WorldWideScience

Sample records for temperature responsive gene

  1. Characterization of wheat MYB genes responsive to high temperatures.

    Science.gov (United States)

    Zhao, Yue; Tian, Xuejun; Wang, Fei; Zhang, Liyuan; Xin, Mingming; Hu, Zhaorong; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Peng, Huiru

    2017-11-21

    Heat stress is one of the most crucial environmental factors, which reduces crop yield worldwide. In plants, the MYB family is one of the largest families of transcription factors (TFs). Although some wheat stress-related MYB TFs have been characterized, their involvement in response to high-temperature stress has not been properly studied. Six novel heat-induced MYB genes were identified by comparison with previously established de novo transcriptome sequencing data obtained from wheat plants subjected to heat treatment; genomic and complete coding sequences of these genes were isolated. All six TaMYBs were localized in the nucleus of wheat protoplasts. Transactivation assays in yeast revealed that all six proteins acted as transcriptional activators, and the activation domains were attributed to the C-termini of the six wheat MYB proteins. Phylogenetic analysis of the six TaMYBs and R2R3-MYBs from Arabidopsis revealed that all six proteins were in clades that contained stress-related MYB TFs. The expression profiles of TaMYB genes were different in wheat tissues and in response to various abiotic stresses and exogenous abscisic acid treatment. In transgenic Arabidopsis plants carrying TaMYB80 driven by the CaMV 35S promoter, tolerance to heat and drought stresses increased, which could be attributed to the increased levels of cellular abscisic acid. We identified six heat-induced MYB genes in wheat. We performed comprehensive analyses of the cloned MYB genes and their gene products, including gene structures, subcellular localization, transcriptional activation, phylogenetic relationships, and expression patterns in different wheat tissues and under various abiotic stresses. In particular, we showed that TaMYB80 conferred heat and drought tolerance in transgenic Arabidopsis. These results contribute to our understanding of the functions of heat-induced MYB genes and provide the basis for selecting the best candidates for in-depth functional studies of heat-responsive

  2. Gene expression profile of Campylobacter jejuni in response to growth temperature variation.

    Science.gov (United States)

    Stintzi, Alain

    2003-03-01

    The foodborne pathogen Campylobacter jejuni is the primary causative agent of gastroenteritis in humans. In the present study a whole genome microarray of C. jejuni was constructed and validated. These DNA microarrays were used to measure changes in transcription levels over time, as C. jejuni cells responded to a temperature increase from 37 to 42 degrees C. Approximately 20% of the C. jejuni genes were significantly up- or downregulated over a 50-min period after the temperature increase. The global change in C. jejuni transcriptome was found to be essentially transient, with only a small subset of genes still differentially expressed after 50 min. A substantial number of genes with a downregulated coexpression pattern were found to encode for ribosomal proteins. This suggests a short growth arrest upon temperature stress, allowing the bacteria to reshuffle their energy toward survival and adaptation to the new growth temperature. Genes encoding chaperones, chaperonins, and heat shock proteins displayed the most dramatic and rapid upregulation immediately after the temperature change. Interestingly, genes encoding proteins involved in membrane structure modification were differentially expressed, either up- or downregulated, suggesting a different protein membrane makeup at the two different growth temperatures. Overall, these data provide new insights into the primary response of C. jejuni to surmount a sudden temperature upshift, allowing the bacterium to survive and adapt its transcriptome to a new steady state.

  3. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular ev...

  4. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor.

    Science.gov (United States)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben; Paina, Cristiana; Rudi, Heidi; Rognli, Odd-Arne; Fjellheim, Siri; Sandve, Simen R

    2013-09-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis). Nonsynonymous substitution rate differences between Pooideae and warm habitat-adapted species were elevated in LTI trees compared with all trees. Furthermore, signatures of positive selection were significantly stronger in LTI trees after the rice and Pooideae split but before the Brachypodium divergence (P temperate crops. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Temperature influences the expression profiling of immune response genes in rainbow trout following DNA vaccination and VHS virus infection

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Gautier, Laurent; Rasmussen, Jesper Skou

    -PCR. The expression profiles appeared similar for the two genes in terms of temperature dependency with a faster induction and shorter duration at the higher temperature. In order to analyze the temperature effect on the relative expression profiles across a larger set of immune genes time points displaying similar...... an early unspecific antiviral response as well as a long-lasting specific protection. However, temperature appears to influence immune response with respect to the nature and duration of the protective mechanisms. In this study, groups of fish were temperature acclimated, vaccinated and challenged at three...... different temperatures (5, 10 and 15ºC). Tissue and organ samples were collected at numerous time points post vaccination (pv) and post viral challenge (pch). Then, gene expression levels of a two immune genes (Vig-1 and Mx3) involved in unspecific antiviral response mechanisms were determined by Q...

  6. Gene and protein expression in response to different growth temperatures and oxygen availability in Burkholderia thailandensis.

    Directory of Open Access Journals (Sweden)

    Clelia Peano

    Full Text Available Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically. We characterized the B. thailandensis clinical isolate CDC2721121 (BtCDC272 at the genome level and studied its response to environmental cues associated with human host colonization, namely, temperature and oxygen limitation. Effects of the different growth conditions on BtCDC272 were studied through whole genome transcription studies and analysis of proteins associated with the bacterial cell surface. We found that growth at 37°C, compared to 28°C, negatively affected cell motility and flagella production through a mechanism involving regulation of the flagellin-encoding fliC gene at the mRNA stability level. Growth in oxygen-limiting conditions, in contrast, stimulated various processes linked to virulence, such as lipopolysaccharide production and expression of genes encoding protein secretion systems. Consistent with these observations, BtCDC272 grown in oxygen limitation was more resistant to phagocytosis and strongly induced the production of inflammatory cytokines from murine macrophages. Our results suggest that, while temperature sensing is important for regulation of B. thailandensis cell motility, oxygen limitation has a deeper impact on its physiology and constitutes a crucial environmental signal for the production of virulence factors.

  7. Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis.

    Directory of Open Access Journals (Sweden)

    Venkata Suresh Bonthala

    Full Text Available Bambara groundnut (Vigna subterranea (L. Verdc. is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01 under the sub-optimal (23°C and very sub-optimal (18°C temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.

  8. A low-temperature-responsive element involved in the regulation of the Arabidopsis thaliana At1g71850/At1g71860 divergent gene pair.

    Science.gov (United States)

    Liu, Shijuan; Chen, Huiqing; Li, Xiulan; Zhang, Wei

    2016-08-01

    The bidirectional promoter of the Arabidopsis thaliana gene pair At1g71850/At1g71860 harbors low-temperature-responsive elements, which participate in anti-correlated transcription regulation of the driving genes in response to environmental low temperature. A divergent gene pair is defined as two adjacent genes organized head to head in opposite orientation, sharing a common promoter region. Divergent gene pairs are mainly coexpressed, but some display opposite regulation. The mechanistic basis of such anti-correlated regulation is not well understood. Here, the regulation of the Arabidopsis thaliana gene pair At1g71850/At1g71860 was investigated. Semi-quantitative RT-PCR and Genevestigator analyses showed that while one of the pair was upregulated by exposure to low temperature, the same treatment downregulated the other. Promoter::GUS fusion transgenes were used to show that this behavior was driven by a bidirectional promoter, which harbored an as-1 motif, associated with the low-temperature response; mutation of this sequence produced a significant decrease in cold-responsive expression. With regard to the as-1 motif in the native orientation repressing the promoter's low-temperature responsiveness, the same as-1 motif introduced in the reverse direction showed a slight enhancement in the promoter's responsiveness to low-temperature exposure, indicating that the orientation of the motif was important for the promoter's activity. These findings provide new insights into the complex transcriptional regulation of bidirectional gene pairs as well as plant stress response.

  9. Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures

    Directory of Open Access Journals (Sweden)

    Zubeyir Devran

    2010-05-01

    Full Text Available Rootstocks have been effective against many soil-borne pathogens in protected tomato production. Rootstocks with heat-stable root-knot nematode resistance may prolong the production season since the root-knot nematode resistance gene Mi-1.2 irreversibly breaks down at soil temperatures above 28°C. The objective of this study was to investigate the effect of soil temperature on root-knot nematode resistance conferred by two genes of tomato, using some commercial tomato cultivars, rootstocks, and PI lines. The response of these genes against Meloidogyne incognita race 2 was studied in two commonly used rootstock cv.  Beaufort and Vigomax, in tomato cultivars Astona RN F1 and Simita F1, and in Solanum lycopersicum L. accessions PI126443 and PI270435, known to possess heat-stable nematode resistance, at 24°C and 32°C under controlled conditions.  Each plant was inoculated with 1000 M. incognita race 2 second-stage juveniles (J2s and its response was evaluated 8 weeks post inoculation. The presence of the Mi-1.2 gene was determined with molecular markers. Astona RN F1, Vigomax, Beaufort, PI126443 and PI 270435 which carried the Mi-1.2 gene were resistant to Meloidogyne incognita race 2 at 24°C. The egg masses and J2s were significantly fewer in these lines than in the susceptible Simita F1 at 24°C, and there were no significant differences among resistant plants. In contrast, there were significant differences in the galling index among heat-stable sources and plants containing the Mi-1.2 gene. Simita F1, Astona RN F1 and the rootstocks had a susceptible reaction to M. incognita race 2 at 32°C, but PI 126443 and PI 270435 were resistant.  However, at this temperature there were significant differences in the number of juveniles in the soil, the egg mass and the galling index between the heat-stable and the heat-unstable plants.Rootstocks have been effective against many soil-borne pathogens in protected tomato production. Rootstocks with

  10. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  11. Selection of reference genes for analysis of stress-responsive genes after challenge with viruses and temperature changes in the silkworm Bombyx mori.

    Science.gov (United States)

    Guo, Huizhen; Jiang, Liang; Xia, Qingyou

    2016-04-01

    Viruses and high temperature (HT) are the primary threats to silkworms. Changes in the expression of stress-response genes can be measured using quantitative polymerase chain reaction (qPCR) after exposure to viruses or HT. However, appropriate reference genes (RGs) for qPCR data normalization have not been established in this organism. In this study, we summarized the RGs used in the previous silkworm studies after infection with Bombyx mori nucleopolyhedrovirus (BmNPV), B. mori cytoplasmic polyhedrosis virus (BmCPV), or B. mori densovirus (BmDNV) or after HT treatment. The expression levels of these RGs were extracted from silkworm transcriptome data to screen for candidate RGs that were unaffected by the experimental conditions. Actin-1 (A1), actin-3 (A3), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and translation initiation factor 4a (TIF-4A) were selected for further qPCR verification. The results of RNA-seq and qPCR showed that GAPDH and TIF-4A were suitable RGs after BmNPV challenge or HT stress, whereas TIF-4A was an appropriate RG for BmCPV or BmDNV-Z challenge in silkworms. These results suggested that TIF-4A may be the most appropriate RG for gene expression analysis after challenge with viruses or HT in silkworms.

  12. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Currie

    2017-08-01

    Full Text Available Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2 and elevated temperature (ambient +4°C on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA and bacterial nitrite reductase (nirS were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  13. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments.

    Science.gov (United States)

    Currie, Ashleigh R; Tait, Karen; Parry, Helen; de Francisco-Mora, Beatriz; Hicks, Natalie; Osborn, A Mark; Widdicombe, Steve; Stahl, Henrik

    2017-01-01

    Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2) and elevated temperature (ambient +4°C) on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA) and bacterial nitrite reductase (nirS) were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS) were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  14. Temperature responsive cooling apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Weker, M.L.; Stearns, R.M.

    1987-08-11

    A temperature responsive cooling apparatus is described for an air conditioner or refrigeration system in operative association with a reservoir of fluid, the air conditioner or refrigeration system having an air cooled coil and means for producing a current of air for cooling the coil, the temperature responsive cooling apparatus comprising: (a) means for transferring the fluid from the reservoir to the air conditioner temperature responsive cooling apparatus, (b) a fluid control device activated by the current of air for cooling the coil; (c) a temperature activated, nonelectrical device for terminating and initiating the flow of fluid therethrough in an intermittent fashion for enhancing the operability of the compressor associated with the refrigeration system and for reducing the quantity of fluid required to cool the coil of the refrigeration system, (d) a fluid treatment device for preventing, reducing or mitigating the deposition of nonevaporative components on the air cooled coil, and (e) means for dispersing the fluid to the air cooled coil from the fluid control device for cooling the coil and increasing the efficiency of the air conditioner thereby reducing the cost of operating and maintaining the air conditioner without damaging the air conditioner and without the deposition of nonevaporative components thereupon.

  15. Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora.

    Science.gov (United States)

    Rocker, Melissa M; Noonan, Sam; Humphrey, Craig; Moya, Aurelie; Willis, Bette L; Bay, Line K

    2015-12-01

    Declining health of scleractinian corals in response to deteriorating environmental conditions is widely acknowledged, however links between physiological and functional genomic responses of corals are less well understood. Here we explore growth and the expression of 20 target genes with putative roles in metabolism and calcification in the branching coral, Acropora millepora, in two separate experiments: 1) elevated pCO2 (464, 822, 1187 and 1638 μatm) and ambient temperature (27°C), and 2) elevated pCO2 (490 and 822 μatm) and temperature (28 and 31 °C). After 14 days of exposure to elevated pCO2 and ambient temperatures, no evidence of differential expression of either calcification or metabolism genes was detected between control and elevated pCO2 treatments. After 37 days of exposure to control and elevated pCO2, Ubiquinol-Cytochrome-C Reductase Subunit 2 gene (QCR2; a gene involved in complex III of the electron chain transport within the mitochondria and critical for generation of ATP) was significantly down-regulated in the elevated pCO2 treatment in both ambient and elevated temperature treatments. Overall, the general absence of a strong response to elevated pCO2 and temperature by the other 19 targeted calcification and metabolism genes suggests that corals may not be affected by these stressors on longer time scales (37 days). These results also highlight the potential for QCR2 to act as a biomarker of coral genomic responses to changing environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Elongated Hypocotyl 5-Homolog (HYH Negatively Regulates Expression of the Ambient Temperature-Responsive MicroRNA Gene MIR169

    Directory of Open Access Journals (Sweden)

    Phanu T. Serivichyaswat

    2017-12-01

    Full Text Available Arabidopsis microRNA169 (miR169 is an ambient temperature-responsive microRNA that plays an important role in stress responses and the floral transition. However, the transcription factors that regulate the expression of MIR169 have remained unknown. In this study, we show that Elongated Hypocotyl 5-Homolog (HYH directly binds to the promoter of MIR169a and negatively regulates its expression. Absolute quantification identified MIR169a as the major locus producing miR169. GUS reporter assays revealed that the deletion of a 498-bp fragment (–1,505 to –1,007, relative to the major transcriptional start site of MIR169a abolished its ambient temperature-responsive expression. DNA-affinity chromatography followed by liquid chromatography-mass spectrometry analysis identified transcription factor HYH as a trans-acting factor that binds to the 498-bp promoter fragment of pri-miR169a. Electrophoretic mobility shift assays and chromatin immunoprecipitation–quantitative PCR demonstrated that the HYH.2 protein, a predominant isoform of HYH, directly associated with a G-box-like motif in the 498-bp fragment of pri-miR169a. Higher enrichment of HYH.2 protein on the promoter region of MIR169a was seen at 23°C, consistent with the presence of more HYH.2 protein in the cell at the temperature. Transcript levels of pri-miR169a increased in hyh mutants and decreased in transgenic plants overexpressing HYH. Consistent with the negative regulation of MIR169a by HYH, the diurnal levels of HYH mRNA and pri-miR169a showed opposite patterns. Taken together, our results suggest that HYH is a transcription factor that binds to a G-box-like motif in the MIR169a promoter and negatively regulates ambient temperature-responsive expression of MIR169a at higher temperatures in Arabidopsis.

  17. Transcriptome profiling of litchi leaves in response to low temperature reveals candidate regulatory genes and key metabolic events during floral induction.

    Science.gov (United States)

    Zhang, Hongna; Shen, Jiyuan; Wei, Yongzan; Chen, Houbin

    2017-05-10

    Litchi (Litchi chinensis Sonn.) is an economically important evergreen fruit tree widely cultivated in subtropical areas. Low temperature is absolutely required for floral induction of litchi, but its molecular mechanism is not fully understood. Leaves of litchi played a key role during floral induction and could be the site of low temperature perception. Therefore, leaves were treated under different temperature (15 °C/25 °C), and high-throughput RNA sequencing (RNA-Seq) performed with leaf samples for the de novo assembly and digital gene expression (DGE) profiling analyses to investigate low temperature-induced gene expression changes. 83,107 RNA-Seq unigenes were de novo assembled with a mean length of 1221 bp and approximately 61% of these unigenes (50,345) were annotated against public protein databases. Differentially-expressed genes (DEGs) under low temperature treatment in comparison with the control group were the main focus of our study. Hierarchical clustering analysis arranged 2755 DEGs into eight groups with three significant expression clusters (p-value ≤ 0.05) during floral induction. With the increasing contents of sugars and starch, the expression of genes involved in metabolism of sugars increased dramatically after low temperature induction. One FT gene (Unigene0025396, LcFT1) which produces a protein called 'florigen' was also detected among DEGs of litchi. LcFT1 exhibited an apparent specific tissue and its expression was highly increased after low temperature induction, GUS staining results also showed GUS activity driven by LcFT1 gene promoter can be induced by low temperature, which indicated LcFT1 probably played a pivotal role in the floral induction of litchi under low temperature. Our study provides a global survey of transcriptomes to better understand the molecular mechanisms underlying changes of leaves in response to low temperature induction in litchi. The analyses of transcriptome profiles and physiological indicators

  18. Comparative Transcriptomic Analysis in Paddy Rice under Storage and Identification of Differentially Regulated Genes in Response to High Temperature and Humidity.

    Science.gov (United States)

    Zhao, Chanjuan; Xie, Junqi; Li, Li; Cao, Chongjiang

    2017-09-20

    The transcriptomes of paddy rice in response to high temperature and humidity were studied using a high-throughput RNA sequencing approach. Effects of high temperature and humidity on the sucrose and starch contents and α/β-amylase activity were also investigated. Results showed that 6876 differentially expressed genes (DEGs) were identified in paddy rice under high temperature and humidity storage. Importantly, 12 DEGs that were downregulated fell into the "starch and sucrose pathway". The quantitative real-time polymerase chain reaction assays indicated that expression of these 12 DEGs was significantly decreased, which was in parallel with the reduced level of enzyme activities and the contents of sucrose and starch in paddy rice stored at high temperature and humidity conditions compared to the control group. Taken together, high temperature and humidity influence the quality of paddy rice at least partially by downregulating the expression of genes encoding sucrose transferases and hydrolases, which might result in the decrease of starch and sucrose contents.

  19. Expression profile analysis of ascorbic acid-related genes in response to temperature stress in the tea plant, Camellia sinensis (L.) O. Kuntze.

    Science.gov (United States)

    Li, H; Huang, W; Wang, G L; Wu, Z J; Zhuang, J

    2016-10-05

    Ascorbic acid (AsA), also known as ascorbate or vitamin C, is a natural organic compound in green plants that has antioxidant properties, and is an essential nutrient for humans. The tea plant, Camellia sinensis (L.) O. Kuntze, is an important global economic crop. Here, the expression profiles of genes related to AsA biosynthesis and recycling were analyzed in tea plants in response to temperature stress. Eighteen genes involved in AsA biosynthesis and recycling pathways were identified based on the transcriptome database. The expression levels of CsPGI1 in two varieties of tea plants ('Yingshuang' and 'Huangjinya') increased, peaked at 4 h, and then decreased in response to cold stress. In 'Yingshuang', the genes involved in AsA biosynthesis pathway rapidly responded to heat stress and substantially increased their expression levels at 1 h. The expression levels of CsMDHAR, CsDHAR1, and CsDHAR2 increased sharply at 1 h in response to heat stress in 'Yingshuang'. In contrast, the expression levels of CsMDHAR, CsDHAR1, and CsDHAR2 in 'Huangjinya' gradually increased during heat treatment from 1 to 24 h. The expression trends of two DHAR isoforms differed in 'Huangjinya' during cold stress. The expression patterns of AsA-related genes differed in the different tea plant varieties and depended on temperature. The genes involved in AsA biosynthesis and recycling pathways were induced by heat and cold stress. Our study provides useful data with which to improve the resistance of tea plants to cold and heat stress.

  20. Dynamic modulation of DNA replication and gene transcription in deep-sea filamentous phage SW1 in response to changes of host growth and temperature.

    Directory of Open Access Journals (Sweden)

    Huahua Jian

    Full Text Available Little is known about the response of deep-sea virus and their relationship with their host towards environmental change. Although viruses are thought to play key roles in the deep-sea ecological evolution and biogeochemical cycling, these roles are yet to be defined. This study aims to delineate the relationship between a deep-sea filamentous phage SW1 and its host Shewanella piezotolerans (S. piezotolerans WP3, and their response towards temperature change. The copy number of SW1's replicative form (RF- DNA and single-stranded (ss- DNA along the different growth phases of WP3 were quantified at 20°C and 4°C, respectively. The copy number of SW1 RF-DNA was found to be temperature and growth phase-dependent, while the ssDNA of SW1 was only produced at 4°C. This is the first report showing low-temperature dependence of phage DNA replication. The transcription of SW1 key genes fpsA and fpsR were also found to be induced at low temperature during all the monitored growth periods of WP3. Additionally, the transcription of SW1 was found to be induced by cold-shock while its DNA replication was not changed. Our data demonstrates a dynamic change of virus DNA replication and transcription in accordance with host growth, and the low temperature adapted mechanisms for SW1 activities in the deep sea. This low temperature adapted deep-sea virus-bacterium system could serve as an ideal model to further study the mechanism and relationship of deep-sea virus-bacteria ecosystems.

  1. Coordinated Expression of Functionally Diverse Fructosyltransferase Genes Is Associated with Fructan Accumulation in Response to Low Temperature in Perennial Ryegrass

    National Research Council Canada - National Science Library

    Hiroshi Hisano; Akira Kanazawa; Midori Yoshida; Mervyn O. Humphreys; Masaru Iizuka; Keisuke Kitamura; Toshihiko Yamada

    2008-01-01

    ...) genes in perennial ryegrass (Lolium perenne) are described. Six cDNAs (prft1-prft6) encoding FTs were isolated from cold-treated ryegrass plants, and three were positioned on a perennial ryegrass linkage map...

  2. Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development.

    Science.gov (United States)

    Chauhan, Harsh; Khurana, Neetika; Tyagi, Akhilesh K; Khurana, Jitendra P; Khurana, Paramjit

    2011-01-01

    To elucidate the effect of high temperature, wheat plants (Triticum aestivum cv. CPAN 1676) were given heat shock at 37 and 42°C for 2 h, and responsive genes were identified through PCR-Select Subtraction technology. Four subtractive cDNA libraries, including three forward and one reverse subtraction, were constructed from three different developmental stages. A total of 5,500 ESTs were generated and 3,516 high quality ESTs submitted to Genbank. More than one-third of the ESTs generated fall in unknown/no hit category upon homology search through BLAST analysis. Differential expression was confirmed by cDNA macroarray and by northern/RT-PCR analysis. Expression analysis of wheat plants subjected to high temperature stress, after 1 and 4 days of recovery, showed fast recovery in seedling tissue. However, even after 4 days, recovery was negligible in the developing seed tissue after 2 h of heat stress. Ten selected genes were analyzed in further detail including one unknown protein and a new heat shock factor, by quantitative real-time PCR in an array of 35 different wheat tissues representing major developmental stages as well as different abiotic stresses. Tissue specificity was examined along with cross talk with other abiotic stresses and putative signalling molecules.

  3. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean.

    Science.gov (United States)

    Shu, Yingjie; Tao, Yuan; Wang, Shuang; Huang, Liyan; Yu, Xingwang; Wang, Zhankui; Chen, Ming; Gu, Weihong; Ma, Hao

    2015-11-01

    GmSBH1 involves in response to high temperature and humidity stress. Homeobox transcription factors are key switches that control plant development processes. Glycine max H1 Sbh1 (GmSBH1) was the first homeobox gene isolated from soybean. In the present study, the full ORF of GmSBH1 was isolated, and the encoded protein was found to be a typical class I KNOX homeobox transcription factor. Subcellular localization and transcriptional activation assays showed that GmSBH1 is a nuclear protein and possesses transcriptional activation activity in the homeodomain. The KNOX1 domain was found to play a clear role in suppressing the transcriptional activation activity of GmSBH1. GmSBH1 showed different expression levels among different soybean tissues and was involved in response to high temperature and humidity (HTH) stress in developing soybean seeds. The overexpression of GmSBH1 in Arabidopsis altered leaf and stoma phenotypes and enhanced seed tolerance to HTH stress. Overall, our results indicated that GmSBH1 is involved in growth, development, and enhances tolerance to pre-harvest seed deterioration caused by HTH stress in soybean.

  4. Active thermal isolation for temperature responsive sensors

    Science.gov (United States)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specified surface of the body. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes: (1) operating the isolator at the same temperature as the constant temperature of the sensor and (2) establishing a fixed boundary temperature which is either less than or equal to or slightly greater than the sensor constant temperature.

  5. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines

    OpenAIRE

    Sobkowiak, Alicja; Jończyk, Maciej; Jarochowska, Emilia; Biecek, Przemysław; Trzcinska-Danielewicz, Joanna; Leipner, Jörg; Fronk, Jan; Sowiński, Paweł

    2014-01-01

    Maize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification. The lines used had been bred earlier specifically for determination of QTLs for c...

  6. Active thermal isolation for temperature responsive sensors

    Science.gov (United States)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  7. Meth math: modeling temperature responses to methamphetamine.

    Science.gov (United States)

    Molkov, Yaroslav I; Zaretskaia, Maria V; Zaretsky, Dmitry V

    2014-04-15

    Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants.

  8. Effects of temperature on gene expression in embryos of the coral Montastraea faveolata

    Directory of Open Access Journals (Sweden)

    Randall Carly J

    2009-12-01

    Full Text Available Abstract Background Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. This study used cDNA microarrays to investigate transcriptional effects of thermal stress in embryos of the coral Montastraea faveolata. Embryos were exposed to 27.5°C, 29.0°C, and 31.5°C directly after fertilization. Differences in gene expression were measured after 12 and 48 hours. Results Analysis of differentially expressed genes indicated that increased temperatures may lead to oxidative stress, apoptosis, and a structural reconfiguration of the cytoskeletal network. Metabolic processes were downregulated, and the action of histones and zinc finger-containing proteins may have played a role in the long-term regulation upon heat stress. Conclusions Embryos responded differently depending on exposure time and temperature level. Embryos showed expression of stress-related genes already at a temperature of 29.0°C, but seemed to be able to counteract the initial response over time. By contrast, embryos at 31.5°C displayed continuous expression of stress genes. The genes that played a role in the response to elevated temperatures consisted of both highly conserved and coral-specific genes. These genes might serve as a basis for research into coral-specific adaptations to stress responses and global climate change.

  9. Binding sequences for RdgB, a DNA damage-responsive transcriptional activator, and temperature-dependent expression of bacteriocin and pectin lyase genes in Pectobacterium carotovorum subsp. carotovorum.

    Science.gov (United States)

    Yamada, Kazuteru; Kaneko, Jun; Kamio, Yoshiyuki; Itoh, Yoshifumi

    2008-10-01

    Pectobacterium carotovorum subsp. carotovorum strain Er simultaneously produces the phage tail-like bacteriocin carotovoricin (Ctv) and pectin lyase (Pnl) in response to DNA-damaging agents. The regulatory protein RdgB of the Mor/C family of proteins activates transcription of pnl through binding to the promoter. However, the optimal temperature for the synthesis of Ctv (23 degrees C) differs from that for synthesis of Pnl (30 degrees C), raising the question of whether RdgB directly activates ctv transcription. Here we report that RdgB directly regulates Ctv synthesis. Gel mobility shift assays demonstrated RdgB binding to the P(0), P(1), and P(2) promoters of the ctv operons, and DNase I footprinting determined RdgB-binding sequences (RdgB boxes) on these and on the pnl promoters. The RdgB box of the pnl promoter included a perfect 7-bp inverted repeat with high binding affinity to the regulator (K(d) [dissociation constant] = 150 nM). In contrast, RdgB boxes of the ctv promoters contained an imperfect inverted repeat with two or three mismatches that consequently reduced binding affinity (K(d) = 250 to 350 nM). Transcription of the rdgB and ctv genes was about doubled at 23 degrees C compared with that at 30 degrees C. In contrast, the amount of pnl transcription tripled at 30 degrees C. Thus, the inverse synthesis of Ctv and Pnl as a function of temperature is apparently controlled at the transcriptional level, and reduced rdgB expression at 30 degrees C obviously affected transcription from the ctv promoters with low-affinity RdgB boxes. Pathogenicity toward potato tubers was reduced in an rdgB knockout mutant, suggesting that the RdgAB system contributes to the pathogenicity of this bacterium, probably by activating pnl expression.

  10. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner.

    Science.gov (United States)

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-10-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Bacterial gene expression at cold temperatures

    NARCIS (Netherlands)

    Trevors, J.T.; Bej, A.K.; Mojib, N.; Elsas, van J.D.; Overbeek, van L.S.

    2012-01-01

    Under suboptimal environmental conditions such as low temperatures, many bacteria have an extended lag phase, altered cell structures, and composition such as a less fluid (more rigid) and leaky cytoplasmic membrane. As a result, cells may die, enter into a starvation mode of metabolism or a

  12. Bacterial gene expression at low temperatures

    NARCIS (Netherlands)

    Trevors, J. T.; Bej, A. K.; Mojib, N.; van Elsas, J. D.; Van Overbeek, L.

    Under suboptimal environmental conditions such as low temperatures, many bacteria have an extended lag phase, altered cell structures, and composition such as a less fluid (more rigid) and leaky cytoplasmic membrane. As a result, cells may die, enter into a starvation mode of metabolism or a

  13. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Directory of Open Access Journals (Sweden)

    Tricia Fraser

    2017-05-01

    Full Text Available Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere and ligB and mce (for Jules were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and

  14. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Science.gov (United States)

    Fraser, Tricia; Brown, Paul D

    2017-01-01

    Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC) were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere) and ligB and mce (for Jules) were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size) and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and/or duration

  15. Transcriptional responses of olive flounder (Paralichthys olivaceus to low temperature.

    Directory of Open Access Journals (Sweden)

    Jinwei Hu

    Full Text Available The olive flounder (Paralichthys olivaceus is an economically important flatfish in marine aquaculture with a broad thermal tolerance ranging from 14 to 23°C. Cold-tolerant flounder that can survive during the winter season at a temperature of less than 14°C might facilitate the understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of flounder to cold stress (0.7±0.05°C was characterized using RNA sequencing. Transcriptome sequencing was performed using the Illumina MiSeq platform for the cold-tolerant (CT group, which survived under the cold stress; the cold-sensitive (CS group, which could barely survive at the low temperature; and control group, which was not subjected to cold treatment. In all, 29,021 unigenes were generated. Compared with the unigene expression profile of the control group, 410 unigenes were up-regulated and 255 unigenes were down-regulated in the CT group, whereas 593 unigenes were up-regulated and 289 unigenes were down-regulated in the CS group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, lipid metabolism, digestive system, and signaling molecules and interaction were the most highly enriched pathways for the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following four biological functions for flounder that can survive under cold stress: signal response to cold stress, cell repair/regeneration, energy production, and cell membrane construction and fluidity.

  16. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response

    Science.gov (United States)

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions. PMID:27788197

  17. Response of Fusarium solani to Fluctuating Temperatures

    Science.gov (United States)

    Keith F. Jensen; Phillip E. Reynolds; Phillip E. Reynolds

    1971-01-01

    The purpose of this study was to measure growth under a range of constant temperatures and under a series of fluctuating temperature regimes, and to determine if growth in the fluctuating temperiture regimes could be predicted satisfactorily from the growth data collected in the constant temperature experiments. Growth was measured on both agar and liquid culture to...

  18. Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).

    Science.gov (United States)

    Ikkatai, Yuko; Watanabe, Shigeru

    2015-08-05

    Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.

  19. Study Progress of Physiological Responses in High Temperature Environment

    Science.gov (United States)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.

    2017-10-01

    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  20. Regulation of Secondary Metabolism by the Velvet Complex Is Temperature-Responsive in Aspergillus

    Directory of Open Access Journals (Sweden)

    Abigail L. Lind

    2016-12-01

    Full Text Available Sensing and responding to environmental cues is critical to the lifestyle of filamentous fungi. How environmental variation influences fungi to produce a wide diversity of ecologically important secondary metabolites (SMs is not well understood. To address this question, we first examined changes in global gene expression of the opportunistic human pathogen, Aspergillus fumigatus, after exposure to different temperature conditions. We found that 11 of the 37 SM gene clusters in A. fumigatus were expressed at higher levels at 30° than at 37°. We next investigated the role of the light-responsive Velvet complex in environment-dependent gene expression by examining temperature-dependent transcription profiles in the absence of two key members of the Velvet protein complex, VeA and LaeA. We found that the 11 temperature-regulated SM gene clusters required VeA at 37° and LaeA at both 30 and 37° for wild-type levels of expression. Interestingly, four SM gene clusters were regulated by VeA at 37° but not at 30°, and two additional ones were regulated by VeA at both temperatures but were substantially less so at 30°, indicating that the role of VeA and, more generally of the Velvet complex, in the regulation of certain SM gene clusters is temperature-dependent. Our findings support the hypothesis that fungal secondary metabolism is regulated by an intertwined network of transcriptional regulators responsive to multiple environmental factors.

  1. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen.

    Directory of Open Access Journals (Sweden)

    Sinem Beyhan

    2013-07-01

    Full Text Available Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between

  2. Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1.

    Science.gov (United States)

    Panyakampol, Jaruta; Cheevadhanarak, Supapon; Sutheeworapong, Sawannee; Chaijaruwanich, Jeerayut; Senachak, Jittisak; Siangdung, Wipawan; Jeamton, Wattana; Tanticharoen, Morakot; Paithoonrangsarid, Kalyanee

    2015-03-01

    Arthrospira (Spirulina) platensis is a well-known commercial cyanobacterium that is used as a food and in feed supplements. In this study, we examined the physiological changes and whole-genome expression in A. platensis C1 exposed to high temperature. We found that photosynthetic activity was significantly decreased after the temperature was shifted from 35°C to 42°C for 2 h. A reduction in biomass production and protein content, concomitant with the accumulation of carbohydrate content, was observed after prolonged exposure to high temperatures for 24 h. Moreover, the results of the expression profiling in response to high temperature at the designated time points (8 h) revealed two distinct phases of the responses. The first was the immediate response phase, in which the transcript levels of genes involved in different mechanisms, including genes for heat shock proteins; genes involved in signal transduction and carbon and nitrogen metabolism; and genes encoding inorganic ion transporters for magnesium, nitrite and nitrate, were either transiently induced or repressed by the high temperature. In the second phase, the long-term response phase, both the induction and repression of the expression of genes with important roles in translation and photosynthesis were observed. Taken together, the results of our physiological and transcriptional studies suggest that dynamic changes in the transcriptional profiles of these thermal-responsive genes might play a role in maintaining cell homeostasis under high temperatures, as reflected in the growth and biochemical composition, particularly the protein and carbohydrate content, of A. platensis C1. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Moderately lower temperatures greatly extend the lifespan of Brachionus manjavacas (Rotifera): Thermodynamics or gene regulation?

    Science.gov (United States)

    Johnston, Rachel K; Snell, Terry W

    2016-06-01

    responsible for triggering the signaling cascade contributing to temperature mediated life extension. The TRP genes may also provide especially promising candidates for targeted gene manipulations or pharmacological interventions capable of mimicking the effects of low temperature exposure. These results support recent theories of aging that claim rate of aging is determined by an actively regulated genetic mechanism rather than an accumulation of molecular damage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins.

    Science.gov (United States)

    Capel, J; Jarillo, J A; Salinas, J; Martínez-Zapater, J M

    1997-10-01

    We have characterized two related cDNAs (RCI2A and RCI2B) corresponding to genes from Arabidopsis thaliana, the expression of which is transiently induced by low, nonfreezing temperatures. RCI2A and RCI2B encode small (54 amino acids), highly hydrophobic proteins that bear two potential transmembrane domains. They show similarity to proteins encoded by genes from barley (Hordeum vulgare L.) and wheatgrass (Lophophyrum elongatum) that are regulated by different stress conditions. Their high level of sequence homology (78%) and their genomic location in a single restriction fragment suggest that both genes originated as a result of a tandem duplication. However, their regulatory sequences have diverged enough to confer on them different expression patterns. Like most of the cold-inducible plant genes characterized, the expression of RCI2A and RCI2B is also promoted by abscisic acid (ABA) and dehydration but is not a general response to stress conditions, since it is not induced by salt stress or by anaerobiosis. Furthermore, low temperatures are able to induce RCI2A and RCI2B expression in ABA-deficient and -insensitive genetic backgrounds, indicating that both ABA-dependent and -independent pathways regulate the low-temperature responsiveness of these two genes.

  5. KBERG: KnowledgeBase for Estrogen Responsive Genes

    DEFF Research Database (Denmark)

    Tang, Suisheng; Zhang, Zhuo; Tan, Sin Lam

    2007-01-01

    Estrogen has a profound impact on human physiology affecting transcription of numerous genes. To decipher functional characteristics of estrogen responsive genes, we developed KnowledgeBase for Estrogen Responsive Genes (KBERG). Genes in KBERG were derived from Estrogen Responsive Gene Database...... (ERGDB) and were analyzed from multiple aspects. We explored the possible transcription regulation mechanism by capturing highly conserved promoter motifs across orthologous genes, using promoter regions that cover the range of [-1200, +500] relative to the transcription start sites. The motif detection......-friendly system that provides links to other relevant resources such as ERGDB, UniGene, Entrez Gene, HomoloGene, GO, eVOC and GenBank, and thus offers a platform for functional exploration and potential annotation of genes responsive to estrogen. KBERG database can be accessed at http://research.i2r.a-star.edu.sg/kberg....

  6. Low temperature regulates Arabidopsis Lhcb gene expression in a light-independent manner.

    Science.gov (United States)

    Capel, J; Jarillo, J A; Madueño, F; Jorquera, M J; Martínez-Zapater, J M; Salinas, J

    1998-02-01

    Low temperature treatment of dark-grown seedlings of Arabidopsis thaliana results in a rapid increase in the amount of mRNAs encoding for the major polypeptides of the light-harvesting complex of photosystem II (Lhcb1 genes). This increase is transient and seems to be due mainly to the accumulation of Lhcb1*3 transcripts, indicating that low temperature differentially regulates the expression of the Arabidopsis Lhcb1 gene family in the dark. A 1.34 kb fragment of the Lhcb1*3 promoter is sufficient to confer low temperature regulation to a reporter gene in transgenic Arabidopsis etiolated seedlings, suggesting that the regulation is occurring at the transcriptional level. The cold-induced accumulation of Lhcb1*3 mRNA is not part of a general response to stressful conditions since no accumulation is detected in response to water stress, anaerobiosis or salt stress. The amount of Lhcb1*3 mRNA decrease in response to exogenous abscisic acid (ABA) suggesting that this phytohormone acts as a negative regulator. Moreover, the accumulation of Lhcb1*3 mRNAs in cold-treated ABA deficient etiolated seedlings is higher than that of wild-type and ABA insensitive etiolated seedlings, indicating that low temperature regulation of Lhcb1*3 is not mediated by ABA.

  7. Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba).

    Science.gov (United States)

    Maestrini, Pierluigi; Cavallini, Andrea; Rizzo, Milena; Giordani, Tommaso; Bernardi, Rodolfo; Durante, Mauro; Natali, Lucia

    2009-09-15

    Poplar is an important crop and a model system to understand molecular processes of growth, development and responses to environmental stimuli in trees. In this study, we analyzed gene expression in white poplar (Populus alba) plants subjected to chilling. Two forward suppression-subtractive-hybridization libraries were constructed from P. alba plants exposed to low non-freezing temperature for 6 or 48h. Hundred and sixty-two cDNAs, 54 from the 6-h library and 108 from the 48-h library, were obtained. Isolated genes belonged to six categories of genes, specifically those that: (i) encode stress and defense proteins; (ii) are involved in signal transduction; (iii) are related to regulation of gene expression; (iv) encode proteins involved in cell cycle and DNA processing; (v) encode proteins involved in metabolism and energetic processes; and (vi) are involved in protein fate. Different expression patterns at 3, 6, 12, 24, 48h at 4 degrees C and after a recovery of 24h at 20 degrees C were observed for isolated genes, as expected according to the class in which the gene putatively belongs. Forty-four of 162 genes contained DRE/LTRE cis-elements in the 5' proximal promoter of their orthologs in Populus trichocarpa, suggesting that they putatively belong to the CBF regulon. The results contribute new data to the list of possible candidate genes involved in cold response in poplar.

  8. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.

    Directory of Open Access Journals (Sweden)

    Nahid H Hajrah

    Full Text Available Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl across four time intervals (0, 2, 12 and 24 h to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.

  9. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta

    Science.gov (United States)

    Hajrah, Nahid H.; Obaid, Abdullah Y.; Atef, Ahmed; Ramadan, Ahmed M.; Arasappan, Dhivya; Nelson, Charllotte A.; Edris, Sherif; Mutwakil, Mohammed Z.; Alhebshi, Alawia; Gadalla, Nour O.; Makki, Rania M.; Al-Kordy, Madgy A.; El-Domyati, Fotouh M.; Sabir, Jamal S. M.; Khiyami, Mohammad A.; Hall, Neil; Bahieldin, Ahmed

    2017-01-01

    Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged. PMID:28520766

  10. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock.

    Science.gov (United States)

    Thines, Bryan; Harmon, Frank G

    2010-02-16

    Circadian clocks synchronize internal processes with environmental cycles to ensure optimal timing of biological events on daily and seasonal time scales. External light and temperature cues set the core molecular oscillator to local conditions. In Arabidopsis, EARLY FLOWERING 3 (ELF3) is thought to act as an evening-specific repressor of light signals to the clock, thus serving a zeitnehmer function. Circadian rhythms were examined in completely dark-grown, or etiolated, null elf3-1 seedlings, with the clock entrained by thermocycles, to evaluate whether the elf3 mutant phenotype was light-dependent. Circadian rhythms were absent from etiolated elf3-1 seedlings after exposure to temperature cycles, and this mutant failed to exhibit classic indicators of entrainment by temperature cues, consistent with global clock dysfunction or strong perturbation of temperature signaling in this background. Warm temperature pulses failed to elicit acute induction of temperature-responsive genes in elf3-1. In fact, warm temperature-responsive genes remained in a constitutively "ON" state because of clock dysfunction and, therefore, were insensitive to temperature signals in the normal time of day-specific manner. These results show ELF3 is broadly required for circadian clock function regardless of light conditions, where ELF3 activity is needed by the core oscillator to allow progression from day to night during either light or temperature entrainment. Furthermore, robust circadian rhythms appear to be a prerequisite for etiolated seedlings to respond correctly to temperature signals.

  11. Effects of high temperature on photosynthesis and related gene expression in poplar

    Science.gov (United States)

    2014-01-01

    Background High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. Results We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. Conclusions This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies. PMID:24774695

  12. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Kehua Wang

    2017-06-01

    Full Text Available Perennial ryegrass (Lolium perenne is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.

  13. Comparative analysis of the transcriptional responses to low and high temperatures in three rice planthopper species.

    Science.gov (United States)

    Huang, Hai-Jian; Xue, Jian; Zhuo, Ji-Chong; Cheng, Ruo-Lin; Xu, Hai-Jun; Zhang, Chuan-Xi

    2017-05-01

    The brown planthopper (Nilaparvata lugens, BPH), white-backed planthopper (Sogatella furcifera, WBPH) and small brown planthopper (Laodelphax striatellus, SBPH) are important rice pests in Asia. These three species differ in thermal tolerance and exhibit quite different migration and overwintering strategies. To understand the underlying mechanisms, we sequenced and compared the transcriptome of the three species under different temperature treatments. We found that metabolism-, exoskeleton- and chemosensory-related genes were modulated. In high temperature (37 °C), heat shock protein (HSP) genes were the most co-regulated; other genes related with fatty acid metabolism, amino acid metabolism and transportation were also differentially expressed. In low temperature (5 °C), the differences in gene expression of the genes for fatty acid synthesis, transport proteins and cytochrome P450 might explain why SBPH can overwinter in high latitudes, while BPH and WBPH cannot. In addition, other genes related with moulting, and membrane lipid composition might also play roles in resistance to low and high temperatures. Our study illustrates the common responses and different tolerance mechanisms of three rice planthoppers in coping with temperature change, and provides a potential strategy for pest management. © 2017 John Wiley & Sons Ltd.

  14. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature.

    Science.gov (United States)

    Pan, Junting; Wang, Weidong; Li, Dongqin; Shu, Zaifa; Ye, Xiaoli; Chang, Pinpin; Wang, Yuhua

    2016-10-18

    Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log 2 Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low

  15. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature

    Directory of Open Access Journals (Sweden)

    Parkin Isobel AP

    2008-09-01

    Full Text Available Abstract Background Abiotic stress, including low temperature, limits the productivity and geographical distribution of plants, which has led to significant interest in understanding the complex processes that allow plants to adapt to such stresses. The wide range of physiological, biochemical and molecular changes that occur in plants exposed to low temperature require a robust global approach to studying the response. We have employed Serial Analysis of Gene Expression (SAGE to uncover changes in the transcriptome of Arabidopsis thaliana over a time course of low temperature stress. Results Five SAGE libraries were generated from A. thaliana leaf tissue collected at time points ranging from 30 minutes to one week of low temperature treatment (4°C. Over 240,000 high quality SAGE tags, corresponding to 16,629 annotated genes, provided a comprehensive survey of changes in the transcriptome in response to low temperature, from perception of the stress to acquisition of freezing tolerance. Interpretation of these data was facilitated by representing the SAGE data by gene identifier, allowing more robust statistical analysis, cross-platform comparisons and the identification of genes sharing common expression profiles. Simultaneous statistical calculations across all five libraries identified 920 low temperature responsive genes, only 24% of which overlapped with previous global expression analysis performed using microarrays, although similar functional categories were affected. Clustering of the differentially regulated genes facilitated the identification of novel loci correlated with the development of freezing tolerance. Analysis of their promoter sequences revealed subsets of genes that were independent of CBF and ABA regulation and could provide a mechanism for elucidating complementary signalling pathways. The SAGE data emphasised the complexity of the plant response, with alternate pre-mRNA processing events increasing at low temperatures

  16. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature.

    Science.gov (United States)

    Robinson, Stephen J; Parkin, Isobel A P

    2008-09-22

    Abiotic stress, including low temperature, limits the productivity and geographical distribution of plants, which has led to significant interest in understanding the complex processes that allow plants to adapt to such stresses. The wide range of physiological, biochemical and molecular changes that occur in plants exposed to low temperature require a robust global approach to studying the response. We have employed Serial Analysis of Gene Expression (SAGE) to uncover changes in the transcriptome of Arabidopsis thaliana over a time course of low temperature stress. Five SAGE libraries were generated from A. thaliana leaf tissue collected at time points ranging from 30 minutes to one week of low temperature treatment (4 degrees C). Over 240,000 high quality SAGE tags, corresponding to 16,629 annotated genes, provided a comprehensive survey of changes in the transcriptome in response to low temperature, from perception of the stress to acquisition of freezing tolerance. Interpretation of these data was facilitated by representing the SAGE data by gene identifier, allowing more robust statistical analysis, cross-platform comparisons and the identification of genes sharing common expression profiles. Simultaneous statistical calculations across all five libraries identified 920 low temperature responsive genes, only 24% of which overlapped with previous global expression analysis performed using microarrays, although similar functional categories were affected. Clustering of the differentially regulated genes facilitated the identification of novel loci correlated with the development of freezing tolerance. Analysis of their promoter sequences revealed subsets of genes that were independent of CBF and ABA regulation and could provide a mechanism for elucidating complementary signalling pathways. The SAGE data emphasised the complexity of the plant response, with alternate pre-mRNA processing events increasing at low temperatures and antisense transcription being

  17. Temperature response of soil respiration largely unaltered with experimental warming

    Science.gov (United States)

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  18. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    Cuttings of three hybrid clones of P. ussuriensis × P. deltoides were exposed to different low temperatures (cold and freezing) for 24 h, or consecutive low temperatures (5°C, 0 to 120 h), to determine physiological and biochemical responses to cold stress in these woody plants. Soluble sugar and protein contents increased ...

  19. Temperature Response in Hardened Concrete Subjected to Tropical Rainforest Environment

    Directory of Open Access Journals (Sweden)

    E. I. Egba

    2017-06-01

    Full Text Available The objective of this paper is to characterize concrete micro-environment temperature response to the natural climate of the tropical rainforest. The peculiar warmth, high humidity, and low pressure nature of the tropical rainforest necessitated the present study. Temperature probes were inserted into concrete specimens subjected to the sheltered and unsheltered environment to measure the micro-environment temperature of the concrete, and study the hysteresis characteristics in relation to the climate temperature. Some mathematical relationships for forecasting the internal temperature of concrete in the tropical rainforest environment were proposed and tested. The proposed relationships were found reliable. It was observed that the micro-environment temperature was lower at the crest, and higher at the trough than the climate environment temperature with a temperature difference of 1-3 oC. Also, temperature response in concrete for the unsheltered micro-environment was 1.85 times faster than the response in the sheltered micro-environment. The findings of the study may be used to assist the durability assessment of concrete.

  20. Predation life history responses to increased temperature variability.

    Directory of Open Access Journals (Sweden)

    Miguel Barbosa

    Full Text Available The evolution of life history traits is regulated by energy expenditure, which is, in turn, governed by temperature. The forecasted increase in temperature variability is expected to impose greater stress to organisms, in turn influencing the balance of energy expenditure and consequently life history responses. Here we examine how increased temperature variability affects life history responses to predation. Individuals reared under constant temperatures responded to different levels of predation risk as appropriate: namely, by producing greater number of neonates of smaller sizes and reducing the time to first brood. In contrast, we detected no response to predation regime when temperature was more variable. In addition, population growth rate was slowest among individuals reared under variable temperatures. Increased temperature variability also affected the development of inducible defenses. The combined effects of failing to respond to predation risk, slower growth rate and the miss-match development of morphological defenses supports suggestions that increased variability in temperature poses a greater risk for species adaptation than that posed by a mean shift in temperature.

