WorldWideScience

Sample records for temperature range 0273-0400 k

  1. Exon: CBRC-RNOR-01-0273 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-01-0273 ATGGATGAAATCAACAGGAATCTGGACCATTTACCAAATATGTCTTTGATTATAAATCCAACTTTGAGCTATTGTAATGGaaaaaacaaa...acaaaacaaaacaaaaaaacaaaaaaacaaaaaaaaaaaaaaaaaCTGCACTCCTGTTGGGAGCAAGTAAAGATGGCACTGACATCTAGTGGTCGTTTGTG ...

  2. Exon: CBRC-RNOR-01-0400 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-01-0400 ctccgaaaaaaagaaccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacctatgtacaaaagcctg...gtgtggtggtgcacacttgtattatcagcatgggggagcagaggcaagctgatccctgggacctgctagcccacttaacaagtttcaggccagtgatagactgtttcaaa

  3. Germanium thermometers in the temperature range .1000K to 4.20K

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Sanchez, D.H.

    1974-01-01

    The sensitivity characteristics of two germanium thermometers that proved to be convenient sensors in the temperature range from .100 0 K to 4.2 0 K, are described. Their resistances change from about 8 x 10 5 ohms at .100 0 K to about 100 ohms at 4.2 0 K. The calibration curves were fitted to natural spline functions of order 3 in the whole range of temperatures. These functions give less than half millidegree standard dispersion against 15 millidegree standard dispersion when usual polynomial interpolations are used. It is discussed what spline functions are, and compare the goodness of spline interpolation with polynomial methods [pt

  4. Semiconductor resistance thermometer for the temperature range 300-0.3 K

    International Nuclear Information System (INIS)

    Zinov'eva, K.N.; Zarubin, L.I.; Nemish, I.Yu.; Vorobkalo, F.M.; Boldarev, S.T.; AN Ukrainskoj SSR, Kiev. Inst. Poluprovodnikov)

    1979-01-01

    Thermometric characteristics of semiconductor resistor thermometers for the temperature range from 300 to 0.3 K and from 77 to 0.3 K are given. Temperature dependence of thermometer resistances in the 300-1.3 K range was measured in cryostats with pumping-out of N 2 , H 2 and 4 He. For measurements below 1.3 K use was made of a 3 H- 4 He dissolving cryostat. The accuracy of measuring temperatures in the 1.3-0.3 K range is not below +-0.003 K, the error in determining thermometer resistances does not exceed 1%. The analysis of obtained thermometric characteristics of several series of semiconductor resistance thermometers showed that observed insignificant spread of resistances of thermometers in one series and identity of characteristics allows them to be used without preliminary calibration for relatively coarse measurements in the range from 3O0 to 0.3 K. Besides, it has been found that in the 4.2-0.3 K range the thermometric characteristics represent a straight line in the lgR-Tsup(-n) coordinates, where R is the thermometer resistance, T is the temperature and n=0.5. Thus, the thermometers of the same series can be calibrated only in 2 or 3 reference point measurements

  5. Temperature dependence of muonium spin exchange with O2 in the range 88 K to 478 K

    International Nuclear Information System (INIS)

    Senba, M.; Garner, D.M.; Arseneau, D.J.; Fleming, D.G.

    1984-01-01

    The authors have extended an earlier study of the spin exchange reactions of Mu with O 2 in the range 295 K to 478 K, to a low temperature region down to 88 K. From 135 K to 296 K, the spin depolarization rate constant was found to vary according to the relative velocity of the colliding species, which indicates that the spin exchange cross section of Mu-O 2 is temperature independent in this range. However, it was found that below 105 K and above 400 K, the spin depolarization rate constant tends to have stronger temperature dependences. (Auth.)

  6. Temperature dependence of thermal expansion of cadmium sulfide in the temperature range 20 - 820 K

    International Nuclear Information System (INIS)

    Oskotskij, V.S.; Kobyakov, I.B.; Solodukhin, A.V.

    1980-01-01

    The linear thermal expansion of cadmium sulfide is measured perpendicularly (α 1 ) and parallelly (α 2 ) to the hexagonal axis in the temperature range from 20 to 820 K. Anisotropy is low at up to 80 K; rises at higher temperatures; at 3OO K α 1 /α 3 ratio is 1.8; at 820 K, 2.4. Heat expansion is negative at temperatures lower than 104.5 K(α 1 ) and 126.0 K(α 2 ). It achieves the minimum at 43.6 K (α 1 ) and 52.5K (α 3 ). The theory of heat expansion is plotted in the Debue, approximation and cadmium sulfide is considered as an isotope crystal with average elastic constants. Two parameters of the theory are determined by the position and value of the minimum of volumetric thermal expansion of the model isotope crystal. The theoretic curve agrees well with the experimental one at temperatures up to 160 K, i.e in the range of applicability of the Debue approximation and the isotropic model

  7. NCBI nr-aa BLAST: CBRC-ETEL-01-0273 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ETEL-01-0273 ref|NP_569067.1| NADH dehydrogenase subunit 5 [Crioceris duodecimp...unctata] gb|AAL67868.1|AF467886_8 NADH dehydrogenase subunit 5 [Crioceris duodecimpunctata] NP_569067.1 0.45 23% ...

  8. Plastic behaviour of Zircaloy-4 in the temperature range 77-1000 K

    International Nuclear Information System (INIS)

    Derep, J.L.; Ibrahim, S.; Rouby, D.; Fantozzi, G.; Gobin, P.

    1979-01-01

    Tensile tests were carried out on Zircaloy-4 over a temperature range 77-1000 K. So, we have determined the flow stress variations as a function of temperature and strain rate. Two thermally activated zones were observed between about 77 and 600 K, a plateau stress between 600 and 700 K and an other thermally activated zone above 700 K. The various mechanisms which can be responsible for the thermally activated and athermal zones are discussed in the light of experimental results. The mechanical behaviour of Zircaloy-4 appears similar to the zirconium-oxygen alloys one. (orig.) [de

  9. Uptake, translocation, and distribution of root-applied [C ring-U-14C]-ZJ0273 in plants of oilseed rape and rice

    International Nuclear Information System (INIS)

    Li Zheng; Han Ailiang; Zhang Yanfei; Li Juying; Wang Yue; Wang Haiyan; Ye Qingfu; Lu Long

    2009-01-01

    ZJ0273, propyl 4-(2-(4, 6-dimethoxypyrimidin-2-yloxy) benzylamino) benzoate, is a novel ALS-inhibited herbicide development for pre-and post-emergence weed control in field of oilseed rape. The comparative uptake, translocation and distribution of root-applied [C ring-U- 14 C] ZJ0273 in the plants of susceptible rice and tolerant oilseed rape were investigated under laboratory conditions. The results showed that the uptake of [C ring-U- 14 C]-ZJ0273 in both rice (Oryza sativa L.) and oilseed rape (Brassica napus L.) increased with time. Larger percentage of the applied ZJ0273 was uptaken by rice than oilseed rape at any sampling time. At 384 hours after treatment, the uptake of [C ring-U- 14 C]-ZJ0273 reached 24.1% of the applied amount in rice, while only 4.1% of the applied in oilseed rape. The majority of the absorbed ZJ0273 remained in the root of the tested plants, which indicated the weak mobility of ZJ0273 and/or its metabolites in both the plants of susceptible rice and tolerant oilseed rape. The radioactivity per unit of dry weight in the roots and leaves of rice was 9.470 Bq/mg and 0.910 Bq/mg, respectively, which was significantly higher than that in oilseed rape (3.870 Bq/mg and 0.390 Bq/mg). Therefore, the difference in the total uptake of ZJ0273 and the accumulation of ZJ0273 and/or its metabolites perunit of dry weight between rice and oilseed rape, which revealed in this study, might be one of the reasons for the different susceptibility of rice and oilseed rape on ZJ0273. (authors)

  10. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    Science.gov (United States)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  11. Density of Liquid Steel over Temperature Range of 1 803-1 873 K

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang

    2004-01-01

    The density of three kinds of liquid steel was measured by a modified sessile drop method over the temperature range of 1 803-1 873 K. It is found that the density of liquid steels decreases with increasing temperature and carbon content in steel. Both of the density and its absolute temperature coefficient of studied steels are smaller than the literature values of pure iron. The molar volume of the steels increases with increasing temperature.

  12. Dislocation mechanisms for plastic flow of nickel in the temperature range 4.2-1200K

    International Nuclear Information System (INIS)

    Sastry, D.H.; Tangri, K.

    1975-01-01

    The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow. In the low-temperature thermally activated region (<250K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (<750K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell-Stokes law is obeyed over large strains in the range 750-1200K. (author)

  13. Dusty plasma in a glow discharge in helium in temperature range of 5–300 K

    Energy Technology Data Exchange (ETDEWEB)

    Samoilov, I. S.; Baev, V. P.; Timofeev, A. V., E-mail: timofeevalvl@gmail.com; Amirov, R. Kh.; Kirillin, A. V.; Nikolaev, V. S.; Bedran, Z. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    Dusty plasma structures in glow discharge in helium in the temperature range of 5–300 K are investigated experimentally. We have described the experimental setup that makes it possible to continuously vary the temperature regime. The method for experimental data processing has been described. We have measured interparticle distances in the temperature range of 9–295 K and compared them with the Debye radius. We indicate the ranges of variations in experimental parameters in which plasma–dust structures are formed and various types of their behavior are manifested (rotation, vibrations of structures, formation of vertical linear chains, etc.). The applicability of the Yukawa potential to the description of the structural properties of a dusty plasma in the experimental conditions is discussed.

  14. SEA0400 fails to alter the magnitude of intracellular Ca2+ transients and contractions in Langendorff-perfused guinea pig heart.

    Science.gov (United States)

    Szentandrássy, Norbert; Birinyi, Péter; Szigeti, Gyula; Farkas, Attila; Magyar, János; Tóth, András; Csernoch, László; Varró, András; Nánási, Péter P

    2008-07-01

    SEA0400 is a recently developed inhibitor of the Na+/Ca2+ exchanger (NCX) shown to suppress both forward and reverse mode operation of NCX. Present experiments were designed to study the effect of partial blockade of NCX on Ca handling and contractility in Langendorff-perfused guinea pig hearts loaded with the fluorescent Ca-sensitive dye fura-2. Left ventricular pressure and intracellular calcium concentration ([Ca2+]i) were synchronously recorded before and after cumulative superfusion with 0.3 and 1 muM SEA0400. SEA0400 caused no significant change in the systolic and diastolic values of left ventricular pressure and [Ca2+]i. Accordingly, pulse pressure and amplitude of the [Ca2+]i transient also remained unchanged in the presence of SEA0400. SEA0400 had no influence either on the time required to reach peak values of pressure and [Ca2+)]i or on half relaxation time. On the other hand, both 0.3 and 1 microM SEA0400 significantly increased the decay time constant of [Ca2+]i transients, obtained by fitting its descending limb between 30% and 90% of relaxation, from 127 +/- 7 to 165 +/- 7 and 177 +/- 14 ms, respectively (P hearts, rat hearts responded to SEA0400 treatment with increased [Ca2+]i transients and contractility. These interspecies differences observed in the effect of SEA0400 can be explained by the known differences in calcium handling between the two species.

  15. Electric resistance of nickel and niobium in the temperature range of 300-1300 K

    International Nuclear Information System (INIS)

    Novikov, I.I.; Roshchupkin, V.V.; Mozgovoj, A.G.; Semashko, N.A.

    1982-01-01

    The results of experimental investigation of nickel and niobium electric resistance on the wire samples by the potentiometric method in the temperature range of 300-1300 K are presented. Experimental data processing by the least square method is carried out; approximating equations of temperature dependence of the nickel and niobium electric resistance are prepared

  16. Laser parameters of a Fe : ZnSe crystal in the 85-255-K temperature range

    NARCIS (Netherlands)

    Voronov, AA; Kozlovskii, [No Value; Korostelin, YV; Podmar'kov, YP; Frolov, MP

    The temperature dependence of the efficiency of a laser based on a Fe:ZnSe crystal grown from the vapour phase by the free-growth method is studied in the 85-255-K temperature range. As the temperature was increased, the slope efficiency of the laser with respect to absorbed energy decreased from

  17. Johnson Noise Thermometry in the range 505 K to 933 K

    Science.gov (United States)

    Tew, Weston; Labenski, John; Nam, Sae Woo; Benz, Samuel; Dresselhaus, Paul; Martinis, John

    2006-03-01

    The International Temperature Scale of 1990 (ITS-90) is an artifact-based temperature scale, T90, designed to approximate thermodynamic temperature T. The thermodynamic errors of the ITS-90, characterized as the value of T-T90, only recently have been quantified by primary thermodynamic methods. Johnson Noise Thermometry (JNT) is a primary method which can be applied over wide temperature ranges, and NIST is currently using JNT to determine T-T90 in the range 505 K to 933 K, overlapping both acoustic gas-based and radiation-based thermometry. Advances in digital electronics have now made the computationally intensive processing required for JNT viable using noise voltage correlation in the frequency domain. We have also optimized the design of the 5-wire JNT temperature probes to minimize electromagnetic interference and transmission line effects. Statistical uncertainties under 50 μK/K are achievable using relatively modest bandwidths of ˜100 kHz. The NIST JNT system will provide critical data for T-T90 linking together the highly accurate acoustic gas-based data at lower temperatures with the higher-temperature radiation-based data, forming the basis for a new International Temperature Scale with greatly improved thermodynamic accuracy.

  18. Temperature dependence of the Schottky-barrier heights of n-type semiconductors in the temperature range of 7 to 300 K

    International Nuclear Information System (INIS)

    Chen, T.P.; Lee, T.C.; Fung, S.; Beling, C.D.

    1994-01-01

    In this note we present the results of the temperature dependence of the SBH in Au/n-Si, Ag/n-GaAs, and Au/n-GaAs in the temperature range of 7 to 300 K from our internal photoemission measurements. (orig.)

  19. Phonon Anharmonicity of Germanium in the Temperature Range 80-880 K

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G; Nilsson, G

    1974-06-15

    Phonon frequency shifts and line widths in germanium have been studied in the temperature range 80 - 880 K by means of thermal neutron spectrometry. The results cannot be described in terms of the quasiharmonic approximation in which phonon frequencies are solely volume dependent. Theoretical calculations are found to be more satisfactory for the Raman frequency than for most other modes. A good account of the observed shifts is given by a proposal due to Barron according to which the relative frequency renormalization of a crystal is proportional to the total harmonic vibrational energy. An analysis of the gradients of measured dispersion relations in the principal symmetry directions at 80 K is presented. It is shown that accidental degeneracies may influence the dispersion

  20. Phase diagram of Ti-B-C system in the temperature range of 300-3500 K

    International Nuclear Information System (INIS)

    Gusev, A.I.

    1996-01-01

    Calculation of phase equilibrium in the ternary system Ti-B-C in the areas of the TiC y -TiB 2 and B 4 C y -TiB 2 cross sections as well as partial construction of three-dimensional (spatial)diagram of the Ti-B-C system within the temperature range of 300-3500 K is carried out. The form of the isothermal cross section of the ternary system remains almost unchanged up to 1900 K. The most essential change is related to disordering of the low-temperature ordered phases Ti 2 C, Ti 3 C and Ti 6 C 5 of the titanium carbide at T > 950 K [ru

  1. Development of an experimental variable temperature set-up for a temperature range from 2.2 K to 325 K for cost-effective temperature sensor calibration

    Science.gov (United States)

    Pal, Sandip; Kar, Ranjan; Mandal, Anupam; Das, Ananda; Saha, Subrata

    2017-05-01

    A prototype of a variable temperature insert has been developed in-house as a cryogenic thermometer calibration facility. It was commissioned in fulfilment of the very stringent requirements of the temperature control of the cryogenic system. The calibration facility is designed for calibrating industrial cryogenic thermometers that include a temperature sensor and the wires heat-intercept in the 2.2 K-325 K temperature range. The isothermal section of the calibration block onto which the thermometers are mounted is weakly linked with the temperature control zone mounted with cooling capillary coil and cryogenic heater. The connecting wires of the thermometer are thermally anchored with the support of the temperature insert. The calibration procedure begins once the temperature of the support is stabilized. Homogeneity of the calibration block’s temperature is established both by simulation and by cross-comparison of two calibrated sensors. The absolute uncertainty present in temperature measurement is calculated and found comparable with the measured uncertainty at different temperature points. Measured data is presented in comparison to the standard thermometers at fixed points and it is possible to infer that the absolute accuracy achieved is better than  ±0.5% of the reading in comparison to the fixed point temperature. The design and development of simpler, low cost equipment, and approach to analysis of the calibration results are discussed further in this paper, so that it can be easily devised by other researchers.

  2. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  3. Pyroelectric Properties of Potassium and Rubidium Titanyl-Arsenate Single Crystals in the Temperature Range of 4.2-300 K

    International Nuclear Information System (INIS)

    Shaldin, Yu. V.; Matyjasik, S.; Novikova, N. E.; Tseitlin, M.; Mozhaev, E.; Roth, M.

    2010-01-01

    The temperature dependences of the pyroelectric coefficients of KTiOAsO 4 and RbTiOAsO 4 single crystals grown by flux crystallization have been investigated in the temperature range of 4.2-300 K. With an increase in temperature, superionic conductivity first arises in KTiOAsO4 (at T > 200 K) and then (at T > 270 K) in RbTiOAsO 4 . This conductivity is much higher in the samples polarized at T = 4.2 K. An exponential change in the crystal resistivity along the polar direction is simultaneously observed. The results of measurements in the range of 4.2-200 K indicate larger values of pyroelectric coefficients when compared with potassium and rubidium titanyl-phosphate crystals. A correlation between the pyroelectric coefficients and a change in the lattice constants at isomorphic substitutions of K atoms for Rb and P atoms for As has been revealed within the symmetry approach.

  4. Pyroelectric Properties of Potassium and Rubidium Titanyl-Arsenate Single Crystals in the Temperature Range of 4.2-300 K

    Energy Technology Data Exchange (ETDEWEB)

    Shaldin, Yu. V., E-mail: yuri1999@rambler.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Matyjasik, S. [International Laboratory of Strong Magnetic Fields and Low Temperatures (Poland); Novikova, N. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Tseitlin, M.; Mozhaev, E. [Ariel University Center of Samaria (Israel); Roth, M. [Hebrew University, School of Applied Sciences (Israel)

    2010-11-15

    The temperature dependences of the pyroelectric coefficients of KTiOAsO{sub 4} and RbTiOAsO{sub 4} single crystals grown by flux crystallization have been investigated in the temperature range of 4.2-300 K. With an increase in temperature, superionic conductivity first arises in KTiOAsO4 (at T > 200 K) and then (at T > 270 K) in RbTiOAsO{sub 4}. This conductivity is much higher in the samples polarized at T = 4.2 K. An exponential change in the crystal resistivity along the polar direction is simultaneously observed. The results of measurements in the range of 4.2-200 K indicate larger values of pyroelectric coefficients when compared with potassium and rubidium titanyl-phosphate crystals. A correlation between the pyroelectric coefficients and a change in the lattice constants at isomorphic substitutions of K atoms for Rb and P atoms for As has been revealed within the symmetry approach.

  5. (p, ρ, T) Properties for n-butane in the temperature range from 280 K to 380 K at pressures up to 200 MPa

    International Nuclear Information System (INIS)

    Miyamoto, H.; Uematsu, M.

    2007-01-01

    The (p, ρ, T) properties for n-butane in the compressed liquid phase were measured by means of a metal-bellows variable volumometer in the temperature range from 280 K to 380 K at pressures up to 200 MPa. The mole fraction purity of the n-butane used in the measurements was 0.9997. The expanded uncertainties (k = 2) in temperature, pressure, and density measurements have been estimated to be less than ±3 mK; 1.4 kPa (p ≤ 7 MPa), 0.06% (7 MPa 150 MPa); and 0.09%, respectively. In the region above100 MPa at T = 280 K and T = 440 K, the uncertainty in density measurements increases from 0.09% to 0.13% and 0.22%, respectively. Eight (p, ρ, T) measurements at the same temperatures and pressures as the literature values have been conducted for comparisons. In addition, comparisons of the available equations of state with the present measurements are reported

  6. Calibration of thermometers in the range from 4K to 40K

    International Nuclear Information System (INIS)

    Cruz, M.E. de la; Sereni, Julian; Salva, Horacio.

    1977-06-01

    Carbon and Germanium resistors have been calibrated against a standard in the temperature range from 4K to 40K. From the data, values of temperature are obtained with 0,1% error (std deviation). These calibrations have been also checked against specific heat measurements. (author) [es

  7. Thermal conductivity and electrical resistivity of cadmium arsenide (Cd3As2) in the temperature range 4.2-40K1

    International Nuclear Information System (INIS)

    Bartkowski, K.; Ratalowicz, J.; Zdanowicz, W.

    1986-01-01

    Results on electrical resistivity and thermal conductivity measured in the temperature range 4.2-40 K are presented for single-crystal and polycrystalline samples of Cd 3 As 2 . Hall effect has been studied at temperatures of 4.2, 77, and 300K. The calculated value of the conduction electron concentration was in the range 1.87-1.95 10 24 m -3 . Electrical resistivity of all investigated samples was independent of temperature up to about 10K and increased slowsly at higher temperatures. The thermal conductivity shows a maximum in the region in which the lattice component of thermal conductivity dominates. The strong anistropy of the lattice component determines the anisotropy of the total thermal conductivity. The electronic component of thermal conductivity does not exhibit any anisotropy and shows a maximum at a temperature of about 300 K

  8. Micromechanical properties of C70 single crystals in the temperature range 77-350 K

    International Nuclear Information System (INIS)

    Lubenets, S.V.; Natsik, V.D.; Fomenko, L.S.; Rusakova, A.V.; Natsik, V.D.; Osip'yan, Yu.A.; Orlov, V.I.; Sidorov, N.S.; Izotov, A.N.

    2012-01-01

    Hexagonal single crystals of C 70 up to a size down to 1-2 mm were grown which allowed for the first time to investigate their low-temperature mechanical properties. Morphology, microplasticity anisotropy and the temperature dependence of Vickers microhardness HV (T) of the C 70 crystals in the temperature range 77-350 K involving all known phase transitions have been studied with the aid of optical microscopy and microindentation. The association of the features of HV (T) dependence with orientation phase transformations has been analyzed. It is suggested that anisotropy of microplasticity in the C 70 crystals correlates with the active slip systems.

  9. Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298-670K.

    Science.gov (United States)

    Gauza-Włodarczyk, Marlena; Kubisz, Leszek; Mielcarek, Sławomir; Włodarczyk, Dariusz

    2017-11-01

    The increased interest in fish collagen is a consequence of the risk of exposure to Creutzfeld-Jacob disease (CJD) and the bovine spongiform encephalopathy (BSE), whose occurrence is associated with prions carried by bovine collagen. Collagen is the main biopolymer in living organisms and the main component of the skin and bones. Until the discovery of the BSE, bovine collagen had been widely used. The BSE epidemic increased the interest in new sources of collagen such as fish skin collagen (FSC) and its properties. Although the thermal properties of collagen originating from mammals have been well described, less attention has been paid to the thermal properties of FSC. Denaturation temperature is a particularly important parameter, depending on the collagen origin and hydration level. In the reported experiment, the free water and bound water release processes along with thermal denaturation process were studied by means of the differential scanning calorimetry (DSC). Measurements were carried out using a DSC 7 instrument (Elmer-Perkin), in the temperature range 298-670K. The study material was FSC derived by acidic hydration method. The bovine Achilles tendon (BAT) collagen type I was used as the control material. The thermograms recorded revealed both, exothermic and endothermic peaks. For both materials, the peaks in the temperature range of 330-360K were assigned to the release of free water and bound water. The denaturation temperatures of FSC and BAT collagen were determined as 420K and 493K, respectively. Thermal decomposition process was observed at about 500K for FSC and at about 510K for BAT collagen. These results show that FSC is less resistant to high temperature than BAT collagen. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K.

    Science.gov (United States)

    Kirichek, O; Timms, J D; Kelleher, J F; Down, R B E; Offer, C D; Kabra, S; Zhang, S Y

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  11. The enthalpy of solid scandium in the temperature range 406 - 1812 K

    International Nuclear Information System (INIS)

    Lyapunov, K.M.; Baginskij, A.V.; Stankus, S.V.

    2001-01-01

    Enthalpy of pure scandium was measured on massive calorimeter in the range from 406 to 1812 K by mixing method. The enthalpy of face centered close cubic lattice - body centered cubic lattice transformation is equal to ΔH t 4068 J/mol. Obtained value within the limits of error is compatible with the results given earlier (4009 J/mol). The dependence of the middle specific heat of scandium C p (T) on the temperature was shown in correlation with the results of other works. The results of the conducted experiments reinforce the conclusion made earlier about an absence (or a little) in the decomposition of an anharmonic component of the oscillation specific heat of scandium C p a (T) members proportional to the first or the second degrees of temperature [ru

  12. Reaction OH + OH studied over the 298-834 K temperature and 1-100 bar pressure ranges.

    Science.gov (United States)

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-06-21

    Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37.

  13. Diurnal, seasonal and latitudinal variations of electron temperature measured by the SROSS C2 satellite at 500 km altitude and comparison with the IRI

    Directory of Open Access Journals (Sweden)

    P. K. Bhuyan

    2002-06-01

    Full Text Available The diurnal, seasonal and latitudinal variations of electron temperature Te, measured by the SROSS C2 satellite at equatorial and the low-latitudes during the low solar activity period of 1995–1997 are investigated. The average height of the satellite was ~ 500 km and it covered the latitude belt of –31° to 34° and the longitude range of 40°–100°. Te varies between 700–800 K during night-time (20:00–04:00 LT, rises sharply during sunrise (04:00–06:00 LT to reach a level of ~ 3500 K within a couple of hours and then falls between 07:00–10:00 LT to a daytime average value of ~ 1600 K. A secondary maximum is observed around 16:00–18:00 LT in summer. Latitudinal gradients in Te have been observed during the morning enhancement and daytime hours. Comparison of measured and International Reference Ionosphere (IRI predicted electron temperature reveals that the IRI predicts nighttime Te well within ~ 100 K of observation, but at other local times, the predicted Te is less than that measured in all seasons.Key words. Ionosphere, equatorial ionosphere, plasma temperature, and density

  14. Bilateral Comparison Between NIM and NMC Over the Temperature Range from 83.8058 K to 692.677 K

    Science.gov (United States)

    Sun, Jianping; Ye, Shaochun; Kho, Haoyuan; Zhang, Jintao; Wang, Li

    2015-08-01

    A bilateral comparison of local realization of the International Temperature Scale of 1990 between the National Institute of Metrology (NIM) and National Metrology Centre (NMC) was carried out over the temperature range from 83.8058 K to 692.677 K. It involved six fixed points including the argon triple point, the mercury triple point, the triple point of water, the melting point of gallium, the freezing point of tin, and the freezing point of zinc. In 2009, NMC asked NIM to participate in a bilateral comparison to link the NMC results to the Consultative Committee for Thermometry Key Comparison 3 (CCT-K3) and facilitate the NMC's calibration and measurement capabilities submission. This comparison was agreed by NIM and Asia Pacific Metrology Programme in 2009, and registered in the Key Comparison Database in 2010 as CCT-K3.2. NMC supplied two fused silica sheath standard platinum resistance thermometers (SPRTs) as traveling standards. One of them was used at the Ga, Sn, and Zn fixed points, while the other one was used at the Ar and Hg fixed points. NMC measured them before and after NIM measured them. During the comparison, a criterion for the SPRT was set as the stability at the triple point of water to be less than 0.3 mK. The results for both laboratories are summarized. A proposal for linking the NMC's comparison results to CCT-K3 is presented. The difference between NMC and NIM and the difference between NMC and the CCT-K3 average reference value using NIM as a link are reported with expanded uncertainties at each measured fixed point.

  15. Measurements of (p, ρ, T) properties for isobutane in the temperature range from 280 K to 440 K at pressures up to 200 MPa

    International Nuclear Information System (INIS)

    Miyamoto, H.; Uematsu, M.

    2006-01-01

    Measurements of (p, ρ, T) properties for isobutane in the compressed liquid phase have been obtained by means of a metal-bellows variable volumometer in the temperature range from 280 K to 440 K at pressures up to 200 MPa. The volume-fraction purity of isobutane used was 0.9999. The expanded uncertainties (k = 2) of temperature, pressure, and density measurements have been estimated to be less than 3 mK, 1.5 kPa (p ≤ 7 MPa), 0.06% (7 MPa 150 MPa), and 0.11%, respectively. In region more than 100 MPa at 280 K and 440 K, the uncertainty in density measurements rise up to 0.15% and 0.23%, respectively. The differences of the present density values at the same temperature between two series of measurements, in which the sample fillings are different, are within the maximum deviation of 0.09% in density, which is enough lower than the expanded uncertainty in density. Eight (p, ρ, T) measurements at the same temperatures and pressures as the literature values have been conducted for comparison. In addition, vapour pressures were measured at T = (280, 300) K. Moreover, the comparisons of the available equations of state with the present measurements are reported

  16. Measuring Systems for Thermometer Calibration in Low-Temperature Range

    Science.gov (United States)

    Szmyrka-Grzebyk, A.; Lipiński, L.; Manuszkiewicz, H.; Kowal, A.; Grykałowska, A.; Jancewicz, D.

    2011-12-01

    The national temperature standard for the low-temperature range between 13.8033 K and 273.16 K has been established in Poland at the Institute of Low Temperature and Structure Research (INTiBS). The standard consists of sealed cells for realization of six fixed points of the International Temperature Scale of 1990 (ITS-90) in the low-temperature range, an adiabatic cryostat and Isotech water and mercury triple-point baths, capsule standard resistance thermometers (CSPRT), and AC and DC bridges with standard resistors for thermometers resistance measurements. INTiBS calibrates CSPRTs at the low-temperature fixed points with uncertainties less than 1 mK. In lower temperature range—between 2.5 K and about 25 K — rhodium-iron (RhFe) resistance thermometers are calibrated by comparison with a standard which participated in the EURAMET.T-K1.1 comparison. INTiBS offers a calibration service for industrial platinum resistance thermometers and for digital thermometers between 77 K and 273 K. These types of thermometers may be calibrated at INTiBS also in a higher temperature range up to 550°C. The Laboratory of Temperature Standard at INTiBS acquired an accreditation from the Polish Centre for Accreditation. A management system according to EN ISO/IEC 17025:2005 was established at the Laboratory and presented on EURAMET QSM Forum.

  17. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  18. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    International Nuclear Information System (INIS)

    Karcı, Özgür; Dede, Münir; Oral, Ahmet

    2014-01-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ∼12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system

  19. Research of resonant losses of ultrasonic sound in the deformed single crystals in temperature range 77...300 K

    International Nuclear Information System (INIS)

    Petchenko, A.M.; Petchenko, G.A.

    2007-01-01

    The damped dislocation resonance in preliminary deformed up to 1 % single crystals KBr was investigated. The measurements of a frequency dependence of a dislocation damping decrement of ultrasonic sound were conducted in range of frequencies 7,5...217,5 MHz and temperature range 77...300 K. From the analysis of frequency spectrums the temperature course of a coefficient of phonon viscosity B was determined, which is agreed both with the theory and experimental literary data. The influencing temperature changes of length of a dislocation segment on parameters of a resonant maximum and dynamic drag of dislocations by phonons was revealed and analyzed

  20. Neutron-diffraction study of cubic ErC/sub 0.6/ in the temperature range 1.6--296 K

    International Nuclear Information System (INIS)

    Atoji, M.

    1981-01-01

    Neutron-diffraction measurements have shown that the form of ErC/sub 0.6/ that has a cubic, NaCl-type structure is paramagnetic above 90 K, exhibiting a free Er 3+ moment. Below 90 K, ErC/sub 0.6/ becomes a ferromagnet with a saturation moment of 2.5 Bohr magnetons (only 28% of the maximum free-ion moment), indicating a large crystal-field effect. By measuring the preferential crystallite orientation induced by the applied magnetic field, the direction of the ferromagnetically ordered moment was found to be parallel to the axis. A ferromagnetic, short-range ordering coexists with the ferromagnetic long-range ordering at temperatures down to 1.6 K

  1. Ion temperature in the outer ionosphere - first version of a global empirical model

    Czech Academy of Sciences Publication Activity Database

    Třísková, Ludmila; Truhlík, Vladimír; Šmilauer, Jan; Smirnova, N. F.

    2004-01-01

    Roč. 34, č. 9 (2004), s. 1998-2003 ISSN 0273-1177 R&D Projects: GA ČR GP205/02/P037; GA AV ČR IAA3042201; GA MŠk ME 651 Institutional research plan: CEZ:AV0Z3042911 Keywords : plasma temperatures * topside ionosphere * empirical models Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.548, year: 2004

  2. Study on the KM capacitor base thermometers in the 42-273 K range

    International Nuclear Information System (INIS)

    Luzganov, V.S.; Mats'ko, A.A.

    1988-01-01

    Thermometric characteristics of the KM-5a-HZ0 monolithic capacitors in the 42-273 K temperature range are studied. Capacitors capacitance - temperature relation is considered in details. The data reproducibility after 5, 23, 34, 50, 51 and 57 days is studied, the accuracy of temperature measurements by the given thermometers is determined. Recommendations on selection of cpacitors, suitable for application as thermometer, are given. These capacitors permit temperature measurement in the 42-225 K range with the error of ± 0.5 K, and above 225 K the error is ± 1K. 8 refs.; 1 fig.; 1 tab

  3. Approximation of the thermometric characteristics of n- and p-GaAs thermodiodes in the 4.2-300 K temperature range and p-GaAs resistance thermometers in the 4.2-100 K temperature range

    International Nuclear Information System (INIS)

    Logvinenko, S.P.; Derbysheva, S.L.

    1978-01-01

    The investigation results are reported of various methods for approximating the calibration characteristics of technical resistance thermometers made from p-GaAs and of thermodiodes from n- p-GaAs. The following methods may by used for approximating thermometric characteristics and obtaining calibration tables: method of approximating function describing a physical model (P); method of power polynoms (PP); and the spline method (S). Studies of thermometric characteristics have been achieved in the 4.2-300 K temperature range for thermodiodes, and at 4.2-100 K for thermoresistances. The obtained data show that the use of the S and PP methods for describing monotonous thermometric characteristics of thermodiodes and thermoresistances is equivalent and leads to satisfactory results. Method S affords the best results for describing thermometric characteristics with specific features. The error in approximating thermometric characteristics by method S does not exceed 0.01 K

  4. Extending the temperature range of the HTR

    International Nuclear Information System (INIS)

    Balcomb, J.D.; Wagner, P.

    1975-01-01

    The operating temperature of the high temperature helium-cooled reactor can be increased in a number of ways in order to provide higher temperature nuclear heat for various industrial processes. Modifications are of two types: 1) decrease in the temperature difference between the maximum coated particle fuel temperature and the mean exit gas temperature, and 2) increased maximum coated particle temperature. Gains in the latter category are limited by fission product diffusion into the gas steam and increases greater than 100 0 K are not forseen. Increases in the former category, however, are readily made and a variety of modifications are proposed as follows: incorporation of coated particles in the fuel matrix; use of a more finely-divided fuel coolant hole geometry to increase heat transfer coefficients and reduce conduction temperature differences; large increases in the fuel matrix graphite thermal conductivity (to about 50 W/m 0 K) to reduce conduction temperature differences; and modifications to the core distribution, both radially and axially. By such means the exit gas temperature can be increased to the range of 1200 0 K to 1600 0 K. (author)

  5. Thermal properties of Na2MoO4(s) and Na2Mo2O7(s) by high-temperature Calvet calorimetry in the temperature range 335 K to 760 K

    International Nuclear Information System (INIS)

    Iyer, V.S.; Agarwal, Renu; Roy, K.N.; Venkateswaran, R.S.; Venugopal, V.; Sood, D.D.

    1990-01-01

    Enthalpy increment measurements were made on Na 2 MoO 4 and Na 2 Mo 2 O 7 in the temperature range 335 K to 760 K by the drop method using a high-temperature Calvet calorimeter. The calorimeter was calibrated using an electrical method and synthetic sapphire SRM-720(Al 2 O 3 ). An on-line computer was used for acquiring and processing results from the calorimeter. The enthalpy increments for Na 2 MoO 4 and Na 2 Mo 2 O 7 were least-squares fitted to a polynomial with temperature and are given. The thermal properties of Na 2 MoO 4 and Na 2 Mo 2 O 7 were obtained using the above experimental values. These are the first experimental results on the thermal properties of these compounds. (author)

  6. Reaction CH3 + OH studied over the 294-714 K temperature and 1-100 bar pressure ranges.

    Science.gov (United States)

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-08-30

    Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).

  7. Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T = 15 K to T = 350 K

    International Nuclear Information System (INIS)

    Lang, Brian E.; Boerio-Goates, Juliana; Woodfield, Brian F.

    2006-01-01

    A small-scale adiabatic calorimeter has been constructed as part of a larger project to study the thermodynamics of nanomaterials and to facilitate heat capacity measurements on samples of insufficient quantity to run on our current large-scale adiabatic apparatus. This calorimeter is designed to measure the heat capacity of samples whose volume is less than 0.8 cm 3 over a temperature range of T = 13 K to T = 350 K. Heat capacity results on copper, sapphire, and benzoic acid show the accuracy of the measurements to be better than ±0.4% for temperatures higher than T = 50 K. The reproducibility of these measurements is generally better than ±0.25%

  8. Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15K to 303.15K

    International Nuclear Information System (INIS)

    Tsierkezos, Nikos G.; Molinou, Ioanna E.

