of brake material during emergency braking.

  8. Intrapulpal Temperature Rise During Light Activation of Restorative Composites in a Primary Molar.

    Science.gov (United States)

    Vinall, Craig V; Garcia-Silva, Tales C; Lou, Jennifer S B; Wells, Martha H; Tantbirojn, Daranee; Versluis, Antheunis

    2017-05-15

    To investigate intrapulpal temperature rise in a primary molar during light activation of a composite restoration to determine if clinically significant pulpal temperatures (greater than 5.5 degrees Celsius) were reached. Restorative composites (EsthetX HD, Filtek Supreme Ultra, Filtek Bulk Fill) were placed into a primary molar with occlusal preparation (1.5 mm depth; remaining pulpal floor thickness one mm). The pulp was extirpated through a root access to place a thermocouple against the pulpal roof. Temperature changes were recorded during composite restoration light polymerization with three curing lights (one quartz-tungsten-halogen, two LEDs). Sample size was 10. Samples received additional irradiation to assure complete polymerization, followed by a third irradiation for calculating the exothermic heat contribution (subtracting third irradiation temperatures from first irradiation temperatures). Cured restorations were removed after each test, and the tooth was reused. Results were analyzed with Kruskal-Wallis (α =0.05). Type of curing light and composite material affected the intrapulpal temperature rise, which was up to five degrees Celsius for one combination of LED-composite. Clinicians should be aware of the potential for clinically significant intrapulpal temperature rises when light-activating composite restorations in a primary molar with a moderately deep cavity.

  9. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise

    Science.gov (United States)

    Blum, Michael D.; Roberts, Harry H.

    2009-07-01

    Over the past few centuries, 25% of the deltaic wetlands associated with the Mississippi Delta have been lost to the ocean. Plans to protect and restore the coast call for diversions of the Mississippi River, and its associated sediment, to sustain and build new land. However, the sediment load of the Mississippi River has been reduced by 50% through dam construction in the Mississippi Basin, which could affect the effectiveness of diversion plans. Here we calculate the amount of sediment stored on the delta plain for the past 12,000 years, and find that mean storage rates necessary to construct the flood plain and delta over this period exceed modern Mississippi River sediment loads. We estimate that, in the absence of sediment input, an additional 10,000-13,500km2 will be submerged by the year 2100 owing to subsidence and sea-level rise. Sustaining existing delta surface area would require 18-24billiontons of sediment, which is significantly more than can be drawn from the Mississippi River in its current state. We conclude that significant drowning is inevitable, even if sediment loads are restored, because sea level is now rising at least three times faster than during delta-plain construction.

  10. Very low temperature rise laser annealing of radiation-damaged solar cells in orbit

    International Nuclear Information System (INIS)

    Poulek, V.

    1988-01-01

    Solar cells of all space objects are damaged by radiation in orbit. This damage, however, can be removed by laser annealing. A new in-orbit laser regeneration system for both body- and spin-stabilized space objects is proposed. For successful annealing of solar cells damaged by 10 years' radiation dose in orbit it is necessary for the temperature rise in the incidence point of the laser beam to reach about 400 0 C. By continuous regeneration, however, between two annealing cycles the solar cells are hit by about two orders of magnitude lower radiation dose. This makes it possible to carry out the regeneration at a temperature rise well under 1 0 C! If an optimal laser regeneration system is used, such low temperature rise laser annealing of radiation-damaged solar cells is possible. A semiconductor GaAlAs diode laser with output power up to 10 mW CW was used for annealing. Some results of the very low temperature rise annealing experiment are given in this paper. (author)

  11. Morphological response of the saltmarsh habitats of the Guadiana estuary due to flow regulation and sea-level rise

    Science.gov (United States)

    Sampath, D. M. R.; Boski, T.

    2016-12-01

    In the context of rapid sea-level rise in the 21st century, the reduction of fluvial sediment supply due to the regulation of river discharge represents a major challenge for the management of estuarine ecosystems. Therefore, the present study aims to assess the cumulative impacts of the reduction of river discharge and projected sea-level rise on the morphological evolution of the Guadiana estuary during the 21st century. The assessment was based on a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters and empirical knowledge of the system. As methods applied to estimate environmental flows do not take into consideration the fluvial discharge required to maintain saltmarsh habitats and the impact of sea-level rise, simulations were carried out for ten cases in terms of base river flow and sea-level rise so as to understand their sensitivity on the deepening of saltmarsh platforms. Results suggest saltmarsh habitats may not be affected severely in response to lower limit scenarios of sea-level rise and sedimentation. A similar behaviour can be expected even due to the upper limit scenarios until 2050, but with a significant submergence afterwards. In the case of the upper limit scenarios under scrutiny, there was a net erosion of sediment from the estuary. Multiplications of amplitudes of the base flow function by factors 1.5, 2, and 5 result in reduction of the estimated net eroded sediment volume by 25, 40, and 80%, respectively, with respect to the net eroded volume for observed river discharge. The results also indicate that defining the minimum environmental flow as a percentage of dry season flow (as done presently) should be updated to include the full spectrum of natural flows, incorporating temporal variability to better anticipate scenarios of sea-level rise during this century. As permanent submergence of intertidal habitats can be significant after 2050, due to the projected 79 cm rise of sea-level by the year

  12. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Hirata, Akimasa

    2011-01-01

    Numerical models of the human thermoregulatory system can be used together with realistic voxel models of the human anatomy to simulate the body temperature increases caused by the power absorption from radio-frequency electromagnetic fields. In this paper, the Pennes bioheat equation with a thermoregulatory model is used for calculating local peak temperatures as well as the body-core-temperature elevation in a realistic human body model for grounded plane-wave exposures at frequencies 39, 800 and 2400 MHz. The electromagnetic power loss is solved by the finite-difference time-domain (FDTD) method, and the discretized bioheat equation is solved by the geometric multigrid method. Human thermoregulatory models contain numerous thermophysiological and computational parameters—some of which may be subject to considerable uncertainty—that affect the simulated core and local temperature elevations. The goal of this paper is to find how greatly the computed temperature is influenced by changes in various modelling parameters, such as the skin blood flow rate, models for vasodilation and sweating, and clothing and air movement. The results show that the peak temperature rises are most strongly affected by the modelling of tissue blood flow and its temperature dependence, and mostly unaffected by the central control mechanism for vasodilation and sweating. Almost the opposite is true for the body-core-temperature rise, which is however typically greatly lower than the peak temperature rise. It also seems that ignoring the thermoregulation and the blood temperature increase is a good approximation when the local 10 g averaged specific absorption rate is smaller than 10 W kg −1 .

  13. Mediating water temperature increases due to livestock and global change in high elevation meadow streams of the Golden Trout Wilderness

    Science.gov (United States)

    Sebastien Nussle; Kathleen R. Matthews; Stephanie M. Carlson

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout...

  14. Experimental study on solid state reduction of chromite with rising temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kekkonen, M.; Syynimaa, A.; Holappa, L.

    1998-07-01

    The solid state reduction of preoxidized sintered chromite pellets, raw pellets, process pellets and lumpy ores have been studied with rising temperature 700-1520 deg C under CO-atmosphere in order to better simulate the conditions in the upper part of a real submerged arc furnace. According to the reduction degree curves the reduction behaviour of chromite pellets seems to be similar. The reduction rate was slow at the beginning but increased rapidly when the temperature reached about 1000 deg C. The final reduction degree was highest in the case of process pellets and lowest in the case of raw pellet. In the case of preoxidized pellets there was not much difference of the reduction rate and final reduction degree between different oxidation states. In the case of lumpy ores the reduction rate and the final reduction degree was much lower compared to the pellets. Optical photographs, phase and microanalysis show that the reduction has proceeded further in the surface of the samples and confirmed also that the reduction degree remained lower in the case of raw pellet and lumpy ores which was also seen from the reduction degree curves. According to the experiments in the case of preoxidized pellets the effect of oxidation state on the reduction rate was not observed due to small difference in the oxidation state of the samples. But when comparing the reduction of preoxidized pellets and unoxidised raw pellet we can say that preoxidation promotes the reduction. The final reduction degree of the raw pellet remained lower than in the case of preoxidized pellets. (orig.)

  15. Esterification of jatropha oil via ultrasonic irradiation with auto-induced temperature-rise effect

    International Nuclear Information System (INIS)

    Andrade-Tacca, Cesar Augusto; Chang, Chia-Chi; Chen, Yi-Hung; Manh, Do-Van; Chang, Ching-Yuan; Ji, Dar-Ren; Tseng, Jyi-Yeong; Shie, Je-Lueng

    2014-01-01

    Auto-induced temperature-rise effects of ultrasonic irradiation (UI) on the esterification performance of jatropha oil (JO) were studied. Comparisons with other methods of mechanical mixing (MM) and hand shaking mixing were made. Major system parameters examined include: esterification time (t E ), settling time (t S ) after esterification and temperature. Properties of acid value (AV), iodine value (IV), kinematic viscosity (KV) and density of JO and ester product were measured. The esterification conversion efficiencies (η) were determined and assessed. Sulfuric acid was used to catalyze the esterification using methyl alcohol. For esterification without temperature control, η at t E  = 10 and 30 min for UI of 56.73 and 83.23% are much higher than those for MM of 36.76 and 42.48%, respectively. At t E  = 10 min, the jatropha oil esters produced via UI and MM respectively possess AV of 15.82 and 23.12 mg KOH/g, IV of 111.49 and 113.22 g I 2 /100 g, KV of 22.41 and 22.51 mm 2 /s and density of 913.8 and 913.58 kg/m 3 , showing that UI is much better than MM in enhancing the reduction of AV. The t E exhibits more vigorous effect on AV for UI than MM. The UI offers auto-induced temperature-rise, improving the mixing and esterification extents. - Highlights: • Esterification of jatropha oil is pronounced under ultrasonic irradiation (UI). • UI can auto-induce temperature rise. • The induced temperature rise assists the mixing of UI in enhancing esterification. • UI offers better esterification than mechanical mixing with external heating. • An 83.23% reduction of FFA in jatropha-ester is achievable via UI in 30 min

  16. Sea level rise along Malaysian coasts due to the climate change

    Science.gov (United States)

    Luu, Quang-Hung; Tkalich, Pavel; Tay, Tzewei

    2015-04-01

    Malaysia consists of two major parts, a mainland on the Peninsular Malaysia and the East Malaysia on the Borneo Island. Their surrounding waters connect the Andaman Sea located northeast of the Indian Ocean to the Celebes Sea in the western tropical Pacific Ocean through the southern East Sea of Vietnam/South China Sea. As a result, inter-annual sea level in the Malaysian waters is governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. We estimated sea level rise (SLR) rate in the domain using tide gauge records often being gappy. To reconstruct the missing data, two methods are used: (i) correlating sea level with climate indices El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), and (ii) filling the gap using records of neighboring tide gauges. Latest vertical land movements have been acquired to derive geocentric SLR rates. Around the Peninsular Malaysia, geocentric SLR rates in waters of Malacca Strait and eastern Peninsular Malaysia during 1986-2011 are found to be 3.9±3.3 mm/year and 4.2 ± 2.5 mm/year, respectively; while in the East Malaysia waters the rate during 1988-2011 is 6.3 ± 4.0 mm/year. These rates are arguably higher than global tendency for the same periods. For the overlapping period 1993-2011, the rates are consistent with those obtained using satellite altimetry.

  17. Temperature rise during adhesive and composite polymerization with different light-curing sources.

    Science.gov (United States)

    Pereira Da Silva, A; Alves Da Cunha, L; Pagani, C; De Mello Rode, S

    2010-05-01

    This study evaluated the temperature rise of the adhesive system Single Bond (SB) and the composite resins Filtek Z350 flow (Z) and Filtek Supreme (S), when polymerized by light-emitting diode (LED XL 3000) and quartz-tungsten halogen (QTH Biolux). Class V cavities (3 yen2 mm) were prepared in 80 bovine incisors under standardized conditions. The patients were divided as follows: G1: Control; G2: SB; G3: SB + Z; G4: SB + S. The groups were subdivided into two groups for polymerization (A: QTH, B: LED). Light curing was performed for 40 s and measurement of temperature changes during polymerization was performed with a thermocouple positioned inside the pulp chamber. Data were statistically analyzed using ANOVA and Tukey tests. The factors material (P<0.00001) and curing unit (P<0.00001) had significant influence on temperature rise. The lowest temperature increase (0.15 degrees C) was recorded in G2 B and the highest was induced in G1 A (0.75 degrees C, P<0.05). In all groups, lower pulp chamber temperature measurements were obtained when using LED compared to QTH (P<0.05). QTH caused greater increases in tooth temperature than LED. However, both sources did not increase pulpal temperature above the critical value that may cause pulpal damage.

  18. A temperature rise equation for predicting environmental impact and performance of cooling ponds

    Energy Technology Data Exchange (ETDEWEB)

    Serag-Eldin, M.A. [American Univ. in Cairo, Cairo (Egypt). Dept. of Mechanical Engineering

    2009-07-01

    Cooling ponds are used to cool the condenser water used in large central air-conditioning systems. However, larger cooling loads can often increase pond surface evaporation rates. A temperature-rise energy equation was developed to predict temperature rises in cooling ponds subjected to heating loads. The equation was designed to reduce the need for detailed meteorological data as well as to determine the required surface area and depth of the pond for any given design criteria. Energy equations in the presence and absence of cooling loads were subtracted from each other to determine increases in pond temperature resulting from the cooling load. The energy equations include solar radiation, radiation exchange with sky and surroundings, heat convection from the surface, evaporative cooling, heat conducted to the walls, and rate of change of water temperature. Results of the study suggested that the environmental impact and performance of the cooling pond is a function of temperature only. It was concluded that with the aid of the calculated flow field and temperature distribution, the method can be used to position sprays in order to produce near-uniform pond temperatures. 10 refs., 12 figs.

  19. Dynamic Temperature Rise Mechanism and Some Controlling Factors of Wet Clutch Engagement

    Directory of Open Access Journals (Sweden)

    Zhang Zhigang

    2016-01-01

    Full Text Available The friction transmission model of wet clutch is established to analyze the friction transmission mechanism of its engagement. The model is developed by applying both the average flow model and the elastic contact model between the friction disk and separator plate. The key components during wet clutch engagement are the separator plate, friction disk, and lubricant. The one-dimension transient models of heat transfer in radial direction for the three components are built on the basis of the heat transfer theory and the conservation law of energy. The friction transmission model and transient heat transfer models are coupled and solved by using the Runge-Kutta numerical method, and the radial temperature distribution and their detailed parametric study for the three components are conducted separately. The simulation results show that the radial temperature for the three components rises with the increase of radius in engagement. The changes in engagement pressure, lubricant viscosity, friction lining permeability, combined surface roughness RMS, equivalent elasticity modulus, difference between dynamic and static friction coefficients, and lubricant flow have important influence on the temperature rise characteristics. The proposed models can get better understanding of the dynamic temperature rise characteristics of wet clutch engagement.

  20. Behavior of pressure rise and condensation caused by water evaporation under vacuum at high temperature

    International Nuclear Information System (INIS)

    Takase, Kazuyuki; Kunugi, Tomoaki; Yamazaki, Seiichiro; Fujii, Sadao

    1998-01-01

    Pressure rise and condensation characteristics during the ingress-of-coolant event (ICE) in fusion reactors were investigated using the preliminary ICE apparatus with a vacuum vessel (VV), an additional tank (AT) and an isolation valve (IV). A surface of the AT was cooled by water at RT. The high temperature and pressure water was injected into the VV which was heated up to 250degC and pressure and temperature transients in the VV were measured. The pressure increased rapidly with an injection time of the water because of the water evaporation. After the IV was opened and the VV was connected with the AT, the pressure in the VV decreased suddenly. From a series of the experiments, it was confirmed that control factors on the pressure rise were the flushing evaporation and boiling heat transfer in the VV, and then, condensation of the vapor after was effective to the depressurization in the VV. (author)

  1. Theoretical estimation of adiabatic temperature rise from the heat flow data obtained from a reaction calorimeter

    International Nuclear Information System (INIS)

    Das, Parichay K.

    2012-01-01

    Highlights: ► This method for estimating ΔT ad (t) against time in a semi-batch reactor is distinctively pioneer and novel. ► It has established uniquely a direct correspondence between the evolution of ΔT ad (t) in RC and C A (t) in a semi-batch reactor. ► Through a unique reaction scheme, the independent effects of heat of mixing and reaction on ΔT ad (t) has been demonstrated quantitatively. ► This work will help to build a thermally safe corridor of a thermally hazard reaction. ► This manuscript, the author believes will open a new vista for further research in Adiabatic Calorimetry. - Abstract: A novel method for estimating the transient profile of adiabatic rise in temperature has been developed from the heat flow data for exothermic chemical reactions that are conducted in reaction calorimeter (RC). It has also been mathematically demonstrated by the present design that there exists a direct qualitative equivalence between the temporal evolution of the adiabatic temperature rise and the concentration of the limiting reactant for an exothermic chemical reaction, carried out in semi batch mode. The proposed procedure shows that the adiabatic temperature rise will always be less than that of the reaction executed at batch mode thereby affording a thermally safe corridor. Moreover, a unique reaction scheme has been designed to establish the independent heat effect of dissolution and reaction quantitatively. It is hoped that the testimony of the transient adiabatic temperature rise that can be prepared by the proposed method, may provide ample scope for further research.

  2. Hydro-galvanic and rising - temperature bath therapy for chronic elbow epicondylitis: a comparative study

    Directory of Open Access Journals (Sweden)

    C. Mucha

    2004-02-01

    Full Text Available The efficacy of two different regimens of physiotherapy for epicondylitis was compared. A combination treatment with hydrogalvanic four-cell bath and arm bath with rising temperature, which had showed good effects in treatment of tennis elbow in an earlier observational study (Mucha 1987, was compared with the analgesic interference current treatment often recommended in the literature (Sadil and Sadil 1994, Noteboom et al 1994, Becker and Reuter 1982. For this study, 60 patients with epicondylitis that was resistant to conservative treatment were randomized into two groups for comparison. In group 1, interference currents were administered twice a day for six weeks and group 2 received combination treatment with the hydrogalvanic four-cell bath and rising- temperature arm bath once a day for six weeks. Criteria for inclusion, control and appraisal were laid down prospectively. Several parameters were used, recorded and statistically evaluated as outcome measures.  These were active joint range of movement of the elbow, grip strength, pain provocation with muscle contraction, palpation pain and pain with functional activities.  The results showed a significant superiority of combination treatment over therapy with interference current. It is therefore recommended that hydrogalvanic four-cell bath and arm bath with rising temperature should be carried out before considering surgical treatment for chronic epicondylitis.

  3. Temperature dependent fission product removal efficiency due to pool scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke, E-mail: suchida@iae.or.jp [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Hanamoto, Yukio [KAKEN, Inc., 1044, Hori-machi, Mito 310-0903 (Japan); Osakabe, Masahiro [Tokyo University of Marine Science & Technology, Koutou-ku, Tokyo 135-8533 (Japan); Fujikawa, Masahiro [Japan Broadcasting Corporation, 2-2-1, Jinnan, Shibuya-ku, Tokyo 150-8001 (Japan)

    2016-03-15

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  4. Temperature dependent fission product removal efficiency due to pool scrubbing

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki; Hanamoto, Yukio; Osakabe, Masahiro; Fujikawa, Masahiro

    2016-01-01

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  5. Numerical Analysis on Temperature Rise of a Concrete Arch Dam after Sealing Based on Measured Data

    Directory of Open Access Journals (Sweden)

    Qingbin Li

    2014-01-01

    Full Text Available The thermal boundary conditions in the construction and operation phases of a concrete arch dam are always complex. After sealing, differences between the arch dam temperature and its sealing temperature can cause compressive or tensile stresses. Based on measured temperature of an arch dam located in China, a temperature rise phenomenon (TRP is found in the after-sealed regions of the arch dam. By mining and analyzing the temperature data of various monitoring apparatus embedded in the arch dam, higher environment temperature is considered to be the main cause for the occurrence of the TRP. Mathematical methods for complex thermal boundary conditions, including external boundary conditions and internal heat source conditions, are proposed in this paper. A finite element model is implemented with the concern of the construction phase and operation phase of the arch dam. Results confirm good agreement with the measured temperature and verify the conjecture that the TRP occurs mainly because the external temperature of the arch dam is higher than its sealing temperature.

  6. Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge.

    Science.gov (United States)

    Masciopinto, Costantino; Liso, Isabella Serena

    2016-11-01

    An assessment of sea intrusion into coastal aquifers as a consequence of local sea-level rise (LSLR) due to climate change was carried out at Murgia and Salento in southern Italy. The interpolation of sea-level measurements at three tide-gauge stations was performed during the period of 2000 to 2014. The best fit of measurements shows an increasing rate of LSLR ranging from 4.4mm/y to 8.8mm/y, which will result in a maximum LSLR of approximately 2m during the 22nd century. The local rate of sea-level rise matches recent 21st and 22nd century projections of mean global sea-level rise determined by other researchers, which include increased melting rates of the Greenland and Antarctic ice sheets, the effect of ocean thermal expansion, the melting of glaciers and ice caps, and changes in the quantity of stored land water. Subsequently, Ghyben-Herzberg's equation for the freshwater/saltwater interface was rewritten in order to determine the decrease in groundwater discharge due to the maximum LSLR. Groundwater flow simulations and ArcGIS elaborations of digital elevation models of the coast provided input data for the Ghyben-Herzberg calculation under the assumption of head-controlled systems. The progression of seawater intrusion due to LSLR suggests an impressive depletion of available groundwater discharge during the 22nd century, perhaps as much as 16.1% of current groundwater pumping for potable water in Salento. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Assessment of Physiological Equivalent Temperature (PET in Transitional Spaces of a High-Rise Building

    Directory of Open Access Journals (Sweden)

    Nooriati Taib

    2016-01-01

    Full Text Available One passive approach that can significantly reduce energy usage in high-rise buildings is through the creation of non-air conditioned spaces such as transitional spaces. Optimizing passive design would reduce wastage associated with the building’s energy consumption. The study measures the thermal comfort of three types of transitional spaces (sky court, balcony, and rooftop in a high-rise office building. Based on the assessment of Physiological Equivalent Temperature (PET, the outcome showed significant differences in PET in all locations in both wet and dry season. The effectiveness of such area can be improved with the contributions of landscape, maximizing natural ventilation and day lighting where possible.

  8. Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations?

    Directory of Open Access Journals (Sweden)

    Tiziana Di Lorenzo

    2017-12-01

    Full Text Available The average global temperature is predicted to increase by 3 °C by the end of this century due to human-induced climate change. The overall metabolism of the aquatic biota will be directly affected by rising temperatures and associated changes. Since thermal stability is a characteristic of groundwater ecosystems, global warming is expected to have a profound effect on the groundwater fauna. The prediction that stygobitic (obligate groundwater dweller species are vulnerable to climate change includes assumptions about metabolic effects that can only be tested by comparisons across a thermal gradient. To this end, we investigated the effects of two different thermal regimes on the metabolism of the stygobitic copepod species Diacyclops belgicus (Kiefer, 1936. We measured the individual-based oxygen consumption of this species as a proxy of possible metabolic reactions to temperature rising from 14 to 17 °C. We used a sealed glass microplate equipped with planar oxygen sensor spots with optical isolation glued onto the bottom of 80-μL wells integrated with a 24-channel fluorescence-based respirometry system. The tests have provided controversial results according to which the D. belgicus populations should be prudently considered at risk under a global warming scenario.

  9. Control rod position and temperature coefficients in HTTR power-rise tests. Interim report

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Nojiri, Naoki; Takada, Eiji; Saito, Kenji; Kobayashi, Shoichi; Sawahata, Hiroaki; Kokusen, Sigeru

    2001-03-01

    Power-rise tests of the High Temperature Engineering Test Reactor (HTTR) have been carried out aiming to achieve 100% power. So far, 50% of power operation and many tests have been carried out. In the HTTR, temperature change in core is so large to achieve the outlet coolant temperature of 950degC. To improve the calculation accuracy of the HTTR reactor physics characteristics, control rod positions at criticality and temperature coefficients were measured at each step to achieve 50% power level. The calculations were carried out using Monte Carlo code and diffusion theory with temperature distributions in the core obtained by reciprocal calculation of thermo-hydraulic code and diffusion theory. Control rod positions and temperature coefficients were calculated by diffusion theory and Monte Carlo method. The test results were compared to calculation results. The control rod positions at criticality showed good agreement with calculation results by Monte Carlo method with error of 50 mm. The control position at criticality at 100% was predicted around 2900mm. Temperature coefficients showed good agreement with calculation results by diffusion theory. The improvement of calculation will be carried out comparing the measured results up to 100% power level. (author)

  10. Fuel properties effect on the performance of a small high temperature rise combustor

    Science.gov (United States)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  11. Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs

    International Nuclear Information System (INIS)

    Wang Xin; Lin Jiexing; Liu Xiaozhou; Liu Jiehui; Gong Xiufen

    2016-01-01

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. (paper)

  12. Influence of whitening gel on pulp chamber temperature rise by in-office bleaching technique

    Directory of Open Access Journals (Sweden)

    Sandro Cordeiro Loretto

    Full Text Available INTRODUCTION: Dental bleaching is a conservative method for the aesthetic restoration of stained teeth. However, whitening treatments are likely to cause adverse effects when not well planned and executed. OBJECTIVE: This study evaluated the influence of whitening gel on temperature rise in the pulp chamber, using the in-office photoactivated dental bleaching technique. MATERIAL AND METHOD: The root portion of an upper central human incisor was sectioned 3mm below the cemento-enamel junction. The root canal was enlarged to permit the insertion of the K-type thermocouple sensor (MT-401 into the pulp chamber, which was filled with thermal paste to facilitate the transfer of heat during bleaching. Three photosensitive whitening agents (35% hydrogen peroxide were used: Whiteness HP (FGM, Whiteness HP Maxx (FGM and Lase Peroxide Sensy (DMC. An LED photocuring light (Flash Lite - Discus Dental was used to activate the whitening gels. Six bleaching cycles were performed on each group tested. The results were submitted to one-way ANOVA and LSD t-test (α<0.05. RESULT: The lowest mean temperature variation (ºC was detected for Lase Peroxide Sensy (0.20, while the highest was recorded for Whiteness HP (1.50. CONCLUSION: The Whiteness HP and Whiteness HP Maxx whitening gels significantly affected the temperature rise in the pulp chamber during bleaching, and this variation was dependent on the type of whitening gel used.

  13. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam.

    Science.gov (United States)

    Vu, D T; Yamada, T; Ishidaira, H

    2018-03-01

    In the context of climate change, salinity intrusion into rivers has been, and will be, one of the most important issues for coastal water resources management. A combination of changes, including increased temperature, change in regional rainfall, especially sea level rise (SLR) related to climate change, will have significant impacts on this phenomenon. This paper presents the outcomes of a study conducted in the Mekong Delta of Vietnam (MKD) for evaluating the effect of sea water intrusion under a new SLR scenario. Salinity intrusion was simulated by one-dimensional (1D) modeling. The relative sea level projection was constructed corresponding to the RCP 6.0 emission scenario for MKD based on the statistical downscaling method. The sea level in 2050 is projected to increase from 25 cm to 30 cm compared to the baseline period (in 2000). Furthermore, the simulated results suggested that salinity greater than 4 g/l, which affects rice yield, will intrude up to 50-60 km into the river. Approximately 30,000 ha of agricultural area will be affected if the sea level rise is 30 cm.

  14. The dichotomous response of flood and storm extremes to rising global temperatures

    Science.gov (United States)

    Sharma, A.; Wasko, C.

    2017-12-01

    Rising temperature have resulted in increases in short-duration rainfall extremes across the world. Additionally it has been shown (doi:10.1038/ngeo2456) that storms will intensify, causing derived flood peaks to rise even more. This leads us to speculate that flood peaks will increase as a result, complying with the storyline presented in past IPCC reports. This talk, however, shows that changes in flood extremes are much more complex. Using global data on extreme flow events, the study conclusively shows that while the very extreme floods may be rising as a result of storm intensification, the more frequent flood events are decreasing in magnitude. The study argues that changes in the magnitude of floods are a function of changes in storm patterns and as well as pre-storm or antecedent conditions. It goes on to show that while changes in storms dominate for the most extreme events and over smaller, more urbanised catchments, changes in pre-storm conditions are the driving factor in modulating flood peaks in large rural catchments. The study concludes by providing recommendations on how future flood design should proceed, arguing that current practices (or using a design storm to estimate floods) are flawed and need changing.

  15. Current sharing effect on the current instability and allowable temperature rise of composite high-TC superconductors

    International Nuclear Information System (INIS)

    Romanovskii, V.R.; Watanabe, K.; Awaji, S.; Nishijima, G.; Takahashi, Ken-ichiro

    2004-01-01

    To understand the basic mechanisms of the thermal runaway phenomenon, the limiting margin of the current instability, which may spontaneously occur in composite high-T C superconductors like multifilament Bi-based wire or tape, is derived under DC magnetic field. The current sharing and allowable temperature rise effects were considered. A static zero-dimensional model was utilized to describe the basic formulae dealing with the peculiarities of the non-isothermal change of superconducting composite voltage-current characteristic. The boundary of allowable stable values of the temperature, electric field and current are derived analytically. It was shown that permissible values of the current and electric field might be higher than those determined by use of the standard critical current criterion. In consequence of this feature, the noticeable allowable temperature rise of the composite superconductor before its transition to the normal state may be seen. The criterion for complete thermal stability condition is written describing the state when temperature of the composite equals critical temperature of a superconductor and the transport current flows stably only in matrix. The performed analysis also proves the existence of value of the volume fraction of a superconductor in composite at which its current-carrying capacity has minimum. These peculiarities are due to the stable current redistribution between superconductor and stabilizing matrix. Therefore, the current sharing not only leads to the matrix/superconductor ratio effect on the stable operating characteristics of the composite high-T C superconductors but also becomes important in the adequate description of quench process in the high-T C superconducting magnets

  16. Assessment of island beach erosion due to sea level rise: the case of the Aegean archipelago (Eastern Mediterranean)

    Science.gov (United States)

    Monioudi, Isavela N.; Velegrakis, Adonis F.; Chatzipavlis, Antonis E.; Rigos, Anastasios; Karambas, Theophanis; Vousdoukas, Michalis I.; Hasiotis, Thomas; Koukourouvli, Nikoletta; Peduzzi, Pascal; Manoutsoglou, Eva; Poulos, Serafim E.; Collins, Michael B.

    2017-03-01

    The present contribution constitutes the first comprehensive attempt to (a) record the spatial characteristics of the beaches of the Aegean archipelago (Greece), a critical resource for both the local and national economy, and (b) provide a rapid assessment of the impacts of the long-term and episodic sea level rise (SLR) under different scenarios. Spatial information and other attributes (e.g., presence of coastal protection works and backshore development) of the beaches of the 58 largest islands of the archipelago were obtained on the basis of remote-sensed images available on the web. Ranges of SLR-induced beach retreats under different morphological, sedimentological and hydrodynamic forcing, and SLR scenarios were estimated using suitable ensembles of cross-shore (1-D) morphodynamic models. These ranges, combined with empirically derived estimations of wave run-up induced flooding, were then compared with the recorded maximum beach widths to provide ranges of retreat/erosion and flooding at the archipelago scale. The spatial information shows that the Aegean pocket beaches may be particularly vulnerable to mean sea level rise (MSLR) and episodic SLRs due to (i) their narrow widths (about 59 % of the beaches have maximum widths Report (AR5) of the Intergovernmental Panel on Climate change (IPCC) - a storm-induced sea level rise of 0.6 m is projected to result in a complete erosion of between 31 and 88 % of all beaches (29-87 % of beaches are currently fronting coastal infrastructure and assets), at least temporarily. Our results suggest a very considerable risk which will require significant effort, financial resources and policies/regulation in order to protect/maintain the critical economic resource of the Aegean archipelago.

  17. A zero-power warming chamber for investigating plant responses to rising temperature

    Science.gov (United States)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; Serbin, Shawn P.; Rogers, Alistair

    2017-09-01

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ˜ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ˜ 2-3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.

  18. A zero-power warming chamber for investigating plant responses to rising temperature

    Directory of Open Access Journals (Sweden)

    K. F. Lewin

    2017-09-01

    Full Text Available Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by  ∼  1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be  ∼  2–3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming

  19. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  20. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions

    Science.gov (United States)

    Lee, Mark A.; Davis, Aaron P.; Chagunda, Mizeck G. G.; Manning, Pete

    2017-03-01

    Livestock numbers are increasing to supply the growing demand for meat-rich diets. The sustainability of this trend has been questioned, and future environmental changes, such as climate change, may cause some regions to become less suitable for livestock. Livestock and wild herbivores are strongly dependent on the nutritional chemistry of forage plants. Nutrition is positively linked to weight gains, milk production and reproductive success, and nutrition is also a key determinant of enteric methane production. In this meta-analysis, we assessed the effects of growing conditions on forage quality by compiling published measurements of grass nutritive value and combining these data with climatic, edaphic and management information. We found that forage nutritive value was reduced at higher temperatures and increased by nitrogen fertiliser addition, likely driven by a combination of changes to species identity and changes to physiology and phenology. These relationships were combined with multiple published empirical models to estimate forage- and temperature-driven changes to cattle enteric methane production. This suggested a previously undescribed positive climate change feedback, where elevated temperatures reduce grass nutritive value and correspondingly may increase methane production by 0.9 % with a 1 °C temperature rise and 4.5 % with a 5 °C rise (model average), thus creating an additional climate forcing effect. Future methane production increases are expected to be largest in parts of North America, central and eastern Europe and Asia, with the geographical extent of hotspots increasing under a high emissions scenario. These estimates require refinement and a greater knowledge of the abundance, size, feeding regime and location of cattle, and the representation of heat stress should be included in future modelling work. However, our results indicate that the cultivation of more nutritious forage plants and reduced livestock farming in warming regions

  1. Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines

    International Nuclear Information System (INIS)

    Zhang, R.C.; Fan, W.J.; Xing, F.; Song, S.W.; Shi, Q.; Tian, G.H.; Tan, W.L.

    2015-01-01

    Interstage turbine combustion used for improving efficiency of gas turbine was a new type of combustion mode. Operating conditions and technical requirements for this type of combustor were different from those of traditional combustor. It was expected to achieve engineering application in both ground-based and aviation gas turbine in the near future. In this study, a number of modifications in a base design were applied and examined experimentally. The trapped-vortex combustion technology was adopted for flame stability under high velocity conditions, and the preheating-fuel injection technology was used to improve the atomization and evaporation performance of liquid fuel. The experimental results indicated that stable and efficient combustion with slight temperature-rise can be achieved under the high velocity conditions of combustor inlet. Under all experimental conditions, the excess air coefficients of ignition and lean blow-out were larger than 7 and 20, respectively; pollutant emission index of NO x and the maximum wall temperature were below 2.5 g/(kg fuel) and 1050 K, respectively. Moreover, the effects of fuel injection and overall configuration on the combustion characteristics were analyzed in detail. The number increase, area increase and depth increase of fuel injectors had different influences on the stability, combustion characteristic and temperature distribution. - Highlights: • The combustion mode of slight temperature-rise (200 K) was achieved. • Effect of fuel and air injection on stability characteristic was investigated. • Impact of overall configuration on combustion performance was analyzed. • The feasibility of scheme was determined.

  2. [A sudden rise in INR due to combination of Tribulus terrestris, Avena sativa, and Panax ginseng (Clavis Panax)].

    Science.gov (United States)

    Turfan, Murat; Tasal, Abdurrahman; Ergun, Fatih; Ergelen, Mehmet

    2012-04-01

    Warfarin sodium is an antithrombin agent used in patients with prosthetic valve and atrial fibrillation. However, there are many factors that can change the effectiveness of the drug. Today, herbal mixtures promoted through targeted print and visual media can lead to sudden activity changes in patients using warfarin. In this case report we will present two cases with a sudden rise in INR due to using combination of Tribulus terrestris, Avena sativa and Panax ginseng (Panax Clavis). Two patients who used warfarin due to a history of aortic valve replacement (case 1) and atrial fibrillation (case 2) were admitted to the hospital due very high levels of INR detected during routine follow-up. Both patients had used an herbal medicine called ''Panax'' during the last month. The patients gave no indication regarding a change in diet or the use of another agent that might interact with warfarin. In cases where active bleeding could not be determinated, we terminated the use of the drug and re-evaluated dosage of warfarin before finally discharging the patient.

  3. Integrated ecosystem services assessment: Valuation of changes due to sea level rise in Galveston Bay, Texas, USA.

    Science.gov (United States)

    Yoskowitz, David; Carollo, Cristina; Pollack, Jennifer Beseres; Santos, Carlota; Welder, Kathleen

    2017-03-01

    The goal of the present study was to identify the potential changes in ecosystem service values provided by wetlands in Galveston Bay, Texas, USA, under the Intergovernmental Panel on Climate Change (IPCC) A1B max (0.69 m) sea level rise scenario. Built exclusively upon the output produced during the Sea Level Affecting Marshes Model 6 (SLAMM 6) exercise for the Galveston Bay region, this study showed that fresh marsh and salt marsh present a steady decline from 2009 (initial condition) to 2100. Fresh marsh was projected to undergo the biggest changes, with the loss of approximately 21% of its extent between 2009 and 2100 under the A1B max scenario. The percentages of change for salt marsh were less prominent at approximately 12%. This trend was also shown in the values of selected ecosystem services (disturbance regulation, waste regulation, recreation, and aesthetics) provided by these habitats. An ordinary least squares regression was used to calculate the monetary value of the selected ecosystem services provided by salt marsh and fresh marsh in 2009, and in 2050 and 2100 under the A1B max scenario. The value of the selected services showed potential monetary losses in excess of US$40 million annually in 2100, compared to 2009 for fresh marsh and more than $11 million for salt marsh. The estimates provided here are only small portions of what can be lost due to the decrease in habitat extent, and they highlight the need for protecting not only built infrastructure but also natural resources from sea level rise. Integr Environ Assess Manag 2017;13:431-443. © 2016 SETAC. © 2016 SETAC.

  4. Calculation of temperature rise for cable conductor of DCS cabinet power based on theory of numerical thermal transfer

    International Nuclear Information System (INIS)

    Tian Yong; Zhang Longqiang; Yang Zhen; Yu Bin

    2014-01-01

    In order to ensure a long-term reliable operation of the DCS cabinet's 220 V AC power cable, it was needed to confirm whether the conductor temperature rise of power cable meet the requirement of the cable specification. Based on the actual data in site and the theory of numerical heat transfer, conservative model was established, and the conductor temperature was calculated. The calculation results show that the cable arrangement on the cable tray will not lead to the conductor temperature rise of power cable over than the required temperature in technical specification. (authors)

  5. Influence of dump voltage and allowable temperature rise on stabilizer requirements in superconducting coils

    International Nuclear Information System (INIS)

    Schwenterly, S.W.

    1988-01-01

    A superconducting winding must have enough stabilizer to satisfy two sets of criteria. During normal operation, the amount of stabilizer must be large enough either to make the coil unconditionally stable or to give a certain desired stability margin. Once a dump occurs, the amount of stabilizer must be large enough to carry the current without generating excessive dump voltages or allowing the winding to exceed a certain maximum temperature (and maximum pressure, in the case of force-cooled coils). The voltage criterion often dominates for very large coil systems, but it is frequently ignored in initial design studies. This paper gives some simple relations between the dump voltage and the stored energy, temperature rise, and coil geometry that are useful in scooping the required amount of stabilizer. Comparison with some recently proposed fusion magnet system designs indicates that excessive dump voltages could result in some cases. High-temperature superconductors may require more stabilizer than the conventional alloys. Calculations with simple model coil systems indicate how trade-offs between various coil parameters affect the dump voltage. 12 refs., 1 fig., 1 tab

  6. Characterization of polypropylene–polyethylene blends by temperature rising elution and crystallization analysis fractionation

    Science.gov (United States)

    del Hierro, Pilar

    2010-01-01

    The introduction of single-site catalysts in the polyolefins industry opens new routes to design resins with improved performance through multicatalyst-multireactor processes. Physical combination of various polyolefin types in a secondary extrusion process is also a common practice to achieve new products with improved properties. The new resins have complex structures, especially in terms of composition distribution, and their characterization is not always an easy task. Techniques like temperature rising elution fractionation (TREF) or crystallization analysis fractionation (CRYSTAF) are currently used to characterize the composition distribution of these resins. It has been shown that certain combinations of polyolefins may result in equivocal results if only TREF or CRYSTAF is used separately for their characterization. PMID:20730530

  7. Application of geo-spatial technologies in coastal vulnerability studies due to Sea Level Rise (SLR) along the Central Orissa Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.

    This chapter emphasizes the regional and local level coastal vulnerability studies due to sea level rise and the subsequent coastal inundation along the low-lying coastal areas using the advanced geo-spatial technologies. Natural hazards...

  8. Observations of temperature rise during electron cyclotron heating application in Proto-MPEX

    Science.gov (United States)

    Biewer, T. M.; Bigelow, T.; Caneses, J. F.; Diem, S. J.; Rapp, J.; Reinke, M.; Kafle, N.; Ray, H. B.; Showers, M.

    2017-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at ORNL utilizes a variety of power systems to generate and deliver a high heat flux plasma (1 MW/m2 for these discharges) onto the surface of material targets. In the experiments described here, up to 120 kW of 13.56 MHz ``helicon'' waves are combined with 20 kW of 28 GHz microwaves to produce Deuterium plasma discharges. The 28 GHz waves are launched in a region of the device where the magnetic field is axially varying near 0.8 T, resulting in the presence of a 2nd harmonic electron cyclotron heating (ECH) resonance layer that transects the plasma column. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is radially peaked. In the core of the plasma column the electron density is higher than the cut-off density (0.9x1019 m-3) for ECH waves to propagate and O-X-B mode conversion into electron Bernstien waves (EBW) is expected. TS measurements indicate electron temperature increases during 28 GHz wave application, rising (from 5 eV to 20 eV) as the neutral Deuterium pressure is reduced below 1 mTorr. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  9. An alternative method to record rising temperatures during dental implant site preparation: a preliminary study using bovine bone

    Directory of Open Access Journals (Sweden)

    Domenica Laurito

    2010-12-01

    Full Text Available Overheating is constantly mentioned as a risk factor for bone necrosis that could compromise the dental implant primary stability. Uncontrolled thermal injury can result in a fibrous tissue, interpositioned at the implant-bone interface, compromising the long-term prognosis. The methods used to record temperature rise include either direct recording by thermocouple instruments or indirect estimating by infrared thermography. This preliminary study was carried out using bovine bone and a different method of temperatures rising estimation is presented. Two different types of drills were tested using fluoroptic thermometer and the effectiveness of this alternative temperature recording method was evaluated.

  10. Predicted peak temperature-rises around a high-level radioactive waste canister emplaced in the deep ocean bed

    International Nuclear Information System (INIS)

    Kipp, K.L.

    1978-06-01

    A simple mathematical model of heat conduction was used to evaluate the peak temperature-rise along the wall of a canister of high-level radioactive waste buried in deep ocean sediment. Three different amounts of vitrified waste, corresponding to standard Harvest, large Harvest, and AVM canisters, and three different waste loadings were studied. Peak temperature-rise was computed for the nine cases as a function of canister geometry and storage time between reprocessing and burial. Lower waste loadings or longer storage times than initially envisaged are necessary to prevent the peak temperature-rise from exceeding 200 0 C. The use of longer, thinner cylinders only modestly reduces the storage time for a given peak temperature. Effects of stacking of waste canisters and of close-packing were also studied. (author)

  11. Anomalous plasma transport due to electron temperature gradient instability

    International Nuclear Information System (INIS)

    Tokuda, Sinji; Ito, Hiroshi; Kamimura, Tetsuo.

    1979-01-01

    The collisionless drift wave instability driven by an electron temperature inhomogeneity (electron temperature gradient instability) and the enhanced transport processes associated with it are studied using a two-and-a-half dimensional particle simulation code. The simulation results show that quasilinear diffusion in phase space is an important mechanism for the saturation of the electron temperature gradient instability. Also, the instability yields particle fluxes toward the hot plasma regions. The heat conductivity of the electron temperature perpendicular to the magnetic field, T sub(e'), is not reduced by magnetic shear but remains high, whereas the heat conductivity of the parallel temperature, T sub(e''), is effectively reduced, and the instability stabilized. (author)

  12. Numerical method for analysis of temperature rises and thermal stresses around high level radioactive waste repository in granite

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    1982-01-01

    The disposal of high-level radioactive waste should result in temperature rises and thermal stresses which change the hydraulic conductivity of the rock around the repository. For safety analysis on disposal of high-level radioactive waste into hard rock, it is necessary to find the temperature rises and thermal stresses distributions around the repository. In this paper, these distribution changes are analyzed by the use of the finite difference method. In advance of numerical analysis, it is required to simplify the shapes and properties of the repository and the rock. Several kinds of numerical models are prepared, and the results of this analysis are examined. And, the waste disposal methods are discussed from the stand-points of the temperature rise and thermal stress analysis. (author)

  13. Evidence of increasing drought severity caused by temperature rise in southern Europe

    International Nuclear Information System (INIS)

    Vicente-Serrano, Sergio M; Lopez-Moreno, Juan-I; Lorenzo-Lacruz, Jorge; García-Ruiz, José M; Azorin-Molina, Cesar; Morán-Tejeda, Enrique; Revuelto, Jesús; Beguería, Santiago; Sanchez-Lorenzo, Arturo; Trigo, Ricardo; Coelho, Fatima; Espejo, Francisco

    2014-01-01

    We use high quality climate data from ground meteorological stations in the Iberian Peninsula (IP) and robust drought indices to confirm that drought severity has increased in the past five decades, as a consequence of greater atmospheric evaporative demand resulting from temperature rise. Increased drought severity is independent of the model used to quantify the reference evapotranspiration. We have also focused on drought impacts to drought-sensitive systems, such as river discharge, by analyzing streamflow data for 287 rivers in the IP, and found that hydrological drought frequency and severity have also increased in the past five decades in natural, regulated and highly regulated basins. Recent positive trend in the atmospheric water demand has had a direct influence on the temporal evolution of streamflows, clearly identified during the warm season, in which higher evapotranspiration rates are recorded. This pattern of increase in evaporative demand and greater drought severity is probably applicable to other semiarid regions of the world, including other Mediterranean areas, the Sahel, southern Australia and South Africa, and can be expected to increasingly compromise water supplies and cause political, social and economic tensions among regions in the near future. (paper)

  14. CFD analysis of flow distribution of reactor core and temperature rise of coolant in fuel assembly for VVER reactor

    International Nuclear Information System (INIS)

    Du Daiquan; Zeng Xiaokang; Xiong Wanyu; Yang Xiaoqiang

    2015-01-01

    Flow field of VVER-1000 reactor core was investigated by using computational fluid dynamics code CFX, and the temperature rise of coolant in hot assembly was calculated. The results show that the maximum value of flow distribution factor is 1.12 and the minimum value is 0.92. The average value of flow distribution factor in hot assembly is 0.97. The temperature rise in hot assembly is higher than current warning limit value ΔT t under the deviated operation condition. The results can provide reference for setting ΔT t during the operation of nuclear power plant. (authors)

  15. Effects of elevated temperatures and rising sea level on Arctic Coast

    Science.gov (United States)

    Barnes, Peter W.