  1. Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, M.; Beadle, C. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, ACT (Australia). Div. of Forestry and Forest Products; Loughead, S. [Tasmania Univ., Hobart, TAS (Australia)

    1996-01-01

    Photosynthetic responses to temperature variations of four year old Eucalyptus globulus and Eucalyptus nitens were investigated. Temperatures varied between 10 degrees C and 35 degrees C, and were measured at approximately monthly intervals from early spring until midwinter. The photosynthetic temperature optimum was found to be linearly related to the average temperature of the preceding week during the entire nine month period. For E. globulus the optimum temperature for net photosynthesis increased from 17 degrees C to 23 degrees C as the mean daily temperature increased from 7 degrees C to 16 degrees. The corresponding values for E. nitens were 14 to 20 degrees C as the mean daily temperature increased from 7 to 19 degrees C. The photosynthetic performance of E. nitens was less sensitive to temperatures above and below the optimum than E. globulus. In a second experiment E. globulus clones were acclimated in temperature-controlled greenhouses, and in a shadehouse in four climatically different regions of Tasmania. A comparison of light response curves of the plants showed that the maximum rate of net photosynthesis was affected by the growth temperature, whereas apparent quantum efficiency remained unchanged. 25 refs., 3 tabs., 8 figs.

  2. Increased Stream Temperature in Response to Extreme Precipitation Events

    Science.gov (United States)

    Wilson, C. E.; Gooseff, M. N.

    2016-12-01

    Aquatic ecosystem temperature regulation is essential to the survival of riverine fish species restricted to limited water temperature ranges. Dissolved oxygen levels, similarly necessary to fish health, are decreased by rising temperatures, as warmer waters can hold less oxygen than colder waters. Climate change projections forecast increased precipitation intensities, a trend that has already been observed in the past decade. Though extreme events are becoming more common, the stream temperature response to high-intensity rainfall is not yet completely understood. Precipitation and stream temperature records from gages in the Upper Midwestern United States were analyzed to determine whether there exists a positive relationship between high-intensity rainfall and stream temperature response. This region was chosen for its already observed trends in increasing precipitation intensity, and rural gages were used in order to minimize the effect of impervious surfaces on runoff amounts and temperature. Days with recorded precipitation were divided by an intensity threshold and classified as either high-intensity or low-intensity days. While the effects of rain events on temperature are variable, increases in stream temperature in response to high-intensity rainfall were observed. For some basins, daily maximum rates of stream temperature increase were, on average, greater for higher intensity events. Similarly, the average daily stream temperature range was higher in streams on days of high-intensity precipitation, compared to days of low-intensity events. Understanding the effect of increasing precipitation intensity in conjunction with rising air temperatures will provide insight into the future of aquatic ecosystems and their adaptation to climate change.

  3. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available Genome-wide dissection of the heat stress response (HSR is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT: 5.2% (2,142 genes in Chiifu and 3.7% (1,535 genes in Kenshin. The most enriched GO (Gene Ontology items included 'response to heat', 'response to reactive oxygen species (ROS', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps and heat shock factor (Hsf-like proteins such as HsfB2A (Bra029292, whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853, protein kinases, and phosphatases. Among heat stress (HS marker genes in Arabidopsis, only exportin 1A (XPO1A (Bra008580, Bra006382 can be applied to B. rapa for basal thermotolerance (BT and short-term acquired thermotolerance (SAT gene. CYP707A3 (Bra025083, Bra021965, which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF genes, including DREB2A (Bra005852, were involved in HS tolerance in both lines, Bra024224 (MYB41 and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1] were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  4. Temperature response of soil respiration largely unaltered with experimental warming

    DEFF Research Database (Denmark)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    , spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation...... of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold...... considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic...

  5. Transcriptomic Analysis of Temperature Responses of Aspergillus kawachii during Barley Koji Production

    Science.gov (United States)

    Futagami, Taiki; Mori, Kazuki; Wada, Shotaro; Ida, Hiroko; Kajiwara, Yasuhiro; Takashita, Hideharu; Tashiro, Kosuke; Yamada, Osamu; Omori, Toshiro; Kuhara, Satoru

    2014-01-01

    The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40°C and is then lowered to 30°C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30°C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40°C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii. PMID:25501485

  6. Functional analysis to identify genes in wine yeast adaptation to low-temperature fermentation.

    Science.gov (United States)

    Salvadó, Z; Chiva, R; Rozès, N; Cordero-Otero, R; Guillamón, J M

    2012-07-01

      To identify genes and proteins involved in adaptation to low-temperature fermentations in a commercial wine yeast.   Nine proteins were identified as representing the most significant changes in proteomic maps during the first 24 h of fermentation at low (13°C) and standard temperature (25°C). These proteins were mainly involved in stress response and in glucose and nitrogen metabolism. Transcription analysis of the genes encoding most of these proteins within the same time frame of wine fermentation presented a good correlation with proteomic data. Knockout and overexpressing strains of some of these genes were constructed and tested to evaluate their ability to start the fermentation process. The strain overexpressing ILV5 improved its fermentation activity in the first hours of fermentation. This strain showed a quicker process of mitochondrial degeneration, an altered intracellular amino acid profile and laxer nitrogen catabolite repression regulation.   The proteomic and transcriptomic analysis is useful to detect key molecular adaptation mechanisms of biotechnological interest for industrial processes. ILV5 gene seems to be important in wine yeast adaptation to low-temperature fermentation.   This study provides information that might help improve the future performance of wine yeast, either by genetic modification or by adaptation during industrial production. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  7. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation.

    Science.gov (United States)

    Yamori, Wataru; Hikosaka, Kouki; Way, Danielle A

    2014-02-01

    Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that

  8. Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation.

    Science.gov (United States)

    Deed, Rebecca C; Deed, Nathan K; Gardner, Richard C

    2015-04-01

    Although the yeast response to low temperature has industrial significance for baking, lager brewing and white wine fermentation, the molecular response of yeast cells to low temperature remains poorly characterised. Transcriptional changes were quantified in a commercial wine yeast, Enoferm M2, fermented at optimal (25 °C) and low temperature (12.5 °C), at two time points during fermentation of Sauvignon blanc grape juice. The transition from early to mid-late fermentation was notably less severe in the cold than at 25 °C, and the Rim15p-Gis1p pathway was involved in effecting this transition. Genes for three key nutrients were strongly influenced by low temperature fermentation: nitrogen, sulfur and iron/copper, along with changes in the cell wall and stress response. Transcriptional analyses during wine fermentation at 12.5 °C in four F1 hybrids of M2 also highlighted the importance of genes involved in nutrient utilisation and the stress response. We identified transcription factors that may be important for these differences between genetic backgrounds. Since low fermentation temperatures cause fundamental changes in membrane kinetics and cellular metabolism, an understanding of the physiological and genetic limitations on cellular performance will assist breeding of improved industrial strains.

  9. Computational method for discovery of estrogen responsive genes

    DEFF Research Database (Denmark)

    Tang, Suisheng; Tan, Sin Lam; Ramadoss, Suresh Kumar

    2004-01-01

    of human genes are functionally well characterized. It is still unclear how many and which human genes respond to estrogen treatment. We propose a simple, economic, yet effective computational method to predict a subclass of estrogen responsive genes. Our method relies on the similarity of ERE frames...... across different promoters in the human genome. Matching ERE frames of a test set of 60 known estrogen responsive genes to the collection of over 18,000 human promoters, we obtained 604 candidate genes. Evaluating our result by comparison with the published microarray data and literature, we found...

  10. Behavioral responses of Atlantic cod to sea temperature changes.

    Science.gov (United States)

    Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor

    2015-05-01

    Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30-80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species.

  11. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    Directory of Open Access Journals (Sweden)

    Akash M. Mehta

    2017-01-01

    Full Text Available The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.

  12. Growth temperature regulation of some genes that define the superficial capsular carbohydrate composition of Escherichia coli K92.

    Science.gov (United States)

    Navasa, Nicolás; Rodríguez-Aparicio, Leandro B; Ferrero, Miguel Ángel; Moteagudo-Mera, Andrea; Martínez-Blanco, Honorina

    2011-07-01

    We studied growth temperature as a factor controlling the expression of genes involved in capsular polymers of Escherichia coli K92. These genes are shown to be regulated by growth temperature. Expression levels of genes belonging to the kps cluster, responsible for polysialic acid (PA) biosynthesis, were significantly increased at 37 °C compared with at 19 °C, being up to 500-fold increased for neuE and neuS genes. Similarly, the genes for the nan operon, responsible for PA catabolism, also reached higher expression levels at 37 °C, although with slightly lower values (39-141-fold). In contrast, genes of the cps operon, which are implicated in colanic acid (CA) metabolism, were upregulated when the bacteria were grown at 19 °C, albeit to a much lesser extent (around twofold). This different regulation of genes involved in the biosynthesis of polysialic and CAs correlates with the reported maximal production temperatures for the two polymers. The results suggest that the metabolism of PA is predominantly regulated by changes in gene expression, while CA production may be regulated mainly by post-transcriptional processes such as phosphorylation-dephosphorylation reactions. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Functional responses of North Atlantic fish eggs to increasing temperature

    DEFF Research Database (Denmark)

    Tsoukali, Stavroula; Visser, Andre; MacKenzie, Brian

    2016-01-01

    -days and survival of fish eggs from 32 populations of 17 species in the North Atlantic to different temperatures in order to determine potential consequences of global warming for these species. The response of development time exhibited a similar decreasing trend with respect to temperature across species......Temperature increase associated with global climate change can be expected to directly influence the spawning success of fish species, with implications for abundance and distribution. We conducted a meta-analysis to investigate and compare responses of development time, cumulative degree....... There was an overall decrease, across species, in an index of thermal requirement (cumulative degree-days) for egg development with increasing temperature. Within an empirically derived optimal thermal range for egg survival, the thermal requirement was more variable in species adapted to cold waters compared...

  14. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  15. Hypercoagulability in response to elevated body temperature and central hypovolemia

    DEFF Research Database (Denmark)

    Meyer, Martin; Ostrowski, Sisse R; Overgaard, Flemming Anders

    2013-01-01

    Coagulation abnormalities contribute to poor outcomes in critically ill patients. In trauma patients exposed to a hot environment, a systemic inflammatory response syndrome, elevated body temperature, and reduced central blood volume occur in parallel with changes in hemostasis and endothelial...... damage. The objective of this study was to evaluate whether experimentally elevated body temperature and reduced central blood volume (CBV) per se affects hemostasis and endothelial activation....

  16. Tree canopy temperature response under experimental warming and drought

    Science.gov (United States)

    Blair, S. N.; Garrity, S. R.; Cai, M.; McDowell, N. G.

    2012-12-01

    Tree mortality associated with rising temperatures and drought has been observed in numerous locations across the globe. Simulated global climate change experiments, such as increased air temperature and reduced precipitation, can help us understand tree response to altered climate regimes and identify key physiological mechanisms involved in tree stress response. We collected canopy-level leaf temperature measurements from several piñon (Pinus edulis) and one-seed juniper (juniperus monosperma) subjected to experimental warming, drought, combined warming and drought treatments, and control conditions in a field-based experiment in northern New Mexico beginning June 2012. We examined leaf temperature responses to the treatments by using continuous measurements from infrared thermocouples located above the tree canopy. We found that leaf temperatures were approximately 5 degrees warmer in heated chambers compared to leaf temperatures of trees outside chambers. Comparisons within each treatment demonstrated that, on average, piñon had higher absolute differences between leaf temperature and air temperature values compared to juniper trees. Stomatal conductance, measured with a leaf porometer showed that within each treatment, juniper had higher stomatal conductance relative to piñon, and that heated trees had lower stomatal conductance relative to non-heated trees. These differences may be attributable to the fact that piñon trees are isohydric, meaning that they have a lower tolerance to water stress. To date, we have not observed a significant drought effect on leaf temperature, however, this is likely due to the short duration of the drought treatment to date. We expect that as the experiment progresses, a drought effect will emerge. One of the key questions that we hope to answer as data continues to be collected is how tree physiology responds to drought, heat, and the interaction between both variables. Although this case study is being conducted in

  17. Overall alteration of circadian clock gene expression in the chestnut cold response.

    Directory of Open Access Journals (Sweden)

    Cristian Ibañez

    Full Text Available Cold acclimation in woody plants may have special features compared to similar processes in herbaceous plants. Recent studies have shown that circadian clock behavior in the chestnut tree (Castanea sativa is disrupted by cold temperatures and that the primary oscillator feedback loop is not functional at 4 degrees C or in winter. In these conditions, CsTOC1 and CsLHY genes are constantly expressed. Here, we show that this alteration also affects CsPRR5, CsPRR7 and CsPRR9. These genes are homologous to the corresponding Arabidopsis PSEUDO-RESPONSE REGULATOR genes, which are also components of the circadian oscillator feedback network. The practically constant presence of mRNAs of the 5 chestnut genes at low temperature reveals an unknown aspect of clock regulation and suggests a mechanism regulating the transcription of oscillator genes as a whole.

  18. The effect of body temperature on the hunting response of the middle finger skin temperature.

    Science.gov (United States)

    Daanen, H A; Van de Linde, F J; Romet, T T; Ducharme, M B

    1997-01-01

    The relationship between body temperature and the hunting response (intermittent supply of warm blood to cold exposed extremities) was quantified for nine subjects by immersing one hand in 8 degree C water while their body was either warm, cool or comfortable. Core and skin temperatures were manipulated by exposing the subjects to different ambient temperatures (30, 22, or 15 degrees C), by adjusting their clothing insulation (moderate, light, or none), and by drinking beverages at different temperatures (43, 37 and 0 degrees C). The middle finger temperature (Tfi) response was recorded, together with ear canal (Tear), rectal (Tre), and mean skin temperature (Tsk). The induced mean Tear changes were -0.34 (0.08) and +0.29 (0.03) degrees C following consumption of the cold and hot beverage, respectively. Tsk ranged from 26.7 to 34.5 degrees C during the tests. In the warm environment after a hot drink, the initial finger temperature (T(fi,base)) was 35.3 (0.4) degrees C, the minimum finger temperature during immersion (T(fi,min)) was 11.3 (0.5) degrees C, and 2.6 (0.4) hunting waves occurred in the 30-min immersion period. In the neutral condition (thermoneutral room and beverage) T(fi,base) was 32.1 (1.0) degrees C, T(fi,min) was 9.6 (0.3) degrees C, and 1.6 (0.2) waves occurred. In the cold environment after a cold drink, these values were 19.3 (0.9) degrees C, 8.7 (0.2) degrees C, and 0.8 (0.2) waves, respectively. A colder body induced a decrease in the magnitude and frequency of the hunting response. The total heat transferred from the hand to the water, as estimated by the area under the middle finger temperature curve, was also dependent upon the induced increase or decrease in Tear and Tsk. We conclude that the characteristics of the hunting temperature response curve of the finger are in part determined by core temperature and Tsk. Both T(fi,min) and the maximal finger temperature during immersion were higher when the core temperature was elevated; Tsk

  19. European temperature responses to blocking and ridge regional patterns

    Science.gov (United States)

    Sousa, Pedro M.; Trigo, Ricardo M.; Barriopedro, David; Soares, Pedro M. M.; Santos, João A.

    2017-03-01

    Blocking occurrence and its impacts on European temperature have been studied in the last decade. However, most previous studies on blocking impacts have focused on winter only, disregarding its fingerprint in summer and differences with other synoptic patterns that also trigger temperature extremes. In this work, we provide a clear distinction between high-latitude blocking and sub-tropical ridges occurring in three sectors of the Euro-Atlantic region, describing their climatology and consequent impacts on European temperature during both winter and summer. Winter blocks (ridges) are generally associated to colder (warmer) than average conditions over large regions of Europe, in some areas with anomalies larger than 5 °C, particularly for the patterns occurring in the Atlantic and Central European sectors. During summer, there is a more regional response characterized by above average temperature for both blocking and ridge patterns, especially those occurring in continental areas, although negative temperature anomalies persist in southernmost areas during blocking. An objective analysis of the different forcing mechanisms associated to each considered weather regime has been performed, quantifying the importance of the following processes in causing the temperature anomalies: horizontal advection, vertical advection and diabatic heating. While during winter advection processes tend to be more relevant to explain temperature responses, in summer radiative heating under enhanced insolation plays a crucial role for both blocking and ridges. Finally, the changes in the distributions of seasonal temperature and in the frequencies of extreme temperature indices were also examined for specific areas of Europe. Winter blocking and ridge patterns are key drivers in the occurrence of regional cold and warm extreme temperatures, respectively. In summer, they are associated with substantial changes in the frequency of extremely warm days, but with different signatures in

  20. Identification and functional analysis of light-responsive unique genes and gene family members in rice.

    Directory of Open Access Journals (Sweden)

    Ki-Hong Jung

    2008-08-01

    Full Text Available Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes and genes that had inconsistent light responses across other publicly available microarray datasets (five genes. We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families.

  1. HRGFish: A database of hypoxia responsive genes in fishes

    Science.gov (United States)

    Rashid, Iliyas; Nagpure, Naresh Sahebrao; Srivastava, Prachi; Kumar, Ravindra; Pathak, Ajey Kumar; Singh, Mahender; Kushwaha, Basdeo

    2017-02-01

    Several studies have highlighted the changes in the gene expression due to the hypoxia response in fishes, but the systematic organization of the information and the analytical platform for such genes are lacking. In the present study, an attempt was made to develop a database of hypoxia responsive genes in fishes (HRGFish), integrated with analytical tools, using LAMPP technology. Genes reported in hypoxia response for fishes were compiled through literature survey and the database presently covers 818 gene sequences and 35 gene types from 38 fishes. The upstream fragments (3,000 bp), covered in this database, enables to compute CG dinucleotides frequencies, motif finding of the hypoxia response element, identification of CpG island and mapping with the reference promoter of zebrafish. The database also includes functional annotation of genes and provides tools for analyzing sequences and designing primers for selected gene fragments. This may be the first database on the hypoxia response genes in fishes that provides a workbench to the scientific community involved in studying the evolution and ecological adaptation of the fish species in relation to hypoxia.

  2. Rearing Temperature Influences Adult Response to Changes in Mating Status.

    Directory of Open Access Journals (Sweden)

    Erica Westerman

    Full Text Available Rearing environment can have an impact on adult behavior, but it is less clear how rearing environment influences adult behavior plasticity. Here we explore the effect of rearing temperature on adult mating behavior plasticity in the butterfly Bicyclus anynana, a species that has evolved two seasonal forms in response to seasonal changes in temperature. These seasonal forms differ in both morphology and behavior. Females are the choosy sex in cohorts reared at warm temperatures (WS butterflies, and males are the choosy sex in cohorts reared at cooler temperatures (DS butterflies. Rearing temperature also influences mating benefits and costs. In DS butterflies, mated females live longer than virgin females, and mated males live shorter than virgin males. No such benefits or costs to mating are present in WS butterflies. Given that choosiness and mating costs are rearing temperature dependent in B. anynana, we hypothesized that temperature may also impact male and female incentives to remate in the event that benefits and costs of second matings are similar to those of first matings. We first examined whether lifespan was affected by number of matings. We found that two matings did not significantly increase lifespan for either WS or DS butterflies relative to single matings. However, both sexes of WS but not DS butterflies experienced decreased longevity when mated to a non-virgin relative to a virgin. We next observed pairs of WS and DS butterflies and documented changes in mating behavior in response to changes in the mating status of their partner. WS but not DS butterflies changed their mating behavior in response to the mating status of their partner. These results suggest that rearing temperature influences adult mating behavior plasticity in B. anynana. This developmentally controlled behavioral plasticity may be adaptive, as lifespan depends on the partner's mating status in one seasonal form, but not in the other.

  3. Validation of reference genes for quantitative RT-qPCR studies of gene expression in Atlantic cod (Gadus morhua l. during temperature stress

    Directory of Open Access Journals (Sweden)

    Karlsen Hans E

    2011-04-01

    Full Text Available Abstract Background One important physiological response to environmental stress in animals is change in gene expression. To obtain reliable data from gene expression studies using RT-qPCR it is important to evaluate a set of possible reference genes as normalizers for expression. The expression of these candidate genes should be analyzed in the relevant tissues during normal and stressed situations. To find suitable reference genes it was crucial that the genes were stably expressed also during a situation of physiological stress. For poikilotermic animals like cod, changes in temperature are normal, but if the changes are faster than physiological compensation, the animals respond with typical stress responses. It has previously been shown that Atlantic cod show stress responses when elevation of water temperature is faster than 1 degree/day, for this reason we chose hyperthermia as stress agent for this experiment. Findings We here describe the expression of eight candidate reference genes from Atlantic cod (Gadus morhua l. and their stability during thermal stress (temperature elevation of one degree C/day for 5 days. The genes investigated were: Eukaryotic elongation factor 1 alpha, ef1a; 18s ribosomal RNA; 18s, Ubiquitin conjugate protein; ubiq, cytoskeletal beta-actin; actb, major histcompatibility complex I; MHC-I light chain, beta-2 -microglobulin; b2m, cytoskeletal alpha-tubulin; tba1c, acidic ribosomal phosphoprotein; rplp1, glucose-6-phosphate dehydrogenase; g6pd. Their expression were analyzed in 6 tissues (liver, head kidney, intestine, spleen, heart and gills from cods exposed to elevated temperature and compared to a control group. Although there were variations between tissues with respect to reference gene stability, four transcripts were more consistent than the others: ubiq, ef1a, 18s and rplp1. We therefore used these to analyze the expression of stress related genes (heat shock proteins induced during hyperthermia. We found

  4. Brain Gene Expression is Influenced by Incubation Temperature During Leopard Gecko (Eublepharis macularius) Development.

    Science.gov (United States)

    Pallotta, Maria Michela; Turano, Mimmo; Ronca, Raffaele; Mezzasalma, Marcello; Petraccioli, Agnese; Odierna, Gaetano; Capriglione, Teresa

    2017-06-01

    Sexual differentiation (SD) during development results in anatomical, metabolic, and physiological differences that involve not only the gonads, but also a variety of other biological structures, such as the brain, determining differences in morphology, behavior, and response in the breeding season. In many reptiles, whose sex is determined by egg incubation temperature, such as the leopard gecko, Eublepharis macularius, embryos incubated at different temperatures clearly differ in the volume of brain nuclei that modulate behavior. Based on the premise that "the developmental decision of gender does not flow through a single gene", we performed an analysis on E. macularius using three approaches to gain insights into the genes that may be involved in brain SD during the thermosensitive period. Using quantitative RT-PCR, we studied the expression of genes known to be involved in gonadal SD such as WNT4, SOX9, DMRT1, Erα, Erβ, GnRH, P450 aromatase, PRL, and PRL-R. Then, further genes putatively involved in sex dimorphic brain differentiation were sought by differential display (DDRT-PCR) and PCR array. Our findings indicate that embryo exposure to different sex determining temperatures induces differential expression of several genes that are involved not only in gonadal differentiation (PRL-R, Wnt4, Erα, Erβ, p450 aromatase, and DMRT1), but also in neural differentiation (TN-R, Adora2A, and ASCL1) and metabolic pathways (GP1, RPS15, and NADH12). These data suggest that the brains of SDT reptiles might be dimorphic at birth, thus behavioral experiences in postnatal development would act on a structure already committed to male or female. © 2017 Wiley Periodicals, Inc.

  5. Quantifying Response of Chickpea Emergence to Air Temperature

    Directory of Open Access Journals (Sweden)

    B. Torabi

    2013-03-01

    Full Text Available This study was conducted to evaluate the response of emergence to temperature in 4 chickpea cultivars (Beauvanij, Arman, Hashem and Jam using 12 sowing dates (one per month under Gorgan environmental conditions (northern Iran in 2001-2002 and 2002-2003. A dent-like function was used to quantify the response of emergence to temperature. Using this function, the cardinal temperatures (base, lower optimum and higher optimum and biological day requirement for emergence were determined for different percentiles. Ceiling temperature was taken constantly as 39 ˚C. There was no significant difference between cultivars for cardinal temperatures of 50% population and they were estimated as 4.5, 20.2 and 29.0 ˚C, respectively. Base temperature of 3.4 and 3.0 ˚C, lower optimum of 23.8 and 20 ˚C and higher optimum of 30.3 and 30.0 ˚C were estimated for 10 and 90% populations without significant difference between cultivars. Cultivar differences for biological day requirement of emergence were not significant for 10, 50 and 90% populations. Biological day requirement was estimated as 4.4, 6.1 and 7.9 days for 10, 50 and 90% populations, respectively. Chickpea emergence could be predicted for different percentiles using estimated parameters of this study and weather data.

  6. Multigenerational genomic responses to dietary phosphorus and temperature in Daphnia.

    Science.gov (United States)

    Jalal, Marwa; Shala, Nita K; Wojewodzic, Marcin W; Andersen, Tom; Hessen, Dag O

    2014-08-01

    Temperature and nutrient availability are both hypothesized to affect organisms at the cellular and genomic levels. In this multigenerational study, Daphnia magna (D. magna) and Daphnia pulex (D. pulex) were maintained at high (20 °C) and low (10 °C) temperatures and nourished with phosphorus (P)-sufficient (50 μmol/L) and P-deficient (2 μmol/L) algae for up to 35 generations to assess the multigenerational impacts on genome size and nucleus size. Analysis by flow cytometry revealed significant increases in nucleus size for both species as well as genome size for D. magna in response to a low temperature. The degree of endoreplication, measured as cycle value, was species specific and responded to temperature and dietary composition. Under dietary P deficiency, D. magna, but not D. pulex, showed an apparent reduction in haploid genome size (C-value). These genomic responses are unlikely to reflect differences in nucleotide numbers, but rather structural changes affecting fluorochrome binding. While the ultimate and proximate causes of these responses are unknown, they suggest an intriguing potential for genomic responses that merits further research.

  7. Variation between cut chrysanthemum cultivars in response to suboptimal temperature

    NARCIS (Netherlands)

    Ploeg, van der A.; Kularathne, R.J.K.N.; Carvalho, S.M.P.; Heuvelink, E.

    2007-01-01

    To breed for more energy-efficient cut chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars it is important to know the variation of the temperature response existing in modern cultivars. In a greenhouse experiment with 25 chrysanthemum cultivars, a significant variation was observed in

  8. Switchable photoluminiscent CdTe nanocrystals by temperature responsive microgels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Mukesh; Gupta, Smrati; Tzavalas, Spyros; Rojas-Reyna, Rosana; Rubio-Retama, Jorge; Stamm, Manfred; Zafeiropoulos, Nikolaos E. [Leibniz-Institut fuer Polymerforschung Dresden (Germany); Cimrova, Vera [Institute of Macromolecular Chemistry Praha (Czech Republic); Gaponik, Nikolai; Eychmueller, Alexander [Physcal-Chemistry Department, Technische Universitaet Dresden (Germany)

    2008-07-01

    Microgels are perhaps of the most promising responsive systems due to their high specific surface, which yields materials with very short response time. In the present study we report a facile and reproducible method for preparing fluorescence thermo-sensitive hybrid material based on monodispersed and thermosensitive P(NIPAM) microgels covered with nanocrystals of CdTe of 3.2 nm of diameter. The CdTe nanocrystals were covalently immobilized on the surface of the microgels. Through temperature variation it was possible to modify the chemical environment around the CdTe nanocrystals. This change provoked a variation in the nanocrystal photoluminescence properties in such way that when the temperature was under the LCST of the polymer the photoluminescence of the nanocrystals was strongly quenched, while when the temperature was above the LCST of the microgels (36 C) the photoluminescence properties of the nanocrystals were strongly enhanced.

  9. Mangrove species' responses to winter air temperature extremes in China

    Science.gov (United States)

    Chen, Luzhen; Wang, Wenqing; Li, Qingshun Q.; Zhang, Yihui; Yang, Shengchang; Osland, Michael J.; Huang, Jinliang; Peng, Congjiao

    2017-01-01

    The global distribution and diversity of mangrove forests is greatly influenced by the frequency and intensity of winter air temperature extremes. However, our understanding of how different mangrove species respond to winter temperature extremes has been lacking because extreme freezing and chilling events are, by definition, relatively uncommon and also difficult to replicate experimentally. In this study, we investigated species-specific variation in mangrove responses to winter temperature extremes in China. In 10 sites that span a latitudinal gradient, we quantified species-specific damage and recovery following a chilling event, for mangrove species within and outside of their natural range (i.e., native and non-native species, respectively). To characterize plant stress, we measured tree defoliation and chlorophyll fluorescence approximately one month following the chilling event. To quantify recovery, we measured chlorophyll fluorescence approximately nine months after the chilling event. Our results show high variation in the geographic- and species-specific responses of mangroves to winter temperature extremes. While many species were sensitive to the chilling temperatures (e.g., Bruguiera sexangula and species in the Sonneratia and Rhizophora genera), the temperatures during this event were not cold enough to affect certain species (e.g., Kandelia obovata, Aegiceras corniculatum, Avicennia marina, and Bruguiera gymnorrhiza). As expected, non-native species were less tolerant of winter temperature extremes than native species. Interestingly, tidal inundation modulated the effects of chilling. In comparison with other temperature-controlled mangrove range limits across the world, the mangrove range limit in China is unique due to the combination of the following three factors: (1) Mangrove species diversity is comparatively high; (2) winter air temperature extremes, rather than means, are particularly intense and play an important ecological

  10. Optical and mechanical response of high temperature optical fiber sensors

    Science.gov (United States)

    Sirkis, Jim

    1991-01-01

    The National Aerospace Plane (NASP) will experience temperatures as high as 2500 F at critical locations in its structure. Optical fiber sensors were proposed as a means of monitoring the temperature in these critical regions by either bonding the optical fiber to, or embedding the optical fiber in, metal matrix composite (MMC) components. Unfortunately, the anticipated NASP temperature ranges exceed the glass transition region of the optical fiber glass. The attempt is made to define the operating temperature range of optical fiber sensors from both optical and mechanical perspectives. A full non-linear optical analysis was performed by modeling the optical response of an isolated sensor cyclically driven through the glass transition region.

  11. Mechanisms of radiation-induced gene responses

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Paunesku, T.

    1996-10-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5` region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3` region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process.

  12. A novel alpha-amylase gene is transiently upregulated during low temperature exposure in apple fruit.

    Science.gov (United States)

    Wegrzyn, T; Reilly, K; Cipriani, G; Murphy, P; Newcomb, R; Gardner, R; MacRae, E

    2000-03-01

    An alpha-amylase gene product was isolated from apple fruit by reverse-transcriptase PCR using redundant primers, followed by 5' and 3' RACE. The gene is a member of a small gene family. It encodes a putative 46.9 kDa protein that is most similar to an alpha-amylase gene from potato (GenBank accession M79328). In apple fruit this new gene was expressed at low levels, as detected by reverse-transcriptase PCR, in a number of plant tissues and during fruit development. Highest levels of mRNA for this transcript were observed 3 to 9 days after placing apple fruit at 0.5 degrees C. Phylogenetic analysis of amino acid sequence places the potato and apple proteins as a distinct and separate new subgroup within the plant alpha-amylases, which appears to have diverged prior to the split between monocotyledonous and dicotyledonous plants. These two divergent alpha-amylases lack the standard signal peptide structures found in all other plant alpha-amylases, and have sequence differences within the B-domain and C-domain. However, comparisons with structures of known starch hydrolases suggest that these differences are unlikely to affect the enzymatic alpha-1,4-amylase function of the protein. This is the first report of upregulation of a dicotyledonous alpha-amylase in response to low temperature, and confirms the presence of a new family of alpha-amylases in plants.

  13. Gene regulation in response to protein disulphide isomerase deficiency

    DEFF Research Database (Denmark)

    Nørgaard, Per; Tachibana, Christine; Bruun, Anette W

    2003-01-01

    We have examined the activities of promoters of a number of yeast genes encoding resident endoplasmic reticulum proteins, and found increased expression in a strain with severe protein disulphide isomerase deficiency. Serial deletion in the promoter of the MPD1 gene, which encodes a PDI1-homologue...... element. The sequence (GACACG) does not resemble the unfolded protein response element. It is present in the upstream regions of the MPD1, MPD2, KAR2, PDI1 and ERO1 genes....

  14. Proteomic analysis and qRT-PCR verification of temperature response to Arthrospira (Spirulina platensis.

    Directory of Open Access Journals (Sweden)

    Wang Huili

    Full Text Available Arthrospira (Spirulina platensis (ASP is a representative filamentous, non-N2-fixing cyanobacterium that has great potential to enhance the food supply and possesses several valuable physiological features. ASP tolerates high and low temperatures along with highly alkaline and salty environments, and can strongly resist oxidation and irradiation. Based on genomic sequencing of ASP, we compared the protein expression profiles of this organism under different temperature conditions (15°C, 35°Cand 45°C using 2-DE and peptide mass fingerprinting techniques. A total of 122 proteins having a significant differential expression response to temperature were retrieved. Of the positively expressed proteins, the homologies of 116 ASP proteins were found in Arthrospira (81 proteins in Arthrospira platensis str. Paraca and 35 in Arthrospira maxima CS-328. The other 6 proteins have high homology with other microorganisms. We classified the 122 differentially expressed positive proteins into 14 functions using the COG database, and characterized their respective KEGG metabolism pathways. The results demonstrated that these differentially expressed proteins are mainly involved in post-translational modification (protein turnover, chaperones, energy metabolism (photosynthesis, respiratory electron transport, translation (ribosomal structure and biogenesis and carbohydrate transport and metabolism. Others proteins were related to amino acid transport and metabolism, cell envelope biogenesis, coenzyme metabolism and signal transduction mechanisms. Results implied that these proteins can perform predictable roles in rendering ASP resistance against low and high temperatures. Subsequently, we determined the transcription level of 38 genes in vivo in response to temperature and identified them by qRT-PCR. We found that the 26 differentially expressed proteins, representing 68.4% of the total target genes, maintained consistency between transcription and

  15. Temperature-responsive chromatography for the separation of biomolecules.

    Science.gov (United States)

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Diverse response of tomato fruit explants to high temperature

    Directory of Open Access Journals (Sweden)

    Zofia Starck

    2014-01-01

    Full Text Available Tomato explants (fruit with a pedicel and a piece of peduncle, with fruit growth stimulated by treating the flowers with NOA + GA3 (NG-series were used as a model system for studying the effect of high temperature on C-sucrose uptake, its distribution and Ca retranslocation. Two cultivars with contrasting responses to high temperature were compared. In sensitive cv. Roma heat stress during 22h (40oC for 10h and 30oC for 12h, drastically depressed the uptake of 14C-sucrose coinciding with diminished fruit 14C-supply. It also decreased the specific activity of soluble acid invertase and the calcium content. All these strong negative responses to high temperature were markedly reduced in the NG-treated series involving remobilization of Ca to the fruits and a higher stability of the invertase activity. This indicates the indirect role of flower treatment with NG in addaptation to heat stress. In tolerant cv. Robin even higher temperatures (42oC for 10h and 34oC for 12h were not stressful. They did not affect the 14C-sucrose uptake and stimulated 14C-supply to the fruit. Increased specific activity of acid invertase and a higher calcium content were also recorded but only in the control explants. In contrast to cv. Roma elevated temperature was slightly stressful for cv. Robin explants of NG-series. The differences in response of both cultivar explants to elevated temperature, based on unequal fruit supply with 14C-sucrose, seem to be causaly connected with two factors: the invertase activity being more or less sensitive to the heat stress, the ability to translocate Ca to the heated fruits.

  17. Strong increase in convective precipitation in response to higher temperatures

    DEFF Research Database (Denmark)

    Berg, P.; Moseley, C.; Härter, Jan Olaf Mirko

    2013-01-01

    and stratiform precipitation events by cloud observations. We find that for stratiform precipitation, extremes increase with temperature at approximately the Clausius-Clapeyron rate, without characteristic scales. In contrast, convective precipitation exhibits characteristic spatial and temporal scales, and its...... intensity in response to warming exceeds the Clausius-Clapeyron rate. We conclude that convective precipitation responds much more sensitively to temperature increases than stratiform precipitation, and increasingly dominates events of extreme precipitation.......Precipitation changes can affect society more directly than variations in most other meteorological observables, but precipitation is difficult to characterize because of fluctuations on nearly all temporal and spatial scales. In addition, the intensity of extreme precipitation rises markedly...

  18. T-cell activation and early gene response in dogs.

    Science.gov (United States)

    Mortlock, Sally-Anne; Wei, Jerry; Williamson, Peter

    2015-01-01

    T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR), and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA) (5μg/ml), including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2), early growth response 1 (EGR1), growth arrest and DNA damage-inducible gene (GADD45B), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS), early growth response 2 (EGR2), hemogen (HEMGN), polo-like kinase 2 (PLK2) and polo-like kinase 3 (PLK3). Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in cell cycle

  19. T-cell activation and early gene response in dogs.

    Directory of Open Access Journals (Sweden)

    Sally-Anne Mortlock

    Full Text Available T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR, and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA (5μg/ml, including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2, early growth response 1 (EGR1, growth arrest and DNA damage-inducible gene (GADD45B, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS, early growth response 2 (EGR2, hemogen (HEMGN, polo-like kinase 2 (PLK2 and polo-like kinase 3 (PLK3. Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in

  20. Strong responses of Drosophila melanogaster microbiota to developmental temperature.

    Science.gov (United States)

    Moghadam, Neda N; Thorshauge, Pia Mai; Kristensen, Torsten N; de Jonge, Nadieh; Bahrndorff, Simon; Kjeldal, Henrik; Nielsen, Jeppe Lund

    2017-12-07

    Physiological responses to changes in environmental conditions such as temperature may partly arise from the resident microbial community that integrates a wide range of bio-physiological aspects of the host. In the present study, we assessed the effect of developmental temperature on the thermal tolerance and microbial community of Drosophila melanogaster. We also developed a bacterial transplantation protocol in order to examine the possibility of reshaping the host bacterial composition and assessed its influence on the thermotolerance phenotype. We found that the temperature during development affected thermal tolerance and the microbial composition of male D. melanogaster. Flies that developed at low temperature (13°C) were the most cold resistant and showed the highest abundance of Wolbachia, while flies that developed at high temperature (31°C) were the most heat tolerant and had the highest abundance of Acetobacter. In addition, feeding newly eclosed flies with bacterial suspensions from intestines of flies developed at low temperatures changed the heat tolerance of recipient flies. However, we were not able to link this directly to a change in the host bacterial composition.

  1. Human mRNA response to exercise and temperature.

    Science.gov (United States)

    Slivka, D R; Dumke, C L; Tucker, T J; Cuddy, J S; Ruby, B

    2012-02-01

    The purpose of this research was to determine the mRNA response to exercise in different environmental temperatures. 9 recreationally active males (27±1 years, 77.4±2.7  kg, 13.5±1.5% fat, 4.49±0.15  L · min (-1) VO2 max) completed 3 trials consisting of 1 h cycling exercise at 60% Wmax followed by a 3 h recovery in the cold (7°C), room temperature (20°C), and hot (33°C) environments. Muscle biopsies were obtained pre, post, and 3 h post exercise for the analysis of glycogen and mRNA. Expired gases were collected to calculate substrate use. PGC-1α increased to a greater degree in the cold trial than in the room temperature trial (p=0.036) and the hot trial (p=0.006). PGC1-α mRNA was also higher after the room temperature trial than the hot trial (p=0.050). UCP3 and MFN2 mRNA increased with exercise (pcold than exercise in the heat. However, VO2 was higher during recovery in the cold trial than in the room temperature and hot trials (p<0.05). This study presents evidence of PGC-1α temperature sensitivity in human skeletal muscle. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Directory of Open Access Journals (Sweden)

    H. Portner

    2010-11-01

    Full Text Available Models of carbon cycling in terrestrial ecosystems contain formulations for the dependence of respiration on temperature, but the sensitivity of predicted carbon pools and fluxes to these formulations and their parameterization is not well understood. Thus, we performed an uncertainty analysis of soil organic matter decomposition with respect to its temperature dependency using the ecosystem model LPJ-GUESS.

    We used five temperature response functions (Exponential, Arrhenius, Lloyd-Taylor, Gaussian, Van't Hoff. We determined the parameter confidence ranges of the formulations by nonlinear regression analysis based on eight experimental datasets from Northern Hemisphere ecosystems. We sampled over the confidence ranges of the parameters and ran simulations for each pair of temperature response function and calibration site. We analyzed both the long-term and the short-term heterotrophic soil carbon dynamics over a virtual elevation gradient in southern Switzerland.

    The temperature relationship of Lloyd-Taylor fitted the overall data set best as the other functions either resulted in poor fits (Exponential, Arrhenius or were not applicable for all datasets (Gaussian, Van't Hoff. There were two main sources of uncertainty for model simulations: (1 the lack of confidence in the parameter estimates of the temperature response, which increased with increasing temperature, and (2 the size of the simulated soil carbon pools, which increased with elevation, as slower turn-over times lead to higher carbon stocks and higher associated uncertainties. Our results therefore indicate that such projections are more uncertain for higher elevations and hence also higher latitudes, which are of key importance for the global terrestrial carbon budget.

  3. Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae

    DEFF Research Database (Denmark)

    Politis, Sebastian Nikitas; Mazurais, David; Servili, Arianna

    2017-01-01

    to first-feeding, and the linked expression of targeted genes [heat shock proteins (hsp), growth hormone (gh) and insulin-like growth factors (igf)] associated to larval performance of European eel, Anguilla anguilla. Temperature effects on larval morphology and gene expression were investigated throughout......Temperature is important for optimization of rearing conditions in aquaculture, especially during the critical early life history stages of fish. Here, we experimentally investigated the impact of temperature (16, 18, 20, 22 and 24°C) on thermally induced phenotypic variability, from larval hatch...... affected by temperature. In real time, increasing temperature from 16 to 22°C accelerated larval development, while larval gene expression patterns (hsp70, hsp90, gh and igf-1) were delayed at cold temperatures (16°C) or accelerated at warm temperatures (20-22°C). All targeted genes (hsp70, hsp90, gh, igf...

  4. Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature.

    Science.gov (United States)

    Masmoudi, Salma; Denis, Michel; Maalej, Sami

    2010-12-01

    We have investigated the fate of Staphylococcus aureus by starving the cells and maintaining them in natural seawater at 22 and 4 °C. At 22 °C, cells developed a long-term survival state where about 0.037% of the initial population remained culturable over more than 7 months, whereas at 4 °C, bacteria lost culturability and transiently entered into the viable but non-culturable state (VBNC). However, after 22 days of entry into the VBNC state, the number of viable cells detected via the direct viable count method decreased significantly. We show here that mutational inactivation of catalase (KatA) or superoxide dismutase (SodA) rendered strains hypersensitive to seawater stress at 4 °C and consequently, part of the seawater lethality on S. aureus at low temperature is mediated by reactive oxygen species (ROS) during microcosm-survival process. Shifting the temperature from 4 to 22 °C of totally non-culturable wild-type cells induced a partial recovery of the population. However, deficiencies in catalase or superoxide dismutase prevent resuscitation ability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules

    Science.gov (United States)

    Mak, W.C.; Olesen, K.; Sivlér, P.; Lee, C.J.; Moreno-Jimenez, I.; Edin, J.; Courtman, D.; Skog, M.; Griffith, M.

    2015-01-01

    Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells (HUVECs). While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation. PMID:26096147

  6. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules

    Directory of Open Access Journals (Sweden)

    W.C. Mak

    2015-06-01

    Full Text Available Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line—human umbilical vein endothelial cells (HUVECs. While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation.

  7. Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Teruo Okano

    2012-08-01

    Full Text Available In the past two decades, as a novel approach for tissue engineering, cell sheet engineering has been proposed by our laboratory. Poly(N-isopropylacrylamide (PIPAAm, which is a well-known temperature-responsive polymer, has been grafted on tissue culture polystyrene (TCPS surfaces through an electron beam irradiated polymerization. At 37 °C, where the PIPAAm modified surface is hydrophobic, cells can adhere, spread on the surface and grow to confluence. By decreasing temperature to 20 °C, since the surface turns to hydrophilic, cells can detach themselves from the surface spontaneously and form an intact cell sheet with extracellular matrix. For obtaining a temperature-induced cell attachment and detachment, it is necessary to immobilize an ultra thin PIPAAm layer on the TCPS surfaces. This review focuses on the characteristics of PIAPAm modified surfaces exhibiting these intelligent properties. In addition, PIPAAm modified surfaces giving a rapid cell-sheet recovery has been further developed on the basis of the characteristic of the PIPAAm surface. The designs of temperature-responsive polymer layer have provided an enormous potential to fabricate clinically applicable regenerative medicine.

  8. A multilevel analysis of fruit growth of two tomato cultivars in response to fruit temperature.

    Science.gov (United States)

    Okello, Robert C O; de Visser, Pieter H B; Heuvelink, Ep; Lammers, Michiel; de Maagd, Ruud A; Struik, Paul C; Marcelis, Leo F M

    2015-03-01

    Fruit phenotype is a resultant of inherent genetic potential in interaction with impact of environment experienced during crop and fruit growth. The aim of this study was to analyze the genetic and physiological basis for the difference in fruit size between a small ('Brioso') and intermediate ('Cappricia') sized tomato cultivar exposed to different fruit temperatures. It was hypothesized that fruit heating enhances expression of cell cycle and expansion genes, rates of carbon import, cell division and expansion, and shortens growth duration, whereas increase in cell number intensifies competition for assimilates among cells. Unlike previous studies in which whole-plant and fruit responses cannot be separated, we investigated the temperature response by varying fruit temperature using climate-controlled cuvettes, while keeping plant temperature the same. Fruit phenotype was assessed at different levels of aggregation (whole fruit, cell and gene) between anthesis and breaker stage. We showed that: (1) final fruit fresh weight was larger in 'Cappricia' owing to more and larger pericarp cells, (2) heated fruits were smaller because their mesocarp cells were smaller than those of control fruits and (3) no significant differences in pericarp carbohydrate concentration were detected between heated and control fruits nor between cultivars at breaker stage. At the gene level, expression of cell division promoters (CDKB2, CycA1 and E2Fe-like) was higher while that of the inhibitory fw2.2 was lower in 'Cappricia'. Fruit heating increased expression of fw2.2 and three cell division promoters (CDKB1, CDKB2 and CycA1). Expression of cell expansion genes did not corroborate cell size observations. © 2014 Scandinavian Plant Physiology Society.

  9. Global Patterns in Leaf Respiration and its Temperature Response

    Science.gov (United States)

    Heskel, M.; Atkin, O. K.; O'Sullivan, O. S.; Reich, P. B.; Tjoelker, M. G.; Weerasinghe, L. K.; Penillard, A.; Egerton, J. J. G.; Creek, D.; Bloomfield, K. J.; Xiang, J.; Sinca, F.; Stangl, Z.; Martinez-de la Torre, A.; Griffin, K. L.; Huntingford, C.; Hurry, V.; Meir, P.; Turnbull, M.

    2015-12-01

    Leaf respiration (R) represents a massive flux of carbon to the atmosphere. Currently, neither physiological models nor terrestrial biosphere models are able to disentangle sources of variation in leaf R among different plant species and contrasting environments. Similarly, such models do not adequately describe the short-term temperature (T) response of R, which can lead to inaccurate representation of leaf R in simulation models of regional and global terrestrial carbon cyling. Even minor differences in the underlying basal rate of leaf R and/or shape of the T-response curve can significantly impact estimates of carbon released and stored in ecosystems. Given this, we recently assembled and analyzed two new global databases (arctic-to-tropics) of leaf R and its short-term T-dependence. The results highlight variation in basal leaf R among species and across global gradients in T and aridity, with leaf R at a standard T (e.g. 25°C) being greatest in plants growing in the cold, dry Arctic and lowest in the warm, moist tropics. Arctic plants also exhibit higher rates of leaf R at a given photosynthetic capacity or leaf N concentration than their tropical counterparts. The results also point to convergence in the short-term temperature response of respiration across biomes and plant functional types. The applicability and significance of the short-term T-response of R for simulation models of plant and ecosystem carbon fluxes will be discussed.

  10. Effect of irrigation fluid temperature on core body temperature and inflammatory response during arthroscopic shoulder surgery.

    Science.gov (United States)

    Pan, Xiaoyun; Ye, Luyou; Liu, Zhongtang; Wen, Hong; Hu, Yuezheng; Xu, Xinxian

    2015-08-01

    This study was designed to evaluate the influence of irrigation fluid on the patients' physiological response to arthroscopic shoulder surgery. Patients who were scheduled for arthroscopic shoulder surgery were prospectively included in this study. They were randomly assigned to receive warm arthroscopic irrigation fluid (Group W, n = 33) or room temperature irrigation fluid (Group RT, n = 33) intraoperatively. Core body temperature was measured at regular intervals. The proinflammatory cytokines TNF-α, IL-1, IL-6, and IL-10 were measured in drainage fluid and serum. The changes of core body temperatures in Group RT were similar with those in Group W within 15 min after induction of anesthesia, but the decreases in Group RT were significantly greater after then. The lowest temperature was 35.1 ± 0.4 °C in Group RT and 35.9 ± 0.3 °C in Group W, the difference was statistically different (P irrigation fluid compared with warm irrigation fluid. And local inflammatory response is significantly reduced by using warm irrigation fluid. It seems that warm irrigation fluid is more recommendable for arthroscopic shoulder surgery.

  11. Temperature induced variation in gene expression of thyroid hormone receptors and deiodinases of European eel (Anguilla anguilla) larvae

    DEFF Research Database (Denmark)

    Politis, Sebastian Nikitas; Servili, A.; Mazurais, D.

    2018-01-01

    ) with 2 isoforms each (thrαA, thrαB, thrβA, thrβB) and 3 subtypes of deiodinases (dio1, dio2, dio3). All thr genes identified showed high similarity to the closely related Japanese eel (Anguilla japonica). We found that all genes investigated in this study were affected by larval age (in real time...... and dios, and iii) studied how temperature affects the expression of those genes in artificially produced early life history stages of European eel (Anguilla anguilla), reared in different thermal regimes (16, 18, 20 and 22°C) from hatch until first-feeding. We identified 2 subtypes of thr (thrα and thrβ...... or at specific developmental stages), temperature, and/or their interaction. More specifically, the warmer the temperature the earlier the expression response of a specific target gene. In real time, the expression profiles appeared very similar and only shifted with temperature. In developmental time, gene...

  12. Fungal responses to elevated temperature and soil nitrogen availability

    Science.gov (United States)

    Whitney, S.; Geyer, K.; Morrison, E. W.; Frey, S. D.

    2016-12-01

    The soil microbial community controls decomposition of organic residues which constitute a large portion of soil organic matter. Microbial growth is impacted by global changes such as warming and soil nitrogen (N) availability. Carbon use efficiency (CUE) is an important parameter that influences soil C dynamics by partitioning organic matter between soil C and CO2 pools. This research focuses on the growth of different fungal species' exposed to varying temperatures and N availabilities, while quantifying respiration (CO2 flux) and microbial growth. To assess individual fungal isolates, we constructed a sterilized artificial soil medium to mimic a sandy loam soil by mixing 70% sand, 20% silt, and 10% clay. Several fungal species of the phyla Ascomycota and Basidiomycota were individually grown in this media at different temperatures (15 and 25°C) and N levels. Soil respiration was measured over the incubation period. Fungal biomass was estimated by chloroform fumigation extraction and qPCR of the fungal ITS region. Our results indicate that fungi were able to grow effectively and reproducibly in the artificial soil medium, demonstrating that using an artificial soil is an effective method for assessing individual species responses. Temperature and N availability had a positive affect on C mineralization and biomass. CUE varied among fungal species and, in general, declined with temperature.