    2007-01-01

    Densities (ρ), speeds of sound (u), isentropic compressibilities (k s ), refractive indices (n D ), and surface tensions (σ) of binary mixtures of methyl salicylate (MSL) with 1-pentanol (PEN) have been measured over the entire composition range at the temperatures of 278.15K, 288.15K, and 303.15K. The excess molar volumes (V E ), excess surface tensions (σ E ), deviations in speed of sound (Δu), deviations in isentropic compressibility (Δk s ), and deviations in molar refraction (ΔR) have been calculated. The excess thermodynamic properties V E , σ E , Δu, Δk s , and ΔR were fitted to the Redlich-Kister polynomial equation and the A k coefficients as well as the standard deviations (d) between the calculated and experimental values have been derived. The surface tension (σ) values have been further used for the calculation of the surface entropy (S S ) and the surface enthalpy (H S ) per unit surface area. The lyophobicity (β) and the surface mole fraction (x 2 S ) of the surfactant component PEN have been also derived using the extended Langmuir model. The results provide information on the molecular interactions between the unlike molecules that take place at the surface and the bulk

  9. Infrared normal spectral emissivity of Ti-6Al-4V alloy in the 500-1150 K temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Risueno, E. [CIC Energigune, Parque Tecnologico, Albert Einstein 48, 01510 Minano, Alava, Spain. (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer First heating cycle acts as a annealing, relieving the surface stresses. Black-Right-Pointing-Pointer Stress relieving occurs mainly above 900 K. Black-Right-Pointing-Pointer Emissivity decreases between 0.35 and 0.10 in the 2.5-22 {mu}m spectral range. Black-Right-Pointing-Pointer Emissivity increases linearly with temperature, with the same slope for {lambda} > 10 {mu}m. Black-Right-Pointing-Pointer Good agreement between resistivity and emissivity by means of Hagen-Rubens relation. - Abstract: Thermal radiative emissivity is related to the optical and electrical properties of materials, and it is a key parameter required in a large number of industrial applications. In the case of Ti-6Al-4V, spectral emissivity experimental data are not available for the range of temperatures between 400 and 1200 K, where almost all industrial applications take place. The experimental results in this paper show that the normal spectral emissivity decreases with wavelength from a value of about 0.35 at 2.5 {mu}m to about 0.10 at 22 {mu}m. At the same time, the spectral emissivity shows a slight linear increase with temperature between 500 and 1150 K, with approximately the same slope for all wavelengths. Additionally, the influence of the samples thermal history on the emissivity is studied. A strong decrease in the emissivity values appears due to the effect of surface stress relaxation processes. This means that the radiative properties of this alloy strongly depend on the surface stress state. A thermal treatment to relieve the surface stress should be carried out to achieve a steady state of the radiative properties. In addition, a good qualitative agreement is found between the temperature dependence of the electrical resistivity obtained using conventional measurements and the one obtained from the emissivity experimental results by using the Hagen-Rubens equation.

  10. Characterization of advanced piezoelectric materials in the wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Burianova, L.; Kopal, A.; Nosek, J

    2003-05-25

    We report about methods and results of our measurements of piezoelectric, dielectric and elastic properties of piezoelectric materials like crystals, ceramics, composites, polymers and thin layer composites. Among the methods, used in our laboratories are: the resonance method working in the temperature range 208-358 K, hydrostatic methods, both static and dynamic in the range 273-333 K, laser interferometric methods, using single and double-beam interferometer, working at room temperature, single and double-beam micro-interferometers, working inside of optical cryostat in the range 150-330 K, and pulse echo method for measurements of elastic coefficients, using ultrasonic set, working at room temperature. In our earlier papers we reported about some of our results of piezoelectric measurements of PZT ceramics using resonance method and laser interferometric method. The results of both methods were in good agreement. Now, the measurements are realized on 0-3 ceramic-polymer composites and thin layer composites. It is well known, that both intrinsic (material) and extrinsic (domain structure) contributions to properties of ferroelectric samples have characteristic, sometimes rather strong, temperature dependence. Therefore, any extension of temperature range of the above mentioned methods is welcomed.

  11. Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15K to 303.15K

    Energy Technology Data Exchange (ETDEWEB)

    Tsierkezos, Nikos G. [Institut fuer Chemie, Humboldt-Universitaet zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin (Germany)]. E-mail: tsierkezos@chemie.hu-berlin.de; Molinou, Ioanna E. [Physical Chemistry Laboratory, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771 (Greece)]. E-mail: imolinou@chem.uoa.gr

    2007-08-15

    Densities ({rho}), speeds of sound (u), isentropic compressibilities (k{sub s}), refractive indices (n{sub D}), and surface tensions ({sigma}) of binary mixtures of methyl salicylate (MSL) with 1-pentanol (PEN) have been measured over the entire composition range at the temperatures of 278.15K, 288.15K, and 303.15K. The excess molar volumes (V{sup E}), excess surface tensions ({sigma}{sup E}), deviations in speed of sound ({delta}u), deviations in isentropic compressibility ({delta}k{sub s}), and deviations in molar refraction ({delta}R) have been calculated. The excess thermodynamic properties V{sup E}, {sigma}{sup E}, {delta}u, {delta}k{sub s}, and {delta}R were fitted to the Redlich-Kister polynomial equation and the A{sub k} coefficients as well as the standard deviations (d) between the calculated and experimental values have been derived. The surface tension ({sigma}) values have been further used for the calculation of the surface entropy (S{sup S}) and the surface enthalpy (H{sup S}) per unit surface area. The lyophobicity ({beta}) and the surface mole fraction (x{sub 2}{sup S}) of the surfactant component PEN have been also derived using the extended Langmuir model. The results provide information on the molecular interactions between the unlike molecules that take place at the surface and the bulk.

  12. The effect of temperature on pulsed positive streamer discharges in air over the range 292 K–1438 K

    Science.gov (United States)

    Ono, Ryo; Ishikawa, Yuta

    2018-05-01

    The effect of temperature on pulsed positive streamer discharges in air is measured by comparing atmospheric-pressure, high-temperature discharges with low-pressure, room-temperature discharges at the same air densities n and discharge voltages. Both discharges have the same reduced electric field E/n, so the differences between the two discharges only depend on the temperature, which is varied from 292 K to 1438 K. Temperature affects the discharge pulse energy most significantly; at 1438 K, the energy of an atmospheric-pressure discharge pulse is approximately 30 times larger than that of the corresponding 20.5 kPa, room-temperature discharge. Temperature also affects the shapes of the streamers when K, but no significant effect is observed for K. There is also no significant temperature effect on the spatially integrated intensity of N2(C–B) emission. However, temperature strongly affects the ratio of the integrated emission intensity to the discharge energy. No effect of the temperature is observed on the propagation velocity of the primary streamer or on the length of the secondary streamer.

  13. Investigation of the accumulation kinetics of free radicals under irradiation of some polymethylmethacrylate co-polymers in the 270-400 K temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarov, S P; Poljakov, A I; Rjabikin, Y A; Philippov, N L; Bitenbaev, M I [AN Kazakhskoj SSR, Alma-Ata. Inst. Yadernoj Fiziki

    1982-02-01

    In the present work, anomalous shapes of free radical (FR) accumulation curves found under PMMA copolymers irradiation in the T >= 300/sup 0/ K temperature range have been studied. With the irradiation dose increase the FR concentration in PMMA increases up to a definite maximal value and then starts falling. It is stated that appearance of slopes on the FR accumulation curves is not associated with possible changes of the FR relaxation characteristics. The second order of the FR decay reactions is estimated with the activation energy E = 8.3 kcal/mol. It is suggested that the FR decay processes in the irradiation temperature range T >= 300/sup 0/ K are due to the fast decay of macrochains according to the 'unzipping' mechanism.

  14. Investigation of the accumulation kinetics of free radicals under irradiation of some polymethylmethacrylate co-polymers in the 270-400 K temperature range

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Poljakov, A.I.; Rjabikin, Y.A.; Philippov, N.L.; Bitenbaev, M.I.

    1982-01-01

    In the present work, anomalous shapes of free radical (FR) accumulation curves found under PMMA copolymers irradiation in the T >= 300 0 K temperature range have been studied. With the irradiation dose increase the FR concentration in PMMA increases up to a definite maximal value and then starts falling. It is stated that appearance of slopes on the FR accumulation curves is not associated with possible changes of the FR relaxation characteristics. The second order of the FR decay reactions is estimated with the activation energy E = 8.3 kcal/mol. It is suggested that the FR decay processes in the irradiation temperature range T >= 300 0 K are due to the fast decay of macrochains according to the 'unzipping' mechanism. (author)

  15. Studies of Mn0.5Cr0.5Fe2O4 ferrite by neutron diffraction at different temperatures in the range 768K ≥ T ≥ 13K

    International Nuclear Information System (INIS)

    Zakaria, A.K.M.; Ahmed, F.U.; Azad, A.K.; Yunus, S.M.; Asgar, M.A.; Paranjpe, S.K.; Das, A.

    2002-01-01

    Neutron diffraction studies of a polycrystalline manganese-chromium- ferrite with composition Mn 0.5 Cr 0.5 Fe 2 O 4 have been performed at a number of temperatures in the range 768K ≥ T ≥ 13K. The cation distributions, oxygen position parameter (u) and lattice constant (a o ) have been determined from the analysis of the higher angle neutron diffraction data. The temperature response of the lattice constant has also been investigated and a slight anomalous expansion has been found around the magnetic transition temperature. Sublattice as well as net ferrimagnetic moments of the specimen have been found out from the analysis of the neutron diffraction data at different temperatures. A randomly canted ordering of spins has been observed in the B sublattice, while the A sublattice moments appear to exhibit collinear Neel type ordering at all temperatures. (author)

  16. Infrared normal spectral emissivity of Ti–6Al–4V alloy in the 500–1150 K temperature range

    International Nuclear Information System (INIS)

    González-Fernández, L.; Risueño, E.; Pérez-Sáez, R.B.; Tello, M.J.

    2012-01-01

    Highlights: ► First heating cycle acts as a annealing, relieving the surface stresses. ► Stress relieving occurs mainly above 900 K. ► Emissivity decreases between 0.35 and 0.10 in the 2.5–22 μm spectral range. ► Emissivity increases linearly with temperature, with the same slope for λ > 10 μm. ► Good agreement between resistivity and emissivity by means of Hagen–Rubens relation. - Abstract: Thermal radiative emissivity is related to the optical and electrical properties of materials, and it is a key parameter required in a large number of industrial applications. In the case of Ti–6Al–4V, spectral emissivity experimental data are not available for the range of temperatures between 400 and 1200 K, where almost all industrial applications take place. The experimental results in this paper show that the normal spectral emissivity decreases with wavelength from a value of about 0.35 at 2.5 μm to about 0.10 at 22 μm. At the same time, the spectral emissivity shows a slight linear increase with temperature between 500 and 1150 K, with approximately the same slope for all wavelengths. Additionally, the influence of the samples thermal history on the emissivity is studied. A strong decrease in the emissivity values appears due to the effect of surface stress relaxation processes. This means that the radiative properties of this alloy strongly depend on the surface stress state. A thermal treatment to relieve the surface stress should be carried out to achieve a steady state of the radiative properties. In addition, a good qualitative agreement is found between the temperature dependence of the electrical resistivity obtained using conventional measurements and the one obtained from the emissivity experimental results by using the Hagen–Rubens equation.

  17. Note: A wide temperature range MOKE system with annealing capability.

    Science.gov (United States)

    Chahil, Narpinder Singh; Mankey, G J

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  18. Solvent Effects in the Electroreduction of Ferrocene at Pt in the Temperature Range 200-300 K

    Science.gov (United States)

    1991-03-20

    been obtained at iow temperatures downto 92 K ata P ulramcroeectode(dimete, 2 pm inthree alcohol solvents, namely, methanol, ethanol , and n-propanol. In...In this aree.-doutee-eace&4 Kinetic parameters for the electrooxidation of ferrocene have been obtained at low temperatures down to 193 ’K at a Pt...with solvent nature. tnsvetsiky of~aitm Davis, CA 95616 Kinetic data obtained in mteehanol, ethanol . and I1- propanol as a function of temperature

  19. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    Science.gov (United States)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  20. Magnetoresistance of samarium in the 4.2-300 K range

    International Nuclear Information System (INIS)

    Trubitsyn, V.A.; Shalashov, V.F.

    1980-01-01

    Electric conductivity, transverse and longitudinal magnetoresistance of polycrystalline samarium with the purity of 99.9% in the 4.2-300 K temperature range and in magnetic fields up to 50 ke, are measured. The constituent of specific electric conductivity caused by spin disorder is 30.7 μOhmxcm, m*/m=2.6, the exchange parameter is G=3.1 eVxA 3 . Both transverse and longitudinal magnetoresistance are positive at 4.2 K; and the increase of temperature reveals a number of anomalies, evidently conditioned by the alteration of samarium magnetic structure

  1. The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K

    International Nuclear Information System (INIS)

    Thomas, Daniel; Zeilinger, Michael; Gruner, Daniel; Hüttl, Regina; Seidel, Jürgen; Wolter, Anja U.B.; Fässler, Thomas F.; Mertens, Florian

    2015-01-01

    Highlights: • High quality experimental heat capacities of the new lithium rich silicides Li 17 Si 4 and Li 16.42 Si 4 are reported. • Two different calorimeters have been used to cover the broad temperature range from (2 to 873) K. • Samples were prepared and characterized (XRD) by the original authors who firstly described these new silicide phases in 2013. • Supply of polynomial heat capacity functions for four temperature intervals. • Calculation of standard entropies and entropies of formation of the lithium silicides. - Abstract: This work presents the heat capacities and standard entropies of the recently described lithium rich silicide phases Li 17 Si 4 and Li 16.42 Si 4 as a function of temperature in the range from (2 to 873) K. The measurements were carried out using two different calorimeters. The heat capacities were determined in the range from T = (2 to 300) K by a relaxation technique using a Physical Properties Measurement System (PPMS) from Quantum Design, and in the range from T = (283 to 873) K by means of a Sensys DSC from Setaram applying the C p -by-step method. The experimental data are given with an accuracy of (1 to 2)% above T = 20 K and the error increases up to 7% below T = 20 K. The results of the measurements at low temperatures permit the calculation of additional thermodynamic parameters such as the standard entropy as well as the temperature coefficients of electronic and lattice contributions to the heat capacity. Additionally, differential scanning calorimetric (DSC) measurements were carried out to verify the phase transition temperatures of the studied lithium silicide phases. The results represent a significant contribution to the data basis for thermodynamic calculations (e.g. CALPHAD) and to the understanding of the phase equilibria in the (Li + Si) system, especially in the lithium rich region

  2. Densities and volume properties of (water + tert-butanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.

    2011-01-01

    The densities of {water (1) + tert-butanol (2)} binary mixture were measured over the temperature range (274.15 to 348.15) K at atmospheric pressure using 'Anton Paar' digital vibrating-tube densimeter. Density measurements were carried out over the whole concentration range at (308.15 to 348.15) K. The following volume parameters were calculated: excess molar volumes and thermal isobaric expansivities of the mixture, partial molar volumes and partial molar thermal isobaric expansivities of the components. Concentration dependences of excess molar volumes were fitted with Redlich-Kister equation. The results of partial molar volume calculations using four equations were compared. It was established that for low alcohol concentrations at T ≤ 208 K the inflection points at x 2 ∼ 0.02 were observed at concentration dependences of specific volume. The concentration dependences of partial molar volumes of both water and tert-butanol had extremes at low alcohol content. The temperature dependence of partial molar volumes of water had some inversion at x 2 ∼ 0.65. The temperature dependence of partial molar volumes of tert-butanol at infinite dilution had minimum at ∼288 K. It was discovered that concentration dependences of thermal isobaric expansivities of the mixture at small alcohol content and low temperatures passed through minimum.

  3. Attachment to the REh-1301 spectrometer for study on substances in the temperature range 120-350 K at pressure 1-1O4 atm

    International Nuclear Information System (INIS)

    Filippov, A.I.

    1979-01-01

    A design of an attachment for an electron paramagnetic resonance spectrometer is described, which allows investigations of substances over the 120-350 K temperature range at the pressures of 1 to 10 4 atm. To create a required pressure the high-pressure bomb is screwed by means of a special nut into the low-pressure system. The high-pressure vessel is made of a single piece of beryllium bronze. The temperature is measured with the help of a thermocouple, and the pressure - by a manganine manometer. Temperature isolation of the high-thermal insulation of the high-pressure bomb make it possible to adjust the temperature with an accuracy of +-1 K or better

  4. Emanation-thermal characteristics of Ba-salts of some aromatic acids in the temperature range between 298 and 373 K

    Energy Technology Data Exchange (ETDEWEB)

    Balek, V; Prachar, M [Ustav Jaderneho Vyzkumu, Rez (Czechoslovakia); Kroupa, J [Vyzkumny Ustav Syntetickych Pryskyric a Laku, Pardubice (Czechoslovakia)

    1977-01-01

    The paper presents the emanation-thermal characteristics of Ba salts of some monocarboxylic acids (phtalic, isophtalic and terephtalic) and dicarboxylic acids (benzoic, salicylic, 1,4-aminobenzoic, 1,2-Cl-benzoic and 1,2-I-benzoic). It is shown that the emanation thermal characteristics measured in the temperature range between 298 and 373 K are suitable for estimating diffusion properties of studied organic solids. An apparatus for determining emanation-thermal characteristics is proposed.

  5. Effect of nanostructure on thermoelectric properties of La0.7Sr0.3MnO3 in 300–600 K temperature range

    Science.gov (United States)

    Singh, Saurabh; Srivastav, Simant Kumar; Patel, Ashutosh; Chatterjee, Ratnamala; Pandey, Sudhir K.

    2018-05-01

    In oxide materials, nanostructuring effect has been found a very promising approach for the enhancement of figure-of-merit, ZT. In the present work, we have synthesized La0.7Sr0.3MnO3 (LSMO) compound using sol-gel method and samples of crystallite size of ∼20, ∼41, and ∼49 nm were obtained by giving different heat treatment. Seebeck coefficient (α), electrical resistivity (ρ), and thermal conductivity (κ) measurements were carried out in 300–600 K temperature range. The systematic change in the values of α from ∼‑19 μV/K to ∼‑24 μV/K and drastic reduction in the values of κ from ∼0.88 W/mK to ∼0.23 W/mK are observed as crystallite size is reduced from 49 nm to 20 nm at ∼600 K. Also, fall in the values of ρ in the paramagnetic (PM) insulator phase (400–600 K) are effectively responsible for the increasing trend in the values of ZT at high temperature. For the crystallite size of 41 nm, the value of ZT at 600 K was found to be ∼0.017.

  6. Absolute rate constants for the reaction of O(3P) atoms with ethylene, propylene, and propylene-d6 over the temperature range 258--861 K

    International Nuclear Information System (INIS)

    Perry, R.A.

    1984-01-01

    Absolute rate constants for the reaction of O( 3 P) with ethylene, propylene, and propylene-d6 were determined over the temperature range 258--861 K using a laser photolysis-chemiluminescence technique. The following empirical expressions are the best fits to the data: k/sub ethylene/ = 2.12 x 10 -13 T -63 e -1370 /sup ///sup R//sup T/, k/sub propylene/ = 3.40 x 10 -19 T/sup 2.56/e/sup 1130/RT/, and k/sub propylene-d/6 = 3.40 x 10 -19 T/sup 2.53/ e/sup 1210/R/T cm 3 molecule -1 s -1 . A simple transition state theory model is shown to provide a reasonable explanation for non-Arrhenius temperature behavior

  7. A wide temperature range irradiation cryostat for reasearch on solid state targets

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Scott; Dutz, Hartmut; Goertz, Stefan; Runkel, Stefan; Voge, Thomas [Physikalisches Institut, Universitaet Bonn (Germany)

    2012-07-01

    To qualitatively improve the data obtained in asymmetry measurements of scattering experiments the figure of merit (FOM) plays a major role and can reduce the data acquisition time when a certain precision in the measurement is needed. One of the defining factors for the improvement of the polarised experiment lies in the target choice and preparation, in particular the method employed to introduce the paramagnetic defects for the use of dynamic nuclear polarisation (DNP). To this end the Polarized Target Group in Bonn has developed a wide range temperature cryostat for the irradiation of potential target materials in which materials can be irradiated to varying doses at specified temperatures. The stable irradiation temperature of the materials can be controlled to within {+-}1 K over a range of 90 KK.

  8. Thermodynamic properties of pentaphenylantimony Ph5Sb over the range from T → 0 K to 400 K

    International Nuclear Information System (INIS)

    Smirnova, N.N.; Letyanina, I.A.; Larina, V.N.; Markin, A.V.; Sharutin, V.V.; Senchurin, V.S.

    2009-01-01

    In the present research, the temperature dependence of the heat capacity C p,m 0 =f(T) of pentaphenylantimony Ph 5 Sb has been measured between T = (6 and 350) K in the precision adiabatic vacuum calorimeter and from T = (327 to 415) K in the differential scanning calorimeter and reported for the first time. The melting of the sample has been observed within the above temperature range. The melting was accompanied by partial compound decomposition. The experimental results have been used to calculate the standard (p 0 = 0.1 MPa) thermodynamic functions C p,m 0 /R, Δ 0 T H m 0 /RT, Δ 0 T S m 0 /R, and Φ m 0 /R=Δ 0 T S m 0 /R-Δ 0 T H m 0 /RT (where R is the universal gas constant) of crystalline Ph 5 Sb over the range from T → 0 K to 400 K. The energy of combustion of the compound under study has been determined in the isothermal combustion calorimeter with a stationary bomb. The standard thermodynamic functions of crystalline Ph 5 Sb formation at T = 298.15 K have been calculated

  9. Selection of astrophysical/astronomical/solar sites at the Argentina East Andes range taking into account atmospheric components

    Czech Academy of Sciences Publication Activity Database

    Piacentini, R.D.; García, B.; Micheletti, M.I.; Salum, G.; Freire, M.; Maya, J.; Mancilla, A.; Crinó, E.; Mandát, Dušan; Pech, M.; Bulik, T.

    2016-01-01

    Roč. 57, č. 12 (2016), s. 2559-2574 ISSN 0273-1177 R&D Projects: GA MŠk(CZ) 7AMB14AR005; GA MŠk LE13012; GA MŠk LG14019; GA MŠk LM2015046 Institutional support: RVO:68378271 Keywords : astrophysical * astronomical * solar: sites * Argentina -Andes: atmospheric components Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.401, year: 2016

  10. Spin trapping of radicals formed in gamma-irradiated methanol: effect of the irradiation temperature from 77K to 300K

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1976-01-01

    The neutral radicals formed in gamma-irradiated methanol were studied by spin trapping with phenyl-t-butylnitrone (PBN) in an attempt to probe the primary neutral radicals formed. In the temperature range from approximately 157 K to 300 K both CH 2 OH and CH 3 O spin adducts are observed and their limiting ratio at high PBN concentrations is CH 2 OH/CH 3 O=1.5 over this temperature range. Below approximately 157 K this ratio increases exponentially with decreasing temperature with an apparent activation energy of 5.8 kJ/mole (1.4 kcal/mole); this is consistent with the finding that only CH 2 OH radicals are formed by gamma radiolysis at 77 K. Several possible models for the primary neutral radicals formed in gamma-irradiated methanol and their subsequent reactions as a function of irradiation temperature are discussed. It is suggested that the primary radical formation mechanisms are similar in the gas and liquid phases and become temperature dependent when molecular motion is arrested in the solid. (Auth.)

  11. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 - 1400 K

    Science.gov (United States)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  12. Self-diffusion and molecular association of acetylsalicylic acid and methyl salicylate in methanol- d4 in the temperature range 278-318 K

    Science.gov (United States)

    Golubev, V. A.; Kumeev, R. S.; Gurina, D. L.; Nikiforov, M. Yu.

    2017-05-01

    The effect of concentration on the self-diffusion coefficients of acetylsalicylic acid and methyl salicylate in methanol- d4 is investigated in the temperature range of 278-318 K using NMR. It is found that the self-diffusion coefficients increase along with temperature and fall as concentration rises. Within the limit of an infinitely dilute solution, the effective radii of solute molecules, calculated using the Stokes-Einstein equation shrink as the temperature grows. It is shown that the observed reduction of effective radii is associated with an increase in the fraction of solute monomers as the temperature rises. The physicochemical parameters of heteroassociation of acetylsalicylic acid and methyl salicylate with methanol are determined.

  13. Electrical conductivity of molten SnCl2 at temperature as high as 1314 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2015-01-01

    The electrical conductivity of molten SnCl 2 was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  14. The effective temperatures and colours of G and K stars

    International Nuclear Information System (INIS)

    Bell, R.A.; Gustafsson, B.

    1989-01-01

    Temperature scales are found for G and K dwarf and giant stars, using new tables of synthetic infrared colours as well as the infrared flux ratio method. The temperatures of 95 individual stars are given. The colours are presented for grids of flux constant, line blanketed models. One grid has been published previously, as have some colours for the visible region of the spectrum. The models of this grid are in the range 4000 K eff < 6000 K, 0.75 < log g < 3.00, - 3.0 < [A/H] < 0.0. A grid of dwarf models, with the same temperature and abundance range but with 3.75 < log g < 4.5 is also used. The colours are computed from two series of overlapping synthetic spectra, which have been calculated with a resolution of 0.1 A between 3000 and 12 000 A and 1.0 A between 0.9 and 6.0 μm. (author)

  15. Measurement of the specific heat of small vanadium particles in the normal- and superconducting state in the temperature range of 1.5-12 K

    International Nuclear Information System (INIS)

    Vergara Garcia, O.

    1982-01-01

    The specific heat of small crystalline vanadium particles in form of polyeders with diameters between 2.9 and 13.2 mm was measured in the temperature range of 1.5-12 K. Quantum effects are interpreted in the frame of theoretical models. (BEF)

  16. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    Science.gov (United States)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  17. Thermodynamic properties of molybdenum borides at temperatures above 300 K

    International Nuclear Information System (INIS)

    Bolgar, A.S.; Blinder, A.V.; Serbova, M.I.

    1990-01-01

    Enthalpy of Mo 2 B, MoB, Mo 2 B 5 borides within the range of temperatures above 300 K has been experimentally studied. Parameters of temperature dependences of enthalpy, heat capacity, entropy and the reduced Gibbs energy of the studied substances are calculated within a wide range. It is stated that high-temperature heat capacity of the studied borides can be presented as a sum of the electron component, a harmonic part of the lattice component and a contribution caused by anharmonic oscillations of lattice atoms. Values of coefficients of isothermal compressibility of Mo 2 , MoB, Mo 2 B 5 within the high temperature range are estimated

  18. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I.; Lambri, O.A.; Bozzano, P.B.; Garcia, J.A.; Celauro, C.A.

    2008-01-01

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement

  19. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Lambri, O.A. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario, Member of the CONICET' s Research Staff (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Bozzano, P.B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avenida General Paz 1499, 1650 San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Pais Vasco (Spain); Celauro, C.A. [Reactor Nuclear RA-4, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Riobamba y Berruti, 2000 Rosario (Argentina)

    2008-10-15

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement.

  20. Wide temperature range (T = 295 K and 770-1305 K) study of the kinetics of the reactions HCO + NO and HCO + NO2 using frequency modulation spectroscopy.

    Science.gov (United States)

    Dammeier, J; Colberg, M; Friedrichs, G

    2007-08-21

    The rate constants for , HCO + NO --> HNO + CO, and , HCO + NO(2)--> products, have been measured at temperatures between 770 K modulation (FM) absorption spectroscopy. Kinetic simulations based on a comprehensive reaction mechanism showed that the rate constants for the title reactions could be sensitively extracted from the measured HCO profiles. The determined high temperature rate constants are k(1)(769-1307 K) = (7.1 +/- 2.7) x 10(12) cm(3) mol(-1) s(-1) and k(2)(804-1186 K) = (3.3 +/- 1.8) x 10(13) cm(3) mol(-1) s(-1). The room temperature values were found to be in very good agreement with existing literature data and show that both reactions are essentially temperature independent. The weak temperature dependence of can be explained by the interplay of a dominating direct abstraction pathway and a complex-forming mechanism. Both pathways yield the products HNO + CO. In contrast to , no evidence for a significant contribution of a direct high temperature abstraction channel was found for . Here, the observed temperature independent overall rate constant can be described by a complex-forming mechanism with several product channels. Detailed information on the strongly temperature dependent channel branching ratios is provided. Moreover, the high temperature rate constant of , OH + (CHO)(2), has been determined to be k(7) approximately 1.1 x 10(13) cm(3) mol(-1) s(-1).

  1. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  2. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  3. Measurement and modeling of density and viscosity of n-octanol-kerosene-phosphoric acid solutions in a temperature range 293.15-333.15 K

    Science.gov (United States)

    Ye, Changwen; Pei, Xiangjun; Liu, J. C.

    2016-12-01

    Densities and viscosities have been measured for the n-octanol + aviation kerosene (AK) + phosphoric acid (H3PO4) system with the mass fraction of H3PO4 in the range from w = 0 to 0.26 and in the temperature of 293.15-333.15 K. According to the experimental data, the measured viscosities were found well correlated with the temperature and mass fraction of H3PO4, which were fitted to regression equations. The result shows that the dilution effect of AK is obvious under the same temperature and mass fraction of H3PO4.

  4. An automated thermal relaxation calorimeter for operation at low temperature (0.5KK)

    International Nuclear Information System (INIS)

    Banerjee, S.; Prins, M.W.J.; Rajeev, K.P.; Raychaudhuri, A.K.

    1992-01-01

    An automated calorimeter for measurement of specific heat in the temperature range 10K>T>0.5K. It uses sample of moderate size (100-1000 mg), has a moderate precision and accuracy (2%-5%) is easy to operate and the measurements can be done quickly with 3 He economy is described. The accuracy of this calorimeter was checked by measurement of specific heat of copper and that of aluminium near its superconducting transition temperature. (author). 12 refs., 11 figs

  5. Electrical conductivity of molten SnCl{sub 2} at temperature as high as 1314 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Ural Branch of RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten SnCl{sub 2} was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  6. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K

    Science.gov (United States)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  7. Rate constant and mechanism of the reaction Cl + CFCl₂H → CFCl₂ + HCl over the temperature range 298-670 K in N₂ or N₂/O₂ diluent.

    Science.gov (United States)

    Kaiser, E W; Jawad, Khadija M

    2014-05-08

    The rate constant of the reaction Cl + CFCl2H (k1) has been measured relative to the established rate constant for the reaction Cl + CH4 (k2) at 760 Torr. The measurements were carried out in Pyrex reactors using a mixture of CFCl2H, CH4, and Cl2 in either N2 or N2/O2 diluent. Reactants and products were quantified by GC/FID analysis. Cl atoms were generated by irradiation of the mixture with 360 nm light to dissociate the Cl2 for temperatures up to ~550 K. At higher temperature, the Cl2 dissociated thermally, and no irradiation was used. Over the temperature range 298-670 K, k1 is consistently a factor of ~5 smaller than that of k2 with a nearly identical temperature dependence. The optimum non-Arrhenius rate constant is represented by the expression k1 = 1.14 × 10(-22) T(3.49) e(-241/T) cm(3) molecule(-1) s(-1) with an estimated uncertainty of ±15% including uncertainty in the reference reaction. CFCl3 formed from the reaction CFCl2 + Cl2 (k3) is the sole product in N2 diluent. In ~20% O2 at 298 K, the CFCl3 product is suppressed. The rate constant of reaction 3 was measured relative to that of reaction 4 [CFCl2 + O2 (k4)] giving the result k3/k4 = 0.0031 ± 0.0005 at 298 K. An earlier experiment by others observed C(O)FCl to be the major product of reaction channel 4 [formed via the sequence, CFCl2(O2) → CFCl2O → C(O)FCl + Cl]. Our current experiments verified that there is a Cl atom chain reaction in the presence of O2 as required by this mechanism.

  8. Investigation of electrophysical properties of allotropic modifications of carbon in the range of temperatures 140-400 K

    Science.gov (United States)

    Goshev, A. A.; Eseev, M. K.; Volkov, A. S.; Lyah, N. L.

    2017-09-01

    The paper presents the results of the investigation of allotropic modifications of carbon (coal, graphite, fullerenes, CNTs. Dependences of conductivity on the field frequency in the temperature range 140-400 K are presented. The characteristic features associated with the structure and types of hybridization are revealed. Calculation of the activation energy of carriers was performed. As well article presents experimental study of electrical properties of polymeric composites, reinforced different types of allotropic modifications of carbon (CNTs, graphite, fullerenes, coal) in alternating electrical field in frequency band from 0.01 Hz to 10 MHz. The threshold of percolation of polymer composites with various types of additives and their influence for conduction properties was estimated.

  9. Electrical conductivity of molten ZnCl2 at temperature as high as 1421 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2015-01-01

    The electrical conductivity of molten ZnCl 2 was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  10. Lattice Parameter of Polycrystalline Diamond in the Low-Temperature Range

    International Nuclear Information System (INIS)

    Paszkowicz, W.; Piszora, P.; Lasocha, W.; Margiolaki, I.; Brunelli, M.; Fitch, A.

    2010-01-01

    The lattice parameter for polycrystalline diamond is determined as a function of temperature in the 4-300 K temperature range. In the range studied, the lattice parameter, expressed in angstrom units, of the studied sample increases according to the equation a = 3.566810(12) + 6.37(41) x 10 -14 T 4 (approximately, from 3.5668 to 3.5673 A). This increase is larger than that earlier reported for pure single crystals. The observed dependence and the resulting thermal expansion coefficient are discussed on the basis of literature data reported for diamond single crystals and polycrystals. (authors)

  11. Electrical conductivity of molten CdCl2 at temperatures as high as 1474 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2016-01-01

    The electrical conductivity of molten CdCl 2 was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  12. A high sensitivity SQUID-method for the measurement of magnetic susceptibility of small samples in the temperature range 1.5 K-40 K and application on small palladium particles

    International Nuclear Information System (INIS)

    Tu Nguyen Quang.

    1979-01-01

    In this paper a method is developed for magnetic susceptibility measurements which is superior to the common methods. The method is based on the SQUID-principle (Superconducting Quantum Interference Device) using the tunnel effect of a superconducting point contact and magnetic flux quantization for measuring electric and magnetic quantities. Due to this refined method susceptibility changes of very small palladium particles could be detected in the temperature range 1.5 K-40 K with respect to the bulk. In addition susceptibility differences of particle distributions with different means diameters (81 Angstroem and 65 Angstroem) have been measured for the first time. A quantitative comparison of the measurements with theoretical results shows satisfactory agreement. (orig./WBU) [de

  13. High pressure phase equilibrium of ternary and multicomponent alkane mixtures in the temperature range from (283–473) K

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Liu, Yiqun; Wibowo, Ahmad A.

    2017-01-01

    /n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane as model reservoir fluids and measured their phase equilibrium in the temperature range from (283–473) K by using a variable volume cell with full visibility. Their phase envelopes and liquid volume fractions below the saturation pressure have been measured. Four equations of state, including Soave......-Redlich-Kwong (SRK), Peng-Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR), have been used to predict phase equilibrium of the measured systems. PR and PC-SAFT give better results than others and Soave-BWR gives poor phase envelope predictions...

  14. Effect of thermal cycling on the transformation temperature ranges of a Ni-Ti shape memory alloy

    International Nuclear Information System (INIS)

    Paula, A.S.; Canejo, J.P.H.G.; Martins, R.M.S.; Braz Fernandes, F.M.

    2003-01-01

    Shape memory alloys (SMA) represents a class of metallic materials that has the capability of recovering a previously defined initial shape when subject to an adequate thermomechanical treatment. The present work aims to study the influence of thermal cycles on the transition temperatures of a Ni-Ti alloy. In this system, small variations around the equiatomic composition give rise to significant transformation temperature variations ranging from 173 to 373 K. SMA usually presents the shape memory effect after an annealing treatment at ca. 973 K. The optimisation of the thermomechanical treatment will allow to 'tune' the material to different transformation temperature ranges from the same starting material, just by changing the processing conditions. Differential scanning calorimeter (DSC) and in situ high-temperature X-ray diffraction (XRD) have been used to identify the transformation temperatures and the phases that are present after different thermal cycles. The results concerning a series of thermal cycles with different heating and cooling rates (from 1.67x10 -2 to 1.25x10 -1 K/s) and different holding temperatures (from 473 to 1033 K) are presented

  15. Effect of cutoff radius, long range interaction and temperature controller on thermodynamic properties of fluids: Methanol as an example

    Science.gov (United States)

    Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind

    2018-04-01

    The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.