    1990-01-01

    Ice is a major agent on the inner shelf, gouging the bottom, increasing hydraulic scour, transporting sediment, and influencing river flood patterns. Rapid coastal retreat is common and low barrier islands and beaches are constantly changing due to the influence of permafrost, ice-push, waves, and currents. Coastal processes are presently a balance between the influence of ice and the action of waves and currents. Quantitative values for processes are poorly known, however our qualitative understanding is nearly complete. Climatic warming and rising sea levels would decrease the temporal and aerial extent of coastal ice thereby expanding the role of waves and currents. As a result, shoreline retreat rates would increase, producing a transgressive erosional surface on the low coastal plain. With increased wave activity, beaches and barrier islands presently nourished by ice push processes would decay and disappear. Increased sediment supply from a deeply thawed, active layer would release more sediments to rivers and coasts. Additional research should be focused on permafrost and sea ice processes active during freeze up and breakup; the two seasons of most vigorous activity and change.

  16. Effect of composite resin polymerization modes on temperature rise in human dentin of different thicknesses: an in vitro study

    International Nuclear Information System (INIS)

    Baggio Aguiar, Flavio Henrique; Kanda Peres Barros, Gisele; Alves Nunes Leite Lima, Debora; Bovi Ambrosano, Glaucia Maria; Lovadino, Jose Roberto

    2006-01-01

    The aim of this in vitro study was to evaluate the effect of different polymerization modes on temperature rise in human dentin of different thicknesses, and to evaluate the relation between dentin thickness and temperature rise (TR). For this purpose, 60 specimens were assigned into 20 groups (n = 3): five polymerization modes (1-conventional; 2-soft-start; 3-high intensity; 4-ramp cure: progressive and high intensity; 5-high intensity with the tip of the light-curing unit at a distance of 1.3 cm for 10 s and the tip leaning on the sample) at four dentin thicknesses (0, 1, 2, 3 mm). During composite sample polymerization (2 mm), the temperature was measured by a digital laser thermometer (CMSS2000-SL/SKF). The statistical analyses were conducted by ANOVA (p = 0.05) and post-hoc Tukey's test. There were statistical differences of TR among polymerization modes and dentin thicknesses. The temperature rise was dependent on the polymerization mode and the dentin thickness: the thicker the dentin and the lower the polymerization mode energy, the lower the temperature rise

  17. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz

    International Nuclear Information System (INIS)

    Laakso, Ilkka

    2009-01-01

    This paper presents finite-difference time-domain (FDTD) calculations of specific absorption rate (SAR) values in the head under plane-wave exposure from 1 to 10 GHz using a resolution of 0.5 mm in adult male and female voxel models. Temperature rise due to the power absorption is calculated by the bioheat equation using a multigrid method solver. The computational accuracy is investigated by repeating the calculations with resolutions of 1 mm and 2 mm and comparing the results. Cubically averaged 10 g SAR in the eyes and brain and eye-averaged SAR are calculated and compared to the corresponding temperature rise as well as the recommended limits for exposure. The results suggest that 2 mm resolution should only be used for frequencies smaller than 2.5 GHz, and 1 mm resolution only under 5 GHz. Morphological differences in models seemed to be an important cause of variation: differences in results between the two different models were usually larger than the computational error due to the grid resolution, and larger than the difference between the results for open and closed eyes. Limiting the incident plane-wave power density to smaller than 100 W m -2 was sufficient for ensuring that the temperature rise in the eyes and brain were less than 1 deg. C in the whole frequency range.

  18. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz

    Science.gov (United States)

    Laakso, Ilkka

    2009-06-01

    This paper presents finite-difference time-domain (FDTD) calculations of specific absorption rate (SAR) values in the head under plane-wave exposure from 1 to 10 GHz using a resolution of 0.5 mm in adult male and female voxel models. Temperature rise due to the power absorption is calculated by the bioheat equation using a multigrid method solver. The computational accuracy is investigated by repeating the calculations with resolutions of 1 mm and 2 mm and comparing the results. Cubically averaged 10 g SAR in the eyes and brain and eye-averaged SAR are calculated and compared to the corresponding temperature rise as well as the recommended limits for exposure. The results suggest that 2 mm resolution should only be used for frequencies smaller than 2.5 GHz, and 1 mm resolution only under 5 GHz. Morphological differences in models seemed to be an important cause of variation: differences in results between the two different models were usually larger than the computational error due to the grid resolution, and larger than the difference between the results for open and closed eyes. Limiting the incident plane-wave power density to smaller than 100 W m-2 was sufficient for ensuring that the temperature rise in the eyes and brain were less than 1 °C in the whole frequency range.

  19. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, Ilkka [Department of Radio Science and Engineering, Helsinki University of Technology, Otakaari 5 A, 02150 Espoo (Finland)], E-mail: ilkka.laakso@tkk.fi

    2009-06-07

    This paper presents finite-difference time-domain (FDTD) calculations of specific absorption rate (SAR) values in the head under plane-wave exposure from 1 to 10 GHz using a resolution of 0.5 mm in adult male and female voxel models. Temperature rise due to the power absorption is calculated by the bioheat equation using a multigrid method solver. The computational accuracy is investigated by repeating the calculations with resolutions of 1 mm and 2 mm and comparing the results. Cubically averaged 10 g SAR in the eyes and brain and eye-averaged SAR are calculated and compared to the corresponding temperature rise as well as the recommended limits for exposure. The results suggest that 2 mm resolution should only be used for frequencies smaller than 2.5 GHz, and 1 mm resolution only under 5 GHz. Morphological differences in models seemed to be an important cause of variation: differences in results between the two different models were usually larger than the computational error due to the grid resolution, and larger than the difference between the results for open and closed eyes. Limiting the incident plane-wave power density to smaller than 100 W m{sup -2} was sufficient for ensuring that the temperature rise in the eyes and brain were less than 1 deg. C in the whole frequency range.

  20. Transport due to ion temperature gradient mode vortex turbulence

    International Nuclear Information System (INIS)

    Pavlenko, V.P.; Weiland, J.

    1991-01-01

    The ion energy transport due to an ensemble of nonlinear vortices is calculated in the test particle approximation for a strongly turbulent plasma. A diffusion coefficient proportional to the root of the stationary turbulence level is obtained. (au)

  1. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Light Ray Displacements due to Air Temperature Gradient

    CERN Document Server

    Teymurazyan, A; CERN. Geneva

    2000-01-01

    Abstract In the optical monitoring systems suggested to control the geometry of tracking spectrometers, light beams serve as reference frames for the measurement of the tracking chamber displacements and deformations. It is shown that air temperature gradients can induce systematic errors which considerably exceed the intrinsic resolution of the monitoring system.

  3. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea

    Science.gov (United States)

    Hill, Simeon L.; Hinke, Jefferson T.; Phillips, Tony; Watters, George M.

    2018-01-01

    Climate change is a threat to marine ecosystems and the services they provide, and reducing fishing pressure is one option for mitigating the overall consequences for marine biota. We used a minimally realistic ecosystem model to examine how projected effects of ocean warming on the growth of Antarctic krill, Euphausia superba, might affect populations of krill and dependent predators (whales, penguins, seals, and fish) in the Scotia Sea. We also investigated the potential to mitigate depletion risk for predators by curtailing krill fishing at different points in the 21st century. The projected effects of ocean warming on krill biomass were strongest in the northern Scotia Sea, with a ≥40% decline in the mass of individual krill. Projections also suggest a 25% chance that krill biomass will fall below an established depletion threshold (75% of its unimpacted level), with consequent risks for some predator populations, especially penguins. Average penguin abundance declined by up to 30% of its unimpacted level, with up to a 50% chance of falling below the depletion threshold. Simulated krill fishing at currently permitted harvest rates further increased risks for depletion, and stopping fishing offset the increased risks associated with ocean warming in our model to some extent. These results varied by location and species group. Risk reductions at smaller spatial scales also differed from those at the regional level, which suggests that some predator populations may be more vulnerable than others to future changes in krill biomass. However, impacts on predators did not always map directly to those for krill. Our findings indicate the importance of identifying vulnerable marine populations and targeting protection measures at appropriate spatial scales, and the potential for spatially-structured management to avoid aggravating risks associated with rising ocean temperatures. This may help balance tradeoffs among marine ecosystem services in an uncertain future

  4. Computing Risk to West Coast Intertidal Rocky Habitat due to Sea Level Rise using LiDAR Topobathy

    Science.gov (United States)

    Compared to marshes, little information is available on the potential for rocky intertidal habitats to migrate upward in response to sea level rise (SLR). To address this gap, we utilized topobathy LiDAR digital elevation models (DEMs) downloaded from NOAA’s Digital Coast G...

  5. Identification of Transportation Infrastructure at Risk Due To Sea-Level Rise and Subsidence of Land In Coastal Louisiana

    Science.gov (United States)

    Tewari, S.; Palmer, W.; Manning, F.

    2017-12-01

    Climate change can affect coastal areas in a variety of ways. Coasts are sensitive to sea level rise, changes in the frequency/intensity of storms, increase in precipitation and storm surges. The resilience of transportation infrastructure located in Louisiana's coastal zone, against storm surges and climatic sea-level rise is critical. The net change in sea-level is affected by the increase in global sea level as well as land movement up or down. There are many places in coastal Louisiana that have a high subsidence rate. The subsidence could be related to excess extraction activities of oil and water, natural and/or human induced compaction, and tectonic movement. Where the land is sinking, the rate of relative sea level rise is larger than the global rate. Some of the fastest rates of relative sea level rise in the United States are occurring in areas where the land is sinking, including parts of the Gulf Coast. For example, coastal Louisiana has seen its relative sea level rise by eight inches or more in the last 50 years, which is about twice the global rate. Subsiding land in the Gulf area worsens the effects of relative sea level rise, increasing the risk of flooding in cities, inhabited islands, and tidal wetlands. The research team is investigating the trends for sea-level rise and land subsidence in coastal region of Louisiana. The variability in storm surges and its potential implication on the transportation infrastructure in the region is the focus of the study. The spatial maps will be created for spatial trends. This is extremely useful in being prepared for long-term natural hazards. The results of this study will be helpful to LADOTD and infrastructure managers and officials who are tasked with resiliency planning and management. Research results will also directly benefit university researchers in the state, Coastal Protection and Restoration Authority and LADOTD/LTRC through collaborative activity which will educate both professionals and the

  6. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    OpenAIRE

    Neeru Kaushal; Kalpna Bhandari; Kadambot H.M. Siddique; Harsh Nayyar

    2016-01-01

    The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sens...

  7. The Effect of Specimen Size on the Results of Concrete Adiabatic Temperature Rise Test with Commercially Available Equipment

    Directory of Open Access Journals (Sweden)

    Byung Jae Lee

    2014-12-01

    Full Text Available In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise (Q∞ and the ternary blended cement mixture had the lowest reaction factor (r. Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.

  8. The Effect of Specimen Size on the Results of Concrete Adiabatic Temperature Rise Test with Commercially Available Equipment.

    Science.gov (United States)

    Lee, Byung Jae; Bang, Jin Wook; Shin, Kyung Joon; Kim, Yun Yong

    2014-12-08

    In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise ( Q ∞ ) and the ternary blended cement mixture had the lowest reaction factor ( r ). Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q ∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.

  9. The energy demand in the world in 2004: very strong rise of energy consumptions, mainly due to China

    International Nuclear Information System (INIS)

    Chateau, Bertrand

    2005-01-01

    2004, the highest energy growth since 1987: Very strong rise of energy consumptions, strongest annual growth since 1987, due to a favorable economic situation, China is the motor of this evolution. Total energy in the world in 2004: 11,1 Gtep. Asia represents almost one third of the world energy consumption, China's weight (14%) continues to increase by one point every year since 2000. China accounts for 42% of the world energy consumption growth, Asia for 62%. The European consumption growth represents less than 10% of China's growth, and 40% only of USA's growth. Since 2000, coal's market share has increased by 2 points, the oil market share has receded by 1 point. The relative weight of gas remains stable, with 21%. Coal accounts for 37% of the world energy consumption increase in 2004. The oil consumption increase has been more than twice higher than gas increase. Recovery of hydraulic and nuclear power. 78% of coal consumption growth is due to China, 99% from the whole Asia. Since 2000, the strongest growths are in Asia: China, Taiwan, Korea, Japan, India. 50% of the consumption growth is due to the power sector. The oil demand growth accelerates in 2004, driven by China (+14%) and the developing countries. Two giants of the oil demand growth: China and USA (+59 Mt, 58% of total 2004 growth). In the OECD, only North America increases significantly in 2004. Except China, the world growth is relatively steady since 1990, with 1.1%/ year. Oil demand is concentrated on captive usages. 55% of the world demand of oil products is concentrated on transport and petro-chemical sectors (67% in Europe (+ 9 points since 1990) and 81% in North America. Transport and petro-chemical sectors represent 2/3 of the world oil demand growth in 2004. The Middle-East has supplied half of the oil demand increase between 2003 and 2004. Except the Middle-East, only the CIS, Latin America and Africa regions have increased their production in 2004. Despite soaring crude oil prices, North

  10. The anticipated spatial loss of microtidal beaches in the next 100 years due to sea level rise.

    Science.gov (United States)

    Alexandrakis, G.; Poulos, S.

    2012-04-01

    The anticipated sea level rise is expected to influence on a global scale the earth coast in the near future and it is considered to be a main factor related to coastal retreat, with beach zones being among the most vulnerable coastal landforms. Records for the period 1890-1990 have shown that sea level has already risen by 18cm (min: +10cm, max: +25cm), while the projected to 2100 sea level rise has estimated to be 20 to 50cm (IPCC, 2007). It has to be highlighted that a small rise of few tens of meters would cause shoreline retreat of a few to tens meters in the case of low lying coasts, i.e. beach zones (e.g. Bruun 1962, Nichol and Letherman, 1995, Ciavola and Corbau, 2002). Within the concept of climate change, sea level rise could also being related, in regional scale, to changes of meteorological factors such as intensity, duration and direction of the onshore blowing winds, variation in atmospheric pressure. In the microtidal Greek waters temporary changes in sea level exceeds the 1 m (HHS, 2004) This work investigates the impact of sea level rise to sixteen beach zones along the Greek coast. More specifically, shoreline retreat has been estimated for time periods of 10, 20, 50 and 100 years for the corresponding sea level rise of 0,038, 0,076m, 0,19m and 0,38m, according to the A1B scenario of IPCC (2007) and utilizing Dean's (1991) equation; the latter includes in the calculations both the effects of the anticipated sea level rise and the associated storm surge The appropriate morphodynamic and sedimentological data used for the estimation of beach retreat has been deduced from field measurements. Finally, the percentage of the sub-aerial area lost for each beach zone, under investigation, has been estimated. The results show that coastline retreat follows a liner increase in the case of eleven out of the 16 beach zones, for a time period of 100 years. Santava beach zone (inner Messiniakos Gulf) undergoes most of erosion in the first period of 20 years

  11. A simple model for variations in global mean temperature: implications for decadal variability, the global warming hiatus, and recent temperature rise

    Science.gov (United States)

    Hu, S.; Fedorov, A. V.

    2017-12-01

    Global mean surface temperature (GMST) has steadily risen since the mid-19th century, and at the same time experienced significant variations on interannual and decadal timescales. Various mechanisms have been proposed to explain such variations, ranging from the Pacific decadal oscillation to volcanic eruptions. In this study, we construct a simple, physically-based model of GMST variations that incorporates greenhouse gas emissions, ENSO forcing, and stratospheric sulfate aerosols. The model closely reproduces the history of GMST changes since 1880 with the mean squared error about 0.05°C for the past 60 years, smaller than the typical error of GMST observations (see the figure attached). It also accurately captures decadal GMST variations, including the global warming hiatus in the early 21stcentury. This model can be used to understand the causes of the observed GMST variations and requires little computational resource. Our results confirm that weak El Niño activity was the major cause of the recent global warming hiatus, while the rapid temperature rise since 2014 is due to atmospheric heat release during 2014-2016 El Niño conditions in addition to the continuing background global warming trend. The model can be also used to make predictions for next-year GMST in the short term, and future climate projections in the long term. We will also discuss the implications of this simple model for paleoclimate reconstructions and GCM performance evaluations.

  12. An Enterprise Model of Rising Ship Costs: Loss of Learning Due to Time between Ships and Labor Force Instability

    OpenAIRE

    Summerville, Jessica R.; Cullis, Bethia L.; Druker, Eric R.; Rutledge, Gabriel B.; Braxton, Peter J.; Coleman, Richard L.

    2007-01-01

    Proceedings Paper (for Acquisition Research Program) Since the end of the Cold War, the perceived need for Navy ships has dropped, and so the shipbuilding budget has dropped. Seemingly coincidental with this budgetary pressure, and perversely aggravating the problem, ship costs began to rise steeply. We will set aside that ships have grown in weight by about three percent per year since World War II and that ever-more weapon systems are being put into them, and confine ourselves to discu...

  13. Mechanisms of detonation formation due to a temperature gradient

    Science.gov (United States)

    Kapila, A. K.; Schwendeman, D. W.; Quirk, J. J.; Hawa, T.

    2002-12-01

    Emergence of a detonation in a homogeneous, exothermically reacting medium can be deemed to occur in two phases. The first phase processes the medium so as to create conditions ripe for the onset of detonation. The actual events leading up to preconditioning may vary from one experiment to the next, but typically, at the end of this stage the medium is hot and in a state of nonuniformity. The second phase consists of the actual formation of the detonation wave via chemico-gasdynamic interactions. This paper considers an idealized medium with simple, rate-sensitive kinetics for which the preconditioned state is modelled as one with an initially prescribed linear gradient of temperature. Accurate and well-resolved numerical computations are carrried out to determine the mode of detonation formation as a function of the size of the initial gradient. For shallow gradients, the result is a decelerating supersonic reaction wave, a weak detonation, whose trajectory is dictated by the initial temperature profile, with only weak intervention from hydrodynamics. If the domain is long enough, or the gradient less shallow, the wave slows down to the Chapman-Jouguet speed and undergoes a swift transition to the ZND structure. For sharp gradients, gasdynamic nonlinearity plays a much stronger role. Now the path to detonation is through an accelerating pulse that runs ahead of the reaction wave and rearranges the induction-time distribution there to one that bears little resemblance to that corresponding to the initial temperature gradient. The pulse amplifies and steepens, transforming itself into a complex consisting of a lead shock, an induction zone, and a following fast deflagration. As the pulse advances, its three constituent entities attain progressively higher levels of mutual coherence, to emerge as a ZND detonation. For initial gradients that are intermediate in size, aspects of both the extreme scenarios appear in the path to detonation. The novel aspect of this study

  14. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.

    Science.gov (United States)

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-03-01

    Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The contribution to future flood risk in the Severn Estuary from extreme sea level rise due to ice sheet mass loss

    Science.gov (United States)

    Quinn, N.; Bates, P. D.; Siddall, M.

    2013-12-01

    The rate at which sea levels will rise in the coming century is of great interest to decision makers tasked with developing mitigation policies to cope with the risk of coastal inundation. Accurate estimates of future sea levels are vital in the provision of effective policy. Recent reports from UK Climate Impacts Programme (UKCIP) suggest that mean sea levels in the UK may rise by as much as 80 cm by 2100; however, a great deal of uncertainty surrounds model predictions, particularly the contribution from ice sheets responding to climatic warming. For this reason, the application of semi-empirical modelling approaches for sea level rise predictions has increased of late, the results from which suggest that the rate of sea level rise may be greater than previously thought, exceeding 1 m by 2100. Furthermore, studies in the Red Sea indicate that rapid sea level rise beyond 1m per century has occurred in the past. In light of such research, the latest UKCIP assessment has included a H++ scenario for sea level rise in the UK of up to 1.9 m which is defined as improbable but, crucially, physically plausible. The significance of such low-probability sea level rise scenarios upon the estimation of future flood risk is assessed using the Somerset levels (UK) as a case study. A simple asymmetric probability distribution is constructed to include sea level rise scenarios of up to 1.9 m by 2100 which are added to a current 1:200 year event water level to force a two-dimensional hydrodynamic model of coastal inundation. From the resulting ensemble predictions an estimation of risk by 2100 is established. The results indicate that although the likelihood of extreme sea level rise due to rapid ice sheet mass loss is low, the resulting hazard can be large, resulting in a significant (27%) increase to the projected annual risk. Furthermore, current defence construction guidelines for the coming century in the UK are expected to account for 95% of the sea level rise distribution

  16. Potential for shoreline changes due to sea-level rise along the U.S. mid-Atlantic region

    Science.gov (United States)

    Gutierrez, Benjamin T.; Williams, S. Jeffress; Thieler, E. Robert

    2007-01-01

    Sea-level rise over the next century is expected to contribute significantly to physical changes along open-ocean shorelines. Predicting the form and magnitude of coastal changes is important for understanding the impacts to humans and the environment. Presently, the ability to predict coastal changes is limited by the scientific understanding of the many variables and processes involved in coastal change, and the lack of consensus regarding the validity of existing conceptual, analytical, or numerical models. In order to assess potential future coastal changes in the mid-Atlantic U.S. for the U.S. Climate Change Science Program (CCSP), a workshop was convened by the U.S. Geological Survey. Assessments of future coastal change were made by a committee of coastal scientists with extensive professional experience in the mid-Atlantic region. Thirteen scientists convened for a two-day meeting to exchange information and develop a consensus opinion on potential future coastal changes for the mid-Atlantic coast in response to sea-level rise. Using criteria defined in past work, the mid-Atlantic coast was divided into four geomorphic compartments: spits, headlands, wave-dominated barriers, and mixed-energy barriers. A range of potential coastal responses was identified for each compartment based on four sea-level rise scenarios. The four scenarios were based on the assumptions that: a) the long-term sea-level rise rate observed over the 20th century would persist over the 21st century, b) the 20th century rate would increase by 2 mm/yr, c) the 20th century rate would increase by 7 mm/yr, or d) sea-level would rise by 2 m over the next few hundred years. Potential responses to these sea-level rise scenarios depend on the landforms that occur within a region and include increased likelihood for erosion and shoreline retreat for all coastal types, increased likelihood for erosion, overwash and inlet breaching for barrier islands, as well as the possibility of a threshold

  17. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    International Nuclear Information System (INIS)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-01-01

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring

  18. Procedure of the preparatory works execution during the remediation of high-rise buildings debris due to the disaster

    Science.gov (United States)

    Sinitsyn, Denis

    2018-03-01

    The article covers one of the preparatory works types, in particular - the debris clearance. The types of machines and machinery, the purposes of the debris clearance, as well as the tasks for decrease of debris mass and scope are specified herein. The purpose of the article is to show the current level of the domestic machinery, as well as to share the experience of preparatory works. The article describes one of the preparatory works types, in particular - the debris clearance during the high-rise buildings demolition. Given are the equipment and machinery types, covered are the purposes and procedure of debris clearance defined are the tasks on reduction of debris mass and sizes. Specified are the types and methods of the preparatory works execution. The purpose of this article is to demonstrate the domestic equipment current state, and to share the experience in preparatory works execution.

  19. Managing for No Net Loss of Ecological Services: An Approach for Quantifying Loss of Coastal Wetlands due to Sea Level Rise.

    Science.gov (United States)

    Kassakian, Jennifer; Jones, Ann; Martinich, Jeremy; Hudgens, Daniel

    2017-05-01

    Sea level rise has the potential to substantially alter the extent and nature of coastal wetlands and the critical ecological services they provide. In making choices about how to respond to rising sea level, planners are challenged with weighing easily quantified risks (e.g., loss of property value due to inundation) against those that are more difficult to quantify (e.g., loss of primary production or carbon sequestration services provided by wetlands due to inundation). Our goal was to develop a cost-effective, appropriately-scaled, model-based approach that allows planners to predict, under various sea level rise and response scenarios, the economic cost of wetland loss-with the estimates proxied by the costs of future restoration required to maintain the existing level of wetland habitat services. Our approach applies the Sea Level Affecting Marshes Model to predict changes in wetland habitats over the next century, and then applies Habitat Equivalency Analysis to predict the cost of restoration projects required to maintain ecological services at their present, pre-sea level rise level. We demonstrate the application of this approach in the Delaware Bay estuary and in the Indian River Lagoon (Florida), and discuss how this approach can support future coastal decision-making.

  20. Influence of temperature rise distribution in second harmonic generation crystal on intensity distributions of output second harmonic wave

    International Nuclear Information System (INIS)

    Li Wei; Feng Guoying; Li Gang; Huang Yu; Zhang Qiuhui

    2009-01-01

    Second-harmonic generation (SHG) of high-intensity laser with an SHG crystal for type I angle phase matching has been studied by the use of a split-step algorithm based on the fast Fourier transform and a fourth-order Runge-Kutta (R-K) integrator. The transverse walk-off effect, diffraction, the second-order and the third-order nonlinear effects have been taken into consideration. Influences of a temperature rise distribution of the SHG crystal on the refractive indices of ordinary wave and extraordinary wave have been discussed. The rules of phase mismatching quantity, intensity distribution of output beam and frequency conversion efficiency varying with the temperature rise distribution of the SHG crystal have been analyzed quantitatively. The calculated results indicate that in a high power frequency conversion system, the temperature rise distribution of SHG crystal would result in the phase mismatching of fundamental and harmonic waves, leading to the variation of intensity distribution of the output beam and the decrease of the conversion efficiency. (authors)

  1. Pulp chamber temperature rise during curing of resin-based composites with different light-curing units.

    Science.gov (United States)

    Durey, Kathryn; Santini, Ario; Miletic, Vesna

    2008-01-01

    The purpose of the present study was to measure the intrapulpal temperature rise occurring during polymerisation of different shades of resin-based composites (RBCs), and two light-emitting diode (LED) units. Seventy non-carious permanent molars, that had been extracted for orthodontic purposes and stored in 2% thymol for not more than four months, were selected. Patient age range was 11-18 years. Standard cavity preparation with standardised remaining dentine thickness and placement of thermocouples (TCs) was prepared using a novel split-tooth technique. Cavities were filled with one of two shades of RBC (A2 and C4, Filtek Z250, 3M ESPE, Seefeld, Germany), and cured with two LED high-intensity units (Elipar Freelight2, 3M ESPE, Seefeld, Germany; Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein) and a conventional halogen light-curing unit (LCU) (Prismetics Lite 2, Dentsply, Weybridge, Surrey, UK) as a control. Pulp temperature rises during bonding [A2 results: H;2.67/0.48:E;5.24/1.32;B;5.99/1.61] were always greater than during RBC curing [A2 results: 2.44/0.63;E3.34/0.70;B3.38/0.60], and these were significant for both LED lights but not for the halogen control, irrespective of shade (Mann-Whitney test: 95% confidence limits). Temperature rises were at times in excess of the values normally quoted as causing irreversible pulp damage. Pulp temperature rises during bonding were higher with the LED lights than with the halogen control. There was no significant difference in temperature rise between the two LED lights when bonding but there was a significant difference between the two LED lights and the halogen control LCUs (Kruskal-Wallis Test: 95% confidence limits). The results support the view that there is a potential risk for heat-induced pulpal injury when light-curing RBCs. The risk is greater during bonding and with high energy, as compared to low-energy output systems. As the extent of tolerable thermal trauma by the pulp tissues is unknown, care and

  2. MODEL SPASIAL DINAMIK GENANGAN AKIBAT KENAIKAN MUKA AIR LAUT DI PESISIR SEMARANG (Spatial Dynamic Model of Inundated area due to Sea Level rise at Semarang coastal Area

    Directory of Open Access Journals (Sweden)

    Ifan R Suhelmi

    2014-05-01

    Full Text Available ABSTRAK Kota Semarang merupakan kota pesisir di Provinsi Jawa Tengah yang memiliki topografi datar pada wilayah laut yang biasa disebut dengan kota bawah dan bergunung pada bagian atasnya yang biasa disebut dengan kota atas. Kota bawah memiliki kerentanan yang tinggi terhadap genangan akibat kenaikan muka air laut, hal ini disebabkan olehkondisi topografi yang datar. Penelitian ini dilakukan untuk memberikan gambaran secara dinamik distribusi genangan akibat berbagai skenario kenaikan muka air laut. Model spasial dinamik menggunakan Flash yang berfungsi memberikan gambaran secara interaktif dan real time pada berbagai skenario kenaikan muka air laut. Skenario kenaikan muka air laut menggunakan skenario IPCC hingga tahun 2100. Hasil studi menunjukkan bahwa terjadi kenaikan jumlah genangan dari 599,4 ha pada tahun 2020 menjadi 4.235,4 ha pada tahun 2100.   ABSTRACT Semarang is one of coastal city located at Central Java Province. It has flatten topography at coastal area called “downside town” and hilly topography at upper area called “topside town”.  Ownside town was highly vulnerable to sea level rise caused by it’s topographic condition and the land subsidence phenomena. This research conducted to mapeed the inundated area due to sea level rise at many scenarios of sea level rise. The dynamic spatialmodel of sea level rise represented using flash techmology to showed distributed area inundated by sea level rise. The scenario of sea level rise by IPCC prediction was used at this study. The stuty showed that the inundated area increased from 599.4 ha at year 2020 to 4,235.4 ha at 2100.

  3. Distortion of the activation energy of high temperature internal friction background due to temperature dependence frequency variations

    International Nuclear Information System (INIS)

    Lambri, O.; Povolo, F.; Molinas, B.

    1991-01-01

    In this work, a study is made of how the variation of frequency with temperature affects an activation enthalpy. This effect is usually neglected, but in some cases like Cu-Au or Zry-4 (an alloy of nuclear interest base or Zr alloyed with Sn, Fe and Cr) such variation can rise up to as much as 16%/4/ and 37%/5/. (Author) [es

  4. A high-temperature hydrothermal deposit on the East Pacific Rise near 70N

    International Nuclear Information System (INIS)

    Boulegue, J.; Stouff, P.; Perseil, E.A.; Bernat, M.; Dupre, B.; Francheteau, J.

    1984-01-01

    A SEABEAM survey of the East Pacific Rise (EPR) led to the selection of several sites having structural characteristics favorable for hydrothermal activity. Dredging of such an area located at 7 0 N on the EPR resulted in the recovery of sulfides, oxides and fresh basalt. Chemical analyses and isotopic compositions showed that the recovered pyrites were probably precipitated directly from hot vent hydrothermal waters. Chemical analyses and isotopic composition of manganese-iron oxides indicated that they too were of hydrothermal origin. 210 Pb/Pb measurements yielded ages of 90 +- 10 years for the deposits. This site may still be undergoing hydrothermal activity. (orig.)

  5. Ciguatera incidence in the US Virgin Islands has not increased over a 30-year time period despite rising seawater temperatures.

    Science.gov (United States)

    Radke, Elizabeth G; Grattan, Lynn M; Cook, Robert L; Smith, Tyler B; Anderson, Donald M; Morris, J Glenn

    2013-05-01

    Ciguatera fish poisoning is the most common marine food poisoning worldwide. It has been hypothesized that increasing seawater temperature will result in increasing ciguatera incidence. In St. Thomas, US Virgin Islands, we performed an island-wide telephone survey (N = 807) and a medical record review of diagnosed ciguatera cases at the emergency department of the sole hospital and compared these data with comparable data sources collected in 1980. Annual incidence from both recent data sources remained high (12 per 1,000 among adults in the telephone survey). However, the combined data sources suggest that incidence has declined by 20% or more or remained stable over 30 years, whereas seawater temperatures were increasing. Illness was associated with lower education levels, higher levels of fish consumption, and having previous episodes of ciguatera; population shifts from 1980 to 2010 in these factors could explain an incidence decline of approximately 3 per 1,000, obscuring effects from rising seawater temperature.

  6. Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach

    Science.gov (United States)

    Ni, Sha; Taubner, Isabelle; Böhm, Florian; Winde, Vera; Böttcher, Michael E.

    2018-03-01

    The calcareous tubeworm Spirorbis spirorbis is a widespread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the Kiel Outdoor Benthocosms at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbis was observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favoured selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages

  7. Comparison of temperature rise in the pulp chamber with different light curing units: An in-vitro study

    OpenAIRE

    Rajesh Ebenezar A; Anilkumar R; Indira R; Ramachandran S; Srinivasan M

    2010-01-01

    Aims/Objectives : This in vitro study was designed to measure and compare the temperature rise in the pulp chamber with different light curing units. Materials and Methods : The study was done in two settings-in-vitro and in-vivo simulation. In in-vitro setting, 3mm and 6mm acrylic spacers with 4mm tip diameter thermocouple was used and six groups were formed according to the light curing source- 3 Quartz-Tungsten-Halogen (QTH) units and 3 Light-Emitting-Diode (LED) units. For the LED units...

  8. Comparison of temperature rise in the pulp chamber with different light curing units: An in-vitro study

    OpenAIRE

    Rajesh Ebenezar, A V; Anilkumar, R; Indira, R; Ramachandran, S; Srinivasan, M R

    2010-01-01

    Aims/Objectives: This in vitro study was designed to measure and compare the temperature rise in the pulp chamber with different light curing units. Materials and Methods: The study was done in two settings-in-vitro and in-vivo simulation. In in-vitro setting, 3mm and 6mm acrylic spacers with 4mm tip diameter thermocouple was used and six groups were formed according to the light curing source- 3 Quartz-Tungsten-Halogen (QTH) units and 3 Light-Emitting-Diode (LED) units. For the LED units, th...

  9. Self-sensing of temperature rises on light emitting diode based optrodes

    Science.gov (United States)

    Dehkhoda, Fahimeh; Soltan, Ahmed; Ponon, Nikhil; Jackson, Andrew; O'Neill, Anthony; Degenaar, Patrick

    2018-04-01

    Objective. This work presents a method to determine the surface temperature of microphotonic medical implants like LEDs. Our inventive step is to use the photonic emitter (LED) employed in an implantable device as its own sensor and develop readout circuitry to accurately determine the surface temperature of the device. Approach. There are two primary classes of applications where microphotonics could be used in implantable devices; opto-electrophysiology and fluorescence sensing. In such scenarios, intense light needs to be delivered to the target. As blue wavelengths are scattered strongly in tissue, such delivery needs to be either via optic fibres, two-photon approaches or through local emitters. In the latter case, as light emitters generate heat, there is a potential for probe surfaces to exceed the 2 °C regulatory. However, currently, there are no convenient mechanisms to monitor this in situ. Main results. We present the electronic control circuit and calibration method to monitor the surface temperature change of implantable optrode. The efficacy is demonstrated in air, saline, and brain. Significance. This paper, therefore, presents a method to utilize the light emitting diode as its own temperature sensor.

  10. A controlled intervention study concerning the effect of intended temperature rise on house dust mite load

    DEFF Research Database (Denmark)

    Sidenius, Kirsten E; Hallas, Thorkil E; Poulsen, Lars K.

    2002-01-01

    In epidemiological studies, increased indoor temperature--producing a lower relative humidity--is associated with low house dust mite (HDM) load. Twenty-eight dwellings were allocated for either intervention (12/15 completed) or control (11/13 completed). In the intervention group, participants w...

  11. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...

  12. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction

    DEFF Research Database (Denmark)

    Schobben, Martin; Joachimski, Michael M.; Korn, Dieter

    2014-01-01

    are presented together with new data from Wuchiapingian to Griesbachian sections in Iran. δ18O data from P-Tr sections in Iran document tropical sea surface temperatures (SST) of 27-33°C during the Changhsingian with a negative shift in δ18O starting at the extinction horizon, translating into a warming of SSTs...... and associated processes, vertical water column stratification, eutrophication and subsequent local anoxia may all have facilitated an extinction event....

  13. Rising air and stream-water temperatures in Chesapeake Bay region, USA

    Science.gov (United States)

    Rice, Karen C.; Jastram, John D.

    2015-01-01

    Monthly mean air temperature (AT) at 85 sites and instantaneous stream-water temperature (WT) at 129 sites for 1960–2010 are examined for the mid-Atlantic region, USA. Temperature anomalies for two periods, 1961–1985 and 1985–2010, relative to the climate normal period of 1971–2000, indicate that the latter period was statistically significantly warmer than the former for both mean AT and WT. Statistically significant temporal trends across the region of 0.023 °C per year for AT and 0.028 °C per year for WT are detected using simple linear regression. Sensitivity analyses show that the irregularly sampled WT data are appropriate for trend analyses, resulting in conservative estimates of trend magnitude. Relations between 190 landscape factors and significant trends in AT-WT relations are examined using principal components analysis. Measures of major dams and deciduous forest are correlated with WT increasing slower than AT, whereas agriculture in the absence of major dams is correlated with WT increasing faster than AT. Increasing WT trends are detected despite increasing trends in streamflow in the northern part of the study area. Continued warming of contributing streams to Chesapeake Bay likely will result in shifts in distributions of aquatic biota and contribute to worsened eutrophic conditions in the bay and its estuaries.

  14. Characterizing Uncertainty In Electrical Resistivity Tomography Images Due To Subzero Temperature Variability

    Science.gov (United States)

    Herring, T.; Cey, E. E.; Pidlisecky, A.

    2017-12-01

    Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.

  15. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

    Science.gov (United States)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex

    2018-01-01

    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100-250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150-750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070-2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  16. Coral mass spawning predicted by rapid seasonal rise in ocean temperature

    KAUST Repository

    Keith, Sally A.; Maynard, Jeffrey A.; Edwards, Alasdair J.; Guest, James R.; Bauman, Andrew G.; van Hooidonk, Ruben; Heron, Scott F.; Berumen, Michael L.; Bouwmeester, Jessica; Piromvaragorn, Srisakul; Rahbek, Carsten; Baird, Andrew H.

    2016-01-01

    Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R2 = 0.73, peak: R2 = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.

  17. Coral mass spawning predicted by rapid seasonal rise in ocean temperature

    KAUST Repository

    Keith, Sally A.

    2016-05-11

    Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R2 = 0.73, peak: R2 = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.

  18. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    Science.gov (United States)

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  19. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency.

    Science.gov (United States)

    Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel

    2015-03-01

    In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.

  20. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change.

    Science.gov (United States)

    Kay, S; Caesar, J; Wolf, J; Bricheno, L; Nicholls, R J; Saiful Islam, A K M; Haque, A; Pardaens, A; Lowe, J A

    2015-07-01

    Coastal flooding due to storm surge and high tides is a serious risk for inhabitants of the Ganges-Brahmaputra-Meghna (GBM) delta, as much of the land is close to sea level. Climate change could lead to large areas of land being subject to increased flooding, salinization and ultimate abandonment in West Bengal, India, and Bangladesh. IPCC 5th assessment modelling of sea level rise and estimates of subsidence rates from the EU IMPACT2C project suggest that sea level in the GBM delta region may rise by 0.63 to 0.88 m by 2090, with some studies suggesting this could be up to 0.5 m higher if potential substantial melting of the West Antarctic ice sheet is included. These sea level rise scenarios lead to increased frequency of high water coastal events. Any effect of climate change on the frequency and severity of storms can also have an effect on extreme sea levels. A shelf-sea model of the Bay of Bengal has been used to investigate how the combined effect of sea level rise and changes in other environmental conditions under climate change may alter the frequency of extreme sea level events for the period 1971 to 2099. The model was forced using atmospheric and oceanic boundary conditions derived from climate model projections and the future scenario increase in sea level was applied at its ocean boundary. The model results show an increased likelihood of extreme sea level events through the 21st century, with the frequency of events increasing greatly in the second half of the century: water levels that occurred at decadal time intervals under present-day model conditions occurred in most years by the middle of the 21st century and 3-15 times per year by 2100. The heights of the most extreme events tend to increase more in the first half of the century than the second. The modelled scenarios provide a case study of how sea level rise and other effects of climate change may combine to produce a greatly increased threat to life and property in the GBM delta by the end

  1. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe

    Science.gov (United States)

    Volosciuk, Claudia; Maraun, Douglas; Semenov, Vladimir A.; Tilinina, Natalia; Gulev, Sergey K.; Latif, Mojib

    2016-08-01

    The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970-1999 and 2000-2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000-2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970-1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.

  2. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    Science.gov (United States)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2018-04-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  3. Predicting the Extent of Inundation due to Sea-Level Rise: Al Hamra Development, Ras Al Khaimah, UAE. A Pilot Project

    Directory of Open Access Journals (Sweden)

    Arthur Robert M.

    2016-06-01

    Full Text Available As new information is received, predictions of sea-level rise resulting from global warming continue to be revised upwards. Measurements indicate that the rise in sea-level is continuing at, or close to, the worst case forecasts (Kellet et al. 2014. Coastal areas are coming under increasing risk of inundation and flooding as storms are predicted to increase in frequency and severity, adding to the risk of inundation due to higher sea levels. Stakeholders, government agencies, developers and land owners require accurate, up to date information to be able to protect coastal areas. Geographic Information Systems (GIS along with accurate remote sensing technologies such as LiDAR provides the best means for delivering this information. Using these technologies, this paper predicts the risk posed to a large multi-use development in the emirate of Ras Al Khaimah, UAE. This development, Al Hamra Village, is situated on the coast of the Arabian Gulf. Al Hamra’s physical relationship to the Gulf is in common with other developments in Ras Al Khaimah in its and for this reason has been used as a pilot project. The resulting GIS model shows that Al Hamra is indeed at risk from predicted flood events. How this information can be used as a planning tool for numerous strategies is discussed in this paper.

  4. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    Science.gov (United States)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  5. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band

    International Nuclear Information System (INIS)

    Wainwright, P R

    2003-01-01

    Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor'. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bio-heat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur

  6. Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage strain kinetics, temperature rise, and hardness.

    Science.gov (United States)

    Hofmann, Norbert; Hugo, Burkard; Klaiber, Bernd

    2002-12-01

    This study compares commercially available light-emitting diode (LED) lights with a quartz tungsten halogen (QTH) unit for photo-activating resin-based composites (RBC). Shrinkage strain kinetics and temperature within the RBC were measured simultaneously using the 'deflecting disc technique' and a thermocouple. Surface hardness (Knoop) at the bottom of 1.5-mm thick RBC specimens was measured 24 h after irradiation to indicate degree of cure. Irradiation was performed for 40 s using either the continuous or the ramp-curing mode of a QTH and a LED light (800 mW cm(-2) and 320 mW cm(-2), respectively) or the continuous mode of a lower intensity LED light (160 mW cm(-2)). For Herculite XRV and Filtek Z250 (both containing only camphoroquinone as a photo-initiator) the QTH and the stronger LED light produced similar hardness, while in the case of Definite (containing an additional photo-activator absorbing at lower wavelength) lower hardness was observed after LED irradiation. The temperature rise during polymerization and heating from radiation were lower with LED compared to QTH curing. The fastest increase of polymerization contraction was observed after QTH continuous irradiation, followed by the stronger and the weaker LED light in the continuous mode. Ramp curing decreased contraction speed even more. Shrinkage strain after 60 min was greater following QTH irradiation compared with both LED units (Herculite, Definite) or with the weaker LED light (Z250).

  7. The Effect in Vitro of Ionizing Irradiation and Small Rises in Temperature on the Uptake and Release of Labelled Lipids by the Human Erythrocyte Membrane

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Karle, H.; Stender, S.

    1978-01-01

    1. The effect of X-irradiation (50 000 rad) and an increase in temperature from 37 to 42° C on the synthesis, uptake and release of labelled lipids by erythrocytes was studied in plasma incubations in vitro. 2. Both irradiation and a rise in temperature resulted in an enhanced synthesis of [32P]phosphatidic...

  8. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness

    Science.gov (United States)

    Nusslé, Sébastien; Matthews, Kathleen R.; Carlson, Stephanie M.

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two “resting” meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a “resting” state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change. PMID:26565706

  9. Stresses and strains in pavement structures due to the effect of temperatures

    Directory of Open Access Journals (Sweden)

    Svilar Mila

    2016-01-01

    Full Text Available At its absolute amount, stresses due to the effect of temperature in the pavement structures, especially those rigid, are often of the same order of magnitude as those resulting from vehicles' load, but it happens that due to such impact many slabs become cracked before the road is handed over into operation. The temperature stresses which occur in pavement structures include stresses due to bending and buckling, stresses due to friction and hidden stresses. Stresses caused by the influence of temperature in the pavement structure during the day are generally below the strength of the component materials so they do not cause the consequences for structure. However, appearance of residual stresses and their accumulation after a sufficiently long period of time may lead to failure in structure, i.e. thermal fatigue. The paper presents the effects of temperature changes on the pavement structures in the physical and mechanical terms, and the manner in which the temperature is taken into account during the design of pavement structures.