  13. The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803.

    Science.gov (United States)

    Los, D; Horvath, I; Vigh, L; Murata, N

    1993-02-22

    We examined the temperature-dependent regulation of the expression of the desA gene, which encodes delta 12 desaturase of Synechocystis PCC6803. The level of desA transcript increased 10-fold within 1 h upon a decrease in temperature from 36 degrees C to 22 degrees C. This suggests that the low-temperature-induced desaturation of membrane lipid fatty acids is regulated at the level of the expression of the desaturase genes. The accumulation of the desA transcript depended on the extent of temperature change over a certain threshold level, but not on the absolute temperature.

  14. Carbon Dioxide Mediates the Response to Temperature and Water Activity Levels in Aspergillus flavus during Infection of Maize Kernels

    Directory of Open Access Journals (Sweden)

    Matthew K. Gilbert

    2017-12-01

    Full Text Available Aspergillus flavus is a saprophytic fungus that may colonize several important crops, including cotton, maize, peanuts and tree nuts. Concomitant with A. flavus colonization is its potential to secrete mycotoxins, of which the most prominent is aflatoxin. Temperature, water activity (aw and carbon dioxide (CO2 are three environmental factors shown to influence the fungus-plant interaction, which are predicted to undergo significant changes in the next century. In this study, we used RNA sequencing to better understand the transcriptomic response of the fungus to aw, temperature, and elevated CO2 levels. We demonstrate that aflatoxin (AFB1 production on maize grain was altered by water availability, temperature and CO2. RNA-Sequencing data indicated that several genes, and in particular those involved in the biosynthesis of secondary metabolites, exhibit different responses to water availability or temperature stress depending on the atmospheric CO2 content. Other gene categories affected by CO2 levels alone (350 ppm vs. 1000 ppm at 30 °C/0.99 aw, included amino acid metabolism and folate biosynthesis. Finally, we identified two gene networks significantly influenced by changes in CO2 levels that contain several genes related to cellular replication and transcription. These results demonstrate that changes in atmospheric CO2 under climate change scenarios greatly influences the response of A. flavus to water and temperature when colonizing maize grain.

  15. De novo transcriptome sequencing of Isaria cateniannulata and comparative analysis of gene expression in response to heat and cold stresses.

    Directory of Open Access Journals (Sweden)

    Dingfeng Wang

    Full Text Available Isaria cateniannulata is a very important and virulent entomopathogenic fungus that infects many insect pest species. Although I. cateniannulata is commonly exposed to extreme environmental temperature conditions, little is known about its molecular response mechanism to temperature stress. Here, we sequenced and de novo assembled the transcriptome of I. cateniannulata in response to high and low temperature stresses using Illumina RNA-Seq technology. Our assembly encompassed 17,514 unigenes (mean length = 1,197 bp, in which 11,445 unigenes (65.34% showed significant similarities to known sequences in NCBI non-redundant protein sequences (Nr database. Using digital gene expression analysis, 4,483 differentially expressed genes (DEGs were identified after heat treatment, including 2,905 up-regulated genes and 1,578 down-regulated genes. Under cold stress, 1,927 DEGs were identified, including 1,245 up-regulated genes and 682 down-regulated genes. The expression patterns of 18 randomly selected candidate DEGs resulting from quantitative real-time PCR (qRT-PCR were consistent with their transcriptome analysis results. Although DEGs were involved in many pathways, we focused on the genes that were involved in endocytosis: In heat stress, the pathway of clathrin-dependent endocytosis (CDE was active; however at low temperature stresses, the pathway of clathrin-independent endocytosis (CIE was active. Besides, four categories of DEGs acting as temperature sensors were observed, including cell-wall-major-components-metabolism-related (CWMCMR genes, heat shock protein (Hsp genes, intracellular-compatible-solutes-metabolism-related (ICSMR genes and glutathione S-transferase (GST. These results enhance our understanding of the molecular mechanisms of I. cateniannulata in response to temperature stresses and provide a valuable resource for the future investigations.

  16. Transcriptomic responses to low temperature stress in the Manila clam, Ruditapes philippinarum.

    Science.gov (United States)

    Nie, Hongtao; Jiang, Liwen; Huo, Zhongming; Liu, Lianhui; Yang, Feng; Yan, Xiwu

    2016-08-01

    The Manila clam, Ruditapes philippinarum, is an economically important shellfish in marine aquaculture, with a broad thermal tolerance. The ability to cope with cold stress is quite important for the survival of aquatic species under natural conditions. A cold-tolerant clam that can survive the winter at temperatures below 0 °C might extend our understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of the Manila clam to cold stress (-1 °C) was characterized using RNA sequencing. The transcriptomes of a cold-treatment (O) group of clams, which survived under cold stress, and the control group (OC2), which was not subjected to cold stress, were sequenced with the Illumina HiSeq platform. In all, 148,593 unigenes were generated. Compared with the unigene expression profile of the control group, 1760 unigenes were up regulated and 2147 unigenes were down regulated in the O group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, mitochondrial metabolism, cellular component organization or biogenesis, and energy production processes were the most highly enriched pathways among the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following biological functions in the cold-tolerant Manila clam: signal response to cold stress, antioxidant response, cell proliferation, and energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Salinity Response in Chloroplasts: Insights from Gene Characterization

    Directory of Open Access Journals (Sweden)

    Jinwei Suo

    2017-05-01

    Full Text Available Salinity is a severe abiotic stress limiting agricultural yield and productivity. Plants have evolved various strategies to cope with salt stress. Chloroplasts are important photosynthesis organelles, which are sensitive to salinity. An understanding of molecular mechanisms in chloroplast tolerance to salinity is of great importance for genetic modification and plant breeding. Previous studies have characterized more than 53 salt-responsive genes encoding important chloroplast-localized proteins, which imply multiple vital pathways in chloroplasts in response to salt stress, such as thylakoid membrane organization, the modulation of photosystem II (PS II activity, carbon dioxide (CO2 assimilation, photorespiration, reactive oxygen species (ROS scavenging, osmotic and ion homeostasis, abscisic acid (ABA biosynthesis and signaling, and gene expression regulation, as well as protein synthesis and turnover. This review presents an overview of salt response in chloroplasts revealed by gene characterization efforts.

  18. Tobacco smoking-response genes in blood and buccal cells.

    Science.gov (United States)

    Na, Hyun-Kyung; Kim, Minju; Chang, Seong-Sil; Kim, Soo-Young; Park, Jong Y; Chung, Myeon Woo; Yang, Mihi

    2015-01-22

    Tobacco smoking is a well-known cause of various diseases, however, its toxic mechanisms for diseases are not completely understood, yet. Therefore, we performed biological monitoring to find tobacco smoking-responsive mechanisms including oxidative stress in Korean men (N=36). Whole genome microarray analyses were performed with peripheral blood from smokers and age-matched nonsmokers. We also performed qRT-PCR to confirm the microarray results and compared the gene expression of blood to those of buccal cells. To assess the effects of tobacco smoking on oxidative stress, we analyzed urinary levels of malondialdehyde (MDA), a lipid peroxidation marker, and performed PCR-based arrays on reactive oxygen species (ROS)-related genes. As results, 34 genes were differently expressed in blood between smokers and nonsmokers (ps1.5-fold change). Particularly, the genes involved in immune responsive pathways, e.g., the Fcγ-receptor mediated phagocytosis and the leukocyte transendothelial migration pathways, were differentially expressed between smokers and nonsmokers. Among the above genes, the ACTG1, involved in the maintenance of actin cytoskeleton, cell migration and cancer metastasis, was highly expressed by smoking in both blood and buccal cells. Concerning oxidative stress, smokers showed high levels of urinary MDA and down-regulation of expressions of antioxidant related genes including TPO, MPO, GPX2, PTGR1, and NUDT1 as compared to nonsmokers (pssmoking-responsive biomarker. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature1[OPEN

    Science.gov (United States)

    Jiang, Jianfu; Liu, Xinna; Liu, Guotian; Li, Shaohua

    2017-01-01

    Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. PMID:28049741

  20. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature.

    Science.gov (United States)

    Jiang, Jianfu; Liu, Xinna; Liu, Chonghuai; Liu, Guotian; Li, Shaohua; Wang, Lijun

    2017-02-01

    Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Analysis of Gene Expression Responses to a Infection in Rugao Chicken Intestine Using GeneChips

    Directory of Open Access Journals (Sweden)

    D. Q. Luan

    2012-02-01

    Full Text Available Poultry products are an important source of Salmonella enterica. An effective way to reduce food poisoning due to Salmonella would be to breed chickens more resistant to infection. Unfortunately host responses to Salmonella are complex with many factors involved. To learn more about responses to Salmonella in young chickens of 2 wk old, a cDNA Microarray containing 13,319 probes was performed to compare gene expression profiles between two chicken groups under control and Salmonella infected conditions. Newly hatched chickens were orally infected with S. enterica serovar Enteritidis. Since the intestine is one of the important barriers the bacteria encounter after oral inoculation, intestine gene expression was investigated at 2 wk old. There were 588 differentially expressed genes detected, of which 276 were known genes, and of the total number 266 were up-regulated and 322 were down-regulated. Differences in gene expression between the two chicken groups were found in control as well as Salmonella infected conditions indicating a difference in the intestine development between the two chicken groups which might be linked to the difference in Salmonella susceptibility. The differential expressions of 4 genes were confirmed by quantitative real-time PCR and the results indicated that the expression changes of these genes were generally consistent with the results of GeneChips. The findings in this study have lead to the identification of novel genes and possible cellular pathways, which are host dependent.

  2. Responses to high seawater temperatures in zooxanthellate octocorals.

    Directory of Open Access Journals (Sweden)

    Paul W Sammarco

    Full Text Available Increases in Sea Surface Temperatures (SSTs as a result of global warming have caused reef-building scleractinian corals to bleach worldwide, a result of the loss of obligate endosymbiotic zooxanthellae. Since the 1980's, bleaching severity and frequency has increased, in some cases causing mass mortality of corals. Earlier experiments have demonstrated that zooxanthellae in scleractinian corals from three families from the Great Barrier Reef, Australia (Faviidae, Poritidae, and Acroporidae are more sensitive to heat stress than their hosts, exhibiting differential symptoms of programmed cell death - apoptosis and necrosis. Most zooxanthellar phylotypes are dying during expulsion upon release from the host. The host corals appear to be adapted or exapted to the heat increases. We attempt to determine whether this adaptation/exaptation occurs in octocorals by examining the heat-sensitivities of zooxanthellae and their host octocoral alcyonacean soft corals - Sarcophyton ehrenbergi (Alcyoniidae, Sinularia lochmodes (Alcyoniidae, and Xenia elongata (Xeniidae, species from two different families. The soft coral holobionts were subjected to experimental seawater temperatures of 28, 30, 32, 34, and 36°C for 48 hrs. Host and zooxanthellar cells were examined for viability, apoptosis, and necrosis (in hospite and expelled using transmission electron microscopy (TEM, fluorescent microscopy (FM, and flow cytometry (FC. As experimental temperatures increased, zooxanthellae generally exhibited apoptotic and necrotic symptoms at lower temperatures than host cells and were expelled. Responses varied species-specifically. Soft coral hosts were adapted/exapted to higher seawater temperatures than their zooxanthellae. As with the scleractinians, the zooxanthellae appear to be the limiting factor for survival of the holobiont in the groups tested, in this region. These limits have now been shown to operate in six species within five families and two orders of

  3. Responses to High Seawater Temperatures in Zooxanthellate Octocorals

    Science.gov (United States)

    Sammarco, Paul W.; Strychar, Kevin B.

    2013-01-01

    Increases in Sea Surface Temperatures (SSTs) as a result of global warming have caused reef-building scleractinian corals to bleach worldwide, a result of the loss of obligate endosymbiotic zooxanthellae. Since the 1980’s, bleaching severity and frequency has increased, in some cases causing mass mortality of corals. Earlier experiments have demonstrated that zooxanthellae in scleractinian corals from three families from the Great Barrier Reef, Australia (Faviidae, Poritidae, and Acroporidae) are more sensitive to heat stress than their hosts, exhibiting differential symptoms of programmed cell death – apoptosis and necrosis. Most zooxanthellar phylotypes are dying during expulsion upon release from the host. The host corals appear to be adapted or exapted to the heat increases. We attempt to determine whether this adaptation/exaptation occurs in octocorals by examining the heat-sensitivities of zooxanthellae and their host octocoral alcyonacean soft corals – Sarcophyton ehrenbergi (Alcyoniidae), Sinularia lochmodes (Alcyoniidae), and Xenia elongata (Xeniidae), species from two different families. The soft coral holobionts were subjected to experimental seawater temperatures of 28, 30, 32, 34, and 36°C for 48 hrs. Host and zooxanthellar cells were examined for viability, apoptosis, and necrosis (in hospite and expelled) using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). As experimental temperatures increased, zooxanthellae generally exhibited apoptotic and necrotic symptoms at lower temperatures than host cells and were expelled. Responses varied species-specifically. Soft coral hosts were adapted/exapted to higher seawater temperatures than their zooxanthellae. As with the scleractinians, the zooxanthellae appear to be the limiting factor for survival of the holobiont in the groups tested, in this region. These limits have now been shown to operate in six species within five families and two orders of the

  4. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingyan Liu

    2015-10-01

    Full Text Available Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR-type resistance (R protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5, which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1 to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1, RPS4 (Resistance to P. syringae 4 and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1. Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses.

  5. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    Directory of Open Access Journals (Sweden)

    Zachary R. Shaheen

    2015-08-01

    Full Text Available The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression.

  6. Genomic insights into temperature-dependent transcriptional responses of Kosmotoga olearia, a deep-biosphere bacterium that can grow from 20 to 79 °C.

    Science.gov (United States)

    Pollo, Stephen M J; Adebusuyi, Abigail A; Straub, Timothy J; Foght, Julia M; Zhaxybayeva, Olga; Nesbø, Camilla L

    2017-11-01

    Temperature is one of the defining parameters of an ecological niche. Most organisms thrive within a temperature range that rarely exceeds ~30 °C, but the deep subsurface bacterium Kosmotoga olearia can grow over a temperature range of 59 °C (20-79 °C). To identify genes correlated with this flexible phenotype, we compared transcriptomes of K. olearia cultures grown at its optimal 65 °C to those at 30, 40, and 77 °C. The temperature treatments affected expression of 573 of 2224 K. olearia genes. Notably, this transcriptional response elicits re-modeling of the cellular membrane and changes in metabolism, with increased expression of genes involved in energy and carbohydrate metabolism at high temperatures and up-regulation of amino acid metabolism at lower temperatures. At sub-optimal temperatures, many transcriptional changes were similar to those observed in mesophilic bacteria at physiologically low temperatures, including up-regulation of typical cold stress genes and ribosomal proteins. Comparative genomic analysis of additional Thermotogae genomes indicates that one of K. olearia's strategies for low-temperature growth is increased copy number of some typical cold response genes through duplication and/or lateral acquisition. At 77 °C one-third of the up-regulated genes are of hypothetical function, indicating that many features of high-temperature growth are unknown.

  7. Temperature-responsive copolymeric hydrogel systems synthetized by ionizing radiation

    Science.gov (United States)

    López-Barriguete, Jesús Eduardo; Bucio, Emilio

    2017-06-01

    Eight different systems of hydrogel copolymers with diverse temperature responsiveness were prepared to elaborate membranes for their biomedical application. The hydrogels were synthesized using poly(N-isopropylacrylamide) (PNIPAAm) and poly(N-vinylcaprolactam) (PNVCL), which have a low critical solution temperature (LCST) close to that of the human body temperature. The networks were synthesized using gamma radiation at a dose rate of 11.2 kGy h-1, and dose of 50 kGy. The LCST of each system was measured by differential scanning calorimetry (DSC). The effect of using hydrophilic monomers of acrylic acid (AAc), methacrylic acid (MAAc), dimethyl acrylamide (DMAAm), and hydroxyethyl methacrylate (HEMA) for the copolymerization on the critical point was evaluated. Five viable systems were obtained, with the best hydrogel being that of poly(NIPAAm-co-DMAAm), which an LCST at 39.8 °C. All the samples were characterized by FTIR-ATR, DSC, TGA, X-Ray Diffraction, and SEM. The proportion of monomers during the formation of the copolymers was decisive in the displacement of the LCST.

  8. A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence.

    Directory of Open Access Journals (Sweden)

    Aaron Mischa Nuss

    2016-12-01

    Full Text Available Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer's patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host's intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies.

  9. Estrogen-Responsive Genes Overlap with Triiodothyronine-Responsive Genes in a Breast Carcinoma Cell Line

    Directory of Open Access Journals (Sweden)

    Nancy Bueno Figueiredo

    2014-01-01

    Full Text Available It has been well established that estrogen plays an important role in the progression and treatment of breast cancer. However, the role of triiodothyronine (T3 remains controversial. We have previously shown its capacity to stimulate the development of positive estrogen receptor breast carcinoma, induce the expression of genes (PR, TGF-alpha normally stimulated by estradiol (E2, and suppress genes (TGF-beta normally inhibited by E2. Since T3 regulates growth hormones, metabolism, and differentiation, it is important to verify its action on other genes normally induced by E2. Therefore, we used DNA microarrays to compare gene expression patterns in MCF-7 breast adenocarcinoma cells treated with E2 and T3. Several genes were modulated by both E2 and T3 in MCF-7 cells (Student’s t-test, P 2.0, pFDR < 0.05. We confirmed our microarray results by real-time PCR. Our findings reveal that certain genes in MCF-7 cells can be regulated by both E2 and T3.

  10. [Cloning and expression analysis of HSP70 gene from Dendrobium officinale under low temperature stress].

    Science.gov (United States)

    Li, Dong-Bin; Gao, Han-Hui; Si, Jin-Ping; Zhu, Yu-Qiu

    2013-10-01

    To investigate HSP70 gene expression from Dendrobium officinale under low temperature stress, which will provide the molecular biological foundation for breeding the low temperature resistant strain. HSP70 gene full length cDNA was cloned by rapid amplification of cDNA ends (RACE) on the basis of HSP70 gene fragment sequences, and the structure and function of HSP70 gene were deduced. The expression of HSP70 under low temperature stress was detected by RT-PCR. The full length of HSP70 gene cDNA was 2 296 bp containing a 1 944 bp open reading frame (ORF) that encoded a protein of 647 amino acids. Its amino acids sequence had typical HSP70 characteristics and high homology with other plant's HSP70. Cold stress expression analysis showed that expression of the HSP70 gene could be induced by low temperature. The HSP70 gene of D. officinale was successfully cloned and reported for the first time which proved that the expression could be induced by low temperature. The cloning of HSP70 gene provides a stable foundation for further study of D. officinale cultivation and the breeding of the cold resistance strains.

  11. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Science.gov (United States)

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance

  12. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    Full Text Available BACKGROUND: Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. RESULTS: In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. CONCLUSIONS: This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of

  13. Identification of a novel submergence response gene regulated by ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-12-07

    Dec 7, 2016 ... 3Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangzte University,. Jingzhou 434025, P.R. .... intolerance to submergence) and M202(Sub1A) by qRT-. PCR. We identified a novel gene responsive to submergence, called RS1. The expression patterns of.

  14. Molecular responses and expression analysis of genes in a ...

    African Journals Online (AJOL)

    Haloxylon ammodendron (C.A Mey.) Bunge is a xero-halophytic desert shrub with excellent drought resistance and salt tolerance. To decipher the molecular responses involved in its drought resistance, the cDNA-AFLP (amplified fragment length polymorphism) technique was employed to identify genes expressed ...

  15. Identification of vernalization responsive genes in the winter wheat ...

    Indian Academy of Sciences (India)

    of Agricultural Sciences, Beijing 100081, People's Republic of China. 7China Agricultural University, Beijing 100083, People's Republic of China. Abstract. This study aimed to identify vernalization responsive genes in the winter wheat cultivar Jing841 by comparing the transcrip- tome data with that of a spring wheat cultivar ...

  16. Faba bean drought responsive gene identification and validation.

    Science.gov (United States)

    Ammar, Megahed H; Khan, Altaf M; Migdadi, Hussein M; Abdelkhalek, Samah M; Alghamdi, Salem S

    2017-01-01

    This study was carried out to identify drought-responsive genes in a drought tolerant faba bean variety (Hassawi 2) using a suppressive subtraction hybridization approach (SSH). A total of 913 differentially expressed clones were sequenced from a differential cDNA library that resulted in a total of 225 differentially expressed ESTs. The genes of mitochondrial and chloroplast origin were removed, and the remaining 137 EST sequences were submitted to the gene bank EST database (LIBEST_028448). A sequence analysis identified 35 potentially drought stress-related ESTs that regulate ion channels, kinases, and energy production and utilization and transcription factors. Quantitative PCR on Hassawi 2 genotype confirmed that more than 65% of selected drought-responsive genes were drought-related. Among these induced genes, the expression levels of eight highly up-regulated unigenes were further analyzed across 38 selected faba bean genotypes that differ in their drought tolerance levels. These unigenes included ribulose 1,5-bisphosphate carboxylase (rbcL) gene, non-LTR retroelement reverse related, probable cyclic nucleotide-gated ion channel, polyubiquitin, potassium channel, calcium-dependent protein kinase and putative respiratory burst oxidase-like protein C and a novel unigene. The expression patterns of these unigenes were variable across 38 genotypes however, it was found to be very high in tolerant genotype. The up-regulation of these unigenes in majority of tolerant genotypes suggests their possible role in drought tolerance. The identification of possible drought responsive candidate genes in Vicia faba reported here is an important step toward the development of drought-tolerant genotypes that can cope with arid environments.

  17. Faba bean drought responsive gene identification and validation

    Directory of Open Access Journals (Sweden)

    Megahed H. Ammar

    2017-01-01

    Full Text Available This study was carried out to identify drought-responsive genes in a drought tolerant faba bean variety (Hassawi 2 using a suppressive subtraction hybridization approach (SSH. A total of 913 differentially expressed clones were sequenced from a differential cDNA library that resulted in a total of 225 differentially expressed ESTs. The genes of mitochondrial and chloroplast origin were removed, and the remaining 137 EST sequences were submitted to the gene bank EST database (LIBEST_028448. A sequence analysis identified 35 potentially drought stress-related ESTs that regulate ion channels, kinases, and energy production and utilization and transcription factors. Quantitative PCR on Hassawi 2 genotype confirmed that more than 65% of selected drought-responsive genes were drought-related. Among these induced genes, the expression levels of eight highly up-regulated unigenes were further analyzed across 38 selected faba bean genotypes that differ in their drought tolerance levels. These unigenes included ribulose 1,5-bisphosphate carboxylase (rbcL gene, non-LTR retroelement reverse related, probable cyclic nucleotide-gated ion channel, polyubiquitin, potassium channel, calcium-dependent protein kinase and putative respiratory burst oxidase-like protein C and a novel unigene. The expression patterns of these unigenes were variable across 38 genotypes however, it was found to be very high in tolerant genotype. The up-regulation of these unigenes in majority of tolerant genotypes suggests their possible role in drought tolerance. The identification of possible drought responsive candidate genes in Vicia faba reported here is an important step toward the development of drought-tolerant genotypes that can cope with arid environments.

  18. Identification of heat-responsive genes in carnation (Dianthus caryophyllus L. by RNA-seq

    Directory of Open Access Journals (Sweden)

    Xueli eWan

    2015-07-01

    Full Text Available Carnation (Dianthus caryophyllus L. is an important flower crop, having substantial commercial value as a cut-flower due to the long vase-life and wide array of flower colours and forms. Standard carnation varieties perform well under cool climates but are very susceptible to high temperatures which adversely affect the yield and the quality of the cut-flowers. Despite several studies of carnation contributing to the number of expressed sequence tags (ESTs, transcriptomic information of this species remains very limited, particularly regarding abiotic stress-related genes. Here, transcriptome analysis was performed to generate expression profiles of heat stress (HS-responsive genes in carnation. We sequenced a cDNA library constructed with mixed RNA from carnation leaves subjected to 42oC HS (0, 0.5, 1 and 2 h and 46oC HS (0.5, 1 and 2 h, and obtained 45,604,882 high quality paired-end reads. After de novo assembly and quantitative assessment, 99,255 contigs were generated with an average length of 1053bp. We then obtained functional annotations by aligning contigs with public protein databases including NR, SwissProt, KEGG and COG. Using the above carnation transcriptome as the reference, we compared the effects of high temperature treatments (42oC: duration 0.5, 2 or 12h delivered to aseptic carnation seedlings, relative to untreated controls, using the FPKM metric. Overall, 11,471 genes were identified which showed a significant response to one or more of the three HS treatment times. In addition, based on GO and metabolic pathway enrichment analyses, a series of candidate genes involved in thermo-tolerance responses were selected and characterized. This study represents the first expression profiling analysis of D. caryophyllus under heat stress treatments. Numerous genes were found to be induced in response to HS, the study of which may advance our understanding of heat response of carnation.

  19. Gene expression of corals in response to macroalgal competitors.

    Science.gov (United States)

    Shearer, Tonya L; Snell, Terry W; Hay, Mark E

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens.

  20. Gene expression of corals in response to macroalgal competitors.

    Directory of Open Access Journals (Sweden)

    Tonya L Shearer

    Full Text Available As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora versus the more resistant (M. digitata coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens.

  1. A new gene superfamily of pathogen-response (repat) genes in Lepidoptera: classification and expression analysis.

    Science.gov (United States)

    Navarro-Cerrillo, G; Hernández-Martínez, P; Vogel, H; Ferré, J; Herrero, S

    2013-01-01

    Repat (REsponse to PAThogens) genes were first identified in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae) in response to Bacillus thuringiensis and baculovirus exposure. Since then, additional repat gene homologs have been identified in different studies. In this study the comprehensive larval transcriptome from S. exigua was analyzed for the presence of novel repat-homolog sequences. These analyses revealed the presence of at least 46 repat genes in S. exigua, establishing a new gene superfamily in this species. Phylogenetic analysis and studies of conserved motifs in these hypothetical proteins have allowed their classification in two main classes, αREPAT and βREPAT. Studies on the transcriptional response of repat genes have shown that αREPAT and βREPAT differ in their sequence but also in the pattern of regulation. The αREPAT were mainly regulated in response to the Cry1Ca toxin from B. thuringiensis but not to the increase in the midgut microbiota load. In contrast, βREPAT were neither responding to Cry1Ca toxin nor to midgut microbiota. Differential expression between midgut stem cells and the whole midgut tissue was studied for the different repat genes revealing changes in the gene expression distribution between midgut stem cells and midgut tissue in response to midgut microbiota. This high diversity found in their sequence and in their expression profile suggests that REPAT proteins may be involved in multiple processes that could be of relevance for the understanding of the insect gut physiology. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Gene expression in epithelial cells in response to pneumovirus infection

    Directory of Open Access Journals (Sweden)

    Rosenberg Helene F

    2001-05-01

    Full Text Available Abstract Respiratory syncytial virus (RSV and pneumonia virus of mice (PVM are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner.

  3. Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction

    Directory of Open Access Journals (Sweden)

    Antonia Y. Tetteh

    2014-01-01

    Full Text Available Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0, but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3 treatment and then used quantitative real-time PCR (qRT-PCR to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.

  4. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    Science.gov (United States)

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    Science.gov (United States)

    Abdi, Frank

    1996-01-01

    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.

  6. Closely related freshwater macrophyte species, Ceratophyllum demersum and C. submersum, differ in temperature response

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Sorrell, Brian Keith; Brix, Hans

    2014-01-01

    1. The importance of temperature responses of photosynthesis and respiration in determining species distributions was compared in two closely related freshwater macrophytes, Ceratophyllum demersum and C. submersum. The two species differed significantly in response to temperature in the short...... optimum. Hence, this study highlights key issues that need to be examined carefully to improve models predicting future temperature responses of aquatic plants....

  7. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines.

    Science.gov (United States)

    Breen, M S; White, C H; Shekhtman, T; Lin, K; Looney, D; Woelk, C H; Kelsoe, J R

    2016-10-01

    Lithium (Li) is the mainstay mood stabilizer for the treatment of bipolar disorder (BD), although its mode of action is not yet fully understood nor is it effective in every patient. We sought to elucidate the mechanism of action of Li and to identify surrogate outcome markers that can be used to better understand its therapeutic effects in BD patients classified as good (responders) and poor responders (nonresponders) to Li treatment. To accomplish these goals, RNA-sequencing gene expression profiles of lymphoblastoid cell lines (LCLs) were compared between BD Li responders and nonresponders with healthy controls before and after treatment. Several Li-responsive gene coexpression networks were discovered indicating widespread effects of Li on diverse cellular signaling systems including apoptosis and defense response pathways, protein processing and response to endoplasmic reticulum stress. Individual gene markers were also identified, differing in response to Li between BD responders and nonresponders, involved in processes of cell cycle and nucleotide excision repair that may explain part of the heterogeneity in clinical response to treatment. Results further indicated a Li gene expression signature similar to that observed with clonidine treatment, an α2-adrenoceptor agonist. These findings provide a detailed mechanism of Li in LCLs and highlight putative surrogate outcome markers that may permit for advanced treatment decisions to be made and for facilitating recovery in BD patients.

  8. Temperature response of turbulent premixed flames to inlet velocity oscillations

    Science.gov (United States)

    Ayoola, B.; Hartung, G.; Armitage, C. A.; Hult, J.; Cant, R. S.; Kaminski, C. F.

    2009-01-01

    Flame-turbulence interactions are at the heart of modern combustion research as they have a major influence on efficiency, stability of operation and pollutant emissions. The problem remains a formidable challenge, and predictive modelling and the implementation of active control measures both rely on further fundamental measurements. Model burners with simple geometry offer an opportunity for the isolation and detailed study of phenomena that take place in real-world combustors, in an environment conducive to the application of advanced laser diagnostic tools. Lean premixed combustion conditions are currently of greatest interest since these are able to provide low NO x and improved increased fuel economy, which in turn leads to lower CO2 emissions. This paper presents an experimental investigation of the response of a bluff-body-stabilised flame to periodic inlet fluctuations under lean premixed turbulent conditions. Inlet velocity fluctuations were imposed acoustically using loudspeakers. Spatially resolved heat release rate imaging measurements, using simultaneous planar laser-induced fluorescence (PLIF) of OH and CH2O, have been performed to explore the periodic heat release rate response to various acoustic forcing amplitudes and frequencies. For the first time we use this method to evaluate flame transfer functions and we compare these results with chemiluminescence measurements. Qualitative thermometry based on two-line OH PLIF was also used to compare the periodic temperature distribution around the flame with the periodic fluctuation of local heat release rate during acoustic forcing cycles.

  9. Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals.

    Science.gov (United States)

    Novák, Aliz; Boldizsár, Ákos; Ádám, Éva; Kozma-Bognár, László; Majláth, Imre; Båga, Monica; Tóth, Balázs; Chibbar, Ravindra; Galiba, Gábor

    2016-03-01

    C-repeat binding factor 14 (CBF14) is a plant transcription factor that regulates a set of cold-induced genes, contributing to enhanced frost tolerance during cold acclimation. Many CBF genes are induced by cool temperatures and regulated by day length and light quality, which affect the amount of accumulated freezing tolerance. Here we show that a low red to far-red ratio in white light enhances CBF14 expression and increases frost tolerance at 15°C in winter Triticum aesitivum and Hordeum vulgare genotypes, but not in T. monococcum (einkorn), which has a relatively low freezing tolerance. Low red to far-red ratio enhances the expression of PHYA in all three species, but induces PHYB expression only in einkorn. Based on our results, a model is proposed to illustrate the supposed positive effect of phytochrome A and the negative influence of phytochrome B on the enhancement of freezing tolerance in cereals in response to spectral changes of incident light. CBF-regulon, barley, cereals, cold acclimation, freezing tolerance, light regulation, low red/far-red ratio, phytochrome, wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Antioxidant response to heat stress in seagrasses. A gene expression study.

    Science.gov (United States)

    Tutar, O; Marín-Guirao, L; Ruiz, J M; Procaccini, G

    2017-12-01

    Seawater warming associated to the ongoing climate change threatens functioning and survival of keystone coastal benthic species such as seagrasses. Under elevated temperatures, the production of reactive oxygen species (ROS) is increased and plants must activate their antioxidant defense mechanisms to protect themselves from oxidative damage. Here we explore from a molecular perspective the ability of Mediterranean seagrasses to activate heat stress response mechanisms, with particular focus on antioxidants. The level of expression of targeted genes was analyzed in shallow and deep plants of the species Posidonia oceanica and in shallow plants of Cymodocea nodosa along an acute heat exposure of several days and after recovery. The overall gene expression response of P. oceanica was more intense and complete than in C. nodosa and reflected a higher oxidative stress level during the experimental heat exposure. The strong activation of genes with chaperone activity (heat shock proteins and a luminal binding protein) just in P. oceanica plants, suggested the higher sensitivity of the species to increased temperatures. In spite of the interspecific differences, genes from the superoxide dismutase (SOD) family seem to play a pivotal role in the thermal stress response of Mediterranean seagrasses as previously reported for other marine plant species. Shallow and deep P. oceanica ecotypes showed a different timing of response to heat. Shallow plants early responded to heat and after a few days relaxed their response which suggests a successful early metabolic adjustment. The response of deep plants was delayed and their recovery incomplete evidencing a lower resilience to heat in respect to shallow ecotypes. Moreover, shallow ecotypes showed some degree of pre-adaptation to heat as most analyzed genes showed higher constitutive expression levels than in deep ecotypes. The recurrent exposure of shallow plants to elevated summer temperatures has likely endowed them with a

  11. Dose response relationship in anti-stress gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2007-03-01

    Full Text Available To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear depends on changes in the specific values of local response coefficients (gains distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear

  12. Cellular immune response to cryptic epitopes during therapeutic gene transfer.

    Science.gov (United States)

    Li, Chengwen; Goudy, Kevin; Hirsch, Matt; Asokan, Aravind; Fan, Yun; Alexander, Jeff; Sun, Junjiang; Monahan, Paul; Seiber, David; Sidney, John; Sette, Alessandro; Tisch, Roland; Frelinger, Jeff; Samulski, R Jude

    2009-06-30

    The immune response has been implicated as a critical factor in determining the success or failure of clinical gene therapy trials. Generally, such a response is elicited by the desired transgene product or, in some cases, the delivery system. In the current study, we report the previously uncharacterized finding that a therapeutic cassette currently being used for human investigation displays alternative reading frames (ARFs) that generate unwanted protein products to induce a cytotoxic T lymphocyte (CTL) response. In particular, we tested the hypothesis that antigenic epitopes derived from an ARF in coagulation factor IX (F9) cDNA can induce CTL reactivity, subsequently killing F9-expressing hepatocytes. One peptide (p18) of 3 candidates from an ARF of the F9 transgene induced CD8(+) T cell reactivity in mice expressing the human MHC class I molecule B0702. Subsequently, upon systemic administration of adeno-associated virus (AAV) serotype 2 vectors packaged with the F9 transgene (AAV2/F9), a robust CD8(+) CTL response was elicited against peptide p18. Of particular importance is that the ARF epitope-specific CTLs eliminated AAV2/F9-transduced hepatocytes but not AAV2/F9 codon-optimized (AAV2/F9-opt)-transduced liver cells in which p18 epitope was deleted. These results demonstrate a previously undiscovered mechanism by which CTL responses can be elicited by cryptic epitopes generated from a therapeutic transgene and have significant implications for all gene therapy modalities. Such unforeseen epitope generation warrants careful analysis of transgene sequences for ARFs to reduce the potential for adverse events arising from immune responses during clinical gene therapy protocols.

  13. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Glacy Jaqueline da Silva

    2014-01-01

    Full Text Available Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses.

  14. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  15. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature.

    Science.gov (United States)

    López-Malo, María; García-Ríos, Estéfani; Chiva, Rosana; Guillamon, José M

    2014-10-29

    Wine produced by low-temperature fermentation is mostly considered to have improved sensory qualities. However few commercial wine strains available on the market are well-adapted to ferment at low temperature (10 - 15°C). The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. One strategy to modify lipid composition is to alter transcriptional activity by deleting or overexpressing the key genes of lipid metabolism. In a previous study, we identified the genes of the phospholipid, sterol and sphingolipid pathways, which impacted on growth capacity at low temperature. In the present study, we aimed to determine the influence of these genes on fermentation performance and growth during low-temperature wine fermentations. We analyzed the phenotype during fermentation at the low and optimal temperature of the lipid mutant and overexpressing strains in the background of a derivative commercial wine strain. The increase in the gene dosage of some of these lipid genes, e.g., PSD1, LCB3, DPL1 and OLE1, improved fermentation activity during low-temperature fermentations, thus confirming their positive role during wine yeast adaptation to cold. Genes whose overexpression improved fermentation activity at 12°C were overexpressed by chromosomal integration into commercial wine yeast QA23. Fermentations in synthetic and natural grape must were carried out by this new set of overexpressing strains. The strains overexpressing OLE1 and DPL1 were able to finish fermentation before commercial wine yeast QA23. Only the OLE1 gene overexpression produced a specific aroma profile in the wines produced with natural grape must.

  16. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature

    Directory of Open Access Journals (Sweden)

    María López-Malo

    2014-10-01

    Full Text Available Wine produced by low-temperature fermentation is mostly considered to have improved sensory qualities. However few commercial wine strains available on the market are well-adapted to ferment at low temperature (10 – 15°C. The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. One strategy to modify lipid composition is to alter transcriptional activity by deleting or overexpressing the key genes of lipid metabolism. In a previous study, we identified the genes of the phospholipid, sterol and sphingolipid pathways, which impacted on growth capacity at low temperature. In the present study, we aimed to determine the influence of these genes on fermentation performance and growth during low-temperature wine fermentations. We analyzed the phenotype during fermentation at the low and optimal temperature of the lipid mutant and overexpressing strains in the background of a derivative commercial wine strain. The increase in the gene dosage of some of these lipid genes, e.g., PSD1, LCB3, DPL1 and OLE1, improved fermentation activity during low-temperature fermentations, thus confirming their positive role during wine yeast adaptation to cold. Genes whose overexpression improved fermentation activity at 12°C were overexpressed by chromosomal integration into commercial wine yeast QA23. Fermentations in synthetic and natural grape must were carried out by this new set of overexpressing strains. The strains overexpressing OLE1 and DPL1 were able to finish fermentation before commercial wine yeast QA23. Only the OLE1 gene overexpression produced a specific aroma profile in the wines produced with natural grape must.

  17. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature

    Science.gov (United States)

    López-Malo, María; García-Ríos, Estéfani; Chiva, Rosana; Guillamon, José M.

    2014-01-01

    Wine produced by low-temperature fermentation is mostly considered to have improved sensory qualities. However few commercial wine strains available on the market are well-adapted to ferment at low temperature (10 - 15°C). The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. One strategy to modify lipid composition is to alter transcriptional activity by deleting or overexpressing the key genes of lipid metabolism. In a previous study, we identified the genes of the phospholipid, sterol and sphingolipid pathways, which impacted on growth capacity at low temperature. In the present study, we aimed to determine the influence of these genes on fermentation performance and growth during low-temperature wine fermentations. We analyzed the phenotype during fermentation at the low and optimal temperature of the lipid mutant and overexpressing strains in the background of a derivative commercial wine strain. The increase in the gene dosage of some of these lipid genes, e.g., PSD1, LCB3, DPL1 and OLE1, improved fermentation activity during low-temperature fermentations, thus confirming their positive role during wine yeast adaptation to cold. Genes whose overexpression improved fermentation activity at 12°C were overexpressed by chromosomal integration into commercial wine yeast QA23. Fermentations in synthetic and natural grape must were carried out by this new set of overexpressing strains. The strains overexpressing OLE1 and DPL1 were able to finish fermentation before commercial wine yeast QA23. Only the OLE1 gene overexpression produced a specific aroma profile in the wines produced with natural grape must. PMID:28357215

  18. Temperature control of molecular circuit switch responsible for virulent phenotype expression in uropathogenic Escherichia coli

    Science.gov (United States)

    Samoilov, Michael

    2010-03-01

    The behavior and fate of biological organisms are to a large extent dictated by their environment, which can be often viewed as a collection of features and constraints governed by physics laws. Since biological systems comprise networks of molecular interactions, one such key physical property is temperature, whose variations directly affect the rates of biochemical reactions involved. For instance, temperature is known to control many gene regulatory circuits responsible for pathogenicity in bacteria. One such example is type 1 fimbriae (T1F) -- the foremost virulence factor in uropathogenic E. coli (UPEC), which accounts for 80-90% of all community-acquired urinary tract infections (UTIs). The expression of T1F is randomly `phase variable', i.e. individual cells switch between virulent/fimbriate and avirulent/afimbriate phenotypes, with rates regulated by temperature. Our computational investigation of this process, which is based on FimB/FimE recombinase-mediated inversion of fimS DNA element, offers new insights into its discrete-stochastic kinetics. In particular, it elucidates the logic of T1F control optimization to the host temperature and contributes further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.

  19. Temperature dependence of the strain response of chemical composition gratings in optical fibers

    Science.gov (United States)

    Li, Guoyu; Guan, Bai-ou

    2008-11-01

    Chemical composition gratings, used as strain sensing elements at high temperature environments, show a temperature dependence of their strain response. Temperature dependence of the strain response of CCGs over a range of temperatures from 24°C to 900°C has been measured. It is found that the wavelength shift of CCGs is linear with applied tensile strain at a constant temperature, and the strain sensitivity is 0.0011nm/μɛ.

  20. A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua spleen transcriptome response to intraperitoneal viral mimic injection

    Directory of Open Access Journals (Sweden)

    Hori Tiago S

    2012-08-01

    Full Text Available Abstract Background Atlantic cod (Gadus morhua reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC. Results The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI, respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%, including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. Conclusions The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with

  1. A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua) spleen transcriptome response to intraperitoneal viral mimic injection

    Science.gov (United States)

    2012-01-01

    Background Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). Results The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. Conclusions The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16

  2. Response of California temperature to regional anthropogenic aerosol changes

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas; Novakov, T.; Kirchstetter, T.W.; Menon, S.; Aguiar, J.

    2008-05-12

    In this paper, we compare constructed records of concentrations of black carbon (BC)--an indicator of anthropogenic aerosols--with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

  3. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress.

    Science.gov (United States)

    Wu, Zhi-Jun; Li, Xing-Hui; Liu, Zhi-Wei; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2016-02-01

    Tea plant [Camellia sinensis (L.) O. Kuntze] is a leaf-type healthy non-alcoholic beverage crop, which has been widely introduced worldwide. Tea is rich in various secondary metabolites, which are important for human health. However, varied climate and complex geography have posed challenges for tea plant survival. The WRKY gene family in plants is a large transcription factor family that is involved in biological processes related to stress defenses, development, and metabolite synthesis. Therefore, identification and analysis of WRKY family transcription factors in tea plant have a profound significance. In the present study, 50 putative C. sinensis WRKY proteins (CsWRKYs) with complete WRKY domain were identified and divided into three Groups (Group I-III) on the basis of phylogenetic analysis results. The distribution of WRKY family transcription factors among plantae, fungi, and protozoa showed that the number of WRKY genes increased in higher plant, whereas the number of these genes did not correspond to the evolutionary relationships of different species. Structural feature and annotation analysis results showed that CsWRKY proteins contained WRKYGQK/WRKYGKK domains and C2H2/C2HC-type zinc-finger structure: D-X18-R-X1-Y-X2-C-X4-7-C-X23-H motif; CsWRKY proteins may be associated with the biological processes of abiotic and biotic stresses, tissue development, and hormone and secondary metabolite biosynthesis. Temperature stresses suggested that the candidate CsWRKY genes were involved in responses to extreme temperatures. The current study established an extensive overview of the WRKY family transcription factors in tea plant. This study also provided a global survey of CsWRKY transcription factors and a foundation of future functional identification and molecular breeding.

  4. Regulation of anthrax toxin activator gene (atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis.

    OpenAIRE

    Dai, Z; Koehler, T M

    1997-01-01

    Anthrax toxin gene expression in Bacillus anthracis is dependent on the presence of atxA, a trans-acting regulatory gene located on the resident 185-kb plasmid pXO1. In atxA+ strains, expression of the toxin genes (pag, lef, and cya) is enhanced by two physiologically significant signals: elevated CO2/bicarbonate and temperature. To determine whether increased toxin gene expression in response to these signals is associated with increased atxA expression, we monitored steady-state levels of a...

  5. Impact of rli87 gene deletion on response of Listeria monocytogenes to environmental stress.

    Science.gov (United States)

    Kun, Xie; Qingling, Meng; Qiao, Jun; Yelong, Peng; Tianli, Liu; Cheng, Chen; Yu, Ma; Zhengxiang, Hu; Xuepeng, Cai; Chuangfu, Chen

    2014-10-01

    Listeria monocytogenes (LM) is a zoonotic pathogen that widely adapts to various environments. Recent studies have found that noncoding RNAs (ncRNAs) play regulatory roles in LM responses to environmental stress. To understand the role of ncRNA rli87 in the response regulation, a rli87 deletion strain LM-Δrli87 was constructed by homologous recombination and tested for stress responses to high temperature, low temperature, high osmotic pressure, alcohol, acidity, alkaline and oxidative environments, along with LM EGD-e strain (control). The results showed that compared with LM EGD-e, LM-Δrli87 grew faster (P  0.05) in acidic and high osmatic pressure (10% NaCl) conditions. When cultured in medium containing 3.8% ethanol, the growth was not significantly different between the two strains (P > 0.05). When cultured at pH 9, they had similar growth rates in the first 5 h (P > 0.05), but the rates were significantly different after 6 h (P < 0.05). The expression of rsbV, rsbW, hpt, clpP, and ctsR was upregulated in LM-∆rli87 compared with LM EGD-e at pH 9, indicating that the rli87 gene regulated the expression of the five genes in alkaline environment. Our results suggest that the rli87 gene has an important regulatory role in LM's response to temperature (30 and 42 °C), alkaline stresses. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Analysis of low temperature-induced genes (LTIG) in wine yeast during alcoholic fermentation.

    Science.gov (United States)

    Chiva, Rosana; López-Malo, Maria; Salvadó, Zoel; Mas, Albert; Guillamón, Jósé Manuel

    2012-11-01

    Fermentations carried out at low temperatures, that is, 10-15 °C, not only enhance the production and retention of flavor volatiles, but also increase the chances of slowing or arresting the process. In this study, we determined the transcriptional activity of 10 genes that were previously reported as induced by low temperatures and involved in cold adaptation, during fermentation with the commercial wine yeast strain QA23. Mutant and overexpressing strains of these genes were constructed in a haploid derivative of this strain to determine the importance of these genes in growth and fermentation at low temperature. In general, the deletion and overexpression of these genes did affect fermentation performance at low temperature. Most of the mutants were unable to complete fermentation, while overexpression of CSF1, HSP104, and TIR2 decreased the lag phase, increased the fermentation rate, and reached higher populations than that of the control strain. Another set of overexpressing strains were constructed by integrating copies of these genes in the delta regions of the commercial wine strain QA23. These new stable overexpressing strains again showed improved fermentation performance at low temperature, especially during the lag and exponential phases. Our results demonstrate the convenience of carrying out functional analysis in commercial strains and in an experimental set-up close to industrial conditions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Local and global responses in complex gene regulation networks

    Science.gov (United States)

    Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro

    2009-04-01

    An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.

  8. Cellular unfolded protein response against viruses used in gene therapy

    Directory of Open Access Journals (Sweden)

    Dwaipayan eSen

    2014-05-01

    Full Text Available Viruses are excellent vehicles for gene therapy due to their natural ability to infect and deliver the cargo to specific tissues with high efficiency. Although such vectors are usually ‘gutted’ and are replication defective, they are subjected to clearance by the host cells by immune recognition and destruction. Unfolded protein response (UPR is a naturally evolved cyto-protective signaling pathway which is triggered due to endoplasmic reticulum (ER stress caused by accumulation of unfolded/misfolded proteins in its lumen. The UPR signaling consists of three signaling pathways, namely PKR-like ER kinase, activating transcription factor 6, and inositol-requiring protein-1. Once activated, UPR triggers the production of ER molecular chaperones and stress response proteins to help reduce the protein load within the ER. This occurs by degradation of the misfolded proteins and ensues in the arrest of protein translation machinery. If the burden of protein load in ER is beyond its processing capacity, UPR can activate pro-apoptotic pathways or autophagy leading to cell death. Viruses are naturally evolved in hijacking the host cellular translation machinery to generate a large amount of proteins. This phenomenon disrupts ER homeostasis and leads to ER stress. Alternatively, in the case of gutted vectors used in gene therapy, the excess load of recombinant vectors administered and encountered by the cell can trigger UPR. Thus, in the context of gene therapy, UPR becomes a major roadblock that can potentially trigger inflammatory responses against the vectors and reduce the efficiency of gene transfer.

  9. Temperature affects sexual maturation through the control of kisspeptin, kisspeptin receptor, GnRH and GTH subunit gene expression in the grass puffer during the spawning season.