  16. Radiation measurements by pn junction InSb detector at the temperature from 4.2 K to 115 K

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yoshihara, Fumiki; Nouchi, Ryo; Sugiura, Osamu; Murase, Yasuhiro; Nakamura, Tatsuya; Katagiri, Masaki

    2003-01-01

    We fabricated the pn junction-type detectors on a p-type InSb substrate. Both sides of the InSb substrate were etched using a mixture of nitric and lactic acids. On the top side surface, Sn and Al were deposited by heat evaporation and then the Sn was diffused into the p-type InSb by lamp annealing and resulted in the n-type layer. Based on the confirmation of the performance of the InSb detector at temperatures of 0.5 K and 4.2 K, we concentrated on the measurement of alpha particles by the pm junction-type InSb detectors at higher operating temperatures of up to 115 K. The InSb detector showed a wide temperature operating range. We can conclude that all of the voltage was induced slowly by the holes at 4.2 K and mainly as a result of electrons at 77 K. (T. Tanaka)

  17. Luminescence of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex in the temperature range of 90-315 K: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Zagidullin, M. V., E-mail: marsel@fian.smr.ru; Pershin, A. A., E-mail: anchizh93@gmail.com; Azyazov, V. N., E-mail: azyazov@ssau.ru [Samara State Aerospace University, Samara 443086 (Russian Federation); Lebedev Physical Institute, Samara 443011 (Russian Federation); Mebel, A. M., E-mail: mebela@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199 (United States)

    2015-12-28

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O{sub 2}(a{sup 1}Δ{sub g}) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90–315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k{sub 2} and k{sub 3} are found to be similar, with the k{sub 3}/k{sub 2} ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k{sub 2} slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O{sub 2}){sub 2} dimole, which were utilized to compute rate constants k{sub 2} and k{sub 3} within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O{sub 2} molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1{sup 1}A{sub g}←{sup 1}B{sub 3u} transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1{sup 1}A{sub g}←2{sup 1}A{sub g} transition induced by the asymmetric O–O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the

  18. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.

    Science.gov (United States)

    Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N

    2016-08-11

    Reaction of methyl peroxy radicals with hydroxyl radicals, CH3O2 + OH → CH3O + HO2 (1a) and CH3O2 + OH → CH2OO + H2O (1b) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-526 K temperature range and pressure 1 bar (bath gas He). Hydroxyl radicals were generated in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with H2O. Methyl peroxy radicals were generated in the reaction of methyl radicals, CH3, produced in the photolysis of acetone at 193.3 nm, and subsequent reaction of CH3 with O2. Temporal profiles of OH were monitored via transient absorption of light from a DC discharge H2O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The overall rate constant of the reaction is k1a+1b = (8.4 ± 1.7) × 10(-11)(T/298 K)(-0.81) cm(3) molecule(-1) s(-1) (292-526 K). The branching ratio of channel 1b at 298 K is less than 5%.

  19. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2013-07-01

    Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

  20. Electrical conductivity of molten ZnCl{sub 2} at temperature as high as 1421 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [RAS Ural Branch, Ekaterinburg. (Russian Federation) Institute of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten ZnCl{sub 2} was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  1. The influence of interstitial impurities on temperature ranges of deuterium retention in austenitic stainless steel 18Cr10NiTi

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Morozov, O.M.; Kulish, V.G.; Zhurba, V.I.; Galytsky, A.G.; Piatenko, E.V.

    2009-01-01

    The influence of nitrogen, oxygen and helium on the temperature range of deuterium retention in 18Cr10NiTi stainless steel (of AISI304L type) has been investigated. It is demonstrated that the introduction of oxygen, nitrogen or helium into 18Cr10NiTi steel extends the upper limit in the high-temperature range of deuterium retention. It has been found that for 18Cr10NiTi stainless steel, pre-irradiated with helium ions, the increase in the temperature range of deuterium retention occurs in steps: on attainment of helium concentration of ∼0.5 at.% He the temperature range increases by ∼100 K, and on attainment of helium concentration of ∼2.5 at.% He the temperature range increases by ∼350 K. The introduction of oxygen into 18Cr10NiTi stainless steel results in the increase of the temperature range of deuterium retention in the direction of rise in temperature. In the deuterium thermodesorption spectrum, this manifests itself by the occurrence of an additional low-amplitude peak with the maximum temperature T m ∼ 560 K. The introduction of nitric impurity into 18Cr10NiTi stainless steel results in the extension of the temperature range of deuterium retention towards higher temperatures.

  2. Analysis of the device characteristics of AlGaN/GaN HEMTs over a wide temperature range

    International Nuclear Information System (INIS)

    Zhao, M.; Liu, X.Y.; Zheng, Y.K.; Li, Yankui; Ouyang, Sihua

    2013-01-01

    Highlights: ► We report the behavior of the current–voltage characteristics of AlGaN/GaN HEMT in the temperature range of 223–398 K. ► The origin of the leakage current and the current transport behaviors are reported. ► There is a linear relationship between the barrier height and the ideality factor, which is attributed to barrier height in homogeneities. -- Abstract: In this study, we investigate the behavior of the current–voltage (I–V) characteristics of AlGaN/GaN HEMT in the temperature range of 223–398 K. Temperature dependent device characteristics and the current transport mechanism are reported. It is observed that the Schottky barrier height Φ increases and the ideality factor n decreases with temperature. There is a linear relationship between the barrier height and the ideality factor, which is attributed to barrier height inhomogeneities of AlGaN/GaN HEMT. The estimated values of the series resistances (R s ) are in the range of 144.2 Ω at 223 K to 74.3 Ω at 398 K. The Φ, n, R s , G m and Schottky leakage current values are seen to be strongly temperature dependent

  3. Dielectric spectroscopy in aqueous solutions of paracetamol over the frequency range of 20 Hz to 2 MHz at 293.15 K temperature

    Science.gov (United States)

    Pandit, T. R.; Rana, V. A.

    2018-05-01

    Frequency domain dielectric relaxation spectroscopy plays an important role in the study of pharmaceutical drug molecules. The complex relative dielectric permittivity ɛ*(ω) = ɛ' - j ɛ" of aqueous solutions of paracetamol in the frequency range of 20 Hz to 2 MHz at a temperature range of 293.15 K are measured with the help of Agilent precision LCR meter E4980A along with four terminal liquid test fixture Agilent 16452A. Data of complex relative permittivity are used to calculate loss tangent for all concentrations of paracetamol in distilled water. Electrode polarization relaxation time has been calculated for all solutions. Effect of variation of concentrations of paracetamol in distilled water on these dielectric parameters is discussed.

  4. Electrical conductivity of molten CdCl{sub 2} at temperatures as high as 1474 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2016-11-01

    The electrical conductivity of molten CdCl{sub 2} was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  5. Partial molar volumes of (acetonitrile + water) mixtures over the temperature range (273.15 to 318.15) K

    International Nuclear Information System (INIS)

    Yeow, Y. Leong; Leong, Yee-Kwong

    2007-01-01

    Isothermal molar volume data of (acetonitrile + water) mixtures, between T = 273.15 K and T = 318.15 K, extracted from different sources are combined and treated as a single set to even out minor differences between sources and to increase the number of data points for each temperature. Tikhonov regularization is applied to compute the isothermal first and second derivatives of these data with respect to molar composition. For the reference temperature of 298.15 K, this computation is extended to the third derivative. Generalized Cross Validation is used to guide the selection of the regularization parameter that keeps noise amplification under control. The resulting first derivatives are used to construct the partial molar volume curves which are then checked against published results. Properties of the partial molar volumes are analysed by examining their derivatives. Finally the general shape of the second derivative curve of molar volume is explained qualitatively in terms of tripartite segmentation of the molar composition interval but quantitative comparisons are required to confirm this explanation

  6. Low temperature resistivity studies of SmB6: Observation of two-dimensional variable-range hopping conductivity

    Science.gov (United States)

    Batkova, Marianna; Batko, Ivan; Gabáni, Slavomír; Gažo, Emil; Konovalova, Elena; Filippov, Vladimir

    2018-05-01

    We studied electrical resistance of a single-crystalline SmB6 sample with a focus on the region of the "low-temperature resistivity plateau". Our observations did not show any true saturation of the electrical resistance at temperatures below 3 K down to 70 mK. According to our findings, temperature dependence of the electrical conduction in a certain temperature interval above 70 mK can be decomposed into a temperature-independent term and a temperature-activated term that can be described by variable-range hopping formula for two-dimensional systems, exp [ -(T0 / T) 1 / 3 ]. Thus, our results indicate importance of hopping type of electrical transport in the near-surface region of SmB6.

  7. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    Science.gov (United States)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle

  8. Thermal properties of Permian Basin evaporites to 493 K temperature and 30 MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Heard, H.C.; Boro, C.O.; Keller, K.T.; Ralph, W.E.; Trimmer, D.A.

    1987-03-01

    Laboratory measurements of the thermal conductivity and diffusivity of four rock salts, two anhydrites, and two dolomites bordering Cycle 4 and Cycle 5 bedded salt formations in the Permian Basin in Deaf Smith County, Texas, were made in conditions ranging from 303 to 473 K in temperature and 0.1 to 31.0 MPa in hydrostatic confining pressure. Within the +-5% measurement resolution neither conductivity nor diffusivity showed a dependence upon pressure in any of the rocks. Conductivity and diffusivity in all rocks had a negative temperature dependence. For the Cycle 4 salt samples, conductivity fell from 5.5 to 3.75 W/m . K, and diffusivity fell from about 2.7 to 1.7 x 10 -6 m 2 /s. One Cycle 5 salt was a single crystal with anomalous results, but the other had a low conductivity with very weak temperature dependence and a high diffusivity. In the nonsalts, conductivity and diffusivity decreased 10 to 20% over the temperature range explored. In measurements of the coefficient of thermal linear expansion for Cycle 5 salt and nonsalts, the coefficient typically varied from about 12 x 10 -6 K -1 at P = 3.0 MPa to 4 x 10 -6 K -1 at P = 30 MPa for both nonsalt rocks. In anhydrite, it decreased with increasing temperature. In dolomite, the coefficient increased at roughly the same rate. Expansion of the salt ranged from 33 to 38 x 10 -6 K -1 and was independent of pressure and temperature

  9. High-purity metal-carbon eutectic systems as thermometric fixed points in the range from 1000 K to 3500 K; Des systemes eutectiques metal-carbone de grande purete comme points fixes de temperature dans l'intervalle 1000-3500 K

    Energy Technology Data Exchange (ETDEWEB)

    Bloembergen, P.; Yamada, Y.; Sasajima, N.; Yamamoto, N. [National Metrology Institute of Japan (NMIJ), AIST, Tsukuba (Japan); Torizuka, S.; Yoshida, N. [National Institute for Materials Science (NIMS), Tsukuba (Japan)

    2004-12-01

    A survey will be given of metal-carbon (M-C) and metal carbide-carbon (MC-C) systems presently in development for applications in thermometry in the range from 1000 K to about 3500 K. The advantages of these systems as fixed points at high temperatures as compared to systems relying on pure metals will be elucidated. Purification of the components making up the M-C or MC-C systems is a prerequisite to their implementation as reference fixed points in thermometry, requiring a high level of reproducibility of the eutectic temperature. To set an example a study on the effect of impurities on the eutectic transition of Fe-C is included in the survey. Experimentally obtained melting curves are compared with the curves calculated on the basis of a thermodynamic model, which includes the impurities in question as components. The calculations of the melting curves are based upon: (1) the Equilibrium solidification model and (2) the Scheil-Gulliver solidification model, which handle the effects of the impurities on the transition process in such a way that they may be assumed to set lower and upper boundaries to the associated melting ranges, respectively. We will conclude pointing out fields of common interest to materials science and thermometry within the realm of ultra-pure materials. (authors)

  10. Thermometry using 1/8 W carbon resistors in a temperature region around 10 mK

    International Nuclear Information System (INIS)

    Kobayasi, S.; Shinohara, M.; Ono, K.

    1976-01-01

    The resistance-temperature characteristics of 1/8 W carbon resistors of grade ERC-18SG, manufactured by Matsushita, with the nominal values of 48, 82, 100, 220 and 330 Ω have been measured in the region 4.2 K to 25 mK and their application as thermometers in this region is confirmed. For the 82 Ω resistor, measurements were taken at temperatures below 10mK. The temperature dependence of the resistance was found to be linear on the log-log plot over a wide range below 50 mK. The sensitivity remains finite even at 6 mK, but below 10 mK rapid measurements were prevented by a considerable increase in the thermal relaxation time. Measurement of the characteristics of several 100 Ω resistors from two different sets showed that resistors from the same set separate into two groups with different characteristics. This become appreciable at temperatures below 4.2 K, so it is difficult to predict the behaviour of Matsushite resistors below 4.2 K from the characteristics at higher temperatures. (author)

  11. Effect of oxygen on the strength and ductility of polycrystalline vanadium in the range of 4.2 to 400 K

    International Nuclear Information System (INIS)

    Carlson, O.N.; Alexander, D.G.; Elssner, G.

    1977-01-01

    The effect of oxygen on the yield stress and ductility of polycrystalline vanadium was investigated for concentrations of 0.004 to 1.25 at pct oxygen over the temperature range of 4.2 to 400 K. The dependence of the resolved shear stress on temperature and composition was tested against the different interstitial solute strengthening theories. A parabolic dependence of tau on concentration was found to hold in the low solute concentration range and a linear dependence was observed at high oxygen concentrations. A statistical model proposed by Labusch gives a good description of the concentration dependence of the shear stress for the entire temperature-composition range investigated. This correlation suggests that a spectrum of defects may be contributing to the strengthening of vanadium-oxygen alloys. The combined effects of oxygen content and temperature on the strain hardening exponent and reduction in area was investigated. Alloys containing 0.83 at. pct or less do not exhibit a brittle-ductile transition down to 4.2 K but a 1 at. pct alloy is brittle at 77 K and a 1.25 at. pct alloy has a BDTT between 135 and 195 K

  12. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K

    Directory of Open Access Journals (Sweden)

    Peng Sang

    2016-02-01

    Full Text Available To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein.

  13. A 20mK temperature sensor

    International Nuclear Information System (INIS)

    Wang, N.; Sadoulet, B.; Shutt, T.

    1987-11-01

    We are developing a 20mK temperature sensor made of neutron transmutation doped (NTD) germanium for use as a phonon detector in a dark matter search. We find that NTD germanium thermistors around 20mK have resistances which are a strong function of temperature, and have sufficient sensitivity to eventually reach a base line rms energy fluctuation of 6eV at 25mK. Further work is needed to understand the extreme sensitivity of the thermistors to bias power. 13 refs., 18 figs

  14. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    International Nuclear Information System (INIS)

    Schlesinger, Daniel; Pettersson, Lars G. M.; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders

    2016-01-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  15. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Wikfeldt, K. Thor [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Science Institute, University of Iceland, VR-III, 107 Reykjavik (Iceland); Skinner, Lawrie B.; Benmore, Chris J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  16. Thermodynamic properties of solutions of sodium di-hydrogen phosphate in (1-propanol + water) mixed-solvent media over the temperature range of (283.15 to 303.15) K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Parhizkar, Hana

    2008-01-01

    The apparent molar volume and apparent molar isentropic compressibility of solutions of sodium di-hydrogen phosphate (NaH 2 PO 4 ) in (1-propanol + water) mixed-solvent media with alcohol mass fractions of 0.00, 0.05, 0.10, and 0.15 are reported over the range of temperature (283.15 to 303.15) K at 5 K intervals. The results were fitted to a Redlich-Mayer type equation from which the apparent molar volume and apparent molar isentropic compressibility of the solutions at the infinite dilution were also calculated at the working temperature. The results show a positive transfer volume of NaH 2 PO 4 from an aqueous solution to an aqueous 1-propanol solution. The apparent molar isentropic compressibility of NaH 2 PO 4 in aqueous 1-propanol solutions is negative and it increases with increasing the concentration of NaH 2 PO 4 , 1-propanol, and temperature. Electrical conductivity and refractive index of the solutions are also studied at T = 298.15 K. The effects of the electrolyte concentration and relative permittivity of the medium on the molar conductivity were also investigated

  17. K-band spectroscopic metallicities and temperatures of M-dwarf stars

    Directory of Open Access Journals (Sweden)

    Rojas-Ayala Bárbara

    2013-04-01

    Full Text Available I present the metallicity and effective temperature techniques developed for M dwarf stars by Rojas-Ayala et al. (2010, 2012. These techniques are based on absorption features present in the modest resolution K-band spectra (R∼2700 of M dwarfs and have been calibrated using FGK+M dwarf pairs and synthetic atmosphere models. The H2O-K2 index seems to overestimate the effective temperatures of M dwarfs when compared to interferometric measurements. The metallicity distribution of the M dwarf host candidates by the Kepler Mission hints that jovian-size planets form preferentially around solar and super-solar metallicity environments, while small rocky planet host exhibit a wide range of metallicities, just like in their solar-type counterparts.

  18. Effective temperatures of late-type stars: The field giants from K0 to M6

    International Nuclear Information System (INIS)

    Ridgway, S.T.; Joyce, R.R.; White, N.M.; Wing, R.F.

    1980-01-01

    Angular diameters from lunar occultation are combined with infrared photometry to determine effective temperatures, T/sub eff/, for K0--M6 giants. The relation between T/sub eff/ and color temperature, MK spectral type, V--K color, and I (104) --L color are derived. The principal result is a general increase in T/sub eff/ for the cooler spectral types compared to previous calibrations. Throughout the temperature range studied, we obtain excellent agreement with recent model atmosphere computations

  19. Brightness temperature of the ''quiet'' Sun in the millimeter wavelength range

    International Nuclear Information System (INIS)

    Pelyushenko, S.A.

    1982-01-01

    Results are presented of recalibration of the data available for measurements of the solar brightness temperature Tsub(s) made by comparison with the lunar radio emission. A spectrum has been obtained of the ''quiet'' Sun radio emission in the range of 1-20 mm. The mean square spread of data does not exceed +-(from 3 to 4)%. The ''quiet'' Sun spectrum has a form of: Tsub(c)=(6150+-70)lambdasup(01+-0.01)[mm]K in the wavelength interval of lambda=(1-6) mm and Tsub(c)=(3470+-80)lambdasup(0.42+-0.01) [mm]K in the wavelength interval of lambda=(7-20) mm on approximation of recalibrated values of Tsub(c) with a linear dependence using the mean-square-root method. The obtained spectral characteristics of the ''quiet'' Sun radio frequency emission in the mullimeter wavelength range testify on the spectrum flatteming in the (1-6) mm wavelength range

  20. Temperature control for liquid-helium cryostats below 4.2 K

    International Nuclear Information System (INIS)

    Escorne, M.; Mauger, A.

    1983-01-01

    We report the operational characteristics of a membrane type of manostat and of a throttle valve system which we have constructed to regulate the pressure P above the liquid-helium bath. The choice of the manostat rather than the other device depends on the nature of the experiments to be performed: in the membrane type of manostat, the temperature is determined with an accuracy limited by the fluctuations ΔT around the mean value T. With throttle valves, the accuracy is limited by the drift of T in time. The performance of both devices prove to be sufficiently good as they stand, since the departure from T in the course of the experiments is lower than 10 -2 K in the whole range 1.4< T<4.2 K, being well inside this limit below 2 K. The need for expensive and complex electronic regulations to improve the temperature control is thus exceptional

  1. Electrical resistivity anisotropy of osmium single crystals in the range 4,2 to 300 K

    International Nuclear Information System (INIS)

    Volkenshtejn, N.V.; Dyakina, V.P.; Dyakin, V.V.; Startsev, V.E.; Cherepanov, V.I.; Azhazha, V.M.; Kovtun, G.P.; Elenskij, V.A.; AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst.)

    1981-01-01

    Electrical resistivity and size effect anisotropies of pure osmium single crystals with rhosub(273.2/rhosub(4.2)2600 were investigated in the temperature range 4.2 to 300 K. It is found that the electrical resistivity anisotropy (αT)=rhosub( )/rhosub( ) is less than unit and has a maximum at T approximately 50 K; the size effect anisotropy (rho1)sub( )/(rho1)sub( ) is 0.39+-0.07 at T=4.2 K; at liquid helium temperature, the dependence of thin samples is controlled by the scattering of conduction electrons by the surface of the sample. The results are discussed for the specific shape of the Fermi surface geometry of osmium with an account for the scattering processes of conduction electrons by phonons and by surface of the sample

  2. W-Band InP Wideband MMIC LNA with 30K Noise Temperature

    Science.gov (United States)

    Weinreb, S.; Lai, R.; Erickson, N.; Gaier, T.; Wielgus, J.

    2000-01-01

    This paper describe a millimeter wave low noise amplifier with extraordinary low noise, low consumption, and wide frequency range. These results are achieved utilizing state-of-the-art InP HEMT transistors coupled with CPW circuit design. The paper describes the transistor models, modeled and measured on-wafer and in-module results at both 300K am 24K operating temperatures for many samples of the device.

  3. Determination of the rate constant for the OH(X2Π) + OH(X2Π) → H2O + O(3P) reaction over the temperature range 295 to 701 K.

    Science.gov (United States)

    Altinay, Gokhan; Macdonald, R Glen

    2014-01-09

    The rate constant for the radical-radical reaction OH(X(2)Π) + OH(X(2)Π) → H2O + O((3)P) has been measured over the temperature and pressure ranges 295-701 K and 2-12 Torr, respectively, in mixtures of CF4, N2O, and H2O. The OH radical was produced by the 193 nm laser photolysis of N2O. The resulting O((1)D) atoms reacted rapidly with H2O to produce the OH radical. The OH radical was detected by high-resolution time-resolved infrared absorption spectroscopy using a single Λ-doublet component of the OH(1,0) P1e/f(4.5) fundamental vibrational transition. A detailed kinetic model was used to determine the reaction rate constant as a function of temperature. These experiments were conducted in a new temperature controlled reaction chamber. The values of the measured rate constants are quite similar to the previous measurements from this laboratory of Bahng and Macdonald (J. Phys. Chem. A 2007 , 111 , 3850 - 3861); however, they cover a much larger temperature range. The results of the present work do not agree with recent measurements of Sangwan and Krasnoperov (J. Phys. Chem. A 2012 , 116 , 11817 - 11822). At 295 K the rate constant of the title reaction was found to be (2.52 ± 0.63) × 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes both experimental scatter and an estimate of systematic errors at the 95% confidence limit. Over the temperature range of the experiments, the rate constant can be represented by k1a = 4.79 × 10(-18)T(1.79) exp(879.0/T) cm(3) molecule(-1) s(-1) with a uncertainty of ±24% at the 2σ level, including experimental scatter and systematic error.

  4. The drift velocity of electrons in carbon dioxide at temperatures between 193 and 573 K

    International Nuclear Information System (INIS)

    Elford, M.T.; Haddad, G.N.

    1980-01-01

    The drift velocity of electrons in carbon dioxide has been measured at gas temperatures ranging from 193 to 573 K and at E/N values up to 20 Td at 193 K, 50 Td at 293 K and 40 Td at 573 K. The measured drift velocities were found to decrease linearly with increasing gas number density at a given value of E/N for gas temperatures less than 293 K. This dependence has been attributed to multiple scattering and the data have been extrapolated to zero number density to correct for this effect. Comparisons are made with previous measurements where available. The present data for the variation of μN(thermal) with temperature agree to within the experimental error with the data of Pact et al. (1962)

  5. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    Science.gov (United States)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  6. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure

    International Nuclear Information System (INIS)

    Sagdeev, D.I.; Fomina, M.G.; Mukhamedzyanov, G.Kh.; Abdulagatov, I.M.

    2011-01-01

    Highlights: → Viscosity and density of polyethylene glycols. → Combined experimental apparatus for density and viscosity measurements. → Vogel-Tamman-Fulcher model for viscosity. - Abstract: A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius-Andrade and Vogel-Tamman-Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.

  7. Thermodynamic Properties, Hysteresis Behavior and Stress-Strain Analysis of MgH2 Thin Films, Studied over a Wide Temperature Range

    Directory of Open Access Journals (Sweden)

    Yevheniy Pivak

    2012-06-01

    Full Text Available Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333 K to 545 K. The enthalpy and entropy of hydride decomposition, ∆Hdes = −78.3 kJ/molH2, ∆Sdes = −136.1 J/K molH2, estimated from the Van't Hoff analysis, are in good agreement with bulk results, while the absorption thermodynamics, ∆Habs = −61.6 kJ/molH2, ∆Sabs = −110.9 J/K molH2, appear to be substantially affected by the clamping of the film to the substrate. The clamping is negligible at high temperatures, T > 523 K, while at lower temperatures, T < 393 K, it is considerable. The hysteresis at room temperature in Mg/Ta/Pd films increases by a factor of 16 as compared to MgH2 bulk. The hysteresis increases even further in Mg/Pd films, most likely due to the formation of a Mg-Pd alloy at the Mg/Pd interface. The stress–strain analysis of the Mg/Ta/Pd films at 300–333 K proves that the increase of the hysteresis occurs due to additional mechanical work during the (de-hydrogenation cycle. With a proper temperature correction, our stress–strain analysis quantitatively and qualitatively explains the hysteresis behavior in thin films, as compared to bulk, over the whole temperature range.

  8. Measurement of Thermal Conductivities of Two Cryoprotective Agent Solutions for Vitreous Cryopreservation of Organs at the Temperature Range of 77 K-300 K Using a Thermal Sensor Made of Microscale Enamel Copper Wire.

    Science.gov (United States)

    Li, Yufang; Zhao, Gang; Hossain, S M Chapal; Panhwar, Fazil; Sun, Wenyu; Kong, Fei; Zang, Chuanbao; Jiang, Zhendong

    2017-06-01

    Biobanking of organs by cryopreservation is an enabling technology for organ transplantation. Compared with the conventional slow freezing method, vitreous cryopreservation has been regarded to be a more promising approach for long-term storage of organs. The major challenges to vitrification are devitrification and recrystallization during the warming process, and high concentrations of cryoprotective agents (CPAs) induced metabolic and osmotic injuries. For a theoretical model based optimization of vitrification, thermal properties of CPA solutions are indispensable. In this study, the thermal conductivities of M22 and vitrification solution containing ethylene glycol and dimethyl sulfoxide (two commonly used vitrification solutions) were measured using a self-made microscaled hot probe with enameled copper wire at the temperature range of 77 K-300 K. The data obtained by this study will further enrich knowledge of the thermal properties for CPA solutions at low temperatures, as is of primary importance for optimization of vitrification.

  9. Direct measurements of methoxy removal rate constants for collisions with CH4, Ar, N2, Xe, and CF4 in the temperature range 673--973K

    International Nuclear Information System (INIS)

    Wantuck, P.J.; Oldenborg, R.C.; Baugchum, S.L.; Winn, K.R.

    1988-01-01

    Removal rate constants for CH 3 O by CH 4 , Ar, N 2 , Xe, and CF 4 were measured over a 400K temperature range using a laser photolysis/laser-induced fluorescence technique. Rapid methoxy removal rates are observed for the non-reactive collision partners (Ar, N 2 , Xe, and CF 4 ) at elevated temperatures showing that the dissociation and isomerization channels for CH 3 O are indeed important. The total removal rate constant (reaction /plus/ dissociation and/or isomerization) for CH 4 exhibits a linear dependence on temperature and has a removal rate constant, k/sub r/ /equals/ (1.2 +- 0.6) /times/ 10/sup /minus/8/exp[(/minus/101070 +- 350)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. Assuming that the removal rate constant due to dissociation and/or isomerization are similar for CH 4 and CF 4 , the reaction rate constant for CH 3 O /plus/ CH 4 is equal to (1.7 +- 1.0) /times/ 10/sup /minus/10/exp[(/minus/7480 +- 1100)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. 7 refs., 4 figs

  10. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    Science.gov (United States)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  11. Biaxial creep deformation of Zircaloy-4 PWR fuel cladding in the alpha,(alpha + beta) and beta phase temperature ranges

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Healey, T.; Horwood, R.A.L.

    1985-01-01

    The biaxial creep behaviour of Zircaloy-4 fuel cladding has been determined at temperatures between 973 - 1073 K in the alpha phase range, in the duplex (alpha + beta) region between 1098 - 1223 K and in the beta phase range between 1323 - 1473 K. This paper presents the creep data together with empirical equations which describe the creep deformation response within each phase region. (author)

  12. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  13. Thermal stability of carbonyl radicals. Part II. Reactions of methylglyoxyl and methylglyoxylperoxy radicals at 1 bar in the temperature range 275-311 K.

    Science.gov (United States)

    Jagiella, Stefan; Zabel, Friedhelm

    2008-04-07

    Reactions of methylglyoxyl and methylglyoxylperoxy radicals were investigated at a total pressure of 1 bar in oxygen. Methylglyoxyl radicals were generated by stationary photolysis of Br2-CH3C(O)C(O)H-NO2-O2-N2 mixtures at wavelengths > or =480 nm and of Cl2-CH3C(O)C(O)H-NO2-O2-N2 mixtures in the wavelength range 315-460 nm. In the bromine system, rate constant ratios for the reactions CH3C(O)CO --> CH3CO + CO (kdis) and CH3C(O)CO + O2 --> CH3C(O)C(O)O2 (kO2) were measured as a function of temperature in the range 275-311 K. Assuming the constant value kO2 = 5.1 x 10(-12) cm3 molecule(-1) s(-1) for our reaction conditions, kdis = 1.2 x 10(10.0+/-0.7) x exp(-11.7 +/- 3.8 kJ mol(-1)/RT) s(-1) (2sigma errors) was obtained for ptot = 1 bar (M = O2), in good agreement with the kinetic parameters calculated by Méreau et al. [R. Méreau, M.-T. Rayez, J.-C. Rayez, F. Caralp and R. Lesclaux, Phys. Chem. Chem. Phys., 2001, 3, 4712]. CH3C(O)C(O)O2 radicals oxidise NO2, forming NO3, CH3CO and CO2. This experimental result is supported by DFT and ab initio calculations. Possible mechanisms for the observed formation of several % of ketene and bromoacetyl peroxynitrate are discussed. Use of Cl rather than Br atoms to abstract the aldehydic H atom from methylglyoxal leads to chemically activated CH3C(O)CO radicals, thus substantially increasing the fraction of CH3C(O)CO radicals that decompose rather than add O2.

  14. Acoustic resonator providing fixed points of temperature between 0.1 and 2 K

    International Nuclear Information System (INIS)

    Salmela, Anssi; Tuoriniemi, Juha; Pentti, Elias; Sebedash, Alexander; Rysti, Juho

    2009-01-01

    Below 2 K the speed of second sound in mixtures of liquid 3 He and 4 He first increases to a maximum of 30-40 m/s at about 1 K and then decreases again at lower temperatures to values below 15 m/s. The exact values depend on the concentration and pressure of the mixture. This can be exploited to provide fixed points in temperature by utilizing a resonator with appropriate dimensions and frequency to excite standing waves in the resonator cavity filled with helium mixture. We demonstrate that commercially mass produced quartz tuning forks can be used for this purpose. They are meant for frequency standards operating at 32 kHz. Their dimensions are typically of order 1 mm matching the wavelength of the second sound in helium mixtures at certain values of temperature. Due to the complicated geometry, we observe some 20 sharp acoustic resonances in the range 0.1l 2 K having temperature resolution of order 1 μK. The quartz resonators are cheap, compact, simple to implement, easy to measure with great accuracy, and, above all, they are not sensitive to magnetic field, which is a great advantage compared to fixed point devices based on superconductivity transitions. The reproducibility of the resonance pattern upon thermal cycling remains to be verified.

  15. Modelling of monovacancy diffusion in W over wide temperature range

    International Nuclear Information System (INIS)

    Bukonte, L.; Ahlgren, T.; Heinola, K.

    2014-01-01

    The diffusion of monovacancies in tungsten is studied computationally over a wide temperature range from 1300 K until the melting point of the material. Our modelling is based on Molecular Dynamics technique and Density Functional Theory. The monovacancy migration barriers are calculated using nudged elastic band method for nearest and next-nearest neighbour monovacancy jumps. The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three orders of magnitude higher than commonly used in computational studies, resulting in attempt frequency of the order 10 15 Hz. Multiple nearest neighbour jumps of monovacancy are found to play an important role in the contribution to the total diffusion coefficient, especially at temperatures above 2/3 of T m , resulting in an upward curvature of the Arrhenius diagram. The probabilities for different nearest neighbour jumps for monovacancy in W are calculated at different temperatures

  16. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    Science.gov (United States)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  17. A study of the x-irradiated Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O crystal by EPR in the 80-415 K temperature range

    CERN Document Server

    Waplak, S; Baranov, A I; Shuvalov, L A

    1997-01-01

    The EPR spectra of the x-irradiated fast proton conductor Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O were investigated in the temperature range of 80-415 K. Two kinds of paramagnetic SO sub 4 sup - centres with different proton configurations below about 370 K and freeze-out behaviour of one of them below about 200 K were observed. The role of acid proton dynamics with respect to the glassy-like transition is discussed. (author)

  18. Low temperature electron beam irradiation effects on the lactate dehydrogenase activity

    International Nuclear Information System (INIS)

    Catana, D.; Hategan, Alina; Oproiu, C.; Popescu, Alina; Hategan, Dora; Morariu, V. V.

    1998-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range 0-400 Gy at 20 deg. C, -3 deg. C and -196 deg. C on the global enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed a monoexponential decrease in the enzymatic activity of irradiated LDH at all irradiation temperatures independently of direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 deg. C drastically influences the results. Our data suggest that freeze-thawing in two steps down to -196 deg. C make LDH insensitive to irradiation, while one step freeze-thawing procedure results in a gradual activity loss with increasing dose irradiation. This data can be interpreted in terms of different conformational changes during the particular freeze-thawing process. (authors)

  19. Heat capacity and thermodynamics of solid and liquid pyridine-3-carboxylic acid (nicotinic acid) over the temperature range 296 K to 531 K

    International Nuclear Information System (INIS)

    Joseph, Abhinav; Bernardes, Carlos E.S.; Minas da Piedade, Manuel E.

    2012-01-01

    Highlights: ► We determined the heat capacity of solid and liquid nicotinic acid by DSC. ► We determined Δ 357.8K 305.6K H m o (NA,crII) by Calvet microcalorimetry. ► We studied the thermodynamics of the cr II → cr I phase transition. ► We determined the Δ f G m o –T diagram of nicotinic acid for T = (296 to 531) K. - Abstract: The molar heat capacity of pyridine-3-carboxylic acid (nicotinic acid) for T = (296 to 531) K was investigated by differential scanning calorimetry (DSC) and Calvet-drop microcalorimetry. The measurements extended up to the liquid range and also covered the interval where a reversible and fast solid-solid (cr II → cr I) phase transition occurs. The molar enthalpies and entropies of that phase transition and of fusion were obtained as T trs = (455.0 ± 0.2) K, Δ trs H m o = (0.90 ± 0.10) kJ ⋅ mol −1 , Δ trs S m o = (1.98 ± 0.22) J ⋅ K −1 ⋅ mol −1 , T fus = (509.91 ± 0.04) K, Δ fus H m o = (28.2 ± 0.1) kJ ⋅ mol −1 , and Δ fus S m o = (55.30 ± 0.16) J ⋅ K −1 ⋅ mol −1 . By combining these experimental results with the previously reported Δ sub H m (NA,cr II) at T = 366.5 K, the corresponding entropy in the gaseous state calculated at the B3LYP/6-31+G(d,p) level of theory, and Δ f H m o (NA),cr II) at T = 298.15 K, it was possible to estimate the standard molar Gibbs energy of formation functions necessary for the construction of the Δ f G m ∘ vs. T diagram illustrating the enantiotropic nature of this system.

  20. Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293-673 K) in X band

    Science.gov (United States)

    Wang, Guowu; Li, Xiling; Wang, Peng; Zhang, Junming; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-06-01

    The complex permeability and permittivity of the easy-plane anisotropic Co/polyimide composite at high temperature (293-673 K) in X band were measured. The results show that both the complex permeability and permittivity increase with the increase of temperature in the measured temperature range. The calculated absorption properties display that the intensity of the reflection loss (RL) peak first increases and then decreases with the increase of temperature, and reaches the maximum (-52 dB) at 523 K. At each temperature, the composite can achieve the RL exceeding -10 dB in the whole X band. The composite can even work stably for more than 20 min with the excellent absorption performance under 673 K. In addition, the RL performance of the composite at high temperature is better than that at room temperature.

  1. STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS

    Energy Technology Data Exchange (ETDEWEB)

    Boyajian, Tabetha S.; McAlister, Harold A.; Jones, Jeremy; White, Russel; Henry, Todd; Gies, Douglas; Jao, Wei-Chun; Parks, J. Robert [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Van Belle, Gerard [Lowell Observatory, Flagstaff, AZ 86001 (United States); Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit [The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Muirhead, Philip S. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Lopez-Morales, Mercedes [Institut de Ciencies de L' Espai (CSIC-IEEC), E-08193 Bellaterra (Spain); Ridgway, Stephen [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States); Rojas-Ayala, Barbara [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); and others

    2012-10-01

    We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for {approx}K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B - V), (V - R), (V - I), (V - J), (V - H), and (V - K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = -0.5 to +0.1 dex and are accurate to {approx}2%, {approx}5%, and {approx}4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the star's observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by {approx}3%, and underestimate the radii of stars with radii <0.7 R{sub Sun} by {approx}5%. These conclusions additionally

  2. Latitudinal variation of the topside electron temperature at different levels of solar activity

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Bilitza, D.; Třísková, Ludmila

    2009-01-01

    Roč. 44, č. 6 (2009), s. 693-700 ISSN 0273-1177 R&D Projects: GA AV ČR IAA300420603 Grant - others: NASA (US) NNH06CD17C Institutional research plan: CEZ:AV0Z30420517 Keywords : Electron temperature * Solar activity variation * Latitudinal dependence Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.079, year: 2009

  3. Effect of temperature and water activity on heat transfer in parsley leaves in the  range of temperatures 10–30 °C

    Directory of Open Access Journals (Sweden)

    Jiří Štencl

    2007-01-01

    Full Text Available The equilibrium moisture contents of parsley leaves were measured by the gravimetric dynamic method with continuous recording of changes in sample weight. Consequently water activity values were determined. Henderson equation was found to be a good model both for moisture adsorption and desorption. Isosteric heat of sorption was defined and determined in the temperature range of 10–30 °C. Clausius-Clapeyron equation was used to calculate the isosteric heat of sorption since no dependence on temperature in the analysed range was observed. The isosteric heats of sorption (qnst were indicated graphic in the form qnst versus moisture content. Values for isosteric heat of sorption ranged from 54.41 to 46.85 kJ/mol.