  10. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    Directory of Open Access Journals (Sweden)

    Neeru Kaushal

    2016-12-01

    Full Text Available The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sensitive to heat stress, resulting in impaired fertilization to cause abortion of flowers. During seed filling, heat stress retards seed growth by affecting all the biochemical events to reduce seed size. Unfavorable temperature may significantly affect photosynthesis, respiration, water balance, and membrane stability of leaves. To combat heat stress, plants acquire various defense mechanisms for their survival such as maintaining membrane stability, and scavenging reactive oxygen species by generating antioxidants and stress proteins. Thermo-tolerance can be improved by the accumulation of various compounds of low molecular mass known as thermo-protectants as well as phyto-hormones. Exogenous application of these molecules has benefited plants growing under heat stress. Alternatively, transgenic plants over-expressing the enzymes catalyzing the synthesis of these molecules may be raised to increase their endogenous levels to improve heat tolerance. In recent times, various transgenics have been developed with improved thermo-tolerance having potential benefits for inducing heat tolerance in food crops. Updated information about of the effects of heat stress on various food crops and their responses as well as adaptive mechanisms is reviewed here.

  11. Enhanced Shear-induced Platelet Aggregation Due to Low-temperature Storage

    Science.gov (United States)

    2013-07-01

    Grewal PK, Wandall HH, Josefsson EC, Sorensen AL, Larson G, Marth JD, Hartwig JH, Hoffmeister KM. Dual roles for hepatic lectin receptors in the clearance ...PLT aggregation due to low temperature storage may be a beneficial strategy to prevent severe bleeding in trauma . P latelets (PLTs) are transfused to...prevent bleed- ing due to thrombocytopenia associated with hematologic malignancies or to manage severe blood loss during surgery or trauma . PLTs are

  12. Mechanism of a strong rise of Tc due to the calcium doping in Y1-xCaxBa2Cu2.8Zn0.2Oy

    International Nuclear Information System (INIS)

    Martynova, O.A.; Potapov, D.V.; Gasumyants, V.E.; Vladimirskaya, E.V.

    2011-01-01

    Highlights: → Calcium is observed to restore superconductivity in Y 1-x Ca x Ba 2 Cu 2.8 Zn 0.2 O y . → Parameters of the band spectrum and charge-carrier system are determined. → The calcium doping is shown to give a noticeable contribution to the DOS function. → The mechanism of calcium effect on T c in doped YBa 2 Cu 3 O y is discussed. - Abstract: The normal-state transport properties and the critical temperature, T c , for three series of Y 1-x Ca x Ba 2 Cu 2.8 Zn 0.2 O y (x = 0-0.2) samples with different oxygen content have been investigated and discussed in comparison with results for other calcium-doped YBa 2 Cu 3 O y . We have observed the calcium doping to restore the superconductivity in the YBa 2 Cu 3 O y system even in case of the preliminary T c suppression by the direct destruction of the CuO 2 planes due to a preliminary doping by zinc. The T c value rises strongly with increasing calcium content and this rise becomes faster for the oxygen-reduced series. Based on a narrow-band model, the parameters of the band spectrum structure and the charge-carrier system in the normal state were determined from the analysis of the thermopower temperature dependences in order to reveal the mechanism of the T c rise under the Ca influence. It is shown that the T c increase in Y 1-x Ca x Ba 2 Cu 2.8 Zn 0.2 O y is related to the direct Ca ions effect. The mechanism of the calcium influence on the T c value is discussed with respect to the Ca-induced conduction band modification. The calcium doping in Y 1-x Ca x Ba 2 Cu 2.8 Zn 0.2 O y is shown to give a noticeable contribution to the density-of-states function leading to a strong rise in its value at the Fermi level that results in a restoration of the superconducting properties.

  13. Temperature distribution due to the heat generation in nuclear reactor shielding

    International Nuclear Information System (INIS)

    Torres, L.M.R.

    1985-01-01

    A study is performed for calculating nuclear heating due to the interaction of neutrons and gamma-rays with matter. Modifications were implemented in the ANISN and DOT 3.5 codes, that solve the transport equation using the discrete ordinate method, in one two-dimensions respectively, to include nuclear heating calculations in these codes. In order to determine the temperature distribution, using the finite difference method, a numerical model was developed for solving the heat conduction equation in one-dimension, in plane, cylindrical and spherical geometries, and in two-dimensions, X-Y and R-Z geometries. Based on these models, computer programs were developed for calculating the temperature distribution. Tests and applications of the implemented modifications were performed in problems of nuclear heating and temperature distribution due to radiation energy deposition in fission and fusion reactor shields. (Author) [pt

  14. The effect of gaze angle on the evaluations of SAR and temperature rise in human eye under plane-wave exposures from 0.9 to 10 GHz

    International Nuclear Information System (INIS)

    Diao, Yinliang; Leung, Sai-Wing; Sun, Weinong; Siu, Yun-Ming; Kong, Richard; Hung Chan, Kwok

    2016-01-01

    This article investigates the effect of gaze angle on the specific absorption rate (SAR) and temperature rise in human eye under electromagnetic exposures from 0.9 to 10 GHz. Eye models in different gaze angles are developed based on bio-metric data. The spatial-average SARs in eyes are investigated using the finite-difference time-domain method, and the corresponding maximum temperature rises in lens are calculated by the finite-difference method. It is found that the changes in the gaze angle produce a maximum variation of 35, 12 and 20 % in the eye-averaged SAR, peak 10 g average SAR and temperature rise, respectively. Results also reveal that the eye-averaged SAR is more sensitive to the changes in the gaze angle than peak 10 g average SAR, especially at higher frequencies. (authors)

  15. Temperature distribution of a simplified rotor due to a uniform heat source

    Science.gov (United States)

    Welzenbach, Sarah; Fischer, Tim; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2018-03-01

    In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.

  16. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-01-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He + ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10 24 ions m −2 (with a flux of 7.2 × 10 20 ions m −2 s −1 ). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO 3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth

  17. Temperature effects on loss of prestress due to relaxation of steel

    International Nuclear Information System (INIS)

    Appa Rao, G.; Yamini Sreevalli, I.; Meher Prasad, A.; Reddy, G.R.; Prabhakar, G.

    2007-01-01

    Prestressed concrete is used in general civil engineering applications and in nuclear power plants for a number of structures such as containments, reactor pressure vessels, missile shield members, reactor cavity walls etc. Loss of prestress in containment structures is a serious concern for the longevity rather than serviceability. Loss of prestress higher than the initially designed values has been reported by various agencies at a number of nuclear power plants with prestressed concrete containment structures. At present the codes specify the prestress losses in Nuclear Power Plant Containment (NPPC) structures for 50 years. However there is a continuous effort to improve the life of NPPC particularly for a design life of 100 years. The long-term losses are mainly due to relaxation of prestressing cables, creep and shrinkage of concrete. The loss of prestress due to relaxation of prestressing cables is considered to be severe due to temperature effects. In this paper an effort has been made to understand the loss of prestress due to relaxation of steel at different temperatures namely 20 degC, 25 degC, 30 degC, 35 degC, 40 degC and 45 degC and the results up to 1000 hrs to estimate the losses over longer life of structures. The initial prestress was maintained at 0.70 times guaranteed ultimate tensile strength (GUTS) of cables. The prestressing loss due to relaxation of prestressing cables increases as the temperature increases. (author)

  18. Volumetric Heat Generation and Consequence Raise in Temperature Due to Absorption of Neutrons from Thermal up to 14.9 MeV Energies

    CERN Document Server

    Massoud, E

    2003-01-01

    In this work, the heat generation rate and the consequence rise in temperature due to absorption of all neutrons from thermal energies (E<0.025) up to 14.9 MeV in water, paraffin wax, ordinary concrete and heavy concrete and heavy concrete as some selected hydrogenous materials are investigated. The neutron flux distributions are calculated by both ANISN-code and three group method in which the fast neutrons are expressed by the removal cross section concept while the other two groups (epithermal and thermal) are treated by the diffusion equation. The heat generation can be calculated from the neutron macroscopic absorption of each material or mixture multiplied by the corresponding neutron fluxes. The rise in temperature is then calculated by using both of the heat generation and the thermal conductivity of the selected materials. Some results are compared with the available experimental and theoretical data and a good agreement is achieved.

  19. Enzyme activity deviates due to spatial and temporal temperature profiles in commercial microtiter plate readers.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Sieben, Michaela; Lattermann, Clemens; Kauffmann, Kira; Büchs, Jochen; Spieß, Antje C

    2016-03-01

    Microtiter plates (MTP) and automatized techniques are increasingly applied in the field of biotechnology. However, the susceptibility of MTPs to edge effects such as thermal gradients can lead to high variation of measured enzyme activities. In an effort to enhance experimental reliability, to quantify, and to minimize instrument-caused deviations in enzyme kinetics between two MTP-readers, we comprehensively quantified temperature distribution in 96-well MTPs. We demonstrated the robust application of the absorbance dye cresol red as easily applicable temperature indicator in cuvettes and MTPs and determined its accuracy to ±0.16°C. We then quantified temperature distributions in 96-well MTPs revealing temperature deviations over single MTP of up to 2.2°C and different patterns in two commercial devices (BioTek Synergy 4 and Synergy Mx). The obtained liquid temperature was shown to be substantially controlled by evaporation. The temperature-induced enzyme activity variation within MTPs amounted to about 20 %. Activity deviations between MTPs and to those in cuvettes were determined to 40 % due to deviations from the set temperature in MTPs. In conclusion, we propose a better control of experimental conditions in MTPs or alternative experimental systems for reliable determination of kinetic parameters for bioprocess development. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken....... This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other corrosion mechanisms...... appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment...

  1. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been...... undertaken. This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...

  2. Projecting future summer mortality due to ambient ozone concentration and temperature changes

    Science.gov (United States)

    Lee, Jae Young; Lee, Soo Hyun; Hong, Sung-Chul; Kim, Ho

    2017-05-01

    Climate change is known to affect the human health both directly by increased heat stress and indirectly by altering environments, particularly by altering the rate of ambient ozone formation in the atmosphere. Thus, the risks of climate change may be underestimated if the effects of both future temperature and ambient ozone concentrations are not considered. This study presents a projection of future summer non-accidental mortality in seven major cities of South Korea during the 2020s (2016-2025) and 2050s (2046-2055) considering changes in temperature and ozone concentration, which were predicted by using the HadGEM3-RA model and Integrated Climate and Air Quality Modeling System, respectively. Four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) were considered. The result shows that non-accidental summer mortality will increase by 0.5%, 0.0%, 0.4%, and 0.4% in the 2020s, 1.9%, 1.5%, 1.2%, and 4.4% in the 2050s due to temperature change compared to the baseline mortality during 2001-2010, under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the mortality will increase by 0.0%, 0.5%, 0.0%, and 0.5% in the 2020s, and 0.2%, 0.2%, 0.4%, and 0.6% in the 2050s due to ozone concentration change. The projection result shows that the future summer morality in South Korea is increased due to changes in both temperature and ozone, and the magnitude of ozone-related increase is much smaller than that of temperature-related increase, especially in the 2050s.

  3. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)

    2013-10-15

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.

  4. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    International Nuclear Information System (INIS)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos; Valougeorgis, Dimitris; André, Julien; Millet, Francois; Perin, Jean Paul

    2013-01-01

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced

  5. The effect of temperature rise on microstructural properties of cement-based materials : Correlation of experimental data and a simulation approach

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2015-01-01

    This work reports on the influence of stray current flow on temperature rise in hardening cement-based materials and consequently altered cement hydration. To simulate stray current, different levels of electrical current were applied to cement paste and mortar specimens immediately after casting.

  6. Calculation of SAR and temperature rise in a high-resolution vascularized model of the human eye and orbit when exposed to a dipole antenna at 900, 1500 and 1800 MHz

    International Nuclear Information System (INIS)

    Flyckt, V M M; Raaymakers, B W; Kroeze, H; Lagendijk, J J W

    2007-01-01

    The eye is considered to be a critical organ when determining safety standards for radiofrequency radiation. With a detailed anatomy of the human eye and orbit inserted in a whole-head model, the specific absorption rates (SARs) and thermal effects were determined under exposure to a dipole antenna representing a mobile phone operating at 900, 1500 and 1800 MHz with an output power of 1 W. The temperature rise was calculated by taking the blood flow into account either by the Pennes bioheat model or by including the discrete vasculature (DIVA). In addition, a simple spherical model using constant heat transfer coefficients was used. Peak SARs in the humour are 4.5, 7.7 and 8.4 W kg -1 for 900, 1500 and 1800 MHz respectively. Averaged over the whole eyeball, the SARs are 1.7, 2.5 and 2.2 W kg -1 . The maximum temperature rises in the eye due to the exposure are 0.22, 0.27 and 0.25 deg. C for exposure of 900, 1500 and 1800 MHz, respectively, calculated with DIVA. For the Pennes bioheat model, the temperature rises are slightly lower: 0.19, 0.24, 0.22 deg. C respectively. For the simple spherical model, the maximum temperature rises are 0.15, 0.22 and 0.20 deg. C. The peak temperature is located in the anterior part of the lens for 900 MHz and deeper in the eye for higher frequencies, and in the posterior part of the lens for 1500 MHz and close to the centre of the eyeball for 1800 MHz. For these RF safety applications, both DIVA and the Pennes bioheat model could be used to relate the SAR distributions to the resulting temperature distributions. Even though, for these artificial exposure conditions, the SAR values are not in compliance with safety guidelines, the maximum temperature rises in the eye are too small to give harmful effects. The temperature in the eye also remains below body core temperature

  7. Calculation of SAR and temperature rise in a high-resolution vascularized model of the human eye and orbit when exposed to a dipole antenna at 900, 1500 and 1800 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Flyckt, V M M; Raaymakers, B W; Kroeze, H; Lagendijk, J J W [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2007-05-21

    The eye is considered to be a critical organ when determining safety standards for radiofrequency radiation. With a detailed anatomy of the human eye and orbit inserted in a whole-head model, the specific absorption rates (SARs) and thermal effects were determined under exposure to a dipole antenna representing a mobile phone operating at 900, 1500 and 1800 MHz with an output power of 1 W. The temperature rise was calculated by taking the blood flow into account either by the Pennes bioheat model or by including the discrete vasculature (DIVA). In addition, a simple spherical model using constant heat transfer coefficients was used. Peak SARs in the humour are 4.5, 7.7 and 8.4 W kg{sup -1} for 900, 1500 and 1800 MHz respectively. Averaged over the whole eyeball, the SARs are 1.7, 2.5 and 2.2 W kg{sup -1}. The maximum temperature rises in the eye due to the exposure are 0.22, 0.27 and 0.25 deg. C for exposure of 900, 1500 and 1800 MHz, respectively, calculated with DIVA. For the Pennes bioheat model, the temperature rises are slightly lower: 0.19, 0.24, 0.22 deg. C respectively. For the simple spherical model, the maximum temperature rises are 0.15, 0.22 and 0.20 deg. C. The peak temperature is located in the anterior part of the lens for 900 MHz and deeper in the eye for higher frequencies, and in the posterior part of the lens for 1500 MHz and close to the centre of the eyeball for 1800 MHz. For these RF safety applications, both DIVA and the Pennes bioheat model could be used to relate the SAR distributions to the resulting temperature distributions. Even though, for these artificial exposure conditions, the SAR values are not in compliance with safety guidelines, the maximum temperature rises in the eye are too small to give harmful effects. The temperature in the eye also remains below body core temperature.

  8. Calculation of SAR and temperature rise in a high-resolution vascularized model of the human eye and orbit when exposed to a dipole antenna at 900, 1500 and 1800 MHz.

    Science.gov (United States)

    Flyckt, V M M; Raaymakers, B W; Kroeze, H; Lagendijk, J J W

    2007-05-21

    The eye is considered to be a critical organ when determining safety standards for radiofrequency radiation. With a detailed anatomy of the human eye and orbit inserted in a whole-head model, the specific absorption rates (SARs) and thermal effects were determined under exposure to a dipole antenna representing a mobile phone operating at 900, 1500 and 1800 MHz with an output power of 1 W. The temperature rise was calculated by taking the blood flow into account either by the Pennes bioheat model or by including the discrete vasculature (DIVA). In addition, a simple spherical model using constant heat transfer coefficients was used. Peak SARs in the humour are 4.5, 7.7 and 8.4 W kg(-1) for 900, 1500 and 1800 MHz respectively. Averaged over the whole eyeball, the SARs are 1.7, 2.5 and 2.2 W kg(-1). The maximum temperature rises in the eye due to the exposure are 0.22, 0.27 and 0.25 degrees C for exposure of 900, 1500 and 1800 MHz, respectively, calculated with DIVA. For the Pennes bioheat model, the temperature rises are slightly lower: 0.19, 0.24, 0.22 degrees C respectively. For the simple spherical model, the maximum temperature rises are 0.15, 0.22 and 0.20 degrees C. The peak temperature is located in the anterior part of the lens for 900 MHz and deeper in the eye for higher frequencies, and in the posterior part of the lens for 1500 MHz and close to the centre of the eyeball for 1800 MHz. For these RF safety applications, both DIVA and the Pennes bioheat model could be used to relate the SAR distributions to the resulting temperature distributions. Even though, for these artificial exposure conditions, the SAR values are not in compliance with safety guidelines, the maximum temperature rises in the eye are too small to give harmful effects. The temperature in the eye also remains below body core temperature.

  9. Assessment of Temperature Rise and Time of Alveolar Ridge Splitting by Means of Er:YAG Laser, Piezosurgery, and Surgical Saw: An Ex Vivo Study.

    Science.gov (United States)

    Matys, Jacek; Flieger, Rafał; Dominiak, Marzena

    2016-01-01

    The most common adverse effect after bone cutting is a thermal damage. The aim of our study was to evaluate the bone temperature rise during an alveolar ridge splitting, rating the time needed to perform this procedure and the time to raise the temperature of a bone by 10°C, as well as to evaluate the bone carbonization occurrence. The research included 60 mandibles ( n = 60) of adult pigs, divided into 4 groups ( n = 15). Two vertical and one horizontal cut have been done in an alveolar ridge using Er:YAG laser with set power of 200 mJ (G1), 400 mJ (G2), piezosurgery unit (G3), and a saw (G4). The temperature was measured by K-type thermocouple. The highest temperature gradient was noted for piezosurgery on the buccal and lingual side of mandible. The temperature rises on the bone surface along with the increase of laser power. The lower time needed to perform ridge splitting was measured for a saw, piezosurgery, and Er:YAG laser with power of 400 mJ and 200 mJ, respectively. The temperature rise measured on the bone over 10°C and bone carbonization occurrence was not reported in all study groups. Piezosurgery, Er:YAG laser (200 mJ and 400 mJ), and surgical saw are useful and safe tools in ridge splitting surgery.

  10. Assessment of Temperature Rise and Time of Alveolar Ridge Splitting by Means of Er:YAG Laser, Piezosurgery, and Surgical Saw: An Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Jacek Matys

    2016-01-01

    Full Text Available The most common adverse effect after bone cutting is a thermal damage. The aim of our study was to evaluate the bone temperature rise during an alveolar ridge splitting, rating the time needed to perform this procedure and the time to raise the temperature of a bone by 10°C, as well as to evaluate the bone carbonization occurrence. The research included 60 mandibles (n=60 of adult pigs, divided into 4 groups (n=15. Two vertical and one horizontal cut have been done in an alveolar ridge using Er:YAG laser with set power of 200 mJ (G1, 400 mJ (G2, piezosurgery unit (G3, and a saw (G4. The temperature was measured by K-type thermocouple. The highest temperature gradient was noted for piezosurgery on the buccal and lingual side of mandible. The temperature rises on the bone surface along with the increase of laser power. The lower time needed to perform ridge splitting was measured for a saw, piezosurgery, and Er:YAG laser with power of 400 mJ and 200 mJ, respectively. The temperature rise measured on the bone over 10°C and bone carbonization occurrence was not reported in all study groups. Piezosurgery, Er:YAG laser (200 mJ and 400 mJ, and surgical saw are useful and safe tools in ridge splitting surgery.

  11. Effect of adverse environmental conditions and protective clothing on temperature rise in a human body exposed to radiofrequency electromagnetic fields.

    Science.gov (United States)

    Moore, Stephen M; McIntosh, Robert L; Iskra, Steve; Lajevardipour, Alireza; Wood, Andrew W

    2017-07-01

    This study considers the computationally determined thermal profile of a finely discretized, heterogeneous human body model, simulating a radiofrequency electromagnetic field (RF-EMF) worker wearing protective clothing subject to RF-EMF exposure, and subject to various environmental conditions including high ambient temperature and high humidity, with full thermoregulatory mechanisms in place. How the human body responds in various scenarios was investigated, and the information was used to consider safety limits in current international RF-EMF safety guidelines and standards. It was found that different environmental conditions had minimal impact on the magnitude of the thermal response due to RF-EMF exposure, and that the current safety factor of 10 applied in international RF-EMF safety guidelines and standards for RF-EMF workers is generally conservative, though it is only narrowly so when workers are subjected to the most adverse environmental conditions. Bioelectromagnetics. 38:356-363, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Enhanced Ozone Production at Low Temperatures due to Ethanol (E85)

    Science.gov (United States)

    Ginnebaugh, D. L.; Livingstone, P. L.; Jacobson, M. Z.

    2009-12-01

    The increased use of ethanol in transportation fuels warrants an investigation of its consequences. An important component of such an investigation is the temperature-dependence of ethanol and gasoline exhaust chemistry. We use the near-explicit Master Chemical Mechanism (MCM, version 3.1, LEEDS University) with the SMVGEAR II chemical ordinary differential solver to provide the speed necessary to simulate explicit chemistry to examine such effects. The MCM has over 13,500 organic reactions and 4,600 species. SMVGEAR II is a sparse-matrix Gear solver that reduces the computation time significantly while maintaining any specified accuracy. Although for this study we use a box model, we determined that the speed of the MCM with the SMVGEAR solver will allow the MCM to be modeled in 3-dimensions. We also verified the accuracy of the model with comparisons to smog chamber data. We use species-resolved tailpipe emissions data for E85 (15% gasoline, 85% ethanol fuel blend) and gasoline vehicles to compare the impact of each on ozone and carcinogenic organic gases as a function of ambient temperature and background concentrations, using Los Angeles in 2020 as a base case. We use two different emissions sets - one is a compilation of data taken at near 24 C and the other from data taken at -7 C - to determine how atmospheric chemistry and emissions are affected by temperature. We include diurnal effects by examining 2 day and 5 day scenarios. We find that for both emission data sets, the average ozone concentrations through the range of temperatures tested are higher with E85 than with gasoline by 8 parts per billion volume (ppbv) at higher temperatures to 55 ppbv at low temperatures and low sunlight (winter conditions) for an area with a high nitrogen oxides (NOx) to non-methane organic gases (NMOG) ratio. The results suggest that E85's effect on health through ozone formation becomes increasingly more significant relative to gasoline as temperatures decreased due to the

  13. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    Science.gov (United States)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-11-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  14. Evaluating temperature changes of brain tissue due to induced heating of cell phone waves

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2018-01-01

    Full Text Available Background: Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones. This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. Methods: This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917 with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. Results: In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Conclusions: Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation.

  15. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat

    Directory of Open Access Journals (Sweden)

    Denise de Melo-Marins

    2018-04-01

    Full Text Available The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL, or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE trials in the heat with different hydration strategies: personalized volume (PVO, where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR, rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials (p = 0.801. Body mass decreased after ADL (p = 0.008 and CON (p < 0.001 and was maintained in PVO trials (p = 0.171. Participants consumed 0 ml in CON, 166 ± 167 ml in ADL, and 1,080 ± 166 ml in PVO trials. The increase in mean body temperature was similar among trials despite a lower increase in skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p = 0.0038. HR was lower toward the end of TTE in PVO (162 ± 8 bpm in comparison with ADL (168 ± 12 bpm and CON (167 ± 10 bpm, p < 0.001. In conclusion, a personalized hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin

  16. Simulation of a Dispersive Tsunami due to the 2016 El Salvador-Nicaragua Outer-Rise Earthquake (M w 6.9)

    Science.gov (United States)

    Tanioka, Yuichiro; Ramirez, Amilcar Geovanny Cabrera; Yamanaka, Yusuke

    2018-01-01

    The 2016 El Salvador-Nicaragua outer-rise earthquake (M w 6.9) generated a small tsunami observed at the ocean bottom pressure sensor, DART 32411, in the Pacific Ocean off Central America. The dispersive observed tsunami is well simulated using the linear Boussinesq equations. From the dispersive character of tsunami waveform, the fault length and width of the outer-rise event is estimated to be 30 and 15 km, respectively. The estimated seismic moment of 3.16 × 1019 Nm is the same as the estimation in the Global CMT catalog. The dispersive character of the tsunami in the deep ocean caused by the 2016 outer-rise El Salvador-Nicaragua earthquake could constrain the fault size and the slip amount or the seismic moment of the event.

  17. Simulation of a Dispersive Tsunami due to the 2016 El Salvador-Nicaragua Outer-Rise Earthquake ( M w 6.9)

    Science.gov (United States)

    Tanioka, Yuichiro; Ramirez, Amilcar Geovanny Cabrera; Yamanaka, Yusuke

    2018-04-01

    The 2016 El Salvador-Nicaragua outer-rise earthquake ( M w 6.9) generated a small tsunami observed at the ocean bottom pressure sensor, DART 32411, in the Pacific Ocean off Central America. The dispersive observed tsunami is well simulated using the linear Boussinesq equations. From the dispersive character of tsunami waveform, the fault length and width of the outer-rise event is estimated to be 30 and 15 km, respectively. The estimated seismic moment of 3.16 × 1019 Nm is the same as the estimation in the Global CMT catalog. The dispersive character of the tsunami in the deep ocean caused by the 2016 outer-rise El Salvador-Nicaragua earthquake could constrain the fault size and the slip amount or the seismic moment of the event.

  18. Thermal conductivity degradation of graphites due to neutron irradiation at low temperature

    International Nuclear Information System (INIS)

    Snead, L.L.; Burchell, T.D.

    1995-01-01

    Several graphites and carbon/carbon composites (C/C's) have been irradiated with fission neutrons near 150 C and at fluences up to a displacement level of 0.24 dpa. The unirradiated room temperature thermal conductivity of these materials varied from 114 W/m K for H-451 isotropic graphite, to 670 W/m K for a unidirectional FMI-1D C/C composite. At the irradiation temperature a saturation reduction in thermal conductivity was seen to occur at displacement levels of approximately 0.1 dpa. All materials were seen to degrade to approximately 10 to 14% of their original thermal conductivity after irradiation. The significant recovery of thermal conductivity due to post-irradiation isochronal anneals is also presented. (orig.)

  19. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  20. Skewness of the cosmic microwave background temperature fluctuations due to the non-linear gravitational instability

    International Nuclear Information System (INIS)

    Munshi, D.; Souradeep, T.; Starobinsky, A.A.

    1995-01-01

    The skewness of the temperature fluctuations of the cosmic microwave background (CMB) produced by initially Gaussian adiabatic perturbations with the flat (Harrison-Zeldovich) spectrum, which arises due to non-linear corrections to a gravitational potential at the matter-dominated stage, is calculated quantitatively. For the standard CDM model, the effect appears to be smaller than expected previously and lies below the cosmic variance limit even for small angles. The sign of the skewness is opposite to that of the skewness of density perturbations. (author)

  1. Aggregation of human sperm at higher temperature is due to hyperactivation.

    Science.gov (United States)

    Keppler, E L; Chan, P J; Patton, W C; King, A

    1999-01-01

    Chemotaxis of sperm cells to chemicals and hormones, such as progesterone, helps us to understand the concept of sperm transport. Here, the hypothesis was that heat increased sperm hyperactive motility, which caused the sperm to aggregate at the higher temperature. The objectives were (1) to determine the concentration of sperm at both halves of an artificial female reproductive tract made from a hermetically sealed cryopreservation straw filled with culture medium and placed with each end at different temperatures, and (2) to analyze the motility or kinematic parameters and hyperactivation of sperm found at the different temperatures. Cryopreserved-thawed human donor sperm (N = 6) were pooled and processed through 2-layer colloid solution. Analyses of the motile sperm were carried out and the washed sperm were homogeneously mixed and pipetted into several 0.5-mL French cryopreservation straws and heat-sealed. The control substance, consisting of acid-treated sperm, was also placed in several straws. The plastic straws of sperm were placed half at 23 degrees C and half was at either 37 or 40 degrees C. After 4 h, sperm at different sections of the straws were analyzed using the Hamilton Thorn motility analyzer (HTM-C). After 4 h of incubation, the concentration of sperm was doubled at the 40 degrees C heated half of the straw when compared with the other half of the straw at 23 degrees C. There were no differences in sperm concentration in the straw kept half at 37 degrees C and half at 23 degrees C. There were significantly higher percent motility, mean average path velocity, straight line velocity, lateral head displacement, and percent hyperactivation in sperm at the 40 degrees C temperature. The aggregation of sperm at the higher temperature of 40 degrees C may be due to enhanced motility, increased sperm velocities, and a 10-fold increase in hyperactivation at that temperature. The 37 degrees C temperature was not sufficient to attract sperm. Sperm cells

  2. Antagonistic Effects of Ocean Acidification and Rising Sea Surface Temperature on the Dissolution of Coral Reef Carbonate Sediments

    Directory of Open Access Journals (Sweden)

    Daniel Trnovsky

    2016-11-01

    Full Text Available Increasing atmospheric CO2 is raising sea surface temperature (SST and increasing seawater CO2 concentrations, resulting in a lower oceanic pH (ocean acidification; OA, which is expected to reduce the accretion of coral reef ecosystems. Although sediments comprise most of the calcium carbonate (CaCO3 within coral reefs, no in situ studies have looked at the combined effects of increased SST and OA on the dissolution of coral reef CaCO3 sediments. In situ benthic chamber incubations were used to measure dissolution rates in permeable CaCO3 sands under future OA and SST scenarios in a coral reef lagoon on Australia’s Great Barrier Reef (Heron Island. End of century (2100 simulations (temperature +2.7°C and pH -0.3 shifted carbonate sediments from net precipitating to net dissolving. Warming increased the rate of benthic respiration (R by 29% per 1°C and lowered the ratio of productivity to respiration (P/R; ΔP/R = -0.23, which increased the rate of CaCO3 sediment dissolution (average net increase of 18.9 mmol CaCO3 m-2 d-1 for business as usual scenarios. This is most likely due to the influence of warming on benthic P/R which, in turn, was an important control on sediment dissolution through the respiratory production of CO2. The effect of increasing CO2 on CaCO3 sediment dissolution (average net increase of 6.5 mmol CaCO3 m-2 d-1 for business as usual scenarios was significantly less than the effect of warming. However, the combined effect of increasing both SST and pCO2 on CaCO3 sediment dissolution was non-additive (average net increase of 5.6 mmol CaCO3 m-2 d-1 due to the different responses of the benthic community. This study highlights that benthic biogeochemical processes such as metabolism and associated CaCO3 sediment dissolution respond rapidly to changes in SST and OA, and that the response to multiple environmental changes are not necessarily additive.

  3. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz

    Science.gov (United States)

    Wainwright, P. R.

    2007-07-01

    This paper reports calculations of the temperature rises induced in the eye and lens by near-field exposure to radiation from communication handsets, using the finite difference time domain method and classical bioheat equation. Various models are compared, including the analytic solution for a sphere, a finite element model of an isolated eye and a modern model of the whole head. The role of the blood supply to the choroid in moderating temperature is discussed. Three different frequencies are considered, namely 380 MHz (used by TETRA), and 900 and 1800 MHz (used by GSM mobile phones). At 380 MHz, monopole and helical antennas are compared. An 'equivalent blood flow' is derived for the choroid in order to facilitate comparison of the whole head and isolated eye models. In the whole head model, the heating of the lens receives a significant contribution from energy absorbed outside the eye. The temperature rise in the lens is compared to the ICNIRP-recommended average specific energy absorption rate (SAR) and the SAR averaged over the eye alone. The temperature rise may reach 1.4 °C at the ICNIRP occupational exposure limit if an antenna is placed less than 24 mm from the eye and the exposure is sufficiently prolonged.

  4. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz

    International Nuclear Information System (INIS)

    Wainwright, P R

    2007-01-01

    This paper reports calculations of the temperature rises induced in the eye and lens by near-field exposure to radiation from communication handsets, using the finite difference time domain method and classical bioheat equation. Various models are compared, including the analytic solution for a sphere, a finite element model of an isolated eye and a modern model of the whole head. The role of the blood supply to the choroid in moderating temperature is discussed. Three different frequencies are considered, namely 380 MHz (used by TETRA), and 900 and 1800 MHz (used by GSM mobile phones). At 380 MHz, monopole and helical antennas are compared. An 'equivalent blood flow' is derived for the choroid in order to facilitate comparison of the whole head and isolated eye models. In the whole head model, the heating of the lens receives a significant contribution from energy absorbed outside the eye. The temperature rise in the lens is compared to the ICNIRP-recommended average specific energy absorption rate (SAR) and the SAR averaged over the eye alone. The temperature rise may reach 1.4 deg. C at the ICNIRP occupational exposure limit if an antenna is placed less than 24 mm from the eye and the exposure is sufficiently prolonged

  5. Multi-Objective Optimal Design of Electro-Hydrostatic Actuator Driving Motors for Low Temperature Rise and High Power Weight Ratio

    Directory of Open Access Journals (Sweden)

    Guo Hong

    2018-05-01

    Full Text Available With the rapid development of technology, motors have drawn increasing attention in aviation applications, especially in the more electrical aircraft and all electrical aircraft concepts. Power weight ratio and reliability are key parameters for evaluating the performance of equipment applied in aircraft. The temperature rise of the motor is closely related to the reliability of the motor. Therefore, based on Taguchi, a novel multi-objective optimization method for the heat dissipation structural design of an electro-hydrostatic actuator (EHA drive motor was proposed in this paper. First, the thermal network model of the EHA drive motor was established. Second, a sensitivity analysis of the key parameters affecting the cooling performance of the motor was conducted, such as the thickness of fins, the height of fins, the space of fins, the potting materials and the slot fill factor. Third, taking the average temperature of the windings and the power weight ratio as the optimization goal, the multi-objective optimal design of the heat dissipation structure of the motor was carried out by applying Taguchi. Then, a 3-D finite element model of the motor was established and the steady state thermal analysis was carried out. Furthermore, a prototype of the optimal motor was manufactured, and the temperature rise under full load condition tested. The result indicated that the motor with the optimized heat dissipating structure presented a low temperature rise and high power weight ratio, therefore validating the proposed optimization method.

  6. A simplified approach for simulating changes in beach habitat due to the combined effectgs of long-term sea level rise, storm erosion, and nourishment

    Science.gov (United States)

    Better understanding of vulnerability of coastal habitats to sea level rise and major storm events require the use of simulation models. Coastal habitats also undergo frequent nourishment restoration works in order to maintain their viability. Vulnerability models must be able to assess the combined...

  7. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat.

    Science.gov (United States)

    de Melo-Marins, Denise; Souza-Silva, Ana Angélica; da Silva-Santos, Gabriel Lucas Leite; Freire-Júnior, Francisco de Assis; Lee, Jason Kai Wei; Laitano, Orlando

    2018-01-01

    The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL), or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH) where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE) trials in the heat with different hydration strategies: personalized volume (PVO), where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON) trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR), rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials ( p  = 0.801). Body mass decreased after ADL ( p  = 0.008) and CON ( p  skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p  = 0.0038). HR was lower toward the end of TTE in PVO (162 ± 8 bpm) in comparison with ADL (168 ± 12 bpm) and CON (167 ± 10 bpm), p  hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin temperature. Despite these advantages, cycling capacity in the heat remained unchanged.

  8. Numerical analysis of temperature distribution due to basement radiogenic heat production, St. Lawrence Lowlands, eastern Canada

    Science.gov (United States)

    Liu, Hejuan; Giroux, Bernard; Harris, Lyal B.; Mansour, John

    2017-04-01

    Although eastern Canada is considered as having a low potential for high-temperature geothermal resources, the possibility for additional localized radioactive heat sources in Mesoproterozoic Grenvillian basement to parts of the Palaeozoic St. Lawrence Lowlands in Quebec, Canada, suggests that this potential should be reassessed. However, such a task remains hard to achieve due to scarcity of heat flow data and ambiguity about the nature of the basement. To get an appraisal, the impact of radiogenic heat production for different Grenville Province crystalline basement units on temperature distribution at depth was simulated using the Underworld Geothermal numerical modelling code. The region south of Trois-Rivières was selected as representative for the St. Lawrence Lowlands. An existing 3D geological model based on well log data, seismic profiles and surface geology was used to build a catalogue of plausible thermal models. Statistical analyses of radiogenic element (U, Th, K) concentrations from neighbouring outcropping Grenville domains indicate that the radiogenic heat production of rocks in the modelled region is in the range of 0.34-3.24 μW/m3, with variations in the range of 0.94-5.83 μW/m3 for the Portneuf-Mauricie (PM) Domain, 0.02-4.13 μW/m3 for the Shawinigan Domain (Morin Terrane), and 0.34-1.96 μW/m3 for the Parc des Laurentides (PDL) Domain. Various scenarios considering basement characteristics similar to the PM domain, Morin Terrane and PDL Domain were modelled. The results show that the temperature difference between the scenarios can be as much as 12 °C at a depth of 5 km. The results also show that the temperature distribution is strongly affected by both the concentration of radiogenic elements and the thermal conductivity of the basement rocks. The thermal conductivity in the basement affects the trend of temperature change between two different geological units, and the spatial extent of thermal anomalies. The validity of the results was

  9. Variation in thermal conductivity of porous media due to temperature and pressure

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2003-01-01

    In the last decade, a great amount of attention has been paid to the study of the temperature dependence of the thermal transport properties of insulating materials. Thermal insulators constitute one of the major areas of the porous ceramic consumption. Measurements of thermal transport properties are important tools in this field. In the present work a set of synthetic porous insulating foams, used as insulating materials is studied. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials in air and then volumetric heat capacity is calculated. The study of thermal transport properties of three synthetic porous insulators that are foam, closed cell foam and fiberglass, under different conditions of temperature pressure and with corresponding densities was done. Due to this research it is possible to work out the material with optimum performance, lower thermal expansion and conductivity, high temperature use, low as well as high-pressure use, so that the insulation with high margin of safety and space with lower cost could be obtained. As a result the proper type of insulation can be recommended in accordance with the specific application. The change in the temperature and pressure causes different behavior on the samples, even then all these samples are suitable for insulation purposes in scientific and commercial fields. Foam is the best choice because of its lowest thermal conductivity values, fiberglass is a better choice because of its consistency, and closed cell foam is the third choice because of its plastic nature and high density. (author)

  10. Projecting the risk of damage to reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    OpenAIRE

    Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang

    2017-01-01

    Tropical cyclones (TCs), sea level rise (SLR), and storm surges cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater able to reduce the risks of natural disasters to coastal communities. However, projections of change ...

  11. Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types.

    Science.gov (United States)

    Meisberger, Eric W; Bakker, Sjoerd J G; Cune, Marco S

    2015-12-01

    Ultrasonic instrumentation under magnification may facilitate mobilization of screw remnants but may induce heat trauma to surrounding bone. An increase of 5°C is considered detrimental to osseointegration. The objective of this investigation was to examine the rise in temperature of the outer implant body after 30 s of ultrasonic instrumentation to the inner part, in relation to implant type, type of ultrasonic equipment, and the use of coolants in vitro. Two ultrasonic devices (Satelec Suprasson T Max and Electro Medical Systems (EMS) miniMaster) were used on five different implant types that were provided with a thermo couple (Astra 3.5 mm, bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm, and Straumann tissue level wide body regular neck 4.8 mm), either with or without cooling during 30 s. Temperature rise at this point in time is the primary outcome measure. In addition, the mean maximum rise in temperature (all implants combined) was assessed and statistically compared among devices, implant systems, and cooling mode (independent t-tests, ANOVA, and post hoc analysis). The Satelec device without cooling induces the highest temperature change of up to 13°C, particularly in both bone level implants (p < 0.05) but appears safe for approximately 10 s of continuous instrumentation, after which a cooling down period is rational. Cooling is effective for both devices. However, when the Satelec device is used with coolant for a longer period of time, a rise in temperature must be anticipated after cessation of instrumentation, and post-operational cooling is advised. The in vitro setup used in this experiment implies that care should be taken when translating the observations to clinical recommendations, but it is carefully suggested that the EMS device causes limited rise in temperature, even without coolant.

  12. Characteristics of DC electrical braking method of the gas circulator to limit the temperature rise at the heat transfer pipes in the HTTR

    International Nuclear Information System (INIS)

    Kawasaki, K.; Saito, K.; Iyoku, T.

    2001-01-01

    In the safety evaluation of a High Temperature Engineering Test Reactor (HTTR), it must be confirmed that the core has no chance to be damaged and the barrier against the FP release is designed properly not to be affecting the influence of radiation around the reactor site. Especially the maximum temperature of the reactor pressure boundary such as the heat transfer pipes of pressurized water cooler (PWC) must not exceed the permissible values under an anticipated accident such as pipe of rupture in PWC. A requirement for the gas circulator which circulates helium gas in the primary cooling line and the secondary cooling line, is to be braked within 10 seconds by an electrical braking method after the HTTR reactor has scrammed under the accident in PWC. The reason is that the temperature rise of the heat transfer pipe at PWC has to be suppressed when the gas circulator has stopped, the revolution of the gas circulator decreases like the free coast down so that it takes about 90 seconds to be zero and the temperature rise of the pipe in the PWC exceeds the permissible value. By braking within 10 secs., the temperature of the pipe in the PWC reaches about 368 deg. C, less than the permissible value. Using a simplified equivalent circuit of an induction motor, braking time analysis was performed with obtained electrical resistance and inductance. The obtained braking time is about 10 secs., showing close agreement with analysis values. (author)

  13. Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities.

    Science.gov (United States)

    Kim, Min-Jung; Kim, Ryan Jin-Young; Ferracane, Jack; Lee, In-Bog

    2017-10-01

    The purpose of this study was to investigate temperature rise in the composite and dentin of a class I cavity in extracted human molars under different restoration conditions, including the use of different composite types, layering methods, and curing lights. Open occlusal cavities were prepared on 28 extracted human molars. A conventional (Filtek Z250) and a bulk-fill (Filtek Bulk Fill Posterior; BFP) composite were used to restore the preparations. BFP was incrementally layered or bulk-filled. Bulk-filled BFP was cured with two different lights, the Elipar S10 and the BeLite. Each layer was illuminated for 20s, while thermograms of the specimens were recorded for 100s using an infrared thermal camera. Temperature changes on the composite and dentin surfaces were obtained at points of interest (POI) pertaining to successive incremental distances of 0.75mm from the top of the cavity to the pulp. The polymerization kinetics of each composite was determined using photo-differential scanning calorimetry. The greatest temperature rise was observed 0.75mm apical from the top of the cavity. All groups showed over 6°C maximum temperature rise (ΔT max ) at the pulpal side of the dentin. Upon curing, Z250 reached ΔT=5°C faster than BFP; however, ΔT max of the two composites were comparable at any POI. Bulk filling showed greater ΔT max than incremental filling at 0.75mm apical from the top and in the middle of the cavity. The Elipar S10 light generated faster temperature changes in the curing composite at all recorded positions throughout the depth of the cavity and greater ΔT max in all POIs compared to BeLite. Real-time thermographic analysis demonstrated that the composite type and layering method did not influence the temperature rise at the pulpal side of dentin during composite restoration of an occlusal preparation in a tooth. The amount and initial rate of temperature increase was most affected by the radiant exposure of the light curing unit. Within the

  14. Heat flux estimate of warm water flow in a low-temperature diffuse flow site, southern East Pacific Rise 17°25‧ S

    Science.gov (United States)

    Goto, Shusaku; Kinoshita, Masataka; Mitsuzawa, Kyohiko

    2003-09-01

    A low-temperature diffuse flow site associated with abundant vent fauna was found by submersible observations on the southern East Pacific Rise at 17°25‧ S in 1997. This site was characterized by thin sediment covered pillow and sheet lavas with collapsed pits up to ˜15 m in diameter. There were three warm water vents (temperature: 6.5 to 10.5 °C) within the site above which the vented fluids rise as plumes. To estimate heat flux of the warm water vents, a temperature logger array was deployed and the vertical temperature distribution in the water column up to 38 m above the seafloor was monitored. A stationary deep seafloor observatory system was also deployed to monitor hydrothermal activity in this site. The temperature logger array measured temperature anomalies, while the plumes from the vents passed through the array. Because the temperature anomalies were measured in only specific current directions, we identified one of the vents as the source. Heat flux from the vent was estimated by applying a plume model in crossflow in a density-stratified environment. The average heat flux from September 13 to October 18, 1997 was 39 MW. This heat flux is as same order as those of high-temperature black smokers, indicating that a large volume flux was discharged from the vent (1.9 m3/s). Previous observations found many similar warm water flow vents along the spreading axis between 17°20‧ S 30‧ S. The total heat flux was estimated to be at least a few hundred mega-watts. This venting style would contribute to form effluent hydrothermal plumes extended above the spreading axis.

  15. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.

    Science.gov (United States)

    Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V

    1994-01-15

    We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.

  16. Comparison of the Amount of Temperature Rise in the Pulp Chamber of Teeth Treated With QTH, Second and Third Generation LED Light Curing Units: An In Vitro Study.