    Science.gov (United States)

    Shahjahan, Md; Kitahashi, Takashi; Ando, Hironori

    2017-03-01

    Water temperature is an environmental factor of primary importance that influences reproductive function in fish. To understand the molecular and physiological mechanisms underlying the regulation of reproduction by temperature, we examined changes in expression of genes encoding kisspeptin (kiss2), kisspeptin receptor (kiss2r) and three gonadotropin-releasing hormones (gnrh1, gnrh2 and gnrh3) in the brain and genes encoding gonadotropin (GTH) subunits (gpa, fshb and lhb) in the pituitary of grass puffer exposed to a low temperature (14°C), normal temperature (21°C) and high temperature (28°C) for 7days. In addition, the plasma levels of cortisol were examined after exposed to three temperature conditions. The gonadosomatic index was significantly decreased in both low and high temperature conditions. The levels of kiss2 and kiss2r mRNAs were significantly decreased at both low and high temperature conditions compared to normal temperature (control) condition. gnrh1 but not gnrh2 were significantly decreased in both temperature conditions, while gnrh3 showed a decreasing tendency in low temperature. Consequently, the levels of fshb and lhb mRNAs were significantly decreased in both low and high temperature conditions. Interestingly, the plasma levels of cortisol were significantly increased in low temperature but remain unchanged in high temperature, suggesting that the fish were under stress in the low temperature conditions but not in the high temperature conditions. Taken together, the present results indicate that anomalous temperature have an inhibitory effect on reproductive function through suppressing kiss2/kiss2r/gnrh1/fshb and lhb expression and these changes may occur in a normal physiological response as well as in a malfunctional stress response. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Pinctada margaritifera responses to temperature and pH: Acclimation capabilities and physiological limits

    Science.gov (United States)

    Le Moullac, Gilles; Soyez, Claude; Latchere, Oihana; Vidal-Dupiol, Jeremie; Fremery, Juliette; Saulnier, Denis; Lo Yat, Alain; Belliard, Corinne; Mazouni-Gaertner, Nabila; Gueguen, Yannick

    2016-12-01

    The pearl culture is one of the most lucrative aquacultures worldwide. In many South Pacific areas, it depends on the exploitation of the pearl oyster Pinctada margaritifera and relies entirely on the environmental conditions encountered in the lagoon. In this context, assessing the impact of climatic stressors, such as global warming and ocean acidification, on the functionality of the resource in terms of renewal and exploitation is fundamental. In this study, we experimentally addressed the impact of temperature (22, 26, 30 and 34 °C) and partial pressure of carbon dioxide pCO2 (294, 763 and 2485 μatm) on the biomineralization and metabolic capabilities of pearl oysters. While the energy metabolism was strongly dependent on temperature, results showed its independence from pCO2 levels; no interaction between temperature and pCO2 was revealed. The energy metabolism, ingestion, oxygen consumption and, hence, the scope for growth (SFG) were maximised at 30 °C and dramatically fell at 34 °C. Biomineralization was examined through the expression measurement of nine mantle's genes coding for shell matrix proteins involved in the formation of calcitic prisms and/or nacreous shell structures; significant changes were recorded for four of the nine (Pmarg-Nacrein A1, Pmarg-MRNP34, Pmarg-Prismalin 14 and Pmarg-Aspein). These changes showed that the maximum and minimum expression of these genes was at 26 and 34 °C, respectively. Surprisingly, the modelled thermal optimum for biomineralization (ranging between 21.5 and 26.5 °C) and somatic growth and reproduction (28.7 °C) appeared to be significantly different. Finally, the responses to high temperatures were contextualised with the Intergovernmental Panel on Climate Change (IPCC) projections, which highlighted that pearl oyster stocks and cultures would be severely threatened in the next decade.

  11. Responses of young maize plants to root temperatures

    NARCIS (Netherlands)

    Grobbelaar, W.P.

    1963-01-01

    The effect of root temperatures on growth, water uptake and ion uptake of the maize single cross K 64r X E 184 has been studied during the early vegetative phase in culture solution in temperature-controlled rooms. A root temperature range of 5°-40°C with 5°C increments, a

  12. Gene-expression profiling to predict responsiveness to immunotherapy.

    Science.gov (United States)

    Jamieson, N B; Maker, A V

    2017-03-01

    Recent clinical successes with immunotherapy have resulted in expanding indications for cancer therapy. To enhance antitumor immune responses, and to better choose specific strategies matched to patient and tumor characteristics, genomic-driven precision immunotherapy will be necessary. Herein, we explore the role that tumor gene-expression profiling (GEP) may have in the prediction of an immunotherapeutic response. Genetic markers associated with response to immunotherapy are addressed as they pertain to the tumor genomic landscape, the extent of DNA damage, tumor mutational load and tumor-specific neoantigens. Furthermore, genetic markers associated with resistance to checkpoint blockade and relapse are reviewed. Finally, the utility of GEP to identify new tumor types for immunotherapy and implications for combinatorial strategies are summarized.

  13. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  14. Importance of immune response genes in hemophilia A

    Directory of Open Access Journals (Sweden)

    Josiane Bazzo de Alencar

    2013-01-01

    Full Text Available Hemophilia A is a disease caused by a deficiency of coagulation factor VIII resulting from genetic inheritance linked to chromosome X. One treatment option is the administration of plasma or recombinant FVIII. However, some patients develop inhibitors or antibodies against this factor. Inhibitors are alloantibodies that bind to the epitope of factor VIII causing it to be recognized by the immune system as a foreign peptide. This is the most serious complication in hemophilia patients in respect to replacement therapy. Some studies have suggested that genetic factors influence the development of factor VIII inhibitors such as ethnicity, family history, mutations in the factor VIII gene and in genes of the immune system. The aim of this study was to conduct a literature review to assess the influence of genetic factors of immune response genes, especially genes of the major histocompatibility complex and cytokines, which may be related to the development of factor VIII inhibitors in hemophilia A patients. Understanding these risk factors will help to determine future differential treatment in the control and prevention of the development of inhibitors.

  15. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses.

    Science.gov (United States)

    Sun, Peipei; Mao, Yunxiang; Li, Guiyang; Cao, Min; Kong, Fanna; Wang, Li; Bi, Guiqi

    2015-06-17

    Pyropia yezoensis is a model organism often used to investigate the mechanisms underlying stress tolerance in intertidal zones. The digital gene expression (DGE) approach was used to characterize a genome-wide comparative analysis of differentially expressed genes (DEGs) that influence the physiological, developmental or biochemical processes in samples subjected to 4 treatments: high-temperature stress (HT), chilling stress (CS), freezing stress (FS) and normal temperature (NT). Equal amounts of total RNAs collected from 8 samples (two biological replicates per treatment) were sequenced using the Illumina/Solexa platform. Compared with NT, a total of 2202, 1334 and 592 differentially expressed unigenes were detected in HT, CS and FS respectively. Clustering analysis suggested P. yezoensis acclimates to low and high-temperature stress condition using different mechanisms: In heat stress, the unigenes related to replication and repair of DNA and protein processing in endoplasmic reticulum were active; however at low temperature stresses, unigenes related to carbohydrate metabolism and energy metabolism were active. Analysis of gene differential expression showed that four categories of DEGs functioning as temperature sensors were found, including heat shock proteins, H2A, histone deacetylase complex and transcription factors. Heat stress caused chloroplast genes down-regulated and unigenes encoding metacaspases up-regulated, which is an important regulator of PCD. Cold stress caused an increase in the expression of FAD to improve the proportion of polyunsaturated fatty acids. An up-regulated unigene encoding farnesyl pyrophosphate synthase was found in cold stress, indicating that the plant hormone ABA also played an important role in responding to temperature stress in P. yezoensis. The variation of amount of unigenes and different gene expression pattern under different temperature stresses indicated the complicated and diverse regulation mechanism in response to

  16. GFDD4-1 Gene Expression in Physcomitrella patens and Homologous Gene in Arabidopsis thaliana in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    DIAH RATNADEWI

    2005-12-01

    Full Text Available A number of abiotic stress responsive genes have been identified from various plant species through reverse genetic strategy. A group of genes are involved in plant responses to stress; they are activated by diverse stress conditions and through different mechanisms. One single gene can be induced by several different stress factors; on the other hand, a number of genes can be up-regulated by a single factor. In Physcomitrella patens, through Northern hybridization, the transcript level of the gene GFDD4-I was detected to be markedly increased by ABA, dehydration and cold, but not by salinity and osmotic stress. In Arabidopsis thaliana, a homologous gene to GFDD4-1 namely At2g47770, was confirmed to fulfill similar function as in P. patens: it is inducible by various abiotic stress treatments, i.e. ABA, dehydration, salinity, and cold. Inducible genes in response to abiotic stress factors may be responsible for plant tolerance to those factors.

  17. An investigation of gene-gene interactions in dose-response studies with Bayesian nonparametrics.

    Science.gov (United States)

    Beam, Andrew L; Motsinger-Reif, Alison A; Doyle, Jon

    2015-01-01

    Best practice for statistical methodology in cell-based dose-response studies has yet to be established. We examine the ability of MANOVA to detect trait-associated genetic loci in the presence of gene-gene interactions. We present a novel Bayesian nonparametric method designed to detect such interactions. MANOVA and the Bayesian nonparametric approach show good ability to detect trait-associated genetic variants under various possible genetic models. It is shown through several sets of analyses that this may be due to marginal effects being present, even if the underlying genetic model does not explicitly contain them. Understanding how genetic interactions affect drug response continues to be a critical goal. MANOVA and the novel Bayesian framework present a trade-off between computational complexity and model flexibility.

  18. Low temperature stress on the hematological parameters and HSP gene expression in the turbot Scophthalmus maximus

    Science.gov (United States)

    Ji, Liqin; Jiang, Keyong; Liu, Mei; Wang, Baojie; Han, Longjiang; Zhang, Mingming; Wang, Lei

    2016-05-01

    To study the effect of low temperature stress on hematological parameters and HSP gene expression in the turbot ( Scophthalmus maximus), water temperature was lowered rapidly from 18 to 1°C. During the cooling process, three individuals were removed from culture tanks at 18, 13, 8, 5, 3, and 1°C. Blood samples and tissues were taken from each individual, hematological indices and HSP gene expression in tissues were measured. The red blood cell count, white blood cell count, and hemoglobin concentration decreased significantly ( P fish.

  19. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress.

    Directory of Open Access Journals (Sweden)

    Wen Huang

    Full Text Available The Pacific white shrimp (Litopenaeus vannamei is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824 and Metabolic pathways (ko01100 were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress.

  20. Development of genomic resources for a thraustochytrid pathogen and investigation of temperature influences on gene expression.

    Science.gov (United States)

    Garcia-Vedrenne, Ana Elisa; Groner, Maya; Page-Karjian, Annie; Siegmund, Gregor-Fausto; Singhal, Sonia; Sziklay, Jamie; Roberts, Steven

    2013-01-01

    Understanding how environmental changes influence the pathogenicity and virulence of infectious agents is critical for predicting epidemiological patterns of disease. Thraustochytrids, part of the larger taxonomic class Labyrinthulomycetes, contain several highly pathogenic species, including the hard clam pathogen quahog parasite unknown (QPX). QPX has been associated with large-scale mortality events along the northeastern coast of North America. Growth and physiology of QPX is temperature-dependent, and changes in local temperature profiles influence pathogenicity. In this study we characterize the partial genome of QPX and examine the influence of temperature on gene expression. Genes involved in several biological processes are differentially expressed upon temperature change, including those associated with altered growth and metabolism and virulence. The genomic and transcriptomic resources developed in this study provide a foundation for better understanding virulence, pathogenicity and life history of thraustochytrid pathogens.

  1. A gene expression profile of the myocardial response to clenbuterol.

    Science.gov (United States)

    Lara-Pezzi, Enrique; Terracciano, Cesare M N; Soppa, Gopal K R; Smolenski, Ryszard T; Felkin, Leanne E; Yacoub, Magdi H; Barton, Paul J R

    2009-06-01

    Clenbuterol is currently being used as part of a clinical trial into a novel therapeutic approach for the treatment of end-stage heart failure. The purpose of this study was to determine the global pattern of myocardial gene expression in response to clenbuterol and to identify novel targets and pathways involved. Rats were treated with clenbuterol (n = 6) or saline (n = 6) for periods of 1, 3, 9, or 28 days. Rats treated for 28 days were also subject to continuous electrocardiogram analysis using implantable telemetry. RNA was extracted from rats at days 1 and 28 and used from microarray analysis, and further samples from rats at days 1, 3, 9, and 28 were used for analysis by real-time polymerase chain reaction. Clenbuterol treatment induced rapid development of cardiac hypertrophy with increased muscle mass at day 1 and elevated heart rate and QT interval throughout the 28-day period. Microarray analysis revealed a marked but largely transitory change in gene expression with 1,423 genes up-regulated and 964 genes down-regulated at day 1. Up-regulated genes revealed an unexpected association with angiogenesis and integrin-mediated cell adhesion and signaling. Moreover, direct treatment of endothelial cells cultured in vitro resulted in increased cell proliferation and tube formation. Our data show that clenbuterol treatment is associated with rapid cardiac hypertrophy and identify angiogenesis and integrin signaling as novel pathways of clenbuterol action. The data have implications both for our understanding of the physiologic hypertrophy induced by clenbuterol and for treatment of heart failure.

  2. Rheological Properties with Temperature Response Characteristics and a Mechanism of Solid-Free Polymer Drilling Fluid at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2016-12-01

    Full Text Available The rheological properties of drilling fluid have important effects during drilling in natural gas hydrate at low temperatures. The present study was performed using theoretical analysis. Experiments and micro-analyses were carried out to determine the rheological properties with temperature response characteristics and the mechanism involved in solid-free polymer drilling fluid (SFPDF at low temperatures when drilling in permafrost with natural gas hydrates (NGH. The curves of shear stress with the shear rates of three kinds of polymer drilling fluids, Semen Lepidii natural vegetable gum, polyacrylamide, and xanthan gum, were drawn. Then, statistical and related analyses of test data were performed using Matlab ver. 8.0. Through regression analysis, the Herschel–Bulkley model was used to characterize the rheological characteristics of SFPDF. On this basis, the laws regarding the rheological properties of the three kinds of SFPDF under changing temperatures were analyzed and rheological properties with temperature response state equations were established. Next, the findings of previous studies on rheological properties with temperature response characteristics of the SFPDF were reviewed. Finally, the rheological properties with temperature response mechanisms were assessed using scanning electron microscopy and infrared spectrum analysis.

  3. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils.

    Science.gov (United States)

    Jung, Jaejoon; Yeom, Jinki; Kim, Jisun; Han, Jiwon; Lim, Hyoun Soo; Park, Hyun; Hyun, Seunghun; Park, Woojun

    2011-12-01

    The microbial community (bacterial, archaeal, and fungi) and eight genes involved in the nitrogen biogeochemical cycle (nifH, nitrogen fixation; bacterial and archaeal amoA, ammonia oxidation; narG, nitrate reduction; nirS, nirK, nitrite reduction; norB, nitric oxide reduction; and nosZ, nitrous oxide reduction) were quantitatively assessed in this study, via real-time PCR with DNA extracted from three Antarctic soils. Interestingly, AOB amoA was found to be more abundant than AOA amoA in Antarctic soils. The results of microcosm studies revealed that the fungal and archaeal communities were diminished in response to warming temperatures (10 °C) and that the archaeal community was less sensitive to nitrogen addition, which suggests that those two communities are well-adapted to colder temperatures. AOA amoA and norB genes were reduced with warming temperatures. The abundance of only the nifH and nirK genes increased with both warming and the addition of nitrogen. NirS-type denitrifying bacteria outnumbered NirK-type denitrifiers regardless of the treatment used. Interestingly, dramatic increases in both NirS and NirK-types denitrifiers were observed with nitrogen addition. NirK types increase with warming, but NirS-type denitrifiers tend to be less sensitive to warming. Our findings indicated that the Antarctic microbial nitrogen cycle could be dramatically altered by temperature and nitrogen, and that warming may be detrimental to the ammonia-oxidizing archaeal community. To the best of our knowledge, this is the first report to investigate genes associated with each process of the nitrogen biogeochemical cycle in an Antarctic terrestrial soil environment. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Parallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in response to temperature.

    Science.gov (United States)

    Bradbury, Ian R; Hubert, Sophie; Higgins, Brent; Borza, Tudor; Bowman, Sharen; Paterson, Ian G; Snelgrove, Paul V R; Morris, Corey J; Gregory, Robert S; Hardie, David C; Hutchings, Jeffrey A; Ruzzante, Daniel E; Taggart, Chris T; Bentzen, Paul

    2010-12-22

    Despite the enormous economic and ecological importance of marine organisms, the spatial scales of adaptation and biocomplexity remain largely unknown. Yet, the preservation of local stocks that possess adaptive diversity is critical to the long-term maintenance of productive stable fisheries and ecosystems. Here, we document genomic evidence of range-wide adaptive differentiation in a broadcast spawning marine fish, Atlantic cod (Gadus morhua), using a genome survey of single nucleotide polymorphisms. Of 1641 gene-associated polymorphisms examined, 70 (4.2%) tested positive for signatures of selection using a Bayesian approach. We identify a subset of these loci (n=40) for which allele frequencies show parallel temperature-associated clines (pAtlantic. Temperature associations were robust to the statistical removal of geographic distance or latitude effects, and contrasted 'neutral' loci, which displayed no temperature association. Allele frequencies at temperature-associated loci were significantly correlated, spanned three linkage groups and several were successfully annotated supporting the involvement of multiple independent genes. Our results are consistent with the evolution and/or selective sweep of multiple genes in response to ocean temperature, and support the possibility of a new conservation paradigm for non-model marine organisms based on genomic approaches to resolving functional and adaptive diversity.

  5. Seasonal differences in human responses to increasing temperatures

    DEFF Research Database (Denmark)

    Kitazawa, Sachie; Andersen, Rune Korsholm; Wargocki, Pawel

    2014-01-01

    to be sleepier. Heart rate slightly increased during exposure, and SpO2 and ETCO2 began to decrease while core temperature started to increase. Performance of Tsai-partington test and addition test improved during exposures due to learning though lesser in winter. Results show negative effects of the temperature......Experiments were conducted in late summer and winter with 80 young and elderly Danish subjects exposed for 3.5 hours in a climate chamber to the temperature increasing from 24°C to 35.2°C at a rate of 3.7K/h. Psychological and physiological measurements were performed during exposure and subjects...... with increasing temperature. Difficulty to concentrate increased with increased temperature and the self-estimated ability to perform work decreased; subjects reported being sleepier. Severity of headache and difficulty to concentrate was in winter slightly but systematically higher, subjects reporting also...

  6. The effects of temperature changes on retinal ganglion cell responses to electrical stimulation.

    Science.gov (United States)

    Maturana, Matias I; Apollo, Nicholas V; Garrett, David J; Kameneva, Tatiana; Meffin, Hamish; Ibbotson, Michael R; Cloherty, Shaun L; Grayden, David B

    2015-01-01

    Little is known about how the retina's response to electrical stimulation is modified by temperatures. In vitro experiments are often used to inform in vivo studies, hence it is important to understand what changes occur at physiological temperature. To investigate this, we recorded from eight RGCs in vitro at three temperatures; room temperature (24°C), 30°C and 34°C. Results show that response latencies and thresholds are reduced, bursting spike rates in response to stimulation increases, and the spiking becomes more consistently locked to the stimulus at higher temperatures.

  7. Development temperature has persistent effects on muscle growth responses in gilthead sea bream.

    Science.gov (United States)

    Garcia de la serrana, Daniel; Vieira, Vera L A; Andree, Karl B; Darias, Maria; Estévez, Alicia; Gisbert, Enric; Johnston, Ian A

    2012-01-01

    Initially we characterised growth responses to altered nutritional input at the transcriptional and tissue levels in the fast skeletal muscle of juvenile gilthead sea bream. Fish reared at 21-22°C (range) were fed a commercial diet at 3% body mass d(-1) (non-satiation feeding, NSF) for 4 weeks, fasted for 4d (F) and then fed to satiation (SF) for 21d. 13 out of 34 genes investigated showed consistent patterns of regulation between nutritional states. Fasting was associated with a 20-fold increase in MAFbx, and a 5-fold increase in Six1 and WASp expression, which returned to NSF levels within 16h of SF. Refeeding to satiation was associated with a rapid (growth factors FGF6 and IGF1 increased 6.0 and 4.5-fold within 16 h and 24 h of refeeding respectively. The average growth in diameter of fast muscle fibres was checked with fasting and significant fibre hypertrophy was only observed after 13d and 21d SF. To investigate developmental plasticity in growth responses we used the same experimental protocol with fish reared at either 17.5-18.5°C (range) (LT) or 21-22°C (range) (HT) to metamorphosis and then transferred to 21-22°C. There were persistent effects of development temperature on muscle growth patterns with 20% more fibres of lower average diameter in LT than HT group of similar body size. Altering the nutritional input to the muscle to stimulate growth revealed cryptic changes in the expression of UNC45 and Hsp90α with higher transcript abundance in the LT than HT groups, whereas there were no differences in the expression of MAFbx and Six1. It was concluded that myogenesis and gene expression patterns during growth are not fixed, but can be modified by temperature during the early stages of the life cycle.

  8. Gene Expression Modifications by Temperature-Toxicants Interactions in Caenorhabditis elegans

    NARCIS (Netherlands)

    Vinuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2011-01-01

    Although organophosphorus pesticides (OP) share a common mode of action, there is increased awareness that they elicit a diverse range of gene expression responses. As yet however, there is no clear understanding of these responses and how they interact with ambient environmental conditions. In the

  9. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations

    KAUST Repository

    Veilleux, Heather D

    2017-12-07

    Reproduction in marine fish is generally tightly linked with water temperature. Consequently, when adults are exposed to projected future ocean temperatures, reproductive output of many species declines precipitously. Recent research has shown that in the common reef fish, Acanthochromis polyacanthus, step-wise exposure to higher temperatures over two generations (parents: +1.5°C, offspring: +3.0°C) can improve reproductive output in the F2 generation compared to F2 fish that have experienced the same high temperatures over two generations (F1 parents: +3.0°C, F2 offspring: +3.0°C). To investigate how a step-wise increase in temperature between generations improved reproductive capacity, we tested the expression of well-known teleost reproductive genes in the brain and gonads of F2 fish using quantitative reverse transcription PCR and compared it among control (+0.0°C for two generations), developmental (+3.0°C in second generation only), step (+1.5°C in first generation and +3.0°C in second generation), and transgenerational (+3.0°C for two generations) treatments. We found that levels of gonadotropin receptor gene expression (Fshr and Lhcgr) in the testes were reduced in developmental and transgenerational temperature treatments, but were similar to control levels in the step treatment. This suggests Fshr and Lhcgr may be involved in regulating male reproductive capacity in A. polyacanthus. In addition, lower Fshb expression in the brain of females in all temperature treatments compared to control, suggests that Fshb expression, which is involved in vitellogenesis, is sensitive to high temperatures. Our results help elucidate key genes that facilitate successful reproduction in reef fishes when they experience a gradual increase in temperature across generations consistent with the trajectory of climate change.

  10. Strong responses of Drosophila melanogaster microbiota to developmental temperature

    DEFF Research Database (Denmark)

    Moghadam, Neda N; Thorshauge, Pia Mai; Kristensen, Torsten N

    2017-01-01

    tolerance and microbial community of Drosophila melanogaster. We also developed a bacterial transplantation protocol in order to examine the possibility of reshaping the host bacterial composition and assessed its influence on the thermotolerance phenotype. We found that the temperature during development...... affected thermal tolerance and the microbial composition of male D. melanogaster. Flies that developed at low temperature (13°C) were the most cold resistant and showed the highest abundance of Wolbachia, while flies that developed at high temperature (31°C) were the most heat tolerant and had the highest...

  11. A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress.

    Science.gov (United States)

    He, Xueying; Sambe, Mame Abdou Nahr; Zhuo, Chunliu; Tu, Qinghua; Guo, Zhenfei

    2015-04-01

    Temperature-induced lipocalins (TIL) are plasmalemma-localized proteins and responsive to environmental stresses. Physiological functions of MfTIL1 from Medicago sativa subsp. falcata (L.) Arcang. (hereafter falcata), a forage legume with cold and drought tolerance, were investigated in this study. MfTIL1 expression was greatly induced by 4-96 h of cold treatment, while transcript levels of the orthologs in Medicago truncatula, a model legume plant with lower cold tolerance than falcata, were reduced or not altered within 48-96 h. MfTIL1 expression was not responsive to dehydration and salinity. Compared to the wild type, transgenic tobacco plants overexpressing MfTIL1 had lower temperature (LT50) that resulted in 50 % lethal and elevated survival rate in response to freezing, elevated F v/F m and decreased ion leakage after treatments with chilling, high light and methyl viologen (MV). H2O2 and O2 (-) were less accumulated in transgenic plants than in the wild type after treatments with chilling, high light and MV, while antioxidant enzyme activities showed no difference between the two types of plants prior to or following treatments. Higher transcript levels of NtDREB3 and NtDREB4 genes were observed in transgenic plants than in the wild type under non-stressed conditions, but higher transcript levels of NtDREB1, NtDREB2, NtDREB4 and NtCOR15a genes under chilling conditions. It is suggested that MfTIL1 plays an important role in plant tolerance to cold and oxidative stress through promoted scavenging of reactive oxygen species and up-regulating expression of multiple cold responsive genes.

  12. Greenland temperature response to climate forcing during the last deglaciation.

    Science.gov (United States)

    Buizert, Christo; Gkinis, Vasileios; Severinghaus, Jeffrey P; He, Feng; Lecavalier, Benoit S; Kindler, Philippe; Leuenberger, Markus; Carlson, Anders E; Vinther, Bo; Masson-Delmotte, Valérie; White, James W C; Liu, Zhengyu; Otto-Bliesner, Bette; Brook, Edward J

    2014-09-05

    Greenland ice core water isotopic composition (δ(18)O) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional δ(18)O interpretation, the Younger Dryas period was 4.5° ± 2°C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9° to 14°C) than in the northwest (5° to 9°C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon. Copyright © 2014, American Association for the Advancement of Science.

  13. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    National Research Council Canada - National Science Library

    Dalimus, Zaini

    2014-01-01

    .... If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature...

  14. Control of target gene specificity during metamorphosis by the steroid response gene E93.

    Science.gov (United States)

    Mou, Xiaochun; Duncan, Dianne M; Baehrecke, Eric H; Duncan, Ian

    2012-02-21

    Hormonal control of sexual maturation is a common feature in animal development. A particularly dramatic example is the metamorphosis of insects, in which pulses of the steroid hormone ecdysone drive the wholesale transformation of the larva into an adult. The mechanisms responsible for this transformation are not well understood. Work in Drosophila indicates that the larval and adult forms are patterned by the same underlying sets of developmental regulators, but it is not understood how the same regulators pattern two distinct forms. Recent studies indicate that this ability is facilitated by a global change in the responsiveness of target genes during metamorphosis. Here we show that this shift is controlled in part by the ecdysone-induced transcription factor E93. Although long considered a dedicated regulator of larval cell death, we find that E93 is expressed widely in adult cells at the pupal stage and is required for many patterning processes at this time. To understand the role of E93 in adult patterning, we focused on a simple E93-dependent process, the induction of the Dll gene within bract cells of the pupal leg by EGF receptor signaling. In this system, we show that E93 functions to cause Dll to become responsive to EGF receptor signaling. We demonstrate that E93 is both necessary and sufficient for directing this switch. E93 likely controls the responsiveness of many other target genes because it is required broadly for patterning during metamorphosis. The wide conservation of E93 orthologs suggests that similar mechanisms control life-cycle transitions in other organisms, including vertebrates.

  15. INFLUENCE OF TEMPERATURE ON AN ESTROGEN-RESPONSIVE RAINBOW TROUT CELL TRANSFECTION ASSAY

    Science.gov (United States)

    One uncertainty in extrapolating estrogenic effects in mammalian systems to those in fish and wildlife is the influence that temperature has on these effects. A reporter gene assay in cultured rainbow trout cell lines was used to determine the influence of temperature on the exp...

  16. Combined effect of temperature and ammonia on molecular response and survival of the freshwater crustacean Gammarus pulex.

    Science.gov (United States)

    Henry, Y; Piscart, C; Charles, S; Colinet, H

    2017-03-01

    Freshwater ecosystems are experiencing mounting pressures from agriculture, urbanization, and climate change, which could drastically impair aquatic biodiversity. As nutrient inputs increase and temperatures rise, ammonia (NH 3 ) concentration is likely to be associated with stressful temperatures. To investigate the interaction between NH 3 and temperature on aquatic invertebrate survival, we performed a factorial experiment on the survival and molecular response of Gammarus pulex, with temperature (10, 15, 20, and 25°C) and NH 3 (0, 0.5, 1, 2, 3, and 4mg NH 3 /L) treatments. We observed an unexpected antagonistic interaction between temperature and NH 3 concentration, meaning survival in the 4mg NH 3 /L treatment was higher at 25°C than at the control temperature of 10°C. A toxicokinetic-toxicodynamic (TK-TD) model was built to describe this antagonistic interaction. While the No Effect Concentration showed no significant variation across temperatures, the 50% lethal concentration at the end of the experiment increased from 2.7 (2.1-3.6) at 10°C to 5.5 (3.5- 23.4) mg NH 3 /L at 25°C. Based on qPCR data, we associated these survival patterns to variations in the expression of the hsp70 gene, a generic biomarker of stress. However, though there was a 14-fold increase in hsp70 mRNA expression for gammarids exposed to 25°C compared to controls, NH 3 concentration had no effect on hsp70 mRNA synthesis across temperatures. Our results demonstrate that the effects of combined environmental stressors, like temperature and NH 3 , may strongly differ from simple additive effects, and that stress response to temperature can actually increase resilience to nutrient pollution in some circumstances. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  18. Identification and Expression Profile of CYPome in Perennial Ryegrass and Tall Fescue in Response to Temperature Stress

    Directory of Open Access Journals (Sweden)

    Xiang Tao

    2017-11-01

    Full Text Available Plant cytochrome P450s are involved in a wide range of biosynthetic reactions that generate various biomolecules, including a variety of defensive compounds. Perennial ryegrass (Lolium perenne and tall fescue (Festuca arundinacea are two major species of turf and forage grasses that usually experience low temperature below −10°C and high temperature over 38°C around the world. In this study, we re-analyzed transcriptome of perennial ryegrass and tall fescue treated with heat and cold stress. Thus, we can evaluate P450 composition in these species and confirm whether P450 genes response to temperature stress. We identified 277 and 319 P450 transcripts with open reading frames larger than 300 bp, respectively. These P450 transcripts were mainly classed in the CYP71, 51, 94, 89, 72, and 734 families. In perennial ryegrass and tall fescue, a total of 66 and 62 P450 transcripts were up-regulated, and 65 and 117 transcripts were down-regulated when subjected to heat stress, respectively. When exposed to cold stress, 60 and 73 transcripts were up-regulated, and 59 and 77 transcripts were down-regulated in perennial ryegrass and tall fescue. Among these differentially expressed transcripts, 64 and 87 of them showed expression level changes that followed the same trend, and these temperature-responsive genes primarily belong to the CYP71, 72 and 99 families. Besides, heat and cold stress altered phenylalanine and brassinosteroid involved P450 transcripts in perennial ryegrass and tall fescue. P450 transcripts involved in the metabolism of these compounds showed a strong response to heat and/or cold stress, indicating that they likely play important roles in temperature acclimation in these two species. The CYPome provide a genetic base for the future functional studies, as well as genetic studies that may improve stress tolerance for perennial ryegrass and tall fescue to extreme temperature.

  19. Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.)

    Science.gov (United States)

    Park, Hyun Ji; Jung, Won Yong; Lee, Sang Sook; Song, Jun Ho; Kwon, Suk-Yoon; Kim, HyeRan; Kim, ChulWook; Ahn, Jun Cheul; Cho, Hye Sun

    2013-01-01

    Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL), “HO”, and a heat-sensitive cabbage line (HSCL), “JK”, by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR) to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13) were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS). Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress. PMID:23736694

  20. Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-06-01

    Full Text Available Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL, “HO”, and a heat-sensitive cabbage line (HSCL, “JK”, by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13 were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS. Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress.

  1. Temperature and photoperiod responses of soybean embryos cultured in vitro

    Science.gov (United States)

    Raper, C. D. Jr; Patterson, R. P.; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    Temperature and photoperiod each have direct effects on growth rate of excised embryos of soybean (Glycine max (L.) Merrill). To determine if the effects of photoperiod are altered by temperature, embryos of 'Ransom II' were cultured in vitro at 18, 24, and 30 degrees C under photoperiod durations of 12 and 18 h at an irradiance of 9 W m-2 (700 to 850 nm) and a photosynthetic photon flux density of 58 micromoles m-2 s-1 (400 to 700 nm). Accumulation rates of fresh and dry weight were greater under 18-h than 12-h photoperiods over the entire range of temperature. Water content of the culture embryos was not affected by photoperiod but was greater at 18 and 30 than 24 degrees C. The accumulation rate of dry weight increased from 18 to 26 but declined at 30 degrees C.

  2. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.

  3. OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Barloy-Hubler Frédérique

    2008-12-01

    Full Text Available Abstract Background Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. Description In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. Conclusion OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software

  4. A temperature response function for development of the chrysanthemum (Chrysanthemum x morifolium Ramat.

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2004-01-01

    Full Text Available Developmental models can help growers to decide management practices, and to predict flowering and harvest time. Currently, a double exponential function is proposed as a generalized temperature response function for chrysanthemum. This function is not the most appropriate because its parameters lack biological meaning. The objective of this study was to develop a nonlinear temperature response function of chrysanthemum development that has parameters with biological meaning. The proposed function is a beta function with three parameters, the cardinal temperatures (minimum, optimum, and maximum temperatures for development, which were defined as 0, 22, and 35ºC. Published data of temperature response of development of three cultivars, which are independent data sets, were used to test the performance of the double exponential function and the beta function. Results showed that the beta function is better than the double exponential function to describe the temperature response of chrysanthemum development.

  5. Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Catharine E Boothroyd

    2007-04-01

    Full Text Available Circadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions. There are marked differences in the biological functions represented by temperature-driven or circadian regulation. The set of temperature-entrained circadian transcripts overlaps significantly with a previously defined set of transcripts oscillating in response to a photocycle. In follow-up studies, all thermocycle-entrained circadian transcript rhythms also responded to light/dark entrainment, whereas some photocycle-entrained rhythms did not respond to temperature entrainment. Transcripts encoding the clock components Period, Timeless, Clock, Vrille, PAR-domain protein 1, and Cryptochrome were all confirmed to be rhythmic after entrainment to a daily thermocycle, although the presence of a thermocycle resulted in an unexpected phase difference between period and timeless expression rhythms at the transcript but not the protein level. Generally, transcripts that exhibit circadian rhythms both in response to thermocycles and photocycles maintained the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases of these transcripts indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. This interpretation is further supported by comparative analysis of the circadian phases observed for temperature-entrained and light-entrained circadian locomotor behavior. Taken

  6. Temperature response of soil respiration largely unaltered with experimental warming

    NARCIS (Netherlands)

    Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; Jiang, L.; Machmuller, M.B.; Mohan, J.; Panetta, A.M.; Reich, P.B.; Reinsch, S.; Wang, X.; Allison, S.D.; Bamminger, C.; Bridgham, S.; Collins, S.L.; de Dato, G.; Eddy, W.C.; Enquist, B.J.; Estiarte, M.; Harte, J.; Henderson, A.; Johnson, B.R.; Larsen, K.S.; Luo, Y.; Marhan, S.; Melillo, J.M.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Rastetter, E.; Reinmann, A.B.; Reynolds, L.L.; Schmidt, I.K.; Shaver, G.R.; Strong, A.L.; Suseela, V.; Tietema, A.

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific

  7. Transient response of high temperature PEM fuel cell

    Science.gov (United States)

    Peng, J.; Shin, J. Y.; Song, T. W.

    A transient three-dimensional, single-phase and non-isothermal numerical model of polymer electrolyte membrane (PEM) fuel cell with high operating temperature has been developed and implemented in computational fluid dynamic (CFD) code. The model accounts for transient convective and diffusive transport, and allows prediction of species concentration. Electrochemical charge double-layer effect is considered. Heat generation according to electrochemical reaction and ohmic loss are involved. Water transportation across membrane is ignored due to low water electro-osmosis drag force of polymer polybenzimidazole (PBI) membrane. The prediction shows transient in current density which overshoots (undershoots) the stabilized state value when cell voltage is abruptly decreased (increased). The result shows that the peak of overshoot (undershoot) is related with cathode air stoichiometric mass flow rate instead of anode hydrogen stoichiometric mass flow rate. Current is moved smoothly and there are no overshoot or undershoot with the influence of charge double-layer effect. The maximum temperature is located in cathode catalyst layer and both fuel cell average temperature and temperature deviation are increased with increasing of current load.

  8. Classification of temperature response in germination of Brassicas

    Science.gov (United States)

    Since soil temperature affects germination and emergence of canola (Brassica napus L.), mustard [B. juncea (L.) Czerniak. and Sinapsis alba L.], and camelina [Camelina sativa (L.) Crantz.], planting dates have to be adjusted to prevent crop failures. These crops can be used as biofuel feedstocks, a...

  9. Different patterns of transcriptomic response to high temperature ...

    African Journals Online (AJOL)

    Polyploidy is an important evolutionary force in plants and may have significant impact on plant breeding. In this study, expression changes between diploid and tetraploid Dioscorea zingiberensis C. H. under control and high temperature conditions were investigated by sequence-related amplified polymorphism ...

  10. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  11. Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications

    OpenAIRE

    Yohei Kotsuchibashi; Mitsuhiro Ebara; Takao Aoyagi; Ravin Narain

    2016-01-01

    The development of stimuli responsive polymers has progressed significantly with novel preparation techniques, which has allowed access to new materials with unique properties. Dual thermoresponsive (double temperature responsive) block copolymers are particularly of interest as their properties can change depending on the lower critical solution temperature (LCST) or upper critical solution temperature (UCST) of each segment. For instance, these block copolymers can change from being hydroph...

  12. Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae.

    Directory of Open Access Journals (Sweden)

    Sebastian N Politis

    Full Text Available Temperature is important for optimization of rearing conditions in aquaculture, especially during the critical early life history stages of fish. Here, we experimentally investigated the impact of temperature (16, 18, 20, 22 and 24°C on thermally induced phenotypic variability, from larval hatch to first-feeding, and the linked expression of targeted genes [heat shock proteins (hsp, growth hormone (gh and insulin-like growth factors (igf] associated to larval performance of European eel, Anguilla anguilla. Temperature effects on larval morphology and gene expression were investigated throughout early larval development (in real time from 0 to 18 days post hatch and at specific developmental stages (hatch, jaw/teeth formation, and first-feeding. Results showed that hatch success, yolk utilization efficiency, survival, deformities, yolk utilization, and growth rates were all significantly affected by temperature. In real time, increasing temperature from 16 to 22°C accelerated larval development, while larval gene expression patterns (hsp70, hsp90, gh and igf-1 were delayed at cold temperatures (16°C or accelerated at warm temperatures (20-22°C. All targeted genes (hsp70, hsp90, gh, igf-1, igf-2a, igf-2b were differentially expressed during larval development. Moreover, expression of gh was highest at 16°C during the jaw/teeth formation, and the first-feeding developmental stages, while expression of hsp90 was highest at 22°C, suggesting thermal stress. Furthermore, 24°C was shown to be deleterious (resulting in 100% mortality, while 16°C and 22°C (~50 and 90% deformities respectively represent the lower and upper thermal tolerance limits. In conclusion, the high survival, lowest incidence of deformities at hatch, high yolk utilization efficiency, high gh and low hsp expression, suggest 18°C as the optimal temperature for offspring of European eel. Furthermore, our results suggest that the still enigmatic early life history stages of

  13. The underestimated role of temperature-oxygen relationship in large-scale studies on size-to-temperature response.

    Science.gov (United States)

    Walczyńska, Aleksandra; Sobczyk, Łukasz

    2017-09-01

    The observation that ectotherm size decreases with increasing temperature (temperature-size rule; TSR) has been widely supported. This phenomenon intrigues researchers because neither its adaptive role nor the conditions under which it is realized are well defined. In light of recent theoretical and empirical studies, oxygen availability is an important candidate for understanding the adaptive role behind TSR. However, this hypothesis is still undervalued in TSR studies at the geographical level. We reanalyzed previously published data about the TSR pattern in diatoms sampled from Icelandic geothermal streams, which concluded that diatoms were an exception to the TSR. Our goal was to incorporate oxygen as a factor in the analysis and to examine whether this approach would change the results. Specifically, we expected that the strength of size response to cold temperatures would be different than the strength of response to hot temperatures, where the oxygen limitation is strongest. By conducting a regression analysis for size response at the community level, we found that diatoms from cold, well-oxygenated streams showed no size-to-temperature response, those from intermediate temperature and oxygen conditions showed reverse TSR, and diatoms from warm, poorly oxygenated streams showed significant TSR. We also distinguished the roles of oxygen and nutrition in TSR. Oxygen is a driving factor, while nutrition is an important factor that should be controlled for. Our results show that if the geographical or global patterns of TSR are to be understood, oxygen should be included in the studies. This argument is important especially for predicting the size response of ectotherms facing climate warming.

  14. A humidity shock leads to rapid, temperature dependent changes in coffee leaf physiology and gene expression.

    Science.gov (United States)

    Thioune, El-Hadji; McCarthy, James; Gallagher, Thomas; Osborne, Bruce

    2017-03-01

    Climate change is expected to increase the frequency of above-normal atmospheric water deficits contemporaneous with periods of high temperatures. Here we explore alterations in physiology and gene expression in leaves of Coffea canephora Pierre ex A. Froehner caused by a sharp drop in relative humidity (RH) at three different temperatures. Both stomatal conductance (gs) and CO2 assimilation (A) measurements showed that gs and A values fell quickly at all temperatures after the transfer to low RH.  However, leaf relative water content measurements indicated that leaves nonetheless experienced substantial water losses, implying that stomatal closure and/or resupply of water was not fast enough to stop excessive evaporative losses.  At 27 and 35 °C, upper leaves showed significant decreases in Fv/Fm compared with lower leaves, suggesting a stronger impact on photosystem II for upper leaves, while at 42 °C, both upper and lower leaves were equally affected. Quantitative gene expression analysis of transcription factors associated with conventional dehydration stress, and genes involved with abscisic acid signalling, such as CcNCED3, indicated temperature-dependent, transcriptional changes during the Humidity Shock ('HuS') treatments.  No expression was seen at 27 °C for the heat-shock gene CcHSP90-7, but it was strongly induced during the 42 °C 'HuS' treatment. Consistent with a proposal that important cellular damage occurred during the 42 °C 'HuS' treatment, two genes implicated in senescence were induced by this treatment. Overall, the data show that C. canephora plants subjected to a sharp drop in RH exhibit major, temperature-dependent alterations in leaf physiology and important changes in the expression of genes associated with abiotic stress and senescence. The results presented suggest that more detailed studies on the combined effects of low RH and high temperature are warranted. © The Author 2017. Published by Oxford University Press. All rights

  15. Development temperature has persistent effects on muscle growth responses in gilthead sea bream.

    Directory of Open Access Journals (Sweden)

    Daniel Garcia de la serrana

    Full Text Available Initially we characterised growth responses to altered nutritional input at the transcriptional and tissue levels in the fast skeletal muscle of juvenile gilthead sea bream. Fish reared at 21-22°C (range were fed a commercial diet at 3% body mass d(-1 (non-satiation feeding, NSF for 4 weeks, fasted for 4d (F and then fed to satiation (SF for 21d. 13 out of 34 genes investigated showed consistent patterns of regulation between nutritional states. Fasting was associated with a 20-fold increase in MAFbx, and a 5-fold increase in Six1 and WASp expression, which returned to NSF levels within 16h of SF. Refeeding to satiation was associated with a rapid (<24 h 12 to 17-fold increase in UNC45, Hsp70 and Hsp90α transcripts coding for molecular chaperones associated with unfolded protein response pathways. The growth factors FGF6 and IGF1 increased 6.0 and 4.5-fold within 16 h and 24 h of refeeding respectively. The average growth in diameter of fast muscle fibres was checked with fasting and significant fibre hypertrophy was only observed after 13d and 21d SF. To investigate developmental plasticity in growth responses we used the same experimental protocol with fish reared at either 17.5-18.5°C (range (LT or 21-22°C (range (HT to metamorphosis and then transferred to 21-22°C. There were persistent effects of development temperature on muscle growth patterns with 20% more fibres of lower average diameter in LT than HT group of similar body size. Altering the nutritional input to the muscle to stimulate growth revealed cryptic changes in the expression of UNC45 and Hsp90α with higher transcript abundance in the LT than HT groups, whereas there were no differences in the expression of MAFbx and Six1. It was concluded that myogenesis and gene expression patterns during growth are not fixed, but can be modified by temperature during the early stages of the life cycle.

  16. Transcriptomic and metabolic responses of Staphylococcus aureus exposed to supra-physiological temperatures

    Directory of Open Access Journals (Sweden)

    Proctor Richard A

    2009-04-01

    Full Text Available Abstract Background Previous evaluation by different molecular and physiological assays of Staphylococcus aureus (S. aureus responses to heat shock exposure yielded a still fragmentary view of the mechanisms determining bacterial survival or death at supra-physiological temperatures. This study analyzed diverse facets of S. aureus heat-shock adjustment by recording global transcriptomic and metabolic responses of bacterial cultures shifted for 10 min from 37°C to a sub-lethal (43°C or eventually lethal (48°C temperature. A relevant metabolic model of the combined action of specific stress response mechanisms with more general, energy-regulating metabolic pathways in heat-shocked S. aureus is presented. Results While S. aureus cultures shifted to 43°C or left at 37°C showed marginal differences in growth and survival rates, bacterial cultures exposed to 48°C showed a rapid growth arrest followed by a subsequent decline in viable counts. The most substantial heat shock-induced changes at both 43°C and 48°C occurred in transcript levels of HrcA- and CtsR-regulated genes, encoding classical chaperones DnaK and GroESL, and some Hsp100/Clp ATPases components, respectively. Other metabolic pathways up-regulated by S. aureus exposure at 48°C included genes encoding several enzymes coping with oxidative stress, and DNA damage, or/and impaired osmotic balance. Some major components of the pentose phosphate cycle and gluconeogenesis were also up-regulated, which reflected depletion of free glucose by bacterial cultures grown in Mueller-Hinton broth prior to heat shock. In contrast, most purine- and pyrimidine-synthesis pathway components and amino acyl-tRNA synthetases were down-regulated at 48°C, as well as arginine deiminase and major fermentative pathway components, such as alcohol, lactate and formate dehydrogenases. Despite the heat-induced, increased requirements for ATP-dependent macromolecular repair mechanisms combined with declining

  17. Plastic and Evolutionary Gene Expression Responses Are Correlated in European Grayling (Thymallus thymallus) Subpopulations Adapted to Different Thermal Environments.

    Science.gov (United States)

    Mäkinen, Hannu; Papakostas, Spiros; Vøllestad, Leif Asbjørn; Leder, Erica H; Primmer, Craig R

    2016-01-01

    Understanding how populations adapt to changing environmental conditions is a long-standing theme in evolutionary biology. Gene expression changes have been recognized as an important driver of local adaptation, but relatively little is known regarding the direction of change and in particular, about the interplay between plastic and evolutionary gene expression. We have previously shown that the gene expression profiles of European grayling (Thymallus thymallus) populations inhabiting different thermal environments include both plastic and evolutionary components. However, whether the plastic and evolutionary responses were in the same direction was not investigated in detail, nor was the identity of the specific genes involved. In this study, we show that the plastic changes in protein expression in response to different temperatures are highly correlated with the evolutionary response in grayling subpopulations adapted to different thermal environments. This finding provides preliminary evidence that the plastic response most likely facilitates adaptation during the early phases of colonization of thermal environments. The proteins that showed significant changes in expression level between warm and cold temperature treatments were mostly related to muscle development, which is consistent with earlier findings demonstrating muscle mass differentiation between cold and warm grayling populations. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Numerical Analysis of Transient Temperature Response of Soap Film

    Science.gov (United States)

    Tanaka, Seiichi; Tatesaku, Akihiro; Dantsuka, Yuki; Fujiwara, Seiji; Kunimine, Kanji

    2015-11-01

    Measurements of thermophysical properties of thin liquid films are important to understand interfacial phenomena due to film structures composed of amphiphilic molecules in soap film, phospholipid bilayer of biological cell and emulsion. A transient hot-wire technique for liquid films less than 1 \\upmu m thick such as soap film has been proposed to measure the thermal conductivity and diffusivity simultaneously. Two-dimensional heat conduction equations for a solid cylinder with a liquid film have been solved numerically. The temperature of a thin wire with liquid film increases steeply with its own heat generation. The feasibility of this technique is verified through numerical experiments for various thermal conductivities, diffusivities, and film thicknesses. Calculated results indicate that the increase in the volumetric average temperature of the thin wire sufficiently varies with the change of thermal conductivity and diffusivity of the soap film. Therefore, the temperature characteristics could be utilized to evaluate both the thermal conductivity and diffusivity using the Gauss-Newton method.

  19. Proteomic responses to elevated ocean temperature in ovaries of the ascidian Ciona intestinalis

    Directory of Open Access Journals (Sweden)

    Chelsea E. Lopez

    2017-07-01

    Full Text Available Ciona intestinalis, a common sea squirt, exhibits lower reproductive success at the upper extreme of the water temperatures it experiences in coastal New England. In order to understand the changes in protein expression associated with elevated temperatures, and possible response to global temperature change, we reared C. intestinalis from embryos to adults at 18°C (a temperature at which they reproduce normally at our collection site in Rhode Island and 22°C (the upper end of the local temperature range. We then dissected ovaries from animals at each temperature, extracted protein, and measured proteomic levels using shotgun mass spectrometry (LC-MS/MS. 1532 proteins were detected at a 1% false discovery rate present in both temperature groups by our LC-MS/MS method. 62 of those proteins are considered up- or down-regulated according to our statistical criteria. Principal component analysis shows a clear distinction in protein expression pattern between the control (18°C group and high temperature (22°C group. Similar to previous studies, cytoskeletal and chaperone proteins are upregulated in the high temperature group. Unexpectedly, we find evidence that proteolysis is downregulated at the higher temperature. We propose a working model for the high temperature response in C. intestinalis ovaries whereby increased temperature induces upregulation of signal transduction pathways involving PTPN11 and CrkL, and activating coordinated changes in the proteome especially in large lipid transport proteins, cellular stress responses, cytoskeleton, and downregulation of energy metabolism.

  20. Genome-Wide Analysis of the AP2/ERF Superfamily Genes and their Responses to Abiotic Stress in Medicago truncatula.

    Science.gov (United States)

    Shu, Yongjun; Liu, Ying; Zhang, Jun; Song, Lili; Guo, Changhong

    2015-01-01

    The AP2/ERF superfamily is a large, plant-specific transcription factor family that is involved in many important processes, including plant growth, development, and stress responses. Using Medicago truncatula genome information, we identified and characterized 123 putative AP2/ERF genes, which were named as MtERF1-123. These genes were classified into four families based on phylogenetic analysis, which is consistent with the results of other plant species. MtERF genes are distributed throughout all chromosomes but are clustered on various chromosomes due to genomic tandem and segmental duplication. Using transcriptome, high-throughput sequencing data, and qRT-PCR analysis, we assessed the expression patterns of the MtERF genes in tissues during development and under abiotic stresses. In total, 87 MtERF genes were expressed in plant tissues, most of which were expressed in specific tissues during development or under specific abiotic stress treatments. These results support the notion that MtERF genes are involved in developmental regulation and environmental responses in M. truncatula. Furthermore, a cluster of DREB subfamily members on chromosome 6 was induced by both cold and freezing stress, representing a positive gene regulatory response under low temperature stress, which suggests that these genes might contribute to freezing tolerance to M. truncatula. In summary, our genome-wide characterization, evolutionary analysis, and expression pattern analysis of MtERF genes in M. truncatula provides valuable information for characterizing the molecular functions of these genes and utilizing them to improve stress tolerance in plants.