  4. Volumetric properties of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15K to 328.15K

    International Nuclear Information System (INIS)

    Orchilles, A. Vicent; Gonzalez-Alfaro, Vicenta; Miguel, Pablo J.; Vercher, Ernesto; Martinez-Andreu, Antoni

    2006-01-01

    Densities of 1-butyl-3-methylimidazolium octylsulfate ([bmim][OcOSO 3 ]) solutions in water and 1-propanol have been measured with an oscillating-tube densimeter at temperatures from 278.15K to 328.15K. From these densities, apparent molar volumes V φ of [bmim][OcOSO 3 ] in both solvents have been calculated, and its dependence on the molality has been treated with the Redlich and Meyer equation. Debye-Huckel limiting slopes for 1-propanol at working temperatures have been calculated, and apparent molar volumes of [bmim][OcOSO 3 ] at infinite dilution V φ o in both solvents have been evaluated. The partial molar volume at infinite dilution of [bmim][OcOSO 3 ] in water is higher than in 1-propanol and augments when the temperature augments. On the other hand, the partial molar volume at infinite dilution of [bmim][OcOSO 3 ] in 1-propanol decreases when the temperature augments

  5. On the nature of anomalies in temperature dependence of the OKh18N1OT steel yield strength after thermal cycling in the low temperature range

    International Nuclear Information System (INIS)

    Medvedev, E.M.; Lavrent'ev, F.F.; Kurmanova, T.N.

    1978-01-01

    Investigated were structural transformations in 0Kh18N10T steel as a result of heating and cooling and of deformation within the range of temperatures between 300 and 77 K, the quantity relationships between the said transformations and the variation of the yield limit with the temperature. The studies were conducted by metallography and mechanical test methods. It was shown that an increase in the number of heating and cooling cycles correlates with a loss in strength of the steel while deformation at 77 K. This anomaly in the temperature relationship of the yield limit is related to the appearance in the course of deformation of α-martensite with a BCC lattice. Deformation at 300 K increases the amount ea of epsilon-martensite, a decrses the effectve size of grain and, in consequence, increases the yield limit. The relationship between the yield limit and the grain size at the temperature of 300 K is described adequately by the Hall-Petch equation

  6. Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K

    DEFF Research Database (Denmark)

    Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.

    2001-01-01

    The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...

  7. The investigation on the vapour liquid phase equilibrium of (ammonia + 1,1,1,2-tetrafluoroethane) system over the temperatures ranging from (243.150 to 283.150) K

    International Nuclear Information System (INIS)

    Zhao, Yanxing; Dong, Xueqiang; Zhong, Quan; Gong, Maoqiong; Shen, Jun

    2017-01-01

    Highlights: • The vapour liquid equilibrium for ammonia + 1,1,1,2-tetrafluoroethane system was studied. • Measurements were based on vapour phase single recirculation method. • A positive azeotropic behaviour was exhibited at the experimental temperature range. - Abstract: To blend ammonia with some hydrofluorocarbons may give these mixed refrigerants lower flammability and global warming potential. In this paper, the isothermal vapour liquid equilibrium (VLE) of (ammonia + 1,1,1,2-tetrafluoroethane) system at temperatures ranging from (243.150 to 283.150) K are presented. Two models were employed to regress the experimental VLE results, namely the Peng–Robinson (PR) equation of state with the simple van der waals (VDW) mixing rule; the Peng–Robinson equation of state combined non-random two-liquid (NRTL) activity coefficient model with the modified Huron-Vidal one-order (MHV1) mixing rule. The maximum average absolute relative deviation of pressure (AARDp) and average absolute deviation of the vapour phase mole fraction (AADy) for PR-VDW are 0.56% and 0.010, respectively, while the maximum AARDp and AADy for PR-MHV1-NRTL are 0.27% and 0.014, respectively. Positive azeotropic behaviour was exhibited at each temperature investigated.

  8. Application of commercial MOSFET detectors for in vivo dosimetry in the therapeutic x-ray range from 80 kV to 250 kV

    International Nuclear Information System (INIS)

    Ehringfeld, Christian; Schmid, Susanne; Poljanc, Karin; Kirisits, Christian; Aiginger, Hannes; Georg, Dietmar

    2005-01-01

    The purpose of this study was to investigate the dosimetric characteristics (energy dependence, linearity, fading, reproducibility, etc) of MOSFET detectors for in vivo dosimetry in the kV x-ray range. The experience of MOSFET in vivo dosimetry in a pre-clinical study using the Alderson phantom and in clinical practice is also reported. All measurements were performed with a Gulmay D3300 kV unit and TN-502RDI MOSFET detectors. For the determination of correction factors different solid phantoms and a calibrated Farmer-type chamber were used. The MOSFET signal was linear with applied dose in the range from 0.2 to 2 Gy for all energies. Due to fading it is recommended to read the MOSFET signal during the first 15 min after irradiation. For long time intervals between irradiation and readout the fading can vary largely with the detector. The temperature dependence of the detector signal was small (0.3% deg. C -1 ) in the temperature range between 22 and 40 deg. C. The variation of the measuring signal with beam incidence amounts to ±5% and should be considered in clinical applications. Finally, for entrance dose measurements energy-dependent calibration factors, correction factors for field size and irradiated cable length were applied. The overall accuracy, for all measurements, was dominated by reproducibility as a function of applied dose. During the pre-clinical in vivo study, the agreement between MOSFET and TLD measurements was well within 3%. The results of MOSFET measurements, to determine the dosimetric characteristics as well as clinical applications, showed that MOSFET detectors are suitable for in vivo dosimetry in the kV range. However, some energy-dependent dosimetry effects need to be considered and corrected for. Due to reproducibility effects at low dose levels accurate in vivo measurements are only possible if the applied dose is equal to or larger than 2 Gy

  9. Application of commercial MOSFET detectors for in vivo dosimetry in the therapeutic x-ray range from 80 kV to 250 kV.

    Science.gov (United States)

    Ehringfeld, Christian; Schmid, Susanne; Poljanc, Karin; Kirisits, Christian; Aiginger, Hannes; Georg, Dietmar

    2005-01-21

    The purpose of this study was to investigate the dosimetric characteristics (energy dependence, linearity, fading, reproducibility, etc) of MOSFET detectors for in vivo dosimetry in the kV x-ray range. The experience of MOSFET in vivo dosimetry in a pre-clinical study using the Alderson phantom and in clinical practice is also reported. All measurements were performed with a Gulmay D3300 kV unit and TN-502RDI MOSFET detectors. For the determination of correction factors different solid phantoms and a calibrated Farmer-type chamber were used. The MOSFET signal was linear with applied dose in the range from 0.2 to 2 Gy for all energies. Due to fading it is recommended to read the MOSFET signal during the first 15 min after irradiation. For long time intervals between irradiation and readout the fading can vary largely with the detector. The temperature dependence of the detector signal was small (0.3% degrees C(-1)) in the temperature range between 22 and 40 degrees C. The variation of the measuring signal with beam incidence amounts to +/-5% and should be considered in clinical applications. Finally, for entrance dose measurements energy-dependent calibration factors, correction factors for field size and irradiated cable length were applied. The overall accuracy, for all measurements, was dominated by reproducibility as a function of applied dose. During the pre-clinical in vivo study, the agreement between MOSFET and TLD measurements was well within 3%. The results of MOSFET measurements, to determine the dosimetric characteristics as well as clinical applications, showed that MOSFET detectors are suitable for in vivo dosimetry in the kV range. However, some energy-dependent dosimetry effects need to be considered and corrected for. Due to reproducibility effects at low dose levels accurate in vivo measurements are only possible if the applied dose is equal to or larger than 2 Gy.

  10. Reassessing changes in diurnal temperature range: A new data set and characterization of data biases

    Science.gov (United States)

    Thorne, P. W.; Menne, M. J.; Williams, C. N.; Rennie, J. J.; Lawrimore, J. H.; Vose, R. S.; Peterson, T. C.; Durre, I.; Davy, R.; Esau, I.; Klein-Tank, A. M. G.; Merlone, A.

    2016-05-01

    It has been a decade since changes in diurnal temperature range (DTR) globally have been assessed in a stand-alone data analysis. The present study takes advantage of substantively improved basic data holdings arising from the International Surface Temperature Initiative's databank effort and applies the National Centers for Environmental Information's automated pairwise homogeneity assessment algorithm to reassess DTR records. It is found that breakpoints are more prevalent in DTR than other temperature elements and that the resulting adjustments have a broader distribution. This strongly implies that there is an overarching tendency, across the global meteorological networks, for nonclimatic artifacts to impart either random or anticorrelated rather than correlated biases in maximum and minimum temperature series. Future homogenization efforts would likely benefit from simultaneous consideration of DTR and maximum and minimum temperatures, in addition to average temperatures. Estimates of change in DTR are relatively insensitive to whether adjustments are calculated directly or inferred from adjustments returned for the maximum and minimum temperature series. The homogenized series exhibit a reduction in DTR since the midtwentieth century globally (-0.044 K/decade). Adjustments serve to approximately halve the long-term global reduction in DTR in the basic "raw" data. Most of the estimated DTR reduction occurred over 1960-1980. In several regions DTR has apparently increased over 1979-2012, while globally it has exhibited very little change (-0.016 K/decade). Estimated changes in DTR are an order of magnitude smaller than in maximum and minimum temperatures, which have both been increasing rapidly on multidecadal timescales (0.186 K/decade and 0.236 K/decade, respectively, since the midtwentieth century).

  11. The refrigeration of high temperature superconductors between 25K and 65K

    International Nuclear Information System (INIS)

    Richardson, R.N.; Scurlock, R.G.; Tavner, A.C.R.

    1996-01-01

    The present state of the art indicates that acceptable j - H characteristics for power applications of the new high Tc superconductors will only be achieved using materials at temperatures below liquid nitrogen temperature. A boiling point of 27.1K and high specific cooling capacity make neon an eminently suitable choice of refrigerant at these temperatures. A cryostat has been constructed which employs a two stage Gifford-McMahon cooler to liquefy neon gas. The cryostat contains up to 5 litres of liquid neon which can be used for open-quote in-situ close-quote experiments or transfer to another cryostat. Another set of cryostats are being used with liquid nitrogen/oxygen mixtures at reduced pressure for temperatures down to 50K. All these cryostats provide a core facility for characterising and operating high T c superconductors at Southampton

  12. Technical Note: VUV photodesorption rates from water ice in the 120–150 K temperature range – significance for Noctilucent Clouds

    Directory of Open Access Journals (Sweden)

    M. Yu. Kulikov

    2011-02-01

    Full Text Available Laboratory studies have been carried out with the aim to improve our understanding of physicochemical processes which take place at the water ice/air interface initiated by solar irradiation with a wavelength of 121.6 nm. It was intended to mimic the processes of ice particles characteristic of Noctilucent Clouds (NLCs. The experimental set-up used includes a high-vacuum chamber, a gas handling system, a cryostat with temperature controller, an FTIR spectrometer, a vacuum ultraviolet hydrogen lamp, and a microwave generator. We report the first results of measurements of the absolute photodesorption rate (loss of substance due to the escape of photoproducts into gas phase from thin (20–100 nm water ice samples kept in the temperature range of 120–150 K. The obtained results show that a flow of photoproducts into the gas phase is considerably lower than presumed in the recent study by Murray and Plane (2005. The experiments indicate that almost all photoproducts remain in the solid phase, and the principal chemical reaction between them is the recombination reaction H + OH → H2O which is evidently very fast. This means that direct photolysis of mesospheric ice particles seems to have no significant impact on the gas phase chemistry of the upper mesosphere.

  13. Thermodynamic properties, hysteresis behavior and stress-strain analysis of MgH2 thin films, studied over a wide temperature range

    NARCIS (Netherlands)

    Pivak, Y.; Schreuders, H.; Dam, B.

    2012-01-01

    Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333 K to 545 K. The enthalpy and entropy of hydride decomposition, ?Hdes = ?78.3 kJ/molH2, ?Sdes = ?136.1 J/K molH2, estimated from the Van't Hoff

  14. Thermal conductivity measurements of impregnated Nb3Sn coil samples in the temperature range of 3.5 K to 100 K

    Science.gov (United States)

    Koettig, T.; Maciocha, W.; Bermudez, S.; Rysti, J.; Tavares, S.; Cacherat, F.; Bremer, J.

    2017-02-01

    In the framework of the luminosity upgrade of the LHC, high-field magnets are under development. Magnetic flux densities of up to 13 T require the use of Nb3Sn superconducting coils. Quench protection becomes challenging due to the high stored energy density and the low stabilizer fraction. The thermal conductivity and diffusivity of the combination of insulating layers and Nb3Sn based cables are an important thermodynamic input parameter for quench protection systems and superfluid helium cooling studies. A two-stage cryocooler based test stand is used to measure the thermal conductance of the coil sample in two different heat flow directions with respect to the coil package geometry. Variable base temperatures of the experimental platform at the cryocooler allow for a steady-state heat flux method up to 100 K. The heat is applied at wedges style copper interfaces of the Rutherford cables. The respective temperature difference represents the absolute value of thermal conductance of the sample arrangement. We report about the measurement methodology applied to this kind of non-uniform sample composition and the evaluation of the used resin composite materials.

  15. Apparatus intended for measuring heat capacity and heat transfer down to mK range

    International Nuclear Information System (INIS)

    Hebral, B.; Frossati, G.; Godfrin, H.; Schumacher, G.; Thoulouze, D.

    1978-01-01

    A cryogenic apparatus to perform heat capacity and heat transfer measurements in the range 1.5 mK-50 mK is described. Measurements are performed in an adiabatic demagnetization cell attached to a dilution refrigerator. Heat capacity measurements were effected on CMN-helium systems; the CMN specific heat was deduced above 1.6 mK when using liquid 3 He or a mixture 1.1% 3 He - 98.9% 4 He. A specific heat anomaly was observed with 4 He below 10 mK. It does not seen possible to interprete it by simple thermal equilibrium considerations. The superfluid 3 He heat capacity was also deduced from the results obtained with liquid 3 He under pressure. In heat transfer measurements at the interface CMN-mixture 3 He- 4 He, the temperature dependence of the thermal boundary resistance is in rather good agreement with other powder results. The measured resistances are larger than those predicted by the classical phonon process [fr

  16. Measurement of the ( p, , T) Properties for Pure Hydrocarbons at Temperatures up to 600 K and Pressures up to 200 MPa

    Science.gov (United States)

    Ito, T.; Nagata, Y.; Miyamoto, H.

    2014-10-01

    The data available for the thermodynamic properties of propane, -butane, and isobutane at temperatures above 440 K are outdated and show significant discrepancies with each other. The ambiguity associated with these data could be limiting to the development of any understanding related to the effects of mixing of these substances with other materials such as , ammonia, and non-flammable or lower-flammable HFC refrigerants. In this study, the ( p, , T) properties of propane, -butane, and isobutane were measured at temperatures ranging from (360 to 600) K and pressures ranging from (50 to 200) MPa. Precise measurements were carried out using a metal-bellows variable volumometer with a thermostatted air bath. The expanded uncertainties in the temperature, pressure, and density measurements were estimated to be 5 mK, 0.02 MPa, and 0.88 kg m ( K, MPa), 0.76 kg ( K, MPa), 0.76 kg ( K, MPa), and 2.94 kg ( K, MPa), respectively. The data obtained throughout this study were systematically compared with the calculated values derived from the available equations of state. These models agree well with the measured data at higher temperatures up to 600 K, demonstrating their suitability for an effective and precise examination of the mixing effects of potential alternative mixtures.

  17. Thermodynamic properties of deep eutectic solvent and ionic liquid mixtures at temperatures from 293.15 K to 343.15 K

    Science.gov (United States)

    Achsah, R. S.; Shyam, S.; Mayuri, N.; Anantharaj, R.

    2018-04-01

    Deep eutectic solvents (DES) and ionic liquids (ILs) have their applications in various fields of research and in industries due to their attractive physiochemical properties. In this study, the combined thermodynamic properties of DES (choline chloride-glycerol) + IL1 (1-butyl-3-methylimiazolium acetate) and DES(choline chloride-glycerol) + IL2 (1-ethyl-3-methylimadzolium ethyl sulphate) have been studied. The thermodynamic properties such as excess molar volume, partial molar volume, excess partial molar volume and apparent molar volume were calculated for different mole fractions ranging from 0 to 1 and varying temperatures from 293.15 K to 343.15 K. In order to know the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance and process efficiency at fixed composition and temperature the thermodynamic properties were analyzed.

  18. Simultaneous temperature measurement of ionospheric plasma and neutral atmosphere with K-10-11 rocket

    International Nuclear Information System (INIS)

    Murasato, Yukio; Kaneko, Osamu; Sasaki, Susumu; Kawashima, Nobuki; Kibune, Tadashi.

    1976-01-01

    Ion temperature and neutral atmospheric temperature in lower ionospheric layer were measured by the ''Shadow Method'', which has been developed and improved by the authors. The principle of the method, which utilizes the fact that the shadow due to the reduction of density of medium behind on obstacle depends upon the flow velocity and the temperature of the medium, is briefly explained together with the apparatus used for the measurement. A pair of the Langmuir probes with the interval of 44 mm was used for the measurement of ion temperature. For the measurement of the neutral atmospheric temperature, its density was measured with the ionization gauge. The measuring system was mounted on the K-10-11 rocket, and launched from KSC at 2 p.m., September 24, 1975. Although the rocket itself reached its highest altitude of 196 km, the temperature measurement was performed between the altitude of 80 km and 140 km. The measured temperatures of ions, neutral atmosphere, and electrons are presented as the functions of altitude. It is confirmed that the temperatures of ions and neutral atmosphere are lower than that of electrons in that range of altitude. (Aoki, K.)

  19. Thermodynamic properties of fluid n-D2 in the 75 to 300 K and 2- to 20-kbar range

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1978-03-01

    The hydrogen isotope deuterium is an important material for use in various energy technologies. This report is a summary of new pressure, volume, temperature, and sound velocity measurements of fluid n-D 2 in the 75 to 300 K and 2- to 20-kbar range. An equation of state (EOS) was fit to these data. The thermodynamic quantities, volume V, sound velocity v/sub s/, thermal expansivity α/sub p/, heat capacity at constant pressure C/sub p/, isothermal compressibility chi/sub T/, and molar entropy S, are given at 25 0 K and 0.5-kbar increments over the range of measurements. Computer-drawn graphs of the isothermal pressure variation of these quantities are shown. Characteristics of the EOS at high temperature and pressure are determined and compared with theoretical and phenomenological equations of state

  20. Structural investigation on K3Gd5(PO4)6 in between 20 K to 1073 K

    International Nuclear Information System (INIS)

    Bevara, Samatha; Achary, S.N.; Tyagi, A.K.; Mishra, K.K.; Ravindran, T.R.; Sinha, A.K.; Sastry, P.U.

    2016-01-01

    Evolution of crystal structure of K 3 Gd 5 (PO 4 ) 6 in the temperature range from 20 K to 1073 K, as observed from combined variable temperature X-ray diffraction (using both synchrotron source and Cu K α lab source) and Raman spectroscopic studies is communicated in the manuscript. The title compound has an open tunnel containing three dimensional structure built by periodic arrangements of (Gd 5 (PO 4 ) 6 ) 3- ions which in turn are formed by PO 4 tetrahedra and GdO n (n = 8 and 9) polyhedra and these tunnels are occupied by K + ions. The XRD patterns in the entire temperature range of study indicated no change in the crystal structural, which is also supported by differential thermal analyses and Raman spectroscopy. Average axial thermal expansion coefficients between 20K and 1073 K are : α a =10.6 x 10 -6 K -1 , α b = 5.5 x 10 -6 K -1 and α c = 16.4 X 10.6 -6 K -1 . (author)

  1. Nickel-titanium alloys: stress-related temperature transitional range.

    Science.gov (United States)

    Santoro, M; Beshers, D N

    2000-12-01

    The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.

  2. Phase equilibria in the Cs-U-O system in the temperature range from 873 to 1273 K

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1978-01-01

    Portions of the cesium-uranium-oxygen system have been investigated between 873 and 1273 K and a phase diagram has been constructed using these data and the data of other workers in the field. A consistent set of measured and estimated thermodynamic data for cesium uranates has been used to calculate the equilibrium cesium partial pressure and the equilibrium oxygen partial pressure over two and three phase regions in the Cs-U-O system. For a given temperature, the equilibrium cesium partial pressure in a two phase region decreases as the equilibrium oxygen partial pressure increases. (author)

  3. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-107 K).

    Science.gov (United States)

    Ocaña, A J; Blázquez, S; Ballesteros, B; Canosa, A; Antiñolo, M; Albaladejo, J; Jiménez, E

    2018-02-21

    Ethanol, CH 3 CH 2 OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH 3 CH 2 OH (k(T)) between 21 and 107 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(107 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10 -11 (T/300 K) -(0.71±0.10) cm 3 molecule -1 s -1 . In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (∼10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10 -11 cm 3 molecule -1 s -1 at 100 K and around 1 × 10 -10 cm 3 molecule -1 s -1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  4. Water activities of ternary mixtures of poly(ethylene glycol), NaCl and water over the temperature range of 293.15 K to 313.15 K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Ziamajidi, Fatemeh

    2006-01-01

    The improved isopiestic method has been used to obtain activities of water for aqueous solutions of poly(ethylene glycol) 400/NaCl at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. From these measurements, values of the vapour pressure of solutions were determined. The effect of temperature on the (vapour + liquid) equilibrium of {poly(ethylene glycol) + NaCl + H 2 O} systems has been studied. It was found that the slope of the constant activity lines for water increased with increasing temperature. The results have been discussed on the basis of the effect of temperature on the hydrophobicity of the polymer. Also it was found that the vapour pressure depression for an aqueous (PEG + NaCl) system is more than the sum of those for the corresponding binary solutions. Furthermore, the segment-based local composition Wilson model has been used for the correlation of the experimental water activity data. The agreement between the correlation and the experimental data are good

  5. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5Al17.5Mn11 shape memory alloy

    Directory of Open Access Journals (Sweden)

    Sheng Xu

    2016-10-01

    Full Text Available The elastocaloric effect in a columnar-grained Cu71.5Al17.5Mn11 shape memory alloy fabricated by directional solidification was investigated. A large entropy change of 25.0 J/kg K generated by the reversible martensitic transformation was demonstrated. The adiabatic temperature change of 12-13 K was directly measured, covering a wide temperature range of more than 100 K. The low applied stress with a specific elastocaloric ability of 100.8 K/GPa was identified and the potentially attainable operational temperature window as wide as more than 215 K was also discussed. The outstanding elastocaloric refrigeration capability, together with the low applying stress and uniform phase transformation, makes the columnar-grained Cu–Al–Mn shape memory alloy a promising material for solid-state refrigeration.

  6. Cooling of high temperature superconductors below 60 K by means of a two-stage cryogenic mixed refrigerant cascade; Kuehlung von Hochtemperatursupraleitern unterhalb von 60 K mittels einer zweistufigen Gemischkaeltekaskade

    Energy Technology Data Exchange (ETDEWEB)

    Kochenburger, T.M. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Thermodynamik und Kaeltetechnik (ITTK); Grohmann, S. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Thermodynamik und Kaeltetechnik (ITTK); Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Technische Physik (ITEP)

    2015-07-01

    High temperature superconductors enable the efficient transmission of electrical energy in urban and industrial networks. It is the availability of simple, reliable and at the same time efficient cooling methods prerequisite for the application of this technology. At operating temperatures 65-80 K is the cooling currently mostly implemented by liquid nitrogen, large-scale turbo-Brayton plants or batteries of regenerative cryocooler; however, all these options for applications in the range of a few kW of required cooling capacity have thermodynamic, economic and practical limitations. In addition, a further lowering the cooling temperature below 60 K is desirable to increase the current density in the superconductors. Two-stage cryogenic mixed refrigerant cascade offer the potential for a reliable and easily scalable alternative for refrigeration in this temperature range. The first stage of the considered process consists of a classic mixture refrigeration cycle to pre-cool to 120 K. The second stage operates in the low temperature range up to 55 K with a mixture of nitrogen, oxygen and neon at high pressures. This paper compares on the basis of experimental data, the performance of combustible and non-combustible mixtures in the precooling level. The applicability of various equations of state for modeling of phase behavior of mixtures is discussed. [German] Hochtemperatursupraleiter ermoeglichen den effizienten Transport elektrischer Energie in urbanen und industriellen Netzen. Dabei ist die Verfuegbarkeit von einfachen, zuverlaessigen und gleichzeitig effizienten Kuehlmethoden Voraussetzung fuer die Anwendung dieser Technologie. Bei Betriebstemperaturen von 65 - 80 K wird die Kuehlung derzeit meist durch Fluessigstickstoff, grossskalige Turbo-Brayton-Anlagen oder Batterien regenerativer Kleinkuehler realisiert; jedoch haben alle diese Optionen fuer Anwendungen im Bereich von einigen kW an erforderlicher Kaelteleistung thermodynamische, oekonomische und

  7. Temperature dependence of the dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 1.0-8.5 eV

    Science.gov (United States)

    Sturm, C.; Schmidt-Grund, R.; Zviagin, V.; Grundmann, M.

    2017-08-01

    The full dielectric tensor of monoclinic Ga2O3 (β-phase) was determined by generalized spectroscopic ellipsometry in the spectral range from 1.0 eV up to 8.5 eV and temperatures in the range from 10 K up to 300 K. By using the oriented dipole approach, the energies and broadenings of the excitonic transitions are determined as a function of the temperature, and the exciton-phonon coupling properties are deduced.

  8. Temperature Measurements Using Type K Thermocouples and the Fluke Helios Plus 2287A Datalogger

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Vonbank, R.; Jensen, Rasmus Lund

    the circuit creates a circuit in which the two legs generate different voltages, leaving a small difference in voltage available for measurement (Figure 1). That difference increases with temperature, and can typically be between one and seventy micro-volts per Kelvin (μV/K) for the modern range of available...

  9. Influence of temperature on the spectral characteristics of semiconductor lasers in the visible range

    Science.gov (United States)

    Adamov, A. A.; Baranov, M. S.; Khramov, V. N.

    2018-04-01

    The results of studies on the effect of temperature on the output spectral characteristics of continuous semiconductor lasers of the visible range are presented. The paper presents the results of studying the spectral-optical radiation parameters of semiconductor lasers, their coherence lengths, and the dependence of the position of the spectral peak of the wavelength on temperature. This is necessary for the selection of the most optimal laser in order to use it for medical ophthalmologic diagnosis. The experiment was carried out using semiconductor laser modules based on a laser diode. The spectra were recorded by using a two-channel automated spectral complex based on the MDR-23 monochromator. Spectral dependences on the temperature of semiconductor lasers are obtained, in the range from 300 to 370 K. The possibility of determining the internal damage to the stabilization of laser modules without opening the case is shown, but only with the use of their spectral characteristics. The obtained data allow taking into account temperature characteristics and further optimization of parameters of such lasers when used in medical practice, in particular, in ophthalmologic diagnostics.

  10. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  11. Isobaric specific heat capacity of water and aqueous cesium chloride solutions for temperatures between 298 K and 370 K at p = 0.1 MPa

    International Nuclear Information System (INIS)

    Lourenco, M.J.V.; Santos, F.J.V.; Ramires, M.L.V.; Nieto de Castro, C.A.

    2006-01-01

    There has been some controversy regarding the uncertainty of measurements of thermal properties using differential scanning calorimeters, namely heat capacity of liquids. A differential scanning calorimeter calibrated in enthalpy and temperature was used to measure the isobaric specific heat capacity of water and aqueous solutions of cesium chloride, in the temperature range 298 K to 370 K, for molalities up 3.2 mol . kg -1 , at p = 0.1 MPa, with an estimated uncertainty (ISO definition) better than 1.1%, at a 95% confidence level. The measurements are completely traceable to SI units of energy and temperature. The results obtained were correlated as a function of temperature and molality and compared with other authors, obtained by different methods and permit to conclude that a DSC calibrated by Joule effect is capable of very accurate measurements of the isobaric heat capacity of liquids, traceable to SI units of measurement

  12. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-10^7 K)

    Science.gov (United States)

    Ocaña, A. J.; Blázquez, S.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejoab, J.; Jiménez, E.

    2018-02-01

    Ethanol, CH3CH2OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH3CH2OH (k(T)) between 21 and 10^7 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(10^7 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10^-11 (T/300 K)-(0.71±0.10) cm^3 molecule^-1 s^-1. In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (˜10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10^-11 cm^3 molecule^-1 s^-1 at 100 K and around 1 × 10^-10 cm^3 molecule^-1 s^-1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  13. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  14. A combined stochastic analysis of mean daily temperature and diurnal temperature range

    Science.gov (United States)

    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E.

    2018-03-01

    In this paper, a stochastic model, previously proposed for the maximum daily temperature, has been improved for the combined analysis of mean daily temperature and diurnal temperature range. In particular, the procedure applied to each variable sequentially performs the deseasonalization, by means of truncated Fourier series expansions, and the normalization of the temperature data, with the use of proper transformation functions. Then, a joint stochastic analysis of both the climatic variables has been performed by means of a FARIMA model, taking into account the stochastic dependency between the variables, namely introducing a cross-correlation between the standardized noises. The model has been applied to five daily temperature series of southern Italy. After the application of a Monte Carlo simulation procedure, the return periods of the joint behavior of the mean daily temperature and the diurnal temperature range have been evaluated. Moreover, the annual maxima of the temperature excursions in consecutive days have been analyzed for the synthetic series. The results obtained showed different behaviors probably linked to the distance from the sea and to the latitude of the station.

  15. The density of molten indium at temperatures up to 600 K

    International Nuclear Information System (INIS)

    Alchagirov, B.B.; Khatsukov, A.M.; Mozgovoj, A.G.

    2004-01-01

    The liquid indium density measurement is carried out through the pycnometric method within the temperature range of 434-600 K both by heating and cooling. The totality of the obtained results was processed through the approximating equation. The root-mean-square deviation of the experimental data from the approximating equation does not exceed ±0.01%. The high accuracy of the obtained results is noted. The deviation of the existing data on the liquid indium density from the approximating equation is shown graphically [ru

  16. Densities and volumetric properties of (acetonitrile+an amide) binary mixtures at temperatures between 293.15K and 318.15K

    International Nuclear Information System (INIS)

    Nain, Anil Kumar

    2006-01-01

    The densities of binary mixtures of acetonitrile (ACN) with formamide (FA), N,N-dimethylformamide (DMF), N-methylacetamide (NMA), and N,N-dimethylacetamide (DMA), including those of pure liquids, over the entire composition range were measured at temperatures (293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E , and partial molar volumes, V-bar m,1 and V-bar m,2 , were calculated over whole composition range. The variation of these parameters with composition and temperature of the mixtures has been discussed in terms of molecular interaction in these mixtures. The V m E values were found negative for all the mixtures and at each temperature studied, indicating the presence of specific interactions between ACN and amide molecules. The extent of negative deviations in V m E values follows the order: FA>NMA>DMA>DMF. It is observed that the V m E values depend upon the positions of methyl groups in these amide molecules

  17. Effect of Low Temperature on a 4 W/60 K Pulse-Tube Cryocooler for Cooling HgCdTe Detector

    Science.gov (United States)

    Zhang, Ankuo; Liu, Shaoshuai; Wu, Yinong

    2018-04-01

    Temperature is an extremely important parameter for the material of the space-borne infrared detector. To cool an HgCdTe-infrared detector, a Stirling-type pulse-tube cryocooler (PTC) has been developed based on a great deal of numerical simulations, which are performed to investigate the thermodynamic behaviors of the PTC. The effects of different low temperatures are presented to analyze different energy flows, losses, phase shifts, and impedance matching of the PTC at a temperature range of 40-120 K, where woven wire screens are used. Finally, a high-efficiency coaxial PTC has been designed, built, and tested, operating around 60 K after a number of theoretical and experimental studies. The PTC can offer a no-load refrigeration temperature of 40 K with an input electric power of 150 W, and a cooling power of 4 W at 60 K is obtained with Carnot efficiency of 12%. In addition, a comparative study of simulation and experiment has been carried out, and some studies on reject temperatures have been presented for a thorough understanding of the PTC system.

  18. Computer calculation of heat capacity of natural gases over a wide range of pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dranchuk, P.M. (Alberta Univ., Edmonton, AB (Canada)); Abou-Kassem, J.H. (Pennsylvania State Univ., University Park, PA (USA))

    1992-04-01

    A method is presented whereby specific heats or heat capacities of natural gases, both sweet and sour, at elevated pressures and temperatures may be made suitable to modern-day machine calculation. The method involves developing a correlation for ideal isobaric heat capacity as a function of gas gravity and pseudo reduced temperature over the temperature range of 300 to 1500 K, and a mathematical equation for the isobaric heat capacity departure based on accepted thermodynamic principles applied to an equation of state that adequately describes the behavior of gases to which the Standing and Katz Z factor correlation applies. The heat capacity departure equation is applicable over the range of 0.2 {le} Pr {le} 15 and 1.05 {le} Tr {le} 3, where Pr and Tr refer to the reduced pressure and temperature respectively. The significance of the method presented lies in its utility and adaptability to computer applications. 25 refs., 2 figs., 4 tabs.

  19. Peculiarities of austenitic state in premartensitic temperature range

    International Nuclear Information System (INIS)

    Sarrak, V.I.; Suvorova, S.O.

    1982-01-01

    A review of works on the study of austenite behaviour in premartensitic temperature range carried out using the investigation methods of resistance to microplastic deformation, mechanical properties and internal friction, is presented. The investigation is carried out using carbon-free iron-nickel alloy N31, alloy 40N24 and alloy 50Kh20N10. It is established that in premartensitic temperature range at a certain temperature Msub(elast.) exceeding by approximately 35 deg C the starting temperature of martensitic transformation, austenite state changes sharply: mechanical instability as to microplastic deformation appears. It manifests itself in an anomalous decrease of resistance to microplastic deformation at the temperature approaching the beginning of martensitic transformation. Martensitic transformation develops under tension in an elastic region. At the temperature above Msub(elast.) martensitic transformation develops only under the effect of plastic deformation. Decrease of temperature of martensitic transformation start as a result of microplastic deformation and subsequent ageing is connected with blocking of possible places of martensite initiation

  20. Peculiarities of austenitic state in premartensitic temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Sarrak, V.I.; Suvorova, S.O.

    A review of works on the study of austenite behaviour in premartensitic temperature range carried out using the investigation methods of resistance to microplastic deformation, mechanical properties and internal friction, is presented. The investigation is carried out using carbon-free iron-nickel alloy N31, alloy 40N24 and alloy 50Kh20N10. It is established that in premartensitic temperature range at a certain temperature Msub(elast.) exceeding by approximately 35 deg C the starting temperature of martensitic transformation austenite state changes sharply: mechanical instability as to microplastic deformation appears. It manifests itself in an anomalous decrease of resistance to microplastic deformation at the temperature approaching the beginning of martensitic transformation. Martensitic transformation develops under tension in an elastic region. At the temperature above Msub(elast.) martensitic transformation develops only under the effect of plastic deformation. Decrease of temperature of martensitic transformation start as a result of microplastic deformation and subsequent ageing is connected with blocking of possible places of martensite initiation.

  1. Thermo-economic optimization of heat recovery steam generator for a range of gas turbine exhaust temperatures

    International Nuclear Information System (INIS)

    Nadir, Mahmoud; Ghenaiet, Adel; Carcasci, Carlo

    2016-01-01

    Highlights: • Thermo-economic optimization of HRSG configurations. • The maximum value of the net present value was targeted for the economic optimization. • Three level HRSG is the best option in respect of power output and high priced medium. • Two level HRSG is the best for net benefit in low and intermediate priced mediums. - Abstract: This paper illustrates the effect of selling price on the optimum design parameters of a heat recovery steam generator (HRSG) and the selection of its ideal configuration for an outlet temperature range of 350–650 °C. The Particle Swarm Optimization (PSO) method was used, considering the steam cycle specific work as an objective to be maximized, the net present value as another objective to be maximized for the economic optimization and a combination of both. Three configurations of heat recovery steam generators are considered with one, two and three pressure levels and a reheat. The results show that, the three pressure level system is the best configuration from a thermodynamic point of view, but with respect to the economical aspect the two pressure levels is the best configuration for the low and medium selling prices (0.04 $/kW h, 0.08 $/kW h and 0.2 $/kW h), whereas the three pressure level configuration would only be interesting for a high selling price of 0.3 $/kW h and a temperature range 450–600 °C. For a temperature of 650 °C, the high cost of the three level system leads to a decrease in the net present value. As the selling price increases the optimized design parameters of the three pressure level HRSG based on economic or thermodynamic optimization are similar. The obtained results are used to elaborate a new correlation relating the net present value with the gas turbine outlet temperature, gas mass flow rate, number of levels of HRSG and selling price.