    Science.gov (United States)

    Mahant, Rajesh Harivadanbhai; Chokshi, Shraddha; Vaidya, Rupal; Patel, Pruthvi; Vora, Asima; Mahant, Priyanka

    2016-01-01

    Introduction: This in vitro study was designed to measure and compare the amount of temperature rise in the pulp chamber of the teeth exposed to different light curing units (LCU), which are being used for curing composite restorations. Methods: The study was performed in two settings; first, an in vitro and second was mimicking an in vivo situation. In the first setup of the study, three groups were formed according to the respective three light curing sources. i.e. quartz-tungsten-halogen (QTH) unit and two light-emitting diode (LED) units (second and third generations). In the in vitro setting, direct thermal emission from three light sources at 3 mm and 6 mm distances, was measured with a k-type thermocouple, and connected to a digital thermometer. For a simulation of an in vivo situation, 30 premolar teeth were used. Class I Occlusal cavity of all the teeth were prepared and they were restored with incremental curing of composite, after bonding agent application. While curing the bonding agent and composite in layers, the intrapulpal temperature rise was simultaneously measured with a k-type thermocouple. Results: The first setting of the study showed that the heat produced by irradiation with LCU was significantly less at 6 mm distance when compared to 3 mm distance. The second setting of the study showed that the rise of intrapulpal temperature was significantly less with third generation LED light cure units than with second generation LED and QTH light cure units. Conclusion: As the distance from the light source increases, less irradiation heat is produced. Third generation LED lights cause the least temperature change in the pulp chamber of single rooted teeth.

  17. Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage.

    Science.gov (United States)

    Hofmann, Norbert; Markert, Tanja; Hugo, Burkard; Klaiber, Bernd

    2003-12-01

    To determine polymerization shrinkage kinetics and temperature rise of light-cured resin-based composites after high intensity vs. soft-start quartz tungsten halogen irradiation. Shrinkage kinetics was evaluated using the "deflecting disk technique", modified for simultaneous measurement of temperature within the resin-based composite using a thermocouple. Additional irradiations after 60 and 65 minutes allowed the determination of temperature rises caused by radiation or by reaction heat. Four hybrids (Filtek Z250, Herculite, Solitaire 2, Tetric Ceram), an inhomogeneously filled hybrid (InTen-S) and a microfill (Filtek A110, formerly Silux Plus) were cured using the quartz tungsten halogen units Astralis 10 and Optilux 501 in the high intensity (A10 HiPo: 10 seconds at 1300 mW/cm2; OL Boost: 10 seconds at 1140 mW/cm2) or soft-start modes (A10 Pulse: increase to 700 mW/cm2 within 10 seconds, three periods of 2 seconds at 1300 mW/cm2 alternating with two periods of 2 seconds at 700 mW/cm2; OL Ramp: exponential increase within 10 seconds, followed by 10 seconds at 1140 mW/cm2). The soft-start protocols produced less contraction, and polymerization shrinkage started later and progressed slower (or: more slowly), compared to high intensity irradiation [correction]. The lowest shrinkage was observed for InTen-S, followed by Filtek Z250 and A110, whereas Solitaire 2, Herculite and Tetric Ceram scored highest for this parameter. Temperature rise was caused more or less equally by radiation and by reaction heat and reached values of up to 28.9 degrees C relative to a baseline of 37 degrees C. For some combinations of curing modes and resin-based composites, less heat was generated by the soft-start protocols and by Optilux 501.

  18. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine.

    Science.gov (United States)

    McILwain, R Britt; Timpa, Joseph G; Kurundkar, Ashish R; Holt, David W; Kelly, David R; Hartman, Yolanda E; Neel, Mary Lauren; Karnatak, Rajendra K; Schelonka, Robert L; Anantharamaiah, G M; Killingsworth, Cheryl R; Maheshwari, Akhil

    2010-01-01

    Extracorporeal membrane oxygenation (ECMO) is a life-saving support system used in neonates and young children with severe cardiorespiratory failure. Although ECMO has reduced mortality in these critically ill patients, almost all patients treated with ECMO develop a systemic inflammatory response syndrome (SIRS) characterized by a 'cytokine storm', leukocyte activation, and multisystem organ dysfunction. We used a neonatal porcine model of ECMO to investigate whether rising plasma concentrations of inflammatory cytokines during ECMO reflect de novo synthesis of these mediators in inflamed tissues, and therefore, can be used to assess the severity of ECMO-related SIRS. Previously healthy piglets (3-week-old) were subjected to venoarterial ECMO for up to 8 h. SIRS was assessed by histopathological analysis, measurement of neutrophil activation (flow cytometry), plasma cytokine concentrations (enzyme immunoassays), and tissue expression of inflammatory genes (PCR/western blots). Mast cell degranulation was investigated by measurement of plasma tryptase activity. Porcine neonatal ECMO was associated with systemic inflammatory changes similar to those seen in human neonates. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-8 (IL-8) concentrations rose rapidly during the first 2 h of ECMO, faster than the tissue expression of these cytokines. ECMO was associated with increased plasma mast cell tryptase activity, indicating that increased plasma concentrations of inflammatory cytokines during ECMO may result from mast cell degranulation and associated release of preformed cytokines stored in mast cells. TNF-alpha and IL-8 concentrations rose faster in plasma than in the peripheral tissues during ECMO, indicating that rising plasma levels of these cytokines immediately after the initiation of ECMO may not reflect increasing tissue synthesis of these cytokines. Mobilization of preformed cellular stores of inflammatory cytokines such as in mucosal mast cells may have

  19. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (130N)

    International Nuclear Information System (INIS)

    Michard, A.; Albarede, F.; Michard, G.; Minster, J.F.; Charlou, J.L.

    1983-01-01

    The mobility of rare-earth elements (REE) and U during hydrothermal alteration of the basalts at spreading centres has long been a matter of concern because of its bearing on the evolution and recycling of the oceanic crust. Previous approaches to this problem have been indirect, through studies on altered dredged basalts or ophiolites. Sampling of hydrothermal vent waters from the East Pacific Rise (EPR) at 13 0 N is reported. It provides the first direct evidence of REE-enriched solutions which, however, leave the budget of these elements in the crust and the ocean rather unmodified. In constrast, uranium, like magnesium, is quantitatively taken up from the seawater during the hydrothermal process. (author)

  20. Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure

    International Nuclear Information System (INIS)

    Hand, J W; Li, Y; Hajnal, J V

    2010-01-01

    Numerical simulations of specific absorption rate (SAR) and temperature changes in a 26-week pregnant woman model within typical birdcage body coils as used in 1.5 T and 3 T MRI scanners are described. Spatial distributions of SAR and the resulting spatial and temporal changes in temperature are determined using a finite difference time domain method and a finite difference bio-heat transfer solver that accounts for discrete vessels. Heat transfer from foetus to placenta via the umbilical vein and arteries as well as that across the foetal skin/amniotic fluid/uterine wall boundaries is modelled. Results suggest that for procedures compliant with IEC normal mode conditions (maternal whole-body averaged SAR MWB ≤ 2 W kg -1 (continuous or time-averaged over 6 min)), whole foetal SAR, local foetal SAR 10g and average foetal temperature are within international safety limits. For continuous RF exposure at SAR MWB = 2 W kg -1 over periods of 7.5 min or longer, a maximum local foetal temperature >38 deg. C may occur. However, assessment of the risk posed by such maximum temperatures predicted in a static model is difficult because of frequent foetal movement. Results also confirm that when SAR MWB = 2 W kg -1 , some local SAR 10g values in the mother's trunk and extremities exceed recommended limits.

  1. Temperature resolution enhancing of commercially available THz passive cameras due to computer processing of images

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection of concealed object: minimal size of the object, maximal distance of the detection, image detail. One of probable ways for a quality image enhancing consists in computer processing of image. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts. We demonstrate new possibilities for seeing the clothes details, which raw images, produced by the THz cameras, do not allow to see. We achieve good quality of the image due to applying various spatial filters with the aim to demonstrate independence of processed images on math operations. This result demonstrates a feasibility of objects seeing. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China).

  2. Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300

    Science.gov (United States)

    Brown, S.; Nicholls, R. J.; Goodwin, P.; Haigh, I. D.; Lincke, D.; Vafeidis, A. T.; Hinkel, J.

    2018-03-01

    We use multiple synthetic mitigation sea-level scenarios, together with a non-mitigation sea-level scenario from the Warming Acidification and Sea-level Projector model. We find sea-level rise (SLR) continues to accelerate post-2100 for all but the most aggressive mitigation scenarios indicative of 1.5°C and 2.0°C. Using the Dynamic Interactive Vulnerability Assessment modeling framework, we project land and population exposed in the 1 in 100 year coastal flood plain under SLR and population change. In 2000, the flood plain is estimated at 540 × 103 km2. By 2100, under the mitigation scenarios, it ranges between 610 × 103 and 640 × 103 km2 (580 × 103 and 700 × 103 km2 for the 5th and 95th percentiles). Thus differences between the mitigation scenarios are small in 2100. However, in 2300, flood plains are projected to increase to between 700 × 103 and 960 × 103 km2 in 2300 (610 × 103 and 1290 × 103 km2) for the mitigation scenarios, but 1630 × 103 km2 (1190 × 103 and 2220 × 103 km2) for the non-mitigation scenario. The proportion of global population exposed to SLR in 2300 is projected to be between 1.5% and 5.4% (1.2%-7.6%) (assuming no population growth after 2100) for the aggressive mitigation and the non-mitigation scenario, respectively. Hence over centennial timescales there are significant benefits to climate change mitigation and temperature stabilization. However, sea-levels will continue to rise albeit at lower rates. Thus potential impacts will keep increasing necessitating adaptation to existing coastal infrastructure and the careful planning of new coastal developments.

  3. Rise-to-power test in High Temperature Engineering Test Reactor. Test progress and summary of test results up to 30 MW of reactor thermal power

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Fujimoto, Nozomu; Shimakawa, Satoshi

    2002-08-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite moderated and gas cooled reactor with the thermal power of 30 MW and the reactor outlet coolant temperature of 850degC/950degC. Rise-to-power test in the HTTR was performed from April 23rd to June 6th in 2000 as phase 1 test up to 10 MW in the rated operation mode, from January 29th to March 1st in 2001 as phase 2 test up to 20 MW in the rated operation mode and from April 14th to June 8th in 2001 as phase 3 test up to 20 MW in the high temperature test the mechanism of the reactor outlet coolant temperature becomes 850degC at 30 MW in the rated operation mode and 950degC in the high temperature test operation mode. Phase 4 rise-to-power test to achieve the thermal reactor power of 30 MW started on October 23rd in 2001. On December 7th in 2001 it was confirmed that the thermal reactor power and the reactor outlet coolant temperature reached to 30 MW and 850degC respectively in the single loaded operation mode in which only the primary pressurized water cooler is operating. Phase 4 test was performed until March 6th in 2002. JAERI (Japan Atomic Energy Research Institute) obtained the certificate of the pre-operation test from MEXT (Ministry of Education Culture Sports Science and Technology) after all the pre-operation tests by MEXT were passed successfully with the reactor transient test at an abnormal event as a final pre-operation test. From the test results of the rise-up-power test up to 30 MW in the rated operation mode, performance of the reactor and cooling system were confirmed, and it was also confirmed that an operation of reactor facility can be performed safely. Some problems to be solved were found through the tests. By solving them, the reactor operation with the reactor outlet coolant temperature of 950degC will be achievable. (author)

  4. A multi-scale approach of mechanical and transport properties of cementitious materials under rises of temperature

    International Nuclear Information System (INIS)

    Caratini, G.

    2012-01-01

    The modern industrial activities (storage of nuclear waste, geothermal wells, nuclear power plants,...) can submit cementitious materials to some extreme conditions, for example at temperatures above 200 C. This level of temperature will induce phenomena of dehydration in the cement paste, particularly impacting the CSH hydrates which led to the mechanical cohesion. The effects of these temperatures on the mechanical and transport properties have been the subject of this thesis.To understand these effects, we need to take into account the heterogeneous, porous, multi-scale aspects of these materials. To do this, micro-mechanics and homogenization tools based on the Eshelby problem's solution were used. Moreover, to support this multi-scale modeling, mechanical testing based on the theory of porous media were conducted. The measurements of modulus compressibility, permeability and porosity under confining pressure were used to investigate the mechanisms of degradation of these materials during thermal loads up to 400 C. (author)

  5. Evaluation of the temperature rise in pulp chamber during class V preparation with Er:YAG laser

    International Nuclear Information System (INIS)

    Picinini, Leonardo Santos

    2001-01-01

    One of the major concerns regarding laser irradiation in the dentistry field is the overheating in dental tissue, specially pulpal tissue. A temperature raise over 5.5 deg C is considered to be harmful to its vitality. The current study evaluated the temperature increase in the pulp chamber, during class V preparation, performed with the laser Er:YAG in 36 bovine incisive extracted teeth. The samples were eroded on the outer side of the vestibular wall to obtain the dentinal thickness of 2.0 mm (group I), 1.0 mm (group II) and 0.5 mm (group III). Thermocouples were fixed to the inner part of the vestibular wall using thermal paste, through the palatine opening of the samples. Class V cavities were prepared in the vestibular side only in 1 mm 2 thick dentins. Irradiation parameters used were: 500 mJ/10 Hz, 850 mJ/10 Hz and 1 000 mJ/10 Hz for all the groups. The results were processed by a microcomputer. This study showed that the temperature increased into the pulpal cavity reached around 3 deg C for the groups I (2,0 mm thick dentine) and II (1.0 mm thick dentine). In the group III (0.5 mm thick) temperature was around 5.5 deg C. Thus, the parameters used for cavity preparation, using Er:YAG laser, were safe in relation to the temperature raise for dentinal thickness of 1,0 and 2,0 mm; in 0.5 mm thick dentins, temperature increase reached 5.5 deg C and an appropriate correction in the laser parameters was necessary. (author)

  6. CALCULATED TEMPERATURE RISE AND THERMAL ELONGATION OF STRUCTURAL COMPONENTS, DEPENDING ON ACTION INTEGRAL OF INJECTED LIGHTNING CURRENTS

    DEFF Research Database (Denmark)

    Madsen, Søren Find

    2005-01-01

    expressions established, accounts for the geometry of the structure (round conductor, rectangular cross section, pipe, plane sheet, etc), the material properties (Aluminum, Copper, Carbon Fiber Composites, etc.), the frequency of the current (skin depth) and the Specific Energy (Action Integral). For linear...... structures (wires, bars etc.), the result is the resistance of the structure, the final temperature, and the thermal elongation depending on geometry and material properties. Regarding arc injection in the centre of plane specimens the equations enables calculation of the temperature as a function...

  7. Temperature Sensor Feasibility Study of Wireless Sensor Network Applications for Heating Efficiency Maintenance in High-Rise Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Freliha B.

    2015-06-01

    Full Text Available Cities are responsible for 60%-80% of the world’s energy use and for approximately the same percentage of greenhouse gas emissions. The existing multi-apartment buildings of multifamily housing sector are often energy inefficient, and the heating system does not ensure optimization of heat distribution of individual apartments. Heat distribution, heating system balancing, heat loss detection and calculation, individual heat energy accounting are difficult tasks to accomplish. This article deals with the temperature monitoring system designed to retrieve temperature differences necessary for overall building heat monitoring and individual apartment monitoring. The sensor testing case study process and its measurements are analysed.

  8. Influence of light curing unit and ceramic thickness on temperature rise during resin cement photo-activation.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Mastrofrancisco, Sarina; Consani, Rafael Leonardo Xediek; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-11-01

    The aim of this study was to determine the effect of different ceramic thickness on heat generation during resin cement photo-activation by QTH (quartz-tungsten-halogen), LED (light emitting diode), and PAC (plasma arc-curing) LCUs (light curing units). The resin cement used was Rely X ARC (3M-ESPE), and the ceramic was IPS Empress Esthetic (Ivoclar-Vivadent), of which 0.7-, 1.4- and 2.0-mm thick disks, 0.8 mm in diameter were made. Temperature increase was recorded with a type-K thermocouple connected to a digital thermometer (Iopetherm 46). An acrylic resin base was built to guide the thermocouple and support the 1.0-mm thick dentin disk. A 0.1-mm thick black adhesive paper matrix with a perforation 6 mm in diameter was placed on the dentin to contain the resin cement and support the ceramic disks of different thicknesses. Three LCUs were used: QTH, LED and PAC. Nine groups were formed (n=10) according to the interaction: 3 ceramic thicknesses, 1 resin cement and 3 photo-activation methods. Temperature increase data were submitted to Tukey's test (5%). For all ceramic thicknesses, a statistically significant difference in temperature increase was observed among the LCUs, with the highest mean value for the QTH LCU (p0.05). The interaction of higher energy density with smaller ceramic thickness showed higher temperature increase values.

  9. Increase of temperature of an ideal nondegenerate quantum gas in a suddenly expanding box due to energy quantization

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Vieira Lopes, D.O.

    2008-01-01

    We show that due to energy quantization the temperature of an ideal nondegenerate quantum gas in a rectangular box always increases after a sudden expansion of the box and a subsequent thermalization. The maximal increment of temperature is proportional to the square root of the product of the initial absolute temperature by the energy of the first discrete quantum level, i.e., it is proportional to the first power of the Planck constant

  10. Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao; Qi, Wu [Dalian University of Technology, Dalian (China)

    2015-10-15

    Fully coupled thermo-mechanical model is used to obtain the true strain components. The sizes of the TMAZ and the SZ are predicted according to the different behaviors of the traced material particles. The strain rate and the temperature histories are used to calculate the Zener-Hollomon parameter and then the grain size in the SZ. Results indicate that the contribution from the temperatures is much more important than the one from the deformations. The strain rates at the advancing side are higher than the ones at the retreating side on the top surface but become symmetrical on the bottom surface. The widths of the TMAZ and the SZ become narrower in smaller shoulder diameter. Smaller shoulder can lead to smaller grain size in the SZ.

  11. Rising water temperatures, reproduction and recruitment of an invasive oyster, Crassostrea gigas, on the French Atlantic coast.

    Science.gov (United States)

    Dutertre, Mickaël; Beninger, Peter G; Barillé, Laurent; Papin, Mathias; Haure, Joël

    2010-02-01

    The recent appearance and invasion of feral oysters (Crassostrea gigas) along the northern European Atlantic coast, underscores the necessity to investigate the relationship between environmental variables, reproductive physiology, larval development and recruitment. We studied these relationships at both high (HT) and intermediate (IT) - turbidity sites, through historical data on water temperatures, multi-parameter environmental probes, histological analyses, and field collections of planktonic larvae and settled post-larvae in 2005 and 2006. A progressive warming trend was observed, especially since 1995, when oyster proliferation first became severe. Threshold temperatures for oocyte growth, larval development and settlement were achieved in both 2005 and 2006. The HT site showed greater numbers of larvae and post-larvae than the IT site for both years, with the highest numbers of post-larvae observed at both sites during the warmer summer of 2006. These results suggest that increased temperatures in northern European waters allow successful reproduction, larval development, and recruitment of C. gigas. High turbidity conditions further enhance this success. 2009 Elsevier Ltd. All rights reserved.

  12. Conditions giving rise to intense visible room temperature photoluminescence in SrWO4 thin films: the role of disorder

    International Nuclear Information System (INIS)

    Orhan, E.; Anicete-Santos, M.; Maurera, M.A.M.A.; Pontes, F.M.; Paiva-Santos, C.O.; Souza, A.G.; Varela, J.A.; Pizani, P.S.; Longo, E.

    2005-01-01

    The nature of intense visible photoluminescence at room temperature of SrWO 4 (SWO) non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The SWO thin films were synthesized by the polymeric precursors method. Their structural properties have been obtained by X-ray diffraction data and the corresponding photoluminescence (PL) spectra have been measured. The UV-vis optical spectra measurements suggest the creation of localized states in the disordered structure. The photoluminescence measurements reveal that the PL changes with the degree of disorder in the SWO thin film. To understand the origin of visible PL at room temperature in disordered SWO, we performed quantum-mechanical calculations on crystalline and disordered SWO periodic models. Their electronic structures are analyzed in terms of DOS, band dispersion and charge densities. We used DFT method with the hybrid non-local B3LYP approximation. The polarization induced by the symmetry break and the existence of localized levels favors the creation of trapped holes and electrons, giving origin to the room temperature photoluminescence phenomenon in the SWO thin films

  13. Determination of the Optimum Heat Transfer Coefficient and Temperature Rise Analysis for a Lithium-Ion Battery under the Conditions of Harbin City Bus Driving Cycles

    Directory of Open Access Journals (Sweden)

    Xiaogang Wu

    2017-10-01

    Full Text Available This study investigated the heat problems that occur during the operation of power batteries, especially thermal runaway, which usually take place in high temperature environments. The study was conducted on a ternary polymer lithium-ion battery. In addition, a lumped parameter thermal model was established to analyze the thermal behavior of the electric bus battery system under the operation conditions of the driving cycles of the Harbin city electric buses. Moreover, the quantitative relationship between the optimum heat transfer coefficient of the battery and the ambient temperature was investigated. The relationship between the temperature rise (Tr, the number of cycles (c, and the heat transfer coefficient (h under three Harbin bus cycles have been investigated at 30 °C, because it can provide a basis for the design of the battery thermal management system. The results indicated that the heat transfer coefficient that meets the requirements of the battery thermal management system is the cubic power function of the ambient temperature. Therefore, if the ambient temperature is 30 °C, the heat transfer coefficient should be at least 12 W/m2K in the regular bus lines, 22 W/m2K in the bus rapid transit lines, and 32 W/m2K in the suburban lines.

  14. Decrease in lower level density due to cooling of gas temperature by thermal dissociation of hydrogen in copper vapor laser

    International Nuclear Information System (INIS)

    Watanabe, Ikuo; Hayashi, Kazuo; Iseki, Yasushi; Suzuki, Setsuo; Noda, Etsuo; Morimiya, Osamu

    1995-01-01

    A gas temperature calculation is carried out in the copper vapor laser (CVL) with a beam diameter of 80 mm in the case of H 2 addition into the Ne buffer gas. The on-axis gas temperature decreases to 2800K with 1% concentration of H 2 , whereas the gas temperature is 3400K without H 2 . The on-axis lower level density decreases due to the cooling of the gas temperature. This decrease in the lower level density is thought to bring about a non annular beam profile in the case of H 2 addition. (author)

  15. New climatic targets against global warming: will the maximum 2 °C temperature rise affect estuarine benthic communities?

    Science.gov (United States)

    Crespo, Daniel; Grilo, Tiago Fernandes; Baptista, Joana; Coelho, João Pedro; Lillebø, Ana Isabel; Cássio, Fernanda; Fernandes, Isabel; Pascoal, Cláudia; Pardal, Miguel Ângelo; Dolbeth, Marina

    2017-06-20

    The Paris Agreement signed by 195 countries in 2015 sets out a global action plan to avoid dangerous climate change by limiting global warming to remain below 2 °C. Under that premise, in situ experiments were run to test the effects of 2 °C temperature increase on the benthic communities in a seagrass bed and adjacent bare sediment, from a temperate European estuary. Temperature was artificially increased in situ and diversity and ecosystem functioning components measured after 10 and 30 days. Despite some warmness effects on the analysed components, significant impacts were not verified on macro and microfauna structure, bioturbation or in the fluxes of nutrients. The effect of site/habitat seemed more important than the effects of the warmness, with the seagrass habitat providing more homogenous results and being less impacted by warmness than the adjacent bare sediment. The results reinforce that most ecological responses to global changes are context dependent and that ecosystem stability depends not only on biological diversity but also on the availability of different habitats and niches, highlighting the role of coastal wetlands. In the context of the Paris Agreement it seems that estuarine benthic ecosystems will be able to cope if global warming remains below 2 °C.

  16. Temperature effects on He bubbles production due to cascades in α-iron

    International Nuclear Information System (INIS)

    Yang, L.; Zu, X.T.; Xiao, H.Y.; Gao, F.; Liu, K.Z.; Heinisch, H.L.; Kurtz, R.J.; Yang, S.Z.

    2006-01-01

    The effects of irradiation temperature on the formation of He-vacancy clusters by displacement cascades in α-Fe are investigated by molecular dynamics (MD) methods. The irradiation temperatures of 100 and 600 K are considered for primary knock-on atom (PKA) energy, E p , from 500 eV to 20 keV. The concentration of He in Fe varies from 1 to 5 at.%. We find that the number of Frenkel pairs (N F ) at 600 K is slightly lower than that at 100 K for the same He concentration and E p , but the number of He-vacancy clusters increases with increasing temperature for the same He concentration and energy recoils. However, the mean size of He-vacancy clusters is independent on temperature. The mechanisms of He bubble nucleation in displacement cascades at different temperatures are discussed in detail

  17. Projecting of wave height and water level on reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    Directory of Open Access Journals (Sweden)

    C. Hongo

    2018-03-01

    Full Text Available Tropical cyclones (TCs and sea level rise (SLR cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7–11.0 m; significant wave period at the outer ocean: SWPo = 13–15 s and SLR (0.24–0.98 m. To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr will increase from 1.05–1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs will increase from 0.86–2.10 m at present to 1.19–3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at  ∼ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of

  18. Projecting of wave height and water level on reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    Science.gov (United States)

    Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang

    2018-03-01

    Tropical cyclones (TCs) and sea level rise (SLR) cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7-11.0 m; significant wave period at the outer ocean: SWPo = 13-15 s) and SLR (0.24-0.98 m). To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr) will increase from 1.05-1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs) will increase from 0.86-2.10 m at present to 1.19-3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at ˜ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of costal damages. Our results showed that a healthy reef

  19. Coupling analysis of the target temperature and thermal stress due to pulsed ion beam

    International Nuclear Information System (INIS)

    Yan Jie; Liu Meng; Lin Jufang; An Li; Long Xinggui

    2013-01-01

    Background: Target temperature has an important effect on the target life for the sealed neutron generator without cooling system. Purpose: To carry out the thermal-mechanical coupling analysis of the film-substrate target bombarded by the pulsed ion beam. Methods: The indirect coupling Finite Element Method (FEM) with a 2-dimensional time-space Gaussian axisymmetric power density as heat source was used to simulate the target temperature and thermal stress fields. Results: The effects of the target temperature and thermal stress fields under difference pulse widths and beam sizes were analyzed in terms of the FEM results. Conclusions: Combining with the temperature requirement and the thermal stress inducing film thermal mechanical destruction effect of the sealed neutron generator film-substrate targets, an optimized pulsed ion beam work status was proposed. (authors)

  20. Optimization of the temperature profiles due to a nitrogen jet impinging on a TLD detector

    International Nuclear Information System (INIS)

    Cohen, I.; Bar-Kohany, T.; German, U.; Ziskind, G.

    2014-01-01

    A study was conducted to simulate the temperature profiles during readout in a typical, commercial thermo-luminescence dosimeter (TLD) chip and to optimize the readout conditions. The study makes use of a previously developed numerical model which calculates the crystal's temperature profile evolution inside a TLD crystal compound. The calculated profiles were implemented in the Randall-Wilkins equation to obtain the estimated glow curve. A number of jet temperature profiles were investigated in order to optimize the readout process. - Highlights: • The temperature profiles in a TLD chip compound were simulated. • Some non-routine heating profiles are proposed. • A better efficiency and shorter time can be obtained with these profiles. • The resulting glow curves were evaluated as well

  1. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sabbah, Rami; Kizilel, R.; Selman, J.R.; Al-Hallaj, S. [Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W. 33rd Street, Chicago, IL 60616 (United States)

    2008-08-01

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power. (author)

  2. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    Science.gov (United States)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  3. Pre-analytical variation in glucose concentration due to atmospheric temperature and clot in blood specimens

    International Nuclear Information System (INIS)

    Butt, T.; Masud, K.; Khan, J.A.; Bhatti, M.S.

    2016-01-01

    Objective: To determine the effect of temperature and contact of clot with serum on laboratory results of glucose concentration in blood. Study Design: Quasi-experimental study. Place and Duration of Study: December 2014 to August 2015 at the laboratory of Shoaib Hospital, Fateh Jang, Attock Pakistan. Material and Methods: Samples were collected for estimation of blood glucose (Random) concentration from patients reporting to the hospital. Blood specimens (n=94) of such volunteers were analyzed for glucose level. Each sample was put up in five tubes. When the blood clotted the serum from tube-1 was analyzed for glucose level within 30 minutes. In tube-2 and tube-3 serum was kept for 24 hours at room temperature and refrigerator temperature respectively before glucose estimation. In tube-4 and tube-5 serum was not separated from clot and kept at room temperature and refrigerator temperature respectively before glucose estimation. The value of tube 1 was taken as reference value for comparison with other parts of the specimen. The equipment used for blood glucose level estimation was semi auto chemistry analyzer (Rayto, China). The kit used for analysis was Glucose - Liquizyme (Germany). Results: The difference between the mean reference value (tube-1) and refrigerated serum without clot (tube-3) was 4.63 mg/100 ml while that of unrefrigerated portion (tube-2) had a difference of 10.68 mg/100 ml. The mean of unrefrigerated (tube-4) and refrigerated (tube-5) portions of serum kept with the clot had difference of 42.05 mg/100 ml and 25.84 mg/100 ml respectively. The fall in the blood glucose level in all (n=94) the samples in the tube number 3 (serum separated and kept at refrigerated temperature) was 4.63 mg/100 ml +- 3.68 (Mean +- SD) and it ranged from 0 to 20 mg/100 ml whereas fall was maximum in the tube number 4 (serum with clotted blood and kept at room temperature) was 42.04 mg/100 ml +- 10.61 (Mean +- SD) and it ranged from 13 to 82 mg/100 ml. The sample in

  4. European seasonal mortality and influenza incidence due to winter temperature variability

    Science.gov (United States)

    Rodó, X.; Ballester, J.; Robine, J. M.; Herrmann, F. R.

    2017-12-01

    Recent studies have vividly emphasized the lack of consensus on the degree of vulnerability (sensu IPCC) of European societies to current and future winter temperatures. Here we consider several climate factors, influenza incidence and daily numbers of deaths to characterize the relationship between winter temperature and mortality in a very large ensemble of European regions representing more than 400 million people. Analyses highlight the strong association between the year-to-year fluctuations in winter mean temperature and mortality, with higher seasonal cases during harsh winters, in all of the countries except the United Kingdom, the Netherlands and Belgium. This spatial distribution contrasts with the well-documented latitudinal orientation of the dependency between daily temperature and mortality within the season. A theoretical framework is proposed to reconcile the apparent contradictions between recent studies, offering an interpretation to regional differences in the vulnerability to daily, seasonal and long-term winter temperature variability. Despite the lack of a strong year-to-year association between winter mean values in some countries, it can be concluded that warmer winters will contribute to the decrease in winter mortality everywhere in Europe. More information in Ballester J, et al. (2016) Nature Climate Change 6, 927-930, doi:10.1038/NCLIMATE3070.

  5. Projection of temperature-related mortality due to cardiovascular disease in beijing under different climate change, population, and adaptation scenarios.

    Science.gov (United States)

    Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan

    2018-04-01

    Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Rising equity

    International Nuclear Information System (INIS)

    Burr, M.T.

    1992-01-01

    This article reports on the results of a financial rankings survey of the independent energy industry indicating that lenders and investors provided more than five billion dollars in capital for new, private power projects during the first six months of 1992. The topics of the article include rising equity requirements, corporate finance, mergers and acquisitions, project finance investors, revenue bonds, project finance lenders for new projects, project finance lenders for restructurings, and project finance advisors

  7. Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin

    DEFF Research Database (Denmark)

    Chen, Jun; Shen, Jing; Solem, Christian

    2013-01-01

    Lactococcus lactis MG1363 was found to be unable to grow at temperatures above 37°C in a defined medium without riboflavin, and the cause was identified to be dissolved oxygen introduced during preparation of the medium. At 30°C, growth was unaffected by dissolved oxygen and oxygen was consumed...... riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C....... These results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller...

  8. A Mathematical Model for Temperature Induced Loosening due to Radial Expansion of Rectangle Thread Bolted Joints

    Directory of Open Access Journals (Sweden)

    Shiyuan Hou

    2015-01-01

    Full Text Available This paper proposed a mathematical model to investigate the radial expansion induced loosening of rectangle thread bolted joints that were subjected to cyclic temperature variation, which could cause slippage between contact pairs of engaged threads and bolt bearing. Firstly, integral equations were derived for the shear stress components caused by expansion difference, as well as the bearing and thread friction torque components, which depended on the temperature variation. Secondly, the relationship of displacement components was developed based on quasi-static hypotheses. Then, treating the rotation of bolt as plastic elongation, the bolt tension's evolution was obtained by using a one-dimensional bolted joint model. Numerical results showed that the temperature variation decreased the bearing and thread friction torque components, which could lead bolted joint to loosen. Finally, the effects of some associated factors on the progress were discussed.

  9. Effect of Chlorine and Sulphur on Stainless Steel (AISI 310) Due To High Temperature Corrosion.

    OpenAIRE

    Onaivi Daniel Azamata; Titus Yusuf Jibatswen; Odinize C. Michael

    2016-01-01

    In a power station boiler, there are temperature of regimes of corrosion which occurs mainly in the economizer, boiler steam generation tubes, super-heater tubes and air tubes. The specific gas temperatures in degrees centigrade for the following include: 150 – 370oC for the economizer, 1000 – 1650oC for the boiler steam generation tubes, 650 – 1000oC for super-heater tubes and 1000 – 1200oC for air tubes. For power station boilers that burn coal as the source of fuel it is recommended that a...

  10. Reactivity effect of spent fuel due to spatial distributions for coolant temperature and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Yamane, Y. [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Suyama, K. [OECD/NEA, Paris (France); Mochizuki, H. [Japan Research Institute, Ltd., Tokyo (Japan)

    2002-03-01

    We investigated the reactivity effect of spent fuel caused by the spatial distributions of coolant temperature and burnup by using the integrated burnup calculation code system SWAT. The reactivity effect which arises from taking account of the spatial coolant temperature distribution increases as the average burnup increases, and reaches the maximum value of 0.69%{delta}k/k at 50 GWd/tU when the burnup distribution is concurrently considered. When the burnup distribution is ignored, the reactivity effect decreases by approximately one-third. (author)

  11. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation.

    Science.gov (United States)

    Macedo, R G; Verhaagen, B; Wesselink, P R; Versluis, M; van der Sluis, L W M

    2014-02-01

    To evaluate the effect of multiple refreshment/activation cycles and temperature on the reaction rate of sodium hypochlorite (NaOCl) with bovine dentine during ultrasonic activated irrigation (UAI) under laboratory conditions. The root canal walls of 24 standardized root canals in bovine incisors were exposed to a standardized volume of NaOCl at different temperatures (24 °C and 38 °C) and exposure times (20, 60 and 180 s). The irrigant was refreshed and ultrasonically activated four times for 20 s followed by a 40 s rest interval, with no refreshment and no activation as the controls. The reaction rate was determined by measuring the amount of active chlorine in the NaOCl solution before and after being exposed to dentine during the specific experimental conditions. Calorimetry was used to measure the electrical-to-sonochemical conversion efficiency during ultrasonic activation. Refreshment, activation and exposure time all increased the reaction rate of NaOCl (P reaction rate of NaOCl (P > 0.125). The reaction rate of NaOCl with dentine is enhanced by refreshment, ultrasonic activation and exposure time. Temperature rise of irrigant during ultrasonic activation was not sufficient to alter the reaction rate. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Geometric component of charge pumping current in nMOSFETs due to low-temperature irradiation

    Science.gov (United States)

    Witczak, S. C.; King, E. E.; Saks, N. S.; Lacoe, R. C.; Shaneyfelt, M. R.; Hash, G. L.; Hjalmarson, H. P.; Mayer, D. C.

    2002-12-01

    The geometric component of charge pumping current was examined in n-channel metal-oxide-silicon field effect transistors (MOSFETs) following low-temperature irradiation. In addition to the usual dependencies on channel length and gate bias transition time, the geometric component was found to increase with radiation-induced oxide-trapped charge density and decreasing temperature. A postirradiation injection of electrons into the gate oxide reduces the geometric component along with the density of oxide-trapped charge, which clearly demonstrates that the two are correlated. A fit of the injection data to a first-order model for trapping kinetics indicates that the electron trapping occurs predominantly at a single type of Coulomb-attractive trap site. The geometric component results primarily from the bulk recombination of channel electrons that fail to transport to the source or drain during the transition from inversion to accumulation. The radiation response of these transistors suggests that Coulomb scattering by oxide-trapped charge increases the bulk recombination at low temperatures by impeding electron transport. These results imply that the geometric component must be properly accounted for when charge pumping irradiated n-channel MOSFETs at low temperatures.

  13. Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin

    Science.gov (United States)

    Chen, Jun; Shen, Jing

    2013-01-01

    Lactococcus lactis MG1363 was found to be unable to grow at temperatures above 37°C in a defined medium without riboflavin, and the cause was identified to be dissolved oxygen introduced during preparation of the medium. At 30°C, growth was unaffected by dissolved oxygen and oxygen was consumed quickly. Raising the temperature to 37°C resulted in severe growth inhibition and only slow removal of dissolved oxygen. Under these conditions, an abnormally low intracellular ratio of [ATP] to [ADP] (1.4) was found (normally around 5), which indicates that the cells are energy limited. By adding riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C. These results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller. The drop was accompanied by a decrease in NADH oxidase and pyruvate dehydrogenase activities, both of which depend on FAD as a cofactor. By overexpressing the riboflavin transporter, it was possible to improve FAD biosynthesis, which resulted in increased NADH oxidase and pyruvate dehydrogenase activities and improved fitness at high temperatures in the presence of oxygen. PMID:23913422

  14. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    International Nuclear Information System (INIS)

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-01-01

    GE's latest evolution of the boiling water reactor, the ESBWR, has innovative passive design features that reduce the number and complexity of active systems, which in turn provide economic advantages while also increasing safety. These passive systems used for emergency cooling also mean that the primary containment system will experience elevated temperatures with longer durations than conventional plants in the event of design basis accidents. During a Loss of Coolant Accident (LOCA), the drywell in the primary containment structure for the ESBWR will be exposed to saturated steam conditions for up to 72 hours following the accident. A containment spray system may be activated that sprays the drywell area with water to condense the steam as part of the recovery operations. The liner back-pressure will build up gradually over the 72 hours as the concrete temperatures increase, and a sudden cool down could cause excessive differential pressure on the liner to develop. For this analysis, it is assumed that the containment spray is activated at the end of the 72-hour period. A back-pressure, acting between the liner and the concrete wall of the containment, can occur as a result of elevated temperatures in the concrete causing steam and saturated vapor pressures to develop from the free water remaining in the pores of the concrete. Additional pore pressure also develops under the elevated temperatures from the non-condensable gases trapped in the concrete pores during the concrete curing process. Any buildup of this pore pressure next to the liner, in excess of the drywell internal pressure, will act to push the liner away from the concrete with a potential for tearing at the liner anchorages. This paper describes the methods and analyses used to quantify this liner back-pressure so that appropriate measures are included in the design of the liner and anchorage system. A pore pressure model is developed that calculates the pressure distribution across the concrete

  15. Disalignment rate coefficient of neon excited atoms due to helium atom collisions at low temperatures

    International Nuclear Information System (INIS)

    Seo, M; Shimamura, T; Furutani, T; Hasuo, M; Bahrim, C; Fujimoto, T

    2003-01-01

    Disalignment of neon excited atoms in the fine-structure 2p i levels (in Paschen notation) of the 2p 5 3p configuration is investigated in a helium-neon glow discharge at temperatures between 15 and 77 K. At several temperatures, we plot the disalignment rate as a function of the helium atom density for Ne* (2p 2 or 2p 7 ) + He(1s 2 ) collisions. The slope of this dependence gives the disalignment rate coefficient. For both collisions, the experimental data for the disalignment rate coefficient show a more rapid decrease with the decrease in temperature below 40 K than our quantum close-coupling calculations based on the model potential of Hennecart and Masnou-Seeuws (1985 J. Phys. B: At. Mol. Phys. 18 657). This finding suggests that the disalignment cross section rapidly decreases below a few millielectronvolts, in disagreement with our theoretical quantum calculations which predict a strong increase below 1 meV. The disagreement suggests that the long-range electrostatic potentials are significantly more repulsive than in the aforementioned model

  16. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  17. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  18. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    International Nuclear Information System (INIS)

    Claesson, J.; Probert, T.

    1996-01-01

    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs

  19. Maximising the benefits of satellite LST within the user community: ESA DUE GlobTemperature

    Science.gov (United States)

    Ghent, D.

    2014-12-01

    Land surface temperature (LST) is the mean radiative skin temperature of an area of land resulting from the mean balance of solar heating and land-atmosphere cooling fluxes. It is a basic determinant of the terrestrial thermal behaviour, as it controls the effective radiating temperature of the Earth's surface. The sensitivity of LST to soil moisture and vegetation cover means it is an important component in numerous applications. With the demand for LST data from Earth Observation currently experiencing considerable growth it is important that the users of this data are appropriately engaged by the LST data providers. The GlobTemperature project under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017) aims to promote the wider uptake of global-scale satellite LST by the research and operational user communities; the key to success depending on the coherence and openness of the interactions between the LST and user communities. By incorporating detailed user input into the specifications, their subsequent testing of the LST data sets, and sustained access to data in a user-friendly manner through common data formats GlobTemperature is enhancing the portfolio of LST products from Earth Observation, while concurrently breaking down the barriers to successful application of such data through its programme of dialogue between the data providers and data users. Here we present the outcomes from the first phase of the project, which is achieving some innovative developments: a globally representative and consistent matchup database enabling validation and intercomparison of multi-sensor LST data sets; a prototype combined geostationary earth orbit (GEO) and low earth orbit (LEO) global data set for LST to resolve the diurnal cycle which is a key request from users of LST data; the delivery of the first LST data sets via a dedicated Data Portal in harmonised data format; and the establishment, in collaboration with international colleagues

  20. RF HEATING AND TEMPERATURE OSCILLATIONS DUE TO A SMALL GAP IN A PEP-II VACUUM CHAMBER

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2003-01-01

    Wake fields excited in a small gap of a vacuum chamber by ampere beams can have enough amplitude to heat the chamber. The electric component of these fields can be above the arcing limit. Usually flange connections in a vacuum chamber contain a vacuum gasket and an inner RF gasket. If a small gap occurs between the RF gasket and flange surface, wake fields can heat the flanges. The flanges are usually made of stainless steel, which efficiently absorbs RF power. Some flanges consist of two parts (like a vacuum valve flange) and are mechanically connected but have poor thermal contact. A temperature rise can lengthen the inner part of the flange and make firmer the thermal contact to the outer part of the flange. The heat will then flow to the outer part of the flange, which is air and water-cooled. This cooling lowers the flange temperature and the thermal contact becomes poor again. This ''quasi'' periodic mechanism can explain the nature of temperature oscillations observed at several locations in PEP-II, the SLAC B-factory

  1. Curie Temperature and Microstructural Changes Due to the Heating Treatment of Magnetic Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Gondro J.

    2016-03-01

    Full Text Available Three distinct alloys: Fe86Zr7Nb1Cu1B5, Fe82Zr7Nb2Cu1B8, and Fe81Pt5Zr7Nb1Cu1B5 were characterized both magnetically and structurally. The samples, obtained with spinning roller method as a ribbons 3 mm in width and 20 μm thick, were investigated as-quenched and after each step of a multi steps heating treatment procedure. Each sample was annealed at four steps, fifteen minutes at every temperature, starting from 573K+600K up to +700K depending on type of alloy. Mössbauer spectroscopy data and transmission electron microscope (HRE M pictures confirmed that the as-quenched samples are fully amorphous. This is not changed after the first stages of treatment heating leads to a reduction of free volumes. The heating treatment has a great influence on the magnetic susceptibilities. The treatment up to 600K improves soft magnetic properties: an χ increase was observed, from about 400 to almost 1000 for the samples of alloys without Pt, and from about 200 to 450 at maximum, for the Fe81Pt5Zr7Nb1Cu1B5. Further heating, at more elevated temperatures, leads to magnetic hardening of the samples. Curie temperatures, established from the location of Hopkinson’s maxima on the χ(T curve are in very good agreement with those obtained from the data of specific magnetization, σ(T, measured in a field of 0.75T. As a critical parameter β was chosen to be equal 0.36 for these calculations, it confirmed that the alloys may be considered as ferromagnetic of Heisenberg type. Heating treatment resulted in decreasing of TC. These changes are within a range of several K.

  2. Hillock Formation, Metal Lifting and Voiding of an AlCu Metallization due to Temperature Treatment

    International Nuclear Information System (INIS)

    Foerster, J.; Schuderer, B.; Haeuser, M.; Kallensee, O.; Gross, Th.

    2004-01-01

    A metalstack with a layer composition of Ti/TiN/AlCu/TiN was evaluated in an AlCu metallization. Reliability results show a higher electromigration lifetime compared to a Ti/AlCu/Ti/TiN stack. During the metallization process flow large elevations were seen by optical inspection. Analysis by SEM cross sections showed different deviations. A metal lifting with void formation as consequence was found in large aluminum areas above tungsten plugs. Also voiding in the passivated Metal 2 and the unpassivated Metal 3 with a cracked anti-reflective coating as a result of the expansion of the aluminum was seen. The influence of processes with high thermal budget on the stress behaviour of the new metalstack was investigated. The final annealing was found as the process with the most critical influence. This study shows the influence of different final annealing temperatures on hillock formation and voiding using a Ti/TiN/AlCu/TiN metalstack. A reduction of the maximum temperature of the final annealing process is necessary for using the new AlCu metallization stack. The use of a surface treatment before deposition showed an optimization of the adhesion

  3. Detection of temperature rise at 4.2K by using a dual-core optical fiber-an optical method to detect a quench of a superconducting magnet

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kokubun, Y.; Toyama, T.