  1. Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis.

    Science.gov (United States)

    Fedhila, Sinda; Msadek, Tarek; Nel, Patricia; Lereclus, Didier

    2002-10-01

    ClpP and ClpC are subunits of the Clp ATP-dependent protease, which is ubiquitous among prokaryotic and eukaryotic organisms. The role of these proteins in stress tolerance, stationary-phase adaptive responses, and virulence in many bacterial species has been demonstrated. Based on the amino acid sequences of the Bacillus subtilis clpC and clpP genes, we identified one clpC gene and two clpP genes (designated clpP1 and clpP2) in Bacillus thuringiensis. Predicted proteins ClpP1 and ClpP2 have approximately 88 and 67% amino acid sequence identity with ClpP of B. subtilis, respectively. Inactivation of clpC in B. thuringiensis impaired sporulation efficiency. The clpP1 and clpP2 mutants were both slightly susceptible to salt stress, whereas disruption of clpP2 negatively affected sporulation and abolished motility. Virulence of the clp mutants was assessed by injecting bacteria into the hemocoel of Bombyx mori larvae. The clpP1 mutant displayed attenuated virulence, which appeared to be related to its inability to grow at low temperature (25 degrees C), suggesting an essential role for ClpP1 in tolerance of low temperature. Microscopic examination of clpP1 mutant cells grown at 25 degrees C showed altered bacterial division, with cells remaining attached after septum formation. Analysis of lacZ transcriptional fusions showed that clpP1 was expressed at 25 and 37 degrees C during the entire growth cycle. In contrast, clpP2 was expressed at 37 degrees C but not at 25 degrees C, suggesting that ClpP2 cannot compensate for the absence of ClpP1 in the clpP1 mutant cells at low temperature. Our study demonstrates that ClpP1 and ClpP2 control distinct cellular regulatory pathways in B. thuringiensis.

  2. Orexinergic neurotransmission in temperature responses to methamphetamine and stress: mathematical modeling as a data assimilation approach.

    Science.gov (United States)

    Behrouzvaziri, Abolhassan; Fu, Daniel; Tan, Patrick; Yoo, Yeonjoo; Zaretskaia, Maria V; Rusyniak, Daniel E; Molkov, Yaroslav I; Zaretsky, Dmitry V

    2015-01-01

    Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth). In experiments in rats, SB-334867 (SB), an antagonist of orexin receptors (OX1R), at a dose of 10 mg/kg decreases late temperature responses (t > 60 min) to an intermediate dose of Meth (5 mg/kg). A higher dose of SB (30 mg/kg) attenuates temperature responses to low dose (1 mg/kg) of Meth and to stress. In contrast, it significantly exaggerates early responses (t high doses (5 and 10 mg/kg) of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult. We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD). Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods.

  3. Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression.

    Science.gov (United States)

    Heckel, Brynn C; Tomlinson, Amelia D; Morton, Elise R; Choi, Jeong-Hyeon; Fuqua, Clay

    2014-09-01

    Agrobacterium tumefaciens is a facultative plant pathogen and the causative agent of crown gall disease. The initial stage of infection involves attachment to plant tissues, and subsequently, biofilms may form at these sites. This study focuses on the periplasmic ExoR regulator, which was identified based on the severe biofilm deficiency of A. tumefaciens exoR mutants. Genome-wide expression analysis was performed to elucidate the complete ExoR regulon. Overproduction of the exopolysaccharide succinoglycan is a dramatic phenotype of exoR mutants. Comparative expression analyses revealed that the core ExoR regulon is unaffected by succinoglycan synthesis. Several findings are consistent with previous observations: genes involved in succinoglycan biosynthesis, motility, and type VI secretion are differentially expressed in the ΔexoR mutant. In addition, these studies revealed new functional categories regulated by ExoR, including genes related to virulence, conjugation of the pAtC58 megaplasmid, ABC transporters, and cell envelope architecture. To address how ExoR exerts a broad impact on gene expression from its periplasmic location, a genetic screen was performed to isolate suppressor mutants that mitigate the exoR motility phenotype and identify downstream components of the ExoR regulatory pathway. This suppression analysis identified the acid-sensing two-component system ChvG-ChvI, and the suppressor mutant phenotypes suggest that all or most of the characteristic exoR properties are mediated through ChvG-ChvI. Subsequent analysis indicates that exoR mutants are simulating a response to acidic conditions, even in neutral media. This work expands the model for ExoR regulation in A. tumefaciens and underscores the global role that this regulator plays on gene expression. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions

    Science.gov (United States)

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.; hide

    2017-01-01

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  5. On the Response of Ozone to Temperature at Low NOx Concentrations

    Science.gov (United States)

    Romer, P.; Duffey, K.; Wooldridge, P. J.; Brune, W. H.; Miller, D. O.; Feiner, P. A.; Zhang, L.; Goldstein, A. H.; Olson, K. F.; Misztal, P. K.; De Gouw, J. A.; Koss, A.; Edgerton, E. S.; Cohen, R. C.

    2016-12-01

    The relationship between ozone and temperature is an important tool for predicting how concentrations of ozone are likely to change as a function of climate and of precursor emissions. This relationship and the mechanisms that control it under low-NOx conditions remain poorly understood, especially in forested areas with high concentrations of biogenic volatile organic compounds. Here we combine detailed in-situ measurements from the 2013 Southern Oxidant and Aerosol Study (SOAS) in rural Alabama with long-term observations from the same location to assess the response of O3 to temperature at low NOx and to evaluate the chemical mechanisms that contribute to this response. We find that the response of local ozone production to temperature is controlled by temperature dependent changes in NOx chemistry. We analyze how the mechanisms that control this response vary with the concentration of NOx and compare the observed relationship between ozone concentration and temperature to the calculated changes in local ozone production.

  6. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Jørgensen, Leif Wagner

    2002-01-01

    of 28-ml test tubes. An electric plate heats one end of the TGI end and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA...

  7. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction.

    Directory of Open Access Journals (Sweden)

    Takeshi Matsui

    2016-07-01

    Full Text Available How combinations of gene-environment interactions collectively give rise to genotype-environment interactions is not fully understood. To shed light on this problem, we genetically dissected an environment-specific poor growth phenotype in a cross of two budding yeast strains. This phenotype is detectable when certain segregants are grown on ethanol at 37°C ('E37', a condition that differs from the standard culturing environment in both its carbon source (ethanol as opposed to glucose and temperature (37°C as opposed to 30°C. Using recurrent backcrossing with phenotypic selection, we identified 16 contributing loci. To examine how these loci interact with each other and the environment, we focused on a subset of four loci that together can lead to poor growth in E37. We measured the growth of all 16 haploid combinations of alleles at these loci in all four possible combinations of carbon source (ethanol or glucose and temperature (30 or 37°C in a nearly isogenic population. This revealed that the four loci act in an almost entirely additive manner in E37. However, we also found that these loci have weaker effects when only carbon source or temperature is altered, suggesting that their effect magnitudes depend on the severity of environmental perturbation. Consistent with such a possibility, cloning of three causal genes identified factors that have unrelated functions in stress response. Thus, our results indicate that polymorphisms in stress response can show effects that are intensified by environmental stress, thereby resulting in major genotype-environment interactions when multiple of these variants co-occur.

  8. Effects of temperature on gene expression in embryos of the coral Montastraea faveolata.

    KAUST Repository

    Voolstra, Christian R.

    2009-12-23

    Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. This study used cDNA microarrays to investigate transcriptional effects of thermal stress in embryos of the coral Montastraea faveolata. Embryos were exposed to 27.5 degrees C, 29.0 degrees C, and 31.5 degrees C directly after fertilization. Differences in gene expression were measured after 12 and 48 hours.

  9. Extended exposure to elevated temperature affects escape response behaviour in coral reef fishes

    Directory of Open Access Journals (Sweden)

    Donald T. Warren

    2017-08-01

    Full Text Available The threat of predation, and the prey’s response, are important drivers of community dynamics. Yet environmental temperature can have a significant effect on predation avoidance techniques such as fast-start performance observed in marine fishes. While it is known that temperature increases can influence performance and behaviour in the short-term, little is known about how species respond to extended exposure during development. We produced a startle response in two species of damselfish, the lemon damsel Pomacentrus moluccensis, and the Ambon damselfish Pomacentrus amboinensis, by the repeated use of a drop stimulus. We show that the length of thermal exposure of juveniles to elevated temperature significantly affects this escape responses. Short-term (4d exposure to warmer temperature affected directionality and responsiveness for both species. After long-term (90d exposure, only P. moluccensis showed beneficial plasticity, with directionality returning to control levels. Responsiveness also decreased in both species, possibly to compensate for higher temperatures. There was no effect of temperature or length of exposure on latency to react, maximum swimming speed, or escape distance suggesting that the physical ability to escape was maintained. Evidence suggests that elevated temperature may impact some fish species through its effect on the behavioural responses while under threat rather than having a direct influence on their physical ability to perform an effective escape response.

  10. Temperature-responsive compounds as in situ gelling biomedical materials.

    Science.gov (United States)

    Moon, Hyo Jung; Ko, Du Young; Park, Min Hee; Joo, Min Kyung; Jeong, Byeongmoon

    2012-07-21

    Aqueous solutions that undergo sol-to-gel transition as the temperature increases have been extensively studied during the last decade. The material can be designed by controlling the hydrophilic and hydrophobic balance of the material. Basically, the molecular weight of the hydrophilic block and hydrophobic block of a compound should be fine-tuned from the synthetic point of view. In addition, stereochemistry, microsequence, topology, and nanostructures of the compound also affect the transition temperature, gel window, phase diagram, and modulus of the gel. From a practical point of view, biodegradability, biocompatibility, and interactions between the material and drug or cell should be considered in designing a thermogelling material. The interactions are particularly important in that they control drug release profile and initial burst release of the drug in the drug delivery system, and affect cell proliferation, differentiation, and biomarker expression in three-dimensional cell culture and tissue engineering application. This review provides an in-depth summary of the recent progress of thermogelling systems including polymers, low molecular compounds, and nanoemulsions. Their biomedical applications were also comparatively discussed. In addition, perspectives on future material design of a new thermogelling material and its application are suggested.

  11. Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm.

    Science.gov (United States)

    Jończyk, M; Sobkowiak, A; Trzcinska-Danielewicz, J; Skoneczny, M; Solecka, D; Fronk, J; Sowiński, P

    2017-10-01

    In maize seedlings, severe cold results in dysregulation of circadian pattern of gene expression causing profound modulation of transcription of genes related to photosynthesis and other key biological processes. Plants live highly cyclic life and their response to environmental stresses must allow for underlying biological rhythms. To study the interplay of a stress and a rhythmic cue we investigated transcriptomic response of maize seedlings to low temperature in the context of diurnal gene expression. Severe cold stress had pronounced effect on the circadian rhythm of a substantial proportion of genes. Their response was strikingly dual, comprising either flattening (partial or complete) of the diel amplitude or delay of expression maximum/minimum by several hours. Genes encoding central oscillator components behaved in the same dual manner, unlike their Arabidopsis counterparts reported earlier to cease cycling altogether upon cold treatment. Also numerous genes lacking circadian rhythm responded to the cold by undergoing up- or down-regulation. Notably, the transcriptome changes preceded major physiological manifestations of cold stress. In silico analysis of metabolic processes likely affected by observed gene expression changes indicated major down-regulation of photosynthesis, profound and multifarious modulation of plant hormone levels, and of chromatin structure, transcription, and translation. A role of trehalose and stachyose in cold stress signaling was also suggested. Meta-analysis of published transcriptomic data allowed discrimination between general stress response of maize and that unique to severe cold. Several cis- and trans-factors likely involved in the latter were predicted, albeit none of them seemed to have a major role. These results underscore a key role of modulation of diel gene expression in maize response to severe cold and the unique character of the cold-response of the maize circadian clock.

  12. Sound characteristics of Terapon jorbua as a response to temperature changes

    Science.gov (United States)

    Amron; Jaya, I.; Hestirianoto, T.; Juterzenka, K. v.

    2017-10-01

    The change of water temperature has potential impact on the behavior of aquatic animal including fish which generated by their sound productivity and characteristics. This research aimed to study the response of sound productivity and characteristics of Terapon jorbua to temperature change. As a response to temperature increase, T. jorbua to have decreased the number of sound productivity. Two characteristic parameters of fish sound, i.e. intensity and frequency as were quadratic increased during the water temperature rises. In contrast, pulse duration was quadratic decreased.

  13. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Identification of estrogen responsive genes using esophageal squamous cell carcinoma (ESCC as a model

    Directory of Open Access Journals (Sweden)

    Essack Magbubah

    2012-10-01

    Full Text Available Abstract Background Estrogen therapy has positively impact the treatment of several cancers, such as prostate, lung and breast cancers. Moreover, several groups have reported the importance of estrogen induced gene regulation in esophageal cancer (EC. This suggests that there could be a potential for estrogen therapy for EC. The efficient design of estrogen therapies requires as complete as possible list of genes responsive to estrogen. Our study develops a systems biology methodology using esophageal squamous cell carcinoma (ESCC as a model to identify estrogen responsive genes. These genes, on the other hand, could be affected by estrogen therapy in ESCC. Results Based on different sources of information we identified 418 genes implicated in ESCC. Putative estrogen responsive elements (EREs mapped to the promoter region of the ESCC genes were used to initially identify candidate estrogen responsive genes. EREs mapped to the promoter sequence of 30.62% (128/418 of ESCC genes of which 43.75% (56/128 are known to be estrogen responsive, while 56.25% (72/128 are new candidate estrogen responsive genes. EREs did not map to 290 ESCC genes. Of these 290 genes, 50.34% (146/290 are known to be estrogen responsive. By analyzing transcription factor binding sites (TFBSs in the promoters of the 202 (56+146 known estrogen responsive ESCC genes under study, we found that their regulatory potential may be characterized by 44 significantly over-represented co-localized TFBSs (cTFBSs. We were able to map these cTFBSs to promoters of 32 of the 72 new candidate estrogen responsive ESCC genes, thereby increasing confidence that these 32 ESCC genes are responsive to estrogen since their promoters contain both: a/mapped EREs, and b/at least four cTFBSs characteristic of ESCC genes that are responsive to estrogen. Recent publications confirm that 47% (15/32 of these 32 predicted genes are indeed responsive to estrogen. Conclusion To the best of our knowledge our

  15. Identification of estrogen responsive genes using esophageal squamous cell carcinoma (ESCC) as a model

    KAUST Repository

    Essack, Magbubah

    2012-10-26

    Background: Estrogen therapy has positively impact the treatment of several cancers, such as prostate, lung and breast cancers. Moreover, several groups have reported the importance of estrogen induced gene regulation in esophageal cancer (EC). This suggests that there could be a potential for estrogen therapy for EC. The efficient design of estrogen therapies requires as complete as possible list of genes responsive to estrogen. Our study develops a systems biology methodology using esophageal squamous cell carcinoma (ESCC) as a model to identify estrogen responsive genes. These genes, on the other hand, could be affected by estrogen therapy in ESCC.Results: Based on different sources of information we identified 418 genes implicated in ESCC. Putative estrogen responsive elements (EREs) mapped to the promoter region of the ESCC genes were used to initially identify candidate estrogen responsive genes. EREs mapped to the promoter sequence of 30.62% (128/418) of ESCC genes of which 43.75% (56/128) are known to be estrogen responsive, while 56.25% (72/128) are new candidate estrogen responsive genes. EREs did not map to 290 ESCC genes. Of these 290 genes, 50.34% (146/290) are known to be estrogen responsive. By analyzing transcription factor binding sites (TFBSs) in the promoters of the 202 (56+146) known estrogen responsive ESCC genes under study, we found that their regulatory potential may be characterized by 44 significantly over-represented co-localized TFBSs (cTFBSs). We were able to map these cTFBSs to promoters of 32 of the 72 new candidate estrogen responsive ESCC genes, thereby increasing confidence that these 32 ESCC genes are responsive to estrogen since their promoters contain both: a/mapped EREs, and b/at least four cTFBSs characteristic of ESCC genes that are responsive to estrogen. Recent publications confirm that 47% (15/32) of these 32 predicted genes are indeed responsive to estrogen.Conclusion: To the best of our knowledge our study is the first

  16. Identification of cold responsive genes in Pacific white shrimp (Litopenaeus vannamei) by suppression subtractive hybridization.

    Science.gov (United States)

    Peng, Jinxia; Wei, Pinyuan; Chen, Xiuli; Zeng, Digang; Chen, Xiaohan

    2016-01-10

    The Pacific white shrimp (Litopenaeus vannamei) is one of the most widely cultured shrimp species in the world. Despite L. vannamei having tropical origins, it is being reared subtropically, with low temperature stress being one of the most severe threats to its growth, survival and distribution. To unravel the molecular basis of cold tolerance in L. vannamei, the suppression subtractive hybridization (SSH) platform was employed to identify cold responsive genes in the hepatopancreas of L. vannamei. Both forward and reverse cDNA libraries were constructed, followed by dot blot hybridization, cloning, sequence analysis and quantitative real-time PCR. These approaches identified 92 cold induced and 48 cold inhibited ESTs to give a total of 37 cold induced and 17 cold inhibited contigs. Some of the identified genes related to stress response or cell defense, such as tetraspanins (TSPANs), DEAD-box helicase, heat shock proteins (HSPs) and metallothionein (MT), which were more abundant in the forward SSH library than in the reverse SSH library. The most abundant Est was a tetraspanin-8 (TSPAN8) homolog dubbed LvTSPAN8. A multiple sequence alignment and transmembrane domain prediction was also performed for LvTSPAN8. LvTSPAN8 expression was also examined in the gills, muscle, heart and hepatopancreas following cold exposure and showed the highest expression levels in the hepatopancreas. Overall, this study was able to identify several known genes and novel genes via SSH that appear to be associated with cold stress and will help to provide further insights into the molecular mechanisms regulating cold tolerance in L. vannamei. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Temperature or substrate: what is responsible for carbon decomposition in mountain soils?

    Science.gov (United States)

    Blagodatskaya, Evgenia; Khomyakov, Nikita; Myachina, Olga; Blagodatsky, Sergey; Kuzyakov, Yakov

    2010-05-01

    Decomposition of organic substrates in soil is enzymes mediated process. Activity of enzymes is substrate dependent and mostly increases with temperature up to an optimum. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in mountain soils. It remains unclear whether the lack of available substrate can counterbalance the temperature induced acceleration of mineralization of soil organic carbon caused by global warming. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. The ecological importance of temperature acclimation of enzyme activity also remains to be tested. To estimate the possible "temperature acclimation" of enzyme activity we compared the responses of enzymes-catalyzed reactions using the natural climatic differences in soils located at 950, 2010, 2435, 2780 and 3020 m altitudes of Mt. Kilimanjaro. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found different response of Km to warming for the processes of depolymerisation and monomers oxidation. So, the enzymes responsible for hydrolysis of polymers and for monomers oxidation have different temperature sensitivity. Both substrate affinity and heterotrophic potential showed the weaker response to increasing temperature at high versus low altitudes. This

  18. Variation in Yield Responses to Elevated CO₂ and a Brief High Temperature Treatment in Quinoa.

    Science.gov (United States)

    Bunce, James A

    2017-07-05

    Intraspecific variation in crop responses to global climate change conditions would provide opportunities to adapt crops to future climates. These experiments explored intraspecific variation in response to elevated CO₂ and to high temperature during anthesis in Chenopodium quinoa Wild. Three cultivars of quinoa were grown to maturity at 400 ("ambient") and 600 ("elevated") μmol·mol(-1) CO₂ concentrations at 20/14 °C day/night ("control") temperatures, with or without exposure to day/night temperatures of 35/29 °C ("high" temperatures) for seven days during anthesis. At control temperatures, the elevated CO₂ concentration increased the total aboveground dry mass at maturity similarly in all cultivars, but by only about 10%. A large down-regulation of photosynthesis at elevated CO₂ occurred during grain filling. In contrast to shoot mass, the increase in seed dry mass at elevated CO₂ ranged from 12% to 44% among cultivars at the control temperature. At ambient CO₂, the week-long high temperature treatment greatly decreased (0.30 × control) or increased (1.70 × control) seed yield, depending on the cultivar. At elevated CO₂, the high temperature treatment increased seed yield moderately in all cultivars. These quinoa cultivars had a wide range of responses to both elevated CO₂ and to high temperatures during anthesis, and much more variation in harvest index responses to elevated CO₂ than other crops that have been examined.

  19. A Subset of Cytokinin Two-component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis*

    Science.gov (United States)

    Jeon, Jin; Kim, Nan Young; Kim, Sunmi; Kang, Na Young; Novák, Ondrej; Ku, Su-Jin; Cho, Chuloh; Lee, Dong Ju; Lee, Eun-Jung; Strnad, Miroslav; Kim, Jungmook

    2010-01-01

    A multistep two-component signaling system is established as a key element of cytokinin signaling in Arabidopsis. Here, we provide evidence for a function of the two-component signaling system in cold stress response in Arabidopsis. Cold significantly induced the expression of a subset of A-type ARR genes and of GUS in ProARR7:GUS transgenic Arabidopsis. AHK2 and AHK3 were found to be primarily involved in mediating cold to express A-type ARRs despite cytokinin deficiency. Cold neither significantly induced AHK2 and AHK3 expression nor altered the cytokinin contents of wild type within the 4 h during which the A-type ARR genes exhibited peak expression in response to cold, indicating that cold might induce ARR expression via the AHK2 and AHK3 proteins without alterations in cytokinin levels. The ahk2 ahk3 and ahk3 ahk4 mutants exhibited enhanced freezing tolerance compared with wild type. These ahk double mutants acclimated as efficiently to cold as did wild type. The overexpression of the cold-inducible ARR7 in Arabidopsis resulted in a hypersensitivity response to freezing temperatures under cold-acclimated conditions. The expression of C-repeat/dehydration-responsive element target genes was not affected by ARR7 overexpression as well as in ahk double mutants. By contrast, the arr7 mutants showed increased freezing tolerance. The ahk2 ahk3 and arr7 mutants showed hypersensitive response to abscisic acid (ABA) for germination, whereas ARR7 overexpression lines exhibited insensitive response to ABA. These results suggest that AHK2 and AHK3 and the cold-inducible A-type ARRs play a negative regulatory role in cold stress signaling via inhibition of ABA response, occurring independently of the cold acclimation pathway. PMID:20463025

  20. Rearing temperature induces changes in muscle growth and gene expression in juvenile pacu (Piaractus mesopotamicus).

    Science.gov (United States)

    Gutierrez de Paula, Tassiana; de Almeida, Fernanda Losi Alves; Carani, Fernanda Regina; Vechetti-Júnior, Ivan José; Padovani, Carlos Roberto; Salomão, Rondinelle Arthur Simões; Mareco, Edson Assunção; Dos Santos, Vander Bruno; Dal-Pai-Silva, Maeli

    2014-03-01

    Pacu (Piaractus mesopotamicus) is a fast-growing fish that is extensively used in Brazilian aquaculture programs and shows a wide range of thermal tolerance. Because temperature is an environmental factor that influences the growth rate of fish and is directly related to muscle plasticity and growth, we hypothesized that different rearing temperatures in juvenile pacu, which exhibits intense muscle growth by hyperplasia, can potentially alter the muscle growth patterns of this species. The aim of this study was to analyze the muscle growth characteristics together with the expression of the myogenic regulatory factors MyoD and myogenin and the growth factor myostatin in juvenile pacu that were submitted to different rearing temperatures. Juvenile fish (1.5 g weight) were distributed in tanks containing water and maintained at 24°C (G24), 28 °C (G28) and 32 °C (G32) (three replicates for each group) for 60 days. At days 30 and 60, the fish were anesthetized and euthanized, and muscle samples (n=12) were collected for morphological, morphometric and gene expression analyses. At day 30, the body weight and standard length were lower for G24 than for G28 and G32. Muscle fiber frequency in the 50 μm class was lower in G24. MyoD gene expression was higher in G24 compared with that in G28 and G32, and myogenin and myostatin mRNA levels were higher in G24 than G28. At day 60, the body weight and the standard length were higher in G32 but lower in G24. The frequency distribution of the muscle fibers was higher in G24, and that of the >50 μm class was lower in G24. MyoD mRNA levels were higher in G24 and G32, and myogenin mRNA levels were similar between G24 and G28 and between G24 and G32 but were higher in G28 compared to G32. The myostatin mRNA levels were similar between the studied temperatures. In light of our results, we conclude that low rearing temperature altered the expression of muscle growth-related genes and induced a delay in muscle growth in juvenile

  1. Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways.

    Science.gov (United States)

    Mishra, Divya; Shekhar, Shubhendu; Agrawal, Lalit; Chakraborty, Subhra; Chakraborty, Niranjan

    2017-04-15

    The increasing global temperature by 1°C is estimated to reduce the harvest index in a crop by 6%, and this would certainly have negative impact on overall plant metabolism. Wheat is one of the most important crops with global annual production of over 600million tonnes. We investigated an array of physicochemical and molecular indexes to unravel differential response of nine commercial wheat cultivars to high temperature stress (HTS). The reduced rate in relative water content, higher membrane stability, slow chlorophyll degradation and increased accumulation of proline and secondary metabolites ingrained higher thermotolerance in cv. Unnat Halna, among others. The altered expression of several stress-responsive genes, particularly the genes associated with photosynthesis, heat shock proteins and antioxidants impinge on the complexity of HTS-induced responses over different genetic backgrounds and connectivity of adaptive mechanisms. This may facilitate the targeted manipulation of metabolic routes in crops for agricultural and industrial exploitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Climate change impact of livestock CH4emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.).

    Science.gov (United States)

    Sun, Xiaochuan; Xu, Liang; Wang, Yan; Luo, Xiaobo; Zhu, Xianwen; Kinuthia, Karanja Benard; Nie, Shanshan; Feng, Haiyang; Li, Chao; Liu, Liwang

    2016-02-01

    Transcriptome-based gene expression analysis identifies many critical salt-responsive genes in radish and facilitates further dissecting the molecular mechanism underlying salt stress response. Salt stress severely impacts plant growth and development. Radish, a moderately salt-sensitive vegetable crop, has been studied for decades towards the physiological and biochemical performances under salt stress. However, no systematic study on isolation and identification of genes involved in salt stress response has been performed in radish, and the molecular mechanism governing this process is still indistinct. Here, the RNA-Seq technique was applied to analyze the transcriptomic changes on radish roots treated with salt (200 mM NaCl) for 48 h in comparison with those cultured in normal condition. Totally 8709 differentially expressed genes (DEGs) including 3931 up- and 4778 down-regulated genes were identified. Functional annotation analysis indicated that many genes could be involved in several aspects of salt stress response including stress sensing and signal transduction, osmoregulation, ion homeostasis and ROS scavenging. The association analysis of salt-responsive genes and miRNAs exhibited that 36 miRNA-mRNA pairs had negative correlationship in expression trends. Reverse-transcription quantitative PCR (RT-qPCR) analysis revealed that the expression profiles of DEGs were in line with results from the RNA-Seq analysis. Furthermore, the putative model of DEGs and miRNA-mediated gene regulation was proposed to elucidate how radish sensed and responded to salt stress. This study represents the first comprehensive transcriptome-based gene expression profiling under salt stress in radish. The outcomes of this study could facilitate further dissecting the molecular mechanism underlying salt stress response and provide a valuable platform for further genetic improvement of salt tolerance in radish breeding programs.

  4. Elevation of antibiotic resistance genes at cold temperatures: implications for winter storage of sludge and biosolids.

    Science.gov (United States)

    Miller, J H; Novak, J T; Knocke, W R; Pruden, A

    2014-12-01

    Prior research suggests that cold temperatures may stimulate the proliferation of certain antibiotic resistance genes (ARGs) and gene transfer elements during storage of biosolids. This could have important implications on cold weather storage of biosolids, as often required in northern climates until a time suitable for land application. In this study, levels of an integron-associated gene (intI1) and an ARG (sul1) were monitored in biosolids subject to storage at 4, 10 and 20°C. Both intI1 and sul1 were observed to increase during short-term storage (gene transfer of integron-associated ARGs and that biosolids storage conditions should be considered prior to land application. Wastewater treatment plants have been identified as the hot spots for the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) to the environment through discharge of treated effluent to water bodies as well as application of biosolids to land. Identifying critical control points within the treatment process may aid in the development of solutions for the reduction of ARGs and ARB and curbing the spread of antibiotic resistance. This study found increases in ARGs during biosolids storage and identifies changes in operational protocols that could help reduce ARG loading to the environment when biosolids are land-applied. © 2014 The Society for Applied Microbiology.

  5. Full genome gene expression analysis of the heat stress response in Drosophila melanogaster.

    Science.gov (United States)

    Sørensen, Jesper G; Nielsen, Morten M; Kruhøffer, Mogens; Justesen, Just; Loeschcke, Volker

    2005-01-01

    The availability of full genome sequences has allowed the construction of microarrays, with which screening of the full genome for changes in gene expression is possible. This method can provide a wealth of information about biology at the level of gene expression and is a powerful method to identify genes and pathways involved in various processes. In this study, we report a detailed analysis of the full heat stress response in Drosophila melanogaster females, using whole genome gene expression arrays (Affymetrix Inc, Santa Clara, CA, USA). The study focuses on up- as well as downregulation of genes from just before and at 8 time points after an application of short heat hardening (36 degrees C for 1 hour). The expression changes were followed up to 64 hours after the heat stress, using 4 biological replicates. This study describes in detail the dramatic change in gene expression over time induced by a short-term heat treatment. We found both known stress responding genes and new candidate genes, and processes to be involved in the stress response. We identified 3 main groups of stress responsive genes that were early-upregulated, early-downregulated, and late-upregulated, respectively, among 1222 differentially expressed genes in the data set. Comparisons with stress sensitive genes identified by studies of responses to other types of stress allow the discussion of heat-specific and general stress responses in Drosophila. Several unexpected features were revealed by this analysis, which suggests that novel pathways and mechanisms are involved in the responses to heat stress and to stress in general. The majority of stress responsive genes identified in this and other studies were downregulated, and the degree of overlap among downregulated genes was relatively high, whereas genes responding by upregulation to heat and other stress factors were more specific to the stress applied or to the conditions of the particular study. As an expected exception, heat shock

  6. Gene expression in the brain and kidney of rainbow trout in response to handling stress

    Directory of Open Access Journals (Sweden)

    Afanasyev Sergey

    2005-01-01

    Full Text Available Abstract Background Microarray technologies are rapidly becoming available for new species including teleost fishes. We constructed a rainbow trout cDNA microarray targeted at the identification of genes which are differentially expressed in response to environmental stressors. This platform included clones from normalized and subtracted libraries and genes selected through functional annotation. Present study focused on time-course comparisons of stress responses in the brain and kidney and the identification of a set of genes which are diagnostic for stress response. Results Fish were stressed with handling and samples were collected 1, 3 and 5 days after the first exposure. Gene expression profiles were analysed in terms of Gene Ontology categories. Stress affected different functional groups of genes in the tissues studied. Mitochondria, extracellular matrix and endopeptidases (especially collagenases were the major targets in kidney. Stress response in brain was characterized with dramatic temporal alterations. Metal ion binding proteins, glycolytic enzymes and motor proteins were induced transiently, whereas expression of genes involved in stress and immune response, cell proliferation and growth, signal transduction and apoptosis, protein biosynthesis and folding changed in a reciprocal fashion. Despite dramatic difference between tissues and time-points, we were able to identify a group of 48 genes that showed strong correlation of expression profiles (Pearson r > |0.65| in 35 microarray experiments being regulated by stress. We evaluated performance of the clone sets used for preparation of microarray. Overall, the number of differentially expressed genes was markedly higher in EST than in genes selected through Gene Ontology annotations, however 63% of stress-responsive genes were from this group. Conclusions 1. Stress responses in fish brain and kidney are different in function and time-course. 2. Identification of stress

  7. Plantar Temperature Response to Walking in Diabetes with and without Acute Charcot: The Charcot Activity Response Test

    Directory of Open Access Journals (Sweden)

    Bijan Najafi

    2012-01-01

    Full Text Available Objective. Asymmetric plantar temperature differences secondary to inflammation is a hallmark for the diagnosis and treatment response of Charcot foot syndrome. However, little attention has been given to temperature response to activity. We examined dynamic changes in plantar temperature (PT as a function of graduated walking activity to quantify thermal responses during the first 200 steps. Methods. Fifteen individuals with Acute Charcot neuroarthropathy (CN and 17 non-CN participants with type 2 diabetes and peripheral neuropathy were recruited. All participants walked for two predefined paths of 50 and 150 steps. A thermal image was acquired at baseline after acclimatization and immediately after each walking trial. The PT response as a function of number of steps was examined using a validated wearable sensor technology. The hot spot temperature was identified by the 95th percentile of measured temperature at each anatomical region (hind/mid/forefoot. Results. During initial activity, the PT was reduced in all participants, but the temperature drop for the nonaffected foot was 1.9 times greater than the affected side in CN group (P=0.04. Interestingly, the PT in CN was sharply increased after 50 steps for both feet, while no difference was observed in non-CN between 50 and 200 steps. Conclusions. The variability in thermal response to the graduated walking activity between Charcot and non-Charcot feet warrants future investigation to provide further insight into the correlation between thermal response and ulcer/Charcot development. This stress test may be helpful to differentiate CN and its response to treatment earlier in its course.

  8. Rootstock Sub-Optimal Temperature Tolerance Determines Transcriptomic Responses after Long-Term Root Cooling in Rootstocks and Scions of Grafted Tomato Plants.

    Science.gov (United States)

    Ntatsi, Georgia; Savvas, Dimitrios; Papasotiropoulos, Vassilis; Katsileros, Anastasios; Zrenner, Rita M; Hincha, Dirk K; Zuther, Ellen; Schwarz, Dietmar

    2017-01-01

    Grafting of elite cultivars onto tolerant rootstocks is an advanced strategy to increase tomato tolerance to sub-optimal temperature. However, a detailed understanding of adaptive mechanisms to sub-optimal temperature in rootstocks and scions of grafting combinations on a physiological and molecular level is lacking. Here, the commercial cultivar Kommeet was grafted either onto 'Moneymaker' (sensitive) or onto the line accession LA 1777 of Solanum habrochaites (tolerant). Grafted plants were grown in NFT-system at either optimal (25°C) or sub-optimal (15°C) temperatures in the root environment with optimal air temperature (25°C) for 22 days. Grafting onto the differently tolerant rootstocks caused differences in shoot fresh and dry weight, total leaf area and dry matter content of roots, in stomatal conductance and intercellular CO2 and guaiacol peroxidase activity but not in net photosynthesis, sugar, starch and amino acid content, lipid peroxidation and antioxidant enzyme activity. In leaves, comparative transcriptome analysis identified 361 differentially expressed genes (DEG) responding to sub-optimal root temperature when 'Kommeet' was grafted onto the sensitive but no when grafted onto the tolerant rootstock. 1509 and 2036 DEG responding to sub-optimal temperature were identified in LA 1777 and 'Moneymaker' rootstocks, respectively. In tolerant rootstocks down-regulated genes were enriched in main stress-responsive functional categories and up-regulated genes in cellulose synthesis suggesting that cellulose synthesis may be one of the main adaptation mechanisms to long-term sub-optimal temperature. Down-regulated genes of the sensitive rootstock showed a similar response, but functional categories of up-regulated genes pointed to induced stress responses. Rootstocks of the sensitive cultivar Moneymaker showed in addition an enrichment of up-regulated genes in the functional categories fatty acid desaturation, phenylpropanoids, biotic stress, cytochrome P

  9. Rootstock Sub-Optimal Temperature Tolerance Determines Transcriptomic Responses after Long-Term Root Cooling in Rootstocks and Scions of Grafted Tomato Plants

    Directory of Open Access Journals (Sweden)

    Georgia Ntatsi

    2017-06-01

    Full Text Available Grafting of elite cultivars onto tolerant rootstocks is an advanced strategy to increase tomato tolerance to sub-optimal temperature. However, a detailed understanding of adaptive mechanisms to sub-optimal temperature in rootstocks and scions of grafting combinations on a physiological and molecular level is lacking. Here, the commercial cultivar Kommeet was grafted either onto ‘Moneymaker’ (sensitive or onto the line accession LA 1777 of Solanum habrochaites (tolerant. Grafted plants were grown in NFT-system at either optimal (25°C or sub-optimal (15°C temperatures in the root environment with optimal air temperature (25°C for 22 days. Grafting onto the differently tolerant rootstocks caused differences in shoot fresh and dry weight, total leaf area and dry matter content of roots, in stomatal conductance and intercellular CO2 and guaiacol peroxidase activity but not in net photosynthesis, sugar, starch and amino acid content, lipid peroxidation and antioxidant enzyme activity. In leaves, comparative transcriptome analysis identified 361 differentially expressed genes (DEG responding to sub-optimal root temperature when ‘Kommeet’ was grafted onto the sensitive but no when grafted onto the tolerant rootstock. 1509 and 2036 DEG responding to sub-optimal temperature were identified in LA 1777 and ‘Moneymaker’ rootstocks, respectively. In tolerant rootstocks down-regulated genes were enriched in main stress-responsive functional categories and up-regulated genes in cellulose synthesis suggesting that cellulose synthesis may be one of the main adaptation mechanisms to long-term sub-optimal temperature. Down-regulated genes of the sensitive rootstock showed a similar response, but functional categories of up-regulated genes pointed to induced stress responses. Rootstocks of the sensitive cultivar Moneymaker showed in addition an enrichment of up-regulated genes in the functional categories fatty acid desaturation, phenylpropanoids

  10. Electronic chemical response indexes at finite temperature in the canonical ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D. F. 09340, México (Mexico); Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, México, D. F. 07360, México (Mexico); Vela, Alberto, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, México, D. F. 07360, México (Mexico)

    2015-07-14

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  11. Temperature Influences Chorda Tympani Nerve Responses to Sweet, Salty, Sour, Umami, and Bitter Stimuli in Mice.

    Science.gov (United States)

    Lu, Bo; Breza, Joseph M; Contreras, Robert J

    2016-08-06

    Temperature profoundly affects the perceived intensity of taste, yet we know little of the extent of temperature's effect on taste in the peripheral nervous system. Accordingly, we investigated the influence of temperature from 23 °C to 43 °C in 4 °C intervals on the integrated responses of the chorda tympani (CT) nerve to a large series of chemical stimuli representing sweet, salty, sour, bitter, and umami tastes in C57BL/J6 mice. We also measured neural responses to NaCl, Na-gluconate, Na-acetate, Na-sulfate, and MSG with and without 5 µM benzamil, an epithelial sodium channel (ENaC) antagonist, to assess the influence of temperature on ENaC-dependent and ENaC-independent response components. Our results showed that for most stimuli (0.5M sucrose, glucose, fructose, and maltose; 0.02M saccharin and sucralose; 0.5M NaCl, Na-gluconate, Na-acetate, Na-sulfate, KCl, K-gluconate, K-acetate, and K-sulfate; 0.05M citric acid, acetic acid, and HCl; 0.1M MSG and 0.05M quinine hydrochloride: QHCl), CT response magnitudes were maximal between 35 °C and 39 °C and progressively smaller at cooler or warmer temperatures. In contrast, the weakest responses to NH 4 Cl, (NH 4 ) 2 SO4, and K-sulfate were at the lowest temperature, with response magnitude increasing monotonically with increasing temperature, while the largest responses to acetic acid were at the lowest temperature, with response magnitude decreasing with increasing temperature. The response to sweet and umami stimuli across temperatures were similar reflecting the involvement of TRPM5 activity, in contrast to bitter stimuli, which were weakly affected by temperature. Temperature-modulated responses to salts and acids most likely operate through mechanisms independent of ENaC and TRPM5. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Effects of environmental temperature on physiological responses during submaximal and maximal exercises in soccer players

    Directory of Open Access Journals (Sweden)

    MiHyun No

    2016-09-01

    Conclusion: It is concluded that physiological responses and endurance exercise capacity are impaired under cool or hot conditions compared with moderate conditions, suggesting that environmental temperature conditions play an important role for exercise performance.

  13. Global circuit response to seasonal variations in global surface air temperature

    Science.gov (United States)

    Williams, Earle R.

    1994-01-01

    Comparisons are made between the seasonal behavior of the global electrical circuit and the surface air temperature for the Tropics and for the globe. Positive correlations between global circuit parameters and temperature are identified on both semiannual and annual timescales. Lightning is the global circuit quantity found most responsive to temperature, with a sensitivity of the order of 10% per 1 C. These findings lend further validity to the use of global circuit measurements as a diagnostic for global change.

  14. Analysis of loop current step response data obtained from in situ tests of temperature detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.F.; Shepard, R.L.

    1986-05-01

    Methods for obtaining unbiased parameter estimates from data obtained by in situ tests of temperature detectors are evaluated. A computer program that calculates unbiased estimates of parameters that define a dynamic model of the temperature detector and that calculates standard deviations of the model parameters and of the response time is presented. The computer program, along with the associated theoretical development, represent an extension of the previous capability for analyzing data from in situ tests of temperature detectors.

  15. Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH

    OpenAIRE

    Slaughter, Brandon V.; Blanchard, Aaron T.; Maass, Katie F.; Peppas, Nicholas A.

    2015-01-01

    Temperature responsive hydrogels based on ionic polymers exhibit swelling transitions in aqueous solutions as a function of shifting pH and ionic strength, in addition to temperature. Applying these hydrogels to useful applications, particularly for biomedical purposes such as drug delivery and regenerative medicine, is critically dependent on understanding the hydrogel solution responses as a function of all three parameters together. In this work, interpenetrating polymer network (IPN) hydr...

  16. Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions

    OpenAIRE

    Winder, Monika; Berger, Stella A.; Lewandowska, Aleksandra M.; Aberle, Nicole; Lengfellner, Kathrin; Sommer, Ulrich; Diehl, Sebastian

    2012-01-01

    Shifts in the timing and magnitude of the spring plankton bloom in response to climate change have been observed across a wide range of aquatic systems. We used meta-analysis to investigate phenological responses of marine and freshwater plankton communities in mesocosms subjected to experimental manipulations of temperature and light intensity. Systems differed with respect to the dominant mesozooplankton (copepods in seawater and daphnids in freshwater). Higher water temperatures advanced t...

  17. Novel low-molecular-weight-gelator-based microcapsules with controllable morphology and temperature responsiveness.

    Science.gov (United States)

    Patel, Ashok R; Remijn, Caroline; Heussen, Patricia C M; den Adel, Ruud; Velikov, Krassimir P

    2013-02-04

    A new type of microcapsules with controllable morphology is presented. They are based on a low-molecular-weight gelator and can be switched from temperature-stable to temperature-responsive by simply modifying the preparation method. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A graphene-based smart catalytic system with superior catalytic performances and temperature responsive catalytic behaviors.

    Science.gov (United States)

    Qi, Junjie; Lv, Weipeng; Zhang, Guanghui; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2013-07-21

    We have successfully developed a unique graphene-based smart catalytic system which consists of the graphene supported Au-Pt bimetallic nanocatalyst with a well-defined core-shell structure and a dextran-based temperature-responsive polymer. The unique catalytic system possesses excellent catalytic performances and the catalytic activities could be readily switched on or off at different temperature windows.

  19. Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH.

    Science.gov (United States)

    Slaughter, Brandon V; Blanchard, Aaron T; Maass, Katie F; Peppas, Nicholas A

    2015-06-20

    Temperature responsive hydrogels based on ionic polymers exhibit swelling transitions in aqueous solutions as a function of shifting pH and ionic strength, in addition to temperature. Applying these hydrogels to useful applications, particularly for biomedical purposes such as drug delivery and regenerative medicine, is critically dependent on understanding the hydrogel solution responses as a function of all three parameters together. In this work, interpenetrating polymer network (IPN) hydrogels of polyacrylamide and poly(acrylic acid) were formulated over a broad range of synthesis variables using a fractional factorial design, and were examined for equilibrium temperature responsive swelling in a variety of solution conditions. Due to the acidic nature of these IPN hydrogels, usable upper critical solution temperature (UCST) responses for this system occur in mildly acidic environments. Responses were characterized in terms of maximum equilibrium swelling and temperature-triggered swelling using turbidity and gravimetric measurements. Additionally, synthesis parameters critical to achieving optimal overall swelling, temperature-triggered swelling, and sigmoidal temperature transitions for this IPN system were analyzed based on the fractional factorial design used to formulate these hydrogels.

  20. Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis.

    Science.gov (United States)

    Fang, Yi-Kai; Huang, Kuo-Yang; Huang, Po-Jung; Lin, Rose; Chao, Mei; Tang, Petrus

    2015-12-01

    Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist. Copyright © 2014. Published by Elsevier B.V.

  1. The impact of a moderate chronic temperature increase on spleen immune-relevant gene transcription depends on whether Atlantic cod (Gadus morhua) are stimulated with bacterial versus viral antigens.

    Science.gov (United States)

    Hori, Tiago S; Gamperl, A Kurt; Nash, Gord; Booman, Marije; Barat, Ashoktaru; Rise, Matthew L

    2013-10-01

    Exposure to elevated temperature is an inherent feature of Atlantic cod (Gadus morhua) sea-cage culture in some regions (e.g., Newfoundland) and may also become an increasingly prevalent challenge for wild fish populations because of accelerated climate change. Therefore, understanding how elevated temperatures impacts the immune response of this commercially important species may help to reduce the potential negative impacts of such challenges. Previously, we investigated the impacts of moderately elevated temperature on the antiviral responses of Atlantic cod (Hori et al. 2012) and reported that elevated temperature modulated the spleen transcriptome response to polyriboinosinic polyribocytidylic acid (pIC, a viral mimic). Herein, we report a complementary microarray study that investigated the impact of the same elevated temperature regime on the Atlantic cod spleen transcriptome response to intraperitoneal (IP) injection of formalin-killed Aeromonas salmonicida (ASAL). Fish were held at two different temperatures (10 °C and 16 °C) prior to immune stimulation and sampled 6 and 24 h post-injection (HPI). In this experiment, we identified 711 and 666 nonredundant ASAL-responsive genes at 6HPI and 24HPI, respectively. These included several known antibacterial genes, including hepcidin, cathelicidin, ferritin heavy subunit, and interleukin 8. However, we only identified 15 differentially expressed genes at 6HPI and 2 at 24HPI (FDR 1%) when comparing ASAL-injected fish held at 10 °C versus 16 °C. In contrast, the same comparisons with pIC-injected fish yielded 290 and 339 differentially expressed genes (FDR 1%) at 6HPI and 24HPI, respectively. These results suggest that moderately elevated temperature has a lesser effect on the Atlantic cod spleen transcriptome response to ASAL (i.e., the antibacterial response) than to pIC (i.e., antiviral response). Thus, the impacts of high temperatures on the cod's immune response may be pathogen dependent.

  2. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans.

    Science.gov (United States)

    Lee, Seung-Jae; Kenyon, Cynthia

    2009-05-12

    Many ectotherms, including C. elegans, have shorter life spans at high temperature than at low temperature. High temperature is generally thought to increase the "rate of living" simply by increasing chemical reaction rates. In this study, we questioned this view and asked whether the temperature dependence of life span is subject to active regulation. We show that thermosensory neurons play a regulatory role in the temperature dependence of life span. Surprisingly, inhibiting the function of thermosensory neurons by mutation or laser ablation causes animals to have even shorter life spans at warm temperature. Thermosensory mutations shorten life span by decreasing expression of daf-9, a gene required for the synthesis of ligands that inhibit the DAF-12, a nuclear hormone receptor. The short life span of thermosensory mutants at warm temperature is completely suppressed by a daf-12(-) mutation. Our data suggest that thermosensory neurons affect life span at warm temperature by changing the activity of a steroid-signaling pathway that affects longevity. We propose that this thermosensory system allows C. elegans to reduce the effect that warm temperature would otherwise have on processes that affect aging, something that warm-blooded animals do by controlling temperature itself.

  3. Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis) - glyphosate death response and candidate resistance genes.

    Science.gov (United States)

    Hereward, James P; Werth, Jeff A; Thornby, David F; Keenan, Michelle; Chauhan, Bhagirath Singh; Walter, Gimme H

    2017-11-28

    This study takes a whole-transcriptome approach to assess gene expression changes in response to glyphosate treatment in glyphosate-resistant fleabane. We assessed gene expression changes in both susceptible and resistant lines so that the glyphosate death response could be quantified, and constitutively expressed candidate resistance genes identified. There are three copies of the glyphosate target site (5-enolpyruvylshikimate-3-phosphate; EPSPS) gene in Conyza and because Conyza bonariensis is allohexaploid, there is a baseline nine copies of the gene in any individual. Many genes were differentially expressed in response to glyphosate treatment. Known resistance mutations are present in EPSPS2 but they are present in a glyphosate-susceptible line as well as resistant lines and therefore not sufficient to confer resistance. EPSPS1 is expressed four times more than EPSPS2, further reducing the overall contribution of these mutations. We demonstrate that glyphosate resistance in C. bonariensis is not the result of EPSPS mutations or overexpression, but due to a non-target-site mechanism. A large number of genes are affected by glyphosate treatment. We present a list of candidate non-target-site-resistance (NTSR) genes in fleabane for future studies into these mechanisms. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Coregulation of host-response genes in integument: switchover of gene expression correlation pattern and impaired immune responses induced by dipteran parasite infection in the silkworm, Bombyx mori.

    Science.gov (United States)

    Jayaram, Anitha; Pradeep, Appukuttan Nair R; Awasthi, Arvind K; Murthy, Geetha N; Ponnuvel, Kangayam M; Sasibhushan, Sirigineedi; Rao, Guruprasad C

    2014-05-01

    The activation of host response proteins against parasitic infection is dependent on the coregulation of immune gene expression. The infection of commercially important silkworm Bombyx mori through endoparasite Exorista bombycis enhanced host-response gene expression in integument early in the infection and was lowered asymptotically. Principal component analysis (PCA) showed heterogeneity while explaining ∼80 % variance among expression timings. PCA showed positive and negative correlation with gene expression and differentiated transcriptional timings, and revealed cross talk within the immune system. Pearson correlation analysis showed significant linear correlation (mean R (2) = >0.7; P parasitism. The genes showed pleiotropic interaction among them, with four genes each for prophenoloxidase activating enzyme (PPAE) and caspase. Besides, after parasitism, exclusive correlation of five gene pairs including PPAE-Spatzle pair (R (2) = 0.9; P parasitized integument revealed deviation from gene coregulation, leading to impaired immune responses, characterized by lowered gene expression and varied phenotypic consequences.

  5. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation.

    Science.gov (United States)

    Catalá, Rafael; López-Cobollo, Rosa; Mar Castellano, M; Angosto, Trinidad; Alonso, José M; Ecker, Joseph R; Salinas, Julio

    2014-08-01

    In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica.