  2. Thermodynamic and transport properties of (1-Butanol + 1,4-Butanediol) at temperatures from (298.15 to 318.15) K

    International Nuclear Information System (INIS)

    Zorebski, Edward; Geppert-Rybczynska, Monika

    2010-01-01

    Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich-Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg-Nissan and McAllister equations for viscosities of mixtures have also been examined.

  3. Simvastatin: structure solution of two new low-temperature phases from synchrotron powder diffraction and ss-NMR

    Czech Academy of Sciences Publication Activity Database

    Hušák, M.; Kratochvíl, B.; Jegorov, A.; Brus, Jiří; Maixner, J.; Rohlíček, J.

    2010-01-01

    Roč. 21, č. 3 (2010), s. 511-518 ISSN 1040-0400 R&D Projects: GA AV ČR IAA400500602; GA MŠk 2B08021 Institutional research plan: CEZ:AV0Z40500505 Keywords : crystal structure * simvastatin * powder diffraction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.727, year: 2010

  4. Realization of the Temperature Scale in the Range from 234.3 K (Hg Triple Point) to 1084.62°C (Cu Freezing Point) in Croatia

    Science.gov (United States)

    Zvizdic, Davor; Veliki, Tomislav; Grgec Bermanec, Lovorka

    2008-06-01

    This article describes the realization of the International Temperature Scale in the range from 234.3 K (mercury triple point) to 1084.62°C (copper freezing point) at the Laboratory for Process Measurement (LPM), Faculty of Mechanical Engineering and Naval Architecture (FSB), University of Zagreb. The system for the realization of the ITS-90 consists of the sealed fixed-point cells (mercury triple point, water triple point and gallium melting point) and the apparatus designed for the optimal realization of open fixed-point cells which include the gallium melting point, tin freezing point, zinc freezing point, aluminum freezing point, and copper freezing point. The maintenance of the open fixed-point cells is described, including the system for filling the cells with pure argon and for maintaining the pressure during the realization.

  5. Vapor pressure data for ethyl-2-methylbutyrate, hexanal and (E)-2-hexenal at a pressure range of (25 to 190) kPa

    International Nuclear Information System (INIS)

    Meneses, David A.; Bejarano, Arturo; Fuente, Juan C. de la

    2014-01-01

    Highlights: • Vapor pressures of three pure apple aroma constituents were measured. • Measurements were made over the temperature range of (362.1 to 429.9) K. • Constants of Antoine and Wagner type equations were fitted to the experimental data. • Relative deviations (rmsd) from the three vapor-pressure equations were <0.9%. • Contrast with literature showed discrepancies <9% among them and with this work. - Abstract: The saturated vapor pressures of pure ethyl-2-methylbutyrate, hexanal and (E)-2-hexenal, which are volatile compounds characteristic of apple aroma, were measured with a dynamic recirculation apparatus at a pressure range of (24.5 to 190.0) kPa. Measurements were made over the temperature range of (362.1 to 429.9) K for ethyl-2-methylbutyrate, (358.1 to 425.8) K for hexanal, and (373.5 to 446.2) K for (E)-2-hexenal. The maximum likelihood method was used to estimate the parameters of the Antoine equation, whereas the parameters of an extended Antoine equation and the Wagner equation were determined by non linear least square method. The three models showed root mean square deviations (rmsd) of 0.29%, 0.28%, and 0.27% for ethyl-2-methylbutyrate, 0.58%, 0.48%, and 0.38% for hexanal, and 0.89%, 0.62% and 0.36% for (E)-2-hexenal, respectively. Additionally, the experimental data and correlation were compared with those available in the literature

  6. The (p, ρ, T, x) properties for {x propane + (1 - x) isobutane} with x = (1.0000, 0.2765, 0.5052, and 0.7468) in the temperature range from (280 to 440) K at pressures from (1 to 200) MPa

    International Nuclear Information System (INIS)

    Miyamoto, H.; Shigetoyo, K.; Uematsu, M.

    2007-01-01

    The (p, ρ, T, x) properties for {x propane + (1 - x) isobutane} with x = (1.0000, 0.2765, 0.5052, and 0.7468) in the compressed liquid phase were measured by means of a metal-bellows variable volumometer in the temperature range from (280 to 440) K at pressures from (1 to 200) MPa. The mole fraction purities of the propane and isobutane used in the measurements were 0.9999 and 0.9999, respectively. The expanded uncertainties (k = 2) in temperature, pressure, density, and composition measurements have been estimated to be less than ±3 mK; 1.4 kPa (p ≤ 7 MPa), 0.06% (7 MPa 150 MPa); 0.09%; and 1.3 . 10 -4 , respectively. In the region above 100 MPa at T (280 and 440) K, the uncertainty in density measurements increases from 0.09% to 0.13% and 0.22%, respectively. Comparisons of the available equation of state with the present measurements are reported. On the basis of the present results, the excess molar volume V m E of the mixtures was calculated and illustrated as a function of temperature and pressure

  7. Thermal Conductance and High-Frequency Properties of Cryogenic Normal or Superconducting Semi-rigid Coaxial Cables in the Temperature Range of 1-8 K

    Science.gov (United States)

    Kushino, A.; Kasai, S.; Ukibe, M.; Ohkubo, M.

    2018-04-01

    In this study, the characteristics of thin semi-rigid cables composed of different conductors and with outer diameters ranging from 0.86 to 1.19 mm were investigated at low temperatures. The thermal conductance was measured between approximately 1 and 8 K, and the frequency dependence of the attenuation in the cables was obtained at 3 K. The electrical conductors used in the cables were alloys: beryllium copper, brass, stainless steel (SUS304), phosphor bronze, cupronickel (CuNi), and niobium-titanium (NbTi). The thermal conductance of a commercial miniature coaxial cable with braided wires forming the outer electrical conductor was also examined for reference. The measured thermal conductance was compared to published data and that generated from material libraries and databases. Among the measured cables using normal metals, the semi-rigid cable composed of SUS304 conductors and a polytetrafluoroethylene insulator showed the lowest thermal conductance. The transmission performance of the semi-rigid cables using SUS304 or CuNi was improved by plating the central conductors with a silver coating of approximately 3 μm thickness, and their thermal conductance with the plating increased by approximately one order of magnitude. The superconducting NbTi semi-rigid cable exhibited the lowest thermal conductance of all the cables considered in the present study along with very small attenuation up to above 5 GHz.

  8. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jia Kan; Sun Weifeng; Shi Longxing, E-mail: jiakan.01@gmail.com [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2011-06-15

    A sub-circuit SPICE model of a MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures. (semiconductor devices)

  9. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    Science.gov (United States)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Dressel, Martin; Scheffler, Marc

    2015-05-01

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr3+ ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  10. Creep and low cycles fatigue behaviour of inconel 617 and alloy 800H in the temperature range 1073-1223

    International Nuclear Information System (INIS)

    Yun, H.M.

    1984-01-01

    The creep rupture properties of high temperature alloys are being determined as part of the materials programme for the development of the high temperature, gas-cooled reactor (HTGR) as a source of nuclear process heat, especially for the gasification of lignite and coal. INCOLOY 800H AND INCONEL 617 have been tested in the temperature range from 1073 K to 1223 K in air as well as in helium with HTGR specific impurities. The static and dynamic creep behaviour of INCONEL 617 have been determined in constant load creep tests, relaxation tests and stress reduction tests. The results have been interpreted using the internal stress on the applied stress and test temperature was determined. In a few experiments the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. (Author)

  11. Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K

    International Nuclear Information System (INIS)

    Wang Haijun; Liu Wei; Huang Jihou

    2004-01-01

    The densities of (o-xylene, or m-xylene, or p-xylene + dimethyl sulfoxide) were measured at temperatures (293.15, 303.15, 313.15, 323.15, 333.15, 343.15, 353.15) K and atmospheric pressure by means of a vibrating-tube densimeter. The excess molar volume V m E calculated from the density data provide the temperature dependence of V m E in the temperature range of (293.15 to 353.15) K. The V m E results were correlated using the fourth-order Redlich-Kister equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. Also we have calculated partial molar volume and excess partial molar volumes of two components. It was found that the V m E in the systems studied increase with rising temperature

  12. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  13. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J. J.; Henins, A.; Hardis, J. E. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Estupinan, E. G. [Osram Sylvania Inc., Beverly, Massachusetts 01915 (United States); Lapatovich, W. P. [Independent Consultant, 51 Pye Brook Lane, Boxford, Massachusetts 01921 (United States); Shastri, S. D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  14. Measuring the microwave response of superconducting Nb:STO and Ti at mK temperatures using superconducting resonators

    Energy Technology Data Exchange (ETDEWEB)

    Thiemann, Markus; Beutel, Manfred; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    Niobium doped SrTiO{sub 3} is a superconductor, with the lowest charge carrier density among all superconductors. It shows a dome in the transition temperature as a function of doping concentration with a maximum T{sub c} ∼ 0.3 K. The superconducting dome may originate from the different bands being occupied depending on the doping level. The low energy scales of the system, as indicated by the low T{sub c} are within the GHz-regime. Therefore microwave measurements are a powerful technique to reveal the electronic properties of these superconductors. We preformed microwave measurements on Nb:STO of different doping levels in a dilution refrigerator, using superconducting stripline resonators. Measurements were done in a temperature and frequency range from 40-400 mK and 1-20 GHz, covering the normal and superconducting states. For comparison we also measured the temperature dependence of the surface impedance of superconducting titanium (T{sub c} ∼ 0.5 K), which can be well described by the Mattis-Bardeen equations with a ratio (2Δ)/(k{sub B}T{sub c}) = 3.56. Therefore titanium is an ideal reference sample representing a conventional BCS-superconductor.

  15. Critical Temperature of Randomly Diluted Two-Dimensional Heisenberg Ferromagnet, K2CuxZn(1-x)F4

    Science.gov (United States)

    Okuda, Yuichi; Tohi, Yasuto; Yamada, Isao; Haseda, Taiichiro

    1980-09-01

    The susceptibility of randomly diluted two-dimensional Heisenberg-like ferromagnet K2CuxZn(1-x)F4 was measured down to 50 mK, using the 3He-4He dilution refrigerator and a SQUID magnetometer. The ferromagnetic critical temperature Tc(x) was obtained for x{=}0.98, 0.94, 0.85, 0.82, 0.68, 0.60, 0.54, 0.50 and 0.42. The value of [1/Tc(1)][(d/dx)Tc(x)]x=1 was approximately 3.0. The critical temperature versus x curve exhibits a noticeable tail near the critical concentration, which may stem from the second nearest-neighbor interaction. The critical concentration xc, below which concentration there is no long range order down to T{=}0 K, was estimated to be 0.45˜0.50. The susceptibility of sample with x{=}0.42 behaves as if it obeys the Curie law down to 50 mK.

  16. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Guo, Xiaoxue; Zhao, Hu; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, No. 28 XianNing West Road, Xi' an, Shaanxi Province 710049 (China); Murphy, Anthony B. [CSIRO Manufacturing Flagship, PO Box 218, Lindfield NSW 2070 (Australia)

    2015-04-14

    The influence of copper vapor mixed in hot CO{sub 2} on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K–4000 K is numerically analyzed. First, the equilibrium composition of hot CO{sub 2} with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric field (E/N){sub cr} is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N){sub cr} of the CO{sub 2}–Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O{sub 2} from the thermal dissociation of CO{sub 2} contributes to the increase of (E/N){sub cr} of CO{sub 2}–Cu hot gas mixtures from about 2000 K to 3500 K.

  17. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    Science.gov (United States)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  18. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    International Nuclear Information System (INIS)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power

  19. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    Energy Technology Data Exchange (ETDEWEB)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S. [AL-AT, 2 rue de Clémencières, 38360 Sassenage (France); Baguer, G. M. Gistau [CRYOGUY, 44, chemin de la Buisse, 38330 Biviers (France)

    2014-01-29

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  20. Luminescence of high density electron-hole plasma in CdS and CdSe in a wide temperature range

    International Nuclear Information System (INIS)

    Yoshida, H.; Shionoya, S.

    1983-01-01

    Time-resolved spectra of the spontaneous luminescence of the high density electron-hole plasma (EHP) in CdS and CdSe are observed in a wide range of temperature which is surely higher than the calculated critical temperature for electron-hole liquid formation, in order to carry forward discussion on dynamic nature of the EHP previously observed in 4.2 K experiments. Spectra in the late stage are analyzed, and obtained values of the reduced bandgap energy and chemical potential are compared with those theoretically calculated for higher temperatures. The aspects of the change of the spectral shape in the late stage are hard to understand. Unfortunately no clear conclusion is drawn on the nature of the EHP produced at 4.2 K. The only thing one can say is that the condensed electron-hole liquid state, which is in equilibrium with the exciton state, is not realized. (author)

  1. P, ρ, T and heat capacity measurements of (α-pinene + β-pinene) mixtures over the temperature range 283.15 K to 358.15 K and pressures up to 40 MPa: Experiments and modelling

    International Nuclear Information System (INIS)

    Langa, Elisa; Palavra, Antonio M.F.; Lourenço, Maria J.V.; Nieto de Castro, Carlos A.; Mainar, Ana M.

    2013-01-01

    Highlights: ► Density as a function of P, T and composition was measured for pinene mixtures. ► Isothermal compressibility and coefficients of cubic expansion were also calculated. ► Isobaric heat capacity was also determined as function of temperature and composition. ► Usual behaviour of these properties was found. ► SAFT and PC-SAFT were used as predictive models, showing PC-SAFT the best predictions. - Abstract: The density and isobaric heat capacity of the binary system {α-pinene (4,7,7-trimethylbicyclo[3.1.1]hept-3-ene (1), CAS Number 7785-26-4) + β-pinene (6,6-dimethyl-2-methylene-bicyclo[3.1.1]heptane (2), CAS Number 127-91-3)} has been measured for eleven different compositions. The density was determined at five pressures from (20 MPa to 40 MPa) and temperatures from (283.15 K to 358.15 K) and the isobaric heat capacity at atmospheric pressure and temperatures from (313.15 K to 418.15 K). Density was measured with an experimental uncertainty estimated to be ± 0.5 kg·m −3 . The isothermal compressibility and isobaric thermal expansion were derived from the experimental density data. The isobaric heat capacity was determined with a DSC calorimeter being the experimental uncertainty lower than 1.5%. Isobaric heat capacity behaviour was as expected for both pure compounds and for mixtures. Two different equations of state, conventional SAFT and PC-SAFT, were applied to calculate the densities of the mixture, being the best predictions achieved with PC-SAFT equation.

  2. STELLAR DIAMETERS AND TEMPERATURES. III. MAIN-SEQUENCE A, F, G, AND K STARS: ADDITIONAL HIGH-PRECISION MEASUREMENTS AND EMPIRICAL RELATIONS

    International Nuclear Information System (INIS)

    Boyajian, Tabetha S.; Jones, Jeremy; White, Russel; McAlister, Harold A.; Gies, Douglas; Von Braun, Kaspar; Van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm; Ridgway, Stephen

    2013-01-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR J I J JHK), Cousins (R C I C ), Kron (R K I K ), Sloan (griz), and WISE (W 3 W 4 ) photometric systems. These relations have an average standard deviation of ∼3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ∼2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  3. Calorimetric study of alternating copolymer of bicyclo[2,2,1]-hepta-2,5-diene and carbon monoxide in the range from T->0 to 510K

    International Nuclear Information System (INIS)

    Smirnova, N.N.; Nikishchenkova, L.V.; Bykova, T.A.; Kulagina, T.G.; Belov, G.P.; Novikova, E.V.

    2006-01-01

    By adiabatic vacuum and dynamic calorimetry, the temperature dependence of heat capacity for alternating copolymer of bicyclo[2,2,1]-hepta-2,5-diene and carbon monoxide has been determined over the 6-510K range with an uncertainty of 0.2-0.5% between 6 and 350K and 0.5-1.5% from 330 to 510K. In the above temperature ranges, the physical transformations of the copolymer have been detected and their thermodynamic characteristics have been estimated. In a calorimeter with a static bomb and an isothermal shield, the energy of combustion of the copolymer has been measured at 298.15K. Based on the experimental data, the thermodynamic functions of the copolymer, namely, the heat capacity C p - bar (T), enthalpy H o (T)-H o (0), entropy S o (T)-S o (0) and Gibbs function G o (T)-H o (0) have been determined for the range from T->0 to 400K. The enthalpy of combustion Δ c H o and the thermodynamic parameters Δ f H o , Δ f S o , Δ f G o and lnK f - bar of reaction of formation of the copolymer from simple substances at T=298.15K and p=0.1MPa have been calculated. The data cited in the present work and literature data were used to calculate the thermodynamic characteristics of the alternating copolymerization in bulk of bicyclo[2,2,1]-hepta-2,5-diene and CO in the 0-340K range at standard pressure as well as to compare them with the thermodynamic characteristics of the synthesis of isomeric polyketone

  4. Ice nucleation rates near ˜225 K

    Science.gov (United States)

    Amaya, Andrew J.; Wyslouzil, Barbara E.

    2018-02-01

    We have measured the ice nucleation rates, Jice, in supercooled nano-droplets with radii ranging from 6.6 nm to 10 nm and droplet temperatures, Td, ranging from 225 K to 204 K. The initial temperature of the 10 nm water droplets is ˜250 K, i.e., well above the homogeneous nucleation temperature for micron sized water droplets, TH ˜235 K. The nucleation rates increase systematically from ˜1021 cm-3 s-1 to ˜1022 cm-3 s-1 in this temperature range, overlap with the nucleation rates of Manka et al. [Phys. Chem. Chem. Phys. 14, 4505 (2012)], and suggest that experiments with larger droplets would extrapolate smoothly the rates of Hagen et al. [J. Atmos. Sci. 38, 1236 (1981)]. The sharp corner in the rate data as temperature drops is, however, difficult to match with available theory even if we correct classical nucleation theory and the physical properties of water for the high internal pressure of the nanodroplets.

  5. X-ray diffraction measurement of the linear thermal expansion coefficients of WCoB in the range 300 to 973 K

    International Nuclear Information System (INIS)

    Petrov, K.; Will, G.

    1981-01-01

    High-temperature treatment of tungsten carbide-cobalt hard alloys in TiB 2 media leads to the formation of a surface diffusion coating which contains orthorhombic WCoB. The function of this compound in enhancing wear resistance of cutting tools, is discussed. The thermal expansion of WCoB is of primary interest, since the wear resistance of the coating reflects the degree of matching of the thermal expansion coefficients of the different phases. Preparation of the samples is described and experimental details of the X-ray diffraction measurements are given. The temperature dependence of the lattice parameters for the range 300 to 973 K, and the corresponding linear thermal expansion coefficients along the three principal crystallographic directions, are given. The results are discussed in terms of the bonding features of the solid. (U.K.)

  6. Thermal conduction and linear expansion of sintered rhenium and tungsten-rhenium alloys at a temperature up to 1000 K

    International Nuclear Information System (INIS)

    Pozdnyak, N.Z.; Belyaev, R.A.; Vavilov, Yu.V.; Vinogradov, Yu.G.; Serykh, G.M.

    1978-01-01

    Preparation technology (by powder metallurgy methods) of sintered rhenium and tungsten-rhenium VR-5, VR-10, and VR-20 alloys is described. Thermal conduction of rhenium and VR-20 alloy has been measured in the temperature range from 300 to 1000 K. The value obtained turned out to be considerably less than those published elsewhere, this testifies to the great thermal contact resistance between the material grains. Also measured is the mean linear expansion coefficient for the mentioned above materials in the same temperature range. Linear expansion increases with rhenium content increase

  7. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    International Nuclear Information System (INIS)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Dressel, Martin; Scheffler, Marc; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold

    2015-01-01

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr 3+ ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines

  8. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany)

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  9. Reaction F + C2H4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2018-03-29

    The kinetics and products of the reaction of F + C 2 H 4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k 1 = (1.78 ± 0.30) × 10 -10 cm 3 molecule -1 s -1 , determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C 2 H 4 , was found to be temperature independent in the temperature range used. H, C 2 H 3 F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k 1b / k 1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k 1a / k 1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C 2 H 3 F) and H atom abstraction (HF + C 2 H 3 ) pathways of the title reaction: k 1a = (0.80 ± 0.07) × 10 -10 exp(189 ± 37/ T) and k 1b = (1.26 ± 0.13) × 10 -10 exp(-414 ± 45/ T) cm 3 molecule -1 s -1 , respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k 1a and k 1b . The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.

  10. Partial molar volumes of organic solutes in water. XXIV. Selected alkane-α,ω-diols at temperatures T = 298 K to 573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan; Hnědkovský, Lubomír

    2013-01-01

    Highlights: • Standard molar volumes of three alkane-α,ω-diols (C 5 , C 8 , C 9 ) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Dependences on carbon atom number, temperature, and pressure are analysed. -- Abstract: Density data for dilute aqueous solutions of three alkane-α,ω-diols (pentane-1,5-diol, octane-1,8-diol, nonane-1,9-diol) are presented together with standard molar volumes (partial molar volumes at infinite dilution) calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K. Experimental pressures were slightly above the saturation vapour pressure of water, and (15 and 30) MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Measured standard molar volumes were combined with data previously published for other members of the homologous series and discussed. Experimental standard molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function. Dependences of standard molar volumes on temperature and pressure were analysed. Contributions of the methylene group to the standard molar volume were also evaluated and discussed

  11. Effects of cryogenic irradiation on temperature sensors

    International Nuclear Information System (INIS)

    Courts, S.S.; Holmes, D.S.

    1996-01-01

    Several types of commercially available cryogenic temperature sensors were calibrated, irradiated at 4.2 K by a gamma or neutron source, and recalibrated in-situ to determine their suitability for thermometry in radiation environments. Comparisons were made between pre- and post-irradiation calibrations with the equivalent temperature shift calculated for each sensor at various temperature in the 4.2 K to 330 K range. Four post-irradiation calibrations were performed with annealing steps performed at 20 K, 80 K, and 330 K. Temperature sensors which were gamma irradiated were given a total dose of 10,000 Gy. Temperature sensors which were neutron irradiated were irradiated to a total fluence of 2 x 10 12 n/cm 2 . In general, for gamma radiation environments, diodes are unsuitable for use. Both carbon glass and germanium resistance sensors performed well at lower temperature, while platinum resistance sensors performed best above 30 K. Thin-film rhodium and Cernox trademark resistance sensors both performed well over the 4.2 K to 330 K range. Only thin-film rhodium and Cernox trademark resistance temperature sensors were neutron irradiated and they both performed well over the 4.2 K to 330 K range

  12. The (p, ρ, T, x) properties of (x1 propane + x2n-butane) with x1 (0.0000, 0.2729, 0.5021, and 0.7308) over the temperature range from (280 to 440) K at pressures from (1 to 200) MPa

    International Nuclear Information System (INIS)

    Miyamoto, H.; Uematsu, M.

    2008-01-01

    The (p, ρ, T, x) properties for (x 1 propane + x 2 n-butane) with x 1 = (0.0000, 0.2729, 0.5021, and 0.7308) in the compressed liquid phase were measured by means of a metal-bellows variable volumometer over the temperature range from (280 to 440) K at pressures from (1 to 200) MPa. The mole fraction purities of the propane and n-butane used in the measurements were 0.9999 and 0.9997, respectively. The expanded uncertainties (k = 2) in temperature, pressure, density, and composition measurements have been estimated to be less than ±3 mK; 1.4 kPa (p ≤ 7 MPa), 0.06% (7 MPa 150 MPa); 0.09%; and 4.4 . 10 -4 , respectively. In the region above 100 MPa at T = (280 and 440) K, the uncertainty in density measurements increases from 0.09% to 0.13% and 0.22%, respectively. Comparisons of the available equation of state with the present measurements are reported. On the basis of the present results, the excess molar volume v m E of the mixtures was calculated and illustrated as a function of temperature and pressure

  13. The volumetric properties of (1,2-propanediol carbonate+benzene, or toluene, or styrene) binary mixtures at temperatures from T=293.15 K to T=353.15 K

    International Nuclear Information System (INIS)

    Wang Haijun; Wu Yonghua; Huang Jihou

    2006-01-01

    The densities and excess molar volumes V m E for binary liquid mixtures of (1,2-propanediol carbonate+benzene, or toluene, or ethylbenzene, or styrene) have been measured as a function of compositions using a vibrating-tube densimeter in the temperature range of (293.15 to 353.15) K and at atmospheric pressure. The V m E results were correlated using the fourth-order Redlich-Kister equation. It was found that the V m E in these systems studied increases with rising temperature

  14. Calorimetric study of alternating copolymer of bicyclo[2,2,1]-hepta-2,5-diene and carbon monoxide in the range from T->0 to 510K

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, N.N. [Research Institute of Chemistry, Nizhny Novgorod University, Gagarin Prospekt 23/5, 603950 Nizhny Novgorod (Russian Federation)]. E-mail: smirnova@ichem.unn.runnet.ru; Nikishchenkova, L.V. [Research Institute of Chemistry, Nizhny Novgorod University, Gagarin Prospekt 23/5, 603950 Nizhny Novgorod (Russian Federation); Bykova, T.A. [Research Institute of Chemistry, Nizhny Novgorod University, Gagarin Prospekt 23/5, 603950 Nizhny Novgorod (Russian Federation); Kulagina, T.G. [Research Institute of Chemistry, Nizhny Novgorod University, Gagarin Prospekt 23/5, 603950 Nizhny Novgorod (Russian Federation); Belov, G.P. [Institute of Problems of Chemical Physics of Russian Academy Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Novikova, E.V. [Institute of Problems of Chemical Physics of Russian Academy Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)

    2006-12-01

    By adiabatic vacuum and dynamic calorimetry, the temperature dependence of heat capacity for alternating copolymer of bicyclo[2,2,1]-hepta-2,5-diene and carbon monoxide has been determined over the 6-510K range with an uncertainty of 0.2-0.5% between 6 and 350K and 0.5-1.5% from 330 to 510K. In the above temperature ranges, the physical transformations of the copolymer have been detected and their thermodynamic characteristics have been estimated. In a calorimeter with a static bomb and an isothermal shield, the energy of combustion of the copolymer has been measured at 298.15K. Based on the experimental data, the thermodynamic functions of the copolymer, namely, the heat capacity C{sub p}{sup -}bar (T), enthalpy H{sup o}(T)-H{sup o}(0), entropy S{sup o}(T)-S{sup o}(0) and Gibbs function G{sup o}(T)-H{sup o}(0) have been determined for the range from T->0 to 400K. The enthalpy of combustion {delta}{sub c}H{sup o} and the thermodynamic parameters {delta}{sub f}H{sup o}, {delta}{sub f}S{sup o}, {delta}{sub f}G{sup o} and lnK{sub f}{sup -}bar of reaction of formation of the copolymer from simple substances at T=298.15K and p=0.1MPa have been calculated. The data cited in the present work and literature data were used to calculate the thermodynamic characteristics of the alternating copolymerization in bulk of bicyclo[2,2,1]-hepta-2,5-diene and CO in the 0-340K range at standard pressure as well as to compare them with the thermodynamic characteristics of the synthesis of isomeric polyketone.

  15. Chemical equilibria relating the isotopic hydrogens at low temperatures

    International Nuclear Information System (INIS)

    Pyper, J.W.; Souers, P.C.

    1976-01-01

    Hydrogen fusion will require a fuel mixture of liquefied or frozen D 2 and T 2 . The composition of this fuel mixture is described by the equilibrium constant K/sub DT/. The theory of isotopic exchange reactions is discussed as applied to the hydrogen isotopes. A literature survey of the values of K/sub HD/, K/sub HT/, and K/sub DT/ found no values of K/sub DT/ for temperatures below 25 0 K and no values of K/sub HD/ and K/sub HT/ for temperatures below 50 0 K. The existing data are critically evaluated, and simplified formulas for the three equilibrium constants in the temperature range 50 to 300 0 K are derived from them. Harmonic approximation theory with rotational correction was used to calculate values of K/sub HD/, K/sub HT/, and K/sub DT/ in the temperature range 4.2 to 50 0 K. It is found that K/sub DT/ = 2.995 exp(-10.82/T) in the temperature range 16.7 to 33.3 0 K to an accuracy of 1%. Tables, graphs, and equations of K/sub HD/, K/sub HT/, and K/sub DT/ are given for the temperature range 4.2 to 50 0 K. 27 references, 14 tables, 8 figures

  16. STELLAR DIAMETERS AND TEMPERATURES. III. MAIN-SEQUENCE A, F, G, AND K STARS: ADDITIONAL HIGH-PRECISION MEASUREMENTS AND EMPIRICAL RELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Boyajian, Tabetha S.; Jones, Jeremy; White, Russel; McAlister, Harold A.; Gies, Douglas [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Van Belle, Gerard [Lowell Observatory, Flagstaff, AZ 86001 (United States); Farrington, Chris; Schaefer, Gail; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm [CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Ridgway, Stephen [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States)

    2013-07-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR{sub J} I{sub J} JHK), Cousins (R{sub C} I{sub C}), Kron (R{sub K} I{sub K}), Sloan (griz), and WISE (W{sub 3} W{sub 4}) photometric systems. These relations have an average standard deviation of {approx}3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T{sub eff} > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only {approx}2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  17. Two-stage high frequency pulse tube refrigerator with base temperature below 10 K

    Science.gov (United States)

    Chen, Liubiao; Wu, Xianlin; Liu, Sixue; Zhu, Xiaoshuang; Pan, Changzhao; Guo, Jia; Zhou, Yuan; Wang, Junjie

    2017-12-01

    This paper introduces our recent experimental results of pulse tube refrigerator driven by linear compressor. The working frequency is 23-30 Hz, which is much higher than the G-M type cooler (the developed cryocooler will be called high frequency pulse tube refrigerator in this paper). To achieve a temperature below 10 K, two types of two-stage configuration, gas coupled and thermal coupled, have been designed, built and tested. At present, both types can achieve a no-load temperature below 10 K by using only one compressor. As to gas-coupled HPTR, the second stage can achieve a cooling power of 16 mW/10K when the first stage applied a 400 mW heat load at 60 K with a total input power of 400 W. As to thermal-coupled HPTR, the designed cooling power of the first stage is 10W/80K, and then the temperature of the second stage can get a temperature below 10 K with a total input power of 300 W. In the current preliminary experiment, liquid nitrogen is used to replace the first coaxial configuration as the precooling stage, and a no-load temperature 9.6 K can be achieved with a stainless steel mesh regenerator. Using Er3Ni sphere with a diameter about 50-60 micron, the simulation results show it is possible to achieve a temperature below 8 K. The configuration, the phase shifters and the regenerative materials of the developed two types of two-stage high frequency pulse tube refrigerator will be discussed, and some typical experimental results and considerations for achieving a better performance will also be presented in this paper.

  18. Heart rate, multiple body temperature, long-range and long-life telemetry system for free-ranging animals

    Science.gov (United States)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.

    1980-01-01

    The design details and rationale for a versatile, long-range, long-life telemetry data acquisition system for heart rates and body temperatures at multiple locations from free-ranging animals are presented. The design comprises an implantable transmitter for short to medium range transmission, a receiver retransmitter collar to be worn for long-range transmission, and a signal conditioner interface circuit to assist in signal discrimination and demodulation of receiver or tape-recorded audio outputs. Implanted electrodes are used to obtain an ECG, from which R-wave characteristics are selected to trigger a short RF pulse. Pulses carrying heart rate information are interrupted periodically by a series of pulse interval modulated RF pulses conveying temperature information sensed at desired locations by thermistors. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as radio frequency interference. The implanted transmitter may be used alone for medium and short-range tracking, or with a receiver-transmitter collar that employs commercial tracking equipment for transmissions of up to 12 km. A system prototype has been tested on a dog.

  19. A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

    CERN Multimedia

    2004-01-01

    A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

  20. Low-Temperature Synchrotron Photoionization Study of 2-Methyl-3-buten-2-ol (MBO) Oxidation Initiated by O(3P) Atoms in the 298-650 K Range.

    Science.gov (United States)

    Fathi, Yasmin; Price, Chelsea; Meloni, Giovanni

    2017-04-20

    This work studies the oxidation of 2-methyl-3-buten-2-ol initiated by O( 3 P) atoms. The oxidation was investigated at room temperature, 550, and 650 K. Using the synchrotron radiation from the Advanced Light Source (ALS) of the Lawrence Berkley National Laboratory, reaction intermediates and products were studied by multiplexed photoionization mass spectrometry. Mass-to-charge ratios, kinetic time traces, photoionization spectra, and adiabatic ionization energies for each primary reaction species were obtained and used to characterize their identity. Using electronic structure calculations, potential energy surface scans of the different species produced throughout the oxidation were examined and presented in this paper to further validate the primary chemistry occurring. Branching fractions of primary products at all three temperatures were also provided. At room temperature only three primary products formed: ethenol (26.6%), acetaldehyde (4.2%), and acetone (53.4%). At 550 and 650 K the same primary products were observed in addition to propene (5.1%, 11.2%), ethenol (18.1%, 2.8%), acetaldehyde (8.9%, 5.7%), cyclobutene (1.6%, 10.8%), 1-butene (2.0%, 10.9%), trans-2-butene (3.2%, 23.1%), acetone (50.4%, 16.8%), 3-penten-2-one (1.0%, 11.5%), and 3-methyl-2-butenal (0.9%, 2.5%), where the first branching fraction value in parentheses corresponds to the 550 K data. At the highest temperature, a small amount of propyne (1.0%) was also observed.

  1. K Srinivasan

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Srinivasan. Articles written in Bulletin of Materials Science. Volume 23 Issue 1 February 2000 pp 35-37 Metallic Materials. Impact toughness of ternary Al–Zn–Mg alloys in as cast and homogenized condition measured in the temperature range 263–673 K · Harish Kundar ...

  2. A high-resolution mK-calorimeter applying SQUID-thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, Andreas; Leps, Norman; Fleischmann, Andreas; Pies, Christian; Enss, Christian; Klingeler, Ruediger [Kirchhoff-Institut fuer Physik, Universitaet Heidelberg, INF 227,69120 Heidelberg (Germany)

    2012-07-01

    A new calorimeter for measuring single-crystalline samples of mg-size at ultra-low temperatures is described. Thermometry is done by means of a paramagnetic sensor material (Er-doped Au) in a low magnetic field. A temperature change results in a magnetization change which can be read out as change in magnetic flux by a superconducting quantum interference device (SQUID). This enables measurements in a wide temperature range (theoretically from 1 mK-1 K) with very high sensitivities. The bolometric design exhibits low addenda heat capacity and allows measurements of heat capacities from nJ/K to {mu}J/K by means of a temperature-relaxation method. The performance of the device is compared to a commercially available Quantum Design calorimeter in elsewise unchanged experimental settings in the temperature range from 15 mK to 500 mK.

  3. Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa

    International Nuclear Information System (INIS)

    Schäfer, Michael; Richter, Markus; Span, Roland

    2015-01-01

    Highlights: • A new rotating-body viscometer for the low-pressure region was presented. • A viscosity dependent offset was compensated by calibrating the viscometer. • The viscosity of carbon dioxide was measured at low pressures. • Measurements were carried out from T = (253.15 to 473.15) K with p ≤ 1.2 MPa. • The relative expanded combined uncertainty (k = 2) was U r,c (η) = (0.20 to 0.41)%. - Abstract: The viscosity of carbon dioxide was measured over the temperature range T = (253.15 to 473.15) K with pressures up to 1.2 MPa utilizing a new rotating-body viscometer. The relative expanded combined uncertainty (k = 2) in viscosity (including uncertainties of temperature and pressure) was (0.20 to 0.41)%. The instrument was specifically designed for measurements at low gas densities and enables measurements of the dynamic viscosity at temperatures between T = 253.15 K and T = 473.15 K with pressures up to 2 MPa. For carbon dioxide, the fluid specific measuring range with regard to pressure was limited to 1.2 MPa due to the formation of disturbing vortices inside the measuring cell at higher pressures. The model function for the viscosity measurement was extended in such a way that the dynamic viscosity was measured relative to helium. Therefore, the influence of the geometry of the concentric cylindrical system inside the measuring cell became almost negligible. Moreover, a systematic offset resulting from a small but inevitable eccentricity of the cylindrical system was compensated for. The residual damping, usually measured in vacuum, was calibrated in the entire temperature range using viscosity values of helium, neon and argon calculated ab initio; at T = 298.15 K recommended reference values were used. A viscosity dependent offset of the measured viscosities, which was observed in previously published data, did not occur when using the calibrated residual damping. The new carbon dioxide results were compared to other experimental literature data

  4. Partial molar volumes of organic solutes in water. XXVII. Two aliphatic polyethers (triglyme, tetraglyme) at temperatures T = 298–573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2016-01-01

    Highlights: • Standard molar volumes of two linear aliphatic polyethers in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Data combined with those obtained previously are analyzed and compared with standard molar volumes of cyclic ethers. - Abstract: Densities of dilute aqueous solutions of two linear aliphatic polyethers: 2,5,8,11-tetraoxadodecane (triethylene glycol dimethyl ether, triglyme) and 2,5,8,11,14-pentaoxapentadecane (tetraethylene glycol dimethyl ether, tetraglyme), measured in the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. The present values complement previous measurements performed for the title polyethers at atmospheric pressure in the temperature range from (278 to 343) K and extend the knowledge to temperature and pressure ranges in which the data on standard molar volumes for lower members of the homologous series (monoglyme, diglyme) are already available.