    1986-01-01

    We performed an experiment to detect a temperature rise at cryogenic temperature using a dual-core optical fiber. This fiber has two single-mode optical cores in one fiber. We demonstrated that a temperature rise of 4 K was detectable at 4.2 K. The sensitivity of this method can be improved using a longer fiber. This method may be applicable as a quench detector for superconducting magnets. A quench detector using this optical method is immune from electromagnetic noise, free from troubles caused by break-down of electrical insulator, and has many advantages over a conventional quench detector measuring voltages of a magnet

  4. Numerical study of divertor plasma transport with thermal force due to temperature gradient

    International Nuclear Information System (INIS)

    Ohtsu, Shigeki; Tanaka, Satoru; Yamawaki, Michio

    1992-01-01

    A one-dimensional, steady state divertor plasma model is developed in order to study the carbon impurity transport phenomena considering thermal force. The divertor plasma is composed of four regions in terms of momentum transport between hydrogen and carbon impurity: Momentum transferring region, equilibrium region, hydrogen recycling region and carbon recycling region. In the equilibrium region where the friction force is counterbalanced by the thermal force, the localization of carbon impurity occurs. The sufficient condition to avoid the reverse of carbon velocity due to the thermal force is evaluated. (orig.)

  5. Modeling the effect of adverse environmental conditions and clothing on temperature rise in a human body exposed to radio frequency electromagnetic fields.

    Science.gov (United States)

    Moore, Stephen M; McIntosh, Robert L; Iskra, Steve; Wood, Andrew W

    2015-02-01

    This study considers the computationally determined thermal profile of a fully clothed, finely discretized, heterogeneous human body model, subject to the maximum allowable reference level for a 1-GHz radio frequency electromagnetic field for a worker, and also subject to adverse environmental conditions, including high humidity and high ambient temperature. An initial observation is that while electromagnetic fields at the occupational safety limit will contribute an additional thermal load to the tissues, and subsequently, cause an elevated temperature, the magnitude of this effect is far outweighed by that due to the conditions including the ambient temperature, relative humidity, and the type of clothing worn. It is envisaged that the computational modeling approach outlined in this paper will be suitably modified in future studies to evaluate the thermal response of a body at elevated metabolic rates, and for different body shapes and sizes including children and pregnant women.

  6. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  7. The indirect global warming potential and global temperature change potential due to methane oxidation

    International Nuclear Information System (INIS)

    Boucher, Olivier; Collins, Bill; Friedlingstein, Pierre; Shine, Keith P

    2009-01-01

    Methane is the second most important anthropogenic greenhouse gas in the atmosphere next to carbon dioxide. Its global warming potential (GWP) for a time horizon of 100 years is 25, which makes it an attractive target for climate mitigation policies. Although the methane GWP traditionally includes the methane indirect effects on the concentrations of ozone and stratospheric water vapour, it does not take into account the production of carbon dioxide from methane oxidation. We argue here that this CO 2 -induced effect should be included for fossil sources of methane, which results in slightly larger GWP values for all time horizons. If the global temperature change potential is used as an alternative climate metric, then the impact of the CO 2 -induced effect is proportionally much larger. We also discuss what the correction term should be for methane from anthropogenic biogenic sources.

  8. Experimental Facility for Checking the Possibility to Obtain Super-High Temperature Due to Acoustic Cavitation

    CERN Document Server

    Miller, M B; Sobolev, Yu G; Kostenko, B F

    2004-01-01

    An experimental facility developed for checking the possibility to obtain super-high temperature sufficient for thermonuclear reaction D($d, n$)$^{3}$He in an acoustic cavitation is described. The acoustic part of the instrumentation consists of a resonator and a system exciting high amplitude of the acoustic field within the resonator. The cavitation process is controlled with the use of fast neutron pulses. The instrument includes a system of pumping out solute gases from the liquid (acetone enriched with deuterium up to 99{\\%}) without losses of matter. Measuring of the field is based on the calibration procedure including observation of sonoluminescence. The system of detection and identification of D($d, n$)$^{3}$He reaction is based on a scintillation detector of fast neutrons and a system of measuring multiparameter events by the correlation technique with separation of the neutrons from the $\\gamma $-radiation background (pulse shape discrimination).

  9. Adjusting Mitigation Pathways to Stabilize Climate at 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300

    Science.gov (United States)

    Goodwin, Philip; Brown, Sally; Haigh, Ivan David; Nicholls, Robert James; Matter, Juerg M.

    2018-03-01

    To avoid the most dangerous consequences of anthropogenic climate change, the Paris Agreement provides a clear and agreed climate mitigation target of stabilizing global surface warming to under 2.0°C above preindustrial, and preferably closer to 1.5°C. However, policy makers do not currently know exactly what carbon emissions pathways to follow to stabilize warming below these agreed targets, because there is large uncertainty in future temperature rise for any given pathway. This large uncertainty makes it difficult for a cautious policy maker to avoid either: (1) allowing warming to exceed the agreed target or (2) cutting global emissions more than is required to satisfy the agreed target, and their associated societal costs. This study presents a novel Adjusting Mitigation Pathway (AMP) approach to restrict future warming to policy-driven targets, in which future emissions reductions are not fully determined now but respond to future surface warming each decade in a self-adjusting manner. A large ensemble of Earth system model simulations, constrained by geological and historical observations of past climate change, demonstrates our self-adjusting mitigation approach for a range of climate stabilization targets ranging from 1.5°C to 4.5°C, and generates AMP scenarios up to year 2300 for surface warming, carbon emissions, atmospheric CO2, global mean sea level, and surface ocean acidification. We find that lower 21st century warming targets will significantly reduce ocean acidification this century, and will avoid up to 4 m of sea-level rise by year 2300 relative to a high-end scenario.

  10. Solidifier effectiveness : variation due to oil composition, oil thickness and temperature

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Fingas, M.

    2009-01-01

    This paper provided an overview of solidifier types and composition. Solidifiers are a class of spill treating agents that offer an effective means to convert a liquid oil into a solid material. They are used as a treatment option for oil spills on water. This paper also reported on recent laboratory studies that consist of 4 components: (1) a qualitative examination of the characteristics of the interaction of a broad range of solidifier products with a standard oil to evaluate reaction rate, states of solidification, and the impact of dosage, (2) a comparison of a smaller subset of solidifiers on the standard oil at lower temperatures, (3) solidifier treatment on a range of oils of varying physical properties and composition to assess the potential scope of application, and (4) the treatment of a series of small-scale oil layers of varying thickness to determine the significance of oil thickness on solidifier effectiveness and recovery. This paper also reviewed solidifier chemistry with particular reference to polymer sorbents; cross-linking agents; and cross-linking agents and polymeric sorbents combined. Toxicity is also an important issue regarding solidifiers. The aquatic toxicity of solidifiers is low and not measurable as the products are not water-soluble. There have not been any studies on the effects of the solidifier or the treated oil on surface feeders and shoreline wildlife that may come into contact with the products. It was concluded that oil composition may play a major role in solidifier effectiveness. The effectiveness of solidifiers is also inhibited at reduced temperatures, increased viscosity and density of the oil. 25 refs., 5 tabs., 2 figs., 1 appendix

  11. W nano-fuzzes: A metastable state formed due to large-flux He"+ irradiation at an elevated temperature

    International Nuclear Information System (INIS)

    Wu, Yunfeng; Liu, Lu; Lu, Bing; Ni, Weiyuan; Liu, Dongping

    2016-01-01

    W nano-fuzzes have been formed due to the large-flux and low-energy (200eV) He"+ irradiation at W surface temperature of 1480 °C. Microscopic evolution of W nano-fuzzes during annealing or low-energy (200 eV) He"+ bombardments has been observed using scanning electron microscopy and thermal desorption spectroscopy. Our measurements show that both annealing and He"+ bombardments can significantly alter the structure of W nano-fuzzes. W nano-fuzzes are thermally unstable due to the He release during annealing, and they are easily sputtered during He"+ bombardments. The current study shows that W nano-fuzzes act as a metastable state during low-energy and large-flux He"+ irradiation at an elevated temperature. - Highlights: • W nano-fuzzes microscopic evolution during annealing or He"+ irradiated have been measured. • W nano-fuzzes are thermally unstable due to He release during annealing. • He are released from the top layer of W fuzzes by annealing. • Metastable W nano-fuzzes are formed due to He"+ irradiation at an elevated temperature.

  12. Laser-induced cracks in ice due to temperature gradient and thermal stress

    Science.gov (United States)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  13. Evidence for modified transport due to sheared E x B flows in high-temperature plasmas

    International Nuclear Information System (INIS)

    Groebner, R.J.; Burrell, K.H.; Austin, M.E.

    1994-11-01

    Sheared mass flows are generated in many fluids and are often important for the dynamics of instabilities in these fluids. Similarly, large values of the E x B velocity have been observed in magnetic confinement machines and there is theoretical and experimental evidence that sufficiently large shear in this velocity may stabilize important instabilities. Two examples of this phenomenon have been observed in the DIII-D tokamak. In the first example, sufficient heating power can lead to the L-H transition, a rapid improvement in confinement in the boundary layer of the plasma. For discharges with heating power close to the threshold required to get the transition, changes in the edge radial electric field are observed to occur prior to the transition itself. In the second example, certain classes of discharges with toroidal momentum input from neutral beam injection exhibit a further improvement of confinement in the plasma core leading to a regime called the VH-mode. In both examples, the region of improved confinement is characterized by an increase of shear in the radial electric field E r , reduced levels of turbulence and increases in gradients of temperatures and densities. These observations are consistent with the hypothesis that the improved confinement is caused by an increase in shear of the E x B velocity which leads to a reduction of turbulence. For the VH-mode, the dominant term controlling E r is the toroidal rotation v φ , indicating that the E r profile is controlled by the source and transport of toroidal momentum

  14. Temperature field due to time-dependent heat sources in a large rectangular grid. Application for the KBS-3 repository

    International Nuclear Information System (INIS)

    Probert, T.; Claesson, Johan

    1997-04-01

    In the KBS-3 concept canisters containing nuclear waste are deposited along parallel tunnels over a large rectangular area deep below the ground surface. The temperature field in rock due to such a rectangular grid of heat-releasing canisters is studied. An analytical solution for this problem for any heat source has been presented in a preceding paper. The complete solution is summarized in this paper. The solution is by superposition divided into two main parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. In this sequel to the first report, the local solution is discussed in detail. The local solution consists of three parts corresponding to line heat sources along tunnels, point heat sources along a tunnel and a line heat source along a canister. Each part depends on two special variables only. These parts are illustrated in dimensionless form. Inside the repository the local temperature field is periodic in the horizontal directions and has a short extent in the vertical direction. This allows us to look at the solution in a parallelepiped around a canister. The solution in the parallelepiped is valid for all canisters that are not too close to the repository edges. The total temperature field is calculated for the KBS-3 case. The temperature field is calculated using a heat release that is valid for the first 10 000 years after deposition. The temperature field is shown in 23 figures in order to illustrate different aspects of the complex thermal process

  15. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  16. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin; Gemma, Ryota; Al-Kassab, Talaat

    2016-01-01

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  17. Temperature escalation in PWR fuel rod simulator bundles due to the Zircaloy/steam reaction: Test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1984-07-01

    This report describes the test conduct and results of the bundle test ESBU-2A, which was run to investigate the temperature escalation of zircaloy clad fuel rods. This investigation of temperature escalation is part of a series of out-of-pile experiments, performed within the framework of the PNS Severe Fuel Damage Program. The test bundle was of a 3 x 3 array of fuel rod simulators with a 0.4 m heated length. The fuel rod simulators were electrically heated and consisted of tungsten heaters, UO 2 annular pellets, and zircaloy cladding. A nominal steam flow of 0.7 g/s was inlet to the bundle. The bundle was surrounded by a zircaloy shroud which was insulated with ZrO 2 fiber ceramic wrap. The initial heatup rate of the bundle was 0.4 0 C/s. The temperature escalation began at the 255 mm elevation after 1200 0 C had been reached. At this elevation, the measured peak temperature was limited to 1500 0 C. It was concluded from different thermocouple results, that induced by this first escalation melt was formed in the lower part of the bundle. Consequently, the escalation in the lower part must be much higher, at least up to the melting temperature of zircaloy. Due to the failure in the steam production system, steam starvation in the upper region may explain the beginning of the escalation at the 255 mm elevation. The maximum temperature reached was 2175 0 C on the center rod at the end of the test. The unregularities in the steam supply may be the reason for less oxidation than expected. (orig./GL) [de

  18. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.

    Science.gov (United States)

    Kromdijk, Johannes; Long, Stephen P

    2016-03-16

    Global climate change is likely to severely impact human food production. This comes at a time when predicted demand for primary foodstuffs by a growing human population and changing global diets is already outpacing a stagnating annual rate of increase in crop productivity. Additionally, the time required by crop breeding and bioengineering to release improved varieties to farmers is substantial, meaning that any crop improvements needed to mitigate food shortages in the 2040s would need to start now. In this perspective, the rationale for improvements in photosynthetic efficiency as a breeding objective for higher yields is outlined. Subsequently, using simple simulation models it is shown how predicted changes in temperature and atmospheric [CO2] affect leaf photosynthetic rates. The chloroplast accounts for the majority of leaf nitrogen in crops. Within the chloroplast about 25% of nitrogen is invested in the carboxylase, Rubisco, which catalyses the first step of CO2 assimilation. Most of the remaining nitrogen is invested in the apparatus to drive carbohydrate synthesis and regenerate ribulose-1:5-bisphosphate (RuBP), the CO2-acceptor molecule at Rubisco. At preindustrial [CO2], investment in these two aspects may have been balanced resulting in co-limitation. At today's [CO2], there appears to be over-investment in Rubisco, and despite the counter-active effects of rising temperature and [CO2], this imbalance is predicted to worsen with global climate change. By breeding or engineering restored optimality under future conditions increased productivity could be achieved in both tropical and temperate environments without additional nitrogen fertilizer. Given the magnitude of the potential shortfall, better storage conditions, improved crop management and better crop varieties will all be needed. With the short time-scale at which food demand is expected to outpace supplies, all available technologies to improve crop varieties, from classical crop breeding to

  19. Analysis of temperature profile and electric field in natural rubber glove due to microwave heating: effects of waveguide position

    Science.gov (United States)

    Keangin, P.; Narumitbowonkul, U.; Rattanadecho, P.

    2018-01-01

    Natural rubber (NR) is the key raw material used in the manufacture of other products such as rubber band, tire and shoes. Recently, the NR is used in natural rubber glove ( NRG) manufacturing in the industrial and medical fields. This research aims to investigate the electromagnetic wave propagation and heat transfer in NRG due to heating with microwave energy within the microwave oven at a microwave frequency of 2.45 GHz. Three-dimensional model of NRG and microwave oven are considered in this work. The comparative effects of waveguide position on the electric field and temperature profile in NRG when subjected to microwave energy are discussed. The finite element method (FEM) is used to solve the transient Maxwell’s equation coupled with the transient heat transfer equation. The simulation results with computer programs are validated with experimental results. The placement of waveguides in three cases are left hand side of microwave oven, right hand side of microwave oven and left and right hand sides of microwave oven are investigated. The findings revealed that the placing the waveguide on the right side of the microwave oven gives the highest electric field and temperature profile. The values obtained provide an indication toward understanding the study of heat transfer in NRG during microwave heating in the industry.

  20. The correlation between the rise of the tumor temperature during the hyperthermia treatment and the tumor blood flow measured by dynamic CT and 15O gas-positron emission tomography

    International Nuclear Information System (INIS)

    Hattori, Hideyuki

    1993-01-01

    This study was designed to determine the correlation between the rise of tumor temperature during hyperthermia treatment and the blood flow of the tumors measured by dynamic CT (DCT) and 15 O gas-positron emission tomography. In this report, we observed 20 patients with malignant tumors which underwent hyperthermia treatment. In each case, the temperature of the tumor was monitored with a photofiber sensor. DCT's and 15 O gas-positron emission tomographies were applied before the hyperthermia treatment. During the DCT, the tumor blood flow of each tumor was estimated by analyzing the time-dependent activity curve after a bolus injection. During the 15 O gas-positron emission tomography, the tumor blood flow was estimated by the C 15 O 2 -steady-state method. The value of the tumor blood flow estimated by DCT were proportional to those calculated by the 15 O gas-positron emission tomography. These values were inversely proportional to the rise of the temperature of the tumors during hyperthermia treatment. Our results imply that DCT as well as the 15 O gas-positron emission tomography can be used for the prediction of the tumor temperature rise during the hyperthermia treatment. (author)

  1. Rise of a cold plume

    International Nuclear Information System (INIS)

    Kakuta, Michio

    1977-06-01

    The rise of smoke from the stacks of two research reactors in normal operation was measured by photogrametric method. The temperature of effluent gas is less than 20 0 C higher than that of the ambient air (heat emission of the order 10 4 cal s -1 ), and the efflux velocity divided by the wind speed is between 0.5 and 2.8 in all 16 smoke runs. The field data obtained within downwind distance of 150m are compared with those by plume rise formulas presently available. Considering the shape of bending-over plume, the Briggs' formula for 'jet' gives a reasonable explanation of the observed plume rise. (auth.)

  2. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs.

    Science.gov (United States)

    Matys, Jacek; Flieger, Rafał; Dominiak, Marzena

    2017-07-01

    Many surgical procedures in soft tissue are performed using diode lasers. Recently, a novel diode laser operating at 445 nm wavelength was introduced in dentistry. The aim of our study was to evaluate the time of surgery and an increase in temperature of titanium implants during its uncovering using 445 and 980 nm wavelengths. The research included 45 pig mandibles (n = 45). The specimens were randomly divided into 3 groups (n = 15) according to the laser irradiation mode and wavelength; G1 - 445 nm laser, power: 3 W, continuous wave (CW), distance: 2 mm, power density: 7460 W/cm2, fiber: 320 μm, noncontact mode; G2 - 445 nm laser (power: 2 W, CW, power density: 4970 W/cm2, fiber: 320 μm, contact mode; G3 (control) - 980 nm laser, power: 2.5 W, CW, power density: 15920 W/cm2, fiber: 200 μm, contact mode. The temperature was measured with a 2 K-type thermocouples (a P1 at collar and a P2 at mid height of the implant). The mean temperature rises measured by the P1 thermocouple were 16.9°C, 36.1°C and 21.6°C in the G1, G2 and G3 group, respectively. Significant differences in temperature rise were found between the G1 and G2 group (p = 0.0007) and the G2 and G3 group (p = 0.01). The mean temperature rises measured by the P2 thermocouple were 1.8°C, 1.4°C and 5.6°C in the G1, G2 and G3 group, respectively. Significant differences in temperature rise were found between the G1 and the G2 or G3 group (p = 0.0001). The significant differences among the study groups in average time necessary for uncovering the implants amounted to 69.7, 54.4 and 83.6 s, respectively (p diode laser in non-contact mode reduced the temperature rise of the implants. The additional pulse intervals during laser irradiation with wavelength of 445 nm when operating in contact mode are needed.

  3. Contemporary sea level rise.

    Science.gov (United States)

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.

  4. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2

    Science.gov (United States)

    Khan, M. A.; Leuenberger, Michael N.

    2018-04-01

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of  ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.

  5. Research on Ambient Temperature Change Law in Mine Refuge Chamber during Temperature Rise%升温期煤矿避难硐室内环境温度变化规律研究

    Institute of Scientific and Technical Information of China (English)

    周方年

    2014-01-01

    针对煤矿避难硐室内人员避灾过程中人体和设备产热引起的热环境对人员避灾的影响,研究了在无降温措施情况下密闭避难硐室内的空气与围岩壁面的动态耦合传热规律。采用理论分析与试验验证的方法,得出室内避灾过程中的人体与设备产热量计算方法和硐室内空气升温规律。研究结果对避难硐室内的热湿环境控制具有一定的理论指导意义。%To counter to the influence of thermal environment caused by the heat produced by human bodies and equipment on the persons in the mine refuge chamber, study was made on the dynamic coupled heat transfer regularity of air and surrounding rock wall in a sealed refuge chamber without any cooling measures. By using the theoretical analysis and tests, the calculation method for heat produced by human bodies and equipment and the temperature rise regularity in the refuge chamber in the escape period were obtained. This research result has a certain theoretical guiding significance for the control of the hot-moist environment in the mine refuge chamber.

  6. Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data

    Directory of Open Access Journals (Sweden)

    Cemal Ozer Yigit

    2016-07-01

    Full Text Available The present study evaluates the dynamic behaviour of the Ermenek Dam, the second highest dam in Turkey, based on conventional geodetic measurements and Finite Element Model (FEM analyses during its first filling period. In total, eight periods of measured deformation are considered from the end of construction until the reservoir reached its full capacity. The displacement response of the dam to the reservoir level and to seasonal temperature variations is examined in detail. Time series of apparent total displacements at the middle of the crest of the dam exhibits periodicity and linear trends. Correlation analysis revealed that periodic and linear displacement responses of the dam are related to variations of seasonal temperature and linearly increased reservoir level, respectively, indicating a relation between temperature, water load and dam deformation. It is also concluded that measured deformations based on geodetic data show good agreement with the predicted deformation obtained by the FEM analysis.

  7. Optical measurement of water over-heating in contact with a wall submitted to a quick temperature rise under atmospheric pressure

    International Nuclear Information System (INIS)

    Ebrardt, Jacques

    1981-01-01

    As a technique is necessary for the instantaneous measurement of a liquid temperature at the immediate vicinity of a wall submitted to a quick unsteady heating, this research thesis reports the development of such a technique, and its use for the determination of the temperature reached by the liquid before boiling in unsteady regime. After a report of a literature survey on the unsteady heating of liquid (by thermal shock or progressive heating), and on various theoretical aspects, the author reports the use of a measurement installation which is based on the use of optical interferometry, and on the exploitation of raw experimental data. Results of overheating at boiling initiation are interpreted [fr

  8. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1983-08-01

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 2000 0 C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW) [de

  9. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  10. Composite heat transfer in a pipe with thermal radiation of two-dimensional propagation - in connection with the temperature rise in flowing medium upstream from heating section

    International Nuclear Information System (INIS)

    Echigo, R.; Hasegawa, S.; Kamiuto, K.

    1975-01-01

    An analytical procedure is presented for simultaneous convective and radiative heat transfer with a fully developed laminar flow in a pipe by taking account of the two-dimensional propagation of radiative transfer and also shows the numerical results on the temperature profiles and the heat-transfer characteristics. In order to solve the energy equation with two-dimensional radiative transfer the entire ranges of the temperature field have to be solved simultaneously both along the radial and flow directions. Moreover, the heat flux by thermal radiation emitted from the heating wall propagates upstream so that it is necessary to examine the temperature profiles of the flowing medium to a certain distance upstream from the entrance of the heating section. In this way in order to attempt to solve the governing equation numerically by a finite difference method the dimension of matrix becomes extremely large provided that a satisfactory validity of numerical calculation is required Consequently the band matrix method is used and the temperature profiles of the medium in both regions upstream and downstream from the entrance of the heating section are illustrated and the heat transfer results are discussed in some detail by comparing with those of the one-dimensional transfer of radiation.(auth)

  11. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation

    NARCIS (Netherlands)

    Macedo, R.G.; Verhaagen, B.; Wesselink, P.R.; Versluis, Michel; van der Sluis, L.W.M.

    2014-01-01

    Aim To evaluate the effect of multiple refreshment/activation cycles and temperature on the reaction rate of sodium hypochlorite (NaOCl) with bovine dentine during ultrasonic activated irrigation (UAI) under laboratory conditions. Methodology The root canal walls of 24 standardized root canals in

  12. Evidence of Room Temperature Ferromagnetism Due to Oxygen Vacancies in (In1- x Fe x )2O3 Thin Films

    Science.gov (United States)

    Chakraborty, Deepannita; Munuswamy, Kuppan; Shaik, Kaleemulla; Nasina, Madhusudhana Rao; Dugasani, Sreekantha Reddy; Inturu, Omkaram

    2018-03-01

    Iron substituted indium oxide (In1- x Fe x )2O3 thin films at x = 0.00, 0.03, 0.05 and 0.07 were coated onto Corning 7059 glass substrates using the electron beam evaporation technique followed by annealing at different temperatures. The prepared thin films were subjected to different characterization techniques to study their structural, optical and magnetic properties. The structural properties of the thin films were studied using x-ray diffractometry (XRD). From the XRD results it was found that the films were crystallized in cubic structure, and no change in crystal structure was observed with annealing temperature. No secondary phases related to iron were observed from the XRD profiles. The chemical composition and surface morphology of the films were examined by field emission scanning electron microscope (FE-SEM) attached with energy dispersive analysis of x-ray (EDAX). The valence state of the elements were studied by x-ray photoelectron spectroscopy (XPS) and found that the indium, iron and oxygen were in In+3, Fe+3 and O-2 states. From the data, the band gap of the (In1- x Fe x )2O3 thin films were calculated and it increased with increase of annealing temperature. The magnetic properties of the films were studied at room temperature by vibrating sample magnetometer (VSM). The films exhibited ferromagnetism at room temperature.

  13. Changing Ocean, Changing Economics: Impact of Rising Temperatures on the American Lobster Landings and on the US-Canada Lobster Economics in the Emerging Chinese Market

    Science.gov (United States)

    Sun, C. H. J.

    2016-02-01

    Record high temperatures in 2012 pushed the start date of the Maine lobster fishing season three weeks earlier than normal. High landings during a compressed time period more than doubled the volume experienced in June and July. As supply outpaced demand, an average 40% decrease in ex-vessel price significantly reduced fishermen's profitability. This study examined how the timing and location of lobster landings is affected by ocean temperatures, number of trips, distance fished from shore, price, and seasonality. Weekly lobster landings and the number of fishing trips in eastern, central, and western Maine from 2008 to 2014 were combined with NERACOOS buoy temperatures to model the change in productivity. The model shows warming leads to significant increases in landings. We also used monthly landings, prices, and trade of live and processed lobster between the U.S. and Canada from 1990 to 2014 to specify a system of equations that captures how both markets are integrated and how they respond to changing market conditions. The model shows that an increase in landings in both areas leads to an increase in lobster trade and then to an increase in US imports of frozen lobster meat. Furthermore, lobster exports to the emerging Chinese market started to expand after 2012 and grew to account for 21% and 11% of the exports value from U.S. and Canada, respectively. From 2010 to 2014, a sub-system model is specified to address how increasing demand in the Chinese market for hard-shell lobster could create incentives to delay production and increase the supply of hard-shell live lobster. The full model was then used to explore ways in which this coastal social-ecological system can adapt to increasing ocean temperature and how the integrated global market might alter the economic implications of the next ocean heatwave.

  14. Quantitative relationship between SAR and temperature rise inside eyeball in a realistic human heat model for 1.5 GHz-microwave exposure; 1.5GHz maikuroha wo abita tobu real model ni okeru gankyunai no hikyushuritsu to josho ondo tono teiryo kankei

    Energy Technology Data Exchange (ETDEWEB)

    Takai, K.; Fujiwara, O. [Nagoya Institute of Technology, Nagoya (Japan)

    1997-12-20

    For investigating biological effects of a localized SAR (specific absorption rate) deposited in a human body for electromagnetic wave exposure, it is indispensable to graps a temperature-rise inside a human brain including the control center for the body temperature. This paper numerically analyzes a temperature-rise inside an eyeball of our developed realistic head model for 1.5 GHz microwave exposure, using the FD-TD (finite-difference time-domain) method. The computed results are validated in comparison with the data obtained by Taflove and his colleague. In order to examine a quantitative relationship between the localized SAR and temperature-rise, we also obtained a tissue amount over which the localized SAR should be averaged so as to well reflect the temperature-rise distribution inside the eyeball. 15 refs., 9 figs., 3 tabs.

  15. Energy loss in degenerate semiconductors due to inelastic interaction with acoustic and piezoelectric phonons at low lattice temperatures

    International Nuclear Information System (INIS)

    Midday, S; Bhattacharya, D P

    2011-01-01

    The energy loss rate of an electron in a degenerate semiconductor because of inelastic interaction with deformation potential and piezoelectric acoustic phonons is calculated in the case when the lattice temperature is low, so that the approximations of the well-known traditional theory are not valid. Compared to the traditional results and those for non-degenerate semiconductors, the theory here reveals a more complex and altogether different dependence of the loss rate on the carrier energy and the lattice temperature. The numerical results obtained here for Si and GaAs show how significantly the degeneracy level, the true phonon distribution or the inelasticity of the interaction affects the loss characteristics at low temperatures.

  16. Thermally induced permeability reduction due to particle migration in sandstones: the effect of temperature on kaolinite mobilisation and aggregation

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke; Yuan, Hao

    2012-01-01

    The seasonal imbalance in supply and demand of renewable energy requires seasonal storage, which potentially may be achieved by hot water injection in geothermal aquifers to minimize heat loss by advection. A reduction of porosity and permeability is a risk of heating the rock above the in...... the interaction energy between quartz and kaolinite particles for different saturating fluids. The results are compared to the published data addressing the effect of temperature on permeability. This provides a qualitative explanation for the observed changes in permeability with temperature for the tests...

  17. Numerical simulation of temperature distribution in cylindrical ilmenite (FeTiO3) due to microwave heating

    Science.gov (United States)

    Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal

    2018-04-01

    Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.

  18. Temperature measurement error due to the effects of time varying magnetic fields on thermocouples with ferromagnetic thermoelements

    International Nuclear Information System (INIS)

    McDonald, D.W.

    1977-01-01

    Thermocouples with ferromagnetic thermoelements (iron, Alumel, Nisil) are used extensively in industry. We have observed the generation of voltage spikes within ferromagnetic wires when the wires are placed in an alternating magnetic field. This effect has implications for thermocouple thermometry, where it was first observed. For example, the voltage generated by this phenomenon will contaminate the thermocouple thermal emf, resulting in temperature measurement error

  19. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Test ESBU-1

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Peck, S.O.; Wallenfels, K.P.

    1983-12-01

    This report describes the test conduct and results of the bundle test ESBU-1. The test objective was the investigation of temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of a program of out-of-pile experiments, performed within the framework of the PNS Several Fuel Damage Program. The bundle was composed of a 3x3 array of fuel rod simulators surrounded by a zircaloy shroud which was insulated with a ZrO 2 fiber ceramic wrap. The fuel rod simulators comprised a tungsten heater, UO 2 annular pellets, and zircaloy cladding over a 0.4 m heated length. A steam flow of 1 g/s was inlet to the bundle. The most pronounced temperature escalation was found on the central rod. The initial heatup rate of 2 0 C/s at 1100 0 C increased to approximately 6 0 C/s. The maximum temperature reached was 2250 0 C. The following fast temperature decrease was caused by runoff of molten zircaloy. Molten zircaloy swept down the thin cladding oxide layer formed during heatup. The melt dissolved the surface of the UO 2 pellets and refroze as a coherent lump in the lower part of the bundle. The remaining pellets fragmented during cooldown and formed a powdery layer on the refrozen lump. The lump was sectioned posttest at several elevations: Dissolution of UO 2 by the molten zircaloy, interaction between the melt and previously oxidized zircaloy, and oxidation of the melt had occurred. (orig.) [de

  20. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Novakowski, T.J.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He + ion irradiation at different temperatures in the range of 823–1223 K. The samples were irradiated at normal incidence with 100 eV He + ions at constant flux of 1.2 × 10 21 ions m −2  s −1 to a total fluence of 4.3 × 10 24 ions m −2 . An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 10 25 ions m −2 (at the same flux of 1.2 × 10 21 ions m −2  s −1 ), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm 2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  1. FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz

    International Nuclear Information System (INIS)

    Oizumi, T.; Laakso, I.; Hirata, A.; Fujiwara, O.; Watanabe, S.; Taki, M.; Kojima, M.; Sasaki, H.; Sasaki, K.

    2013-01-01

    The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye. (authors)

  2. FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz.

    Science.gov (United States)

    Oizumi, Takuya; Laakso, Ilkka; Hirata, Akimasa; Fujiwara, Osamu; Watanabe, Soichi; Taki, Masao; Kojima, Masami; Sasaki, Hiroshi; Sasaki, Kazuyuki

    2013-07-01

    The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye.

  3. New aspects about reduced LCF-life time of spherical ductile cast iron due to dynamic strain aging at intermediate temperatures

    International Nuclear Information System (INIS)

    Mouri, Hayato; Wunderlich, Wilfried; Hayashi, Morihito

    2009-01-01

    Spherical ductile cast iron (FCD400) is widely used as container material in nuclear energy processing line due to its superior mechanical properties and low price. Fatigue properties in low cycle fatigue (LCF) can be described well by the Manson-Coffin-Basquin's rule. However, at intermediate temperature range between 453 and 723 K the elongation-temperature-diagram shows a significantly 20-10% reduced elongation and an increase in yield stress in tensile test experiments. These non-linear deviations and the phenomenon of less ductility at intermediate temperatures are known for a long time [K. Chijiiwa, M. Hayashi, Mechanical properties of ductile cast iron at temperature in the region of room temperature to liquid, Imono 51 (7) (2004) 395-400]. But the following explanation is presented for the first time. In the same temperature range as the reduced fatigue life time dynamic strain ageing (DSA) also known as Portevin-le-Chartelier effect with the formation of visible serrations occurs. Both phenomena are explained by interaction effects between carbon diffusion and dislocation velocity which have at this temperature the same order of magnitude. However, this phenomenon shows interesting behavior at intermediate temperature range. During the low cycle fatigue test, DSA phenomenon disappeared, but mechanical properties show clear evidence of DSA phenomenon. Therefore, the purpose of this paper is to study the correlation of DSA occurrence, LCF and mechanical properties.

  4. Arbuscular Mycorrhizal Fungi May Mitigate the Influence of a Joint Rise of Temperature and Atmospheric CO2 on Soil Respiration in Grasslands

    Directory of Open Access Journals (Sweden)

    S. Vicca

    2009-01-01

    Full Text Available We investigated the effects of mycorrhizal colonization and future climate on roots and soil respiration (Rsoil in model grassland ecosystems. We exposed artificial grassland communities on pasteurized soil (no living arbuscular mycorrhizal fungi (AMF present and on pasteurized soil subsequently inoculated with AMF to ambient conditions and to a combination of elevated CO2 and temperature (future climate scenario. After one growing season, the inoculated soil revealed a positive climate effect on AMF root colonization and this elicited a significant AMF x climate scenario interaction on root biomass. Whereas the future climate scenario tended to increase root biomass in the noninoculated soil, the inoculated soil revealed a 30% reduction of root biomass under warming at elevated CO2 (albeit not significant. This resulted in a diminished response of Rsoil to simulated climatic change, suggesting that AMF may contribute to an attenuated stimulation of Rsoil in a warmer, high CO2 world.

  5. Arbuscular Mycorrhizal Fungi May Mitigate the Influence of a Joint Rise of Temperature and Atmospheric CO2 on Soil Respiration in Grasslands

    International Nuclear Information System (INIS)

    Vicca, S.; Zavalloni, C.; Fu, Y.S.H.; Ceulemans, R.; Nijs, I.; Janssens, I.A.; Voets, L.; Boulois, H.D.D.; Declerck, S.

    2009-01-01

    We investigated the effects of mycorrhizal colonization and future climate on roots and soil respiration (R soil) in model grassland ecosystems. We exposed artificial grassland communities on pasteurized soil (no living arbuscular mycorrhizal fungi (AMF) present) and on pasteurized soil subsequently inoculated with AMF to ambient conditions and to a combination of elevated CO 2 and temperature (future climate scenario). After one growing season, the inoculated soil revealed a positive climate effect on AMF root colonization and this elicited a significant AMF x climate scenario interaction on root biomass. Whereas the future climate scenario tended to increase root biomass in the non inoculated soil, the inoculated soil revealed a 30% reduction of root biomass under warming at elevated CO 2 (albeit not significant). This resulted in a diminished response of R soil to simulated climatic change, suggesting that AMF may contribute to an attenuated stimulation of R soil in a warmer, high CO 2 world.

  6. Rising Mean Annual Temperature Increases Carbon Flux and Alters Partitioning, but Does Not Change Ecosystem Carbon Storage in Hawaiian Tropical Montane Wet Forest

    Science.gov (United States)

    Litton, C. M.; Giardina, C. P.; Selmants, P.

    2014-12-01

    Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical

  7. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction ESSI-4 ESSI-11

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauscheck, H.; Wallenfels, K.P.; Buescher, B.J.

    1985-03-01

    The tests had the initial heatup rate as main parameter. The experimental arrangement consisted of a fuel rod simulator (central tungsten heater, UO 2 ring pellets and zircaloy cladding), a zircaloy shroud and the fiber ceramic insulation. A steam flow of ca. 20 g/min was introduced at the lower end of the bundle. A temperature escalation was observed in every test. The maximum cladding surface temperature in the single rod tests never exceeded 2200 0 C. The escalation began in the upper region of the rods and moved down the rods, opposite to the direction of steam flow. For fast initial heatup rates, the runoff of molten zircaloy was a limiting process for the escalation. For slow heatup rates, the formation of a protective oxide layer reduced the reaction rate. The test with less insulation thickness showed a reduction of the escalation. A stronger influence was found for the gap between shroud and insulation. This is caused by convection heat losses to the steam circulating in this gap by natural convection. Removal of the gap between shroud and insulation in essentially the same experimental arrangement produced a faster escalation. The posttest appearance of the fuel rod simulators showed that, at slow heatup rates oxidation of the cladding was complete, and the fuel rod was relatively intact. Conversely, at fast heatup rates, relatively little cladding oxidation with extensive dissolution of the UO 2 pellets and runoff of molten cladding was observed. (orig./HP) [de

  8. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    Science.gov (United States)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to

  9. Warming can boost denitrification disproportionately due to altered oxygen dynamics.

    Directory of Open Access Journals (Sweden)

    Annelies J Veraart

    Full Text Available BACKGROUND: Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. METHODOLOGY/PRINCIPAL FINDINGS: We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. CONCLUSIONS/SIGNIFICANCE: Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our results illustrate the broader phenomenon that coupling of temperature dependent reactions may in some situations strongly alter overall effects of temperature on ecological processes.

  10. Compositional changes at the interface between thorium-doped uranium dioxide and zirconium due to high-temperature annealing

    Science.gov (United States)

    Youn, Young-Sang; Lee, Jeongmook; Kim, Jandee; Kim, Jong-Yun

    2018-06-01

    Compositional changes at the interface between thorium-doped uranium dioxide (U0.97Th0.03O2) and Zr before and after annealing at 1700 °C for 18 h were studied by X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. At room temperature, the U0.97Th0.03O2 pellet consisted of hyperstoichiometric UO2+x with UO2 and ThO2, and the Zr sample contained Zr with ZrO2. After annealing, the former contained stoichiometric UO2 with ThO2 and the latter consisted of ZrO2 along with ZrO2·2H2O.

  11. REMIX: a computer program for temperature transients due to high pressure injection after interruption of natural circulation

    International Nuclear Information System (INIS)

    Iyer, K.; Nourbakhsh, H.P.; Theofanous, T.G.

    1986-05-01

    This report describes the features and use of several computer programs developed on the basis of the Regional Mixing Model (RMM). This model provides a phenomenologically-based analytical description of the stratified flow and temperature fields resulting from High Pressure Safety Injection (HPI) in the stagnated loops of a Pressurized Water Reactor (PWR). The basic program is called REMIX and is intended for thermally-induced stratification at low Froude number injections. The REMIX-S version is intended for solute-induced stratification with or without thermal effects as found in several experimental simulations. The NEWMIX program is a derivative of REMIX representing the limit of maximum possible mixing within the cold leg and is intended for high Froude number injections. The NEWMIX-S version accounts for solute effects. Listings of all programs and sample problem input and output files are included. 10 refs

  12. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-01-01

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg -1 is 0.25 0 C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 0 C was 4.5 W kg -1 in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of

  13. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg{sup -1} is 0.25 {sup 0}C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 {sup 0}C was 4.5 W kg{sup -1} in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the

  14. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.

    Science.gov (United States)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP

  15. Experimental study on the cracking behavior of reinforced concrete hollow cylinders subjected to temperature gradient and the assessment of decrease in flexural rigidity due to cracking

    International Nuclear Information System (INIS)

    Aoyagi, Yukio; Onuma, Hiroshi; Okazawa, Takao

    1976-01-01

    Altough the consideration of thermal stress constitutes one of the primary factors governing the design of the hollow cylindrical structures made of reinforced concrete and subjected to temperature gradient, such as radiation-shielding walls and reactor containment vessels, the method of rationally evaluating the safety to such stress has not been established so far. The purposes of this study are to investigate the conditions under which cracks initiate in reinforced concrete structures due to temperature gradient, and to evaluate the decreases in the flexural rigidity after cracking, mainly on the basis of experiment. Three hollow cylinders with top and bottom slabs, 120 cm height and 100 cm outside diameter, were tested. The cylinders were externally cooled by being immersed in water, and internally heated by circulating hot water through the cavities. The maximum temperature difference of 65 deg C was attained. The strain was measured, and the crack patterns were observed. A reinforced concrete beam of 3.8 m length was subjected to temperature difference of 65 deg C. Horizontal cracks appeared first at 27 deg C, and vertical cracks followed at 31 deg C difference at the middle of cylindrical walls. It was assumed that the first cracks appear at the tensile strain of 100 x 10 -6 , and the calculated result was agreed fairly well with the observed temperature difference. The rational method for evaluating the decrease in flexural rigidity due to cracking was proposed by the authors. (Kako, I.)

  16. W nano-fuzzes: A metastable state formed due to large-flux He{sup +} irradiation at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yunfeng; Liu, Lu; Lu, Bing; Ni, Weiyuan; Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn

    2016-12-15

    W nano-fuzzes have been formed due to the large-flux and low-energy (200eV) He{sup +} irradiation at W surface temperature of 1480 °C. Microscopic evolution of W nano-fuzzes during annealing or low-energy (200 eV) He{sup +} bombardments has been observed using scanning electron microscopy and thermal desorption spectroscopy. Our measurements show that both annealing and He{sup +} bombardments can significantly alter the structure of W nano-fuzzes. W nano-fuzzes are thermally unstable due to the He release during annealing, and they are easily sputtered during He{sup +} bombardments. The current study shows that W nano-fuzzes act as a metastable state during low-energy and large-flux He{sup +} irradiation at an elevated temperature. - Highlights: • W nano-fuzzes microscopic evolution during annealing or He{sup +} irradiated have been measured. • W nano-fuzzes are thermally unstable due to He release during annealing. • He are released from the top layer of W fuzzes by annealing. • Metastable W nano-fuzzes are formed due to He{sup +} irradiation at an elevated temperature.

  17. Cause and countermeasure for heat up of HTTR core support plate at power rise tests

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Nozomu; Takada, Eiji; Nakagawa, Shigeaki; Tachibana, Yukio; Kawasaki, Kozo; Saikusa, Akio; Kojima, Takao; Iyoku, Tatuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2002-01-01

    HTTR has carried out many kinds of tests as power rise tests in which reactor power rises step by step after attained the first criticality. In the tests, temperature of a core support plate reached higher than expected at each power level, the temperature was expected to be higher than the maximum working temperature at 100% power level. Therefore, tests under the high temperature test operation mode, in which the core flow rate was different, were carried out to predict the temperature at 100% power precisely, and investigate the cause of the temperature rise. From the investigation, it was clear that the cause was gap flow in the core support structure. Furthermore, it was estimated that the temperature of the core support plate rose locally due to change in gap width between the core support plate and a seal plate due to change in core pressure drop. The maximum working temperature of the core support plate was revised. The integrity of core support plate under the revised maximum working temperature condition was confirmed by stress analyses. (author)

  18. A simplified method to calculate the stresses in straight pipes due to laminar flow of a stratified medium with two different temperatures

    International Nuclear Information System (INIS)

    Cutrim, J.H.; Kizivat, V.

    1984-01-01

    A simplified method to calculate the stresses in straight pipes due to laminar flow of a stratified medium with two different temperatures is presented. It is based on the equilibrium equations and conservative assumptions as usual in practice. Numerical results are obtained for the 'banana' and 'pera' modes of deformation due to thermal stratification; the former case appears to be most important. In order to be able to perform such a fatigue damage analysis in practice under several complex load conditions, an existing program for fatigue damage analysis was provided with more substantial details. All the assumptions crucial for the use of ASME code were retained. The inclusion of stresses due to stratifications in the fatigue damage analysis is completed through extension of ASME NB 3650. (Author) [pt

  19. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone.

    Science.gov (United States)

    Will, Rodney E; Wilson, Stuart M; Zou, Chris B; Hennessey, Thomas C

    2013-10-01

    Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  20. Stability of peatland carbon to rising temperatures

    Science.gov (United States)

    R. M. Wilson; A. M. Hopple; M. M. Tfaily; S. D. Sebestyen; C. W. Schadt; L. Pfeifer-Meister; C. Medvedeff; K. J. McFarlane; J. E. Kostka; M. Kolton; R.K. Kolka; L. A. Kluber; J. K. Keller; T. P. Guilderson; N. A. Griffiths; J. P. Chanton; S. D. Bridgham; P. J. Hanson

    2016-01-01

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However,...

  1. Temperature rise of cyclicly loaded power cables

    Energy Technology Data Exchange (ETDEWEB)

    Brakelmann, H

    1984-09-01

    A calculation method for the current ratings of cyclicly loaded power cables is introduced, taking into account optional shapes of the load cycle as well as the drying-out of the soil. The method is based on the Fourier-analysis of the loss cycle, representing an extension of the calculation method of VDE 0298. It is shown, that the ''VDE-method'' gives good results for the thermal resistances, if an ''utility load cycle'' in accordance with VDE 0298 is supposed. Only for cycles deviating essentially from the utility load cycle, the thermal resistances calculated by the ''VDE-method'' may be too great. In these cases the represented method is advantageous and can be processed by the aid of microcomputers.