    Science.gov (United States)

    de Carvalho, Kenia; Petkowicz, Carmen L O; Nagashima, Getulio T; Bespalhok Filho, João C; Vieira, Luiz G E; Pereira, Luiz F P; Domingues, Douglas S

    2014-10-01

    Polyploid plants can exhibit transcriptional modulation in homeologous genes in response to abiotic stresses. Coffea arabica, an allotetraploid, accounts for 75% of the world's coffee production. Extreme temperatures, salinity and drought limit crop productivity, which includes coffee plants. Mannitol is known to be involved in abiotic stress tolerance in higher plants. This study aimed to investigate the transcriptional responses of genes involved in mannitol biosynthesis and catabolism in C. arabica leaves under water deficit, salt stress and high temperature. Mannitol concentration was significantly increased in leaves of plants under drought and salinity, but reduced by heat stress. Fructose content followed the level of mannitol only in heat-stressed plants, suggesting the partitioning of the former into other metabolites during drought and salt stress conditions. Transcripts of the key enzymes involved in mannitol biosynthesis, CaM6PR, CaPMI and CaMTD, were modulated in distinct ways depending on the abiotic stress. Our data suggest that changes in mannitol accumulation during drought and salt stress in leaves of C. arabica are due, at least in part, to the increased expression of the key genes involved in mannitol biosynthesis. In addition, the homeologs of the Coffea canephora subgenome did not present the same pattern of overall transcriptional response, indicating differential regulation of these genes by the same stimulus. In this way, this study adds new information on the differential expression of C. arabica homeologous genes under adverse environmental conditions showing that abiotic stresses can influence the homeologous gene regulation pattern, in this case, mainly on those involved in mannitol pathway.

  7. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress.

    Science.gov (United States)

    Chopra, Ratan; Burow, Gloria; Hayes, Chad; Emendack, Yves; Xin, Zhanguo; Burke, John

    2015-12-09

    Sorghum is a versatile cereal crop, with excellent heat and drought tolerance. However, it is susceptible to early-season cold stress (12-15 °C) which limits stand-establishment and seedling growth. To gain further insights on the molecular mechanism of cold tolerance in sorghum we performed transcriptome profiling between known cold sensitive and tolerant sorghum lines using RNA sequencing technology under control and cold stress treatments. Here we report on the identification of differentially expressed genes (DEGs) between contrasting sorghum genotypes, HongkeZi (cold tolerant) and BTx623 (cold sensitive) under cool and control temperatures using RNAseq approach to elucidate the molecular basis of sorghum response to cold stress. Furthermore, we validated bi-allelic variants in the form of single nucleotide polymorphism (SNPs) between the cold susceptible and tolerant lines of sorghum. An analysis of transcriptome profile showed that in response to cold, a total of 1910 DEGs were detected under cold and control temperatures in both genotypes. We identified a subset of genes under cold stress for downstream analysis, including transcription factors that exhibit differential abundance between the sensitive and tolerant genotypes. We identified transcription factors including Dehydration-responsive element-binding factors, C-repeat binding factors, and Ethylene responsive transcription factors as significantly upregulated during cold stress in cold tolerant HKZ. Additionally, specific genes such as plant cytochromes, glutathione s-transferases, and heat shock proteins were found differentially regulated under cold stress between cold tolerant and susceptible genotype of sorghum. A total of 41,603 SNP were identified between the cold sensitive and tolerant genotypes with minimum read of four. Approximately 89 % of the 114 SNP sites selected for evaluation were validated using endpoint genotyping technology. A new strategy which involved an integrated analysis of

  8. Relationship between gene responses and symptoms induced by Rice grassy stunt virus

    Directory of Open Access Journals (Sweden)

    Kouji eSatoh

    2013-10-01

    Full Text Available Rice grassy stunt virus (RGSV is a serious threat to rice production in Southeast Asia. RGSV is a member of the genus Tenuivirus, and it induces leaf yellowing, stunting, and excess tillering on rice plants. Here we examined gene responses of rice to RGSV infection to gain insight into the gene responses which might be associated with the disease symptoms. The results indicated that 1 many genes related to cell wall synthesis and chlorophyll synthesis were predominantly suppressed by RGSV infection; 2 RGSV infection induced genes associated with tillering process; 3 RGSV activated genes involved in inactivation of gibberellic acid and indole-3-acetic acid ; and 4 the genes for strigolactone signaling were suppressed by RGSV. These results suggest that these gene responses to RGSV infection account for the excess tillering specific to RGSV infection as well as other symptoms by RGSV, such as stunting and leaf chlorosis.

  9. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  10. Apoptotic responses of zebrafish (Danio rerio) after exposure with microcystin-LR under different ambient temperatures.

    Science.gov (United States)

    Ji, Wei; Liang, Hualei; Zhou, Wenshan; Zhang, Xuezhen

    2013-08-01

    Microcystins (MCs) can cause evident hepatic apoptosis. In vitro studies indicated that uptake of MC by isolated hepatocytes was dramatically reduced as ambient temperature dropped, and some studies presented a hypothesis that differences in core body temperatures in animals result in diverse uptake of MC, as well as different toxic effects. Thus far, however, few in vivo studies have been conducted to investigate the effects of temperature on MC-induced hepatocyte apoptosis in fish, a typical poikilotherm. In the present study, zebrafish were treated with MC-LR, an MC metabolite, at three water temperatures (12, 22 and 32 °C), and evident differences in apoptotic profiles were observed. Damage to liver ultrastructures revealed temperature-dependent early-stage patterns of apoptosis. Flow-cytometric analysis indicated that hepatocyte apoptotic rates varied with a temperature-dependent effect. The transcription levels of some apoptosis-related genes were determined using quantitative real-time polymerase chain reaction, and significantly elevated gene expressions of P53, Bcl-2, Bax and caspase-3 were found in the 12 and 32 °C groups. Results of the present study indicate that different ambient temperatures can lead to various toxic effects of MCs on hepatic apoptosis in fish. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Granulomatous response to Coxiella burnetii, the agent of Q fever: the lessons from gene expression analysis

    Directory of Open Access Journals (Sweden)

    delphine efaugaret

    2014-12-01

    Full Text Available The formation of granulomas is associated with the resolution of Q fever, a zoonosis due to Coxiella burnetii; however the molecular mechanisms of granuloma formation remain poorly understood. We generated human granulomas with peripheral blood mononuclear cells and beads coated with C. burnetii, using BCG extracts as controls. A microarray analysis showed dramatic changes in gene expression in granuloma cells of which more than 50% were commonly modulated genes in response to C. burnetii and BCG. They included M1-related genes and genes related to chemotaxis. The inhibition of the chemokines, CCL2 and CCL5, directly interfered with granuloma formation. C. burnetii granulomas also expressed a specific transcriptional profile that was essentially enriched in genes associated with type I interferon response. Our results showed that granuloma formation is associated with a core of transcriptional response based on inflammatory genes. The specific granulomatous response to C. burnetii is characterized by the activation of type I interferon pathway.

  12. Granulomatous response to Coxiella burnetii, the agent of Q fever: the lessons from gene expression analysis.

    Science.gov (United States)

    Faugaret, Delphine; Ben Amara, Amira; Alingrin, Julie; Daumas, Aurélie; Delaby, Amélie; Lépolard, Catherine; Raoult, Didier; Textoris, Julien; Mège, Jean-Louis

    2014-01-01

    The formation of granulomas is associated with the resolution of Q fever, a zoonosis due to Coxiella burnetii; however the molecular mechanisms of granuloma formation remain poorly understood. We generated human granulomas with peripheral blood mononuclear cells (PBMCs) and beads coated with C. burnetii, using BCG extracts as controls. A microarray analysis showed dramatic changes in gene expression in granuloma cells of which more than 50% were commonly modulated genes in response to C. burnetii and BCG. They included M1-related genes and genes related to chemotaxis. The inhibition of the chemokines, CCL2 and CCL5, directly interfered with granuloma formation. C. burnetii granulomas also expressed a specific transcriptional profile that was essentially enriched in genes associated with type I interferon response. Our results showed that granuloma formation is associated with a core of transcriptional response based on inflammatory genes. The specific granulomatous response to C. burnetii is characterized by the activation of type 1 interferon pathway.

  13. Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan-Yaun

    2009-01-27

    “Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation " was started on 09/01/03 and ended on 08/31/07. The primary objective of the project was to carry out mechanistic studies of the roles of the anti-oxidant SOD genes in mammalian cellular response to low dose ionizing radiation.

  14. High Incubation Temperature and Threonine Dietary Level Improve Ileum Response Against Post-Hatch Salmonella Enteritidis Inoculation in Broiler Chicks.

    Directory of Open Access Journals (Sweden)

    Alexandre Lemos de Barros Moreira Filho

    Full Text Available This study assessed the effect of both embryonic thermal manipulation and dietary threonine level on the response of broilers inoculated with Salmonella Enteritidis, considering bacterial counts in the cecal contents, intestinal morphology, mucin and heat shock protein 70 gene expression, body weight and weight gain. Thermal manipulation was used from 11 days of incubation until hatch, defining three treatments: standard (37.7°C, continuous high temperature (38.7°C and continuous low temperature (36.7°C. After hatch, chicks were distributed according to a 3x2+1 factorial arrangement (three temperatures and two threonine levels and one sham-inoculated control. At two days of age, all chicks were inoculated with Salmonella Enteritidis, except for the sham-inoculated control group. There was no interaction between the factors on any analyses. High temperature during incubation was able to reduce colonization by Salmonella Enteritidis in the first days, reducing both Salmonella counts and the number of positive birds. It also increased mucin expression and decreased Hsp70 expression compared with other inoculated groups. High temperature during incubation and high threonine level act independently to reduce the negative effects associated to Salmonella Enteritidis infection on intestinal morphology and performance, with results similar to sham-inoculated birds. The findings open new perspectives for practical strategies towards the pre-harvest Salmonella control in the poultry industry.

  15. Cloning and Expression Analysis of an AP2/ERF Gene and Its Responses to Phytohormones and Abiotic Stresses in Rice

    Directory of Open Access Journals (Sweden)

    Hao-li MA

    2010-03-01

    Full Text Available Ethylene response factors (ERFs play important roles in response to plant biotic and abiotic stresses. In this study, a gene encoding a putative AP2/ERF domain-containing protein was isolated by screening a SSH cDNA library from rice and designated as Oryza sativa AP2/ERF-like protein (OsAP2LP gene. OsAP2LP is 1491 bp in length, interrupted by seven introns, and encodes a putative protein of 348 amino acids. Temporal and spatial expression analysis showed that the OsAP2LP gene was preferentially expressed in roots, panicles, mature embryos and seeds in rice. Real-time quantitative PCR analysis indicated that the expression levels of the OsAP2LP gene were increased under the treatments of drought and gibberellin but decreased under the treatments of low temperature, salt, abscisic acid (ABA and zeatin. Taken together, these results suggest that OsAP2LP might be involved in stress responses, and probably plays roles as a transcription regulator when plants response to cold, salt and drought stresses through ABA and gibberellin pathways.

  16. Proteomic responses to elevated ocean temperature in ovaries of the ascidianCiona intestinalis.

    Science.gov (United States)

    Lopez, Chelsea E; Sheehan, Hannah C; Vierra, David A; Azzinaro, Paul A; Meedel, Thomas H; Howlett, Niall G; Irvine, Steven Q

    2017-07-15

    Ciona intestinalis , a common sea squirt, exhibits lower reproductive success at the upper extreme of the water temperatures it experiences in coastal New England. In order to understand the changes in protein expression associated with elevated temperatures, and possible response to global temperature change, we reared C. intestinalis from embryos to adults at 18°C (a temperature at which they reproduce normally at our collection site in Rhode Island) and 22°C (the upper end of the local temperature range). We then dissected ovaries from animals at each temperature, extracted protein, and measured proteomic levels using shotgun mass spectrometry (LC-MS/MS). 1532 proteins were detected at a 1% false discovery rate present in both temperature groups by our LC-MS/MS method. 62 of those proteins are considered up- or down-regulated according to our statistical criteria. Principal component analysis shows a clear distinction in protein expression pattern between the control (18°C) group and high temperature (22°C) group. Similar to previous studies, cytoskeletal and chaperone proteins are upregulated in the high temperature group. Unexpectedly, we find evidence that proteolysis is downregulated at the higher temperature. We propose a working model for the high temperature response in C. intestinalis ovaries whereby increased temperature induces upregulation of signal transduction pathways involving PTPN11 and CrkL, and activating coordinated changes in the proteome especially in large lipid transport proteins, cellular stress responses, cytoskeleton, and downregulation of energy metabolism. © 2017. Published by The Company of Biologists Ltd.

  17. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    Science.gov (United States)

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  18. Temperature distribution and plant responses of birch (Betula pendula Roth.) at constant growth

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, Henrik [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden). Dept. of Agricultural Biosystems and Technology

    1999-06-01

    This thesis is about plant growth and development as influenced by temperature. An attempt to aggregate theories and methods in literature has been made. Experiments were performed on birch (Betula pendula Roth.) to study the requirements for determination of plant temperature and its distribution within the plant. Experiments have also included studies of the relationships between growth responses and temperature. Plant heat capacity has been measured in a separate study. Methods were used where the growth capacity and the plant state quantities were maintained constant. Leaf temperature was measured by remote sensing. The leaf and root temperature distributions were found to be constant during the whole experimental period. The distributions were in a range of 2-3 deg C for the leaves and in a range of 0.5-1.0 deg C for the roots. Leaves were increasingly colder relative the air, and roots were increasingly warmer relative the leaves with increasing air temperature. The growth capacity increased with an increase in plant mean temperature up to an optimum. The optimum growth capacity, at a photon flux density of 350 {mu}mol m{sup -2} s{sup -1}, was 0.37{+-}0.01 g g{sup -1} d{sup -1} for a mean leaf temperature of 22.6{+-}0.6 deg C and a mean root temperature of 29.3{+-}0.3 deg C. The connection between growth response and plant temperature has been determined with a higher precision than has been found in literature. Since the difference between leaf and air temperature can be significant and varying, choosing air temperature as the connection between temperature and plant responses will conceal the dynamical behaviour of the plant under changing environmental conditions. In a determination of plant responses one ought to consider the significant difference between root and leaf temperatures, since both factors will affect the plant responses. The heat capacity of plants was linearly correlated to the specific water content of the plant material in a range of 0

  19. Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C.

    Science.gov (United States)

    Piercey, Marta J; Hingston, Patricia A; Truelstrup Hansen, Lisbeth

    2016-04-16

    Listeria monocytogenes is a pathogenic foodborne bacterium whose persistence in food processing environments is in part attributed to its biofilm formation. Most biofilm studies have been carried out at 30-37 °C rather than at temperatures found in the food processing plants (i.e., 10-20 °C). The objective of the present study was to mine for novel genes that contribute to L. monocytogenes biofilm formation at 15 °C using the random insertional mutagenesis approach. A library of 11,024 L. monocytogenes 568 (serotype 1/2a) Himar1 insertional mutants was created. Mutants with reduced or enhanced biofilm formation at 15 °C were detected in microtiter plate assays with crystal violet and safranin staining. Fourteen mutants expressed enhanced biofilm phenotypes, and harbored transposon insertions in genes encoding cell wall biosynthesis, motility, metabolism, stress response, and cell surface associated proteins. Deficient mutants (n=5) contained interruptions in genes related to peptidoglycan, teichoic acid, or lipoproteins. Enhanced mutants produced significantly (p<0.05) higher cell densities in biofilm formed on stainless steel (SS) coupons at 15 °C (48 h) than deficient mutants, which were also more sensitive to benzalkonium chloride. All biofilm deficient mutants and four enhanced mutants in the microtiter plate assay (flaA, cheR, lmo2563 and lmo2488) formed no biofilm in a peg lid assay (Calgary biofilm device) while insertions in lmo1224 and lmo0543 led to excess biofilm in all assays. Two enhanced biofilm formers were more resistant to enzymatic removal with DNase, proteinase K or pectinase than the parent strain. Scanning electron microscopy of individual biofilms made by five mutants and the parent on SS surfaces showed formation of heterogeneous biofilm with dense zones by immotile mutants, while deficient mutants exhibited sparse growth. In conclusion, interruptions of 9 genes not previously linked to biofilm formation in L. monocytogenes (lmo2572, lmo

  20. An Interactive Database of Cocaine-Responsive Gene Expression

    Directory of Open Access Journals (Sweden)

    Willard M. Freeman

    2002-01-01

    Full Text Available The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse.

  1. Seismic Responses of a Cable-Stayed Bridge with Consideration of Uniform Temperature Load

    Directory of Open Access Journals (Sweden)

    Junjun Guo

    2016-12-01

    Full Text Available The effects of temperature load on the dynamic responses of cable-stayed bridges have attracted the attention of researchers in recent years. However, these investigations mainly focus on the influence of temperature on the dynamic characteristics of structures, such as vibration mode and frequency. This paper discusses the effects of uniform temperature changes on the seismic responses of a cable-stayed bridge. A three dimensional finite element model of a cable-stayed bridge using OpenSees is established for nonlinear time history analysis, and uniform temperature load is applied to the prototype bridge before the conducting of seismic excitation. Three ground motion records are selected from the PEER strong motion database based on the design spectrum. Case studies are then performed considering the varying temperature and the connections between the deck and pylons of the bridge. The result shows that the seismic responses of the bridge are significantly increased with the consideration of temperature load. Meanwhile, the types between the deck and pylon also have notable impacts on the seismic responses of the bridge with and without temperature changes. This research could provide a reference for designers during the design phase of cable-stayed brides.

  2. A comparative proteomic analysis of responses to high temperature stress in hypocotyl of Canola (Brassica napus L.).

    Science.gov (United States)

    Ismaili, Ahmad; Salavati, Afshin; Mohammadi, Payam Pour

    2014-01-01

    High temperature stress, especially on the early season of plant growth stages, is an agricultural problem in many areas in the world. A temporary or continually high temperature leads to a set of morphological, biochemical and physiological changes in plants, which consequently reduces the plant growth and development and finally may cause a severe reduction in economic yield. The main goal of this study was to assess plant response to high temperature stress (HTS) in early seedling of canola. This study is the first experiment on the effect of heat stress on proteome of canola. In the present research, a proteomics approach was used to evaluate the effects of high temperature stress, including 45 °C day/34 °C night for 2, 6 and 12 hour, on early seedling stage (2-day old) of canola. Proteins were isolated from hypocotyl and separated by two-dimensional polyacrylamide gel electrophoresis. Out of 381 protein spots, 28 and 34 proteins were significantly down- and up-regulated, respectively. The trend of mRNA expression for sucrose binding protein, a scorbate peroxidase and triosephosphateisomerase, was in accordance with their trend at translation level. Results of this study suggest that the up-regulation of proteins involved in cellular traffic, energy and metabolism, and down-regulation of some proteins involved in disease and defense, protein synthesis and signal transduction could be the main reason of physiological and morphological responses to high temperature stress. The observed increases in the level of ascorbate peroxidase protein and mRNA expression in canola hypocotyl in response to HTS suggests that ascorbate peroxidase is a short term high temperature stress response protein and is thus a candidate for gene modification strategies aimed at producing high temperature canola varieties. These results also suggest that the up regulation of protein involved in energy and metabolism in response to the heat stress can use most of nutritive reserves in

  3. Influence of light and temperature on gene expression leading to accumulation of specific flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica

    Directory of Open Access Journals (Sweden)

    Susanne eNeugart

    2016-03-01

    present on the 2 × 105K format Brassica microrray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization.

  4. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization.

  5. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice

    Directory of Open Access Journals (Sweden)

    Jia Yulin

    2007-06-01

    Full Text Available Abstract Background Plants respond to low temperature through an intricately coordinated transcriptional network. The CBF/DREB-regulated network of genes has been shown to play a prominent role in freeze-tolerance of Arabidopsis through the process of cold acclimation (CA. Recent evidence also showed that the CBF/DREB regulon is not unique to CA but evolutionarily conserved between chilling-insensitive (temperate and chilling-sensitive (warm-season plants. In this study, the wide contrast in chilling sensitivity between indica and japonica rice was used as model to identify other regulatory clusters by integrative analysis of promoter architecture (ab initio and gene expression profiles. Results Transcriptome analysis in chilling tolerant japonica rice identified a subset of 121 'early response' genes that were upregulated during the initial 24 hours at 10°C. Among this group were four transcription factors including ROS-bZIP1 and another larger sub-group with a common feature of having as1/ocs-like elements in their promoters. Cold-induction of ROS-bZIP1 preceded the induction of as1/ocs-like element-containing genes and they were also induced by exogenous H2O2 at ambient temperature. Coordinated expression patterns and similar promoter architectures among the 'early response' genes suggest that they belong to a potential regulon (ROS-bZIP – as1/ocs regulatory module that responds to elevated levels of ROS during chilling stress. Cultivar-specific expression signatures of the candidate genes indicate a positive correlation between the activity of the putative regulon and genotypic variation in chilling tolerance. Conclusion A hypothetical model of an ROS-mediated regulon (ROS-bZIP – as1/ocs triggered by chilling stress was assembled in rice. Based on the current results, it appears that this regulon is independent of ABA and CBF/DREB, and that its activation has an important contribution in configuring the rapid responses of rice seedlings

  6. Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt.

    Science.gov (United States)

    Chen, Jie-Yin; Huang, Jin-Qun; Li, Nan-Yang; Ma, Xue-Feng; Wang, Jin-Long; Liu, Chuan; Liu, Yong-Feng; Liang, Yong; Bao, Yu-Ming; Dai, Xiao-Feng

    2015-06-19

    Gossypium raimondii is a Verticillium wilt-resistant cotton species whose genome encodes numerous disease resistance genes that play important roles in the defence against pathogens. However, the characteristics of resistance gene analogues (RGAs) and Verticillium dahliae response loci (VdRLs) have not been investigated on a global scale. In this study, the characteristics of RGA genes were systematically analysed using bioinformatics-driven methods. Moreover, the potential VdRLs involved in the defence response to Verticillium wilt were identified by RNA-seq and correlations with known resistance QTLs. The G. raimondii genome encodes 1004 RGA genes, and most of these genes cluster in homology groups based on high levels of similarity. Interestingly, nearly half of the RGA genes occurred in 26 RGA-gene-rich clusters (Rgrcs). The homology analysis showed that sequence exchanges and tandem duplications frequently occurred within Rgrcs, and segmental duplications took place among the different Rgrcs. An RNA-seq analysis showed that the RGA genes play roles in cotton defence responses, forming 26 VdRLs inside in the Rgrcs after being inoculated with V. dahliae. A correlation analysis found that 12 VdRLs were adjacent to the known Verticillium wilt resistance QTLs, and that 5 were rich in NB-ARC domain-containing disease resistance genes. The cotton genome contains numerous RGA genes, and nearly half of them are located in clusters, which evolved by sequence exchanges, tandem duplications and segmental duplications. In the Rgrcs, 26 loci were induced by the V. dahliae inoculation, and 12 are in the vicinity of known Verticillium wilt resistance QTLs.

  7. Temperature response of the neuronal cytoskeleton mapped via atomic force and fluorescence microscopy

    CERN Document Server

    Spedden, Elise; Staii, Cristian

    2013-01-01

    Neuronal cells change their growth properties in response to external physical stimuli such as variations in external temperature, stiffness of the growth substrate, or topographical guidance cues. Detailed knowledge of the mechanisms that control these biomechanical responses is necessary for understanding the basic principles that underlie neuronal growth and regeneration. Here, we present elasticity maps of living cortical neurons (embryonic rat) as a function of temperature, and correlate these maps to the locations of internal structural components of the cytoskeleton. Neurons display a significant increase in the average elastic modulus upon a decrease in ambient temperature from 37{\\deg}C to 25{\\deg}C. We demonstrate that the dominant mechanism by which the elasticity of the neurons changes in response to temperature is the stiffening of the actin components of the cytoskeleton induced by myosin II. We also report a reversible shift in the location and composition of the high-stiffness areas of the neu...

  8. Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yohei Kotsuchibashi

    2016-10-01

    Full Text Available The development of stimuli responsive polymers has progressed significantly with novel preparation techniques, which has allowed access to new materials with unique properties. Dual thermoresponsive (double temperature responsive block copolymers are particularly of interest as their properties can change depending on the lower critical solution temperature (LCST or upper critical solution temperature (UCST of each segment. For instance, these block copolymers can change from being hydrophilic, to amphiphilic or to hydrophobic simply by changing the solution temperature without any additional chemicals and the block copolymers can change from being fully solubilized to self-assembled structures to macroscopic aggregation/precipitation. Based on the unique solution properties, these dual thermo-responsive block copolymers are expected to be suitable for biomedical applications. This review is divided into three parts; LCST-LCST types of block copolymers, UCST-LCST types of block copolymers, and their potential as biomedical applications.

  9. Physiological and biochemical response to high temperature stress in Okra (Abelmoschus esculentus L. Moench)

    Science.gov (United States)

    Hayamanesh, Shahnoosh; Keitel, Claudia; Ahmad, Nabil; Trethowan, Richard

    2016-04-01

    High temperature has been shown to lower the growth and yield of Okra, an important summer vegetable crop grown in Asia, Africa, the Middle East and Australia. We aimed to characterise the physiological and biochemical response of Okra to heat stress. 150 genotypes from Pakistan and the AVRDC (The World Vegetable Centre) were screened for their physiological response (fluorescence, electrolyte leakage and yield) to heat in a greenhouse. Four genotypes (including heat tolerant and sensitive) were selected and subsequently grown in control and hot greenhouses. Daytime temperatures were on average 10°C warmer in the hot greenhouse, whereas nighttime temperatures were similar between the two temperature treatments. During a 12 week period, the physiological (assimilation rate, transpiration rate, stomatal conductance, fluorescence, electrolyte leakage, water potential) and biochemical (carbohydrates, sugar alcohols, C content) response of the four genotypes to heat stress was assessed. The effect of heat stress on the C allocation patterns and yield in Okra will be discussed.

  10. A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36.

    Science.gov (United States)

    Bryant, Ruth R M; McGrann, Graham R D; Mitchell, Alice R; Schoonbeek, Henk-Jan; Boyd, Lesley A; Uauy, Cristobal; Dorling, Steve; Ridout, Christopher J

    2014-01-08

    Rust diseases are of major importance in wheat production worldwide. With the constant evolution of new rust strains and their adaptation to higher temperatures, consistent and durable disease resistance is a key challenge. Environmental conditions affect resistance gene performance, but the basis for this is poorly understood. Here we show that a change in day temperature affects wheat resistance to Puccinia striiformis f. sp tritici (Pst), the causal agent of yellow (or stripe) rust. Using adult plants of near-isogenic lines UC1041 +/- Yr36, there was no significant difference between Pst percentage uredia coverage in plants grown at day temperatures of 18°C or 25°C in adult UC1041 + Yr36 plants. However, when plants were transferred to the lower day temperature at the time of Pst inoculation, infection increased up to two fold. Interestingly, this response was independent of Yr36, which has previously been reported as a temperature-responsive resistance gene as Pst development in adult UC1041 -Yr36 plants was similarly affected by the plants experiencing a temperature reduction. In addition, UC1041 -Yr36 plants grown at the lower temperature then transferred to the higher temperature were effectively resistant and a temperature change in either direction was shown to affect Pst development up to 8 days prior to inoculation. Results for seedlings were similar, but more variable compared to adult plants. Enhanced resistance to Pst was observed in seedlings of UC1041 and the cultivar Shamrock when transferred to the higher temperature. Resistance was not affected in seedlings of cultivar Solstice by a temperature change in either direction. Yr36 is effective at 18°C, refining the lower range of temperature at which resistance against Pst is conferred compared to previous studies. Results reveal previously uncharacterised defence temperature sensitivity in the UC1041 background which is caused by a change in temperature and independently of Yr36. This novel

  11. Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene.

    Science.gov (United States)

    Ge, Xiang-Yang; Xu, Yan; Chen, Xiang

    2013-04-01

    This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.

  12. Orexinergic neurotransmission in temperature responses to methamphetamine and stress: mathematical modeling as a data assimilation approach.

    Directory of Open Access Journals (Sweden)

    Abolhassan Behrouzvaziri

    Full Text Available Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth. In experiments in rats, SB-334867 (SB, an antagonist of orexin receptors (OX1R, at a dose of 10 mg/kg decreases late temperature responses (t > 60 min to an intermediate dose of Meth (5 mg/kg. A higher dose of SB (30 mg/kg attenuates temperature responses to low dose (1 mg/kg of Meth and to stress. In contrast, it significantly exaggerates early responses (t < 60 min to intermediate and high doses (5 and 10 mg/kg of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult.We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD. Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods.

  13. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Science.gov (United States)

    Hahn, Achim; Kilian, Joachim; Mohrholz, Anne; Ladwig, Friederike; Peschke, Florian; Dautel, Rebecca; Harter, Klaus; Berendzen, Kenneth W.; Wanke, Dierk

    2013-01-01

    Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt) can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA) and methyl-jasmonate (MeJA) responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR), e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner. PMID:23567274

  14. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  15. Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature.

    Science.gov (United States)

    Suutari, M; Laakso, S

    1992-01-01

    Streptomyces griseus showed three different modes of changing fatty acids in response to temperature change. In Brevibacterium fermentans, two such responses were found. The responses involved changes in fatty acid branching, unsaturation, or chain length, depending on growth temperature range. Changes in unsaturation of branched-chain acids were characteristic at low growth temperatures. PMID:1637171

  16. Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress.

    Science.gov (United States)

    Liu, Ning; Staswick, Paul E; Avramova, Zoya

    2016-11-01

    Dehydration stress activates numerous genes co-regulated by diverse signaling pathways. Upon repeated exposures, however, a subset of these genes does not respond maintaining instead transcription at their initial pre-stressed levels ('revised-response' genes). Most of these genes are involved in jasmonic acid (JA) biosynthesis, JA-signaling and JA-mediated stress responses. How these JA-associated genes are regulated to provide different responses to similar dehydration stresses is an enigma. Here, we investigate molecular mechanisms that contribute to this transcriptional behavior. The memory-mechanism is stress-specific: one exposure to dehydration stress or to abscisic acid (ABA) is required to prevent transcription in the second. Both ABA-mediated and JA-mediated pathways are critical for the activation of these genes, but the two signaling pathways interact differently during a single or multiple encounters with dehydration stress. Synthesis of JA during the first (S1) but not the second dehydration stress (S2) accounts for the altered transcriptional responses. We propose a model for these memory responses, wherein lack of MYC2 and of JA synthesis in S2 is responsible for the lack of expression of downstream genes. The similar length of the memory displayed by different memory-type genes suggests biological relevance for transcriptional memory as a gene-regulating mechanism during recurring bouts of drought. © 2016 John Wiley & Sons Ltd.

  17. Mosquito control pesticides and sea surface temperatures have differential effects on the survival and oxidative stress response of coral larvae.

    Science.gov (United States)

    Ross, Cliff; Olsen, Kevin; Henry, Michael; Pierce, Richard

    2015-04-01

    The declining health of coral reefs is intensifying worldwide at an alarming rate due to the combined effects of land-based sources of pollution and climate change. Despite the persistent use of mosquito control pesticides in populated coastal areas, studies examining the survival and physiological impacts of early life-history stages of non-targeted marine organisms are limited. In order to better understand the combined effects of mosquito pesticides and rising sea surface temperatures, we exposed larvae from the coral Porites astreoides to selected concentrations of two major mosquito pesticide ingredients, naled and permethrin, and seawater elevated +3.5 °C. Following 18-20 h of exposure, larvae exposed to naled concentrations of 2.96 µg L(-1) or greater had significantly reduced survivorship compared to controls. These effects were not detected in the presence of permethrin or elevated temperature. Furthermore, larval settlement, post-settlement survival and zooxanthellae density were not impacted by any treatment. To evaluate the sub-lethal stress response of larvae, several oxidative stress endpoints were utilized. Biomarker responses to pesticide exposure were variable and contingent upon pesticide type as well as the specific biomarker being employed. In some cases, such as with protein carbonylation and catalase gene expression, the effects of naled exposure and temperature were interactive. In other cases pesticide exposure failed to induce any sub-lethal stress response. Overall, these results demonstrate that P. astreoides larvae have a moderate degree of resistance against short-term exposure to ecologically relevant concentrations of pesticides even in the presence of elevated temperature. In addition, this work highlights the importance of considering the complexity and differential responses encountered when examining the impacts of combined stressors that occur on varying spatial scales.

  18. Improved light and temperature responses for light-use-efficiency-based GPP models

    Directory of Open Access Journals (Sweden)

    I. McCallum

    2013-10-01

    Full Text Available Gross primary production (GPP is the process by which carbon enters ecosystems. Models based on the theory of light use efficiency (LUE have emerged as an efficient method to estimate ecosystem GPP. However, problems have been noted when applying global parameterizations to biome-level applications. In particular, model–data comparisons of GPP have shown that models (including LUE models have difficulty matching estimated GPP. This is significant as errors in simulated GPP may propagate through models (e.g. Earth system models. Clearly, unique biome-level characteristics must be accounted for if model accuracy is to be improved. We hypothesize that in boreal regions (which are strongly temperature controlled, accounting for temperature acclimation and non-linear light response of daily GPP will improve model performance. To test this hypothesis, we have chosen four diagnostic models for comparison, namely an LUE model (linear in its light response both with and without temperature acclimation and an LUE model and a big leaf model both with temperature acclimation and non-linear in their light response. All models include environmental modifiers for temperature and vapour pressure deficit (VPD. Initially, all models were calibrated against five eddy covariance (EC sites within Russia for the years 2002–2005, for a total of 17 site years. Model evaluation was performed via 10-out cross-validation. Cross-validation clearly demonstrates the improvement in model performance that temperature acclimation makes in modelling GPP at strongly temperature-controlled sites in Russia. These results would indicate that inclusion of temperature acclimation in models on sites experiencing cold temperatures is imperative. Additionally, the inclusion of a non-linear light response function is shown to further improve performance, particularly in less temperature-controlled sites.

  19. A rice gene of de novo origin negatively regulates pathogen-induced defense response.

    Directory of Open Access Journals (Sweden)

    Wenfei Xiao

    Full Text Available How defense genes originated with the evolution of their specific pathogen-responsive traits remains an important problem. It is generally known that a form of duplication can generate new genes, suggesting that a new gene usually evolves from an ancestral gene. However, we show that a new defense gene in plants may evolve by de novo origination, resulting in sophisticated disease-resistant functions in rice. Analyses of gene evolution showed that this new gene, OsDR10, had homologs only in the closest relative, Leersia genus, but not other subfamilies of the grass family; therefore, it is a rice tribe-specific gene that may have originated de novo in the tribe. We further show that this gene may evolve a highly conservative rice-specific function that contributes to the regulation difference between rice and other plant species in response to pathogen infections. Biologic analyses including gene silencing, pathologic analysis, and mutant characterization by transformation showed that the OsDR10-suppressed plants enhanced resistance to a broad spectrum of Xanthomonas oryzae pv. oryzae strains, which cause bacterial blight disease. This enhanced disease resistance was accompanied by increased accumulation of endogenous salicylic acid (SA and suppressed accumulation of endogenous jasmonic acid (JA as well as modified expression of a subset of defense-responsive genes functioning both upstream and downstream of SA and JA. These data and analyses provide fresh insights into the new biologic and evolutionary processes of a de novo gene recruited rapidly.

  20. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    Science.gov (United States)

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.

  1. Modification of cotton fabric with temperature/pH responsive hydrogel: influence of particles size

    Science.gov (United States)

    Štular, D.; Tomšič, B.; Simončič, B.; Jerman, I.; Mihelčič, M.; Čolović, M.

    2017-10-01

    In this study, smart stimuli responsive cotton fabric was tailored by incorporation of temperature and pH responsive hydrogel with two different hydrogel particle size ranges, namely microgel and nanogel. Both hydrogels were based on temperature responsive poly(N-isopropylacrylamide) (poly-NiPAAm) and pH responsive chitosan (PNCS hydrogel). Hydrogels were incorporated onto cotton fabric, in order to study the influence of hydrogel particle size on the stimuli responsive properties, as well as morphological and chemical changes. Regardless of hydrogel particle size, improved air and moisture management activity of the functionalised fabric was achieved. Reduced size of nanogel somewhat influenced swelling ability of the functionalised fabric, although regardless of 4-times smaller concentration of applied hydrogel, comparable responsiveness and great decrease of stiffness was achieved.

  2. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq. at high temperature.

    Directory of Open Access Journals (Sweden)

    René Garruña-Hernández

    Full Text Available Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.. Three growth chambers were used, each with 30 Habanero pepper plants. Chambers were maintained at a diurnal maximum air temperature (DMT of 30 (chamber 1, 35 (chamber 2 and 40°C (chamber 3. Each contained plants from seedling to fruiting stage. Physiological response to variation in DMT was evaluated for each stage over the course of five months. The results showed that both leaf area and dry mass of Habanero pepper plants did not exhibit significant differences in juvenile and flowering phenophases. However, in the fruiting stage, the leaf area and dry mass of plants grown at 40°C DMT were 51 and 58% lower than plants at 30°C DMT respectively. Meanwhile, an increase in diurnal air temperature raised both stomatal conductance and transpiration rate, causing an increase in temperature deficit (air temperature - leaf temperature. Thus, leaf temperature decreased by 5°C, allowing a higher CO2 assimilation rate in plants at diurnal maximum air temperature (40°C. However, in CO2 measurements when leaf temperature was set at 40°C, physiological parameters decreased due to an increase in stomatal limitation. We conclude that the thermal optimum range in a tropical crop such as Habanero pepper is between 30 and 35°C (leaf temperature, not air temperature. In this range, gas exchange through stomata is probably optimal. Also, the air temperature-leaf temperature relationship helps to explain how temperature keeps the major physiological processes of Habanero pepper healthy under experimental conditions.

  3. Air temperature and physiological and subjective responses during competitive singles tennis.

    Science.gov (United States)

    Morante, Sarah M; Brotherhood, John R

    2007-11-01

    This report describes the thermal stresses and strains during competitive singles tennis. Thermoregulatory responses were investigated during best of three set tennis matches among 25 players. A total of 86 observations were made from 43 matches played, covering each season, with ambient temperatures ranging from 14.5 to 38.4 degrees C. Core body temperature and skin temperature were recorded each minute throughout the match, whilst heart rate was logged every 15 s. Body mass and fluid intake were measured before the match, after 30 min of play and at the completion of the match to determine sweat rate. Subjective ratings of thermal strain included thermal comfort, sweatiness and perceived exertion. The thermal environment was assessed by dry bulb, wet bulb and natural wet bulb temperatures, globe temperature and wind speed. Mean (SD) core temperature after 30 min of play was 38.4 degrees C (0.4 degrees C), and demonstrated no association with air temperature or wet bulb globe temperature. Mean skin temperature was 31.8 degrees C (2.3 degrees C) ranging from 25.7 to 36.5 degrees C, and showed a positive association with air temperature (pair temperature. Sweat rate averaged 1.0 (0.4) litres/h (0.2-2.4 litres/h) or 12.8 (5.5) ml/kg/h (2.7-26.0 ml/kg/h), and demonstrated a positive relationship with air temperature (pair temperature (p<0.001). Stressful environmental conditions produce a high skin temperature and rating of thermal discomfort. However, overall thermoregulatory strain during tennis is moderate, with core temperature remaining within safe levels.

  4. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature.

    Science.gov (United States)

    Garruña-Hernández, René; Orellana, Roger; Larque-Saavedra, Alfonso; Canto, Azucena

    2014-01-01

    Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.). Three growth chambers were used, each with 30 Habanero pepper plants. Chambers were maintained at a diurnal maximum air temperature (DMT) of 30 (chamber 1), 35 (chamber 2) and 40°C (chamber 3). Each contained plants from seedling to fruiting stage. Physiological response to variation in DMT was evaluated for each stage over the course of five months. The results showed that both leaf area and dry mass of Habanero pepper plants did not exhibit significant differences in juvenile and flowering phenophases. However, in the fruiting stage, the leaf area and dry mass of plants grown at 40°C DMT were 51 and 58% lower than plants at 30°C DMT respectively. Meanwhile, an increase in diurnal air temperature raised both stomatal conductance and transpiration rate, causing an increase in temperature deficit (air temperature - leaf temperature). Thus, leaf temperature decreased by 5°C, allowing a higher CO2 assimilation rate in plants at diurnal maximum air temperature (40°C). However, in CO2 measurements when leaf temperature was set at 40°C, physiological parameters decreased due to an increase in stomatal limitation. We conclude that the thermal optimum range in a tropical crop such as Habanero pepper is between 30 and 35°C (leaf temperature, not air temperature). In this range, gas exchange through stomata is probably optimal. Also, the air temperature-leaf temperature relationship helps to explain how temperature keeps the major physiological processes of Habanero pepper healthy under experimental conditions.

  5. Equal temperature-size responses of the sexes are widespread within arthropod species

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Horne, Curtis; Atkinson, David

    2015-01-01

    arthropod orders examined, five of which (Diptera, Orthoptera, Lepidoptera, Coleoptera and Calanoida) include more than six thermal responses. We suggest that the same proportional T-S response may generally have equivalent fitness costs and benefits in both sexes. This contrasts with effects of juvenile......Sexual size dimorphism (SSD) is often affected by environmental conditions, but the effect of temperature on SSD in ectotherms still requires rigorous investigation. We compared the plastic responses of size-at-maturity to temperature between males and females within 85 diverse arthropod species......, in which individuals of both sexes were reared through ontogeny under identical conditions with excess food. We find that the sexes show similar relative (proportional) temperature-body size (T-S) responses on average. The high degree of similarity occurs despite an analysis that includes a wide range...

  6. Variation in Yield Responses to Elevated CO2 and a Brief High Temperature Treatment in Quinoa

    Science.gov (United States)

    Bunce, James A.

    2017-01-01

    Intraspecific variation in crop responses to global climate change conditions would provide opportunities to adapt crops to future climates. These experiments explored intraspecific variation in response to elevated CO2 and to high temperature during anthesis in Chenopodium quinoa Wild. Three cultivars of quinoa were grown to maturity at 400 (“ambient”) and 600 (“elevated”) μmol·mol−1 CO2 concentrations at 20/14 °C day/night (“control”) temperatures, with or without exposure to day/night temperatures of 35/29 °C (“high” temperatures) for seven days during anthesis. At control temperatures, the elevated CO2 concentration increased the total aboveground dry mass at maturity similarly in all cultivars, but by only about 10%. A large down-regulation of photosynthesis at elevated CO2 occurred during grain filling. In contrast to shoot mass, the increase in seed dry mass at elevated CO2 ranged from 12% to 44% among cultivars at the control temperature. At ambient CO2, the week-long high temperature treatment greatly decreased (0.30 × control) or increased (1.70 × control) seed yield, depending on the cultivar. At elevated CO2, the high temperature treatment increased seed yield moderately in all cultivars. These quinoa cultivars had a wide range of responses to both elevated CO2 and to high temperatures during anthesis, and much more variation in harvest index responses to elevated CO2 than other crops that have been examined. PMID:28678208

  7. Variation in Yield Responses to Elevated CO2 and a Brief High Temperature Treatment in Quinoa

    Directory of Open Access Journals (Sweden)

    James A. Bunce

    2017-07-01

    Full Text Available Intraspecific variation in crop responses to global climate change conditions would provide opportunities to adapt crops to future climates. These experiments explored intraspecific variation in response to elevated CO2 and to high temperature during anthesis in Chenopodium quinoa Wild. Three cultivars of quinoa were grown to maturity at 400 (“ambient” and 600 (“elevated” μmol·mol−1 CO2 concentrations at 20/14 °C day/night (“control” temperatures, with or without exposure to day/night temperatures of 35/29 °C (“high” temperatures for seven days during anthesis. At control temperatures, the elevated CO2 concentration increased the total aboveground dry mass at maturity similarly in all cultivars, but by only about 10%. A large down-regulation of photosynthesis at elevated CO2 occurred during grain filling. In contrast to shoot mass, the increase in seed dry mass at elevated CO2 ranged from 12% to 44% among cultivars at the control temperature. At ambient CO2, the week-long high temperature treatment greatly decreased (0.30 × control or increased (1.70 × control seed yield, depending on the cultivar. At elevated CO2, the high temperature treatment increased seed yield moderately in all cultivars. These quinoa cultivars had a wide range of responses to both elevated CO2 and to high temperatures during anthesis, and much more variation in harvest index responses to elevated CO2 than other crops that have been examined.

  8. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    Science.gov (United States)

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  9. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    Directory of Open Access Journals (Sweden)

    Astrid eWingler

    2015-01-01

    Full Text Available Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g. via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellins (GA and jasmonate (JA play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor (CBF dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants.

  10. Investigation of Neutron Detector Response to Varying Temperature and Water Content for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice [ORNL

    2010-01-01

    Nuclear logging techniques have been used for oil well logging applications for decades. The basic principle is to use a neutron and/or photon source and neutron and photon detectors for characterization purposes. Although the technology has matured, it is not directly applicable to geothermal logging due to even more challenging environmental conditions, both in terms of temperature and pressure. For geothermal logging, the operating temperature can go up to 376 C for depths up to 10,000 km. In this paper, the preliminary computational results for thermal neutron detector response for varying temperature and water content for geothermal applications are presented. In this summary, preliminary results for neutron detector response for varying formation temperature and water content are presented. The analysis is performed for a steady state source (AmBe) and time dependent source (PNG) in pulsed mode. The computational results show significant sensitivity to water content as well as temperature changes for both steady state and time dependent measurements. As expected, the most significant change is due to the temperature change for S({alpha}, {beta}) nuclear data instead of individual isotope cross sections for the formation. Clearly, this is partially because of the fact that strong absorbers (i.e., chlorine) are not taken into account for the analysis at this time. The computational analysis was performed using the temperature dependent data in the ENDF/B-VII libraries, supplied with MCNP. Currently, the data for intermediate temperatures are being generated using NJOY and validated. A series of measurements are planned to validate the computational results. Further measurements are planned to determine the neutron and photon detector response as a function of temperature. The tests will be performed for temperatures up to 400 C.

  11. Expression Analysis of MYC Genes from Tamarix hispida in Response to Different Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Guifeng Liu

    2012-01-01

    Full Text Available The MYC genes are a group of transcription factors containing both bHLH and ZIP motifs that play important roles in the regulation of abscisic acid (ABA-responsive genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time reverse-transcriptase (RT-PCR showed that all nine MYC genes were expressed in root, stem and leaf tissues, but that the levels of the transcripts of these genes in the various tissues differed notably. The MYC genes were highly induced in the roots in response to ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC genes were highly induced only when exposed to these stresses for 6 h. In addition, most of these MYC genes were highly expressed in roots in comparison with stems and leaves. Furthermore, the MYC genes were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stems and leaves. The results of this present study suggest that MYCs are involved in salt and osmotic stress tolerances and are controlled by the ABA signal transduction pathway.

  12. Development and characterization of a high temperature stress responsive subtractive cDNA library in Pearl Millet Pennisetum glaucum (L.) R.Br.

    Science.gov (United States)

    James, Donald; Tarafdar, Avijit; Biswas, Koushik; Sathyavathi, Tara C; Padaria, Jasdeep Chatrath; Kumar, P Ananda

    2015-08-01

    Pearl millet (Pennisetum glaucum L. R. Br.) is an important cereal crop grown mainly in the arid and semi-arid regions of India known to possess the natural ability to withstand thermal stress. To elucidate the molecular basis of high temperature response in pearl millet, 12 days old seedlings of P. glaucum cv. 841A were subjected to heat stress at 46 degrees C for different time durations ( 30 min, 2, 4, 8, 12 and 24 h) and a forward subtractive cDNA library was constructed from pooled RNA of heat stressed seedlings. A total of 331 high quality Expressed Sequence Tags (ESTs) were obtained from randomly selected 1050 clones. Sequences were assembled into 103 unique sequences consisting of 37 contigs and 66 singletons. Of these, 92 unique sequences were submitted to NCBI dbEST database. Gene Ontology through RGAP data base and BLASTx analysis revealed that about 18% of the ESTs showed homology to genes for "response to abiotic and biotic stimulus". About 2% of the ESTs showed no homology with genes in dbEST, indicating the presence of uncharacterized candidate genes involved in heat stress response in P. glaucum. Differential expression of selected genes (hsp101 and CRT) from the SSH library were validated by qRT-PCR analysis. The ESTs thus generated are a rich source of heat stress responsive genes, which can be utilized in improving thermotolerance of other food crops.

  13. Effect of nitrogen and temperature on the transcription of an ACAT gene in Isochrysis galbana.

    Science.gov (United States)

    Huang, Yijiang; Zheng, Minggang; Wan, Wenwen; Sun, Zhongtao

    2014-11-01

    Thiolases are functionally divided into two groups: 3-ketoacyl-CoA thiolase and acetoacetyl-CoA thiolase (ACAT). Acetoacetyl-CoA thiolase plays a key role in the mevalonate pathway. In this study, a novel gene, IgACAT, which encodes ACAT was cloned from Isochrysis galbana and characterized. The cDNA of IgACAT was 1551 bp in length, consisting of an open reading frame of 1173 bp, a 5' untranslated region of 69 bp and a 3' untranslated region of 309 bp. The deduced amino acid sequence of IgACAT was 390 amino acid residues in length with a predicted molecular weight of 53.59 kDa and an isoelectric point of pH 9.04. The triterpenes content and the expression of IgACAT under nitrogen and temperature stress were analyzed. When I. galbana was treated with excessive nitrogen and at 35 °C, respectively, both the triterpenes content and the abundance of IgACAT gene transcript increased. Our findings will facilitate the regulation of gene expression and genetic modification of the triterpenes synthesis pathway of I. galbana.