  5. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    Science.gov (United States)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  6. In-situ temperature calibration below 1 K using the μ+ Knight shift in CMN

    International Nuclear Information System (INIS)

    Heffner, R.H.; Le, L.P.; Amato, A.; Baines, C.

    1996-01-01

    The authors present μ + paramagnetic shift measurements between 12 K and about 65 mK in cerium magnesium nitrate (CMN) to investigate its utility as an in-situ temperature calibration source for low temperature μSR experiments. CMN is a salt which exhibits Curie-law susceptibility to temperatures as low as 5 mK. The μ + Knight shift is measured to be (1.46 ± 0.03) x 10 -3 /T + (0.004 ± 0.02) x 10 -3 , corresponding to a transferred hyperfine field of -28.5 kOe/μ B

  7. Radiometric measurements of wall temperatures in the 800 K to 1150 K range for a quartz radiant heating tube

    International Nuclear Information System (INIS)

    Blevins, L.G.; Sivathanu, Y.R.; Gore, J.P.; Shahien, M.A.

    1995-01-01

    Many industrial applications require heat transfer to a load in an inert environment, which can be achieved by using gas-fired radiant tubes. A radiant tube consists of a flame confined in a cylindrical metal or ceramic chamber. The flame heats the tube wall, which in turn radiates to the load. One important characteristic of radiant heating tubes is wall temperature uniformity. Numerical models of radiant tubes have been used to predict wall temperatures, but there is a lack of experimental data for validation. Recently, Namazian et al., Singh and Gorski, and Peters et al. have measured wall temperature profiles of radiant tubes using thermocouples. 13 refs., 3 figs

  8. Improved approach for determining thin layer thermal conductivity using the 3 ω method. Application to porous Si thermal conductivity in the temperature range 77–300 K

    International Nuclear Information System (INIS)

    Valalaki, K; Nassiopoulou, A G

    2017-01-01

    An improved approach for determining thermal conductivity using the 3 ω method was used to determine anisotropic porous Si thermal conductivity in the temperature range 77–300 K. In this approach, thermal conductivity is extracted from experimental data of the third harmonic of the voltage (3 ω ) as a function of frequency, combined with consequent FEM simulations. The advantage is that within this approach the finite thickness of the sample and the heater are taken into account so that the corresponding errors introduced in thermal conductivity values when using Cahill’s simplified analytical formula are eliminated. The developed method constitutes a useful tool for measuring the thermal conductivity of samples with unknown thermal properties. The thermal conductivity measurements with the 3 ω method are discussed and compared with those obtained using the well-established dc method. (paper)

  9. Measurement of the (pressure, density, temperature) relation of two (methane + nitrogen) gas mixtures at temperatures between 240 and 400 K and pressures up to 20 MPa using an accurate single-sinker densimeter

    International Nuclear Information System (INIS)

    Chamorro, C.R.; Segovia, J.J.; Martin, M.C.; Villamanan, M.A.; Estela-Uribe, J.F.; Trusler, J.P.M.

    2006-01-01

    Comprehensive (p, ρ, T) measurements on two gas mixtures of (0.9CH 4 + 0.1N 2 ) and (0.8CH 4 + 0.2N 2 ) have been carried out at six temperatures between 240 and 400 K and at pressures up to 20 MPa. A total of 108 (p, ρ, T) data for the first mixture and 134 for the second one are given. These measurements were performed using a compact single-sinker densimeter based on Archimedes' buoyancy principle. The overall uncertainty in density ρ is estimated to be (1.5 . 10 -4 . ρ + 2 . 10 -3 kg . m -3 ) (coverage factor k = 2), the uncertainty in temperature T is estimated to be 0.006 K (coverage factor k = 2), and the uncertainty in pressure p is estimated to be 1 . 10 -4 .p (coverage factor k = 2). The equipment has been previously checked with pure nitrogen over the whole temperature and pressure working ranges and experimental results (35 values) are given and a comparison with the reference equation of state for nitrogen is presented

  10. Temperature and pressure distributions in a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    The temperature and pressure distribution characteristics of a 400 kW (thermal) dual-distributor type fluidized bed straw gasifier were investigated. The effects of the bed height, equivalence ratio (actual air-fuel ratio:stoichiometric air-fuel ratio) and fluidization velocity on the temperature and pressure variations in the gasifier were studied. Generally, the bed temperature reached the steady state condition within 15--20 minutes. The average temperature of the dense bed ranged from 649{degrees}C to 875{degrees}C depending on the levels of operating parameters used. The bed temperature increased linearly with increases in the equivalence ratio, higher bed temperatures were observed with lower bed height and no clear trend for the bed temperature with respect to variations in fluidization velocity was observed. The bed height, equivalence ratio and fluidization velocity affected the pressure drop in the fluidized bed gasifier. Increasing the fluidization velocity and/or decreasing the equivalence ratio resulted in higher pressure drops in the dense bed and the freeboard regions whereas increasing the bed height increased the pressure drop only in the dense bed.

  11. Evolution of structure and magnetic properties for BaFe{sub 11.9}Al{sub 0.1}O{sub 19} hexaferrite in a wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Trukhanov, A.V., E-mail: truhanov86@mail.ru [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Trukhanov, S.V. [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Panina, L.V.; Kostishyn, V.G. [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); Kazakevich, I.S. [SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Trukhanov, An.V. [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Trukhanova, E.L.; Natarov, V.O. [SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, P. Brovki str., 19, 220072 Minsk, Belorussia (Belarus); Turchenko, V.A. [Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 141980 Dubna (Russian Federation); Donetsk Institute of Physics and Technology named after A.A. Galkin of the NAS of Ukraine, 72 R.Luxemburg Str., 83114 Donetsk (Ukraine); Salem, M.M. [National University of Science and Technology MISiS, Leninsky Prospekt, 4, 119049 Moscow (Russian Federation); and others

    2017-03-15

    M-type BaFe{sub 11.9}Al{sub 0.1}O{sub 19} hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe{sub 11.9}Al{sub 0.1}O{sub 19} powder by neutron diffraction in the temperature range 4.2–730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ{sup 2}) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400–730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.

  12. Full-range k-domain linearization in spectral-domain optical coherence tomography.

    Science.gov (United States)

    Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A

    2011-03-10

    A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.

  13. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  14. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.

    1981-12-01

    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  15. Effect of sodium acetate on the volumetric behaviour of some mono-, di-, and tri-saccharides in aqueous solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K., E-mail: pkbanipal@yahoo.co [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Singh, Vickramjeet [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)

    2010-01-15

    The standard partial molar volumes, V{sub 2}{sup 0} at infinite dilution of eight monosaccharides [D(+)-xylose, D(-)-arabinose, D(-)-ribose, L(-)-sorbose, D(-)-fructose, D(+)-galactose, D(+)-glucose, and D(+)-mannose], six disaccharides [D(+)-cellobiose, sucrose, D(+)-melibiose, D(+)-lactose monohydrate, D(+)-trehalose dihydrate, and D(+)-maltose monohydrate] and two trisaccharides [D(+)-melizitose and D(+)-raffinose pentahydrate] (molalities of saccharides range from (0.03 to 0.12) mol . kg{sup -1}) have been determined in water and in (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} aqueous sodium acetate solutions at temperatures, T = (288.15, 298.15, 308.15, and 318.15) K from density measurements using a vibrating-tube digital densimeter. From these results, corresponding standard partial molar volumes of transfer, DELTA{sub t}V{sub 2}{sup 0} have been determined for the transfer of various saccharides from water to aqueous solutions of sodium acetate. Positive values of DELTA{sub t}V{sub 2}{sup 0} were obtained for most of the saccharides, whose magnitude increase with the concentration of sodium acetate as well as temperature. However, negative DELTA{sub t}V{sub 2}{sup 0} values were observed for L(-)-sorbose, D(-)-fructose and D(+)-xylose at lower concentrations of co-solute. The negative magnitude of DELTA{sub t}V{sub 2}{sup 0} values decrease with rise of temperature from (288.15 to 318.15) K. Pair and higher order volumetric interaction coefficients have been determined by using McMillan-Mayer theory. Partial molar expansion coefficients, (partial derivV{sub 2}{sup 0}/partial derivT){sub p} and the second derivatives (partial deriv{sup 2}V{sub 2}{sup 0}/partial derivT{sup 2}){sub p} have also been estimated. These parameters have been utilized to understand various mixing effects in aqueous solutions due to the interactions between solute (saccharide) and co-solute (sodium acetate).

  16. In situ XRD study of C60 polymerisation above pressures of 9 GPa and temperatures up to 830K

    International Nuclear Information System (INIS)

    Talyzin, A.V.; Jansson, U.; Dubrovinsky, L.S.; Oden, M.; Le Bihan, T.

    2002-01-01

    The C60 polymerization was studied by X-ray diffraction in situ in the pressure range 13-18 GPa and at temperatures up to 830 K. The results of the high pressure high temperature treatment are strongly dependent from the history of the sample and stress. At certain conditions no elliptical diffraction patterns were observed at 13 GPa and 830K. Samples with a relatively low internal stress showed a transformation to new phase. It is suggested that this phase is three-dimensional polymer with each C60 molecule bonded to eight neighbors. This phase showed an increased hardness (about 37 GPa) and a Raman spectrum distinctly different from previously known polymeric phases

  17. Solubility of methane and carbon dioxide in ethylene glycol at pressures up to 14 MPa and temperatures ranging from (303 to 423) K

    International Nuclear Information System (INIS)

    Galvao, A.C.; Francesconi, A.Z.

    2010-01-01

    This work reports solubility data of methane and carbon dioxide in ethylene glycol and the Henry's law constant of each solute in the studied solvent at saturation pressure. The measurements were performed at (303, 323, 373, 398, and 423.15) K and pressures up to 6.3 MPa for mixtures containing carbon dioxide and pressures up to 13.7 MPa for mixtures containing methane. The experiments were performed in an autoclave type phase equilibrium apparatus using the total pressure method (synthetic method). All investigated systems show an increase of gas solubility with the increase of pressure. A decrease of carbon dioxide solubility with the increase of temperature and an increase of methane solubility with the increase of temperature was observed. From the variation of solubility with temperature, the partial molar enthalpy, and entropy change are calculated.

  18. Temperature measurement in the liquid helium range at pressure

    International Nuclear Information System (INIS)

    Itskevich, E.S.; Krajdenov, V.F.

    1978-01-01

    The use of bronze and germanium resistance thermometers and the use of a (Au + 0.07 % Fe)-Cu thermocouple for temperature measurements from 1.5 to 4.2 K in the hydrostatic compression of up to 10 kbar are considered. To this aim, the thermometer resistance as a function of temperature and pressure is measured. It is revealed that pressure does not change the thermometric response of the bronze resistance thermometer but only shifts it to the region of lower temperatures. The identical investigations of the germanium resistance thermometer shows that strong temperature dependence and the shift of its thermometric response under the influence of pressure make the use of germanium resistance thermometers in high-pressure chambers very inconvenient. The results of the analysis of the (Au + 0.07 % Fe) - Cu thermocouple shows that with a 2 per cent accuracy the thermocouple Seebeck coefficient does not depend on pressure. It permits to use this thermocouple for temperature measurements at high pressures

  19. Thermodynamic and transport properties of (1,2-ethanediol + 1-nonanol) at temperatures from (298.15 to 313.15) K

    International Nuclear Information System (INIS)

    Zorebski, Edward; Lubowiecka-Kostka, Beata

    2009-01-01

    Densities and kinematic viscosities have been measured for (1,2-ethanediol + 1-nonanol) over the temperature range from (298.15 to 313.15) K. The speeds of sound in those mixtures within the temperature range from (293.15 to 313.15) K have been measured as well. Using the measurement results, the molar volumes, isentropic compressibility coefficients, molar isentropic compressibilities, and the corresponding excess and deviation values (excess molar volumes, excess isentropic compressibility coefficients, excess molar isentropic compressibilities, differently defined deviations of the speed of sound, and dynamic viscosity deviations) were calculated. The excess Gibbs free energies estimated by the use of the UNIQUAC model are also reported. The excess molar volumes and Gibbs free energies are positive, whereas the compressibility excesses are s-shaped. The excess and deviation values are expressed by Redlich-Kister polynomials and discussed in terms of variations of the structure of the system caused by the participation of two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding. The effect of temperature is discussed. The predictive abilities of the McAllister equation for viscosities of the mixtures under test have also been examined

  20. High-capacity NO2 denuder systems operated at various temperatures (298-473 K).

    Science.gov (United States)

    Wolf, Jan-Christoph; Niessner, Reinhard

    2012-12-01

    In this study, we investigated several coatings for high-temperature, high-capacity, and high-efficiency denuder-based NO(2) removal, with the scope to face the harsh conditions and requirements of automotive exhaust gas sampling. As first coating, we propose a potassium iodide (KI)/polyethylene glycol coating with a high removal efficiency (ε > 98%) for about 2 h and 50 ppm NO(2) at room temperature (298 K). At elevated temperatures (423 K), the initial capacity (100 ppmh) is decreased to 15 ppmh. Furthermore, this is the first proposal of the ionic liquid methyl-butyl-imidazolium iodide ([BMIm(+)][I(-)]) as denuder coating material. At room temperature, this ionic liquid exhibits far greater capacity (300 ppmh) and NO(2) removal efficiency (ε > 99.9%) than KI. Nevertheless, KI exhibits a slightly (~10%) higher capacity at elevated temperatures than [BMIm(+)][I(-)]. Both coatings presented are suitable for applications requiring selective denuding of NO(2) at temperatures up to 423 K.

  1. Measurement and Analysis of Normal Zone Propagation in a ReBCO Coated Conductor at Temperatures Below 50K

    CERN Document Server

    van Nugteren, J; Wessel, S; Krooshoop, E; Nijhuis, A; ten Kate, H

    2015-01-01

    Measurements of the quasi-adiabatic normal zone propagation velocity and quench energies of a Superpower SCS4050 copper stabilised ReBCO superconducting tape are presented over a temperature range of 23 − 47 K; in parallel applied magnetic fields of 6, 10 and 14 T; and over a current range from 50% to 100% of Ic. The data are compared to results of analytic predictions and to one-dimensional numerical simulations. The availability of long lengths of ReBCO coated conductor makes the material interesting for many HTS applications operating well below the boiling point of liquid nitrogen, such as magnets and motors. One of the main issues in the design of such devices is quench detection and protection. At higher temperatures, the quench velocities in these materials are known to be about two orders of magnitude lower compared to low temperature superconductors, resulting in significantly smaller normal zones and the risk of higher peak temperatures. To investigate whether the same also holds for lower tempera...

  2. Long-term strength of claddings made of E110 in the temperature range of 400-570 degrees C

    International Nuclear Information System (INIS)

    Kobylyansky, G.; Shamardin, V.; Eremin, S.

    2003-01-01

    This paper presents the data on the initial stage of the in-sight into the mechanism of long-term strength of spent fuel rod claddings in the temperature range 400-570 0 C and also their comparison with corresponding mechanism of irradiated in the inert environment specimens and unirradiated ones. A set of test results in the temperature range 400-570 0 C of non-irradiated and irradiated in BOR-60 specimens and also of the WWER-1000 fuel element claddings irradiated up to a burnup of 29-47 MWd/kgU is approximated by Larson-Miller parametric dependence in the first approximation that allows the long-term strength data to be extrapolated and interpolated onto the unknown value regions of stress, temperature and time. The time before damage of the fuel element claddings irradiated up to ∼ 29MWd/kgU in the temperature range 540-570 0 C is higher than that of non-irradiated tubular specimens and irradiated ones up to fast neutron fluence (1-2)x10 22 cm -2 (E >0.1 MeV). With temperature decreasing to 673 K, the long-term strength of the claddings irradiated up to ∼ 47 MWd/kgU is lower than it can be expected from the extrapolation of high-temperature data obtained with the irradiated specimens. Now, the bulk of experimental data on the long-term strength of the claddings made of E110 alloy makes it possible to provide only preliminary estimation for the validation of parameters typical of the deviation from the normal operation conditions; emergencies and accidental situations; dry and wet storage and also transportation. The experiments should be continued to accumulate missing data, in particular, tests of fuel element claddings irradiated up to high burnup at temperatures ranging 300-400 0 C and stresses, which are significantly lower than the yield stress

  3. Experimental determination of cesium saturated vapor pressure in the 483/642 deg K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gushchin, G I; Subbotin, V A; Khachaturov, Eh Kh [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Obninsk. Fiziko-Ehnergeticheskij Inst.

    1975-07-01

    Test results of saturated cesium vapour pressure in the temperature range of 483.13-642 deg K and pressure range of 15.77-1.389 N/m/sup 2/ by direct static method are presented. The testing system comprises a differential bellows-type pressure sensor, a thermostatic unit and a gas system with V-shaped oil manometer used for argon-assisted sensor calibration. The static sensor characteristic approaches linearity in the pressure range of 10-600 N/m/sup 2/. The greatest non-linearity is observed at low pressures (10-40 N/m/sup 2/) and does not exceed 3-4%. Sensor sensitivity is 0.39 mV/N/m/sup 2/ in this pressure range. The characteristic hysteresis is 0.5% and below. With pressures greater than 600 N/m/sup 2/, the sensor sensitivity gradually decreases by 12% while the characteristic hysteresis increases to 2-3%. A brief description of the experimental procedure is offered. The present results are compared with other authors' data.

  4. CCT-K2.1: NRC/VNIIFTRI bilateral comparison of capsule-type standard platinum resistance thermometers from 13.8 K to 273.16 K

    Energy Technology Data Exchange (ETDEWEB)

    Hill, K.D.; Steele, A.G. [National Research Council of Canada, Institute for National Measurement Standards, Ottawa, ON (Canada); Dedikov, Y.A.; Shkraba, V.T. [Institute for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Moscow (Russian Federation)

    2005-04-01

    The Consultative Committee for Thermometry Key Comparison 2 (CCT-K2) results were published two years ago (2002 Metrologia 39 551-71). NRC served as the pilot laboratory for CCT-K2 and remains able to provide a scale and measurement system suitable for performing bilateral comparisons linked to the original key comparison results. In March 2003, measurements of two VNIIFTRI 100 {omega} capsule-style platinum resistance thermometers (CSPRTs), S/N 356 and 476, were undertaken to relate their local calibration to the results from the CCT-K2 exercise. The NRC Leeds and Northrup (L and N) CSPRT S/N 1872174 provides the link to the CCT-K2 results. The three CSPRTs were compared at the eight defining cryogenic temperatures of the International Temperature Scale of 1990 (ITS-90) in the range from 13.8033 K to 273.16 K. The reader is referred to the full text of the CCT-K2 report for a detailed explanation of the methodology employed for the comparison. Only the details unique to the measurements reported here will be addressed in this article. The NRC/VNIIFTRI bilateral comparison of capsule-style platinum resistance thermometers over the range 13.8 K to 273.16 K has revealed calibrations at VNIIFTRI to be in agreement with the KCRV of CCT-K2 within the expanded uncertainty for all temperatures of the comparison with the exception of the triple point of hydrogen at 13.8033 K. One of the two CSPRTs supplied by VNIIFTRI was found to be discrepant as revealed by differences at the triple point of water and at the lowest temperatures of the comparison, and was therefore excluded from further analysis. The linkage to the CCT-K2 data supports the evaluation of the VNIIFTRI CMCs in Appendix C of the KCDB. (authors)

  5. Densities and derived thermodynamic properties of 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Moreno, Abel [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738 Lindavista, Mexico, D.F. (Mexico); Galicia-Luna, Luis A. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738 Lindavista, Mexico, D.F. (Mexico)], E-mail: lgalicial@ipn.mx; Betancourt-Cardenas, Felix F. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738 Lindavista, Mexico, D.F. (Mexico)

    2008-01-15

    Experimental densities were determined in liquid phase for 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa using a vibrating tube densimeter. Water and nitrogen were used as reference fluids for the calibration of the vibrating tube densimeter. The uncertainties of the experimental measurements in the whole range of reported data are estimated to be {+-}0.03 K for temperature, {+-}0.008 MPa for pressure, and {+-}0.20 kg . m{sup -3} for density. The experimental data are correlated using a short empirical equation of six parameters and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations are reported. Published density data of 1-heptanol are compared with values calculated with the 6-parameter equation using the parameters obtained in this work. The experimental data determined here are also compared with an available correlation for 1-heptanol. Densities of 2-heptanol at high pressure were not found in the literature and the data reported here represent the first set of data reported in the literature. Isothermal compressibilities and isobaric thermal expansivity are calculated using the 6-parameter equation for both alcohols within uncertainties estimated to be {+-}0.025 Gpa{sup -1} and {+-}4 x 10{sup -7} K{sup -1}, respectively.

  6. Densities and derived thermodynamic properties of 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa

    International Nuclear Information System (INIS)

    Zuniga-Moreno, Abel; Galicia-Luna, Luis A.; Betancourt-Cardenas, Felix F.

    2008-01-01

    Experimental densities were determined in liquid phase for 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa using a vibrating tube densimeter. Water and nitrogen were used as reference fluids for the calibration of the vibrating tube densimeter. The uncertainties of the experimental measurements in the whole range of reported data are estimated to be ±0.03 K for temperature, ±0.008 MPa for pressure, and ±0.20 kg . m -3 for density. The experimental data are correlated using a short empirical equation of six parameters and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations are reported. Published density data of 1-heptanol are compared with values calculated with the 6-parameter equation using the parameters obtained in this work. The experimental data determined here are also compared with an available correlation for 1-heptanol. Densities of 2-heptanol at high pressure were not found in the literature and the data reported here represent the first set of data reported in the literature. Isothermal compressibilities and isobaric thermal expansivity are calculated using the 6-parameter equation for both alcohols within uncertainties estimated to be ±0.025 Gpa -1 and ±4 x 10 -7 K -1 , respectively

  7. Progress in Primary Acoustic Thermometry at NIST: 273 K to 505 K

    Science.gov (United States)

    Strouse, G. F.; Defibaugh, D. R.; Moldover, M. R.; Ripple, D. C.

    2003-09-01

    The NIST Acoustic Thermometer determines the thermodynamic temperature by measuring the speed of sound of argon in a spherical cavity. We obtained the thermodynamic temperature of three fixed points on the International Temperature Scale of 1990: the melting point of gallium [T(Ga) = 302.9146 K] and the freezing points of indium [T(In) = 429.7485 K] and tin [T(Sn) = 505.078 K]. The deviations of thermodynamic temperature from the ITS-90 defined temperatures are T - T90 = (4.7 ± 0.6) mK at T(Ga) , T - T90 = (8.8 ± 1.5) mK at T(In) , and T - T90 = (10.7 ± 3.0) mK at T(Sn) , where the uncertainties are for a coverage factor of k = 1. Our results at T(In) and T(Sn) reduce the uncertainty of T - T90 by a factor of two in this range. Both T - T90 at T(Ga) and the measured thermal expansion of the resonator between the triple point of water and T(Ga) are in excellent agreement with the 1992 determination at NIST. The dominant uncertainties in the present data come from frequency-dependent and time-dependent crosstalk between the electroacoustic transducers. We plan to reduce these uncertainties and extend this work to 800 K.

  8. Pressure dependence of the solubility of light fullerenes in 1-hexanol from 298.15 K to 363.15 K

    DEFF Research Database (Denmark)

    Semenov, Konstantin N.; Regueira Muñiz, Teresa; Fernández, Josefa

    2015-01-01

    The solubility of light fullerenes (C60 and C70) in 1-hexanol was investigated in the range of pressures of 0.1-100 MPa and in the range of temperatures of 298.15-363.15 K. In all of the studied temperatures, solubility increases monotonously with increasing pressure. At ambient pressure, we have...... (monosolvated fullerene C60 and non-solvated C60). The composition of the solid crystallosolvate was determined by thermogravimetric analysis. The solubility diagram of the binary system C70-1-hexanol in the temperature range of 298.15-328.15 K at 0.1 MPa consists of only one branch corresponding...

  9. Methanol adsorption by amorphous silica alumina in the critical temperature range

    NARCIS (Netherlands)

    Kuczynski, M.; van Ooteghem, A.; Westerterp, K.R.

    1986-01-01

    The methanol adsorption capacity of an amorphous silica-alumina was measured using an equilibrium technique. The experimental temperature range was of 140 to 260°C and the pure methanol pressure range was 0.1 to 1.2 MPa. A multilayer adsorption was found, also for temperatures above the critical

  10. Measurement of the (pressure, density, temperature) relation of two (methane + nitrogen) gas mixtures at temperatures between 240 and 400 K and pressures up to 20 MPa using an accurate single-sinker densimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro, C.R. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain)]. E-mail: cescha@eis.uva.es; Segovia, J.J. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Martin, M.C. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Villamanan, M.A. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Estela-Uribe, J.F. [Facultad de Ingenieria, Universidad Javeriana-Cali, Calle 18, 118-250 Cali (Colombia); Trusler, J.P.M. [Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2006-07-15

    Comprehensive (p, {rho}, T) measurements on two gas mixtures of (0.9CH{sub 4} + 0.1N{sub 2}) and (0.8CH{sub 4} + 0.2N{sub 2}) have been carried out at six temperatures between 240 and 400 K and at pressures up to 20 MPa. A total of 108 (p, {rho}, T) data for the first mixture and 134 for the second one are given. These measurements were performed using a compact single-sinker densimeter based on Archimedes' buoyancy principle. The overall uncertainty in density {rho} is estimated to be (1.5 . 10{sup -4} . {rho} + 2 . 10{sup -3} kg . m{sup -3}) (coverage factor k = 2), the uncertainty in temperature T is estimated to be 0.006 K (coverage factor k = 2), and the uncertainty in pressure p is estimated to be 1 . 10{sup -4}.p (coverage factor k = 2). The equipment has been previously checked with pure nitrogen over the whole temperature and pressure working ranges and experimental results (35 values) are given and a comparison with the reference equation of state for nitrogen is presented.

  11. Resonance absorption measurements of atom concentrations in reacting gas mixtures. II. Calibration of microwave sources over a wide temperature range

    International Nuclear Information System (INIS)

    Chiang, C.; Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1979-01-01

    A series of experiments was carried out to calibrate three different microwave discharge lamps for analysis for D or H atoms, using Lyman-α absorption. Known concentrations of D atoms were produced in a shock tube by the reaction of 0.05--4 ppm D 2 with N 2 O in argon at 1800--3000 K. H atoms were produced by dissociation of 2,2,3,3-tetramethylbutane (10 ppm in argon) at 980--1140 K. These absorption data were compared with the absorption calculated from Lyman-α line shapes reported in an earlier paper, good agreement being found. These experiments provide a sound basis for obtaining the temperature and concentration dependence of the absorption coefficient over a wide temperature range, for H and D concentrations between 10 -12 and 10 -10 mole/cc

  12. Raman, dielectric and variable range hopping nature of Gd2O3-doped K0.5N0.5NbO3 piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Mahesh Peddigari

    2015-10-01

    Full Text Available (K0.5Na0.5NbO3 (KNN + x wt% Gd2O3 (x = 0 -1.5 ceramics have been prepared by conventional solid state reaction method. The effect of Gd2O3 on the structural, microstructural and dielectric properties of KNN ceramics were studied systematically. The effect of Gd2O3 on phase transformation from orthorhombic to psuedocubic structure is explained interms of changes in the internal vibration modes of NbO6 octahedra. The Raman intensity of the stretching mode v1 enhanced and shifted toward higher wavenumber with Gd2O3 concentration, which is attributed to the increase in polarizability and change in the O-Nb-O bond angles. Microstructural analysis revealed that the grain size of the KNN ceramics decreases from 2.26 ± 1.07 μm to 0.35 ± 0.13 μm and becomes homogenous with an increase in Gd2O3 concentration. The frequency dependent dielectric spectra are analyzed by using Havriliak-Negami function. The fitted symmetry parameter and relaxation time (τ are found to be 0.914 and 8.78 × 10−10 ± 5.5 × 10−11 s, respectively for the sample doped with x = 1.0. The addition of Gd2O3 to the KNN shifted the polymorphic phase transition orthorhombic to tetragonal transition temperature (TO-T from 199oC to 85oC with enhanced dielectric permittivity (ε′ = 1139 at 1 MHz. The sample with x = 1.0, shown a high dielectric permittivity (ε′ = 879 and low dielectric loss (<5% in the broad temperature range (-140oC – 150oC with the Curie temperature 307 oC can have the potential for high temperature piezoelectric and tunable RF circuit applications. The temperature dependent AC-conductivity follows the variable range hopping conduction mechanism by obtaining the slope -0.25 from the ln[ln(ρac] versus ln(T graph in the temperature range of 133 K-308 K. The effect of Gd2O3 on the Mott’s parameters such as density of states (N(EF, hopping length (RH, and hopping energy (WH have been discussed.

  13. Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 K

    International Nuclear Information System (INIS)

    Wang, Xinwei; Wang, Jianmei; Huang, Xiaopeng; Eres, Gyula

    2011-01-01

    In this paper we discuss the results of thermal transport measurements in multi-wall carbon nanotube (MWCNT) bundles at elevated temperatures. A novel generalized electrothermal technique (GET) was developed for measuring the thermal diffusivity ( ) and conductivity (k) of MWCNT bundles. The results show that the feeding current has a negligible effect on the thermal properties. The measured k is larger than the reported values for unaligned bundles, and is comparable to that of typical aligned arrays. Compared with experimental and theoretical data for individual CNTs, k of the MWCNT bundles is two to three orders of magnitude lower, suggesting that the thermal transport in CNT bundles is dominated by the thermal contact resistance of tube-to-tube junctions. The effective density for the two MWCNT bundles, which is difficult to measure using other techniques, was determined to be 116 kg/m3 and 234 kg/m3, respectively. The temperature dependences of and k at temperatures up to 830 K was obtained. slightly decreases with temperature while k exhibits a small increase with temperature up to 500 K and then decreases. For the first time, the behavior of specific heat cp(T) for CNTs above room temperature was determined. The specific heat is close to graphite at 300-400 K but is lower than that for graphite above 400 K, indicating that the behavior of phonons in MWCNT bundles is dominated by boundary scattering rather than by the three-phonon Umklapp process. The length of the mean curvature between two adjacent tube contact points in these bundles is estimated to be on the order of micrometer to millimeter. The analysis of the radiation heat loss suggests that it needs to be considered when measuring the thermophysical properties of micro/nano wires of high aspect ratios at elevated temperatures, especially for individual CNTs due to their extremely small diameter.

  14. Driving Curie temperature towards room temperature in the half-metallic ferromagnet K2Cr8O16 by soft redox chemistry.

    Science.gov (United States)

    Pirrotta, I; Fernández-Sanjulián, J; Moran, E; Alario-Franco, M A; Gonzalo, E; Kuhn, A; García-Alvarado, F

    2012-02-14

    The half-metallic ferromagnet K(2)Cr(8)O(16) with the hollandite structure has been chemically modified using soft chemistry methods to increase the average oxidation state of chromium. The synthesis of the parent material has been performed under high pressure/high temperature conditions. Following this, different redox reactions have been carried out on K(2)Cr(8)O(16). Oxidation to obtain potassium-de-inserted derivatives, K(2-x)Cr(8)O(16) (0 ≤x≤ 1), has been investigated with electrochemical methods, while the synthesis of sizeable amounts was achieved chemically by using nitrosonium tetrafluoroborate as a highly oxidizing agent. The maximum amount of extracted K ions corresponds to x = 0.8. Upon oxidation the hollandite structure is maintained and the products keep high crystallinity. The de-insertion of potassium changes the Cr(3+)/Cr(4+) ratio, and therefore the magnetic properties. Interestingly, the Curie temperature increases from ca. 175 K to 250 K, getting therefore closer to room temperature.

  15. The bimolecular reaction of radiolysis product of hydrated electron at temperature up to 473K; Reaksi bimolekular antar produk radiolisis elektron terhidrasi pada temperatur hingga 473K

    Energy Technology Data Exchange (ETDEWEB)

    Sunaryo, G R [Reactor Safety Technology Research Centre, National Atomic Energy Agency, Serpong (Indonesia)

    1996-06-01

    Rate constant from the bimolecular reaction of hydrated electron was determined by using radiolysis method. The methanol solution with concentration of 5 x 10{sup -2} dm{sup 3} mol{sup -1} was used as a scavenger of H and OH radicals. The pH was kept by adding the buffer solution of 1.0 x 10{sup -3} dm{sup 3} mol{sup -1} Na{sub 2}HPO{sub 4} + 1.0 x 10{sup 4} dm{sup 3} mol{sup -1} NaH{sub 2}PO{sub 4}. The irradiation was done by using the electron beam which come from linear accelerator 28 MeV with pulse width 10ns and dose of 80 Gy per pulse. The absorbance of hydrated electron was observed at wavelength of 824 nm. By using the kinetic equation the rate reaction constants were obtained. The bimolecular reaction of hydrated electron increase with temperature up to 423K. The activation energy was 19.3 kJ mol{sup -1} and the 2 k (298K) was 1.1 x 10{sup 10} dm{sup 3} mol{sup -1}. Then this bimolecular reaction decrease at temperature higher than 423K and the rate reaction constant at 473K almost similar with that at 298K. (author)

  16. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    Science.gov (United States)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  17. First tests of twisted-pair HTS 1 kA range cables for use in superconducting links

    CERN Document Server

    Ballarino, A; Hurte, J; Sitko, M; Willering, G

    2011-01-01

    The requirement at CERN for 1 kA range High Temperature Superconducting (HTS) cables optimized for long electrical transfer has led to the design and assembly of a novel type of cable that can be made from pre-reacted MgB2, Bi-2223 or YBCO tapes. The cable consists of an assembly of twisted pairs, each of which is made from three superconducting tapes with the required copper stabilizer. The twisted pair cable is designed to transfer a DC current of ± 600 A in helium gas environment. The paper reports on the results of the electrical tests performed on twisted-pair cables of identical structure and made from commercially available MgB2, Bi-2223 and YBCO tapes. The twist pitch of the cables is adapted to match the mechanical properties of the different superconductors. Critical current tests were performed at both liquid helium and liquid nitrogen temperature. The electrical performance of several cables made from different conductors is reported and compared.

  18. Low-temperature thermal properties of yttrium and lutetium dodecaborides

    International Nuclear Information System (INIS)

    Czopnik, A; Shitsevalova, N; Pluzhnikov, V; Krivchikov, A; Paderno, Yu; Onuki, Y

    2005-01-01

    The heat capacity (C p ) and dilatation (α) of YB 12 and LuB 12 are studied. C p of the zone-melted YB 12 tricrystal is measured in the range 2.5-70 K, of the zone-melted LuB 12 single crystal in the range 0.6-70 K, and of the LuB 12 powder sample in the range 4.3-300 K; α of the zone-melted YB 12 tricrystal and LuB 12 single crystals is measured in the range 5-200 K. At low temperatures a negative thermal expansion (NTE) is revealed for both compounds: for YB 12 at 50-70 K, for LuB 12 at 10-20 K and 60-130 K. Their high-temperature NTE is a consequence of nearly non-interacting freely oscillating metal ions (Einstein oscillators) in cavities of a simple cubic rigid Debye lattice formed by B 12 cage units. The Einstein temperatures are ∼254 and ∼164 K, and the Debye temperatures are ∼1040 K and ∼1190 K for YB 12 and LuB 12 respectively. The LuB 12 low-temperature NTE is connected with an induced low-energy defect mode. The YB 12 superconducting transition has not been detected up to 2.5 K

  19. Apparent molar volumes and apparent molar heat capacities of dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Origlia-Luster, M.L.; Woolley, E.M.

    2003-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi have been determined for dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. The molalities investigated ranged from 0.05 mol·kg -1 to 1.0 mol·kg -1 . We used a vibrating tube densimeter (DMA 512P, Anton PAAR, Austria) to determine the densities and volumetric properties. Heat capacities were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter (NanoDSC 6100, Calorimetry Sciences Corporation, American Fork, UT, USA). The results were fit by regression to equations that describe the surfaces (V phi ,T,m) and (C p,phi ,T,m). Infinite dilution partial molar volumes V 2 0 and heat capacities C 0 p,2 were obtained over the range of temperatures by extrapolation of these surfaces to m=0 mol·kg -1

  20. Effect of microstructural anisotropy on the mechanical properties of K-doped tungsten rods for plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Shuhei, E-mail: shuhei.nogami@qse.tohoku.ac.jp; Guan, Wenhai, E-mail: wenhai.guan@jupiter.qse.tohoku.ac.jp; Fukuda, Makoto, E-mail: fukuda@jupiter.qse.tohoku.ac.jp; Hasegawa, Akira, E-mail: akira.hasegawa@qse.tohoku.ac.jp

    2016-11-01

    Highlights: • K-doping led to improve the tensile strength regardless of the test direction and temperature. • K-doping did not alter the elongation regardless of the test direction in the ductile fracture temperature range. • The ductility at lower temperature range was improved by the K-doping. • The lowest temperature of ductile fracture along both axial and radial directions decreased because of K-doping. • K-doping could suppress the influence of microstructural anisotropy on tensile properties, especially ductility, in large diameter W rods. - Abstract: The effect of microstructural anisotropy in pure tungsten (W) and potassium (K) doped W rods (20 mm in diameter) on their mechanical properties was investigated by tensile tests along the axial and radial directions at temperatures from 473 K to 1573 K and fracture analysis. K-doping led to improved tensile strength regardless of the test direction and temperature. K-doping did not alter the elongation regardless of the test direction in the temperature range showing ductile fracture. The ductility at lower temperature range was improved by the K-doping, especially in tensile tests along the radial direction. The lowest temperature of ductile fracture along both axial and radial directions decreased from 1373 K to 973 K because of K-doping. Thus, K-doping could suppress the influence of microstructural anisotropy on tensile properties, especially ductility, in large diameter W rods.