  2. Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps): Post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation.

    Science.gov (United States)

    Fonte, Elsa; Ferreira, Pedro; Guilhermino, Lúcia

    2016-11-01

    The goal of this study was to investigate the toxicity of cefalexin to Pomatoschistus microps juveniles in relation to the presence of microplastics in the water and temperature rise. After acclimatization, groups of wild juveniles were exposed for 96h to artificial salt water (control), microplastics alone (0.184mg/l), cefalexin alone (1.3-10mg/l) and in mixture with microplastics (cefalexin: 1.3-10mg/l; microplastics: 0.184mg/l) at 20 and 25°C. Effect criteria were mortality, post-exposure predatory performance (PEPP), acetylcholinesterase activity (AChE) and lipid peroxidation levels (LPO). At 20°C, concentrations of cefalexin alone≥5mg/l significantly reduced PEPP (up to 56%; 96h-EC 50 =8.4mg/l), indicating toxicity of the antibiotic to juveniles after short-term exposure to water concentrations in the low ppm range. At 20°C, fish exposed to microplastics alone did not have significant differences in any of the parameters tested relative to the control group but tended to have an inhibition of the PEPP (23%) and AChE (21%); at 25°C, microplastics alone caused mortality (33%) and PEPP inhibition (28%). Thus, microplastics are toxic to P. microps juveniles. At 20°C, under simultaneous exposure to cefalexin and microplastics, the PEPP was significantly reduced (at cefalexin concentrations≥1.25mg/l). Moreover, at 25°C, the toxicity curves of cefalexin (PEPP based), alone and in mixture with microplastics, were significantly different (pmicroplastics in the water influenced the toxicity of cefalexin. The rise of water temperature (from 20°C to 25°C), increased the microplastics-induced mortality (from 8 to 33%), and the inhibitory effects of cefalexin on the PEPP (up to 70%). Significant differences (pmicroplastics and of cefalexin, alone and in mixture with microplastics, to P. microps juveniles. These findings raise concern on the long-term exposure of wild populations to complex mixtures of pollutants, likely decreasing their fitness, and highlight

  3. Small-angle reflectometry of milk protein (β -casein) at the air/serum interface and its conformational changes due to fat content and temperature

    International Nuclear Information System (INIS)

    Heidari, R.; White, J.W.

    2003-01-01

    Full text: The surface structure of dispersed emulsions play a key role in stability of the system. Proteins being one of the most important surface-active components in foods stabilise interfaces by self-interaction, resulting in a stiff visco-elastic adsorbed layer. These interactions are sensitive to disruptive effects of lipids. Previous kinetics studies by the group 1 using the X-ray reflectivity method to investigate the surface adsorption of milk proteins indicate that β -casein had a stronger affinity for the air-liquid interface compared to whey proteins. It has been shown that initially a dense protein layer, with the thickness of 20 Angstroms is formed then a second more diffuse layer with lower volume density of protein follows. Here we report the conformational changes (with particular emphasise on the β -casein tail) occurred at the air-milk serum interface due to the effects of milk fat content, temperature and the milk preparation technique (ie homogenisation vs microfluidisation). In the effect of fat content on the adsorption of protein into the interface the key conclusion is that at lower temperatures the surface composition remains unchanged. The compositional changes, however, become significant at room temperature indicating adsorption of less reflective-water-soluble components into the surface layer. Repulsive interactions between casein aggregates are also involved. Microfluidised samples having the advantage of smaller particle size prove to be more stable to fat or temperature effects compared to the corresponding homogenised milks

  4. Effects of increasing temperature due to aquatic climate change on the self-fertility and the sexual development of the hermaphrodite fish, Kryptolebias marmoratus.

    Science.gov (United States)

    Park, Chang-Beom; Kim, Young Jun; Soyano, Kiyoshi

    2017-01-01

    In order to assess the effects of increasing temperature on the reproductive performance of fish, different thermal conditions (i.e., 25.0, 26.5, 27.5, 28.5, 30.0 °C) were used in this study and the self-fertilizing hermaphrodite fish, Kryptolebias marmoratus, was exposed to these different thermal conditions. During an exposure period of 30 to 150 days, the gonadosomatic index (GSI), gonadal development, the levels of plasma 17β-estradial (E2) and testosterone (T), hepatic vitellogenin (VTG) mRNA abundance, and the number of self-fertilized eggs were analyzed. This study confirmed that a high water temperature above 27.5 °C led to the suppression of self-fertility of hermaphroditic fish from 30 days after exposure. The oocyte quality and maturation would be affected by the disruption of hepatic VTG synthesis at a high water temperature of 30 °C, which resulted in the reduced the self-fertility in K. marmoratus. Consequently, this study suggests that elevated water temperature due to aquatic climate change prior to sexual maturation and the onset of spawning can lead to the reproductive dysfunction of hermaphroditic K. marmoratus.

  5. Future sea level rise constrained by observations and long-term commitment

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-01-01

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648

  6. Future sea level rise constrained by observations and long-term commitment.

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-03-08

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.

  7. Rising tides, rising gates: The complex ecogeomorphic response of coastal wetlands to sea-level rise and human interventions

    Science.gov (United States)

    Sandi, Steven G.; Rodríguez, José F.; Saintilan, Neil; Riccardi, Gerardo; Saco, Patricia M.

    2018-04-01

    Coastal wetlands are vulnerable to submergence due to sea-level rise, as shown by predictions of up to 80% of global wetland loss by the end of the century. Coastal wetlands with mixed mangrove-saltmarsh vegetation are particularly vulnerable because sea-level rise can promote mangrove encroachment on saltmarsh, reducing overall wetland biodiversity. Here we use an ecogeomorphic framework that incorporates hydrodynamic effects, mangrove-saltmarsh dynamics, and soil accretion processes to assess the effects of control structures on wetland evolution. Migration and accretion patterns of mangrove and saltmarsh are heavily dependent on topography and control structures. We find that current management practices that incorporate a fixed gate for the control of mangrove encroachment are useful initially, but soon become ineffective due to sea-level rise. Raising the gate, to counteract the effects of sea level rise and promote suitable hydrodynamic conditions, excludes mangrove and maintains saltmarsh over the entire simulation period of 100 years

  8. Relationships of physiologically equivalent temperature and hospital admissions due to I30-I51 other forms of heart disease in Germany in 2009-2011.

    Science.gov (United States)

    Shiue, Ivy; Perkins, David R; Bearman, Nick

    2016-04-01

    We aimed to understand relationships of the weather as biometeorological and hospital admissions due to other forms of heart disease by subtypes, which have been paid less attention, in a national setting in recent years. This is an ecological study. Ten percent of daily hospital admissions of the included hospitals (n = 1618) across Germany that were available between 1 January 2009 and 31 December 2011 (n = 5,235,600) were extracted from Statistisches Bundesamt, Germany. We identified I30-I51 other forms of heart disease by the International Classification of Diseases version 10 as the study outcomes. Daily weather data from 64 weather stations that have covered 13 German states, including air temperature, humidity, wind speed, cloud cover, radiation flux and vapour pressure, were obtained and generated into physiologically equivalent temperature (PET). Admissions due to other diseases of pericardium, nonrheumatic mitral valve disorders, nonrheumatic aortic valve disorders, cardiomyopathy, atrioventricular and left bundle-branch block, other conduction disorders, atrial fibrillation and flutter, and other cardiac arrhythmias peaked when PET was between 0 and 10 °C. Complications and ill-defined descriptions of heart disease admissions peaked at PET 0 °C. Cardiac arrest and heart failure admissions peaked when PET was between 0 and -10 °C while the rest did not vary significantly. A common drop of admissions was found when PET was above 10 °C. More medical resources could have been needed for heart health on days when PETs were public would seem to be imperative.

  9. Post test investigation of the single rod tests ESSI 1-11 on temperature escalation in PWR fuel rod simulators due to the Zircaloy/steam reaction

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Katanishi, S.

    1987-03-01

    This KfK-report describes the posttest investigation of the single rod tests ESSI-1 to ESSI-11. The objective of these tests was to investigate the temperature escalation behaviour of Zircaloy clad PWR-fuel rods in steam. The investigation of the temperature escalation is part of the program of out-of-pile experiments (CORA) performed within the frame work of the PNS Severe Fuel Damage Program. The experimental arrangement consisted of fuel rod simulator (central tungsten heater, UO 2 ring pellets and Zircaloy cladding), Zircaloy shroud and fiber ceramic insulation. The introductory test ESSI-1 to ESSI-3 were scoping tests designed to obtain information on the temperature escalation of zircaloy in steam. ESSI-4 to ESSI-8 were run with increasing heating rates to investigate the influence of the oxide layer thickness at the start of the escalation. ESSI-9 to ESSI-11 were performed to investigate the influence of the insulation thickness on the escalation behaviour. In these tests we also learned that the gap between removed shroud and insulation has a remarkable influence due to heat removal by convection in the gap. After the test the fuel rod simulator was embedded into epoxy and cut by a diamond saw. The cross sections were photographed and investigated by metalograph microscope, SEM and EMP examinations. (orig./GL) [de

  10. The Rise of Iran

    DEFF Research Database (Denmark)

    Rahigh-Aghsan, Ali

    Iran is viewed as a rising power that poses an increasing threat to regional and even global security. This view is wrong for three reasons. Iran's hard and soft power is exaggerated by most accounts; it is too limited to allow the Iranians to dominate the Persian Gulf let alone the Middle East...

  11. The Rise of Iran

    DEFF Research Database (Denmark)

    Rahigh-Aghsan, Ali; Jakobsen, Peter Viggo

    2010-01-01

    Iran is viewed as a rising power that poses an increasing threat to regional and even global security. This view is wrong for three reasons. Iran's hard and soft power is exaggerated by most accounts; it is too limited to allow the Iranians to dominate the Persian Gulf let alone the Middle East...

  12. RISE OF MOBILITY PROGRAMS IN GERMANY DUE TO GLOBALISATION

    Directory of Open Access Journals (Sweden)

    Eva Poppe

    2010-12-01

    Full Text Available Learning has come to the front position of the educational agenda in many countries of the world – the knowledge society, learning society, learning organization and so forth are the common terms now in the 21st century. The terms come into view in countless publications of the European Union and of many other countries in and outside the European Community. The learning society is one of the products of globalisation and knowledge, learning and education are intertwined with global capitalism. Education is considered as a servant to global capitalism, enabling trans-boundary companies to gather more effectively in the knowledge society. Learning has become to a central task in governmental education policy in many countries and it is being treated as investment – adding value to human and social capital, resulting in employability and then in work, which makes an even greater distribution to the economy, rather than being treated as a natural human process that results in the improvement of people as human beings. Profound changes are taking place as a result of globalisation that is affecting the whole of the educational institution. The objective of this contribution is to present Germany on its way to a knowledge society by examining the past and the present situation of Germany concerning mobility and furthermore mobility programs.

  13. Study of Sea Surface Temperatures changes due to tropical cyclone fanoos in the southwest Bay of Bengal using satellite and argo observations

    Science.gov (United States)

    Krishna Kailasam, Muni

    Sea surface temperature (SST) plays an important role in the studies of global climate system and as a boundary condition for operational numerical forecasts. Estimation of SST has tra-ditionally been performed with satellite based sensors operating in the infrared (IR) portion of the electromagnetic spectrum, where the ocean emissivity is close to unity. The National Oceanic and Atmospheric Administration (NOAA) satellite series, the GOES Imagers on the Geostationary Operational Environmental Satellites, the Along Track Scanning Radiometer (ATSR) on the European Remote Sensing satellites and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA EOS platform are successful examples of IR sen-sors currently used for operational SST retrievals. Significant progress in SST retrieval from remote sensing data came with the introduction of a new low-frequency channel (10.7 GHz) on microwave (MW) sensors. The anthropogenic effects over a period of time resulted in increase of infrared absorbers such as greenhouse gases and absorbing aerosol would produce increase of both daytime maximum and nighttime minimum temperatures. In contrast, the increases of visible reflectors such as sulfate aerosols and low cloud amount would result in a decrease of the daytime maximum temperature. Solar radiation, wind stress and vertical mixing are known to be the three major factors impacting the SST seasonal variations. In the present study, impact of absorbing aerosols on the sea surface temperature (SST) over Bay of Bengal (BoB) region was investigated. Increased aerosol loading over BoB was observed due to advection of aerosols from continental region consisting of absorbing particles primarily from dust and biomass burning. This increased loading over BoB resulted in reduction of surface reaching solar radiation. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) de-rived SST over BoB showed negative correlation with OMI-Aerosol Index (AI) (R = 0.87) and

  14. The Rise of Iran

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo; Rahigh-Aghsan, Ali

    2010-01-01

    Iran is viewed by many as a rising power that poses an increasing threat to regional and even global security. This view is wrong for three reasons. Iran's hard and soft power is exaggerated by most accounts; it is too limited to allow the Iranians to dominate the Persian Gulf let alone the Middle...... East, and its brand of Shi‘ism has very limited appeal outside of Iran. Second, growing internal political and economic instability will seriously limit Iran's bid for regional dominance. Third, the failure to stop the Iranian nuclear program has led analysts to underestimate the ability of the other...... regional powers and the West to balance Iran and contain its influence, even if it acquires nuclear weapons. If these limitations on Iranian power are taken into account the rise seems destined to be a short one....

  15. Stability of the hydrogen absorption and desorption plateaux in LaNi[sub 5]-H. Pt. 3. Experimental observations of compositional inhomogeneities due to temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Kisi, E H [Newcastle upon Tyne Univ. (United Kingdom). Dept. of Mechanical Engineering; Gray, E MacA [School of Science, Griffith University, Brisbane, Qld. 4111 (Australia)

    1995-01-15

    It has been predicted by Pons and Dantzer that temperature gradients due to the released enthalpy of H absorption-desorption will generate macroscopic inhomogeneities of the [alpha]/[beta] phase proportions in metal hydrides. We used in situ X-ray diffraction and in situ neutron diffraction respectively to study the growth of [beta]-LaNi[sub 5]-H at the free surface, and [beta]-LaNi[sub 5]-D in the bulk of powdered samples. It was found that a macroscopic compositional inhomogeneity does occur, and can be so severe that the free surface of the sample remains pure [alpha] phase while the bulk of the sample is rich in [beta] phase. ((orig.))

  16. Study on closed pressure vessel test. Effect of heat rate, sample weight and vessel size on pressure rise due to thermal decomposition; Mippeigata atsuryoku yoki shiken ni kansuru kenkyu. Atsuryoku hassei kyodo ni oyobosu kanetsusokudo, shiryoryo oyobi youki saizu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Kenji.; Akutsu, Yoshiaki.; Arai, Mitsuru.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering

    1999-02-28

    We have attempted to devise a new closed pressure vessel test apparatus in order to evaluate the violence of thermal decomposition of self-reactive materials and have examined some influencing factors, such as heat rate, sample weight, filling factor (sample weight/vessel size) and vessel size on Pmax (maximum pressure rise) and dP/dt (rate of pressure rise) due to their thermal decomposition. As a result, the following decreasing orders of Pmax and dP/dt were shown. Pmax: ADCA>BPZ>AIBN>TCP dP/dt: AIBN>BPZ>ADCA>TCP Moreover, Pmax was not almost influenced by heat rate, while dP/dt increased with an increase in heat rate in the case of BPZ. Pmax and dP/dt increased with an increase in sample weight and the degree of increase depended on the kinds of materials. In addition, it was shown that Pmax and dP/dt increased with an increase in vessel size at a constant filling factor. (author)

  17. Optical performance of the SO/PHI full disk telescope due to temperature gradients effect on the heat rejection entrance window

    Science.gov (United States)

    Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.

    2017-11-01

    The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude

  18. Coal prices rise

    International Nuclear Information System (INIS)

    McLean, A.

    2001-01-01

    Coking and semi hard coking coal price agreements had been reached, but, strangely enough, the reaching of common ground on semi soft coking coal, ultra low volatile coal and thermal coal seemed some way off. More of this phenomenon later, but suffice to say that, traditionally, the semi soft and thermal coal prices have fallen into place as soon as the hard, or prime, coking coal prices have been determined. The rise and rise of the popularity of the ultra low volatile coals has seen demand for this type of coal grow almost exponentially. Perhaps one of the most interesting facets of the coking coal settlements announced to date is that the deals appear almost to have been preordained. The extraordinary thing is that the preordination has been at the prescience of the sellers. Traditionally, coking coal price fixing has been the prerogative of the Japanese Steel Mills (JSM) cartel (Nippon, NKK, Kawasaki, Kobe and Sumitomo) who presented a united front to a somewhat disorganised force of predominantly Australian and Canadian sellers. However, by the time JFY 2001 had come round, the rules of the game had changed

  19. Progressive Collapse of High-Rise Buildings from Fire

    Directory of Open Access Journals (Sweden)

    Pershakov Valerii

    2016-01-01

    Full Text Available Considers ensuring the stability of structures of high-rise buildings against progressive collapse due to fire, proposed measures to ensure the stability of high-rise buildings due to progressive collapse. The analysis of large fires in high-rise buildings with progressive collapse and review of the literature on the issue of progressive collapse. The analysis of the Ukrainian normative documents on progressive collapse resistance.

  20. The rise of Chrome

    Directory of Open Access Journals (Sweden)

    Jonathan Tamary

    2015-10-01

    Full Text Available Since Chrome’s initial release in 2008 it has grown in market share, and now controls roughly half of the desktop browsers market. In contrast with Internet Explorer, the previous dominant browser, this was not achieved by marketing practices such as bundling the browser with a pre-loaded operating system. This raises the question of how Chrome achieved this remarkable feat, while other browsers such as Firefox and Opera were left behind. We show that both the performance of Chrome and its conformance with relevant standards are typically better than those of the two main contending browsers, Internet Explorer and Firefox. In addition, based on a survey of the importance of 25 major features, Chrome product managers seem to have made somewhat better decisions in selecting where to put effort. Thus the rise of Chrome is consistent with technical superiority over the competition.

  1. Unsteady mixed convection of a micropolar fluid past a circular cylinder due to time-dependent free stream velocity and temperature

    Directory of Open Access Journals (Sweden)

    Nepal C. Roy

    2016-06-01

    Full Text Available Unsteady mixed convection boundary-layer flow of an electrically conducting micropolar fluid past a circular cylinder is investigated taking into account the effect of thermal radiation and heat generation or absorption. The reduced non-similar boundary-layer equations are solved using the finite difference method. It is found that the magnitude of the friction factor and the couple stress significantly increases due to the increase of the mixed convection parameter, the conduction-radiation parameter, the surface temperature parameter, the heat absorption parameter and the frequency parameter. However the magnitude of the heat transfer rate decreases with these parameters. The converse characteristics are observed for the Prandtl number. The magnitude of the couple stress and the heat transfer rate is seen to decrease whereas the magnitude of the skin factor increases with increasing the vortex viscosity parameter. The magnetic field parameter reduces the skin factor, couple stress and heat transfer rate. The amplitude of oscillation of the transient skin factor and couple stress gradually increases owing to an increase of $\\xi$. But the transient heat transfer rate is found to be oscillating with almost the same amplitude for any value of $\\xi$. The amplitude of oscillation of the transient skin factor and couple stress increases with an increase of $S$ and $\\xi$ while the amplitude of the transient heat transfer rate increases with increasing Pr and $S$.

  2. Plume rise predictions

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1976-01-01

    Anyone involved with diffusion calculations becomes well aware of the strong dependence of maximum ground concentrations on the effective stack height, h/sub e/. For most conditions chi/sub max/ is approximately proportional to h/sub e/ -2 , as has been recognized at least since 1936 (Bosanquet and Pearson). Making allowance for the gradual decrease in the ratio of vertical to lateral diffusion at increasing heights, the exponent is slightly larger, say chi/sub max/ approximately h/sub e/ - 2 . 3 . In inversion breakup fumigation, the exponent is somewhat smaller; very crudely, chi/sub max/ approximately h/sub e/ -1 . 5 . In any case, for an elevated emission the dependence of chi/sub max/ on h/sub e/ is substantial. It is postulated that a really clever ignorant theoretician can disguise his ignorance with dimensionless constants. For most sources the effective stack height is considerably larger than the actual source height, h/sub s/. For instance, for power plants with no downwash problems, h/sub e/ is more than twice h/sub s/ whenever the wind is less than 10 m/sec, which is most of the time. This is unfortunate for anyone who has to predict ground concentrations, for he is likely to have to calculate the plume rise, Δh. Especially when using h/sub e/ = h/sub s/ + Δh instead of h/sub s/ may reduce chi/sub max/ by a factor of anywhere from 4 to infinity. Factors to be considered in making plume rise predictions are discussed

  3. Calculations from the Hadley Centre: The ocean is rising even with stable CO2

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2000-01-01

    The article presents calculations and forecasts for the atmospheric CO 2 level changes in the period of 2000 to 2350. Correlations between the levels and the average global temperature and the sea level are studied for the period of 1850 to 2200. The main conclusion is that the sea level will continue to rise for several hundred years even with a stable atmospheric CO 2 concentration in the next century due to the slow response of oceans to global warming

  4. Comments on the Brazilian Proposal and contributions to global temperature increase with different climate responses - CO2 emissions due to fossil fuels, CO2 emissions due to land use change

    International Nuclear Information System (INIS)

    Rosa, L.P.; Ribeiro, S.K.; Muylaert, M.S.; Campos, C.P.

    2004-01-01

    This paper addresses the question of how to take into account the anthropogenic contribution to the increase of global temperature, instead of being restricted to the carbon emissions adopted in the Kyoto Protocol on responsibility sharing. It is shown the sensibility of the results to the variation of the parameters from different authors used for simulating the climate response based in the so-called Brazilian Proposal (BP). It is also discussed the methodological and scientific aspects of the BP being discussed by an expert group coordinated by SBSTA/UNFCCC and results of energy sector and land use change contributions by groups of countries. (author)

  5. Comments on the Brazilian Proposal and contributions to global temperature increase with different climate responses--CO2 emissions due to fossil fuels, CO2 emissions due to land use change

    International Nuclear Information System (INIS)

    Rosa, L.P.; Ribeiro, S.K.; Muylaert, M.S.; Pires de Campos, Christiano

    2004-01-01

    This paper addresses the question of how to take into account the anthropogenic contribution to the increase of global temperature, instead of being restricted to the Carbon emissions adopted in the Kyoto Protocol on responsibility sharing. It is shown the sensibility of the results to the variation of the parameters from different authors used for simulating the climate response based in the so-called Brazilian Proposal (BP). It is also discussed the methodological and scientific aspects of the BP being discussed by an expert group coordinated by SBSTA/UNFCCC and results of energy sector and land use change contributions by groups of countries

  6. Beam Induced Pressure Rise at RHIC

    CERN Document Server

    Zhang, S Y; Bai, Mei; Blaskiewicz, Michael; Cameron, Peter; Drees, Angelika; Fischer, Wolfram; Gullotta, Justin; He, Ping; Hseuh Hsiao Chaun; Huang, Haixin; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; MacKay, William W; Nicoletti, Tony; Oerter, Brian; Peggs, Steve; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smart, Loralie; Snydstrup, Louis; Thieberger, Peter; Trbojevic, Dejan; Wang, Lanfa; Wei, Jie; Zeno, Keith

    2005-01-01

    Beam induced pressure rise in RHIC warm sections is currently one of the machine intensity and luminosity limits. This pressure rise is mainly due to electron cloud effects. The RHIC warm section electron cloud is associated with longer bunch spacings compared with other machines, and is distributed non-uniformly around the ring. In addition to the countermeasures for normal electron cloud, such as the NEG coated pipe, solenoids, beam scrubbing, bunch gaps, and larger bunch spacing, other studies and beam tests toward the understanding and counteracting RHIC warm electron cloud are of interest. These include the ion desorption studies and the test of anti-grazing ridges. For high bunch intensities and the shortest bunch spacings, pressure rises at certain locations in the cryogenic region have been observed during the past two runs. Beam studies are planned for the current 2005 run and the results will be reported.

  7. Strategic advantages of high-rise construction

    Directory of Open Access Journals (Sweden)

    Yaskova Natalya

    2018-01-01

    Full Text Available Traditional methods to assess the competitiveness of different types of real estate in the context of huge changes of new technological way of life don’t provide building solutions that would be correct from a strategic perspective. There are many challenges due to changes in the consumers’ behavior in the housing area. A multiplicity of life models, a variety of opportunities and priorities, traditions and new trends in construction should be assessed in terms of prospective benefits in the environment of the emerging new world order. At the same time, the mane discourse of high-rise construction mainly relates to its design features, technical innovations, and architectural accents. We need to clarify the criteria for economic evaluation of high-rise construction in order to provide decisions with clear and quantifiable contexts. The suggested approach to assessing the strategic advantage of high-rise construction and the prospects for capitalization of high-rise buildings poses new challenges for the economy to identify adequate quantitative assessment methods of the high-rise buildings economic efficiency, taking into account all stages of their life cycle.

  8. Strategic advantages of high-rise construction

    Science.gov (United States)

    Yaskova, Natalya

    2018-03-01

    Traditional methods to assess the competitiveness of different types of real estate in the context of huge changes of new technological way of life don't provide building solutions that would be correct from a strategic perspective. There are many challenges due to changes in the consumers' behavior in the housing area. A multiplicity of life models, a variety of opportunities and priorities, traditions and new trends in construction should be assessed in terms of prospective benefits in the environment of the emerging new world order. At the same time, the mane discourse of high-rise construction mainly relates to its design features, technical innovations, and architectural accents. We need to clarify the criteria for economic evaluation of high-rise construction in order to provide decisions with clear and quantifiable contexts. The suggested approach to assessing the strategic advantage of high-rise construction and the prospects for capitalization of high-rise buildings poses new challenges for the economy to identify adequate quantitative assessment methods of the high-rise buildings economic efficiency, taking into account all stages of their life cycle.

  9. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Directory of Open Access Journals (Sweden)

    J. M. Santiago

    2017-08-01

    Full Text Available Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta, and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 % by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C, although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  10. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Science.gov (United States)

    María Santiago, José; Muñoz-Mas, Rafael; Solana-Gutiérrez, Joaquín; García de Jalón, Diego; Alonso, Carlos; Martínez-Capel, Francisco; Pórtoles, Javier; Monjo, Robert; Ribalaygua, Jaime

    2017-08-01

    Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. -49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  11. Rising prices squeeze gas marketer

    Energy Technology Data Exchange (ETDEWEB)

    Lunan, D.

    2000-06-19

    Apollo Gas, a Toronto-based gas marketer, is considering options to enhance unit holder value, including sale of its 21,000 gas supply contracts, just weeks after it was forced out of the Alberta market by rising gas prices. Although the company had reported first quarter revenues of more than $15 million and earnings through that period of about $2.1 million, increases of 33 per cent and 38 per cent respectively over the same period in 1999, the company is resigned to the fact that such performance markers are not likely to be reached again in the foreseeable future, hence the decision to sell. About 95 per cent of Apollo's current transportation service volumes are matched to existing fixed-price supply contract which are due to expire in November 2000. After that, it is about 75 per cent matched for the balance of the term of its customer contracts (mostly five years). This means that the company is exposed to market prices that are likely to continue to increase. If this prediction holds true, Apollo would be forced to purchase the unhedged volumes of gas it needs to service its customers in the spot market at prices higher than prices the company is charging to its customers.

  12. Rising prices squeeze gas marketer

    International Nuclear Information System (INIS)

    Lunan, D.

    2000-01-01

    Apollo Gas, a Toronto-based gas marketer, is considering options to enhance unit holder value, including sale of its 21,000 gas supply contracts, just weeks after it was forced out of the Alberta market by rising gas prices. Although the company had reported first quarter revenues of more than $15 million and earnings through that period of about $2.1 million, increases of 33 per cent and 38 per cent respectively over the same period in 1999, the company is resigned to the fact that such performance markers are not likely to be reached again in the foreseeable future, hence the decision to sell. About 95 per cent of Apollo's current transportation service volumes are matched to existing fixed-price supply contract which are due to expire in November 2000. After that, it is about 75 per cent matched for the balance of the term of its customer contracts (mostly five years). This means that the company is exposed to market prices that are likely to continue to increase. If this prediction holds true, Apollo would be forced to purchase the unhedged volumes of gas it needs to service its customers in the spot market at prices higher than prices the company is charging to its customers

  13. On Capillary Rise and Nucleation

    Science.gov (United States)

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  14. Plume rise from multiple sources

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1975-01-01

    A simple enhancement factor for plume rise from multiple sources is proposed and tested against plume-rise observations. For bent-over buoyant plumes, this results in the recommendation that multiple-source rise be calculated as [(N + S)/(1 + S)]/sup 1/3/ times the single-source rise, Δh 1 , where N is the number of sources and S = 6 (total width of source configuration/N/sup 1/3/ Δh 1 )/sup 3/2/. For calm conditions a crude but simple method is suggested for predicting the height of plume merger and subsequent behavior which is based on the geometry and velocity variations of a single buoyant plume. Finally, it is suggested that large clusters of buoyant sources might occasionally give rise to concentrated vortices either within the source configuration or just downwind of it

  15. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    Science.gov (United States)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  16. Due diligence

    International Nuclear Information System (INIS)

    Sanghera, G.S.

    1999-01-01

    The Occupational Health and Safety (OHS) Act requires that every employer shall ensure the health and safety of workers in the workplace. Issues regarding the practices at workplaces and how they should reflect the standards of due diligence were discussed. Due diligence was described as being the need for employers to identify hazards in the workplace and to take active steps to prevent workers from potentially dangerous incidents. The paper discussed various aspects of due diligence including policy, training, procedures, measurement and enforcement. The consequences of contravening the OHS Act were also described

  17. Change in coccolith size and morphology due to response to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi seas

    Science.gov (United States)

    Saruwatari, Kazuko; Satoh, Manami; Harada, Naomi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2016-05-01

    Strains of the coccolithophore Emiliania huxleyi (Haptophyta) collected from the subarctic North Pacific and Arctic oceans in 2010 were established as clone cultures and have been maintained in the laboratory at 15 °C and 32 ‰ salinity. To study the physiological responses of coccolith formation to changes in temperature and salinity, growth experiments and morphometric investigations were performed on two strains, namely MR57N isolated from the northern Bering Sea and MR70N at the Chukchi Sea. This is the first report of a detailed morphometric and morphological investigation of Arctic Ocean coccolithophore strains. The specific growth rates at the logarithmic growth phases in both strains markedly increased as temperature was elevated from 5 to 20 °C, although coccolith productivity (estimated as the percentage of calcified cells) was similar at 10-20 % at all temperatures. On the other hand, the specific growth rate of MR70N was affected less by changes in salinity in the range 26-35 ‰, but the proportion of calcified cells decreased at high and low salinities. According to scanning electron microscopy (SEM) observations, coccolith morphotypes can be categorized into Type B/C on the basis of their biometrical parameters. The central area elements of coccoliths varied from thin lath type to well-calcified lath type when temperature was increased or salinity was decreased, and coccolith size decreased simultaneously. Coccolithophore cell size also decreased with increasing temperature, although the variation in cell size was slightly greater at the lower salinity level. This indicates that subarctic and arctic coccolithophore strains can survive in a wide range of seawater temperatures and at lower salinities with change in their morphology. Because all coccolith biometric parameters followed the scaling law, the decrease in coccolith size was caused simply by the reduced calcification. Taken together, our results suggest that calcification productivity may

  18. Transient thermal stresses in a transversely isotropic finite composite hollow circular cylinder due to arbitrary surface heat-generations and surrounding temperatures

    International Nuclear Information System (INIS)

    Sugano, Y.

    1981-01-01

    An exact solution is given for the temperature distribution, the thermal stresses and displacements in a transversely isotropic finite composite hollow circular cylinder composed of two distinct cylindrical laminae. The temperature field is determined by using of the Laplace transform and the finite Fourier-cosine transform, respectively, with respect to time and axial coordinate included in the governing equation and the associated thermal stresses and displacements are analvsed by the use of a set of stress functions closely related to the Love's function valid for the axisymmetric isothermal problem of isotropic bodies. (orig.)

  19. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh

    2015-01-01

    Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors......, such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated...

  20. Study of the kinetics of oxygen redistribution in UOsub(2+x) and UCeO2 due to a temperature gradient

    International Nuclear Information System (INIS)

    Ducroux, Rene.

    1979-11-01

    The aim of this work is to study out of pile the oxygen redistrbution in UOsub(2+x) in order to explain the O/U+Pu profiles obtained in quenched mixed oxide fuels. The thermal gradient has been obtained by a 'mirror furnace'. The focal spot (0,5 cm 2 area) is maintained at the top of the cylindrical sample; the cold part of the pellet is in contact with the upper side of a molybdenum furnace. This allows to maintain a solid electrolyte probe at fixed temperature (ThO 2 - Y 2 O 3 ) which contains a Fe/FeO chemical reference. This probe gives continuously the oxygen activity at the cold part of the sample. It has been tested in measuring the oxygen potential of several chemical systems. The experiments have been achieved under argon purified by electrochemical pumps. The linear temperature profile was estimated showing a 300 0 C/cm thermal gradient. The hot side temperature did not exceed 1100 0 C in order to avoid the UO 3 evaporation. The EMF was continuously recorded during the anneal under thermal gradient. After quenching, the sample was cut in five or six slices. In each one, the analysis of the O/U ratio was performed. Though the annealing-times were short and the temperature of the hot side relatively low, the observed oxygen redistributions were found important, showing that the oxygen migrates to the hot part of the sample [fr

  1. The Low-Temperature Inflection Observed in Neutron Scattering Measurements of Proteins Is Due to Methyl Rotation : Direct Evidence Using Isotope Labeling and Molecular Dynamics Simulations

    NARCIS (Netherlands)

    Wood, Kathleen; Tobias, Douglas J.; Kessler, Brigitte; Gabel, Frank; Oesterhelt, Dieter; Mulder, Frans A. A.; Zaccai, Giuseppe; Weik, Martin

    2010-01-01

    There is increasing interest in the contribution of methyl groups to the overall dynamics measured by neutron scattering experiments of proteins. In particular an inflection observed in atomic mean square displacements measured as a function of temperature on high resolution spectrometers (similar

  2. Sun Radio Interferometer Space Experiment (SunRISE)

    Science.gov (United States)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  3. Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming

    Science.gov (United States)

    Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.

    2017-08-01

    The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.

  4. Embrittlement of zircaloy cladding due to oxygen uptake (CBRTTL)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1979-02-01

    A model for embrittlement of zircaloy due to oxygen uptake at high temperatures is described. The model defines limits for oxygen content and temperature which, if exceeded, give rise to zircaloy cladding which is sufficiently embrittled to cause failure either on quenching or normal handling following a transient. A significant feature of this model is that the onset of embrittlement is dependent on the cooling rate. A distinction is made between slow and fast cooling, with the boundary at 100 K/s. The material property correlations and computer subcodes described in MATPRO are developed for use in Light Water Reactor (LWR) codes

  5. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Post test investigations of bundle test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Buescher, B.

    1986-11-01

    This KfK report describes the post test investigation of bundle experiment ESBU-2a. ESBU-2a was the second of two bundle tests on the temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of the program of out-of-pile experiments performed within the frame work of the PNS-Severe Fuel Damage program. The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators (central tungsten heater, UO 2 -ring pellet and zircaloy cladding). The length was 0.4 meter. The bundle was heated to a maximum temperature of 2175 0 C. Molten cladding which dissolved part of the UO 2 pellets and slumped away from the already oxidized cladding formed a lump in the lower part of the bundle. After the test the bundle was embedded in epoxy and sectioned with a diamand saw, in the region of the refrozen melt. The cross sections were investigated by metallographic examination. The refrozen (U,Zr,O) melt consists variously of three phases with increasing oxygen content (metallic α-Zry, metallic (U,Zr) alloy and a (U,Zr)O 2 mixed oxide), two phases (α-Zry, (U,Zr)O 2 mixed oxide), or one phase ((U,Zr)O 2 mixed oxide). The cross sections show the increasing oxidation of the cladding with increasing elevation (temperature). A strong azimuthal dependency of the oxidation is found. In regions where the initial oxidized cladding is contacted by the melt one can recognize the interaction between the metallic melt and ZrO 2 of the cladding. Oxygen is taken away from the ZrO 2 . If the melt is in direct contact with steam a relatively well defined oxide layer is formed. (orig.) [de

  6. Projected Temperature-Related Years of Life Lost From Stroke Due To Global Warming in a Temperate Climate City, Asia: Disease Burden Caused by Future Climate Change.

    Science.gov (United States)

    Li, Guoxing; Guo, Qun; Liu, Yang; Li, Yixue; Pan, Xiaochuan

    2018-04-01

    Global warming has attracted worldwide attention. Numerous studies have indicated that stroke is associated with temperature; however, few studies are available on the projections of the burden of stroke attributable to future climate change. We aimed to investigate the future trends of stroke years of life lost (YLL) associated with global warming. We collected death records to examine YLL in Tianjin, China, from 2006 to 2011. We fitted a standard time-series Poisson regression model after controlling for trends, day of the week, relative humidity, and air pollution. We estimated temperature-YLL associations with a distributed lag nonlinear model. These models were then applied to the local climate projections to estimate temperature-related YLL in the 2050s and 2070s. We projected temperature-related YLL from stroke in Tianjin under 19 global-scale climate models and 3 different greenhouse gas emission scenarios. The results showed a slight decrease in YLL with percent decreases of 0.85%, 0.97%, and 1.02% in the 2050s and 0.94%, 1.02%, and 0.91% in the 2070s for the 3 scenarios, respectively. The increases in heat-related annual YLL and the decreases in cold-related YLL under the high emission scenario were the strongest. The monthly analysis showed that the most significant increase occurred in the summer months, particularly in August, with percent changes >150% in the 2050s and up to 300% in the 2070s. Future changes in climate are likely to lead to an increase in heat-related YLL, and this increase will not be offset by adaptation under both medium emission and high emission scenarios. Health protections from hot weather will become increasingly necessary, and measures to reduce cold effects will also remain important. © 2018 American Heart Association, Inc.

  7. Evaluation of the temperature rise in pulp chamber during class V preparation with Er:YAG laser; Avaliacao da temperatura na camara pulpar durante preparo classe V com laser de Erbio:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Picinini, Leonardo Santos

    2001-07-01

    One of the major concerns regarding laser irradiation in the dentistry field is the overheating in dental tissue, specially pulpal tissue. A temperature raise over 5.5 deg C is considered to be harmful to its vitality. The current study evaluated the temperature increase in the pulp chamber, during class V preparation, performed with the laser Er:YAG in 36 bovine incisive extracted teeth. The samples were eroded on the outer side of the vestibular wall to obtain the dentinal thickness of 2.0 mm (group I), 1.0 mm (group II) and 0.5 mm (group III). Thermocouples were fixed to the inner part of the vestibular wall using thermal paste, through the palatine opening of the samples. Class V cavities were prepared in the vestibular side only in 1 mm{sup 2} thick dentins. Irradiation parameters used were: 500 mJ/10 Hz, 850 mJ/10 Hz and 1 000 mJ/10 Hz for all the groups. The results were processed by a microcomputer. This study showed that the temperature increased into the pulpal cavity reached around 3 deg C for the groups I (2,0 mm thick dentine) and II (1.0 mm thick dentine). In the group III (0.5 mm thick) temperature was around 5.5 deg C. Thus, the parameters used for cavity preparation, using Er:YAG laser, were safe in relation to the temperature raise for dentinal thickness of 1,0 and 2,0 mm; in 0.5 mm thick dentins, temperature increase reached 5.5 deg C and an appropriate correction in the laser parameters was necessary. (author)

  8. Experimental determination of local temperature field variations due to spacer grids in the cladding tubes of a rod cluster flowed through by sodium

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1978-01-01

    If spacer grids are used to keep the fuel rods in their places - as in the fuel elements of the SNR series, exact tests are necessary to find out whether and to what extent temperature peaks near the supporting points affect cladding tube design. To clarify this special problem, experimental investigations have been carried out for the first time in a rod cluster model of the SNR-300 fuel element cross-flowed with sodium. The investigations and findings so far are reported on. (orig./RW) [de

  9. Updating Maryland's sea-level rise projections

    Science.gov (United States)

    Boesch, Donald F.; Atkinson, Larry P.; Boicourt, William C.; Boon, John D.; Cahoon, Donald R.; Dalrymple, Robert A.; Ezer, Tal; Horton, Benjamin P.; Johnson, Zoe P.; Kopp, Robert E.; Li, Ming; Moss, Richard H.; Parris, Adam; Sommerfield, Christopher K.

    2013-01-01

    With its 3,100 miles of tidal shoreline and low-lying rural and urban lands, “The Free State” is one of the most vulnerable to sea-level rise. Historically, Marylanders have long had to contend with rising water levels along its Chesapeake Bay and Atlantic Ocean and coastal bay shores. Shorelines eroded and low-relief lands and islands, some previously inhabited, were inundated. Prior to the 20th century, this was largely due to the slow sinking of the land since Earth’s crust is still adjusting to the melting of large masses of ice following the last glacial period. Over the 20th century, however, the rate of rise of the average level of tidal waters with respect to land, or relative sea-level rise, has increased, at least partially as a result of global warming. Moreover, the scientific evidence is compelling that Earth’s climate will continue to warm and its oceans will rise even more rapidly. Recognizing the scientific consensus around global climate change, the contribution of human activities to it, and the vulnerability of Maryland’s people, property, public investments, and natural resources, Governor Martin O’Malley established the Maryland Commission on Climate Change on April 20, 2007. The Commission produced a Plan of Action that included a comprehensive climate change impact assessment, a greenhouse gas reduction strategy, and strategies for reducing Maryland’s vulnerability to climate change. The Plan has led to landmark legislation to reduce the state’s greenhouse gas emissions and a variety of state policies designed to reduce energy consumption and promote adaptation to climate change.

  10. Projecting Future Sea Level Rise for Water Resources Planning in California

    Science.gov (United States)

    Anderson, J.; Kao, K.; Chung, F.

    2008-12-01

    Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise

  11. A review on rising bubble dynamics in viscosity-stratified fluids

    Indian Academy of Sciences (India)

    Kirti Chandra Sahu

    Multiphase flow; non-Newtonian; immiscible fluids; bubbles; numerical simulations. 1. Introduction. The fluid dynamics of a gas bubble rising due to buoyancy in a surrounding .... Figure 2. Behaviour of a single bubble rising in quiescent liquid.

  12. Temperature dependence of bromine activation due to reaction of bromide with ozone in a proxy for organic aerosols and its importance for chemistry in surface snow.

    Science.gov (United States)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Trachsel, Jürg; Avak, Sven; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2017-04-01

    Tropospheric ozone depletion events (ODEs) via halogen activation are observed in both cold and warm climates [1-3]. Very recently, it was suggested that this multiphase halogen activation chemistry dominates in the tropical and subtropical upper troposphere [4]. These occurrences beg the question of temperature dependence of halogen activation in sea-salt aerosol, which are often mixtures of sea-salt and organic molecules [3, 5]. With the application of flow-tubes, the aim of this study is to investigate the temperature dependence of bromine activation via ozone interaction in a bromide containing film as a proxy for mixed organic - sea-salt aersol. Citric acid is used in this study as a hygroscopically characterized matrix and a proxy for oxidized organics, which is of relevance to atmospheric chemistry. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. With available knowledge, we have reproduced the measured uptake with modelled bulk uptake while accounting for temperature dependence of the substrate's properties as diffusivity, viscosity, and gas solubility. This work is part of a cross-disciplinary project with the aim to investigate the impact of metamorphism on impurity location in aging snow and its consequences for chemical reactivity. Metamorphism drastically shapes the structure and physical properties of snow, which has impacts on heat transfer, albedo, and avalanche formation. Such changes can be driven by water vapour fluxes in dry metamorphism with a mass turnover of as much as 60% per day - much greater than previously thought [6]. The consequences for atmospheric science are a current question of research [7]. Here, we show first results of a joint experiment to probe the re-distribution of impurities during snow metamorphism in artificial snow combined with an investigation of the samples structural changes. Future work is planned with the goal to investigate to which extend the observed re

  13. Development of the ultrasonic fatigue testing machine due to study on giga-cycle fatigue at elevated temperature. 2001 annual report. Document on collaborative study

    International Nuclear Information System (INIS)

    Hattori, Shuji; Itoh, Takamoto

    2002-03-01

    An ultrasonic fatigue testing machine was developed to obtain the giga-cycle fatigue life at elevated temperature for safety and reliability of structural components in the faster breeder reactor (FBR). This testing machine consists of an amplifier, booster, horn and the equipments such as a system controller and data acquisition. The test specimen is attached at the end of the horn. The electric power generated in the amplifier is transformed into the mechanical vibration in the converter and is magnified in the booster and horn. The vibration was enough to fatigue the specimen. Since the test frequency is set at a resonant frequency, the shape and dimensions of specimen were designed so as to vibrate itself resonantly. However, the maximum amplitudes of stress and strain in the specimen can be calculated easily by measuring the amplitude of displacement at the end of the specimen. The developed ultrasonic fatigue testing machine enables to carry out the fatigue tests at 20 kHz so that it can perform the giga-cycle fatigue test within a very short time as compared with the regular fatigue testing machines such as a hydraulic fatigue testing machine. By clarifying the material strength characteristics in giga-cycle region, the life evaluation, design and examination of components will be more suitable than ever. This study will contribute to improve the safety and reliability of components in FBR. In this technical report, the specification and characteristics of the testing machine were described along with the several experimental results. (author)

  14. Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Solecka, Danuta; Dziewulska, Aleksandra; Ochodzki, Piotr; Jończyk, Maciej; Bilski, Henryk; Sowiński, Paweł

    2017-03-01

    The cell wall emerged as one of the important structures in plant stress responses. To investigate the effect of cold on the cell wall properties, the content and localization of pectins and pectin methylesterase (PME) activity, were studied in two maize inbred lines characterized by different sensitivity to cold. Low temperature (14/12 °C) caused a reduction of pectin content and PME activity in leaves of chilling-sensitive maize line, especially after prolonged treatment (28 h and 7 days). Furthermore, immunocytohistological studies, using JIM5 and JIM7 antibodies, revealed a decrease of labeling of both low- and high-methylesterified pectins in this maize line. The osmotic potential, quantified by means of incipient plasmolysis was lower in several types of cells of chilling-sensitive maize line which was correlated with the accumulation of sucrose. These studies present new finding on the effect of cold stress on the cell wall properties in conjunction with changes in the osmotic potential of maize leaf cells.