  14. Multiplexed Component Analysis to Identify Genes Contributing to the Immune Response during Acute SIV Infection.

    Directory of Open Access Journals (Sweden)

    Iraj Hosseini

    Full Text Available Immune response genes play an important role during acute HIV and SIV infection. Using an SIV macaque model of AIDS and CNS disease, our overall goal was to assess how the expression of genes associated with immune and inflammatory responses are longitudinally changed in different organs or cells during SIV infection. To compare RNA expression of a panel of 88 immune-related genes across time points and among three tissues - spleen, mesenteric lymph nodes (MLN and peripheral blood mononuclear cells (PBMC - we designed a set of Nanostring probes. To identify significant genes during acute SIV infection and to investigate whether these genes are tissue-specific or have global roles, we introduce a novel multiplexed component analysis (MCA method. This combines multivariate analysis methods with multiple preprocessing methods to create a set of 12 "judges"; each judge emphasizes particular types of change in gene expression to which cells could respond, for example, the absolute or relative size of expression change from baseline. Compared to bivariate analysis methods, our MCA method improved classification rates. This analysis allows us to identify three categories of genes: (a consensus genes likely to contribute highly to the immune response; (b genes that would contribute highly to the immune response only if certain assumptions are met - e.g. that the cell responds to relative expression change rather than absolute expression change; and (c genes whose contribution to immune response appears to be modest. We then compared the results across the three tissues of interest; some genes are consistently highly-contributing in all tissues, while others are specific for certain tissues. Our analysis identified CCL8, CXCL10, CXCL11, MxA, OAS2, and OAS1 as top contributing genes, all of which are stimulated by type I interferon. This suggests that the cytokine storm during acute SIV infection is a systemic innate immune response against viral

  15. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340 (Mexico); Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340 (Mexico); Vela, Alberto, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México, D.F. 07360 (Mexico)

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  16. Genome-wide identification and expression profiling of auxin response factor (ARF gene family in maize

    Directory of Open Access Journals (Sweden)

    Zhang Yirong

    2011-04-01

    Full Text Available Abstract Background Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs are the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the ARF gene family from maize (ZmARF genes has not been characterized in detail. Results In this study, 31 maize (Zea mays L. genes that encode ARF proteins were identified in maize genome. It was shown that maize ARF genes fall into related sister pairs and chromosomal mapping revealed that duplication of ZmARFs was associated with the chromosomal block duplications. As expected, duplication of some ZmARFs showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 ZmARF genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 ZmARF genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (ZmARF3, 9, 16, 18, 22 and 30. The expressions of maize ARF genes are responsive to exogenous auxin treatment. Dynamic expression patterns of ZmARF genes were observed in different stages of embryo development. Conclusions Maize ARF gene family is expanded (31 genes as compared to Arabidopsis (23 genes and rice (25 genes. The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of ZmARF genes in embryo at different stages were detected which suggest that maize ARF genes may

  17. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses.

    Science.gov (United States)

    Lu, Wei; Tang, Xiaoli; Huo, Yanqing; Xu, Rui; Qi, Shengdong; Huang, Jinguang; Zheng, Chengchao; Wu, Chang-ai

    2012-07-15

    Fructose 1,6-biphosphate aldolase (FBA) is a key enzyme in plants, which is involved not only in glycolysis and gluconeogenesis in the cytoplasm, but also in the Calvin cycle in plastids. Research on FBAs in various organisms has been reported, but there is none on FBAs in Arabidopsis at the molecular level. In the current study, eight FBA family genes (AtFBA1-8) were identified and analyzed in Arabidopsis thaliana. These genes have a highly conserved aldolase-type TIM barrel domain and a C-terminal peptide, but variable N-terminal peptides. Based on the phylogenetic analysis of FBA protein sequences from Arabidopsis and other plant species, AtFBA family was classified into two subfamilies, including three members (AtFBA1-3) with high similarities to FBAs occurring at plastid, and five (AtFBA4-8) with high similarities to FBAs localized in the cytoplasm. By confocal microscopy analysis with GFP fusion protein, AtFBA3 and AtFBA4 as well as AtFBA6 were observed to be localized in the plastid and cytoplasm, respectively. At least two duplicated gene pairs of AtFBA1 and AtFBA2, as well as AtFBA4 and AtFBA8 were found. Transcript level analysis of AtFBA genes in various tissues revealed the unique and overlapping expression patterns of plastid and cytosol AtFBA genes, suggesting that these genes may function at different stages of plant growth and development. Interestingly, AtFBA1, AtFBA2, AtFBA5 and AtFBA7 showed undetectable expression in roots. The expression patterns of AtFBA genes under different stress conditions suggested that all the members showed different expression patterns in response to stresses, including ABA, NaCl, Cd, abnormal temperature and drought, and, except for AtFBA3, most of the AtFBA genes were significantly responsive to drought stress in roots. Moreover, AtFBA1, AtFBA2, AtFBA5, AtFBA7 and AtFBA8 were induced by at least one of three sugars (sucrose, glucose and fructose) after 24h of treatment. Further functional analyses indicated important

  18. Genetic variation for farrowing rate in pigs in response to change in photoperiod and ambient temperature.

    Science.gov (United States)

    Sevillano, C A; Mulder, H A; Rashidi, H; Mathur, P K; Knol, E F

    2016-08-01

    Seasonal infertility is often observed as anestrus and a lower conception rate resulting in a reduced farrowing rate (FR) during late summer and early autumn. This is often regarded as an effect of heat stress; however, we observed a reduction in the FR of sows even after correcting for ambient temperature in our data. Therefore, we added change in photoperiod in the analysis of FR considering its effect on sow fertility. Change in photoperiod was modeled using the cosine of the day of first insemination within a year. On an average, the FR decreased by 2% during early autumn with decreasing daily photoperiod compared with early summer with almost no change in daily photoperiod. It declined 0.2% per degree Celsius of ambient temperature above 19.2°C. This result is a step forward in disentangling the 2 environmental components responsible for seasonal infertility. Our next aim was to estimate the magnitude of genetic variation in FR in response to change in photoperiod and ambient temperature to explore opportunities for selecting pigs to have a constant FR throughout the year. We used reaction norm models to estimate additive genetic variation in response to change in photoperiod and ambient temperature. The results revealed a larger genetic variation at stressful environments when daily photoperiod decreased and ambient temperatures increased above 19.2°C compared with neutral environments. Genetic correlations between stressful environments and nonstressful environments ranged from 0.90 (±0.03) to 0.46 (±0.13) depending on the severity of the stress, indicating changes in expression of FR depending on the environment. The genetic correlation between responses of pigs to changes in photoperiod and to those in ambient temperature were positive, indicating that pigs tolerant to decreasing daily photoperiod are also tolerant to high ambient temperatures. Therefore, selection for tolerance to decreasing daily photoperiod should also increase tolerance to high

  19. Changes in floral bouquets from compound-specific responses to increasing temperatures.

    Science.gov (United States)

    Farré-Armengol, Gerard; Filella, Iolanda; Llusià, Joan; Niinemets, Ulo; Peñuelas, Josep

    2014-12-01

    We addressed the potential effects of changes in ambient temperature on the profiles of volatile emissions from flowers and tested whether warming could induce significant quantitative and qualitative changes in floral emissions, which would potentially interfere with plant-pollinator chemical communication. We measured the temperature responses of floral emissions of various common species of Mediterranean plants using dynamic headspace sampling and used GC-MS to identify and quantify the emitted terpenes. Floral emissions increased with temperature to an optimum and thereafter decreased. The responses to temperature modeled here predicted increases in the rates of floral terpene emission of 0.03-1.4-fold, depending on the species, in response to an increase of 1 °C in the mean global ambient temperature. Under the warmest projections that predict a maximum increase of 5 °C in the mean temperature of Mediterranean climates in the Northern Hemisphere by the end of the century, our models predicted increases in the rates of floral terpene emissions of 0.34-9.1-fold, depending on the species. The species with the lowest emission rates had the highest relative increases in floral terpene emissions with temperature increases of 1-5 °C. The response of floral emissions to temperature differed among species and among different compounds within the species. Warming not only increased the rates of total emissions, but also changed the ratios among compounds that constituted the floral scents, i.e. increased the signal for pollinators, but also importantly altered the signal fidelity and probability of identification by pollinators, especially for specialists with a strong reliance on species-specific floral blends. © 2014 John Wiley & Sons Ltd.

  20. Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    Full Text Available BACKGROUND: The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques. PRINCIPAL FINDINGS: Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana ×P. tomentosa leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes. CONCLUSIONS: Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.

  1. Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment

    Directory of Open Access Journals (Sweden)

    J. Taucher

    2012-09-01

    Full Text Available Increasing concentrations of atmospheric carbon dioxide are projected to lead to an increase in sea surface temperatures, potentially impacting marine ecosystems and biogeochemical cycling. Here we conducted an indoor mesocosm experiment with a natural plankton community taken from the Baltic Sea in summer. We induced a plankton bloom via nutrient addition and followed the dynamics of the different carbon and nitrogen pools for a period of one month at temperatures ranging from 9.5 °C to 17.5 °C, representing a range of ±4 °C relative to ambient temperature. The uptake of dissolved inorganic carbon (DIC and the net build-up of both particulate (POC and dissolved organic carbon (DOC were all enhanced at higher temperatures and almost doubled over a temperature gradient of 8 °C. Furthermore, elemental ratios of carbon and nitrogen (C : N in both particulate and dissolved organic matter increased in response to higher temperatures, both reaching very high C : N ratios of > 30 at +4 °C. Altogether, these observations suggest a pronounced increase in excess carbon fixation in response to elevated temperatures. Most of these findings are contrary to results from similar experiments conducted with plankton populations sampled in spring, revealing large uncertainties in our knowledge of temperature sensitivities of key processes in marine carbon cycling. Since a major difference to previous mesocosm experiments was the dominant phytoplankton species, we hypothesize that species composition might play an important role in the response of biogeochemical cycling to increasing temperatures.

  2. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family

    NARCIS (Netherlands)

    Rademacher, E.H.; Moller, B.K.; Lokerse, A.S.; Llavata Peris, C.I.; Berg, van den W.A.M.; Weijers, D.

    2011-01-01

    The plant hormone auxin triggers a wide range of developmental and growth responses throughout a plant’s life. Most well-known auxin responses involve changes in gene expression that are mediated by a short pathway involving an auxin-receptor/ubiquitin-ligase, DNA-binding auxin response factor (ARF)

  3. Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures.

    Science.gov (United States)

    Dalvi, Rishikesh S; Das, Tilak; Debnath, Dipesh; Yengkokpam, Sona; Baruah, Kartik; Tiwari, Lalchand R; Pal, Asim K

    2017-04-01

    We investigated the metabolic and cellular stress responses in an endemic catfish Horabagrus brachysoma acclimated to ambient (26°C), 31, 33 and 36°C for 30 days. After acclimation, fish were sampled to investigate changes in the levels of blood glucose, tissue glycogen and ascorbic acid, activities of enzymes involved in glycolysis (LDH), citric acid cycle (MDH), gluconeogenesis (FBPase and G6Pase), pentose phosphate pathway (G6PDH), protein metabolism (AST and ALT), phosphate metabolism (ACP and ALP) and energy metabolism (ATPase), and HSP70 levels in various tissues. Acclimation to higher temperatures (33 and 36°C) significantly increased activities of LDH, MDH, ALP, ACP, AST, ALT and ATPase and blood glucose levels, whereas decreased the G6PDH enzyme activity and, tissue glycogen and ascorbic acid. Results indicated an overall increase in the carbohydrate, protein and lipid metabolism implying increased metabolic demands for maintaining homeostasis in fish acclimated to higher temperatures (33 and 36°C). We observed tissue specific response of HSP70 in H. brachysoma, with significant increase in gill and liver at 33 and 36°C, and in brain and muscle at 36°C, enabling cellular protection at higher acclimation temperatures. In conclusion, H. brachysoma adjusted metabolic and cellular responses to withstand increased temperatures, however, these responses suggest that the fish was under stress at 33°C or higher temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The transcriptional response of Caenorhabditis elegans to Ivermectin exposure identifies novel genes involved in the response to reduced food intake.

    Directory of Open Access Journals (Sweden)

    Steven T Laing

    Full Text Available We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short-term food withdrawal (4 hr independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis. These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms.

  5. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens.

    Directory of Open Access Journals (Sweden)

    Hai-Ting Hao

    Full Text Available Some plant growth-promoting rhizobacteria (PGPR regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE profiling of different growth stages (seedling and mature and tissues (leaves and roots. Compared with the control, 1,507 and 820 differentially expressed genes (DEGs were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response

  6. Temperature response of methane production in liquid manures and co-digestates

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olsen, Anna Berg; Petersen, Søren O.

    2016-01-01

    of CH4 emissions fromliquid manure. Here, we describe the temperature response of CH4 production in liquid cattle slurry, pig slurry, and fresh and stored co-digested slurry from a thermophilic biogas plant. Subsamples of slurry were anoxically incubated at 20 temperatures from 5–52 °C in a temperature...... of the manure affect this parameter. The Ea estimate, based on individual slurry materials,was intermediate when compared to published values of 63 and 112.7 kJ mol−1 derived from composite data, but was similar to Ea estimated for CH4 production at microbial community level across aquatic ecosystems, wetlands...

  7. Genome-Wide Investigation of Hsf Genes in Sesame Reveals Their Segmental Duplication Expansion and Their Active Role in Drought Stress Response

    Science.gov (United States)

    Dossa, Komivi; Diouf, Diaga; Cissé, Ndiaga

    2016-01-01

    Sesame is a survivor crop cultivated for ages in arid areas under high temperatures and limited water conditions. Since its entire genome has been sequenced, revealing evolution, and functional characterization of its abiotic stress genes became a hot topic. In this study, we performed a whole-genome identification and analysis of Hsf gene family in sesame. Thirty genes encoding Hsf domain were found and classified into 3 major classes A, B, and C. The class A members were the most representative one and Hsf genes were distributed in 12 of the 16 linkage groups (except the LG 8, 9, 13, and 16). Evolutionary analysis revealed that, segmental duplication events which occurred around 67 MYA, were the primary force underlying Hsf genes expansion in sesame. Comparative analysis also suggested that sesame has retained most of its Hsf genes while its relatives viz. tomato and potato underwent extensive gene losses during evolution. Continuous purifying selection has played a key role in the maintenance of Hsf genes in sesame. Expression analysis of the Hsf genes in sesame revealed their putative involvement in multiple tissue-/developmental stages. Time-course expression profiling of Hsf genes in response to drought stress showed that 90% Hsfs are drought responsive. We infer that classes B-Hsfs might be the primary regulators of drought response in sesame by cooperating with some class A genes. This is the first insight into this gene family and the results provide some gene resources for future gene cloning and functional studies toward the improvement in stress tolerance of sesame. PMID:27790233

  8. Consistent negative response of US crops to high temperatures in observations and crop models

    Science.gov (United States)

    Schauberger, Bernhard; Archontoulis, Sotirios; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Pugh, Thomas A. M.; Rolinski, Susanne; Schaphoff, Sibyll; Schmid, Erwin; Wang, Xuhui; Schlenker, Wolfram; Frieler, Katja

    2017-04-01

    High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day above 30°C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures above 30°C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.

  9. The Chamber for Studying Rice Response to Elevated Nighttime Temperature in Field

    Directory of Open Access Journals (Sweden)

    Song Chen

    2013-01-01

    Full Text Available An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO2 concentration was observed at the end of the treatment during the day, but the 10-μmol CO2 mol−1 difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes.

  10. Consistent negative response of US crops to high temperatures in observations and crop models

    Science.gov (United States)

    Schauberger, Bernhard; Archontoulis, Sotirios; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Pugh, Thomas A. M.; Rolinski, Susanne; Schaphoff, Sibyll; Schmid, Erwin; Wang, Xuhui; Schlenker, Wolfram; Frieler, Katja

    2017-01-01

    High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day >30 °C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures >30 °C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation. PMID:28102202

  11. Plant reference genes for development and stress response studies

    Indian Academy of Sciences (India)

    Joyous T Joseph

    2018-02-09

    Feb 9, 2018 ... the 'Embrapa 48' genotype. Unstable. Different tissues, developmental stages, photoperiod treatments, different cultivar. Stable. Jian et al. 2008. Saccharum ..... Planta 234 97–107. Naik D, Dhanaraj AL, Arora R, and Rowland LJ 2007 Identifica- tion of genes associated with cold acclimation in blueberry.

  12. Transcript accumulation of putative drought responsive genes in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... Differential display reverse transcriptase PCR was used to identify cDNA sequences induced by drought in chickpea seedlings. The sequences of differentially expressed cDNAs: 192, 214, 219 and H1 showed high similarities at the protein level to known drought-inducible genes encoding for alanine.

  13. Identification of vernalization responsive genes in the winter wheat ...

    Indian Academy of Sciences (India)

    YALAN FENG1,2,3,4

    Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, ... polymerase chain reaction (qRT-PCR) and the expression change over the time was investigated for the top 11 genes with ... qRT-PCR validated changes in the expression of 18 DEGs that were detected by RNA-seq.

  14. transferase gene from Limonium bicolor in response to several ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... The yeast Saccharomyces cerevisiae is an excellent model organism to produce ... To determine the expression of LbGST1 gene in yeast S. cerevisiae during induction period, northern blot analysis ... pYES2 transformants were cultured in the induction medium for 24 h at 30°C and harvested as control ...

  15. Identification of a novel submergence response gene regulated by ...

    African Journals Online (AJOL)

    Our results also show that RS1 is highly expressed under submergence, drought, and NaCl stresses, but not under cold or dehydration stress. Hormone ABA treatment induces, whereas GA treatment decreases, RS1 expression. The RS1 and Sub1A genes are co-regulated under submergence. Overexpression of RS1 in ...

  16. Inverted expression profiles of sex-biased genes in response to toxicant perturbations and diseases.

    Directory of Open Access Journals (Sweden)

    Choong Yong Ung

    Full Text Available The influence of sex factor is widely recognized in various diseases, but its molecular basis, particularly how sex-biased genes, those with sexually dimorphic expression, behave in response to toxico-pathological changes is poorly understood. In this study, zebrafish toxicogenomic data and transcriptomic data from human pathological studies were analysed for the responses of male- and female-biased genes. Our analyses revealed obvious inverted expression profiles of sex-biased genes, where affected males tended to up-regulate genes of female-biased expression and down-regulate genes of male-biased expression, and vice versa in affected females, in a broad range of toxico-pathological conditions. Intriguingly, the extent of these inverted profiles correlated well to the susceptibility or severity of a given toxico-pathological state, suggesting that inverted expression profiles of sex-biased genes observed in this study can be used as important indicators to assess biological disorders.

  17. Inverted expression profiles of sex-biased genes in response to toxicant perturbations and diseases.

    Science.gov (United States)

    Ung, Choong Yong; Lam, Siew Hong; Zhang, Xun; Li, Hu; Zhang, Louxin; Li, Baowen; Gong, Zhiyuan

    2013-01-01

    The influence of sex factor is widely recognized in various diseases, but its molecular basis, particularly how sex-biased genes, those with sexually dimorphic expression, behave in response to toxico-pathological changes is poorly understood. In this study, zebrafish toxicogenomic data and transcriptomic data from human pathological studies were analysed for the responses of male- and female-biased genes. Our analyses revealed obvious inverted expression profiles of sex-biased genes, where affected males tended to up-regulate genes of female-biased expression and down-regulate genes of male-biased expression, and vice versa in affected females, in a broad range of toxico-pathological conditions. Intriguingly, the extent of these inverted profiles correlated well to the susceptibility or severity of a given toxico-pathological state, suggesting that inverted expression profiles of sex-biased genes observed in this study can be used as important indicators to assess biological disorders.

  18. Effect of temperature on the responsiveness of cutaneous veins to the extract of Ruscus aculeatus.

    Science.gov (United States)

    Rubanyi, G; Marcelon, G; Vanhoutte, P M

    1984-01-01

    In canine cutaneous veins cooling augments and warming depresses the responses to sympathetic nerve stimulation. In these veins the extract of Ruscus aculeatus (Ruscus) causes contractions due to alpha-adrenergic activation. To determine the effects of temperature on the response to Ruscus, rings of canine saphenous veins were studied at 24 degrees, 37 degrees and 41 degrees C. At 37 degrees C, Ruscus caused an increase in isometric tension which was depressed by prazosin and rauwolscine. Cooling inhibited the response to Ruscus, while warming augmented it. Rauwolscine potentiated, and prazosin reversed the effect of cooling on contractions evoked by Ruscus. Prazosin reduced, and rauwolscine augmented the effect of warming. These experiments demonstrate that temperature affects the venoconstriction induced by Ruscus in an opposite fashion as that to sympathetic nerve activation, presumably because the alpha 1-adrenergic component of the response to Ruscus predominates.

  19. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    Science.gov (United States)

    Lauritano, C.; Ruocco, M.; Dattolo, E.; Buia, M. C.; Silva, J.; Santos, R.; Olivé, I.; Costa, M. M.; Procaccini, G.

    2015-07-01

    Submarine volcanic vents are being used as natural laboratories to assess the effects of increased ocean acidity and carbon dioxide (CO2) concentration on marine organisms and communities. However, in the vicinity of volcanic vents other factors in addition to CO2, which is the main gaseous component of the emissions, may directly or indirectly confound the biota responses to high CO2. Here we used for the first time the expression of antioxidant and stress-related genes of the seagrass Posidonia oceanica to assess the stress levels of the species. Our hypothesis is that unknown factors are causing metabolic stress that may confound the putative effects attributed to CO2 enrichment only. We analyzed the expression of 35 antioxidant and stress-related genes of P. oceanica in the vicinity of submerged volcanic vents located in the islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was used to characterize gene expression patterns. Fifty-one percent of genes analyzed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls at both Ischia and Panarea, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The up-regulation of genes involved in the free radical detoxification response (e.g., CAPX, SODCP and GR) indicates that, in contrast with Ischia, P. oceanica at the Panarea site faces stressors that result in the production of reactive oxygen species, triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. These proteins are activated to adjust stress-accumulated misfolded proteins and prevent their aggregation as a response to some stressors, not necessarily high temperature. This is the first

  20. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis.

    Science.gov (United States)

    Liu, Ning; Avramova, Zoya

    2016-01-01

    Plant genes that provide a different response to a similar dehydration stress illustrate the concept of transcriptional 'dehydration stress memory'. Pre-exposing a plant to a biotic stress or a stress-signaling hormone may increase transcription from response genes in a future stress, a phenomenon known as 'gene priming'. Although known that primed transcription is preceded by accumulation of H3K4me3 marks at primed genes, what mechanism provides for their appearance before the transcription was unclear. How augmented transcription is achieved, whether/how the two memory phenomena are connected at the transcriptional level, and whether similar molecular and/or epigenetic mechanisms regulate them are fundamental questions about the molecular mechanisms regulating gene expression. Although the stress hormone jasmonic acid (JA) was unable to induce transcription of tested dehydration stress response genes, it strongly potentiated transcription from specific ABA-dependent 'memory' genes. We elucidate the molecular mechanism causing their priming, demonstrate that stalled RNA polymerase II and H3K4me3 accumulate as epigenetic marks at the JA-primed ABA-dependent genes before actual transcription, and describe how these events occur mechanistically. The transcription factor MYC2 binds to the genes in response to both dehydration stress and to JA and determines the specificity of the priming. The MEDIATOR subunit MED25 links JA-priming with dehydration stress response pathways at the transcriptional level. Possible biological relevance of primed enhanced transcription from the specific memory genes is discussed. The biotic stress hormone JA potentiated transcription from a specific subset of ABA-response genes, revealing a novel aspect of the JA- and ABA-signaling pathways' interactions. H3K4me3 functions as an epigenetic mark at JA-primed dehydration stress response genes before transcription. We emphasize that histone and epigenetic marks are not synonymous and argue

  1. A procedure for the transient expression of genes by agroinfiltration above the permissive threshold to study temperature-sensitive processes in plant-pathogen interactions.

    Science.gov (United States)

    Del Toro, Francisco; Tenllado, Francisco; Chung, Bong-Nam; Canto, Tomas

    2014-10-01

    Localized expression of genes in plants from T-DNAs delivered into plant cells by Agrobacterium tumefaciens is an important tool in plant research. The technique, known as agroinfiltration, provides fast, efficient ways to transiently express or silence a desired gene without resorting to the time-consuming, challenging stable transformation of the host, the use of less efficient means of delivery, such as bombardment, or the use of viral vectors, which multiply and spread within the host causing physiological alterations themselves. A drawback of the agroinfiltration technique is its temperature dependence: early studies have shown that temperatures above 29 °C are nonpermissive to tumour induction by the bacterium as a result of failure in pilus formation. However, research in plant sciences is interested in studying processes at these temperatures, above the 25 °C experimental standard, common to many host-environment and host-pathogen interactions in nature, and agroinfiltration is an excellent tool for this purpose. Here, we measured the efficiency of agroinfiltration for the expression of reporter genes in plants from T-DNAs at the nonpermissive temperature of 30 °C, either transiently or as part of viral amplicons, and envisaged procedures that allow and optimize its use for gene expression at this temperature. We applied this technical advance to assess the performance at 30 °C of two viral suppressors of silencing in agropatch assays [Potato virus Y helper component proteinase (HCPro) and Cucumber mosaic virus 2b protein] and, within the context of infection by a Potato virus X (PVX) vector, also assessed indirectly their effect on the overall response of the host Nicotiana benthamiana to the virus. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  2. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species.

    Science.gov (United States)

    Dreyer, E; Le Roux, X; Montpied, P; Daudet, F A; Masson, F

    2001-03-01

    Seedlings of seven temperate tree species (Acer pseudoplatanus L., Betula pendula Roth, Fagus sylvatica L., Fraxinus excelsior L., Juglans regia L., Quercus petraea Matt. Liebl. and Quercus robur L.) were grown in a nursery under neutral filters transmitting 45% of incident global irradiance. During the second or third year of growth, leaf photosynthetic capacity (i.e., maximal carboxylation rate, Vcmax, maximal photosynthetic electron transport rate, Jmax, and dark respiration, Rd) was estimated for five leaves from each species at five or six leaf temperatures (10, 18, 25, 32, 36 and 40 degrees C). Values of Vcmax and Jmax were obtained by fitting the equations of the Farquhar model on response curves of net CO2 assimilation (A) to sub-stomatal CO2 mole fraction (ci), at high irradiance. Primary parameters describing the kinetic properties of Rubisco (specificity factor, affinity for CO2 and for O2, and their temperature responses) were taken from published data obtained with spinach and tobacco, and were used for all species. The temperature responses of Vcmax and Jmax, which were fitted to a thermodynamic model, differed. Mean values of Vcmax and Jmax at a reference temperature of 25 degrees C were 77.3 and 139 micromol m(-2) s(-1), respectively. The activation energy was higher for Vcmax than for Jmax (mean values of 73.1 versus 57.9 kJ mol(-1)) resulting in a decrease in Jmax/Vcmax ratio with increasing temperature. The mean optimal temperature was higher for Vcmax than for Jmax (38.9 versus 35.9 degrees C). In addition, differences in these temperature responses were observed among species. Temperature optima ranged between 35.9 and above 45 degrees C for Vcmax and between 31.7 and 43.3 degrees C for Jmax, but because of data scatter and the limited range of temperatures tested (10 to 40 degrees C), there were few statistically significant differences among species. The optimal temperature for Jmax was highest in Q. robur, Q. petraea and J. regia, and lowest

  3. Diversity in expression of phosphorus (P responsive genes in Cucumis melo L.

    Directory of Open Access Journals (Sweden)

    Ana Fita

    Full Text Available BACKGROUND: Phosphorus (P is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. METHODOLOGY AND FINDINGS: Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2 under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1 under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. CONCLUSIONS: This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements.

  4. Diversity in expression of phosphorus (P) responsive genes in Cucumis melo L.

    Science.gov (United States)

    Fita, Ana; Bowen, Helen C; Hayden, Rory M; Nuez, Fernando; Picó, Belén; Hammond, John P

    2012-01-01

    Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2) under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE) and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1) under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements.

  5. Nitrogen stress response of a hybrid species: a gene expression study.

    Science.gov (United States)

    Brouillette, Larry C; Donovan, Lisa A

    2011-01-01

    Low soil fertility limits growth and productivity in many natural and agricultural systems, where the ability to sense and respond to nutrient limitation is important for success. Helianthus anomalus is an annual sunflower of hybrid origin that is adapted to desert sand-dune substrates with lower fertility than its parental species, H. annuus and H. petiolaris. Previous studies have shown that H. anomalus has traits generally associated with adaptation to low-fertility habitats, including a lower inherent relative growth rate and longer leaf lifetime. Here, a cDNA microarray is used to identify gene expression differences that potentially contribute to increased tolerance of low fertility of the hybrid species by comparing the nitrogen stress response of all three species with high- and low-nutrient treatments. Relative to the set of genes on the microarray, the genes showing differential expression in the hybrid species compared with its parents are enriched in stress-response genes, developmental genes, and genes involved in responses to biotic or abiotic stimuli. After a correction for multiple comparisons, five unique genes show a significantly different response to nitrogen limitation in H. anomalus compared with H. petiolaris and H. annuus. The Arabidopsis thaliana homologue of one of the five genes, catalase 1, has been shown to affect the timing of leaf senescence, and thus leaf lifespan. The five genes identified in this analysis will be examined further as candidate genes for the adaptive stress response in H. anomalus. Genes that improve growth and productivity under nutrient stress could be used to improve crops for lower soil fertility which is common in marginal agricultural settings.

  6. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response

    Directory of Open Access Journals (Sweden)

    Nasrine Bendjilali

    2017-01-01

    Full Text Available Many cells experience hypoxia, or low oxygen, and respond by dramatically altering gene expression. In the yeast Saccharomyces cerevisiae, genes that respond are required for many oxygen-dependent cellular processes, such as respiration, biosynthesis, and redox regulation. To more fully characterize the global response to hypoxia, we exposed yeast to hypoxic conditions, extracted RNA at different times, and performed RNA sequencing (RNA-seq analysis. Time-course statistical analysis revealed hundreds of genes that changed expression by up to 550-fold. The genes responded with varying kinetics suggesting that multiple regulatory pathways are involved. We identified most known oxygen-regulated genes and also uncovered new regulated genes. Reverse transcription-quantitative PCR (RT-qPCR analysis confirmed that the lysine methyltransferase EFM6 and the recombinase DMC1, both conserved in humans, are indeed oxygen-responsive. Looking more broadly, oxygen-regulated genes participate in expected processes like respiration and lipid metabolism, but also in unexpected processes like amino acid and vitamin metabolism. Using principle component analysis, we discovered that the hypoxic response largely occurs during the first 2 hr and then a new steady-state expression state is achieved. Moreover, we show that the oxygen-dependent genes are not part of the previously described environmental stress response (ESR consisting of genes that respond to diverse types of stress. While hypoxia appears to cause a transient stress, the hypoxic response is mostly characterized by a transition to a new state of gene expression. In summary, our results reveal that hypoxia causes widespread and complex changes in gene expression to prepare the cell to function with little or no oxygen.

  7. Identification of a Gene Sharing a Promoter and Peroxisome Proliferator-Response Elements With Acyl-CoA Oxidase Gene

    Directory of Open Access Journals (Sweden)

    Mst. Hasina Akter

    2006-01-01

    Full Text Available Many mammalian genes are clustered on the genomes, and hence the genes in the same cluster can be regulated through a common regulatory element. We indeed showed previously that the perilipin/PEX11α gene pair is transactivated tissue-selectively by PPARγ and PPARα, respectively, through a common binding site. In the present study, we identified a gene, named GSPA, neighboring a canonical PPAR target, acyl-CoA oxidase (AOX gene. GSPA expression was induced by a peroxisome proliferator, Wy14,643, in the liver of wild-type mice, but not PPARα-null mice. GSPA and AOX share the promoter and two peroxisome proliferator-response elements. GSPA mRNA was also found in the heart and skeletal muscle, as well as 3T3-L1 cells. GSPA encodes a protein of 161 amino acids that is enriched in 3T3-L1 cells. Even other gene pairs might be regulated through common sequence elements, and conversely it would be interesting how each gene is aptly regulated in clusters.

  8. Molecular responses and expression analysis of genes in a ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Deserts represent one of the harshest ecosystems on earth, combining drought and extreme temperatures, and trees, as dominant populations, play important roles in the sometimes also high salt (Brosché et al., 2005). Desert maintenance of the structure and function of the whole ecosystem of desert land ...

  9. Global gene expression analysis of the muscle tissues of medaka acclimated to low and high environmental temperatures.

    Science.gov (United States)

    Ikeda, Daisuke; Koyama, Hiroki; Mizusawa, Nanami; Kan-No, Nobuhiro; Tan, Engkong; Asakawa, Shuichi; Watabe, Shugo

    2017-12-01

    Medaka (Oryzias latipes) is a temperate eurythermal fish that is able to survive over a wide range of water temperatures ranging from near zero to over 30°C throughout the year; it maintains its normal physiological and biochemical processes through temperature acclimation. To determine the mechanisms involved in temperature acclimation of fish, the fast skeletal muscle tissues of medaka underwent global gene expression analysis using next-generation sequencing. Ten individuals were placed into two aquariums at 24°C. While the water temperature of one aquarium was decreased to 10°C, that of the other aquarium was increased to 30°C; these temperatures were subsequently maintained for 5weeks. RNA sequencing (RNA-Seq) analyses revealed that 11 genes involved in energy metabolism and muscle atrophy were significantly highly expressed in the 10°C-acclimated fish. Meanwhile, significantly higher expression levels were observed for 20 genes encoding myofibrillar proteins and heat shock proteins in the 30°C-acclimated fish. Moreover, 1103 genes had at least fourfold differential expression between the acclimation groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses provided important information: although the expression of genes related to metabolic processes were activated, muscle atrophy occurred in the 10°C-acclimated fish, and muscle cells divided actively in the 30°C-acclimated fish and avoided thermal stress by expressing heat shock proteins. Therefore, RNA-Seq analyses with the available genome database will be useful for better understanding the molecular mechanisms involved in the temperature acclimation of fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Response of Soft Continuous Structures and Topological Defects to a Temperature Gradient

    Science.gov (United States)

    Kurita, Rei; Mitsui, Shun; Tanaka, Hajime

    2017-09-01

    Thermophoresis, which is mass transport induced by a temperature gradient, has recently attracted considerable attention as a new way to transport materials. So far the study has been focused on the transport of discrete structures such as colloidal particles, proteins, and polymers in solutions. However, the response of soft continuous structures such as membranes and gels to a temperature gradient has been largely unexplored. Here we study the behavior of a lamellar phase made of stacked surfactant bilayer membranes under a temperature gradient. We find the migration of membranes towards a low-temperature region, causing the increase in the degree of membrane undulation fluctuations towards that direction. This is contrary to our intuition that the fluctuations are weaker at a lower temperature. We show that this can be explained by temperature-gradient-induced migration of membranes under the topological constraint coming from the connectivity of each membrane. We also reveal that the pattern of an edge dislocation array formed in a wedge-shaped cell can be controlled by a temperature gradient. These findings suggest that application of a temperature gradient provides a novel way to control the organization of soft continuous structures such as membranes, gels, and foams, in a manner essentially different from the other types of fields, and to manipulate topological defects.

  11. Cardiac frequency compensation responses of adult blue crabs exposed to moderate temperature increases

    Energy Technology Data Exchange (ETDEWEB)

    Burton, D.T.; Richardson, L.B.; Moore, C.J.

    1980-01-01

    Cardiac frequency patterns of Callinectes sapidus Rathbun were used to evaluate potential thermal stress after exposure to 5/sup 0/C increases over a range of acclimation temperatures from 5/sup 0/ to 30/sup 0/C. An acclimated rate-temperature curve (R-T curve), acute R-T curves of the stabilized rates at the increased temperatures and Q/sub 10/ temperature coefficients were used to assess the significance of the changes in rate frequency. The acclimated R-T curve showed that blue crabs go through a series of seasonal adaptation types characterized by a plateau of perfect adaptation for both cold and warm adapted organisms. Paradoxical adaptation occurred between the transition from cold to warm acclimation temperatures. The acute R-T curves showed that cardiac frequency was highly responsive to a 5/sup 0/C increase when the organisms were acclimated to low temperatures. The Q/sub 10/'s of the acute R-T curves at the warm acclimation temperatures approximated those values derived for the acclimated R-T curve. This suggests that the temperature increase had a negligible effect on the warm adapted crabs, that is, little or no thermal stress occurred.

  12. Isolation and characterization of drought-responsive genes from peanut roots by suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2014-11-01

    Conclusions: We successfully constructed an SSH cDNA library in peanut roots and identified several drought-related genes. Our results serve as a foundation for future studies into the elucidation of the drought stress response mechanisms of peanut.

  13. Nutritional Effect on Androgen-Response Gene Expression and Prostate Tumor Growth

    National Research Council Canada - National Science Library

    Wang, Zhou

    2001-01-01

    .... The dietary influence on ventral prostate weight does not seem to involve androgen action axis because dietary components did not influence the expression of several androgen-response genes, serum testosterone...

  14. Saccharomyces cerevisiae FLO1 Gene Demonstrates Genetic Linkage to Increased Fermentation Rate at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Rebecca C. Deed

    2017-03-01

    Full Text Available Low fermentation temperatures are of importance to food and beverage industries working with Saccharomyces cerevisiae. Therefore, the identification of genes demonstrating a positive impact on fermentation kinetics is of significant interest. A set of 121 mapped F1 progeny, derived from a cross between haploid strains BY4716 (a derivative of the laboratory yeast S288C and wine yeast RM11-1a, were fermented in New Zealand Sauvignon Blanc grape juice at 12.5°. Analyses of five key fermentation kinetic parameters among the F1 progeny identified a quantitative trait locus (QTL on chromosome I with a significant degree of linkage to maximal fermentation rate (Vmax at low temperature. Independent deletions of two candidate genes within the region, FLO1 and SWH1, were constructed in the parental strains (with S288C representing BY4716. Fermentation of wild-type and deletion strains at 12.5 and 25° confirmed that the genetic linkage to Vmax corresponds to the S288C version of the FLO1 allele, as the absence of this allele reduced Vmax by ∼50% at 12.5°, but not at 25°. Reciprocal hemizygosity analysis (RHA between S288C and RM11-1a FLO1 alleles did not confirm the prediction that the S288C version of FLO1 was promoting more rapid fermentation in the opposing strain background, suggesting that the positive effect on Vmax derived from S288C FLO1 may only provide an advantage in haploids, or is dependent on strain-specific cis or trans effects. This research adds to the growing body of evidence demonstrating the role of FLO1 in providing stress tolerance to S. cerevisiae during fermentation.

  15. Ecosystem Respiration Rates of Arctic Tundra Mesocosms in Response to Cold-Season Temperatures

    Science.gov (United States)

    Oberbauer, S. F.; Moser, J. G.; Olivas, P. C.; Starr, G.; Mortazavi, B.

    2013-12-01

    temperature, showing an exponential-type response that closely fit a second order polynomial (r2>0.95) and the Arrhenius equation (r2 > 0.92). The Q10 values estimated with the Arrhenius equation at 10 °C intervals over the span of measured temperatures ranged from 4.8 to 6.1, with a decrease in Q10 with increased temperature. These results correspond to a ~20% increase in ER for a 1 °C increase in temperature at subzero temperatures. Given the already substantial increase in temperatures on the North Slope of Alaska over the last century (~ 2.9 °C), respiration rates during winter, though low, have likely already importantly increased.

  16. Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii.

    Science.gov (United States)

    Najnin, T; Siddiqui, K S; Taha, T; Elkaid, N; Kornfeld, G; Curmi, P M G; Cavicchioli, R

    2016-04-07

    Cold environments dominate the Earth's biosphere and the resident microorganisms play critical roles in fulfilling global biogeochemical cycles. However, only few studies have examined the molecular basis of thermosensing; an ability that microorganisms must possess in order to respond to environmental temperature and regulate cellular processes. Two component regulatory systems have been inferred to function in thermal regulation of gene expression, but biochemical studies assessing these systems in Bacteria are rare, and none have been performed in Archaea or psychrophiles. Here we examined the LtrK/LtrR two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii, assessing kinase and phosphatase activities of wild-type and mutant proteins. LtrK was thermally unstable and had optimal phosphorylation activity at 10 °C (the lowest optimum activity for any psychrophilic enzyme), high activity at 0 °C and was rapidly thermally inactivated at 30 °C. These biochemical properties match well with normal environmental temperatures of M. burtonii (0-4 °C) and the temperature this psychrophile is capable of growing at in the laboratory (-2 to 28 °C). Our findings are consistent with a role for LtrK in performing phosphotransfer reactions with LtrR that could lead to temperature-dependent gene regulation.

  17. Identification of genes responsive to the application of ethanol on sugarcane leaves.

    Science.gov (United States)

    Camargo, Sandra R; Cançado, Geraldo M A; Ulian, Eugênio C; Menossi, Marcelo

    2007-12-01

    The control of gene expression in precise time and space is a desirable attribute of chemically inducible systems. Ethanol is a chemical inducer with favourable features, such as being inexpensive and easy to apply. The aim of this study was to identify ethanol-responsive genes in sugarcane. The cDNA macroarray technique was adopted to identify transcript changes in sugarcane leaves (Saccharum spp. cv SP80-3280) exposed to ethanol. The expression profiles of sugarcane genes were analysed using nylon filters containing 3,575 cDNA clones from the leaf roll library of the SUCEST project. Seventy expressed sequence tags (ESTs) presented altered expression patterns, including ESTs corresponding to genes related to transcriptional and translational processes, abiotic stress and others. Several genes of unknown function were also identified. Among the 48 ESTs up-regulated by ethanol, an abiotic stress-responsive protein and an unknown function gene presented rapid induction by ethanol. The macroarray data of selected ethanol-responsive EST were confirmed by RNA-blot hybridisation. The expression profile of the 48 up-regulated genes was compared in two other cultivars: SP89-1115 and SP90-3414. Surprisingly, no gene showed a similar expression profile in the three cultivars. This result suggests that sugarcane plants have a high diversity in their responses to ethanol.

  18. Conservation of the response regulator gene gacA in Pseudomonas species

    NARCIS (Netherlands)

    Souza, J.T.; Mazzola, M.; Raaijmakers, J.M.

    2003-01-01

    The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains

  19. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome

    Directory of Open Access Journals (Sweden)

    Tai Dessmon

    2005-01-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS emerged in later February 2003, as a new epidemic form of life-threatening infection caused by a novel coronavirus. However, the immune-pathogenesis of SARS is poorly understood. To understand the host response to this pathogen, we investigated the gene expression profiles of peripheral blood mononuclear cells (PBMCs derived from SARS patients, and compared with healthy controls. Results The number of differentially expressed genes was found to be 186 under stringent filtering criteria of microarray data analysis. Several genes were highly up-regulated in patients with SARS, such as, the genes coding for Lactoferrin, S100A9 and Lipocalin 2. The real-time PCR method verified the results of the gene array analysis and showed that those genes that were up-regulated as determined by microarray analysis were also found to be comparatively up-regulated by real-time PCR analysis. Conclusions This differential gene expression profiling of PBMCs from patients with SARS strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response, rather than a specific immune response against a viral infection, as we observed a complete lack of cytokine genes usually triggered during a viral infection. Our study shows for the first time how the immune system responds to the SARS infection, and opens new possibilities for designing new diagnostics and treatments for this new life-threatening disease.

  20. Preparation and Investigation of Poly (N-isopropylacrylamide-acrylamide Membranes in Temperature Responsive Drug Delivery

    Directory of Open Access Journals (Sweden)

    Elham Khodaverdi

    2010-06-01

    Full Text Available Objective(sPhysiological changes in the body may be utilized as potential triggers for controlled drug delivery. Based on these mechanisms, stimulus–responsive drug delivery has been developed.Materials and MethodsIn this study, a kind of poly (N-isopropylacrylamide-acrylamide membrane was prepared by radical copolymerization. Changes in swelling ratios and diameters of the membrane were investigated in terms of temperature. On-off regulation of drug permeation through the membrane was then studied at temperatures below and above the phase transition temperature of the membrane. Two drugs, vitamin B12 and acetaminophen were chosen as models of high and low molecular weights here, respectively. ResultsIt was indicated that at temperatures below the phase transition temperature of the membrane, copolymer was in a swollen state. Above the phase transition temperature, water was partially expelled from the functional groups of the copolymer. Permeation of high molecular weight drug models such as vitamin B12 was shown to be much more distinct at temperatures below the phase transition temperature when the copolymer was in a swollen state. At higher temperatures when the copolymer was shrunken, drug permeation through the membrane was substantially decreased. However for acetaminophen, such a big change in drug permeation around the phase transition temperature of the membrane was not observed. ConclusionAccording to the pore mechanism of drug transport through hydrogels, permeability of solutes decreased with increasing molecular size. As a result, the relative permeability, around the phase transition temperature of the copolymer, was higher for solutes of high molecular weight.

  1. Zero Power Warming - A New Technology for Investigating Plant Responses to Rising Temperature

    Science.gov (United States)

    Ely, K.; Lewin, K. F.; McMahon, A. M.; Serbin, S.; Rogers, A.

    2015-12-01

    Investigation of terrestrial ecosystem responses to rising temperature often requires temperature manipulation of research plots, and there are many methods to achieve this. However, in remote locations where line power is unavailable and unattended operation is a requirement, passive warming using solar energy is often the only viable approach. Current open topped passive warming approaches are unable to elevate enclosure air temperatures by more than 2°C. Existing full enclosure designs are capable of reaching higher air temperatures but can experience undesirable high temperature excursions. The ability to simulate future climate conditions using modulated temperature manipulations is critical to understand the acclimation of plant functional and structural traits to rising temperature and to enable improved model projections of a warming planet. This is particularly true for the Arctic—our target environment—where projected temperature increases far surpass those possible to achieve using current passive warming technology. To meet the research need for improved passive warming technology we have designed and tested a Zero Power Warming (ZPW) chamber capable of unattended temperature elevation and modulation. The ZPW chamber uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders that control chamber venting. This allows the ZPW chamber to heat the enclosed plot to a higher temperature than an open topped chamber but avoid the overheating typical of fully enclosed chambers. Here we describe the technology behind the ZPW and present data from a temperate prototype that was able to elevate and modulate the internal air temperature by 8°C, a marked increase over existing passive warming approaches. We also present new data from a recently deployed Arctic prototype. Whilst the ZPW chambers were designed for the Arctic, the concept described here can be adapted for many research

  2. Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria × ananassa.

    Science.gov (United States)

    Nakano, Yoshihiro; Higuchi, Yohei; Yoshida, Yuichi; Hisamatsu, Tamotsu

    2015-04-01

    Flowering time control is important for fruit production in Fragaria × ananassa. The flowering inhibition pathway has been extensively elucidated in the woodland strawberry, Fragaria vesca, whereas the factors involved in its promotion remain unclear. In this study, we investigated the environmental responses of F. × ananassa FT and TFL1-like genes, which are considered key floral promoters and repressors in many plants, respectively. A putative floral promoter, FaFT3, was up-regulated in the shoot tip under short-day and/or low growth temperature, in accordance with the result that these treatments promoted flowering. FaFT3 mRNA accumulated before induction of a floral meristem identity gene, FaAP1. FaFT2, a counterpart of FvFT2, expressed in the flower bud of F. vesca, was not induced in the shoot tip differentiating sepal or stamen, suggesting that this gene works at a later stage than stamen formation. In F. vesca, FvFT1 transmits the long-day signal perceived in the leaves to the shoot tip, and induces the potent floral inhibitor FvTFL1. FaFT1 was expressed in the leaves under long-day conditions in F. × ananassa. Expression of FaTFL1 was higher in the shoot tip under long-day than short-day conditions. Independent of day-length, FaTFL1 expression was higher under high temperature than low temperature conditions. These results suggest that FaFT3 induction by short-day or low temperature stimuli is a key step for flowering initiation. As in F. vesca, F. × ananassa floral inhibition pathways depend on FaTFL1 regulation by day-length via FaFT1, and by temperature. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    Science.gov (United States)

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration. © 2015 Japanese Society of Developmental Biologists.

  4. Gene Expression Profiles of Chicken Embryo Fibroblasts in Response to Salmonella Enteritidis Infection.

    Directory of Open Access Journals (Sweden)

    Ama Szmolka

    Full Text Available The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2 have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only 'non-immune' genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria.

  5. Dynamics of the atmospheric boundary layer response to ocean mesoscale sea surface temperatures

    Science.gov (United States)

    Schneider, Niklas; Taguchi, Bunmei; Nonaka, Masami; Kuwano-Yoshida, Akira; Nakamura, Hisashi

    2017-04-01

    A recent theory for the mid-latitude atmospheric response to ocean mesoscale sea surface temperature (SST) variations is tested in the Southern Ocean using an extended integration of an atmospheric general circulation model. The theory is based on a linearization of the steady state, atmospheric boundary-layer dynamics, and yields the atmospheric response as classical Ekman dynamics extended to include advection, and sea surface temperature induced changes of atmospheric mixing and hydrostatic pressure. The theory predicts the response at each horizontal wave number to be governed by spectral transfer function between sea surface temperature and boundary layer variables, that are dependent on large-scale winds and the formulation of boundary layer mixing. The general circulation model, AFES, is shown to reproduce observed regressions between surface wind stress and sea surface temperatures. These 'coupling coefficients' are explained by SST induced changes of the surface stability, that directly impact surface stress, and changes of the surface winds. Estimates of the spectral transfer function between the latter and surface temperature are consistent with the theory, and suggest that it faithfully captures the underlying physics.

  6. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response.

    Science.gov (United States)

    Litviakov, Nicolay V; Cherdyntseva, Nadezhda V; Tsyganov, Matvey M; Denisov, Evgeny V; Garbukov, Evgeny Y; Merzliakova, Marina K; Volkomorov, Victor V; Vtorushin, Sergey V; Zavyalova, Marina V; Slonimskaya, Elena M; Perelmuter, Vladimir M

    2013-01-01

    We aimed to examine the association between alterations in multidrug resistance (MDR) gene expression, measured before and after neoadjuvant chemotherapy (NAC), and short-term response in a cohort of stage IIA-IIIC breast cancer patients (n = 84). All patients were treated with two to four preoperative cycles of FAC (5-fluorouracil-adriamycin-cyclophosphamide), CAX (cyclophosphamide-adriamycin-xeloda) or taxane regimes. The expression levels of key MDR genes (ABCB1, ABCC1, ABCC2, ABCC3, ABCC5, ABCG1, ABCG2, GSTP1, and MVP) were evaluated in both tumor tissues obtained pre-therapy and in specimens removed by final surgery, using TaqMan-based quantitative reverse transcriptase PCR. No significant difference in the average level of MDR gene expression in paired breast tumors before and after NAC was found when analyzed in both responsive and non-responsive patients. There was no correlation between the expression levels of MDR genes in pre-NAC tumors and immediate NAC response. In the group with tumor responses, we found a statistically significant downregulation of expression of ABCB1, ABCC1, ABCC2, ABCC5, ABCG1, ABCG2, GSTP1, and MVP genes following NAC in FAC and CAX-treated patients (67-93% of cases). In contrast, we found that expression of these genes was upregulated after NAC, mostly in non-responsive patients (55-96% of cases). Responsiveness to taxotere was related to reduced levels of ABCB1, ABCC2, ABCG1, ABCG2, and MVP mRNA in tumor samples collected after chemotherapy. Our results suggest that reductions in MDR gene expression in post-NAC samples in comparison with pre-NAC are associated with tumor response to FAC and CAX as well as taxotere-based NAC, while patients displaying MDR gene upregulation had resistance to therapy.

  7. Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma.