  1. Ikaite solubility in seawater-derived brines at 1 atm and sub-zero temperatures to 265 K

    Science.gov (United States)

    Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.

    2013-05-01

    The concentration-based (stoichiometric) equilibrium solubility product of ikaite (CaCO3·6H2O) in seawater and cryogenic seawater-derived brines was determined at 1 atm total pressure over the temperature range from -1.1 to -7.5 °C and the salinity range from 34 to 124 in temperature-salinity pairs representative of sea ice brines. The solubility measurements were obtained in solutions that were undersaturated and supersaturated with respect to ikaite by equilibration with CO2/N2 gas mixtures of known pCO2 (20-400 μatm). The solutions were then equilibrated with synthetic ikaite (seed) for up to 3 months in a closed system. Arrival of the solid-solution system at a long-term chemical equilibrium was indicated by attainment of constant chemical solution composition with respect to total dissolved calcium, total dissolved inorganic carbon, and total alkalinity. Using these measurements, the stoichiometric equilibrium solubility product of ikaite (Ksp,ikaite∗=[Ca][CO32-], in molkgsolution-2) was determined, with the carbonate ion concentration computed from the measured total alkalinity and total dissolved inorganic carbon concentrations. The computed carbonate ion concentration and, by extension, the Ksp,ikaite∗ are both contingent on solving the system of equations that describe the parameters of the CO2 system in seawater by extrapolation to the experimental salinity and temperature conditions. The results show that the pKsp,ikaite∗=-logKsp,ikaite∗ in seawater of salinity 34 at -1.1 °C was 5.362 ± 0.004 and that the pKsp,ikaite∗ in sea ice at the freezing point of brines of salinity greater than 34 can be described as a function of temperature (T, in K) by the equation, pKsp,ikaite∗=-15489.09608+623443.70216T-1+2355.14596lnT, in the temperature range of 265.15 K 1 month) approach to chemical equilibrium when incubated without seeding ikaite crystals. Simple modeling indicated that ikaite should not precipitate from sea ice brines evolving under

  2. Nitro-PAH formation studied by interacting artificially PAH-coated soot aerosol with NO 2 in the temperature range of 295-523 K

    Science.gov (United States)

    Carrara, Matteo; Wolf, Jan-Christoph; Niessner, Reinhard

    2010-10-01

    Diesel particulate matter poses a threat to human health, and in particular nitrated polycyclic aromatic hydrocarbons (NPAHs) found within and on the surface of these particles. Although diesel particulate filters (DPFs) have been designed and implemented to reduce these and other harmful diesel emissions, the particle loaded filters may act as a reaction chamber for the enhanced production of NPAHs from the nitration of PAHs with NO 2. Focus is on the investigation of the heterogeneous reactions that occur on soot particles by exposing laboratory produced pyrene- or benzo(a)pyrene-coated spark discharge soot particles to varying concentrations of NO 2 and temperatures while following the formation of products over time. The sole nitration product that was observed throughout the experiments with pyrene-coated soot was 1-nitropyrene (1-NPYR), which increased linearly with reaction time for all NO 2 concentrations chosen (0.11, 1.0, 2.0, 4.0 ppm, m m -1). Resulting 1-NPYR formation rate increased exponentially with [NO 2]. Throughout the 3-h experiments less than 10% of pyrene has been converted to 1-NPYR and the partial reaction order with regard to [NO 2] was estimated to 1.52. Benzo(a)pyrene (BaP) was more reactive than pyrene. After 3 h reaction time almost 80% of the BaP has been converted to 6-NBaP. Highest 1-NPYR concentrations on particles were detected at 373 K, and at higher temperatures a considerable decrease in particulate 1-NPYR was observed. A similar trend was observed in a DPF simulation system (PM-Kat ®-like) with BaP-coated soot. In this case, highest 6-NBaP concentration on particles was detected at 423 K. Backed by corroborating results from separate gas/solid-phase partition experiments with 1-NPYR and 6-NBaP, it is likely that the newly formed 1-NPYR and 6-NBaP became transferred from particle to gas phase at higher temperatures. Results from this study confirm the presence of 1-NPYR and 6-NBaP in particulate and gas phase under conditions

  3. Experimental determination of the temperature range of AlO molecular emission in laser-induced aluminum plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xueshi; Motto-Ros, Vincent [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon Villeurbanne (France); Lei, Wenqi [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon Villeurbanne (France); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Zheng, Lijuan [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Yu, Jin, E-mail: jin.yu@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon Villeurbanne (France); Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-09-01

    Measurements with laser-induced breakdown spectroscopy (LIBS) usually take place in the atmospheric air. For quantitative analysis of metallic elements, oxidation may represent an important issue which can significantly modify the stoichiometry of the plasma. Molecule formation in plasma should be therefore studied and taken into account in the LIBS practice. In this work, we experimentally investigated the temporal evolution and transformation of the plasma induced on an aluminum target by a nanosecond infrared (1064 nm) laser in the atmospheric air, in terms of its temperatures over a large interval of time from hundreds of nanoseconds to tens of microseconds. Such evolution was then correlated to the temporal evolution of the emission intensity from AlO molecules in the ablation plume. In particular, for a given ablation laser pulse energy, the appearance of the molecular emission while the plume cools down allows determining a minimal delay, τ{sub min}, which corresponds to a maximal value of the temperature, T{sub max}, below which the molecular emission begins to be clearly observed and to grow as a function of the delay. Such delay or such temperature indicates the longest delay or the lowest temperature for laser-induced plasma to be suitable for a correct analysis of metallic elements without significant influence of the alternation of the stoichiometry by oxidation. In our experiment, the values of τ{sub min} and T{sub max} have been determined for a range of ablation laser pulse energies from 5 mJ to 50 mJ. These values lie respectively in the range of 3 to 15 μs for τ{sub min}, and 4500 K to 6600 K in terms of the molecule temperature for T{sub max}. Beyond the practical interest for LIBS, our results provide also insights to the kinetics of the AlO molecule formation in laser-induced plasma. - Highlights: • Determination of the temperatures in laser-induced plasma up to tens of microseconds • Determination of the molecule temperature by fitting

  4. High-temperature Brillouin scattering study of haplogranitic glasses and liquids: Effects of F, K, Na and Li on Tg and elastic properties

    Science.gov (United States)

    Manghnani, M. H.; Hushur, A.; Williams, Q. C.; Dingwell, D. B.

    2010-12-01

    shows negative temperature dependences for HPG8-Na5. The slope changes from -0.0043(18) GPa/°C below 135°C to 0.0040(5) GPa/°C between 135°C and Tg. In the case of HPG8-Li5, both K and G decrease with increasing temperature.. For HPG8-F5, the K shows a markedly positive temperature dependence below Tg, and a very small temperature dependence above Tg. The shear modulus G shows a slight positive temperature dependence below Tg, and a larger negative temperature dependence above Tg. The Poisson’s ratios of HPG8-Li5 and HPG8-F5 glasses increase monotonically in the measured temperature range, while the Poisson’s ratio of HPG8-Na5 shows a distinct minimum at 135°C. Our results thus provide constraints on the visco-elastic properties of model granitic systems at a range of temperatures above and below their glass transition temperature.

  5. Measurement and Analysis of Normal Zone Propagation in a ReBCO Coated at Temperatures Below 50 K (Proc. 25th ICEC & ICMC2014 conference)

    NARCIS (Netherlands)

    van Nugteren, J.; Dhalle, Marc M.J.; Wessel, Wilhelm A.J.; Krooshoop, Hendrikus J.G.; Nijhuis, Arend; ten Kate, Herman H.J.

    2015-01-01

    Measurements of the quasi-adiabatic normal zone propagation velocity and quench energies of a Superpower SCS4050 copper stabilised ReBCO superconducting tape are presented over a temperature range of 23 − 47 K; in parallel applied magnetic fields of 6, 10 and 14 T; and over a current range from 50%

  6. Volumetric and ultrasonic studies of an antidepressant drug in aqueous and alcoholic medium over temperature range 298.15-313.15 k

    International Nuclear Information System (INIS)

    Jamal, M.A.; Khosa, M.K.; Muneer, M.; Shahzad, K.

    2013-01-01

    Escitalopram oxalate is an amphiphilic serotonin specific reuptake inhibitor-antidepressant drug. Ultrasonic velocity (u) and density (d) measurements were carried out for Escitalopram oxalate in aqueous and alcoholic systems as a function of concentration in a range of molality, m (0.0075-0.04) mol Kg-1 at 298.15-313.15 K using an Anton Paar density sound analyzer (DSA 5000M). Using these experimental values, the acoustical parameters such as apparent molar adiabatic compressibility and partial molar volume (V phi) was apparent molar volume (V phi (K computed for all the systems. The Partial molar expansivity (E/sup 0/) and second derivative values, (partial drive V/sup 0/partial drive T/sup 2/), have also been estimated. The critical micelle concentrations of this drug were obtained from ultrasound velocity measurement by using recently developed least square fitting algorithm. The results are interpreted in the light of structure-making or structure-breaking effects of escitalopram oxalate in the mixtures. (author)

  7. Thermodynamic constants of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) from the temperatures 278.15 K to 328.15 K

    International Nuclear Information System (INIS)

    Roy, Rabindra N.; Roy, Lakshmi N.; LeNoue, Sean R.; Denton, Cole E.; Simon, Ashley N.; Richards, Sarah J.; Moore, Andrew C.; Roy, Chandra N.; Redmond, R. Ryan; Bryant, Paul A.

    2006-01-01

    Values of the second thermodynamic dissociation constant pK 2 of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) have been determined at twelve temperatures from 278.15 K to 328.15 K including 310.15 K by measurements of the electromotive-force for cells without liquid junction of the type: Pt|H 2 (g, p - bar =101.325 kPa)|Taps (m 1 ), NaTapsate (m 2 ), NaCl (m 3 )|AgCl|Ag, where m denotes molality. The pK 2 values for the dissociation of Taps are represented by the equation: pK 2 =2969.61.(K/T) - 17.05052+2.73697.ln(T/K). The values of pK 2 for Taps were found to be (8.502+/-0.0007) at T=298.15 K and (8.225+/-0.0009) at T=310.15 K, respectively, indicating thereby to be useful as buffer solutions for pH control in the region 7.4 to 8.5. The thermodynamic quantities, ΔG - bar , ΔH - bar , ΔS - bar , and ΔC p - bar dissociation process of Taps have been derived from the temperature coefficients of the pK 2

  8. Evaporation of Cu, Sn, and S from Fe-C-Cu-Sn-S Liquid Alloys in the Temperature Range from 1513 K to 1873 K (1240 °C to 1600 °C)

    Science.gov (United States)

    Tafwidli, Fahmi; Choi, Moo-Eob; Yi, Sang-Ho; Kang, Youn-Bae

    2018-06-01

    Evaporation of Cu or Sn from liquid iron alloys containing C and S was experimentally investigated. The initial C concentration, [pct C]0, in the liquid alloy was varied from zero to C saturation, and the evaporation temperature was varied from 1513 K to 1773 K (1240 °C to 1500 °C). Along with the report by one of the present authors, the evaporation mechanism of Cu and Sn from liquid Fe-C-S alloy is proposed, after a modification from the previous mechanism. It was proposed that Cu and Sn evaporate as Cu(g) and Sn(g) and also evaporate as CuS(g) and SnS(g), which are more volatile species. Therefore, availability of S in the alloy affects the overall evaporation rate of Cu and Sn. At the same time, C in the alloy also forms volatile carbosulfides CS(g) and CS2(g), thereby competing with Cu and Sn. Moreover, C increases the activity coefficients of Cu, Sn, and S. This increases the thermodynamic driving force for the formation of CuS(g) and SnS(g). Therefore, increasing [pct C] partly accelerates the evaporation rate of Cu and Sn by increasing the activity coefficient but partly decelerates the evaporation rate by lowering the available S content. S partly accelerates the evaporation rate by increasing the available S for the sulfide gas species but partly decelerates the evaporation rate due to the surface poisoning effect. Increasing the reaction temperature increases the overall evaporation rate. All these facts were taken into account in order to develop an evaporation rate model. This model was extended from the present authors' previous one by taking into account (1) CS(g), S(g), and CS2(g) (therefore, the following species were considered as dominant evaporating species: Cu(g), CuS(g), Sn(g), SnS(g), S(g), CS(g), and CS2(g)); (2) the effect of C and temperature on the activity coefficients of Cu, Sn, and S; (3) the effect of C and temperature on the density of the liquid alloy; and (4) the effect of temperature on the S adsorption coefficient. This revised

  9. Evaporation of Cu, Sn, and S from Fe-C-Cu-Sn-S Liquid Alloys in the Temperature Range from 1513 K to 1873 K (1240 °C to 1600 °C)

    Science.gov (United States)

    Tafwidli, Fahmi; Choi, Moo-Eob; Yi, Sang-Ho; Kang, Youn-Bae

    2018-02-01

    Evaporation of Cu or Sn from liquid iron alloys containing C and S was experimentally investigated. The initial C concentration, [pct C]0, in the liquid alloy was varied from zero to C saturation, and the evaporation temperature was varied from 1513 K to 1773 K (1240 °C to 1500 °C). Along with the report by one of the present authors, the evaporation mechanism of Cu and Sn from liquid Fe-C-S alloy is proposed, after a modification from the previous mechanism. It was proposed that Cu and Sn evaporate as Cu(g) and Sn(g) and also evaporate as CuS(g) and SnS(g), which are more volatile species. Therefore, availability of S in the alloy affects the overall evaporation rate of Cu and Sn. At the same time, C in the alloy also forms volatile carbosulfides CS(g) and CS2(g), thereby competing with Cu and Sn. Moreover, C increases the activity coefficients of Cu, Sn, and S. This increases the thermodynamic driving force for the formation of CuS(g) and SnS(g). Therefore, increasing [pct C] partly accelerates the evaporation rate of Cu and Sn by increasing the activity coefficient but partly decelerates the evaporation rate by lowering the available S content. S partly accelerates the evaporation rate by increasing the available S for the sulfide gas species but partly decelerates the evaporation rate due to the surface poisoning effect. Increasing the reaction temperature increases the overall evaporation rate. All these facts were taken into account in order to develop an evaporation rate model. This model was extended from the present authors' previous one by taking into account (1) CS(g), S(g), and CS2(g) (therefore, the following species were considered as dominant evaporating species: Cu(g), CuS(g), Sn(g), SnS(g), S(g), CS(g), and CS2(g)); (2) the effect of C and temperature on the activity coefficients of Cu, Sn, and S; (3) the effect of C and temperature on the density of the liquid alloy; and (4) the effect of temperature on the S adsorption coefficient. This revised

  10. A low-temperature (4-300K) constant volume gas thermometer

    International Nuclear Information System (INIS)

    Combarieu, A. de

    1976-01-01

    A constant volume gas thermometer was built to calibrate the various secondary thermometers used at low temperature. This gas thermometer is placed in a cryostat where any stable temperature between 4 and 300K may be obtained. The principle is outlined, then the gas thermometer and its auxiliary equipment are briefly described; the corrections to be applied to the results are given and a table shows the values obtained [fr

  11. Intercomparison of the Dew-Point Temperature Realizations at LPM and MIKES in the Range from -70 °C to + 20 ° C

    Science.gov (United States)

    Heinonen, Martti; Zvizdic, Davor; Sestan, Danijel

    2012-09-01

    The first European humidity key comparison EURAMET-T.K6 was completed in 2008, and it covered the dew-point temperature range from -50 °C to + 20 °C. Both LPM and MIKES participated in the comparison, but a new low dew-point generator was introduced at LPM as a result of progress in the EUROMET P912 project. To extend the range of available comparison evidence down to -70 °C and to study the validity of improved uncertainties of LPM, a bilateral comparison was carried out between LPM and MIKES in 2009-2010. The applied comparison procedure was similar to that applied in EURAMET-T.K6. However, only one transfer standard was used instead of two units and the measurement point -70 °C was added in the measurement scheme. The results show that the bilateral equivalence between LPM and MIKES is between (0.00 ± 0.06) °C and (0.02 ± 0.08) °C in the range from -50 °C to + 20 °C and (0.01 ± 0.10) °C at -70 °C. Using MIKES results as the link to the EURAMET.T-K6, it is shown that the difference between the results obtained with the new LPM dew-point temperature standard and the EURAMET Comparison Reference Values is between (-0.02 ± 0.08) °C at 20 °C and (+ 0.02 ± 0.07) ° C at -50 °C.

  12. Characterization of SiO2/SiC interface states and channel mobility from MOSFET characteristics including variable-range hopping at cryogenic temperature

    Directory of Open Access Journals (Sweden)

    Hironori Yoshioka

    2018-04-01

    Full Text Available The characteristics of SiC MOSFETs (drain current vs. gate voltage were measured at 0.14−350 K and analyzed considering variable-range hopping conduction through interface states. The total interface state density was determined to be 5.4×1012 cm−2 from the additional shift in the threshold gate voltage with a temperature change. The wave-function size of interface states was determined from the temperature dependence of the measured hopping current and was comparable to the theoretical value. The channel mobility was approximately 100 cm2V−1s−1 and was almost independent of temperature.

  13. Characterization of SiO2/SiC interface states and channel mobility from MOSFET characteristics including variable-range hopping at cryogenic temperature

    Science.gov (United States)

    Yoshioka, Hironori; Hirata, Kazuto

    2018-04-01

    The characteristics of SiC MOSFETs (drain current vs. gate voltage) were measured at 0.14-350 K and analyzed considering variable-range hopping conduction through interface states. The total interface state density was determined to be 5.4×1012 cm-2 from the additional shift in the threshold gate voltage with a temperature change. The wave-function size of interface states was determined from the temperature dependence of the measured hopping current and was comparable to the theoretical value. The channel mobility was approximately 100 cm2V-1s-1 and was almost independent of temperature.

  14. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  15. Experimental study of the density and derived volumetric (excess, apparent, and partial molar volumes) properties of aqueous 1-propanol mixtures at temperatures from 298 K to 582 K and pressures up to 40 MPa

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Azizov, N.D.

    2014-01-01

    Highlights: • Density of (water + 1-propanol) mixtures. • Excess molar volumes of (water + 1-propanol) mixtures. • Apparent molar volumes of (water + 1-propanol) mixtures. -- Abstract: Densities of (water + 1-propanol) mixtures have been measured over the temperature range from 298 K to 582 K and at pressures up to 40 MPa using the constant-volume piezometer immersed in a precision liquid thermostat. The measurements were made for six compositions of (0.869, 2.465, 2.531, 7.407, 14.377, and 56.348) mol · kg −1 of 1-propanol. The expanded uncertainty of the density, pressure, temperature, and concentration measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.06%, 0.05%, 15 mK, and 0.015%, respectively. The derived volumetric properties such as excess (V m E ), apparent (V Φ ), and partial (V ¯ 2 ∞ ) molar volumes were calculated using the measured values of density for the mixture and for pure components (water and 1-propanol). The concentration dependences of the apparent molar volumes were extrapolated to zero concentration to yield the partial molar volumes of 1-propanol at infinite dilution (V ¯ 2 ∞ ). The temperature, pressure, and concentration dependence of density and derived properties of the mixture were studied. All experimental and derived properties (excess, apparent, and partial molar volumes) were compared with the reported data by other authors. The small and negative values of excess molar volume for the mixtures were found at all experimental temperatures, pressures, and over the entire concentration range. The excess molar volume minimum is found at concentration about 0.4 mole fraction of 1-propanol. The concentration minimum of the derived apparent molar volumes V Φ near the 2.5 mol · kg −1 (dilute mixture) was observed

  16. The Single Transmembrane Segment of Minimal Sensor DesK Senses Temperature via a Membrane-Thickness Caliper.

    Science.gov (United States)

    Inda, Maria E; Oliveira, Rafael G; de Mendoza, Diego; Cybulski, Larisa E

    2016-11-01

    Thermosensors detect temperature changes and trigger cellular responses crucial for survival at different temperatures. The thermosensor DesK is a transmembrane (TM) histidine kinase which detects a decrease in temperature through its TM segments (TMS). Here, we address a key issue: how a physical stimulus such as temperature can be converted into a cellular response. We show that the thickness of Bacillus lipid membranes varies with temperature and that such variations can be detected by DesK with great precision. On the basis of genetic studies and measurements of in vitro activity of a DesK construct with a single TMS (minimal sensor DesK [MS-DesK]), reconstituted in liposomes, we propose an interplay mechanism directed by a conserved dyad, phenylalanine 8-lysine 10. This dyad is critical to anchor the only transmembrane segment of the MS-DesK construct to the extracellular water-lipid interphase and is required for the transmembrane segment of MS-DesK to function as a caliper for precise measurement of membrane thickness. The data suggest that positively charged lysine 10, which is located in the hydrophobic core of the membrane but is close to the water-lipid interface, pulls the transmembrane region toward the water phase to localize its charge at the interface. Nevertheless, the hydrophobic residue phenylalanine 8, located at the N-terminal extreme of the TMS, has a strong tendency to remain in the lipid phase, impairing access of lysine 10 to the water phase. The outcome of this interplay is a fine-tuned sensitivity to membrane thickness that elicits conformational changes that favor different signaling states of the protein. The ability to sense and respond to extracellular signals is essential for cell survival. One example is the cellular response to temperature variation. How do cells "sense" temperature changes? It has been proposed that the bacterial thermosensor DesK acts as a molecular caliper measuring membrane thickness variations that would occur

  17. Finite temperature CPN-1 model and long range Neel order

    International Nuclear Information System (INIS)

    Ichinose, Ikuo; Yamamoto, Hisashi.

    1989-09-01

    We study in d space-dimensions the finite temperature behavior of long range Neel order (LRNO) in CP N-1 model as a low energy effective field theory of the antiferromagnetic Heisenberg model. For d≤1, or d≤2 at any nonzero temperature, LRNO disappears, in agreement with Mermin-Wagner-Coleman's theorem. For d=3 in the weak coupling region, LRNO exists below the critical temperature T N (Neel temperature). T N decreases as the interlayer coupling becomes relatively weak compared with that within Cu-O layers. (author)

  18. Continental-Scale Temperature Reconstructions from the PAGES 2k Network

    Science.gov (United States)

    Kaufman, D. S.

    2012-12-01

    We present a major new synthesis of seven regional temperature reconstructions to elucidate the global pattern of variations and their association with climate-forcing mechanisms over the past two millennia. To coordinate the integration of new and existing data of all proxy types, the Past Global Changes (PAGES) project developed the 2k Network. It comprises nine working groups representing eight continental-scale regions and the oceans. The PAGES 2k Consortium, authoring this paper, presently includes 79 representatives from 25 countries. For this synthesis, each of the PAGES 2k working groups identified the proxy climate records for reconstructing past temperature and associated uncertainty using the data and methodologies that they deemed most appropriate for their region. The datasets are from 973 sites where tree rings, pollen, corals, lake and marine sediment, glacier ice, speleothems, and historical documents record changes in biologically and physically mediated processes that are sensitive to temperature change, among other climatic factors. The proxy records used for this synthesis are available through the NOAA World Data Center for Paleoclimatology. On long time scales, the temperature reconstructions display similarities among regions, and a large part of this common behavior can be explained by known climate forcings. Reconstructed temperatures in all regions show an overall long-term cooling trend until around 1900 C.E., followed by strong warming during the 20th century. On the multi-decadal time scale, we assessed the variability among the temperature reconstructions using principal component (PC) analysis of the standardized decadal mean temperatures over the period of overlap among the reconstructions (1200 to 1980 C.E.). PC1 explains 35% of the total variability and is strongly correlated with temperature reconstructions from the four Northern Hemisphere regions, and with the sum of external forcings including solar, volcanic, and greenhouse

  19. Thermodynamic constants of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) from the temperatures 278.15 K to 328.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rabindra N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States)]. E-mail: rroy@drury.edu; Roy, Lakshmi N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); LeNoue, Sean R. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Denton, Cole E. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Simon, Ashley N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Richards, Sarah J. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Moore, Andrew C. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Roy, Chandra N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Redmond, R. Ryan [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Bryant, Paul A. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States)

    2006-04-15

    Values of the second thermodynamic dissociation constant pK{sub 2} of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) have been determined at twelve temperatures from 278.15 K to 328.15 K including 310.15 K by measurements of the electromotive-force for cells without liquid junction of the type: Pt|H{sub 2} (g, p{sup -}bar =101.325 kPa)|Taps (m{sub 1}), NaTapsate (m{sub 2}), NaCl (m{sub 3})|AgCl|Ag, where m denotes molality. The pK{sub 2} values for the dissociation of Taps are represented by the equation: pK{sub 2}=2969.61.(K/T) - 17.05052+2.73697.ln(T/K). The values of pK{sub 2} for Taps were found to be (8.502+/-0.0007) at T=298.15 K and (8.225+/-0.0009) at T=310.15 K, respectively, indicating thereby to be useful as buffer solutions for pH control in the region 7.4 to 8.5. The thermodynamic quantities, {delta}G{sup -}bar , {delta}H{sup -}bar , {delta}S{sup -}bar , and {delta}C{sub p}{sup -}bar dissociation process of Taps have been derived from the temperature coefficients of the pK{sub 2}.

  20. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  1. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J.M.; Hernandez, A.

    1994-01-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01% in the range 1 to 30, and 3 x 10''6 for loss tangent values below 10''2, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99,9% purity in the same temperature range are presented

  2. Concept, design approaches suited to space nuclear power systems in the range of 20 kWE

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Carre, F.; Proust, E.

    1989-01-01

    Given the variety of possible missions and flight dates, it seems advisable to widen the basis for future technical choices within the French preliminary studies of 20-kWe space nuclear power systems. In addition to the fast spectrum, liquid metal-cooled reactor presently considered as a reference, shorter development term system, gas- and Na(K)-cooled thermal spectrum reactors are being investigated. The need for adequate ZrH moderator temperature conditions can be satisfied through a Brayton cycle conversion subsystem featuring two separate, high temperature-heat pipes and low temperature-pumped loop radiators. The penalty in efficiency and in radiator area, resulting from the wanted lower reactor inlet temperature, can be limited, particularly in the case of the higher temperature, gas-cooled reactor system. A multiple, pivoting tubes, low temperature radiator concept is proposed; it avoids an extension of the related structural support frame beyond the conversion subsystem region in flight configuration. Arrangements peculiar to small reactors and two-turbo-generator diagrams for reliability reasons are presented. Provisional, not yet optimized, thermal management mass estimates are evaluated

  3. Analytically derived conversion of spectral band radiance to brightness temperature

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Alexander [Spectral Sciences, Inc., 44th Avenue, Burlington, MA 01803 (United States)], E-mail: lex@spectral.com

    2008-05-15

    Simple analytic expressions for brightness temperature have been derived in terms of band response function spectral moments. Accuracy measures are also derived. Application of these formulas to GOES-12 Sounder thermal infrared bands produces brightness temperature residuals between -5.0 and 2.5 mK for a 150-400 K temperature range. The magnitude of residuals for the five ASTER Radiometer thermal infrared bands over the same temperature range is less than 0.22 mK.

  4. Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range.

    Science.gov (United States)

    Hu, Lei; Chen, Jun; Fan, Longlong; Ren, Yang; Rong, Yangchun; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2014-10-01

    The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc1-xMx)F3 (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), αl = 2.34 × 10(-7) K(-1), 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc0.85Ga0.05Fe0.1)F3 adheres to the cubic system (Pm3̅m) according to the results of X-ray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation X-ray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc1-xMx)F3 can be functionalized to exhibit high-Tc ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work.

  5. Experimental (155 K) and predicted (151 K) Curie temperature (Tc) of K2ZnBr4: structural confirmation of ferroelectric state below Tc

    International Nuclear Information System (INIS)

    Abrahams, S.C.

    1994-01-01

    The temperature T c at which K 2 ZnBr 4 is predicted to transform from the paraelectric to the ferroelectric phase is 151 (19) K, based on the crystal structure determinations at 291 and 144 K by Fabry, Breczewski, Zuniga and Arnaiz and the Abrahams-Kurtz-Jamieson relationship. A dielectric and heat-capacity anomaly in this material at 155 K has been reported elsewhere. The locations reported for the ZnBr 2- 4 and K + ions fulfill the requirements of mirror plane symmetry above T c ; ionic displacements along the polar direction that approach but do not exceed 0.1 A and that violate the mirror symmetry on cooling through T c form the basis of the prediction and satisfy the structural criteria for ferroelectricity in the phase below the transition. (orig.)

  6. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  7. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance

    International Nuclear Information System (INIS)

    Alamusi; Li, Yuan; Hu, Ning; Wu, Liangke; Liu, Yaolu; Ning, Huiming; Li, Jinhua; Surina; Yuan, Weifeng; Chang, Christiana; Atobe, Satoshi; Fukunaga, Hisao

    2013-01-01

    A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333–373 K) and MWCNT content (within the range 1–5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K −1 ), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation—conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor—indicated the key role of a temperature-dependent tunneling effect. (paper)

  8. Millimeter wavelength ultralow temperature magnetic radiospectrometer

    International Nuclear Information System (INIS)

    Vertij, A.A.; Zvyagina, G.A.; Ivanchenko, I.V.

    1986-01-01

    The paper deals with the superlowtemperature radiospectrometric complex designed for investigation of substances in the temperature range from 4.2 to 0.3 K. The obtaining of superlow temperatures - 0.3 K is carried out in the circulation regime of 3 He. As resonance spectrometer cells it is suggested and investigated some variants allowing to obtain high sensitivity and resolution of the spectrometer, as well as minimum heat flow into the working chamber. The absorption spectra have been obtained of the HMBACrV substance designed for polarized nuclear targets at the frequencies of 75 and 150 GHz in the temperature ranges from 4.2 to 0.7 K

  9. Mechanical behaviour of substitutional body centered cubic Fe-Ti solid solutions at temperatures between 77 and 900 K; Plasticite des solutions solides cubiques centrees substitutionnelles fer-titane aux temperatures comprises entre 77 et 900 K

    Energy Technology Data Exchange (ETDEWEB)

    Dubots, Patrick

    1976-05-11

    Plastic behavior of body-centered cubic, interstitial free, Fe-Ti substitutional solid solutions has been characterised. We obtained the following results: at temperatures below 500 K, the thermal component τ* of the critical resolved shear stress τ greatly increases. Solute additions (c >0.12 wt pc) results in: softening at temperatures below 200 K, hardening at temperatures between 200 and 500 K. Results are discussed on Peierls mechanism. At temperatures below 200 K, screw dislocation motion is controlled.by the nucleation of dislocation pairs over the Peierls'hill. Substitutional solute favoring this process gives account of the softening. At temperatures above 200 K, edge dislocation motion controls the strain. The observed hardening is explained by the interaction occurring between edge-dislocations and foreign atoms. At temperatures between 500 and 800 K, a Portevin-Le Chatelier effect is observed. This effect is characterised by two types of serrations. The activation energy of the PLC effect has been determined (E = 1,4 eV). The origin of this phenomenon is the diffusion of solute towards dislocation by a vacancy-mechanism. Two maxima have been observed on the (σ{sub ε} - T) curves. These are due to superposition of overstraining (hardening) and creation of dislocations (softening). The athermal component τ{sub μ} is increased by titanium additions. This hardening has been explained by modulus and size effects. (author) [French] La caracterisation des mecanismes controlant la deformation plastique des solutions solides cubiques centrees substitutionnelles fer-titane, libres d'interstitiels pour les teneurs en solute superieures a 0,12pc pds, a donne les resultats suivants: aux temperatures inferieures a 500 K, la composante thermique τ* de la contrainte critique de cisaillement resolue τ augmente fortement. L'introduction du solute se traduit (pour c>0,12 pc pds): par un adoucissement pour θ < 200 K; par un durcissement pour 200 K< θ < 500 K. Le

  10. Method to estimate the effective temperatures of late-type giants using line-depth ratios in the wavelength range 0.97-1.32 μm

    Science.gov (United States)

    Taniguchi, Daisuke; Matsunaga, Noriyuki; Kobayashi, Naoto; Fukue, Kei; Hamano, Satoshi; Ikeda, Yuji; Kawakita, Hideyo; Kondo, Sohei; Sameshima, Hiroaki; Yasui, Chikako

    2018-02-01

    The effective temperature, one of the most fundamental atmospheric parameters of a star, can be estimated using various methods; here, we focus on a method using line-depth ratios (LDRs). This method combines low- and high-excitation lines and makes use of relations between LDRs of these line pairs and the effective temperature. It has an advantage, for example, of being minimally affected by interstellar reddening, which changes stellar colours. We report 81 relations between LDRs and effective temperature established with high-resolution, λ/Δλ ∼ 28 000, spectra of nine G- to M-type giants in the Y and J bands. Our analysis gives the first comprehensive set of LDR relations for this wavelength range. The combination of all these relations can be used to determine the effective temperatures of stars that have 3700 < Teff < 5400 K and -0.5 < [Fe/H] < +0.3 dex, to a precision of ±10 K in the best cases.

  11. Long-range correlations in rectal temperature fluctuations of healthy infants during maturation.

    Directory of Open Access Journals (Sweden)

    Georgette Stern

    Full Text Available BACKGROUND: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (T(rec patterns in maturing infants. METHODOLOGY/PRINCIPAL FINDINGS: We measured T(rec fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, alpha using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that T(rec fluctuations exhibit fractal long-range correlations with a mean (SD alpha of 1.51 (0.11, indicating that T(rec is regulated in a highly correlated and hence deterministic manner. A significant increase in alpha with age from 1.42 (0.07 at 4 weeks to 1.58 (0.04 at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. alpha was not associated with mean room temperature or influenced by immunization CONCLUSIONS: This study shows that the quantification of long-range correlations using alpha derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time T(rec pattern in young infants, reflective of maturation of

  12. Supplementary vapor pressure data of the glycol ethers, 1-methoxy-2-propanol, and 2-methoxyethanol at a pressure range of (15 to 177) kPa

    International Nuclear Information System (INIS)

    Bejarano, Arturo; Poveda, Laura J.; Fuente, Juan C. de la

    2012-01-01

    Highlights: ► Vapor pressure of 2-methoxyethanol and 1-methoxy-2-propanol were measured. ► Complementary data are reported at ranges of (342 to 417) K and (15 to 177) kPa. ► Three commonly used vapor pressure equations were fitted to experimental data. ► The parameters of Antoine and Wagner type equations were estimated. ► The relative deviations (rmsd) from the three vapor pressure equations were <0.4%. - Abstract: The vapor pressure of pure 1-methoxy-2-propanol and 2-methoxyethanol, commonly used as co-solvents in inks, paints, coatings, organic/water solutions among many other applications, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa. The measurements were performed at temperature ranges of (342 to 412) K for 1-methoxy-2-propanol and (346 to 417) K for 2-methoxyethanol. The maximum likelihood method was used to estimate the parameters of the Antoine equation, the parameters of an extended Antoine equation and the Wagner equation were determined by non linear least squares method. The three models showed root mean square deviations (rmsd) of 0.39%, 0.38%, and 0.29%, and 0.37%, 0.33%, and 0.32%, for 1-methoxy-2-propanol and 2-methoxyethanol, respectively. Additionally, the experimental data and correlation were compared with those available in the literature.

  13. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range.

    Directory of Open Access Journals (Sweden)

    Anat Bahat

    Full Text Available On the basis of the finding that capacitated (ready to fertilize rabbit and human spermatozoa swim towards warmer temperatures by directing their movement along a temperature gradient, sperm thermotaxis has been proposed to be one of the processes guiding these spermatozoa to the fertilization site. Although the molecular mechanism underlying sperm thermotaxis is gradually being revealed, basic questions related to this process are still open. Here, employing human spermatozoa, we addressed the questions of how wide the temperature range of thermotaxis is, whether this range includes an optimal temperature or whether spermatozoa generally prefer swimming towards warmer temperatures, whether or not they can sense and respond to descending temperature gradients, and what the minimal temperature gradient is to which they can thermotactically respond. We found that human spermatozoa can respond thermotactically within a wide temperature range (at least 29-41°C, that within this range they preferentially accumulate in warmer temperatures rather than at a single specific, preferred temperature, that they can respond to both ascending and descending temperature gradients, and that they can sense and thermotactically respond to temperature gradients as low as <0.014°C/mm. This temperature gradient is astonishingly low because it means that as a spermatozoon swims through its entire body length (46 µm it can sense and respond to a temperature difference of <0.0006°C. The significance of this surprisingly high temperature sensitivity is discussed.