  15. The advisability of high-rise construction in the city

    Science.gov (United States)

    Sergievskaya, Natalia; Pokrovskaya, Tatyana; Vorontsova, Natalya

    2018-03-01

    In this article there discusses the question of advisability high-rise construction, the reasons for its use, both positive and negative sides of it. On the one hand, a number of authors believe that it is difficult to avoid high-rise construction due to the limited areas in very large cities. On the other hand, a number of other authors draw attention to the problems associated with high-rise construction. The author of the article analyses examples of high-rise construction in several countries (UAE, Dubai "Burj Khalifa"; Japan "Tokyo Sky Tree"; United States of America, "Willis Tower"; Russia "Federation Tower") and proves the advisability of high-rise construction in the city.

  16. Consumerism and wellness: rising tide, falling cost.

    Science.gov (United States)

    Domaszewicz, Alexander

    2008-01-01

    Annual employer-sponsored health plan cost increases have been slowing incrementally due to slowing health care utilization--a phenomenon very likely tied to the proliferation of health management activities, wellness programs and other consumerism strategies. This article describes the sharp rise in recent years of consumer-directed health plans (CDHPs) and explains what developments must happen for genuine consumer-directed health care to realize its full potential. These developments include gathering transparent health care information, increasing consumer demand for that information and creating truly intuitive data solutions that allow consumers to easily access information in order to make better health care decisions.

  17. The Rise of Blog Nation

    Science.gov (United States)

    Lum, Lydia

    2005-01-01

    This article reports on the growth of blogs in popular culture, and the fact that they are becoming more widely accepted in the media industry. The rise and popularity of blogs--short for "Web logs"--are causing journalism educators to overhaul their teachings. In fact, blogging's influence varies from one university program to the next, just like…

  18. Finding Rising and Falling Words

    NARCIS (Netherlands)

    Tjong Kim Sang, E.

    2016-01-01

    We examine two different methods for finding rising words (among which neologisms) and falling words (among which archaisms) in decades of magazine texts (millions of words) and in years of tweets (billions of words): one based on correlation coefficients of relative frequencies and time, and one

  19. Rise, stagnation, and rise of Danish women's life expectancy

    DEFF Research Database (Denmark)

    Lindahl-Jacobsen, Rune; Rau, Roland; Jeune, Bernard

    2016-01-01

    Health conditions change from year to year, with a general tendency in many countries for improvement. These conditions also change from one birth cohort to another: some generations suffer more adverse events in childhood, smoke more heavily, eat poorer diets, etc., than generations born earlier...... favor forecasts that hinge on cohort differences. We use a combination of age decomposition and exchange of survival probabilities between countries to study the remarkable recent history of female life expectancy in Denmark, a saga of rising, stagnating, and now again rising lifespans. The gap between...... female life expectancy in Denmark vs. Sweden grew to 3.5 y in the period 1975-2000. When we assumed that Danish women born 1915-1945 had the same survival probabilities as Swedish women, the gap remained small and roughly constant. Hence, the lower Danish life expectancy is caused by these cohorts...

  20. Contributions of internal climate variability to mitigation of projected future regional sea level rise

    Science.gov (United States)

    Hu, A.; Bates, S. C.

    2017-12-01

    Observations indicate that the global mean surface temperature is rising, so does the global mean sea level. Sea level rise (SLR) can impose significant impacts on island and coastal communities, especially when SLR is compounded with storm surges. Here, via analyzing results from two sets of ensemble simulations from the Community Earth System Model version 1, we investigate how the potential SLR benefits through mitigating the future emission scenarios from business as usual to a mild-mitigation over the 21st Century would be affected by internal climate variability. Results show that there is almost no SLR benefit in the near term due to the large SLR variability due to the internal ocean dynamics. However, toward the end of the 21st century, the SLR benefit can be as much as a 26±1% reduction of the global mean SLR due to seawater thermal expansion. Regionally, the benefits from this mitigation for both near and long terms are heterogeneous. They vary from just a 11±5% SLR reduction in Melbourne, Australia to a 35±6% reduction in London. The processes contributing to these regional differences are the coupling of the wind-driven ocean circulation with the decadal scale sea surface temperature mode in the Pacific and Southern Oceans, and the changes of the thermohaline circulation and the mid-latitude air-sea coupling in the Atlantic.

  1. Sea-level rise: towards understanding local vulnerability

    Science.gov (United States)

    Rahmstorf, Stefan

    2012-06-01

    , South Carolina; coastal cities across Florida, especially its southeast and the Tampa area; New Orleans; the San Francisco Bay Area and San Joaquin Delta; and greater Los Angeles. Overall, 3.7 million people across the US are estimated to live within 1 m of the present high-tide line. The second paper, by Tebaldi et al, specifically looks at storm surges and how their frequency is expected to change along the US coastline in the coming four decades due to rising sea levels. They first estimate future local sea-level rise relative to the land by combining the observed local trend of the past fifty years with a future acceleration due to global warming as estimated by a semi-empirical model (Vermeer and Rahmstorf 2009). Then they use past storm surge statistics for many different locations and shift the return level curves according to the projected sea-level rise. The authors find that by mid-century, in some locations what is now a once-per-century flooding event could become an annual event. Those are exceptional places—but at about a third of the sites investigated, a century flood could become a once-per-decade flood. Of course, many of these events need not have dramatic impacts: in fact, locations where rare floods are quite small in amplitude (and hence presumably modest in their impacts) are precisely those where the return period decreases most dramatically. In a place where the once-per-century flood is only 50 cm higher than the annual flood, a typical 30 cm rise in sea level makes a bigger difference than one in a place where the century flood is 2 m higher than the annual flood. Nevertheless, the expected large changes in return periods and return levels of storm surges clearly demonstrate that accounting for accelerating sea-level rise is vital in the planning and design of coastal infrastructure. But most importantly, these studies highlight the fact that the modern world, with many millions of people living right by the coast, is highly vulnerable to

  2. Rising Mercury, Rising Hostility: How Heat Affects Survey Response

    Science.gov (United States)

    Cohen, Alexander H.; Krueger, James S.

    2016-01-01

    Recent social scientific research has examined connections between public opinion and weather conditions. This article contributes to this literature by analyzing the relationship between high temperature and survey response. Because hot temperatures are associated with aggression, irritation, and negativity, such conditions should lead to the…

  3. Rising temperatures, rising tensions : climate change and the risk of violent conflict in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Brown, O.; Crawford, A.

    2009-07-01

    Scientific evidence suggests that climate change will have significant impacts to food security, disease prevalence, population distribution, and water availability in the Middle East. This paper discussed the likelihood of increased conflict as a result of climatic change in Syria, Lebanon, Israel, Jordan, and the occupied Palestinian territory. A range of consultations and interviews with experts were analyzed in order to determine security threats in the region over the next 40 years. The study showed that the legacy of conflict in the region will hamper its ability to adapt to climate change. Climate change is likely to increase competition for water resources, intensify food shortages, and hinder economic growth. Climate change may also lead to forced migration and tensions with existing refugee populations and increase the militarization of natural resources. Strategies to pursue sustainable development in the Levant region included fostering a culture of conservation, addressing core tensions related to agriculture and water development, and reducing greenhouse gas (GHG) emissions. Regional cooperation is needed to develop effective approaches for GHG emissions reduction plans. 68 refs., 3 tabs., 22 figs.

  4. Rising temperatures, rising tensions : climate change and the risk of violent conflict in the Middle East

    International Nuclear Information System (INIS)

    Brown, O.; Crawford, A.

    2009-01-01

    Scientific evidence suggests that climate change will have significant impacts to food security, disease prevalence, population distribution, and water availability in the Middle East. This paper discussed the likelihood of increased conflict as a result of climatic change in Syria, Lebanon, Israel, Jordan, and the occupied Palestinian territory. A range of consultations and interviews with experts were analyzed in order to determine security threats in the region over the next 40 years. The study showed that the legacy of conflict in the region will hamper its ability to adapt to climate change. Climate change is likely to increase competition for water resources, intensify food shortages, and hinder economic growth. Climate change may also lead to forced migration and tensions with existing refugee populations and increase the militarization of natural resources. Strategies to pursue sustainable development in the Levant region included fostering a culture of conservation, addressing core tensions related to agriculture and water development, and reducing greenhouse gas (GHG) emissions. Regional cooperation is needed to develop effective approaches for GHG emissions reduction plans. 68 refs., 3 tabs., 22 figs.

  5. FIRE EVACUATION FROM HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    Korol'chenko Aleksandr Yakovlevich

    2012-10-01

    Full Text Available The authors argue that no collapse of structures is likely in the event of a fire emergency in multistoried buildings, rather, other fire-related factors may endanger the lives of people inside high-rise buildings exposed to the fire emergency, including open fire, sparks, high ambient temperature, smoke and toxic combustion products, reduced concentration of oxygen, and combined influence of various factors. In case of fire, the temperature inside buildings reaches 1100 °С. It exceeds the temperature of the ambient air acceptable for humans by far (70 °С. The experiments demonstrate that combustion products contain hundreds of toxic chemical compounds. The most hazardous of them include carbon oxide, carbon dioxide, chloride and cyanic hydrogen, aldehydes and acrolein. The author provides the pattern of their influence on the human body. The smoke consists of unburned particles of carbon and aerosols. The size of particles fluctuates within 0.05-50 MMK. Smoke produces a physiological and psychological impact on human beings. It has been proven that dangerous fire factors emerge within the first five to ten minutes of the emergency situation. Evacuation is the principal method of safety assurance. However, the velocity of propagation of smoke and heat is so high that even if the fire prevention system is in operation, people may be blocked both on the floors that are exposed to the fire and those that escape its propagation. New evacuation and rescue methods are recommended by the author. Various ways and methods of use of life-saving facilities are also provided. Safe evacuation is feasible from buildings where the number of stories does not exceed 10- 12. During evacuation, high density human streams are formed inside buildings, therefore, the period of stay in a burning building is increased. The calculations have proven that a two-minute delay of evacuation converts into a safe evacuation of only 13-15% of people. Low reliability of

  6. The Climate Science Special Report: Rising Seas and Changing Oceans

    Science.gov (United States)

    Kopp, R. E.

    2017-12-01

    GMSL has risen by about 16-21 cm since 1900. Ocean heat content has increased at all depths since the 1960s, and global mean sea-surface temperature increased 0.7°C/century between 1900 to 2016. Human activity contributed substantially to generating a rate of GMSL rise since 1900 faster than during any preceding century in at least 2800 years. A new set of six sea-level rise scenarios, spanning a range from 30 cm to 250 cm of 21st century GMSL rise, were developed for the CSSR. The lower scenario is based on linearly extrapolating the past two decades' rate of rise. The upper scenario is informed by literature estimates of maximum physically plausible values, observations indicating the onset of marine ice sheet instability in parts of West Antarctica, and modeling of ice-cliff and ice-shelf instability mechanisms. The new scenarios include localized projections along US coastlines. There is significant variability around the US, with rates of rise likely greater than GMSL rise in the US Northeast and the western Gulf of Mexico. Under scenarios involving extreme Antarctic contributions, regional rise would be greater than GMSL rise along almost all US coastlines. Historical sea-level rise has already driven a 5- to 10-fold increase in minor tidal flooding in several US coastal cities since the 1960s. Under the CSSR's Intermediate sea-level rise scenario (1.0 m of GMSL rise in 2100) , a majority of NOAA tide gauge locations will by 2040 experience the historical 5-year coastal flood about 5 times per year. Ocean changes are not limited to rising sea levels. Ocean pH is decreasing at a rate that may be unparalleled in the last 66 million years. Along coastlines, ocean acidification can be enhanced by changes in the upwelling (particularly along the US Pacific Coast); by episodic, climate change-enhanced increases in freshwater input (particularly along the US Atlantic Coast); and by the enhancement of biological respiration by nutrient runoff. Climate models project

  7. Is sea-level rising?

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    correction in the estimation of trends obtained for tide gauge records. The altimeter data permits to prepare spatial maps of sea-level rise trends. We present a map prepared for the Indian Ocean (Figure 4) north of 10oS , which shows a fairly uniform... drawn information from research papers published by the author and report of the IPCC AR5 WG1 Chapter 13: Sea Level Changes, in which the author has served as a ‘Lead Author’. Figure1 is prepared using data from the University of Colorado. Nerem, R...

  8. Sea Level Rise in the 21st Century: Will projections ever become reliable?

    Science.gov (United States)

    Willis, J. K.

    2014-12-01

    Global sea level rise has the potential to become one of the most costly and least well predicted impacts of human caused climate change. Unlike global surface temperature, the spread of possible scenarios (as little as 1 foot and as much as 6 feet by 2100) is not due to uncertainty about future rates of greenhouse gas emissions, but rather by a fundamental lack of knowledge about how the major ice sheets will behave in a warming climate. Clearly improved projections of sea level rise should become a major research priority in the next decade. At present, controversial techniques based on comparison with historical analogs and rates of recent warming and sea level rise are often used to create projections for the 21st Century. However, many in the scientific community feel that reliable projections must be based on a sound knowledge of the physics governing sea level rise, and particularly ice sheet behavior. In particular, large portions of the West Antarctic Ice Sheet and parts of the Greenland Ice Sheet rest on solid earth that sits below sea level. These regions may be threatened, not by atmospheric warming or changes in precipitation, but rather by direct forcing from the ocean. Fledgling efforts to understand these ocean ice interactions are already underway, as are efforts to make improved models of ice sheet behavior. However a great deal of work is still needed before widely accepted projections of sea level rise become a reality. This paper will highlight the hurdles to making such projections today and suggest ways forward in this critical area of research.

  9. Sea Level Rise Data Discovery

    Science.gov (United States)

    Quach, N.; Huang, T.; Boening, C.; Gill, K. M.

    2016-12-01

    Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.

  10. Diagnostics from three rising submillimeter bursts

    International Nuclear Information System (INIS)

    Zhou, Ai-Hua; Li, Jian-Ping; Wang, Xin-Dong

    2016-01-01

    In this paper we investigate three novel rising submillimeter (THz) bursts that occurred sequentially in Super Active Region NOAA 10486. The average rising rate of the flux density above 200 GHz is only 20 sfu GHz −1 (corresponding to spectral index α of 1.6) for the THz spectral components of the 2003 October 28 and November 4 bursts, but it attained values of 235 sfu GHz −1 (α = 4.8) in the 2003 November 2 burst. The steeply rising THz spectrum can be produced by a population of highly relativistic electrons with a low-energy cutoff of 1 MeV, but it only requires a low-energy cutoff of 30 keV for the two slowly rising THz bursts, via gyrosynchrotron (GS) radiation based on our numerical simulations of burst spectra in the magnetic dipole field case. The electron density variation is much larger in the THz source than in the microwave (MW) source. It is interesting that the THz source radius decreased by 20%–50% during the decay phase for the three events, but the MW source increased by 28% for the 2003 November 2 event. In the paper we will present a formula that can be used to calculate the energy released by ultrarelativistic electrons, taking the relativistic correction into account for the first time. We find that the energy released by energetic electrons in the THz source exceeds that in the MW source due to the strong GS radiation loss in the THz range, although the modeled THz source area is 3–4 orders smaller than the modeled MW source one. The total energies released by energetic electrons via the GS radiation in radio sources are estimated, respectively, to be 5.2 × 10 33 , 3.9 × 10 33 and 3.7 × 10 32 erg for the October 28, November 2 and 4 bursts, which are 131, 76 and 4 times as large as the thermal energies of 2.9 × 10 31 , 2.1 × 10 31 and 5.2 × 10 31 erg estimated from soft X-ray GOES observations. (paper)

  11. High-Arctic butterflies become smaller with rising temperatures

    DEFF Research Database (Denmark)

    Bowden, Joseph James; Eskildsen, Anne; Hansen, Rikke Reisner

    2015-01-01

    size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500...... individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that wing length significantly decreased at a similar rate in both species in response to warmer summers. Body size is strongly related to dispersal capacity and fecundity and our results suggest that these Arctic...

  12. A laser beam quality definition based on induced temperature rise.

    Science.gov (United States)

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  13. On rising temperature trends at Dehradun in Doon valley of ...

    Indian Academy of Sciences (India)

    Climate change is one of the most important issues among researchers, scientists, planners and ... cO Indian Academy of Sciences .... Several industries namely, pharmaceutical and ..... Gupta A 2004 Geoindicators for tropical urbanization;.

  14. Partitions for high-rise construction using phosphogypsum

    Science.gov (United States)

    Zolotukhin, Sergey; Kukina, Olga; Abramenko, Anatoly

    2018-03-01

    Gypsum blocks are usually used to make partitions in highrise construction. Reducing the cost of materials used in high-rise construction is an urgent task of modern material science. Phosphogypsum dihydrate, which has binding properties, is one of the large-tonnage waste. The authors have proved that, after years of storage in heaps, water-soluble phosphates, fluorides and other additives included in the structure of fresh phosphogypsum dissolved in water due to weathering (humidification-drying, freezing-thawing in a water-saturated state), and the calcium hydro-and dihydrogen phosphates ingressed in the lattice underwent complete hydrolysis and disintegration, thereby changing the physicochemical properties of phosphogypsum. The data obtained by the authors on the absence of water-soluble compounds of phosphorus, fluorine in stale phosphogypsum indicate its ecological purity and the possibility of application in housing construction. Having analyzed the data of modern methods of differential scanning calorimetry and scanning electron microscopy, the authors predicted and proved by the energy of dehydration of phosphogypsum dihydrate, lime, sandy loam, the possibility of obtaining non-flammable materials with sufficient strength for wall materials. Understanding the processes occurring in water films (the thickness of the water film, the pressure, the temperature and the pH of the aqueous extract of the mixture, the drying of the materials produced), made it possible to develop a technology for obtaining wall products from lime-sandy phosphogypsum material using typical silicate brick production equipment and vibropresses for key-cog blocks production.

  15. Plume rise measurements at Turbigo

    Energy Technology Data Exchange (ETDEWEB)

    Anfossi, D

    1982-01-01

    This paper presents analyses of plume measurements obtained during that campaign by the ENEL ground-based Lidar. The five stacks of Turbigo Power Plant have different heights and emission parameters and their plumes usually combine, so a model for multiple sources was used to predict the plume rises. These predictions are compared with the observations. Measurements of sigma/sub v/ and sigma/sub z/ over the first 1000 m are compared with the curves derived from other observations in the Po Valley, using the no-lift balloon technique over the same range of downwind distance. Skewness and kurtosis distributions are shown, both along the vertical and the horizontal directions. In order to show the plume structure in more detail, we present two examples of Lidar-derived cross sections and the corresponding vertically and horizontally integrated concentration profiles.

  16. Superphenix set to rise again

    International Nuclear Information System (INIS)

    Dorozynski, A.

    1993-01-01

    Superphenix, France's seemingly jinxed fast breeder reactor, which has not produced a single kilowatt of energy in more than 3 years, looks set to rise up next year like the mythical bird it is named after. The $5 billion reactor, the largest fast breeder in the world, has just been given the seal of approval by a public commission ordered by the government to look at the pros and cons of restarting. It still has hoops to jump through: a safety check and approval from the ministries of industries and environment. But the consortium of French, Italian, and German power utilities that run the plant are confident they can get it running by next summer. The Superphenix that rises out of the ashes will, however, be a different species of bird from the one planned 20 years ago. The consortium plans to turn the reactor into a debreeder, one that will incinerate more plutonium than it produces and so eat into Europe's plutonium stockpile. Calculations by Superphenix staff and the Atomic Energy Commission indicate that a plutonivorous fast breeder could incinerate 15 to 25 kilograms of plutonium while producing 1 billion kilowatt-hours of electricity-scarcely enough to make a dent in the tonnes of plutonium produced by Electricite de France's reactors each year. The Superphenix consortium is anxious to get the reactor back on line. The annual cost of upkeep and repair of the idle plant and salaries for its 700 staff may reach $140 million this year, 20% more than if the plant was running normally. If restarted, the existing core and a second one ready on the shelf will generate electricity worth $1.3 billion

  17. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    Science.gov (United States)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  18. Rising South Korea : A Minor Player or a Regional Power?

    NARCIS (Netherlands)

    Shim, David; Flamm, Patrick

    2013-01-01

    South Korea's rising status in regional and global affairs has received significant attention in recent years. In academic, media, and policy debates, though, South Korea is usually regarded as a mere middle power that, due to its geopolitical situation, has only limited leeway in its foreign policy

  19. Structural response of steel high rise buildings to fire

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    Due to the significant vertical elevation and complexity of the structural system, high rise buildings may suffer from the effects of fire more than other structures. For this reason, in addition to evacuation strategies and active fire protection, a careful consideration of structural response t...

  20. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-01-01

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  1. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming.

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-02-26

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  2. Adapting to Rising Sea Level: A Florida Perspective

    Science.gov (United States)

    Parkinson, Randall W.

    2009-07-01

    Global climate change and concomitant rising sea level will have a profound impact on Florida's coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the premise that sea-level rise is not significant and the shorelines are static or can be fixed in place by engineering structures. The new reality of sea-level rise and extreme weather due to climate change requires a new style of planning and management to protect resources and reduce risk to humans. Scientists must: (1) assess existing coastal vulnerability to address short term management issues and (2) model future landscape change and develop sustainable plans to address long term planning and management issues. Furthermore, this information must be effectively transferred to planners, managers, and elected officials to ensure their decisions are based upon the best available information. While there is still some uncertainty regarding the details of rising sea level and climate change, development decisions are being made today which commit public and private investment in real estate and associated infrastructure. With a design life of 30 yrs to 75 yrs or more, many of these investments are on a collision course with rising sea level and the resulting impacts will be significant. In the near term, the utilization of engineering structures may be required, but these are not sustainable and must ultimately yield to "managed withdrawal" programs if higher sea-level elevations or rates of rise are forthcoming. As an initial step towards successful adaptation, coastal management and planning documents (i.e., comprehensive plans) must be revised to include reference to climate change and rising sea-level.

  3. The Impact of Central and Peripheral Cyclooxygenase Enzyme Inhibition on Exercise-Induced Elevations in Core Body Temperature.

    NARCIS (Netherlands)

    Veltmeijer, M.T.W.; Veeneman, D.; Bongers, C.C.W.G.; Netea, M.G.; Meer, J.W.M. van der; Eijsvogels, T.M.H.; Hopman, M.T.E.

    2017-01-01

    PURPOSE: Exercise increases core body temperature (TC) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in TC by increasing the hypothalamic temperature set point. This study investigated

  4. Large Volcanic Rises on Venus

    Science.gov (United States)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  5. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  6. Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies

    Science.gov (United States)

    Gharehbaghi, Koorosh; Chenery, Rhea

    2017-12-01

    Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.

  7. The rise of colliding beams

    International Nuclear Information System (INIS)

    Richter, B.

    1992-06-01

    It is a particular pleasure for me to have this opportunity to review for you the rise of colliding beams as the standard technology for high-energy-physics accelerators. My own career in science has been intimately tied up in the transition from the old fixed-target technique to colliding-beam work. I have led a kind of double life both as a machine builder and as an experimenter, taking part in building and using the first of the colliding-beam machines, the Princeton-Stanford Electron-Electron Collider, and building the most recent advance in the technology, the Stanford Linear Collider. The beginning was in 1958, and in the 34 years since there has been a succession of both electron and proton colliders that have increased the available center-of-mass energy for hard collisions by more than a factor of 1000. For the historians here, I regret to say that very little of this story can be found in the conventional literature. Standard operating procedure for the accelerator physics community has been publication in conference proceedings, which can be obtained with some difficulty, but even more of the critical papers are in internal laboratory reports that were circulated informally and that may not even have been preserved. In this presentation I shall review what happened based on my personal experiences and what literature is available. I can speak from considerable experience on the electron colliders, for that is the topic in which I was most intimately involved. On proton colliders my perspective is more than of an observer than of a participant, but I have dug into the literature and have been close to many of the participants

  8. Irreversible climate change due to carbon dioxide emissions

    Science.gov (United States)

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-01-01

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  9. Perceptions of Climate Change, Sea Level Rise, and Possible Consequences Relate Mainly to Self-Valuation of Science Knowledge.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Pittfield, Taryn; Jeitner, Christian

    2016-05-01

    This study examines perceptions of climate change and sea level rise in New Jersey residents in 2012 and 2014. Different surveys have shown declines in interest and concern about climate change and sea level rise. Climate change and increasing temperatures have an anthropogenic cause, which relates to energy use, making it important to examine whether people believe that it is occurring. In late 2012 New Jersey experienced Super storm Sandy, one of the worst hurricanes in its history, followed by public discussion and media coverage of stronger more frequent storms due to climate change. Using structured interviews, we tested the null hypotheses that there were no differences in perceptions of 1260 interviewees as a function of year of the survey, age, gender, years of education, and self-evaluation of science knowledge (on a scale of 1 to 5). In 2012 460 of 639 (72%) rated "global warming occurring" as "certain" (#4) or "very certain" (#5) compared with 453 of 621 (73%) in 2014. For "due to human activities" the numbers of "certain" or "very certain" were 71% in 2012, and 67% in 2014 and for sea level rise the numbers were 64% and 70%. There were some inconsistent between-year differences with higher ratings in 2012 for 3 outcomes and higher ratings in 2014 for 5 outcomes. However, for 25 questions relative to climate change, sea level rise, and the personal and ecological effects of sea level rise, self-evaluation of science knowledge, independent of years of education, was the factor that entered 23 of the models, accounting for the most variability in ratings. People who believed they had a "high knowledge" (#4) or "very high knowledge" (#5) of science rated all issues as more important than did those people who rated their own scientific knowledge as average or below average.

  10. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka

    Science.gov (United States)

    Perera, K. A. R. S.; De Silva, K. H. W. L.; Amarasinghe, M. D.

    2018-02-01

    Unique location in the land-sea interface makes mangrove ecosystems most vulnerable to the impacts of predicted sea level rise due to increasing anthropogenic CO2 emissions. Among others, carbon sink function of these tropical ecosystems that contribute to reduce rising atmospheric CO2 and temperature, could potentially be affected most. Present study was undertaken to explore the extent of impact of the predicted sea level rise for the region on total organic carbon (TOC) pools of the mangrove ecosystems in Negombo estuary located on the west coast of Sri Lanka. Extents of the coastal inundations under minimum (0.09 m) and maximum (0.88 m) sea level rise scenarios of IPCC for 2100 and an intermediate level of 0.48 m were determined with GIS tools. Estimated total capacity of organic carbon retention by these mangrove areas was 499.45 Mg C ha- 1 of which 84% (418.98 Mg C ha- 1) sequestered in the mangrove soil and 16% (80.56 Mg C ha- 1) in the vegetation. Total extent of land area potentially affected by inundation under lowest sea level rise scenario was 218.9 ha, while it was 476.2 ha under intermediate rise and 696.0 ha with the predicted maximum sea level rise. Estimated rate of loss of carbon sink function due to inundation by the sea level rise of 0.09 m is 6.30 Mg C ha- 1 y- 1 while the intermediate sea level rise indicated a loss of 9.92 Mg C ha- 1 y- 1 and under maximum sea level rise scenario, this loss further increases up to 11.32 Mg C ha- 1 y- 1. Adaptation of mangrove plants to withstand inundation and landward migration along with escalated photosynthetic rates, augmented by changing rainfall patterns and availability of nutrients may contribute to reduce the rate of loss of carbon sink function of these mangrove ecosystems. Predictions over change in carbon sequestration function of mangroves in Negombo estuary reveals that it is not only affected by oceanographic and hydrological alterations associated with sea level rise but also by anthropogenic

  11. THE RISE TIME OF NORMAL AND SUBLUMINOUS TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Gaitan, S.; Perrett, K.; Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. george Street, Toronto, ON M5S 3H4 (Canada); Conley, A. [Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593 (United States); Bianco, F. B.; Howell, D. A.; Graham, M. L. [Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530 (United States); Sullivan, M.; Hook, I. M. [Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford, OX1 3RH (United Kingdom); Astier, P.; Balland, C.; Fourmanoit, N.; Guy, J.; Hardin, D.; Pain, R. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Balam, D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Basa, S. [Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, 38, rue Frederic Joliot-Curie, 13388 Marseille cedex 13 (France); Fouchez, D. [CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille cedex 9 (France); Lidman, C. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Palanque-Delabrouille, N., E-mail: gonzalez@astro.utoronto.ca [DSM/IRFU/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette (France); and others

    2012-01-20

    We calculate the average stretch-corrected rise time of Type Ia supernovae (SNe Ia) in the Supernova Legacy Survey. We use the aggregate light curves of spectroscopic and photometrically identified SNe Ia to fit the rising part of the light curve with a simple quadratic model. We obtain a light curve shape corrected, i.e., stretch-corrected, fiducial rise time of 17.02{sup +0.18}{sub -0.28} (stat) days. The measured rise time differs from an earlier finding by the SNLS (Conley et al.) due to the use of different SN Ia templates. We compare it to nearby samples using the same methods and find no evolution in the early part of the light curve of SNe Ia up to z = 1. We search for variations among different populations, particularly subluminous objects, by dividing the sample in stretch. Bright and slow decliners (s > 1.0) have consistent stretch-corrected rise times compared to fainter and faster decliners (0.8 < s {<=} 1.0); they are shorter by 0.57{sup +0.47}{sub -0.50} (stat) days. Subluminous SNe Ia (here defined as objects with s {<=} 0.8), although less constrained, are also consistent, with a rise time of 18.03{sup +0.81}{sub -1.37} (stat) days. We study several systematic biases and find that the use of different fiducial templates may affect the average rise time but not the intrinsic differences between populations. Based on our results, we estimate that subluminous SNe Ia are powered by 0.05-0.35 M{sub Sun} of {sup 56}Ni synthesized in the explosion. Our conclusions are the same for the single-stretch and two-stretch parameterizations of the light curve.

  12. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  13. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  14. Assessment of stress due to hot ambience in donkeys from arid tracts in India

    Directory of Open Access Journals (Sweden)

    Kataria N.

    2010-11-01

    Full Text Available To assess the stress due to hot ambience in donkeys from arid tracts in Rajasthan state, India, serum prolactin and cortisol levels were determined by radioimmunoassay. The blood samples to harvest the serum were collected from the same animals during moderate (maximum temperature of 28 C - 29 C and hot (maximum temperature of 45 C- 46 C ambiences. During hot ambience the animals showed significantly (p0.05 higher levels of serum prolactin and cortisol when compared to the moderate ambience. The mean rise in prolactin was 4.42 times whereas cortisol levels were 4.22 times higher. Further a multiple fold rise in serum prolactin clearly suggested that it can also be used as an indicator of stress in donkeys along with the cortisol.

  15. Drivers of Pontocaspian Biodiversity Rise and Demise

    Science.gov (United States)

    Wesselingh, Frank; Flecker, Rachel; Wilke, Thomas; Leroy, Suzanne; Krijgsman, Wout; Stoica, Marius

    2015-04-01

    In the past two million years, the region of the Black Sea Basin, Caspian Basin and adjacent Anatolia and the Balkans were the stage of the evolution of a unique brackish water fauna, the so-called Pontocaspian fauna. The fauna is the result of assembly of genera with a Paratethyan origin and Anatolian origins during the Early Pleistocene. The rapid diversification of the Pontocaspian fauna is the result of the very dynamic nature of the lakes (the Caspian Sea is technically a lake) and seas in the region in the past two million years. In most times the various lake basins were isolated (like today), but in other episodes connections existed. Regional and global climate as well as the regional tectonic regimes were main drivers of lake basin evolution. Over the past 80 years a major biodiversity crisis is hitting the Pontocaspian faunas due to environmental degradation, pollution and invasive species. In the new EU-ETN PRIDE (Drivers of Pontocaspian Biodiversity Rise and Demise)we will be documenting the geological context of past diversifications and turnover events. We present examples of rapid turnover (biodiversity crises) in the Quaternary, assess driving forces and draw implications for the nature of the current human-mediated biodiversity crisis in the region.

  16. Partitions for high-rise construction using phosphogypsum

    Directory of Open Access Journals (Sweden)

    Zolotukhin Sergey

    2018-01-01

    Full Text Available Gypsum blocks are usually used to make partitions in highrise construction. Reducing the cost of materials used in high-rise construction is an urgent task of modern material science. Phosphogypsum dihydrate, which has binding properties, is one of the large-tonnage waste. The authors have proved that, after years of storage in heaps, water-soluble phosphates, fluorides and other additives included in the structure of fresh phosphogypsum dissolved in water due to weathering (humidification-drying, freezing-thawing in a water-saturated state, and the calcium hydro-and dihydrogen phosphates ingressed in the lattice underwent complete hydrolysis and disintegration, thereby changing the physicochemical properties of phosphogypsum. The data obtained by the authors on the absence of water-soluble compounds of phosphorus, fluorine in stale phosphogypsum indicate its ecological purity and the possibility of application in housing construction. Having analyzed the data of modern methods of differential scanning calorimetry and scanning electron microscopy, the authors predicted and proved by the energy of dehydration of phosphogypsum dihydrate, lime, sandy loam, the possibility of obtaining non-flammable materials with sufficient strength for wall materials. Understanding the processes occurring in water films (the thickness of the water film, the pressure, the temperature and the pH of the aqueous extract of the mixture, the drying of the materials produced, made it possible to develop a technology for obtaining wall products from lime-sandy phosphogypsum material using typical silicate brick production equipment and vibropresses for key-cog blocks production.

  17. Regional approaches in high-rise construction

    Science.gov (United States)

    Iconopisceva, O. G.; Proskurin, G. A.

    2018-03-01

    The evolutionary process of high-rise construction is in the article focus. The aim of the study was to create a retrospective matrix reflecting the tasks of the study such as: structuring the most iconic high-rise objects within historic boundaries. The study is based on contemporary experience of high-rise construction in different countries. The main directions and regional specifics in the field of high-rise construction as well as factors influencing the further evolution process are analyzed. The main changes in architectural stylistics, form-building, constructive solutions that focus on the principles of energy efficiency and bio positivity of "sustainable buildings", as well as the search for a new typology are noted. The most universal constructive methods and solutions that turned out to be particularly popular are generalized. The new typology of high-rises and individual approach to urban context are noted. The results of the study as a graphical scheme made it possible to represent the whole high-rise evolution. The new spatial forms of high-rises lead them to new role within the urban environments. Futuristic hyperscalable concepts take the autonomous urban space functions itself and demonstrate us how high-rises can replace multifunctional urban fabric, developing it inside their shells.

  18. Rising pion inclusive cross section and n anti n cluster production

    International Nuclear Information System (INIS)

    Chiu, C.B.; Tow, D.M.

    1976-05-01

    It is argued that the reason for π - inclusive cross section to rise in the ISR energies is due to the threshold production of nucleon-antinucleon clusters. Such contributions are formulated and calculated at π - . Our results can account for the observed rise

  19. Observed rise of visible plumes from hyperbolic natural draft cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, P T [Smith-Singer Meteorologists, Inc., Amityville, NY; Seymour, D E; Butler, M J; Kramer, M L; Smith, M E; Frankenberg, T T

    1976-01-01

    The behavior of natural draft cooling tower plumes and related meteorological variables have been measured from aircraft near three major plants of the American Electric Power System. The rise of those plumes which persisted long enough to reach a stabilized height depended primarily upon the height of the capping inversion aloft. All such plumes rose to elevations of 425 m or more above grade. No significant relationships between plume rise and wind speed, plant load, or ambient temperature were found. We conclude that simple temperature humidity soundings in the vicinity of the towers would serve as effective predictors of plume rise and persistence.

  20. RADIOACTIVELY POWERED RISING LIGHT CURVES OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2012-01-01

    The rising luminosity of the recent, nearby supernova 2011fe shows a quadratic dependence with time during the first ≈0.5-4 days. In addition, studies of the composite light curves formed from stacking together many Type Ia supernovae (SNe Ia) have found similar power-law indices for the rise, but may also show some dispersion that may indicate diversity. I explore what range of power-law rises are possible due to the presence of radioactive material near the surface of the exploding white dwarf (WD). I summarize what constraints such a model places on the structure of the progenitor and the distribution and velocity of ejecta. My main conclusion is that for the inferred explosion time for SN 2011fe, its rise requires an increasing mass fraction X 56 ≈ (4-6) × 10 –2 of 56 Ni distributed between a depth of ≈10 –2 and 0.3 M ☉ below the WD's surface. Radioactive elements this shallow are not found in simulations of a single C/O detonation. Scenarios that may produce this material include helium-shell burning during a double-detonation ignition, a gravitationally confined detonation, and a subset of deflagration to detonation transition models. In general, the power-law rise can differ from quadratic depending on the details of the velocity, density, and radioactive deposition gradients in a given event. Therefore, comparisons of this work with observed bolometric rises of SNe Ia would place strong constraints on the properties of the shallow outer layers, providing important clues for identifying the elusive progenitors of SNe Ia.

  1. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  2. Observed sea-level rise in the north Indian Ocean coasts during the past century

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    Content-Type text/plain; charset=UTF-8 91 Observed sea-level rise in the north Indian Ocean coasts during the past century A. S. Unnikrishnan National Institute of Oceanography, Dona Paula, Goa-403004 unni@nio.org Introduction Sea-level... rise is one of the good indicators of global warming. Rise in sea level occurs mainly through melting of glaciers, thermal expansion due to ocean warming and some other processes of relatively smaller magnitudes. Sea level rise is a global...

  3. The electricity bill may rise by 30% between now and 2017, according to the CRE

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The CRE (French Regulatory Commission for Electricity) expects a rise of 30% in the electricity price for households in the next five years in France, the rise would only be of 16% for enterprises. The study shows that one third of this rise is due to the contribution to the public service of electricity whose main purpose is to finance the development of renewable energies. The rise will also cover the investments that have to be made in the power grid and in the means of production of electricity. (A.C.)

  4. Short steel and concrete columns under high temperatures

    Directory of Open Access Journals (Sweden)

    A. E. P. G. A. Jacintho

    Full Text Available The growing demand for knowledge about the effect of high temperatures on structures has stimulated increasing research worldwide. This article presents experimental results for short composite steel and concrete columns subjected to high temperatures in ovens with or without an axial compression load, numerically analyzes the temperature distribution in these columns after 30 and 60 minutes and compares them with experimental results. The models consist of concrete-filled tubes of three different thicknesses and two different diameters, and the concrete fill has conventional properties that remained constant for all of the models. The stress-strain behavior of the composite columns was altered after exposure to high temperatures relative to the same columns at room temperature, which was most evident in the 60-minute tests due to the higher temperatures reached. The computational analysis adopted temperature rise curves that were obtained experimentally.

  5. EFFECTS OF PAVEMENT SURFACE TEMPERATURE ON THE MODIFICATION OF URBAN THERMAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    SARAT, Adebayo-Aminu

    2012-07-01

    Full Text Available Urban centres continue to experience escalating average summer temperature over the last fifty years. Temperature in the urban core cites have been rising due to rapid growth of urbanization in the latter half of the twentieth century (Akbari et al., 1989. Outdoor experiments were conducted to investigate the effects of different movement of materials on the urban thermal environment. Meteorological conditions such as air temperature, pavement surface temperature, Relative humidity and wind velocity were recorded to determine temperature differences among Asphalt/concrete, interlocking bricks and grass surfaces.

  6. CFD analyses of the rod bowing effect on the subchannel outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, Karoliina; Toppila, Timo [Fortum Power and Heat, Fortum (Finland)

    2017-09-15

    In the Loviisa 1 and 2 nuclear power plants the subcooling margin of the hottest subchannel of the fuel assembly is monitored. The temperature of the coolant in the hottest subchannel is limited to the constant saturation temperature. Bending of the fuel rods occurs during normal operation due to the differences in the heat profiles of the rods. The coolant temperature will rise more in the subchannel with smaller flow area due to the bending and this has to be taken into account in the safety margin of subchannel enthalpy rise. Computational Fluid Dynamics (CFD) simulations are used to estimate how much the estimated maximum bow of a rod affects the temperature rise of the subchannel. The quantitative uncertainty of the predicted enthalpy rise in fuel bundle subchannel is estimated based on the uncertainty of modelling of mixing between subchannels. The measured turbulence quantities from LDA measurements of cold test assembly made in 1990s in Fortum are compared with CFD results to give uncertainty estimation for turbulence, which is further used for uncertainty estimation of mixing and simulated subchannel enthalpy rise.

  7. Anthropogenic sea level rise and adaptation in the Yangtze estuary

    Science.gov (United States)

    Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.

    2016-02-01

    Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021

  8. Methods of erection of high-rise buildings

    Directory of Open Access Journals (Sweden)

    Cherednichenko Nadezhda

    2018-01-01

    Full Text Available The article contains the factors determining the choice of methods for organizing the construction and production of construction and installation work for the construction of high-rise buildings. There are also indicated specific features of their underground parts, characterized by powerful slab-pile foundations, large volumes of earthworks, reinforced bases and foundations for assembly cranes. The work cycle is considered when using reinforced concrete, steel and combined skeletons of high-rise buildings; the areas of application of flow, separate and complex methods are being disclosed. The main conditions for the erection of high-rise buildings and their components are singled out: the choice of formwork systems, delivery and lifting of concrete mixes, installation of reinforcement, the formation of lifting and transporting and auxiliary equipment. The article prescribes the reserves of reduction in the duration of construction due to the creation of: complex mechanized technologies for the efficient construction of foundations in various soil conditions, including in the heaving, swelling, hindered, subsidence, bulk, water-saturated forms; complex mechanized technologies for the erection of monolithic reinforced concrete structures, taking into account the winter conditions of production and the use of mobile concrete-laying complexes and new generation machines; modular formwork systems, distinguished by their versatility, ease, simplicity in operation suitable for complex high-rise construction; more perfect methodology and the development of a set of progressive organizational and technological solutions that ensure a rational relationship between the processes of production and their maximum overlap in time and space.

  9. Integrating conservation costs into sea level rise adaptive conservation prioritization

    Directory of Open Access Journals (Sweden)

    Mingjian Zhu

    2015-07-01

    Full Text Available Biodiversity conservation requires strategic investment as resources for conservation are often limited. As sea level rises, it is important and necessary to consider both sea level rise and costs in conservation decision making. In this study, we consider costs of conservation in an integrated modeling process that incorporates a geomorphological model (SLAMM, species habitat models, and conservation prioritization (Zonation to identify conservation priorities in the face of landscape dynamics due to sea level rise in the Matanzas River basin of northeast Florida. Compared to conservation priorities that do not consider land costs in the analysis process, conservation priorities that consider costs in the planning process change significantly. The comparison demonstrates that some areas with high conservation values might be identified as lower priorities when integrating economic costs in the planning process and some areas with low conservation values might be identified as high priorities when considering costs in the planning process. This research could help coastal resources managers make informed decisions about where and how to allocate conservation resources more wisely to facilitate biodiversity adaptation to sea level rise.

  10. Methods of erection of high-rise buildings

    Science.gov (United States)

    Cherednichenko, Nadezhda; Oleinik, Pavel

    2018-03-01

    The article contains the factors determining the choice of methods for organizing the construction and production of construction and installation work for the construction of high-rise buildings. There are also indicated specific features of their underground parts, characterized by powerful slab-pile foundations, large volumes of earthworks, reinforced bases and foundations for assembly cranes. The work cycle is considered when using reinforced concrete, steel and combined skeletons of high-rise buildings; the areas of application of flow, separate and complex methods are being disclosed. The main conditions for the erection of high-rise buildings and their components are singled out: the choice of formwork systems, delivery and lifting of concrete mixes, installation of reinforcement, the formation of lifting and transporting and auxiliary equipment. The article prescribes the reserves of reduction in the duration of construction due to the creation of: complex mechanized technologies for the efficient construction of foundations in various soil conditions, including in the heaving, swelling, hindered, subsidence, bulk, water-saturated forms; complex mechanized technologies for the erection of monolithic reinforced concrete structures, taking into account the winter conditions of production and the use of mobile concrete-laying complexes and new generation machines; modular formwork systems, distinguished by their versatility, ease, simplicity in operation suitable for complex high-rise construction; more perfect methodology and the development of a set of progressive organizational and technological solutions that ensure a rational relationship between the processes of production and their maximum overlap in time and space.

  11. The rise and fall of gluten!

    Science.gov (United States)

    Aziz, Imran; Branchi, Federica; Sanders, David S

    2015-08-01

    Mankind has existed for 2·5 million years but only in the last 10,000 years have we been exposed to wheat. Wheat was first cultivated in the Fertile Crescent (South Western Asia) with a farming expansion that lasted from about 9000BC to 4000BC. Thus it could be considered that wheat (and gluten) is a novel introduction to man's diet! Prior to 1939 the rationing system had already been devised. This led to an imperative to try to increase agricultural production. Thus it was agreed in 1941 that there was a need to establish a Nutrition Society. The very roots of the society were geared towards necessarily increasing the production of wheat. This goal was achieved and by the end of the 20th century, global wheat output had expanded 5-fold. Perhaps as a result the epidemiology of coeliac disease (CD) or gluten sensitive enteropathy has changed. CD is a state of heightened immunological responsiveness to ingested gluten in genetically susceptible individuals. CD now affects 1 % or more of all adults, for which the treatment is a strict lifelong gluten-free diet. However, there is a growing body of evidence to show that a far greater proportion of individuals without coeliac disease are taking a gluten-free diet of their own volition. This clinical entity has been termed non-coeliac gluten sensitivity (NCGS), although the condition is fraught with complexities due to overlap with other gluten-based constituents that can also trigger similar clinical symptoms. This review will explore the relationship between gluten, the rising prevalence of modern coeliac disease, and the new entity of NCGS along with its associated uncertainties.