    Science.gov (United States)

    Shi, Feng; Zhan, Wubing; Li, Yongfu; Wang, Xiaoyuan

    2014-01-01

    Red yeast Phaffia rhodozyma is a prominent microorganism able to synthesize carotenoid. Here, three carotenogenic cDNAs of P. rhodozyma CGMCC 2.1557, crtE, crtYB and crtI, were cloned and introduced into Saccharomyces cerevisiae INVSc1. The recombinant Sc-EYBI cells could synthesize 258.8 ± 43.8 μg g(-1) dry cell weight (DCW) of β-carotene when growing at 20 °C, about 59-fold higher than in those growing at 30 °C. Additional expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase from S. cerevisiae (Sc-EYBIH) increased the β-carotene level to 528.8 ± 13.3 μg g(-1) DCW as cells growing at 20 °C, 27-fold higher than cells growing at 30 °C, although cells grew faster at 30 °C than at 20 °C. Consistent with the much higher β-carotene level in cells growing at 20 °C, transcription level of three crt genes and cHMG1 gene in cells growing at 20 °C was a little higher than in those growing at 30 °C. Meanwhile, expression of three carotenogenic genes and accumulation of β-carotene promoted cell growth. These results reveal the influence of temperature on β-carotene biosynthesis and may be helpful for improving β-carotene production in recombinant S. cerevisiae.

  8. A novel mechanistic interpretation of instantaneous temperature responses of leaf net photosynthesis.

    Science.gov (United States)

    Kruse, Jörg; Alfarraj, Saleh; Rennenberg, Heinz; Adams, Mark

    2016-07-01

    Steady-state rates of leaf CO2 assimilation (A) in response to incubation temperature (T) are often symmetrical around an optimum temperature. A/T curves of C3 plants can thus be fitted to a modified Arrhenius equation, where the activation energy of A close to a low reference temperature is strongly correlated with the dynamic change of activation energy to increasing incubation temperature. We tested how [CO2] light, or [CO2] at 800 µmol mol(-1) and variable light affect parameters that describe A/T curves, and how these parameters are related to known properties of temperature-dependent thylakoid electron transport. Variation of light intensity and substomatal [CO2] had no influence on the symmetry of A/T curves, but significantly affected their breadth. Thermodynamic and kinetic (physiological) factors responsible for (i) the curvature in Arrhenius plots and (ii) the correlation between parameters of a modified Arrhenius equation are discussed. We argue that the shape of A/T curves cannot satisfactorily be explained via classical concepts assuming temperature-dependent shifts between rate-limiting processes. Instead the present results indicate that any given A/T curve appears to reflect a distinct flux mode, set by the balance between linear and cyclic electron transport, and emerging from the anabolic demand for ATP relative to that for NADPH.

  9. Enzymatic mechanisms of soil-carbon response to temperature on Mt. Kilimanjaro

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov

    2016-04-01

    Short-term acceleration of soil organic matter (SOM) decomposition by increasing temperature contradicts the acclimation observed in long-term studies. We used the unique altitudinal gradient (from colline tropical zone to subalpine zone) on Mt. Kilimanjaro to demonstrate the mechanisms of short- and long-term acclimation of extra- and intracellular enzymes that decompose polymers (cellulose, chitin, phytate) and oxidize monomers (14C-glucose). Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation

  10. Determining the tensile response of materials at high temperature using DIC and the Virtual Fields Method

    Science.gov (United States)

    Valeri, Guillermo; Koohbor, Behrad; Kidane, Addis; Sutton, Michael A.

    2017-04-01

    An experimental approach based on Digital Image Correlation (DIC) is successfully applied to predict the uniaxial stress-strain response of 304 stainless steel specimens subjected to nominally uniform temperatures ranging from room temperature to 900 °C. A portable induction heating device equipped with custom made water-cooled copper coils is used to heat the specimen. The induction heater is used in conjunction with a conventional tensile frame to enable high temperature tension experiments. A stereovision camera system equipped with appropriate band pass filters is employed to facilitate the study of full-field deformation response of the material at elevated temperatures. Using the temperature and load histories along with the full-field strain data, a Virtual Fields Method (VFM) based approach is implemented to identify constitutive parameters governing the plastic deformation of the material at high temperature conditions. Results from these experiments confirm that the proposed method can be used to measure the full field deformation of materials subjected to thermo-mechanical loading.

  11. Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes

    Science.gov (United States)

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperaturesincrease, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is importantto predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), andpyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C,and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH4 oxidation activitywas measured in microcosm incubations containing sediments at all temperatures, with the highest CH4 oxidation potential of37.5 mol g1 day1 in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and ofthe 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in 13C-labeled DNA obtained bySIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisitionfrom CH4 in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature.Methylotrophs were also abundant in the microbial community that derived carbon from CH4, especially in the deeper sediments(depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R0.82) with the relativeabundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophiccommunities in arctic lake sediments respond to temperature variations.

  12. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species.

    Science.gov (United States)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M; Dusenge, Mirindi Eric; Medlyn, Belinda E; Hasper, Thomas B; Nsabimana, Donat; Uddling, Johan

    2015-05-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide (CO2 ) at different temperatures (20-40°C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature

    NARCIS (Netherlands)

    Dooremalen, van C.; Pel, R.; Ellers, J.

    2009-01-01

    A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids

  14. Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature.

    NARCIS (Netherlands)

    van Dooremalen, J.A.; Pel, R.; Ellers, J.

    2009-01-01

    A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids

  15. Foliar temperature-respiration response functions for broad-leaved tree species in the southern Appalachians.

    Science.gov (United States)

    Bolstad; Mitchell; Vose

    1999-11-01

    We measured leaf respiration in 18 eastern deciduous forest tree species to determine if there were differences in temperature-respiration response functions among species or among canopy positions. Leaf respiration rates were measured in situ and on detached branches for Acer pensylvanicum L., A. rubrum L., Betula spp. (B. alleghaniensis Britt. and B. lenta L.), Carya glabra (Mill.) Sweet, Cornus florida L., Fraxinus spp. (primarily F. americana L.), Liriodendron tulipifera L., Magnolia fraseri Walt., Nyssa sylvatica Marsh., Oxydendrum arboreum L., Platanus occidentalis L., Quercus alba L., Q. coccinea Muenchh., Q. prinus L., Q. rubra L., Rhododendron maximum L., Robinia psuedoacacia L., and Tilia americana L. in the southern Appalachian Mountains, USA. Dark respiration was measured on fully expanded leaves at 10, 15, 20, 25, and 30 degrees C with an infrared gas analyzer equipped with a temperature-controlled cuvette. Temperature-respiration response functions were fit for each leaf. There were significant differences in response functions among species and by canopy position within species. These differences were observed when respiration was expressed on a mass, nitrogen, or area basis. Cumulative nighttime leaf respiration was calculated and averaged over ten randomly selected nights for each leaf. Differences in mean cumulative nighttime respiration were statistically significant among canopy positions and species. We conclude that effects of canopy position and species on temperature-respiration response functions may need to be considered when making estimates of whole-tree or canopy respiration.

  16. The impact of exercise-induced core body temperature elevations on coagulation responses.

    NARCIS (Netherlands)

    Veltmeijer, M.T.W.; Eijsvogels, T.M.H.; Barteling, W.; Verbeek-Knobbe, K.; Heerde, W.L. van; Hopman, M.T.E.

    2017-01-01

    OBJECTIVES: Exercise induces changes in haemostatic parameters and core body temperature (CBT). We aimed to assess whether exercise-induced elevations in CBT induce pro-thrombotic changes in a dose-dependent manner. DESIGN: Observational study. METHODS: CBT and haemostatic responses were measured in

  17. Temperature responses of three Fibrocapsa japonica strains (Raphidophyceae) from different climate regions

    NARCIS (Netherlands)

    De Boer, MK; Koolmees, EM; Vrieling, EG; Breeman, AM; Van Rijssel, M

    The harmful bloom alga Fibrocapsa japonica has a worldwide distribution in temperate regions and is occasionally responsible for mass mortality of fish. Little is known about requirements for optimal growth and survival of this species, especially about temperature constraints that define natural

  18. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    NARCIS (Netherlands)

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  19. Metabolic and Cardiovascular Responses during Aquatic Exercise in Water at Different Temperatures in Older Adults

    Science.gov (United States)

    Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C.; Zaccaria, Marco

    2015-01-01

    Purpose: The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Method: Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40…

  20. The effect of environmental temperature on immune response and metabolism of the young chicken

    NARCIS (Netherlands)

    Henken, A.M.

    1982-01-01

    The effect of environmental temperature on immune response and metabolism was studied in young chickens. Immunization was performed by injecting intramuscularly 0.5 ml packed SRBC (sheep red blood cells) in both thighs of 32 days old pullets ( WarrenSSL ). The

  1. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy.

    Science.gov (United States)

    Un, Keita; Kawakami, Shigeru; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2010-10-01

    Development of a gene delivery system to transfer the gene of interest selectively and efficiently into targeted cells is essential for achievement of sufficient therapeutic effects by gene therapy. Here, we succeeded in developing the gene transfection method using ultrasound (US)-responsive and mannose-modified gene carriers, named Man-PEG(2000) bubble lipoplexes. Compared with the conventional lipofection method using mannose-modified carriers, this transfection method using Man-PEG(2000) bubble lipoplexes and US exposure enabled approximately 500-800-fold higher gene expressions in the antigen presenting cells (APCs) selectively in vivo. This enhanced gene expression was contributed by the improvement of delivering efficiency of nucleic acids to the targeted organs, and by the increase of introducing efficiency of nucleic acids into the cytoplasm followed by US exposure. Moreover, high anti-tumor effects were demonstrated by applying this method to DNA vaccine therapy using ovalbumin (OVA)-expressing plasmid DNA (pDNA). This US-responsive and cell-specific gene delivery system can be widely applied to medical treatments such as vaccine therapy and anti-inflammation therapy, which its targeted cells are APCs, and our findings may help in establishing innovative methods for in-vivo gene delivery to overcome the poor introducing efficiency of carriers into cytoplasm which the major obstacle associated with gene delivery by non-viral carriers. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Responses of invertebrates to temperature and water stress: A polar perspective.

    Science.gov (United States)

    Everatt, Matthew J; Convey, Pete; Bale, Jeffrey S; Worland, M Roger; Hayward, Scott A L

    2015-12-01

    As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Design of temperature-responsive polymers with enhanced hysteresis: alpha,alpha-disubstituted vinyl polymers.

    Science.gov (United States)

    Mori, Takeshi; Beppu, Suguru; Berber, Mohamed R; Mori, Hironori; Makimura, Takumi; Tsukamoto, Ayako; Minagawa, Keiji; Hirano, Tomohiro; Tanaka, Masami; Niidome, Takuro; Katayama, Yoshiki; Hirano, Tatsuya; Maeda, Yasushi

    2010-06-15

    Three temperature-responsive polymers which are alpha,alpha-disubstituted vinyl polymers having two amphiphilic groups (ethylamide or ethylester) per monomeric unit were designed. Two of these polymers showed unusually large hysteresis in their phase transition temperatures between a heating and a cooling process. This hysteresis resulted from the extremely slow kinetics of the dissolution process of the aggregated polymer chains in the cooling process due to intra- and interchain interactions including hydrogen bonding and hydrophobic interaction. The high density of the amphiphilic substituents on the polymer chain due to the alpha,alpha-disubstituted structure enhanced these intra- and interchain interactions. The large hysteresis was also observed in the volume change of a corresponding hydrogel. These new classes of temperature-responsive polymers are interesting materials because their large hystereses can be regarded as erasable memory function.

  4. Proteome response of fish under multiple stress exposure: Effects of pesticide mixtures and temperature increase.

    Science.gov (United States)

    Gandar, Allison; Laffaille, Pascal; Marty-Gasset, Nathalie; Viala, Didier; Molette, Caroline; Jean, Séverine

    2017-03-01

    Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL-1 and 42μgL-1) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important changes

  5. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    Science.gov (United States)

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Advances in Fast-response Acoustically Derived Air-temperature Measurements

    Science.gov (United States)

    Bogoev, I.; Jacobsen, L.; Horst, T. W.; Conrad, B.

    2015-12-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity.The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  7. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought

    Directory of Open Access Journals (Sweden)

    Pang Edwin CK

    2007-09-01

    Full Text Available Abstract Background Cultivated chickpea (Cicer arietinum has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. Results The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. Conclusion The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.

  8. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    Full Text Available Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain across a highly diverse family of 27 isogenic mouse strains (BXD panel before and after treatment with ethanol.Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol

  9. Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix.

    Science.gov (United States)

    Sol, Jeroen A H P; Dehm, Volker; Hecht, Reinhard; Würthner, Frank; Schenning, Albertus P H J; Debije, Michael G

    2018-01-22

    Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  11. Major gene is responsible for anencephaly among Iranian Jews

    Energy Technology Data Exchange (ETDEWEB)

    Zlotogora, J. [Hebrew Univ. Hadassah Medical School, Jerusalem (Israel)

    1995-03-13

    Anencephaly is relatively frequent in Jews originating from Iran, in particular when its incidence is compared to that of open spina bifida in the same population (12 cases of anencephaly out of 14 cases of neural tube defects). The high incidence of this disorder in Iranian Jews, a relatively isolated community with a very high rate of consanguinity, suggests that anencephaly is caused by a major recessive gene. This possibility is supported by the sex ratio among these patients, which was significantly different from that observed for patients with anencephaly in other populations. 10 refs.

  12. Climate warming may increase aphids' dropping probabilities in response to high temperatures.

    Science.gov (United States)

    Ma, Gang; Ma, Chun-Sen

    2012-11-01

    Dropping off is considered an anti-predator behavior for aphids since previous studies have shown that it reduces the risk of predation. However, little attention is paid to dropping behavior triggered by other external stresses such as daytime high temperatures which are predicted to become more frequent in the context of climate warming. Here we defined a new parameter, drop-off temperature (DOT), to describe the critical temperature at which an aphid drops off its host plant when the ambient temperature increases gradually and slowly. Detailed studies were conducted to reveal effects of short-term acclimation (temperature, exposure time at high-temperature and starvation) on DOT of an aphid species, Sitobion avenae. Our objectives were to test if the aphids dropped off host plant to avoid high temperatures and how short-term acclimation affected the aphids' dropping behavior in response to heat stress. We suggest that dropping is a behavioral thermoregulation to avoid heat stress, since aphids started to move before they dropped off and the dropped aphids were still able to control their muscles prior to knockdown. The adults starved for 12 h had higher DOT values than those that were unstarved or starved for 6 h, and there was a trade-off between behavioral thermoregulation and energy acquisition. Higher temperatures and longer exposure times at high temperatures significantly lowered the aphids' DOT, suggested that the aphids avoid heat stress by dropping when exposed to high temperatures. Climate warming may therefore increase the aphids' dropping probabilities and consequently affect the aphids' individual development and population growth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine

    2013-05-01

    The second messenger 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 β. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. Biological significance: This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses. © 2013 Elsevier B.V.

  14. Temperature response surfaces for mortality risk of tree species with future drought

    Science.gov (United States)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for

  15. Temperature and pH Responsive Microfibers for Controllable and Variable Ibuprofen Delivery

    Directory of Open Access Journals (Sweden)

    Toan Tran

    2015-01-01

    Full Text Available Electrospun microfibers (MFs composed of pH and temperature responsive polymers can be used for controllable and variable delivery of ibuprofen. First, electrospinning technique was employed to prepare poly(ε-caprolactone (PCL and poly(N-isopropylacrylamide-co-methacrylic acid (pNIPAM-co-MAA MFs containing ibuprofen. It was found that drug release rates from PCL MFs cannot be significantly varied by either temperature (22–40°C or pH values (1.7–7.4. In contrast, the ibuprofen (IP diffusion rates from pNIPAM-co-MAA MFs were very sensitive to changes in both temperature and pH. The IP release from pNIPAM-co-MAA MFs was highly linear and controllable when the temperature was above the lower critical solution temperature (LCST of pNIPAM-co-MAA (33°C and the pH was lower than the pKa of carboxylic acids (pH 2. At room temperature, however, the release rate was dramatically increased by nearly ten times compared to that at higher temperature and lower pH. Such a unique and controllable drug delivery system could be naturally envisioned to find many practical applications in biomedical and pharmaceutical sciences such as programmable transdermal drug delivery.

  16. Physiological responses of Indian jujube (Ziziphus mauritiana Lamk.) fruit to storage temperature under modified atmosphere packaging.

    Science.gov (United States)

    Jat, Laxman; Pareek, Sunil; Shukla, Kunj B

    2013-06-01

    The effect of storage temperature on physiological responses in Indian jujube (Ziziphus mauritiana Lamk. cv. Gola) fruit was investigated. Freshly harvested fruits at physiological maturity characterised by colour-turning stage were stored at ambient temperature, 12 and 6 °C for 21, 35 and 35 days respectively. Headspace O2, CO2 and C2H4, moisture content, respiration, ethylene production, firmness, tristimulus colour, chroma, hue angle and chilling injury index were monitored during fruit storage. Rates of respiration and ethylene production increased after 1 week of storage at ambient temperature, while peaks were observed after 2 weeks at 12 and 6 °C. Headspace O2 decreased continuously during storage, while CO2 and C2H4 increased at all storage temperatures. Moisture content and firmness also decreased during storage. Hunter L* values increased during storage, which correlated with the darkening of fruit colour. Fruit stored at ambient temperature did not show any chilling injury symptoms, while chilling injury appeared on day 28 under 12 °C storage and on day 21 under 6 °C storage. Indian jujube fruit showed high rates of respiration and ethylene production that were significantly affected by different storage temperatures. Lower temperatures increased the shelf life of the fruit, but chilling injury was a problem under 6 °C storage. Indian jujube fruit could be stored at 6 °C for up to 35 days if chilling injury could be alleviated. © 2012 Society of Chemical Industry.

  17. Early-life temperature modifies adult encapsulation response in an invasive ectoparasite.

    Science.gov (United States)

    Kaunisto, Sirpa; Härkönen, Laura; Rantala, Markus J; Kortet, Raine

    2015-09-01

    Immunity of parasites has been studied amazingly little, in spite of the fact that parasitic organisms, especially the arthropod parasites, need immunity to survive their own infections to successfully complete life cycles. Long-term effects of challenging environmental temperatures on immunity have remained unstudied in insects and parasites. Our study species, the deer ked (Lipoptena cervi; Linnaeus 1758), is an invasive, blood-feeding parasitic fly of cervids. Here, it was studied whether thermal stress during the pupal diapause stage could modify adult immunity (encapsulation capacity) in L. cervi. The effect of either a low temperature or high temperature peak, experienced during winter dormancy, on encapsulation response of active adult was tested. It was found that low temperature exposure during diapause, as long as the temperature is not too harsh, had a favourable effect on adult immunity. An abnormal, high temperature peak during pupal winter diapause significantly deteriorated the encapsulation capacity of emerged adults. The frequency and intensity of extreme weather events such as high temperature fluctuations are likely to increase with climate change. Thus, the climate change might have previously unknown influence on host-ectoparasite interactions, by affecting ectoparasite's immune defence and survival.

  18. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    Science.gov (United States)

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé

    2017-09-01

    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  19. Low-temperature affected LC-PUFA conversion and associated gene transcript level in Nannochloropsis oculata CS-179

    Science.gov (United States)

    Ma, Xiaolei; Zhang, Lin; Zhu, Baohua; Pan, Kehou; Li, Si; Yang, Guanpin

    2011-09-01

    Nannochloropsis oculata CS-179, a marine eukaryotic unicellular microalga, is rich in long-chain polyunsaturated fatty acids (LC-PUFAs). Culture temperature affected cell growth and the composition of LC-PUFAs. At an initial cell density of 1.5 × 106 cell mL-1, the highest growth was observed at 25°C and the cell density reached 3 × 107 cell mL-1 at the beginning of logarithmic phase. The content of LC-PUFAs varied with culture temperature. The highest content of LC-PUFAs (43.96%) and EPA (36.6%) was gained at 20°C. Real-time PCR showed that the abundance of Δ6-desaturase gene transcripts was significantly different among 5 culture temperatures and the highest transcript level (15°C) of Nanoc-D6D took off at cycle 21.45. The gene transcript of C20-elongase gene was higher at lower temperatures (10, 15, and 20°C), and the highest transcript level (20°C) of Nanoc-E took off at cycle 21.18. The highest conversion rate (39.3%) of Δ6-desaturase was also gained at 20°C. But the conversion rate of Nanoc-E was not detected. The higher content of LC-PUFAs was a result of higher gene transcript level and higher enzyme activity. Compared with C20-elongase gene, Δ6-desaturase gene transcript and enzyme activity varied significantly with temperature. It will be useful to study the mechanism of how the content of LC-PUFAs is affected by temperature.

  20. Ethnic diversity in a critical gene responsible for glutathione synthesis.

    Science.gov (United States)

    Willis, Alecia S; Freeman, Michael L; Summar, Samantha R; Barr, Frederick E; Williams, Scott M; Dawson, Elliott; Summar, Marshall L

    2003-01-01

    The tripeptide glutathione is an important biomolecule that acts as a scavenger of free radicals and plays a role in a number of other cellular processes. A number of diseases, including Parkinson's disease, cancer, sickle cell anemia, and HIV infection, are thought to involve oxidative stress and depletion of glutathione. The heterodimeric enzyme glutamate cysteine ligase catalyzes the first, rate-limiting step in the de novo synthesis of glutathione. Functional polymorphisms within the gene encoding the subunits of glutamate cysteine ligase have the potential to affect the body's capacity to synthesize glutathione and thus, may affect those diseases in which oxidative stress and glutathione have roles. We undertook systematic screening for polymorphisms within the exons and intronic flanking sequences of the gene encoding the catalytic subunit of glutamate cysteine ligase (GCLC). We identified 11 polymorphisms in GCLC and established allele frequencies for those polymorphisms in a population fitting the demographics of the middle Tennessee area. The nonsynonymous polymorphism C1384T was found only in individuals of African descent. In addition, allele frequencies for three other polymorphisms differ between Caucasians and African-Americans. Understanding these polymorphisms may lead to better understanding of diseases where glutathione is important so that better treatments may be developed.

  1. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    Science.gov (United States)

    2014-01-01

    Background WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold stress and the role of WRKY genes in the survival of grapevine under these conditions remains unknown. Results We identified a total of 59 VvWRKYs from the V. vinifera genome, belonging to four subgroups according to conserved WRKY domains and zinc-finger structure. The majority of VvWRKYs were expressed in more than one tissue among the 7 tissues examined which included young leaves, mature leaves, tendril, stem apex, root, young fruits and ripe fruits. Publicly available microarray data suggested that a subset of VvWRKYs was activated in response to diverse stresses. Quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 36 VvWRKYs are changed following cold exposure. Comparative analysis was performed on data from publicly available microarray experiments, previous global transcriptome analysis studies, and qRT-PCR. We identified 15 VvWRKYs in at least two of these databases which may relate to cold stress. Among them, the transcription of three genes can be induced by exogenous ABA application, suggesting that they can be involved in an ABA-dependent signaling pathway in response to cold stress. Conclusions We identified 59 VvWRKYs from the V. vinifera genome and 15 of them showed cold stress-induced expression patterns. These genes represented candidate genes for future functional analysis of VvWRKYs involved in the low temperature-related signal pathways in grape. PMID:24755338

  2. Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators.

    Science.gov (United States)

    Jarillo, J A; Capel, J; Leyva, A; Martínez-Zapater, J M; Salinas, J

    1994-07-01

    We have isolated two Rare Cold-Inducible (RCI1 and RCI2) cDNAs by screening a cDNA library prepared from cold-acclimated etiolated seedlings of Arabidopsis thaliana with a subtracted probe. RNA-blot hybridizations revealed that the expression of both RCI1 and RCI2 genes is induced by low temperature independently of the plant organ or the developmental stage considered. However, RCI1 mRNA accumulates faster and at higher levels than the RCI2 one indicating that these genes have differential responsiveness to cold stress. Additionally, when plants are returned to room temperature, RCI1 mRNA decreases faster than RCI2. In contrast to most of the cold-inducible plant genes characterized, the expression of RCI1 and RCI2 is not induced by ABA or water stress. The nucleotide sequences of RCI1 and RCI2 cDNAs predict two acidic polypeptides of 255 and 251 amino acids with molecular weights of 29 and 28 kDa respectively. The alignment of these polypeptides indicates that they have 181 identical amino acids suggesting that the corresponding genes have a common origin. Sequence comparisons reveal no similarities between the RCI proteins and any other cold-regulated plant protein so far described. Instead, they demonstrate that the RCI proteins are highly homologous to a family of proteins, known as 14-3-3 proteins, which are thought to be involved in the regulation of multifunctional protein kinases.

  3. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Science.gov (United States)

    Matsuda, Ryusuke; Iehisa, Julio Cesar Masaru; Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro; Takumi, Shigeo

    2017-01-01

    Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids.

  4. Auxin-related gene families in abiotic stress response in Sorghum bicolor.

    Science.gov (United States)

    Wang, SuiKang; Bai, YouHuang; Shen, ChenJia; Wu, YunRong; Zhang, SaiNa; Jiang, DeAn; Guilfoyle, Tom J; Chen, Ming; Qi, YanHua

    2010-11-01

    Sorghum, a C4 model plant, has been studied to develop an understanding of the molecular mechanism of resistance to stress. The auxin-response genes, auxin/indole-3-acetic acid (Aux/IAA), auxin-response factor (ARF), Gretchen Hagen3 (GH3), small auxin-up RNAs, and lateral organ boundaries (LBD), are involved in growth/development and stress/defense responses in Arabidopsis and rice, but they have not been studied in sorghum. In the present paper, the chromosome distribution, gene duplication, promoters, intron/exon, and phylogenic relationships of Aux/IAA, ARF, GH3, and LBD genes in sorghum are presented. Furthermore, real-time PCR analysis demonstrated these genes are differently expressed in leaf/root of sorghum and indicated the expression profile of these gene families under IAA, brassinosteroid (BR), salt, and drought treatments. The SbGH3 and SbLBD genes, expressed in low level under natural condition, were highly induced by salt and drought stress consistent with their products being involved in both abiotic stresses. Three genes, SbIAA1, SbGH3-13, and SbLBD32, were highly induced under all the four treatments, IAA, BR, salt, and drought. The analysis provided new evidence for role of auxin in stress response, implied there are cross talk between auxin, BR and abiotic stress signaling pathways.

  5. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    Directory of Open Access Journals (Sweden)

    Davey Jennifer C

    2007-12-01

    Full Text Available Abstract Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT. The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for

  6. Effects of Varroa destructor on temperature and humidity conditions and expression of energy metabolism genes in infested honeybee colonies.

    Science.gov (United States)

    Hou, C S; Li, B B; Deng, S; Diao, Q Y

    2016-09-23

    Varroa destructor mites pose an increasing global threat to the apicultural industry and agricultural ecology; however, the issue of whether certain environmental factors reflect the level of mite infection is far from resolved. Here, a wireless sensor network (WSN) system was used to examine how V. destructor, which has vital impacts on honeybee (Apis mellifera) health and survival, affects the temperature and humidity of honeybee hives in a field experiment. This approach may facilitate early identification of V. destructor in hives, and thus enable timely remedial action. Using quantitative PCR, we also evaluated the expression of two genes, adipokinetic hormone (AKH) and adipokinetic hormone receptor (AKHR).The results showed that temperature in highly infested broods was higher than that in broods with low infestation. Moreover, mite infection in honeybee colonies was positively correlated with temperature but negatively correlated with humidity (P Varroa infection not only causes changes in temperature inside honeybee colonies, but also affects the expression of honeybee energy metabolism genes.

  7. Immune response genes receptors expression and polymorphisms in relation to multiple sclerosis susceptibility and response to INF-β therapy.

    Science.gov (United States)

    Karam, Rehab A; Rezk, Noha A; Amer, Mona M; Fathy, Hala A

    2016-09-01

    Interferon (IFN)-β is one of the disease modifying drugs used in the treatment of multiple sclerosis. A predictive marker that indicates good or poor response to the treatment is highly desirable. We aimed to investigate the relation between the immune response genes receptors (IFNAR1, IFNAR2, and CCR5) expression and their polymorhic variants and multiple sclerosis (MS) susceptibility as well as the response to IFN-β therapy. The immune response genes receptors expression and genotyping were analyzed in 80 patients with MS, treated with IFN-β and in 110 healthy controls. There was a significant decrease of IFNAR1 and IFNAR2 mRNA expression and a significant increase of CCR5 mRNA expression in MS patients compared with the control group. Also, the level of IFNAR1, IFNAR2, and CCR5 mRNA expression was found to be significantly lower in the responders than nonresponders. Carriers of IFNAR1 18417 C/C genotype and C allele had an increased risk of developing MS. There was a significant relation between CCR5 Δ32 allele and IFN-β treatment response in MS patients. Our results highlighted the significance of IFNAR and CCR5 genes in multiple sclerosis risk and the response to IFN-β therapy. © 2016 IUBMB Life, 68(9):727-734, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  8. Preparation and properties of fast temperature-responsive soy protein/PNIPAAm IPN hydrogels

    Directory of Open Access Journals (Sweden)

    Liu Yong

    2014-01-01

    Full Text Available The interpenetrating polymer network of fast temperature-responsive hydrogels based on soy protein and poly(N-isopropylacrylamide were successfully prepared using the sodium bicarbonate (NaHCO3 solutions as the reaction medium. The structure and properties of the hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermal gravimetric analysis. The swelling and deswelling kinetics were also investigated in detail. The results have shown that the proposed hydrogels had high porous structure, good miscibility and thermal stability, and fast temperature responsivity. The presence of NaHCO3 had little effect on the volume phase transition temperature (VPTT of the hydrogels, and the VPTTs were at about 32°C. Compared with the traditional hydrogels, the proposed hydrogels had much faster swelling and deswelling rate. The swelling mechanism of the hydrogels was the non-Fickian diffusion. This fast temperature-responsive hydrogels may have potential applications in the field of biomedical materials.

  9. Oxygen metabolic responses of three species of large benthic foraminifers with algal symbionts to temperature stress.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Fujita

    Full Text Available Water temperature affects the physiology of large benthic foraminifers (LBFs with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2 production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m(-2 s(-1. In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C, the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis, the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also

  10. Temperature and the Ventilatory Response to Hypoxia in Gromphadorhina portentosa (Blattodea: Blaberidae).

    Science.gov (United States)

    Harrison, Jon F; Manoucheh, Milad; Klok, C Jaco; Campbell, Jacob B

    2016-04-01

    In general, insects respond to hypoxia by increasing ventilation frequency, as seen in most other animals. Higher body temperatures usually also increase ventilation rates, likely due to increases in metabolic rates. In ectothermic air-breathing vertebrates, body temperatures and hypoxia tend to interact significantly, with an increasing responsiveness of ventilation to hypoxia at higher temperatures. Here, we tested whether the same is true in insects, using the Madagascar hissing cockroach, Gromphadorhina portentosa (Schaum) (Blattodea: Blaberidae). We equilibrated individuals to a temperature (beginning at 20 °C), and animals were exposed to step-wise decreases in PO2 (21, 15, 10, and 5 kPa, in that order), and we measured ventilation frequencies from videotapes of abdominal pumping after 15 min of exposure to the test oxygen level. We then raised the temperature by 5 °C, and the protocol was repeated, with tests run at 20, 25, 30, and 35 °C. The 20 °C animals had high initial ventilation rates, possibly due to handling stress, so these animals were excluded from subsequent analyses. Across all temperatures, ventilation increased in hypoxia, but only significantly at 5 kPa PO2 Surprisingly, there was no significant interaction between temperature and oxygen, and no significant effect of temperature on ventilation frequency from 25 to 35 °C. Plausibly, the rise in metabolic rates at higher temperatures in insects is made possible by increasing other aspects of gas exchange, such as decreasing internal PO2, or increases in tidal volume, spiracular opening (duration or amount), or removal of fluid from the tracheoles. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The response of rice (Oryza sativa L. to elevated night temperature with application of Pyraclostobin

    Directory of Open Access Journals (Sweden)

    T.Y. Wahjanto

    2016-07-01

    Full Text Available Rice productivity is having a problem related with climate change phenomenon, mainly the global warming. The rising of temperature in some country threat the rice production. The increasing of temperature is a major limiting factor that affects yield through the growth and development of rice plant. This study was aimed to examine the response of rice (Oryza sativa L. to elevated night temperature with the application of Pyraclostobin. A glasshouse experiment that was conducted from March to August 2015 at Brawijaya University Research Station of Jatikerto – Malang, used nested plot design with three replications and two treatments. The first treatments were the night temperature level (normal temperature, increased 2oC, and increased 4oC. The second treatments were the concentration of Pyraclostrobin (0 ppm, 400 ppm and 800 ppm. Results of the study showed that the increase of temperature at night for about 2oC and 4oC, as well as application of Pyraclostrobin, affected growth and yield of rice. Application of Pyraclostrobin by concentrations of 400 ppm and 800 ppm effectively reduced yield loss by increasing night temperature of 2oC, which resulted in 20.20% and 24.93%, respectively, in comparison with the control; while the increase of night temperature by 4oC have resulted 26.86% and 33.33% in comparison with the control. Pyraclostrobin was effective in maintaining percentage of the filled spikelets by the increase of temperature at night for about 2oC and 4oC.

  12. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  13. Changes in gene expression by trabecular meshwork cells in response to mechanical stretching.

    Science.gov (United States)

    Vittal, Vasavi; Rose, Anastasia; Gregory, Kate E; Kelley, Mary J; Acott, Ted S

    2005-08-01

    Trabecular meshwork (TM) cells appear to sense changes in intraocular pressure (IOP) as mechanical stretching. In response, they make homeostatic corrections in the aqueous humor outflow resistance, partially by increasing extracellular matrix (ECM) turnover initiated by the matrix metalloproteinases. To understand this homeostatic adjustment process further, studies were conducted to evaluate changes in TM gene expression that occur in response to mechanical stretching. Porcine TM cells were subjected to sustained mechanical stretching, and RNA was isolated after 12, 24, or 48 hours. Changes in gene expression were evaluated with microarrays containing approximately 8000 cDNAs. Select mRNA changes were then compared by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western immunoblots were used to determine whether some of these changes were associated with changes in protein levels. On the microarrays, 126 genes were significantly upregulated, and 29 genes were significantly downregulated at one or more time points, according to very conservative statistical and biological criteria. Of the genes that changed, several ECM regulatory genes, cytoskeletal-regulatory genes, signal-transduction genes, and stress-response genes were notable. These included several proteoglycans and matricellular ECM proteins composed of common repetitive binding domains. The results of analysis of mRNA changes in more than 20 selected genes by qRT-PCR supported the findings in the microarray analysis. Western immunoblots of several proteins demonstrated protein level changes associated with changes in the level of mRNA. The expression of a variety of TM genes is significantly affected by mechanical stretching. These include several ECM proteins that contain multiple binding sites and may serve organizational roles in the TM. Several proteins that could contribute to the homeostatic modification of aqueous humor outflow resistance are also upregulated or

  14. Temperature Stress at Grain Filling Stage Mediates Expression of Three Isoform Genes Encoding Starch Branching Enzymes in Rice Endosperm

    Directory of Open Access Journals (Sweden)

    Ke-su WEI

    2009-09-01

    Full Text Available An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32°C for high temperature and 22°C for optimum temperature at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBEIV encoding starch branching enzyme (SBE in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR method. Effects of high temperature on the SBE expression in developing rice endosperms were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression.

  15. Suitable reference gene for quantitative real-time PCR analysis of gene expression in gonadal tissues of minnow Puntius sophore under high-temperature stress.

    Science.gov (United States)

    Mahanty, Arabinda; Purohit, Gopal Krishna; Mohanty, Sasmita; Nayak, Nihar Ranjan; Mohanty, Bimal Prasanna

    2017-08-15

    High ambient temperature is known to affect fish gonadal development and physiology in a variety of ways depending on the severity and duration of exposure; however, the underlying molecular mechanisms are poorly understood. Gonadal gene expression influence the gonadal development, physiology and the quality of egg/sperm produced in teleosts and the mechanistic understanding of spatio-temporal changes in the gonadal gene expression could be instrumental in controlling the fate of egg/sperm and the quality of seed produced. Real time-quantititative polymerase chain reaction (RT-qCR), is a high throughput, sensitive and reproducible methodology used for understanding gene expression patterns by measuring the relative abundance of mRNA transcripts. However, its accuracy relies upon a suitable reference gene whose expression levels remain stable across various experimental conditions. In the present study, we evaluated the suitability of ten potential reference genes to be used as internal controls in RT-qPCR analysis in gonadal tissues (ovary and testis) of minnow Puntius sophore exposed to high temperature stress for different time periods (7 days, 60 days). Expression analysis of ten different constitutively expressed genes viz. 18S ribosomal RNA (18S rRNA), beta actin (βactin), β-2 microglobulin (b2mg), eukaryotic elongation factor-1 (eef1), glyceraldehyde-3phosphate dehydrogenase (gapdh), glucose-6-phosphate dehydrogenase (g6pd), ribosomal binding protein L13 (rpl13), tubulin (tub), tata box binding protein (tbp), ubiquitin (ubi) was carried out by using RT-qPCR and the stability in their expressions were evaluated by using four different algorithms; namely, delta Ct, BestKeeper, geNorm and NormFinder. In ovary, eef1 was found to be the most suitable reference gene in all the algorithms used. In testis, b2mg was found to be the most suitable reference gene in delta Ct, BestKeeper, NormFinder analysis while tbp and eef1 were found to be the most suitable

  16. The Effect of Noseband Tightening on Horses' Behavior, Eye Temperature, and Cardiac Responses.

    Science.gov (United States)

    Fenner, Kate; Yoon, Samuel; White, Peter; Starling, Melissa; McGreevy, Paul

    2016-01-01

    Restrictive nosebands are common in equestrian sport. This is concerning, as recent evidence suggests that very tight nosebands can cause a physiological stress response, and may compromise welfare. The objective of the current study was to investigate relationships that noseband tightness has with oral behavior and with physiological changes that indicate a stress response, such as increases in eye temperature (measured with infrared thermography) and heart rate and decreases in heart rate variability (HRV). Horses (n = 12) wearing a double bridle and crank noseband, as is common in dressage at elite levels, were randomly assigned to four treatments: unfastened noseband (UN), conventional area under noseband (CAUN) with two fingers of space available under the noseband, half conventional area under noseband (HCAUN) with one finger of space under the noseband, and no area under the noseband (NAUN). During the tightest treatment (NAUN), horse heart rate increased (P = 0.003), HRV decreased (P temperature increased (P = 0.011) compared with baseline readings, indicating a physiological stress response. The behavioral results suggest some effects from bits alone but the chief findings are the physiological readings that reflect responses to the nosebands at their tightest. Chewing decreased during the HCAUN (P post-inhibitory rebound response. This suggests a rise in motivation to perform these behaviors and implies that their inhibition may place horses in a state of deprivation. It is evident that a very tight noseband can cause physiological stress responses and inhibit the expression of oral behaviors.

  17. THE INFLUENCE OF OBESITY AND AMBIENT TEMPERATURE ON PHYSIOLOGICAL AND OXIDATIVE RESPONSES TO SUBMAXIMAL EXERCISE

    OpenAIRE

    Ahn, N.; Kim, K.

    2014-01-01

    This study investigated the effects of obesity and ambient temperature on physiological responses and markers of oxidative stress to submaximal exercise in obese and lean people. Sixteen healthy males were divided into an obese group (n=8, %fat: 27.00±3.00%) and a lean group (n=8, %fat: 13.85±2.45%). Study variables were measured during a 60 min submaximal exercise test at 60% VO2max in a neutral (21±1°C) and a cold (4±1°C) environment. Heart rate, blood lactate, rectal temperature, serum lev...

  18. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    Science.gov (United States)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  19. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    Science.gov (United States)

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase (lpdC, or lp_2945) is only 6.5 kb distant from the gene encoding inducible tannase (L. plantarumtanB [tanBLp ], or lp_2956). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B (lpdB, or lp_0271) and D (lpdD, or lp_0272) of the gallate decarboxylase are cotranscribed, whereas subunit C (lpdC, or lp_2945) is cotranscribed with a gene encoding a transport protein (gacP, or lp_2943). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator (lp_2942) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment.IMPORTANCELactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each

  20. Identification and functional analysis of antifungal immune response genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Li Hua Jin

    Full Text Available Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. Although signaling pathways that activate NF-kappaB during innate immune responses to various microorganisms have been studied in detail, regulatory mechanisms that control other immune responses to fungal infection require further investigation. To identify new Drosophila genes involved in antifungal immune responses, we selected genes known to be differentially regulated in SL2 cells by microbial cell wall components and tested their roles in antifungal defense using mutant flies. From 130 mutant lines, sixteen mutants exhibited increased sensitivity to fungal infection. Examination of their effects on defense against various types of bacteria and fungi revealed nine genes that are involved specifically in defense against fungal infection. All of these mutants displayed defects in phagocytosis or activation of antimicrobial peptide genes following infection. In some mutants, these immune deficiencies were attributed to defects in hemocyte development and differentiation, while other mutants showed specific defects in immune signaling required for humoral or cellular immune responses. Our results identify a new class of genes involved in antifungal immune responses in Drosophila.

  1. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties.

    Science.gov (United States)

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Kellomäki, Seppo

    2005-01-01

    Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.

  2. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan [Carnegie Inst. of Science, Stanford, CA (United States); Michalak, Anna M. [Carnegie Inst. of Science, Stanford, CA (United States); Schwalm, Christopher R. [Woods Hole Research Center, Falmouth, MA (United States); Huntzinger, Deborah N. [Northern Arizona Univ., Flagstaff, AZ (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Ciais, Philippe [Alternative Energies and Atomic Energy Commission (CEA), Gif sur Yvette (France); Piao, Shilong [Peking Univ., Beijing (China); Poulter, Benjamin [Montana State Univ., Bozeman, MT (United States); Fisher, Joshua B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Cook, Robert B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayes, Daniel [Univ. of Maine, Orno, ME (United States); Huang, Maoyi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ito, Akihiko [National Inst. for Environmental Studies, Tsukuba (Japan); Jain, Atul [Univ. of Illinois, Urbana-Champaign, IL (United States); Lei, Huimin [Tsinghua Univ., Beijing (China); Lu, Chaoqun [Ames Lab. and Iowa State Univ., Ames, IA (United States); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parazoo, Nicholas C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Peng, Shushi [Peking Univ., Beijing (China); Ricciuto, Daniel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tao, Bo [Univ. of Kentucky, Lexington, KY (United States); Tian, Hanqin [Auburn Univ., AL (United States); Wang, Weile [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Wei, Yaxing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Jia [Auburn Univ., AL (United States)

    2017-06-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. We show that the dominant driver varies with ENSO phase. And whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p < 0.01), the post La Niña sink is driven largely by tropical precipitation (r PG,T= -0.46, p = 0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. Furthermore, we find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  3. Using skin temperature and muscle thickness to assess muscle response to strength training

    Directory of Open Access Journals (Sweden)

    Eduardo Borba Neves

    2015-10-01

    Full Text Available ABSTRACTIntroduction:Several studies already reported the response of many biomarkers after strength training, but studies using low cost diagnostic imaging tools are rare.Objective:To evaluate the usage of skin temperature and muscle thickness (MT to monitor muscle response (until 96 hours after to high-intensity strength training.Methods:This is a short-term longitudinal study with 13 trained, healthy male volunteers. Volunteers performed five sets of biceps bi-set exercise with their dominant arm with dumbbells, with load of 70% of one-repetition maximum (1RM. The ultrasound (US and thermal images were acquired before and immediately after the last set, 24, 48, 72 and 96 hours after exercise.Results:The analysis was divided in two stages: acute muscle response (until 24 hours after training and delayed muscle response (from 24 to 96 hours after training. The elbow flexors thickness showed the peak value immediately after the last set of training. Skin temperature (on elbow flexors and the elbow flexors thickness grew continuously from 24 to 96 hours after strength training. There is a high correlation (r=0.941, p=0.017 between skin temperature and muscle thickness from the end of exercise until 96 hours after strength training.Conclusions:The US images showed high sensibility for muscle physiological changes on the first 24 hours after exercise. On the other hand, the thermal images had higher sensibility for muscle physiological changes than US images from 24 to 96 hours after training.

  4. Glial-specific cAMP response of the glial fibrillary acidic protein gene cell lines.

    OpenAIRE

    Kaneko, R; Hagiwara, N; Leader, K; Sueoka, N

    1994-01-01

    Expression of the rat glial fibrillary acidic protein (GFAP) gene is responsive to the intracellular level of cAMP. We have examined the sequence 5'-upstream of the transcription start site of the rat GFAP-encoding gene to determine the elements responsible for regulating the cAMP response. The RT4 cell lines consist of a neural stem-cell type RT4-AC and its three derivative cell types, one glial-cell type, RT4-D, and two neuronal-cell types, RT4-B and RT4-E. GFAP is expressed in the stem-cel...

  5. Neonatal maternal deprivation response and developmental changes in gene expression revealed by hypothalamic gene expression profiling in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Neonatal feeding problems are observed in several genetic diseases including Prader-Willi syndrome (PWS. Later in life, individuals with PWS develop hyperphagia and obesity due to lack of appetite control. We hypothesized that failure to thrive in infancy and later-onset hyperphagia are related and could be due to a defect in the hypothalamus. In this study, we performed gene expression microarray analysis of the hypothalamic response to maternal deprivation in neonatal wild-type and Snord116del mice, a mouse model for PWS in which a cluster of imprinted C/D box snoRNAs is deleted. The neonatal starvation response in both strains was dramatically different from that reported in adult rodents. Genes that are affected by adult starvation showed no expression change in the hypothalamus of 5 day-old pups after 6 hours of maternal deprivation. Unlike in adult rodents, expression levels of Nanos2 and Pdk4 were increased, and those of Pgpep1, Ndp, Brms1l, Mett10d, and Snx1 were decreased after neonatal deprivation. In addition, we compared hypothalamic gene expression profiles at postnatal days 5 and 13 and observed significant developmental changes. Notably, the gene expression profiles of Snord116del deletion mice and wild-type littermates were very similar at all time points and conditions, arguing against a role of Snord116 in feeding regulation in the neonatal period.

  6. Environmental stress responsive expression of the gene li16 in Rana sylvatica, the freeze tolerant wood frog.

    Science.gov (United States)

    Sullivan, Katrina J; Storey, Kenneth B

    2012-06-01

    Wood frogs (Rana sylvatica) can endure weeks of subzero temperature exposure during the winter with up to 65% of their body water frozen as extracellular ice. Associated with freezing survival is elevated expression of a number of genes/proteins including the unidentified gene, li16, first described in liver. The current study undertakes a broad analysis of li16 expression in response to freezing in 12 tissues of wood frogs as well as expression responses to anoxia and dehydration. Transcript levels of li16 increased significantly after 24h freezing (at -2.5 °C) demonstrating increases of approximately 3-fold in testes, greater than 2-fold in heart, ventral skin and lung, and over 1.5-fold in brain, liver and hind leg muscle as compared to unfrozen controls at 5 °C. Increased li16 transcript levels in brain, muscle and heart were mirrored by elevated Li16 protein in frozen frogs. Significant upregulation of li16 in response to both anoxia and dehydration (both components of freezing) was demonstrated in brain, kidney and heart. Overall, the results indicate that Li16 protein has a significant role to play in cell/organ responses to freezing in wood frogs and that its up-regulation may be linked with oxygen restriction that is a common element in the three stress conditions examined. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Seasonal temperature responses to land-use change in the western United States

    Science.gov (United States)

    Kueppers, L.M.; Snyder, M.A.; Sloan, L.C.; Cayan, D.; Jin, J.; Kanamaru, H.; Kanamitsu, M.; Miller, N.L.; Tyree, Mary; Du, H.; Weare, B.

    2008-01-01

    In the western United States, more than 79 000??km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land-atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) - RSM, RegCM3, MM5-CLM3, and DRCM - to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (- 1.4 to - 3.1????C) and maximum (- 2.9 to - 6.1????C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest. ?? 2007 Elsevier B.V. All rights reserved.

  8. The Rice TCM5 Gene Encoding a Novel Deg Protease Protein is Essential for Chloroplast Development under High Temperatures.

    Science.gov (United States)

    Zheng, Kailun; Zhao, Jian; Lin, Dongzhi; Chen, Jiaying; Xu, Jianlong; Zhou, Hua; Teng, Sheng; Dong, Yanjun

    2016-12-01

    High temperature affects a broad spectrum of cellular components and metabolism in plants. The Deg/HtrA family of ATP-independent serine endopeptidases is present in nearly all organisms. Deg proteases are required for the survival of Escherichia coli at high temperatures. However, it is still unclear whether rice Deg proteases are required for chloroplast development under high temperatures. In this study, we reported the first rice deg mutant tcm5 (thermo-sensitive chlorophyll-deficient mutant 5) that has an albino phenotype, defective chloroplasts and could not survive after the 4-5 leaf seedling stage when grown at high temperature (32 °C). However, when grown at low temperatures (20 °C), tcm5 has a normal phenotype. Map-based cloning showed that TCM5 encoding a chloroplast-targeted Deg protease protein. The TCM5 transcripts were highly expressed in all green tissues and undetectable in other tissues, showing the tissue-specific expression. In tcm5 mutants grown at high temperatures, the transcript levels of certain genes associated with chloroplast development especially PSII-associated genes were severely affected, but recovered to normal levels at low temperatures. These results showed important role of TCM5 for chloroplast development under high temperatures. The TCM5 encodes chloroplast-targeted Deg protease protein which is important for chloroplast development and the maintenance of PSII function and its disruption would lead to a defective chloroplast and affected expression levels of genes associated with chloroplast development and photosynthesis at early rice seedling stage under high temperatures.

  9. In silico analysis of cacao (Theobroma cacao L.) genes that involved in pathogen and disease responses

    Science.gov (United States)

    Agung, Muhammad Budi; Budiarsa, I. Made; Suwastika, I. Nengah

    2017-02-01

    Cocoa bean is one of the main commodities from Indonesia for the world, which still have problem regarding yield degradation due to pathogens and disease attack. Developing robust cacao plant that genetically resistant to pathogen and disease attack is an ideal solution in over taking on this problem. The aim of this study was to identify Theobroma cacao genes on database of cacao genome that homolog to response genes of pathogen and disease attack in other plant, through in silico analysis. Basic information survey and gene identification were performed in GenBank and The Arabidopsis Information Resource database. The In silico analysis contains protein BLAST, homology test of each gene's protein candidates, and identification of homologue gene in Cacao Genome Database using data source "Theobroma cacao cv. Matina 1-6 v1.1" genome. Identification found that Thecc1EG011959t1 (EDS1), Thecc1EG006803t1 (EDS5), Thecc1EG013842t1 (ICS1), and Thecc1EG015614t1 (BG_PPAP) gene of Cacao Genome Database were Theobroma cacao genes that homolog to plant's resistance genes which highly possible to have similar functions of each gene's homologue gene.

  10. DNA Damage Response Pathway and Replication Fork Stress During Oligonucleotide Directed Gene Editing

    Dir