  12. Humidity Distributions in Multilayered Walls of High-rise Buildings

    Science.gov (United States)

    Gamayunova, Olga; Musorina, Tatiana; Ishkov, Alexander

    2018-03-01

    The limitation of free territories in large cities is the main reason for the active development of high-rise construction. Given the large-scale projects of high-rise buildings in recent years in Russia and abroad and their huge energy consumption, one of the fundamental principles in the design and reconstruction is the use of energy-efficient technologies. The main heat loss in buildings occurs through enclosing structures. However, not always the heat-resistant wall will be energy-efficient and dry at the same time (perhaps waterlogging). Temperature and humidity distributions in multilayer walls were studied in the paper, and the interrelation of other thermophysical characteristics was analyzed.

  13. Rising methane emissions from northern wetlands associated with sea ice decline

    Science.gov (United States)

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David

    2015-01-01

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.

  14. Sea-level rise risks to coastal cities

    Science.gov (United States)

    Nicholls, Robert J.

    2017-04-01

    Understanding the consequence of sea-level rise for coastal cities has long lead times and huge political implications. Civilisation has emerged and developed during a period of several thousand years during which in geological terms sea level has been unusually stable. We have now moved out of this period and the challenge will be to develop a long-term proactive assessment approach to manage this challenge. In 2005 there were 136 coastal cities with a population exceeding one million people and a collective population of 400 million people. All these coastal cities are threatened by flooding from the sea to varying degrees and these risks are increasing due to growing exposure (people and assets), rising sea levels due to climate change, and in some cities, significant coastal subsidence due to human agency (drainage and groundwater withdrawals from susceptible soils). In these cities we wish to avoid major flood events, with associated damage and potentially deaths and ultimately decline of the cities. Flood risks grow with sea-level rise as it raises extreme sea levels. As sea levels continue to rise, protection will have to be progressively upgraded. Even with this, the magnitude of losses when flood events do occur would increase as coastal cities expand, and water depths and hence unit damage increase with sea-level rise/subsidence. This makes it critical to also prepare for larger coastal flood disasters than we experience today and raises questions on the limits to adaptation. There is not an extensive literature or significant empirical information on the limits to adaptation in coastal cities. These limits are not predictable in a formal sense - while the rise in mean sea level raises the likelihood of a catastrophic flood, extreme events are what cause damage and trigger a response, be it abandonment, a defence upgrade or something else. There are several types of potential limits that could be categorised into three broad types: • Physical

  15. Rising Health Expenditure Due to Non-Communicable Diseases in India: An Outlook.

    Science.gov (United States)

    Barik, Debasis; Arokiasamy, Perianayagam

    2016-01-01

    With ongoing demographic transition, epidemiological transition has been emerged as a growing concern in India. The share of non-communicable disease in total disease burden has increased from 31% in 1990 to 45% in 2010. This paper seeks to explore the health scenario of India in the wake of the growing pace of non-communicable diseases such as diabetes and hypertension among Indian population using data from health and morbidity survey of the National Sample Survey Organisation (2004) and notifies about the resource needed to tackle this growing health risk. Given the share of private players (70%) in Indian health system, results indicate a higher private expenditure, mostly out-of-pocket expense, on account of non-communicable diseases. A timely look into the matter may tackle a more dreadful situation in near future.

  16. Rising Health Expenditure due to Non-communicable Diseases in India: An Outlook

    Directory of Open Access Journals (Sweden)

    Debasis Barik

    2016-11-01

    Full Text Available Abstract: With ongoing demographic transition, epidemiological transition in India has been emerged as a growing concern in India. The share of non-communicable disease in total disease burden has increased from 31 per cent in 1990 to 45 per cent in 2010. This paper seeks to explore the health scenario of India in the wake of the growing pace of non-communicable diseases like diabetes, hypertension among Indian population using data from health and morbidity survey of the National Sample Survey Organisation (2004 and notifies about the resource needed to tackle this growing health risk. Given the share of private players (70 per cent in Indian health system, results indicate a higher private expenditure, mostly out-of-pocket expense, on account of non-communicable diseases. A timely look into the matter may tackle a more dreadful situation in near future.

  17. Decarbonization of the German energy system due to falling or rising power consumption?

    International Nuclear Information System (INIS)

    Guminski, Andrej; Roon, Serafin von

    2016-01-01

    Since the publication of the draft ''Climate Protection Plan 2050'' and the ''Green Paper on Energy Efficiency'', it is clear that the Federal Government is focusing on the electrification of the heat and transport sector in order to increase the share of renewable energies in these sectors. This step is not uncontroversial, and represents a paradigm shift in science and politics, because the reduction of the cross electricity consumption move into the background. It is now necessary to clearly distinguish between the conventional power consumption, which must continue to be tested for energy savings and efficiency potential, and the new power consumption, here referred to as the coupling current, which is accepted in order to achieve the objectives of the energy transition. Since the consideration of the energy transition as a purely national project is too short, possible positive and negative effects of the European Union Emission Trading System (EU ETS) deserve particular attention with regard to this reorientation. [de

  18. Consequences of sea level rise due to greenhouse effect for coastal archaeological monuments

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Pathak, M.C; Hashimi, N.H

    stream_size 6 stream_content_type text/plain stream_name Recent_Adv_Mar_Archaeol_1991_116.pdf.txt stream_source_info Recent_Adv_Mar_Archaeol_1991_116.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  19. Uncertainty of the 20th century sea-level rise due to vertical land motion errors

    Science.gov (United States)

    Santamaría-Gómez, Alvaro; Gravelle, Médéric; Dangendorf, Sönke; Marcos, Marta; Spada, Giorgio; Wöppelmann, Guy

    2017-09-01

    Assessing the vertical land motion (VLM) at tide gauges (TG) is crucial to understanding global and regional mean sea-level changes (SLC) over the last century. However, estimating VLM with accuracy better than a few tenths of a millimeter per year is not a trivial undertaking and many factors, including the reference frame uncertainty, must be considered. Using a novel reconstruction approach and updated geodetic VLM corrections, we found the terrestrial reference frame and the estimated VLM uncertainty may contribute to the global SLC rate error by ± 0.2 mmyr-1. In addition, a spurious global SLC acceleration may be introduced up to ± 4.8 ×10-3 mmyr-2. Regional SLC rate and acceleration errors may be inflated by a factor 3 compared to the global. The difference of VLM from two independent Glacio-Isostatic Adjustment models introduces global SLC rate and acceleration biases at the level of ± 0.1 mmyr-1 and 2.8 ×10-3 mmyr-2, increasing up to 0.5 mm yr-1 and 9 ×10-3 mmyr-2 for the regional SLC. Errors in VLM corrections need to be budgeted when considering past and future SLC scenarios.

  20. Climate Adaptation and Sea Level Rise

    Science.gov (United States)

    EPA supports the development and maintenance of water utility infrastructure across the country. Included in this effort is helping the nation’s water utilities anticipate, plan for, and adapt to risks from flooding, sea level rise, and storm surge.

  1. Interconnect rise time in superconducting integrating circuits

    International Nuclear Information System (INIS)

    Preis, D.; Shlager, K.

    1988-01-01

    The influence of resistive losses on the voltage rise time of an integrated-circuit interconnection is reported. A distribution-circuit model is used to present the interconnect. Numerous parametric curves are presented based on numerical evaluation of the exact analytical expression for the model's transient response. For the superconducting case in which the series resistance of the interconnect approaches zero, the step-response rise time is longer but signal strength increases significantly

  2. Accidents Preventive Practice for High-Rise Construction

    Directory of Open Access Journals (Sweden)

    Goh Kai Chen

    2016-01-01

    Full Text Available The demand of high-rise projects continues to grow due to the reducing of usable land area in Klang Valley, Malaysia. The rapidly development of high-rise projects has leaded to the rise of fatalities and accidents. An accident that happened in a construction site can cause serious physical injury. The accidents such as people falling from height and struck by falling object were the most frequent accidents happened in Malaysian construction industry. The continuous growth of high-rise buildings indicates that there is a need of an effective safety and health management. Hence, this research aims to identify the causes of accidents and the ways to prevent accidents that occur at high-rise building construction site. Qualitative method was employed in this research. Interview surveying with safety officers who are involved in highrise building project in Kuala Lumpur were conducted in this research. Accidents were caused by man-made factors, environment factors or machinery factors. The accidents prevention methods were provide sufficient Personal Protective Equipment (PPE, have a good housekeeping, execute safety inspection, provide safety training and execute accidents investigation. In the meanwhile, interviewees have suggested the new prevention methods that were develop a proper site layout planning and de-merit and merit system among sub-contractors, suppliers and even employees regarding safety at workplace matters. This research helps in explaining the causes of accidents and identifying area where prevention action should be implemented, so that workers and top management will increase awareness in preventing site accidents.

  3. HiRISE: The People's Camera

    Science.gov (United States)

    McEwen, A. S.; Eliason, E.; Gulick, V. C.; Spinoza, Y.; Beyer, R. A.; HiRISE Team

    2010-12-01

    The High Resolution Imaging Science Experiment (HiRISE) camera, orbiting Mars since 2006 on the Mars Reconnaissance Orbiter (MRO), has returned more than 17,000 large images with scales as small as 25 cm/pixel. From it’s beginning, the HiRISE team has followed “The People’s Camera” concept, with rapid release of useful images, explanations, and tools, and facilitating public image suggestions. The camera includes 14 CCDs, each read out into 2 data channels, so compressed images are returned from MRO as 28 long (up to 120,000 line) images that are 1024 pixels wide (or binned 2x2 to 512 pixels, etc.). This raw data is very difficult to use, especially for the public. At the HiRISE operations center the raw data are calibrated and processed into a series of B&W and color products, including browse images and JPEG2000-compressed images and tools to make it easy for everyone to explore these enormous images (see http://hirise.lpl.arizona.edu/). Automated pipelines do all of this processing, so we can keep up with the high data rate; images go directly to the format of the Planetary Data System (PDS). After students visually check each image product for errors, they are fully released just 1 month after receipt; captioned images (written by science team members) may be released sooner. These processed HiRISE images have been incorporated into tools such as Google Mars and World Wide Telescope for even greater accessibility. 51 Digital Terrain Models derived from HiRISE stereo pairs have been released, resulting in some spectacular flyover movies produced by members of the public and viewed up to 50,000 times according to YouTube. Public targeting began in 2007 via NASA Quest (http://marsoweb.nas.nasa.gov/HiRISE/quest/) and more than 200 images have been acquired, mostly by students and educators. At the beginning of 2010 we released HiWish (http://www.uahirise.org/hiwish/), opening HiRISE targeting to anyone in the world with Internet access, and already more

  4. Temperature dependence of the current to sustain a normal hotspot in superconducting microbridges

    International Nuclear Information System (INIS)

    Yamaguchi, Y.; Ishii, C.

    1981-01-01

    A modification of the boundary condition to determine the SN boundary in the hotspot model of superconducting microbridges is proposed and successfully applied to the interpretation of recent measurements of the hotspot-sustaining current by Mizuno and Aomine. It is shown that suppression of the order parameter due to the applied current gives rise to an additional temperature dependence of the hotspot-sustaining current in the extreme vicinity of the transition temperature. (orig.)

  5. Integrating wildfire plume rises within atmospheric transport models

    Science.gov (United States)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically

  6. Socioecological Aspects of High-rise Construction

    Science.gov (United States)

    Eichner, Michael; Ivanova, Zinaida

    2018-03-01

    In this article, the authors consider the socioecological problems that arise in the construction and operation of high-rise buildings. They study different points of view on high-rise construction and note that the approaches to this problem are very different. They also analyse projects of modern architects and which attempts are made to overcome negative impacts on nature and mankind. The article contains materials of sociological research, confirming the ambivalent attitude of urban population to high-rise buildings. In addition, one of the author's sociological survey reveals the level of environmental preparedness of the university students, studying in the field of "Construction of unique buildings and structures", raising the question of how future specialists are ready to take into account socioecological problems. Conclusion of the authors: the construction of high-rise buildings is associated with huge social and environmental risks, negative impact on the biosphere and human health. This requires deepened skills about sustainable design methods and environmental friendly construction technologies of future specialists. Professor M. Eichner presents in the article his case study project results on implementation of holistic eco-sustainable construction principles for mixed-use high-rise building in the metropolis of Cairo.

  7. Socioecological Aspects of High-rise Construction

    Directory of Open Access Journals (Sweden)

    Eichner Michael

    2018-01-01

    Full Text Available In this article, the authors consider the socioecological problems that arise in the construction and operation of high-rise buildings. They study different points of view on high-rise construction and note that the approaches to this problem are very different. They also analyse projects of modern architects and which attempts are made to overcome negative impacts on nature and mankind. The article contains materials of sociological research, confirming the ambivalent attitude of urban population to high-rise buildings. In addition, one of the author’s sociological survey reveals the level of environmental preparedness of the university students, studying in the field of "Construction of unique buildings and structures", raising the question of how future specialists are ready to take into account socioecological problems. Conclusion of the authors: the construction of high-rise buildings is associated with huge social and environmental risks, negative impact on the biosphere and human health. This requires deepened skills about sustainable design methods and environmental friendly construction technologies of future specialists. Professor M. Eichner presents in the article his case study project results on implementation of holistic eco-sustainable construction principles for mixed-use high-rise building in the metropolis of Cairo.

  8. Plume rise from stacks with scrubbers: a state-of-the-art review

    International Nuclear Information System (INIS)

    Schatzmann, M.; Policastro, A.J.

    1984-01-01

    The state of the art of predicting plume rise from stacks with scrubbers is evaluated critically. The significant moisture content of the scrubbed plume upon exit leads to important thermodynamic effects during plume rise that are unaccounted for in the usual dry plume rise theories. For example, under conditionally unstable atmospheres, a wet scrubbed plume treated as completely dry acts as if the atmosphere were stable, whereas in reality the scrubbed plume behaves instead as if the atmosphere were unstable. Even the use of moist plume models developed for application to cooling tower plume rise is not valid since these models 1) employ the Boussinesq approximation, 2) use a number of additional simplifying approximations that require small exit temperature differences between tower exit and ambient temperatures, and 3) are not calibrated to stack data

  9. Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site

    Science.gov (United States)

    Michard, G.; Albarède, F.; Michard, A.; Minster, J.-F.; Charlou, J.-L.; Tan, N.

    1984-03-01

    Ten samples were recovered by the submersible "Cyana" submersible from two groups of hydrothermal vents located 2600 m deep along the East Pacific Rise at 13°N. The maximum measured temperature was 317°C and minimum pH 3.8. A systematic determination of major and trace elements has been carried out and mixing lines between a high-temperature component (HTC) and seawater are observed. The water chemistry of the HTC slightly differs for several elements at the two sites. This HTC is deprived of SO 4 and Mg and is greatly enriched in most other species. Maximum concentrations are (in units per kg): Cl = 0.72mol; Br = 1.1mmol; Na = 0.55mol; K = 29mmol; Rb = 14 μmol; Ca = 52mmol; Sr = 170 μmol; Mn = 750 μmol; Fe = 1mmol; Al = 15 μmol; Si = 21mmol. For many elements, the magnitude of the anomaly relative to seawater does not compare with the results obtained from the Galapagos or East Pacific Rise 21°N. The enrichment of cations relative to seawater is likely related to the huge Cl excess through charge balance. The Br/Cl ratio is close to that for seawater. However, it is not clear whether the Cl excess is due to gas release or basalt hydration (formation of amphibole chlorite or epidote). P-T dependence of SiO 2 solubility suggests that water-rock interaction last occurred at a depth in excess of 1 km below the sea floor. A mixing line of 87Sr/ 86Sr vs. Mg/Sr demonstrates that the HTCs have a nearly identical 87Sr/ 86Sr ratio of 0.7041 for both sites. A water/rock ratio of about 5 is inferred, which differs from the 1.5 value obtained at 21°N.

  10. High-rise Buildings versus Outdoor Thermal Environment in Chongqing

    Directory of Open Access Journals (Sweden)

    Jin-sha Wang

    2007-10-01

    Full Text Available This paper gives a brief description of the over quick urbanization sinceChongqing, one of the biggest cities in China, has been a municipality directly under theCentral Government in 1997, excessive development and exceeding increase of high-risebuildings because of its special geographical position which finally leads to the worseningof the urban outdoor thermal environment. Then, this paper makes a bright balance to thefield measurement and simulated results of the wind speed field, temperature field of onemultifunctional high-rise building in Chongqing university located in the city center, andthe contrasted results validate the correctness of CFD in the outdoor thermal environmentalsimulation, expose the disadvantages of high-rise buildings on the aspects of blocking thewind field, decreasing wind speed which results in accumulation of the air-conditioningheat revolving around and periscian region where sunshine can not rip into. Finally, inorder to improve the urban outdoor thermal environment near the high-rise buildingsespecially for the angle of natural ventilation, this paper simulates the wind environment indifferent architectural compositions and architectural layouts by CFD, and the simulatedresults show that freestyle and tower buildings which can guarantee the wind speed andtake the air-conditioning heat away are much suitable and reasonable for the specialChongqing geography. These conclusions can also be used as a reference in othermountain cities, especially for the one with a great number of populations.

  11. Rising Long-term Interest Rates

    DEFF Research Database (Denmark)

    Hallett, Andrew Hughes

    Rather than chronicle recent developments in European long-term interest rates as such, this paper assesses the impact of increases in those interest rates on economic performance and inflation. That puts us in a position to evaluate the economic pressures for further rises in those rates......, the first question posed in this assignment, and the scope for overshooting (the second question), and then make some illustrative predictions of future interest rates in the euro area. We find a wide range of effects from rising interest rates, mostly small and mostly negative, focused on investment...... till the emerging European recovery is on a firmer basis and capable of overcoming increases in the cost of borrowing and shrinking fiscal space. There is also an implication that worries about rising/overshooting interest rates often reflect the fact that inflation risks are unequally distributed...

  12. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action.

    Science.gov (United States)

    Mengel, Matthias; Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich

    2018-02-20

    Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO 2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.

  13. The 1988 coal outlook: steadily rising consumption

    Energy Technology Data Exchange (ETDEWEB)

    Soras, C.G.; Stodden, J.R.

    1987-12-01

    Total coal use - domestic and foreign - will reach 910 million tons in 1988, an expansion of 1.3% from an estimated 898 million tons in 1987. The overall rise in consumption will add to inventory needs. Moreover, lower interest rates cut effective carrying costs and further encourage the holding of coal stocks by users. The results will be a gain in inventories of 3.5 tons by the end of 1988. As a result of all these factors, coal production is anticipated to rise by 11.6 million tons, or 1.2%, which projects firm markets in a time of relatively soft economic conditions in the USA. 2 tabs.

  14. Effect of pairwise additivity on finite-temperature behavior of classical ideal gas

    Science.gov (United States)

    Shekaari, Ashkan; Jafari, Mahmoud

    2018-05-01

    Finite-temperature molecular dynamics simulations have been applied to inquire into the effect of pairwise additivity on the behavior of classical ideal gas within the temperature range of T = 250-4000 K via applying a variety of pair potentials and then examining the temperature dependence of a number of thermodynamical properties. Examining the compressibility factor reveals the most deviation from ideal-gas behavior for the Lennard-Jones system mainly due to the presence of both the attractive and repulsive terms. The systems with either attractive or repulsive intermolecular potentials are found to present no resemblance to real gases, but the most similarity to the ideal one as temperature rises.

  15. Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings.

    Science.gov (United States)

    Guerrero-Meseguer, Laura; Marín, Arnaldo; Sanz-Lázaro, Carlos

    2017-11-01

    Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Future rise of the sea level: consequences and strategies on the shoreline

    International Nuclear Information System (INIS)

    Teisson, C.

    1991-11-01

    The Mean Sea Level may rise in a near future due to the warming of the atmosphere associated with the 'greenhouse effect'. The alarming estimations issued in the 1980's (several meters of surelevation in the next centuries) are now lowered: the ice sheets, the melting of which could induce such a rise, do not present signs of instability. A rise from 30 to 50 cm is likely to occur in the middle of the next century; there is a probability of 25% that the rise of sea level relative to the year 1980 stands beyond 1 meter by 2100. The consequences of such a rise on the shoreline and the maritime works are reviewed, and planning strategies are discussed. This study has been performed in the framework of a convention between EDF-LNH and the Sea State Secretary (Service Technique des Ports Maritimes et Voies Navigables) 41 refs., 31 figs., 6 tabs

  17. ECOSUSTAINABLE HIGH-RISE : The Environmentally Conscious Architecture of Skyscraper

    Directory of Open Access Journals (Sweden)

    Jimmy Priatman

    2000-01-01

    Full Text Available The term " green architecture " is related to evolving architecture which is sensitive to the environment and emerges from the environmental awareness due to the effects of destruction of air, water, energy and earth. It is characterized by improving energy efficiency, sustainability concept and holistic approach of the entire building enterprise, where all of the environmental factors are regarded as an objective. Although there are many of environmentally conscious architectural works today, but most of the building designers prefer to deal primarily with small-scale buildings (low to medium rise and often only in greenfield, rural or suburban sites. All those large scale, high-rise or tall buildings located in dense urban areas are regarded as avoidable objects that consumes a lot of energy, uses huge amounts of materials, and produces massive volumes of waste discharge into the environment. These intensive buildings deserve greater attention and should be designed by greater part of our expertise and effort to ecologically design than the smaller buildings with fewer problems. The paper discusses "green" dimensions applied to tall buildings/high-rise buildings with their innovative approach that leads to ecosustainable tall buildings.

  18. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Howell, D. Andrew [Las Cumbres Observatory Global Telescope, 6740 Cortona Dr., Suite 102, Goleta, CA 93111 (United States); Wolf, William M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars; McCully, Curtis; Valenti, Stefano [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot, 76100 (Israel); Hardin, Delphine; Astier, Pierre; Balland, Cristophe [LPNHE, CNRS-IN2P3 and University of Paris VI and VII, F-75005 Paris (France); Prajs, Szymon; Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Svirski, Gilad [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carlberg, Ray G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Conley, Alex, E-mail: iarcavi@lcogt.net [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-389 (United States); and others

    2016-03-01

    We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  19. Present-day sea level rise: a synthesis

    International Nuclear Information System (INIS)

    Cazenave, A.; Llovel, W.; Lombard, A.

    2008-01-01

    Measuring sea level change and understanding its causes have improved considerably in the recent years, essentially because new in situ and remote sensing data sets have become available. Here we report on the current knowledge of present-day sea level change. We briefly present observational results on sea level change from satellite altimetry since 1993 and tide gauges for the past century. We next discuss recent progress made in quantifying the processes causing sea level change on time scales ranging from years to decades, i.e., thermal expansion, land ice mass loss and land water storage change. For the 1993-2003 decade, the sum of climate-related contributions agree well (within the error bars) with the altimetry-based sea level, half of the observed rate of rise being due to ocean thermal expansion, land ice plus land waters explaining the other half. Since about 2003, thermal expansion increase has stopped, whereas the sea level continues to rise, although at a reduced rate compared to the previous decade (2.5 mm/yr versus 3.1 mm/yr). Recent increases in glacier melting and ice mass loss from the ice sheets appear able to account alone for the rise in sea level reported over the last five years. (authors)

  20. IT Requirements Integration in High-Rise Construction Design Projects

    Science.gov (United States)

    Levina, Anastasia; Ilin, Igor; Esedulaev, Rustam

    2018-03-01

    The paper discusses the growing role of IT support for the operation of modern high-rise buildings, due to the complexity of managing engineering systems of buildings and the requirements of consumers for the IT infrastructure. The existing regulatory framework for the development of design documentation for construction, including high-rise buildings, is analyzed, and the lack of coherence in the development of this documentation with the requirements for the creation of an automated management system and the corresponding IT infrastructure is stated. The lack of integration between these areas is the cause of delays and inefficiencies both at the design stage and at the stage of putting the building into operation. The paper proposes an approach to coordinate the requirements of the IT infrastructure of high-rise buildings and design documentation for construction. The solution to this problem is possible within the framework of the enterprise architecture concept by coordinating the requirements of the IT and technological layers at the design stage of the construction.

  1. Population Aging in Iran and Rising Health Care Costs

    Directory of Open Access Journals (Sweden)

    Mohammad Mirzaie

    2017-09-01

    Conclusion Based on the results of this research, it can be said that people throughout their life cycle always allocate a percentage of their total spending to health care costs, but the percentage of this allocation is different at different ages. In a way the demand for healthcare costs increases with aging, it rises significantly in the old age. At the macro level, due to an increase in the percentage of elderly in the population over the next decade, there will also be an increase in the share of health care costs.

  2. The Rise of the Digital Public Library

    Science.gov (United States)

    McKendrick, Joseph

    2012-01-01

    There is a growing shift to digital offerings among public libraries. Libraries increasingly are fulfilling roles as technology hubs for their communities, with high demand for technology and career development training resources. Ebooks and other digital materials are on the rise, while print is being scaled back. More libraries are turning to…

  3. Rise time spectroscopy in cadmium telluride detectors

    International Nuclear Information System (INIS)

    Scharager, Claude; Siffert, Paul; Carnet, Bernard; Le Meur, Roger.

    1980-11-01

    By a simultaneous analysis of rise time and pulse amplitude distributions of the signals issued from various cadmium telluride detectors, it is possible to obtain informations about surface and bulk trapping, field distribution within the detectors, as well as charge collection and transport properties. These investigations have been performed on both pure and chlorine doped and materials for various surfaces preparation conditions [fr

  4. How oxygen gave rise to eukaryotic sex

    NARCIS (Netherlands)

    Hörandl, Elvira; Speijer, Dave

    2018-01-01

    9years ago. The large amount of ROS coming from a bacterial endosymbiont gave rise to DNA damage and vast increases in host genome mutation rates. Eukaryogenesis and chromosome evolution represent adaptations to oxidative stress. The host, an archaeon, most probably already had repair mechanisms

  5. Rising Political Consciousness: Transformational Learning in Malaysia.

    Science.gov (United States)

    Kamis, Mazalan; Muhamad, Mazanah

    As part of a larger study (not discussed) ten educated Malaysian citizens were interviewed to find whether their rising political consciousness, over a ten year period (1988-1999), indicated that their transformation was influenced by their culture. The subjects were between 35-45 years old, married, with an average of four children. All were…

  6. Can income redistribution help changing rising inequality?

    NARCIS (Netherlands)

    Salverda, W.

    2014-01-01

    In this article compares the rise in inequality concerning net household incomes in a number of European countries and Canada, the USA and Australia. Two important factors are used to explain this worrying trend: a growing of unequal market incomes and/or a declining redistribution of income through

  7. Why does a spinning egg rise?

    Science.gov (United States)

    Cross, Rod

    2018-03-01

    Experimental and theoretical results are presented concerning the rise of a spinning egg. It was found that an egg rises quickly while it is sliding and then more slowly when it starts rolling. The angular momentum of the egg projected in the XZ plane changed in the same direction as the friction torque, as expected, by rotating away from the vertical Z axis. The latter result does not explain the rise. However, an even larger effect arises from the Y component of the angular momentum vector. As the egg rises, the egg rotates about the Y axis, an effect that is closely analogous to rotation of the egg about the Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction. Precession about the Z axis ceases if the normal reaction force decreases to zero, and precession about the Y axis ceases if the friction force decreases to zero.

  8. Sea level rise : A literature survey

    NARCIS (Netherlands)

    Oude Essink, G.H.P.

    1992-01-01

    In order to assess the impact of sea level rise on Water Management, it is useful to understand the mechanisrns that determine the level of the sea. In this study, a literature survey is executed to analyze these mechanisms. Climate plays a centra! role in these mechanisms, Climate mainly changes

  9. The economic consequences of oil price rise

    International Nuclear Information System (INIS)

    Lescaroux, Francois

    2006-05-01

    The author discusses the possible consequences of oil barrel price rise. First, he discusses the main results of analysis's which have been performed for thirty years regarding the impact of oil price on economical activity. He proposes interpretations of these studies and of their conclusions, and tries to draw lessons regarding effects which can be expected from the recent evolutions of energy markets

  10. The Enigma of Mercury's Northern Rise

    Science.gov (United States)

    James, P. B.

    2018-05-01

    Various aspects of the "northern rise" make it hard to explain: Its composition and chronology don't stand out from its surroundings, it seems to have uplifted late, and it has a huge gravity anomaly. We'll discuss the possible formation mechanisms.

  11. The Blackwater NWR inundation model. Rising sea level on a low-lying coast: land use planning for wetlands

    Science.gov (United States)

    Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom

    2004-01-01

    The Blackwater National Wildlife Refuge (BNWR), on the Eastern Shore of Chesapeake Bay (figure 1), occupies an area less than 1 meter above sea level. The Refuge has been featured prominently in studies of the impact of sea level rise on coastal wetlands. Most notably, the refuge has been sited by the Intergovernmental Panel on Climate Change (IPCC) as a key example of 'wetland loss' attributable to rising sea level due to global temperature increase. Comparative studies of aerial photos taken since 1938 show an expanding area of open water in the central area of the refuge. The expanding area of open water can be shown to parallel the record of sea level rise over the past 60 years. The U.S. Fish and Wildlife Service (FWS) manages the refuge to support migratory waterfowl and to preserve endangered upland species. High marsh vegetation is critical to FWS waterfowl management strategies. A broad area once occupied by high marsh has decreased with rising sea level. The FWS needs a planning tool to help predict current and future areas of high marsh available for waterfowl. 'Wetland loss' is a relative term. It is dependant on the boundaries chosen for measurement. Wetland vegetation, zoned by elevation and salinity (figure 3), respond to rising sea level. Wetlands migrate inland and upslope and may vary in areas depending on the adjacent land slopes. Refuge managers need a geospatial tool that allows them to predict future areas that will be converted to high and intertidal marsh. Shifts in location and area of coverage must be anticipated. Viability of a current marsh area is also important. When will sea level rise make short-term management strategies to maintain an area impractical? The USGS has developed an inundation model for the BNWR centered on the refuge and surrounding areas. Such models are simple in concept, but they require a detailed topographic map upon which to superimpose future sea level positions. The new system of LIDAR mapping of land and

  12. Global mean sea-level rise in a world agreed upon in Paris

    Science.gov (United States)

    Bittermann, Klaus; Rahmstorf, Stefan; Kopp, Robert E.; Kemp, Andrew C.

    2017-12-01

    Although the 2015 Paris Agreement seeks to hold global average temperature to ‘well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels’, projections of global mean sea-level (GMSL) rise commonly focus on scenarios in which there is a high probability that warming exceeds 1.5 °C. Using a semi-empirical model, we project GMSL changes between now and 2150 CE under a suite of temperature scenarios that satisfy the Paris Agreement temperature targets. The projected magnitude and rate of GMSL rise varies among these low emissions scenarios. Stabilizing temperature at 1.5 °C instead of 2 °C above preindustrial reduces GMSL in 2150 CE by 17 cm (90% credible interval: 14-21 cm) and reduces peak rates of rise by 1.9 mm yr-1 (90% credible interval: 1.4-2.6 mm yr-1). Delaying the year of peak temperature has little long-term influence on GMSL, but does reduce the maximum rate of rise. Stabilizing at 2 °C in 2080 CE rather than 2030 CE reduces the peak rate by 2.7 mm yr-1 (90% credible interval: 2.0-4.0 mm yr-1).

  13. Vulnerable areas and adapation measures for sea level rise along the coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Unnikrishnan, A.S.; Menezes, A.A.A.; Jagtap, T.G.; Suneethi, J.; Furtado, R.

    India has a coastline of about 7500 km with contrasting geological setting. Based upon the available models, global sea level rise of 10-25 cm per 100 year has been predicted due to emission of green house gases. To separate out the influences due...

  14. Impacts of climate change and sea level rise to Danish near shore ecosystems

    International Nuclear Information System (INIS)

    Vestergaard, P.

    2001-01-01

    Salt marshes and sand dunes are important types of coastal, terrestrial nature, which like other terrestrial ecosystems will be sensible to the future changes in climate, which have been predicted. Due to the processes acting in their morphogenesis and in the development and composition of their ecosystems, they will not least be influenced by sea level rise. Especially a strong impact of a sea level rise of about 50 cm (midrange of the projected global sea level rise) for the next century can be expected on Danish salt marshes, considering their limited vertical range (50-100 cm). (LN)

  15. Effects of temperature increase in insect community

    International Nuclear Information System (INIS)

    Tuda, Midori; Fujii, Koichi

    1993-01-01

    Temperature will rise by 2degC in the near future. Potential effects of the rise on biological community are predicted with little evidence on the subjects. Individualistic responses of component species in community are often ignored. We performed experiments on a lab host-parasitoid community and tested the hypothesis that individualistic changes in developmental schedules by temperature rise can generate drastic community change. (author)

  16. Analysis of the internal temperature of the cells in a battery pack during SOC balancing

    Science.gov (United States)

    Mizanur, R.; Rashid, M. M.; Rahman, A.; Zahirul Alam, A. H. M.; Ihsan, S.; Mollik, M. S.

    2017-03-01

    Lithium-ion batteries are more suitable for the application of electric vehicle due to high energy and power density compared to other rechargeable batteries. However, the battery pack temperature has a great impact on the overall performance, cycle life, normal charging-discharging behaviour and even safety. During rapid charge transferring process, the internal temperature may exceed its allowable limit (460C). In this paper, an analysis of internal temperature during charge balancing and discharging conditions is presented. Specific interest is paid to the effects of temperature on the different rate of ambient temperature and discharging current. Matlab/Simulink Li-ion battery model and quasi-resonant converter base balancing system are used to study the temperature effect. Rising internal temperature depends on the rate of balancing current and ambient temperature found in the simulation results.

  17. Adapting to sea-level rise in the US Southeast: The influence of built infrastructure and biophysical factors on the inundation of coastal areas

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, R.C. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center]|[Oak Ridge National Lab., TN (United States); Gornitz, V.M. [National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Mehta, A.J.; Lee, Saychong [Florida Univ., Gainesville, FL (United States). Dept. of Coastal and Oceanographic Engineering; Cushman, R.M. [Oak Ridge National Lab., TN (United States)

    1992-11-01

    The earth` s global mean surface air temperature has increased by 0.5{degrees}C over the past 100 years. This warming trend has occurred concurrently with increases in the concentration and number of greenhouse gases in the atmosphere. These gases may cause this trend to accelerate in the future and result in a net increase in the earth`s global mean surface air temperature of 1.5 to 4.5{degrees}C by the year 2100. An increase of this magnitude could cause sea surface temperatures to increase would cause sea levels to rise -from thermal expansion of the sea, and the addition of melt waters from alpine glaciers and continental ice sheets. To allow for the cost-effective analysis of the impacts that sea-level rise may have on the US Southeast, a method is needed that will allow sites that are potentially at risk to be identified for study. Previously, no objective method was available to identify such sites. This project addresses this problem by using a geographic data base with information on both physical and climatological factors to identify coastal areas of the US Southeast that are at risk to inundation or accelerated erosion due to sea-level rise. The following six areas were selected for further study from the many identified as being at high risk: Galveston, Texas; Caminada Pass, Louisiana; Bradenton Beach, Florida; Daytona Beach, Florida; McClellanville, South Carolina; and Nags Head, North Carolina. For each study area the amount of land, by land use type, in danger from inundation from three sea-level-rise scenarios was calculated. The calculated values were based on elevation alone.

  18. Adapting to sea-level rise in the US Southeast: The influence of built infrastructure and biophysical factors on the inundation of coastal areas

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, R. C. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center Oak Ridge National Lab., TN (United States); Gornitz, V. M. [National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Mehta, A. J.; Lee, Saychong [Florida Univ., Gainesville, FL (United States). Dept. of Coastal and Oceanographic Engineering

    1992-11-01

    The earth' s global mean surface air temperature has increased by 0.5°C over the past 100 years. This warming trend has occurred concurrently with increases in the concentration and number of greenhouse gases in the atmosphere. These gases may cause this trend to accelerate in the future and result in a net increase in the earth's global mean surface air temperature of 1.5 to 4.5°C by the year 2100. An increase of this magnitude could cause sea surface temperatures to increase would cause sea levels to rise -from thermal expansion of the sea, and the addition of melt waters from alpine glaciers and continental ice sheets. To allow for the cost-effective analysis of the impacts that sea-level rise may have on the US Southeast, a method is needed that will allow sites that are potentially at risk to be identified for study. Previously, no objective method was available to identify such sites. This project addresses this problem by using a geographic data base with information on both physical and climatological factors to identify coastal areas of the US Southeast that are at risk to inundation or accelerated erosion due to sea-level rise. The following six areas were selected for further study from the many identified as being at high risk: Galveston, Texas; Caminada Pass, Louisiana; Bradenton Beach, Florida; Daytona Beach, Florida; McClellanville, South Carolina; and Nags Head, North Carolina. For each study area the amount of land, by land use type, in danger from inundation from three sea-level-rise scenarios was calculated. The calculated values were based on elevation alone.

  19. Seasonal variations of natural ventilation and radon-222 exhalation in a slightly rising dead-end tunnel.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick; Gautam, Umesh; Tiwari, Dilli Ram; Shrestha, Prithvi; Sapkota, Soma Nath

    2007-01-01

    The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.

  20. Experimental study of effect of initial clad temperature on reflood phenomena during PWR-LOCA

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Murao, Yoshio

    1983-01-01

    Integral system tests with the Cylindrical Core Test Facility (CCTF) were performed to investigate the effect of the initial clad temperature on the reflood phenomena in a PWR-LOCA. The initial peak clad temperatures in these three tests were 871, 968 and 1,047K, respectively. The feedback of the system on the core inlet mass flow rate was estimated to be little influenced by the variation of the initial clad temperature except for the first 20s in the transient. The observed temperature rise from the reflood initiation was lower with the higher initial clad temperature. This qualitatively agreed with the results of the small scale forced feed reflood experiments. However, the magnitude of the temperature rise in CCTF was significantly low due to the high initial core inlet mass flow rate. Also observed were the multi-dimensional thermal behaviors for the three cases in the CCTF wide core. The analysis codes REFLA and TRAC reasonably predicted the effect of the initial clad temperature on the core thermo-hydraulics under the simulated core inlet flow conditions. However, the calculated temperature rise of the maximum powered rod based on the one-dimensional core analysis was higher than that of the average powered rod, which contradicts the tendency observed in CCTF tests. (author)

  1. Reconciling projections of the Antarctic contribution to sea level rise

    Science.gov (United States)

    Edwards, Tamsin; Holden, Philip; Edwards, Neil; Wernecke, Andreas

    2017-04-01

    Two recent studies of the Antarctic contribution to sea level rise this century had best estimates that differed by an order of magnitude (around 10 cm and 1 m by 2100). The first, Ritz et al. (2015), used a model calibrated with satellite data, giving a 5% probability of exceeding 30cm by 2100 for sea level rise due to Antarctic instability. The second, DeConto and Pollard (2016), used a model evaluated with reconstructions of palaeo-sea level. They did not estimate probabilities, but using a simple assumption here about the distribution shape gives up to a 5% chance of Antarctic contribution exceeding 2.3 m this century with total sea level rise approaching 3 m. If robust, this would have very substantial implications for global adaptation to climate change. How are we to make sense of this apparent inconsistency? How much is down to the data - does the past tell us we will face widespread and rapid Antarctic ice losses in the future? How much is due to the mechanism of rapid ice loss ('cliff failure') proposed in the latter paper, or other parameterisation choices in these low resolution models (GRISLI and PISM, respectively)? How much is due to choices made in the ensemble design and calibration? How do these projections compare with high resolution, grounding line resolving models such as BISICLES? Could we reduce the huge uncertainties in the palaeo-study? Emulation provides a powerful tool for understanding these questions and reconciling the projections. By describing the three numerical ice sheet models with statistical models, we can re-analyse the ensembles and re-do the calibrations under a common statistical framework. This reduces uncertainty in the PISM study because it allows massive sampling of the parameter space, which reduces the sensitivity to reconstructed palaeo-sea level values and also narrows the probability intervals because the simple assumption about distribution shape above is no longer needed. We present reconciled probabilistic

  2. Qubit dephasing due to quasiparticle tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Zanker, Sebastian; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany)

    2015-07-01

    We study dephasing of a superconducting qubit due to quasiparticle tunneling through a Josephson junction. While qubit decay due to tunneling processes is well understood within a golden rule approximation, pure dephasing due to BCS quasiparticles gives rise to a divergent golden rule rate. We calculate qubit dephasing due to quasiparticle tunneling beyond lowest order approximation in coupling between qubit and quasiparticles. Summing up a certain class of diagrams we show that qubit dephasing due to purely longitudinal coupling to quasiparticles leads to dephasing ∝ exp(-x(t)) where x(t) ∝ t{sup 3/2} for short time scales and x(t) ∝ tlog(t) for long time scales.

  3. On the temperature effect of substrate and evaporation rate on condensate dispersion

    International Nuclear Information System (INIS)

    Orlov, Yu.F.; Belotserkovskaya, N.G.; Gustylev, V.K.

    1978-01-01

    On the basis of available and new experimental data an attempt has been made to generalize the results of studying the effect of the substrate temperature and evaporation rate on the dispersity of amorphous condensates of Sb 2 S 3 and on that of crystalline condensates of PbO and PbTe. The dispersity of the condensates is shown to decrease with a substrate temperature and evaporation rate. The specific surface decreases linearly with the 3-5-fold rise in the evaporation rate. A dispersity decrease is due to the temperature rise in the medium where condensation takes place. The pattern of dispersity dependence on the substrate temperature and evaporation rate does not depend on the mechanism of vapour condensation and is the same both for aerosol mechanism of the condensate formation and for vapour condensation directly on the substrate

  4. Rise of oil prices and energy policy

    International Nuclear Information System (INIS)

    2005-01-01

    This document reprints the talk of the press conference given by D. de Villepin, French prime minister, on August 16, 2005 about the alarming rise of oil prices. In his talk, the prime minister explains the reasons of the crisis (increase of worldwide consumption, political tensions in the Middle East..) and presents the strategy and main trends of the French energy policy: re-launching of energy investments in petroleum refining capacities and in the nuclear domain (new generation of power plants), development of renewable energy sources and in particular biofuels, re-launching of the energy saving policy thanks to financial incentives and to the development of clean vehicles and mass transportation systems. In a second part, the prime minister presents his policy of retro-cession of petroleum tax profits to low income workers, and of charge abatement to professionals having an occupation strongly penalized by the rise of oil prices (truckers, farmers, fishermen, taxi drivers). (J.S.)

  5. High and rising health care costs.

    Science.gov (United States)

    Ginsburg, Paul B

    2008-10-01

    The U.S. is spending a growing share of the GDP on health care, outpacing other industrialized countries. This synthesis examines why costs are higher in the U.S. and what is driving their growth. Key findings include: health care inefficiency, medical technology and health status (particularly obesity) are the primary drivers of rising U.S. health care costs. Health payer systems that reward inefficiencies and preempt competition have impeded productivity gains in the health care sector. The best evidence indicates medical technology accounts for one-half to two-thirds of spending growth. While medical malpractice insurance and defensive medicine contribute to health costs, they are not large enough factors to significantly contribute to a rise in spending. Research is consistent that demographics will not be a significant factor in driving spending despite the aging baby boomers.

  6. Compton suppression through rise-time analysis

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2007-01-01

    We studied Compton suppression for 60 Co and 137 Cs radioisotopes using a signal selection criterion based on contrasting the fall time of the signals composing the photo peak with those composing the Compton continuum. The fall time criterion is employed by using the pulse shape analysis observing the change in the fall times of the gamma-ray pulses. This change is determined by measuring the changes in the rise times related to the fall time of the scintillator and the timing signals related to the fall time of the input signals. We showed that Compton continuum suppression is achieved best via the precise timing adjustment of an analog rise-time analyzer connected to a NaI(Tl) scintillation spectrometer

  7. The rise of precarious employment in Germany

    OpenAIRE

    Brady, David; Biegert, Thomas

    2017-01-01

    Long considered the classic coordinated market economy featuring employment security and relatively little employment precarity, the German labor market has undergone profound changes in recent decades. We assess the evidence for a rise in precarious employment in Germany from 1984 to 2013. Using data from the German Socio-Economic Panel (SOEP) through the Luxembourg Income Study, we examine low-wage employment, working poverty, and temporary employment. We also analyze changes in the demogra...

  8. Rising sea levels and small island states

    International Nuclear Information System (INIS)

    Leatherman, S.P.

    1994-01-01

    A review is given of the problems small island nations face with respect to sea level rise caused by global warming. Many small island nations are very vulnerable to sea level rise. Particularly at risk are coral reef atolls, which are generally quite small, lie within three metres of current sea levels, and have no land at higher elevations to relocate populations and economic activity. Volcanic islands in the Pacific have high ground, but it is largely rugged, high relief and soil-poor. The most vulnerable islands are those that consist entirely of atolls and reef islands, such as Kirabai, Maldives, Tokelau and Tuvalu. Small island states, which by themselves have little power or influence in world affairs, have banded together to form the Strategic Alliance of Small Island States (AOSIS). This alliance had grown to include 42 states by the time of the 1992 U.N. Earth Summit. Although the greenhouse effect is mainly caused by industrial nations, developing countries will suffer the most from it. Choices of response stra