  14. High-temperature Schottky diode characteristics of bulk ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Emre; Tuezemen, S; Kilic, Bayram; Coskun, C [Department of Physics, Faculty of Arts and Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2007-05-16

    Current-voltage (I-V) measurements of Ag/n-ZnO have been carried out at temperatures of 200-500 K in order to understand the temperature dependence of the diode characteristics. Forward-bias I-V analysis results in a Schottky barrier height of 0.82 eV and an ideality factor of 1.55 at room temperature. The barrier height of 0.74 eV and Richardson constant of 0.248 A K{sup -2} cm{sup -2} were also calculated from the Richardson plot, which shows nearly linear characteristics in the temperature range 240-440 K. From the nk{sub b}T/q versus k{sub b}T/q graph, where n is ideality factor, k{sub b} the Boltzmann constant, T the temperature and q the electronic charge we deduce that thermionic field emission (TFE) is dominant in the charge transport mechanism. At higher sample temperatures (>440 K), a trap-assisted tunnelling mechanism is proposed due to the existence of a deep donor situated at E{sub c}-0.62 eV with 3.3 x 10{sup -15} cm{sup 2} capture cross section observed by both deep-level transient spectroscopy (DLTS) and lnI{sub 0} versus 1/k{sub b}T plots. The ideality factor almost remains constant in the temperature range 240-400 K, which shows the stability of the Schottky contact in this temperature range.

  15. Design, Fabrication, Test Report of the Material Capsule(08M-10K) with Double Thermal Media for High-temperature Irradiation

    International Nuclear Information System (INIS)

    Cho, Man Soon; Choo, K. N.; Kang, Y. H.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Kim, B. G.; Oh, S. Y.

    2010-01-01

    To overcome the restriction of the irradiation test at a high temperature of the existing material capsule with Al thermal media, a capsule suitable for the irradiation at the high temperature was developed and the performance test was undertaken. The 08M-10K capsule was designed and fabricated as that with double thermal media to verify the structural and external integrity in the high-temperature irradiation higher than 500 .deg. C. The thermal performance test was undertaken at the out-pile test facility, and the soundness of the double thermal media was confirmed with the naked eye after disassembling the capsule. Though the temperatures of the specimens reach 500±20 .deg. C as a result maintaining the capsule during 5 hours after setting the specimens temperatures in the target range, the high-temperature thermal media with double structure was confirmed to maintain the soundness. And the specimens and the thermal media were heated to 600 .deg. C for about 3 minutes, but the thermal media were maintained sound. Especially, the Al thermal media were heated for 5 hours in range of 500±20 .deg. C and for 3 minutes at the temperature of 600 .deg. C. However, the thermal media were confirmed to maintain the soundness. Whether a capsule has only Al thermal media or the high-temperature thermal media with double structure, any capsule can be used in the range of 500±20 .deg. C as the result of this experiment maintaining the specimens high-temperature

  16. On high temperature internal friction in metallic glasses

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.; Roshchupkin, A.M.

    1992-01-01

    High temperature background of internal friction in amorphous lanthanum-aluminium alloys was investigated. More rapid growth of internal friction was observed at temperature ∼ 453 K reaching maximal value at 495 K. Crystallization process was accompanied by decrease of internal friction. Increase of mechanical vibration frequency to 1000 Hz leads to rise of internal friction background in the range of room temperatures and to decrease at temperatures above 370 K. Bend was observed on temperature dependence of internal friction at 440 K

  17. Elastic oscillation damping and magnetic susceptibility in Y19Fe81 spin glass in the temperature range 70-300 K

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Balalaev, S.Yu.

    1990-01-01

    Relaxation properties of Y 19 Fe 81 spin glass (SG) were investigated by means of internal friction(IF). Relaxation process resulting from transition to SG state was determined at sound range frequencies in amorphous alloy. On the basis of the obtained results concerning IF and magnetic susceptibility it follows, that relaxation of certain part of cluster magnetic moments lies within 10 -5 -10 -3 s limits with 0.11±0.06 eV activation energy. IF technique is shown to be used for investigation into relaxation properties, in particular, for acquisition of data on temperature of transition to SG' state

  18. High temperature creep behavior in the (α + β) phase temperature range of M5 alloy

    International Nuclear Information System (INIS)

    Trego, G.

    2011-01-01

    The isothermal steady-state creep behavior of a M5 thin sheet alloy in a vacuum environment was investigated in the (α + β) temperature, low-stress (1-10 MPa) range. To this aim, the simplest approach consists in identifying α and β creep flow rules in their respective single-phase temperature ranges and extrapolating them in the two-phase domain. However, the (α + β) experimental behavior may fall outside any bounds calculated using such creep flow data. Here, the model was improved for each phase by considering two microstructural effects: (i) Grain size: Thermo-mechanical treatments applied on the material yielded various controlled grain size distributions. Creep tests in near-α and near-β ranges evidenced a strong grain-size effect, especially in the diffusional creep regime. (ii) Chemical contrast between the two phases in the (α + β) range: From thermodynamic calculations and microstructural investigations, the β phase is enriched in Nb and depleted in O (the reverse being true for the α phase). Thus, creep tests were performed on model Zr-Nb-O thin sheets with Nb and O concentrations representative of each phase in the considered temperature range. New α and β creep flow equations were developed from this extended experimental database and used to compute, via a finite element model, the creep rates of the two-phase material. The 3D morphology of phases (β grains nucleated at α grain boundaries) was explicitly introduced in the computations. The effect of phase morphology on the macroscopic creep flow was shown using this specific morphology, compared to other typical morphologies and to experimental data. (author) [fr

  19. Volumetric behaviour of the (2,2,4-trimethylpentane + methylbenzene + butan-1-ol) ternary system and its binary sub-systems within the temperature range (298.15–328.15) K

    International Nuclear Information System (INIS)

    Morávková, Lenka; Troncoso, Jacobo; Machanová, Karolina; Sedláková, Zuzana

    2013-01-01

    Highlights: • Density measurements. • Excess molar volume at atmospheric pressure. • Redlich–Kister equation. • ERAS model. • Comparison of our data with literature data. -- Abstract: Densities and speeds of sound of the (2,2,4-trimethylpentane + methylbenzene + butan-1-ol) ternary system as well as all its binary sub-systems were measured at four temperatures, namely 298.15 K, 308.15 K, 318.15 K, and 328.15 K at atmospheric pressure by a vibrating-tube densimeter DSA 5000. The binary (isooctane + toluene) system was studied previously. Excess quantities (molar volume, adiabatic compressibility, and isobaric thermal expansivity) of the mixtures studied were calculated from the experimental densities and speed of sounds. The excess molar volume data were correlated using the Redlich–Kister equation. Both the positive and S-shaped excess molar volume curves were found for the systems studied. The excess molar volumes versus concentration of binary systems differed in the shape and temperature dependence. The experimental binary data were compared with literature data. The experimental excess molar volumes were analyzed by means of the Extended Real Associated Solution (ERAS) model. The experimental data and the ERAS model can help to estimate real behaviour of the systems studied

  20. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J. M.; Hernandez, A.

    1994-07-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01 % in the range 1 to 30, and 3 x 10{sup 6} for loss tangent values below 10{sup 2}, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99.9 % purity in the same temperature range are presented. (Author) 23 refs.

  1. Phase equilibrium measurements of (methane + benzene) and (methane + methylbenzene) at temperatures from (188 to 348) K and pressures to 13 MPa

    International Nuclear Information System (INIS)

    Hughes, Thomas J.; Kandil, Mohamed E.; Graham, Brendan F.; Marsh, Kenneth N.; Huang, Stanley H.; May, Eric F.

    2015-01-01

    Highlights: • VLE data for (CH 4 (1) + C 6 H 6 (2)) and (CH 4 (1) + C 6 H 5 CH 3 (3)) were measured. • LLE was observed at T = 198.15 K, a T higher than expected, for (CH 4 + C 6 H 5 CH 3 ) . • Inconsistences in the literature data were identified and assessed. • More data at x 1 > 0.3 for both systems are needed to investigate discrepancies. - Abstract: New isothermal pTxy data are reported for (methane + benzene) and (methane + methylbenzene (toluene)) at pressures up to 13 MPa over the temperature range (188 to 313) K using a custom-built (vapor + liquid) equilibrium (VLE) apparatus. The aim of this work was to investigate literature data inconsistencies and to extend the measurements to lower temperatures. For (methane (1) + benzene (2)), measurements were made along six isotherms from (233 to 348) K at pressures to 9.6 MPa. At temperatures below 279 K there was evidence of a solid phase, and thus only vapor phase samples were analyzed at these temperatures. For the (methane (1) + methylbenzene (3)) system, measurements were made along seven isotherms from T = (188 to 313) K at pressures up to 13 MPa. Along the 198 K isotherm, a significant change in the data’s p,x slope was observed indicating (liquid + liquid) equilibria at higher pressures. The data were compared with literature data and with calculations made using the Peng–Robinson (PR) equation of state (EOS). For both binary systems our data agree with much of the literature data that also deviate from the EOS in a similar manner. However, the data of Elbishlawi and Spencer (1951) for both binary systems, which appear to have received an equal weighting to other data in the EOS development, are inconsistent with the results of our measurements and data from other literature sources

  2. P--V--T and sound velocity data for fluid n-D2 in the range 75-300 K and 2-20 kbar

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1977-11-01

    Simultaneous static measurements of pressure, volume, temperature, and sound velocity are reported in deuterium fluid in the range 75 less than or equal to T less than or equal to 300K and 2 less than or equal to P less than or equal to 20 kbar [0.2 to 2.0 GPa]. The 1340 sets of data points along the 33 different isotherms are presented so that they may be available for use in equation-of-state development

  3. Reply to "On Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K- A high temperature mass spectrometric study"

    Science.gov (United States)

    Jain, Uttam; Mukherjee, Abhishek

    2018-03-01

    This communication is in response to a letter to editor commenting on the authors' earlier paper "Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K - A high temperature mass spectrometric study".

  4. The development of a cryogenic integrated system with the working temperature of 100K

    Science.gov (United States)

    Liu, En'guang; Wu, Yi'nong; Wang, Yueming; Wen, Jiajia; Lv, Gang; Li, Chunlai; Hou, Jia; Yuan, Liyin

    2016-05-01

    In the infrared system, cooling down the optic components' temperature is a better choice to decrease the background radiation and maximize the sensitivity. This paper presented a 100K cryogenic optical system, for which an integrated designation of mechanical cooler, flexible thermal link and optical bench was developed. The whole infrared optic components which were assembled in a vacuum box were cooled down to 100K by two mechanical coolers. Low thermal conductivity supports and low emissivity multi-layers were used to reduce the cryogenic optical system's heat loss. The experiment results showed that in about eight hours, the temperature of the optical components reached 100K from room temperature, and the vibration from the mechanical coolers nearly have no affection to the imaging process by using of thermal links. Some experimental results of this cryogenic system will be discussed in this paper.

  5. Thermal properties of Permian Basin evaporites to 493 K and 30 MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Heard, H.C.; Boro, C.O.; Keller, K.T.; Ralph, W.E.; Trimmer, D.A.

    1987-01-01

    Laboratory measurements have been made of the thermal conductivity and diffusivity of four rock salts, two anhydrites, and two dolomites bordering the Cycle 4 and Cycle 5 bedded salt formations in the Permian Basin in Deaf Smith County, Texas. Measurement conditions ranged from 303 to 473 K in temperature, and 0.1 to 31.0 MPa in hydrostatic confining pressure. Within the +-5% measurement resolution neither conductivity nor diffusivity showed a dependence upon pressure in any of the rocks. Conductivity and diffusivity in all rocks had a negative temperature dependence. For the two Cycle 4 salt samples, conductivity over the temperature range explored fell from 5.5 to 3.75 W/m.K, and diffusivity fell from about 2.7 to 1.7 x 10 -6 m 2 /s. One of the Cycle 5 salts was a single crystal which had anomalous results, but the other had a low conductivity, about 3.4 W/m.K, with very weak temperature dependence, and a high diffusivity, 3.8 to 2.5 x 10 -6 m 2 /s over the temperature range. In the nonsalts, conductivity and diffusivity decreased 10 to 20% over the temperature range explored, which was 308 -6 m 2 /s for the anhydrites and 1.4 x 10 -6 m 2 /s for both the dolomites. The coefficient of thermal linear expansion was measured for the Cycle 5 salt and nonsalts over 308 -6 K -1 at P = 3.0 MPa to 4 x 10 -6 K -1 at P = 30 MPa for both nonsalt rocks. In anhydrite, it decreased with increasing temperature at a rate of roughly 5 x 10 -8 K -2 at all pressures. In dolomite, the coefficient increased at roughly the same rate. Expansion of the salt ranged from 33 to 38 x 10 -6 K -1 and was independent of pressure and temperature

  6. Density dependence of a positron annihilation and positronium formation in H2 gas at temperatures between 77 and 297 K

    International Nuclear Information System (INIS)

    Laricchia, G.; Charlton, M.; Beling, C.D.; Griffith, T.C.

    1987-01-01

    Positron lifetime experiments have been performed on H 2 gas at temperatures between 77 and 297 K and in the density range from 12-160 Amagat. The extracted parameters are discussed in terms of current models. In the case of the positronium fraction it has been found that the observed density dependence can, in part, be interpreted using a combined Ore and spur model. (author)

  7. A comparison of irradiance responsivity and thermodynamic temperature measurement between PTB and NIM

    International Nuclear Information System (INIS)

    Lu, X.; Yuan, Z.; Anhalt, K.; Taubert, R. D.

    2013-01-01

    This paper describes a comparison between PTB and NIM in the field of absolute spectral-band radiometry and thermodynamic temperature measurement. For the comparison a NIM made interference filter radiometer with a centre wavelength of 633 nm was taken to PTB. The filter radiometer was calibrated at NIM and PTB with respect to spectral irradiance responsivity. For the integral value in the band-pass range an agreement of 0.1% was observed in both calibrations. In a next step, the 633 nm filter radiometer was used to measure the temperature of a high-temperature blackbody in comparison to an 800 nm filter radiometer of PTB in the temperature range between 1400 K and 2750 K. The thermodynamic temperature measured by the two filter radiometers agreed to within 0.2 K to 0.5 K with an estimated measurement uncertainty ranging between 0.1 K and 0.4 K (k=1)

  8. Density measurements of liquid 2-propanol at temperatures between (280 and 393) K and at pressures up to 10 MPa

    International Nuclear Information System (INIS)

    Stringari, Paolo; Scalabrin, Giancarlo; Valtz, A.; Richon, D.

    2009-01-01

    Liquid densities for 2-propanol have been measured at T = (280, 300, 325, 350, 375, and 393) K from about atmospheric pressure up to 10 MPa using a vibrating tube densimeter. The period of vibration has been converted into density using the Forced Path Mechanical Calibration method. The R134a has been used as reference fluid for T ≤ 350 K and water for T > 350 K. The uncertainty of the measurements is lower than ±0.05%. The measured liquid densities have been correlated with a Starling BWR equation with an overall AAD of 0.025%. The same BWR equation agrees within an AAD lower than 0.2% with the experimental values available in the literature over the same temperature and pressure range

  9. Charge transfer reactions between gas-phase hydrated electrons, molecular oxygen and carbon dioxide at temperatures of 80-300 K.

    Science.gov (United States)

    Akhgarnusch, Amou; Tang, Wai Kit; Zhang, Han; Siu, Chi-Kit; Beyer, Martin K

    2016-09-14

    The recombination reactions of gas-phase hydrated electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed phase, this yields hydration enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime.

  10. A kinetic-phase transformation near 250 K in potassium tetrachlorozincate

    International Nuclear Information System (INIS)

    Noiret, I.; Hedoux, A.; Guinet, Y.; Foulon, M.

    1993-01-01

    Raman-scattering experiments have been performed to study the successive phase transitions of K 2 ZnCl 4 over the temperature range (100/600) K. The spectra provide the temperature dependence of the mode frequencies and linewidths for two different spatial configurations: a(bb) c and c(aa) b. Special emphasis is put upon a new phenomenon observed in the spectra around 250 K in the c * /3 superstructure. Its kinetic character is revealed by complementary DSC measurements carried out over the range (120/300) K. This phenomenon is interpreted as a progressive structural transformation which corresponds to a slow modification of the tetrahedron distortions. (orig.)

  11. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites.

    Science.gov (United States)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-01-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23 × 10 -6 K -1 (192-305 K) and -1167.09 × 10 -6 K -1 (246-305 K) have been obtained in Mn 0.90 Fe 0.10 NiGe and MnNi 0.90 Fe 0.10 Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn 0.92 Fe 0.08 NiGe/ x %Cu, the CTE gradually changes from -64.92 × 10 -6 K -1 (125-274 K) to -4.73 × 10 -6 K -1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  12. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability

    Science.gov (United States)

    Mamidi, Venkata Reddy; Kamineni, Srimannarayana; Ravinuthala, Lakshmi Narayana Sai Prasad; Tumu, Venkatappa Rao

    2017-09-01

    Fiber Bragg grating (FBG)-based high-temperature sensor with enhanced-temperature range and stability has been developed and tested. The sensor consists of an FBG and a mechanical transducer, which furnishes a linear temperature-dependent tensile strain on FBG by means of differential linear thermal expansion of two different ceramic materials. The designed sensor is tested over a range: 20°C to 1160°C and is expected to measure up to 1500°C.

  13. The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B

    Science.gov (United States)

    Gates, Thomas S.; Feldman, Mark

    1994-01-01

    Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.

  14. Renormings of C(K) spaces

    Czech Academy of Sciences Publication Activity Database

    Smith, Richard James; Troyanski, S.

    2010-01-01

    Roč. 104, č. 2 (2010), s. 375-412 ISSN 1578-7303 R&D Projects: GA ČR GA201/07/0394 Institutional research plan: CEZ:AV0Z10190503 Keywords : uniformly rotund norms * Frechet * Gateaux Subject RIV: BA - General Mathematics Impact factor: 0.400, year: 2010 http://www.springerlink.com/content/430027876375w58x/

  15. Temperature-dependence of stress and elasticity in wet-transferred graphene membranes

    Science.gov (United States)

    De Alba, Roberto; Abhilash, T. S.; Hui, Aaron; Storch, Isaac R.; Craighead, Harold G.; Parpia, Jeevak M.

    2018-03-01

    We report measurements of the mechanical properties of two suspended graphene membranes in the temperature range of 80 K to 550 K. For this entire range, the resonant frequency and quality factor of each device were monitored continuously during cooling and heating. Below 300 K, we have additionally measured the resonant frequency's tunability via electrostatic force, and modeled this data to determine graphene's tension and elastic modulus; both of these parameters are found to be strongly temperature-dependent in this range. Above 300 K, we observe a resonant frequency (and therefore tension) minimum near room temperature. This suggests that the thermal expansion coefficient is positive for temperatures below roughly 315 K, and negative for higher temperatures. Lastly, we observe a large, reproducible hysteresis in the resonant frequency as our graphene devices are cycled between 300 K and 550 K. After returning to 300 K, the measured frequency evolves exponentially in time with a time constant of ˜24 h. Our results clash with expectations for pristine graphene membranes, but are consistent with expectations for composite membranes composed of graphene coated by a thin layer of polymer residue.

  16. Volumetric properties of room temperature ionic liquid 1. The system of {1-methyl-3-ethylimidazolium ethyl sulfate+water} at temperature in the range (278.15 to 333.15) K

    International Nuclear Information System (INIS)

    Lu Xingmei; Xu Weiguo; Gui Jinsong; Li Huawei; Yang Jiazhen

    2005-01-01

    This paper reports densities of aqueous solutions of ionic liquid (IL) 1-methyl-3-ethylimidazolium ethyl sulfate (EMISE) that were measured gravimetrically at temperatures (278.15 to 333.15) K. The values of the apparent molar volume, φ V B and partial molar volume, V-bar B, were determined and apparent molar expansibilities φ E=((∂φ B )/∂T)) p of EMISE and the coefficients of thermal expansion of the solutions, α, were calculated. The values of the apparent molar volume, φ V B , were fitted by the method of least-squares to a Pitzer's equation to determine the parameters, β MX (0)V , β MX (1)V , and C MX V

  17. Investigation of oxygen disorder, thermal parameters, lattice vibrations and elastic constants of UO2 and ThO2 at temperatures up to 2 930 K

    DEFF Research Database (Denmark)

    Clausen, Kurt Nørgaard; Hayes, W; Hutchings, M.T.

    1984-01-01

    temperatures has been unanswered until now. A new high temperature furnace has been purchased by Harwell for work at temperatures in this region, and a series of experiments has been carried out involving diffraction, quasielastic diffuse and inelastic neutron scattering from single crystals of UO2 and ThO2....... These have been backed by experiments in the lower temperature range to 2 500 K at I.L.L. Details of the Harwell furnace, and methods used for temperature measurement and encapsulation of the crystal samples are given, together with some examples of the principal results. These results show unambiguously...

  18. Electrical conductivity of high-purity germanium crystals at low temperature

    Science.gov (United States)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  19. Accelerated test techniques for micro-circuits: Evaluation of high temperature (473 k - 573 K) accelerated life test techniques as effective microcircuit screening methods

    Science.gov (United States)

    Johnson, G. M.

    1976-01-01

    The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.

  20. KEY COMPARISON: CCT-K2.1: NRC/VNIIFTRI bilateral comparison of capsule-type standard platinum resistance thermometers from 13.8 K to 273.16 K

    Science.gov (United States)

    Hill, K. D.; Steele, A. G.; Dedikov, Y. A.; Shkraba, V. T.

    2005-01-01

    The Consultative Committee for Thermometry Key Comparison 2 (CCT-K2) results were published two years ago (2002 Metrologia 39 551-71). NRC served as the pilot laboratory for CCT-K2 and remains able to provide a scale and measurement system suitable for performing bilateral comparisons linked to the original key comparison results. In March 2003, measurements of two VNIIFTRI 100 Ω capsule-style platinum resistance thermometers (CSPRTs), S/N 356 and 476, were undertaken to relate their local calibration to the results from the CCT-K2 exercise. The NRC Leeds and Northrup (L&N) CSPRT S/N 1872174 provides the link to the CCT-K2 results. The three CSPRTs were compared at the eight defining cryogenic temperatures of the International Temperature Scale of 1990 (ITS-90) in the range from 13.8033 K to 273.16 K. The reader is referred to the full text of the CCT-K2 report for a detailed explanation of the methodology employed for the comparison. Only the details unique to the measurements reported here will be addressed in this article. The NRC/VNIIFTRI bilateral comparison of capsule-style platinum resistance thermometers over the range 13.8 K to 273.16 K has revealed calibrations at VNIIFTRI to be in agreement with the KCRV of CCT-K2 within the expanded uncertainty for all temperatures of the comparison with the exception of the triple point of hydrogen at 13.8033 K. One of the two CSPRTs supplied by VNIIFTRI was found to be discrepant as revealed by differences at the triple point of water and at the lowest temperatures of the comparison, and was therefore excluded from further analysis. The linkage to the CCT-K2 data supports the evaluation of the VNIIFTRI CMCs in Appendix C of the KCDB. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions

  1. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Mohd Idzat, E-mail: idzat.i.aa@m.titech.ac.jp [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan); The National University of Malaysia, School of Applied Physics, Faculty of Science and Technology, 43600 Bangi Selangor (Malaysia); Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan)

    2015-10-15

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0–2.5 × 10{sup 24} (E > 0.1 MeV) at 333–363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373–573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17–0.24 eV and 0.12–0.14 eV; 0.002–0.04 eV and 0.006–0.04 eV at 723–923 K; 0.20–0.27 eV and 0.26–0.31 eV at 923–1223 K; and 1.37–1.38 eV and 1.26–1.29 eV at 1323–1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323–1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K. - Highlights: • Two kinds of high purity cubic (β) SiC polycrystals were irradiated. • Macroscopic lengths were examined by post-irradiation thermal annealing. • The recovery curves were analyzed with first order model.

  2. A range modulator to produce uniform 38K yield

    International Nuclear Information System (INIS)

    Eilbert, R.F.; Koehler, A.M.; Sisterson, J.M.

    1976-01-01

    A range modulator has been designed for use with a monoenergetic proton beam to achieve uniform yield of a nuclear reaction with depth in a tissue equivalent medium. Uniform yield to +- 1.5% over a 10 cm depth for the reaction 40 Ca(p, 2pn) 38 K has been demonstrated using protons of 160 MeV initial energy. The modulator is a rotating stepped absorber made of stacked acrylic plastic sheets. The angular extent of each sheet is determined by a computer program which also calculates the resultant depth of dose curve. Peaks in the dose curve may be reduced with slight effect on the yield curve. (author)

  3. Partial molar volumes of organic solutes in water. XXVIII. Three aliphatic poly(ethylene glycols) at temperatures T = 298 K–573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2017-01-01

    Highlights: • Standard molar volumes of three poly(ethylene glycols) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Data are analyzed and compared with those of similar solutes. - Abstract: Densities of dilute aqueous solutions of three poly(ethylene glycols): 3-oxapentane-1,5-diol (diethylene glycol), 3,6-dioxaoctane-1,8-diol (triethylene glycol), and 3,5,9-trioxaundecane-1,11-diol (tetraethylene glycol) measured in the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. Present data complement both the previous measurements performed at atmospheric pressure in the temperature range from (278 to 343) K and the data already available for the first member of the homologous series (ethylene glycol). A comparison with data previously measured for the homologous series of linear aliphatic polyethers (poly(ethylene glycol) dimethyl ethers, glymes), diethylene glycol monomethyl ether (3,6-dioxaheptan-1-ol), and selected alkane-α,ω-diols is presented.

  4. The Kelvin and Temperature Measurements

    Science.gov (United States)

    Mangum, B. W.; Furukawa, G. T.; Kreider, K. G.; Meyer, C. W.; Ripple, D. C.; Strouse, G. F.; Tew, W. L.; Moldover, M. R.; Johnson, B. Carol; Yoon, H. W.; Gibson, C. E.; Saunders, R. D.

    2001-01-01

    The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for “on-site” thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by

  5. The long-range correlation and evolution law of centennial-scale temperatures in Northeast China.

    Science.gov (United States)

    Zheng, Xiaohui; Lian, Yi; Wang, Qiguang

    2018-01-01

    This paper applies the detrended fluctuation analysis (DFA) method to investigate the long-range correlation of monthly mean temperatures from three typical measurement stations at Harbin, Changchun, and Shenyang in Northeast China from 1909 to 2014. The results reveal the memory characteristics of the climate system in this region. By comparing the temperatures from different time periods and investigating the variations of its scaling exponents at the three stations during these different time periods, we found that the monthly mean temperature has long-range correlation, which indicates that the temperature in Northeast China has long-term memory and good predictability. The monthly time series of temperatures over the past 106 years also shows good long-range correlation characteristics. These characteristics are also obviously observed in the annual mean temperature time series. Finally, we separated the centennial-length temperature time series into two time periods. These results reveal that the long-range correlations at the Harbin station over these two time periods have large variations, whereas no obvious variations are observed at the other two stations. This indicates that warming affects the regional climate system's predictability differently at different time periods. The research results can provide a quantitative reference point for regional climate predictability assessment and future climate model evaluation.

  6. Operational performance of the development of a 15 kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production

    International Nuclear Information System (INIS)

    Hong, Hui; Liu, Qibin; Jin, Hongguang

    2012-01-01

    Highlights: ► A 15 kW solar chemical receiver/reactor for hydrogen production was developed. ► The solar thermochemical efficiency of the receiver/reactor was in the range of 20–28%. ► Hydrogen production exceeding 80% was achieved. ► The research results extend the application of mid-temperature solar thermal energy. -- Abstract: In this paper, we report the operational performance and energy conversion efficiency of a developed 15 kW solar chemical receiver/reactor for hydrogen production. A concentrated solar heat of around 200–300 °C was utilized to provide process heat to drive methanol steam reforming. A modified 15 kW direct-irradiation solar reactor coupled with a linear receiver positioned along the focal line of a one-axis parabolic trough concentrator was used. The experiments were conducted from 200 to 300 °C under a mean solar flux of 300–800 W/m 2 and a reactant feeding rate of 6 kg/h. Reactants were continuously fed, and the attained conversion rate of methanol was more than 70% at 700 W/m 2 . The typical solar thermochemical efficiency of solar thermal energy converted into chemical energy was in the 20–28% range. The overall energy efficiency of input solar power conversion into chemical energy reached up to 17% and may be further increased by improving solar field efficiency. Hydrogen production exceeding 80% was achieved. In addition, preliminary economic evaluation was performed, and methods for further improvement were proposed. This paper proves that solar hydrogen production is feasible by combining solar thermal energy with alternative fuel at around 200–300 °C, which is much lower than the temperature of other solar thermochemical processes. This may offer an economic approach to solar fuel production and extend the application of mid-temperature solar thermal energy.

  7. Low Friction and Wear Surface for Application over a Wide Range of Temperature

    National Research Council Canada - National Science Library

    Bhattacharya, Rabi

    1997-01-01

    ...) and Transmission electron microscopy (TEM), both before and after exposure to high temperatures (up to 700 deg C) in air. Friction measurements were performed at temperatures in the range of room temperature to 700 deg C in air...

  8. Thermoluminescence of LiF: Mg, Ti between 77 and 315 K

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da.

    1989-01-01

    A special thermoluminescent system was developed. It is able to operate right from liquid nitrogen temperature and also permits the determination of the sample thermoluminescent emission spectrum. Using this system, the thermoluminescence displayed by 77 K irradiated LiF:Mg,Ti (TLD-100), from the irradiation temperature to 315 K, was studied. In this temperature range seven glow peaks, at 139, 153, 194, 240, 260, 283 and 300 K, were determined. (author)

  9. Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges

    Directory of Open Access Journals (Sweden)

    Thanh Xuan NguyenThi

    2018-05-01

    Full Text Available Density and compressibility are primordial parameters for the optimization of diesel engine operation. With this objective, these properties were reported for waste cooking oil biodiesel and its blends (5% and 10% by volume mixed with diesel. The density measurements were performed over expanded ranges of pressure (0.1 to 140 MPa and temperature (293.15 to 353.15 K compatible with engine applications. The isothermal compressibility was estimated within the same experimental range by density differentiation. The Fatty Acid Methyl Esters (FAMEs profile of the biodiesel was determined using a Gas Chromatography–Mass Spectrometry (GC-MS technique. The storage stability of the biodiesel was assessed in terms of the reproducibility of the measured properties. The transferability of this biodiesel fuel was discussed on the basis of the standards specifications that support their use in fuel engines. Additionally, this original set of data represents meaningful information to develop new approaches or to evaluate the predictive capability of models previously developed.

  10. Vapor pressures, osmotic and activity coefficients for (LiBr + acetonitrile) between the temperatures (298.15 and 343.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Nasirzadeh, Karamat E-mail: karamat.nasirzadeh@chemie.uni-regensburg.de; Neueder, Roland; Kunz, Werner

    2004-06-01

    Precise vapor pressure data for pure acetonitrile and (LiBr + acetonitrile) are given for temperatures ranging from T=(298.15 to 343.15) K. The molality range is from m=(0.0579 to 0.8298) mol {center_dot} kg{sup -1}. The osmotic coefficients are calculated by taking into account the second virial coefficient of acetonitrile. The parameters of the extended Pitzer ion interaction model of Archer and the mole fraction-based thermodynamic model of Clegg-Pitzer are evaluated. These models accurately reproduce the available osmotic coefficients. The parameters of the extended Pitzer ion interaction model of Archer are used to calculate the mean molal activity coefficients.

  11. Collecting the Missing Piece of the Puzzle: The Wind Temperatures of Arcturus (K2 III) and Aldeberan (K5 III)

    Science.gov (United States)

    Harper, Graham

    2017-08-01

    Unravelling the poorly understood processes that drive mass loss from red giant stars requires that we empirically constrain the intimately coupled momentum and energy balance. Hubble high spectral resolution observations of wind scattered line profiles, from neutral and singly ionized species, have provided measures of wind acceleration, turbulence, terminal speeds, and mass-loss rates. These wind properties inform us about the force-momentum balance, however, the spectra have not yielded measures of the much needed wind temperatures, which constrain the energy balance.We proposed to remedy this omission with STIS E140H observations of the Si III 1206 Ang. resonance emission line for two of the best studied red giants: Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III), both of which have detailed semi-empirical wind velocity models. The relative optical depths of wind scattered absorption in Si III 1206 Ang., O I 1303 Ang. triplet., C II 1335 Ang., and existing Mg II h & k and Fe II profiles give the wind temperatures through the thermally controlled ionization balance. The new temperature constraints will be used to test existing semi-empirical models by comparision with multi-frequency JVLA radio fluxes, and also to constrain the flux-tube geometry and wave energy spectrum of magnetic wave-driven winds.

  12. Temperature stabilization near Tsub(lambda) in liquid helium

    International Nuclear Information System (INIS)

    Francois, M.; Lhuillier, D.

    1975-01-01

    The study of He I and II equilibrium properties near the lambda transition requires a very performant temperature stabilisation. A system using second or fourth sound and which offers a stability better than 10 -8 0 K/hour in the temperature range 1.8 0 K-2.2 0 K is presented. (Auth.)

  13. Report to the CCT on COOMET comparison COOMET.T-K3.1 (previously COOMET.T-S1): Key regional comparison of the national standards of temperature in the range from the triple point of water to the freezing point of zinc

    Science.gov (United States)

    Pokhodun, A. I.

    2010-01-01

    In the framework of the CIPM MRA, a first COOMET comparison "Comparison of the ITS-90 realizations in the range from 0.01 °C to 429.7485 °C (from the triple point of water to the freezing point of zinc)", registered in the KCDB under the identifier "COOMET.T-K3", was carried out in 2005-2007. Four national metrology institutes took part in this comparison: VNIIM (Russian Federation), SMU (Slovakia), BelGIM (Republic of Belarus) and NSC IM (Ukraine), and two of them (VNIIM and SMU) ensured the linkage with key comparisons CCT-K3 and CCT-K4, in order to disseminate the metrological equivalence to the measurement standards of NSC IM and BelGIM. NSC IM, however, had to withdraw its results, and at the meeting of Technical Committee T-10 of COOMET it was decided to carry out a supplementary bilateral comparison between VNIIM and the NSC IM for realization of the ITS-90 in the same range of temperature. This was registered in the KCDB under the identifier COOMET.T-S1 and measurements were performed in 2008-2009. From the results presented in this report, it is possible to draw the conclusion that the COOMET supplementary comparison COOMET.T-S1 demonstrates the CMC uncertainties claimed by the NSC IM for the melting point of gallium 0.236 mK (k = 2), and the freezing points of indium 1.040 mK (k = 2), tin 0.858 mK (k = 2) and zinc 0.944 mK (k = 2). In September 2012 the Working Group on key Comparisons (WG 7) of the CCT upgraded this comparison to a COOMET key comparison of the 'CCT-K3' type. It is now identified as COOMET.T-K3.1. In April 2013 this report was superseded by item 03006 in the Technical Supplement of 2013. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  14. Ab initio calculation of the shear viscosity of neon in the liquid and hypercritical state over a wide pressure and temperature range

    Science.gov (United States)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-08-01

    The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.

  15. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K

    Science.gov (United States)

    Morgan, Leah; Santiago Ramos, Danielle P.; Davidheiser-Kroll, Brett; Faithfull, John; Lloyd, Nicholas S.; Ellam, Rob M.; Higgins, John A.

    2018-01-01

    Potassium is a major component in continental crust, the fourth-most abundant cation in seawater, and a key element in biological processes. Until recently, difficulties with existing analytical techniques hindered our ability to identify natural isotopic variability of potassium isotopes in terrestrial materials. However, measurement precision has greatly improved and a range of K isotopic compositions has now been demonstrated in natural samples. In this study, we present a new technique for high-precision measurement of K isotopic ratios using high-resolution, cold plasma multi-collector mass spectrometry. We apply this technique to demonstrate natural variability in the ratio of 41K to 39K in a diverse group of geological and biological samples, including silicate and evaporite minerals, seawater, and plant and animal tissues. The total range in 41K/39K ratios is ca. 2.6‰, with a long-term external reproducibility of 0.17‰ (2, N=108). Seawater and seawater-derived evaporite minerals are systematically enriched in 41K compared to silicate minerals by ca. 0.6‰, a result consistent with recent findings1, 2. Although our average bulk-silicate Earth value (-0.54‰) is indistinguishable from previously published values, we find systematic δ41K variability in some high-temperature sample suites, particularly those with evidence for the presence of fluids. The δ41K values of biological samples span a range of ca. 1.2‰ between terrestrial mammals, plants, and marine organisms. Implications of terrestrial K isotope variability for the atomic weight of K and K-based geochronology are discussed. Our results indicate that high-precision measurements of stable K isotopes, made using commercially available mass spectrometers, can provide unique insights into the chemistry of potassium in geological and biological systems. 

  16. Dielectric relaxation in solid collagen over a wide temperature range

    International Nuclear Information System (INIS)

    Khan, Muhammad Abdullah; Rizvi, Tasneem Zahra; Janjua, Khalid Mehmood; Zaheer, Muhammad Yar

    2001-07-01

    Dielectric constant ε' and loss factor ε'' have been measured in bovine tendon collagen in the frequency range 30 Hz - 3 MHz and temperature range 30 deg. C to 200 deg. C. Frequency dependence curve of ε'' shows a low frequency strong α-dispersion attributed to phonon assisted proton hopping between localized sites and a weak high frequency. α 2 - dispersion attributed to reorientation of polar components of collagen molecules. Temperature dependence of the dielectric data show release of bound moisture as a three step process with discrete peaks at 50 deg. C, 90 deg. C and 125 deg. C. These peaks have been attributed to release of adsorbed surface water, water bound to exposed polar sites and strongly bound internal moisture respectively. A peak observed at 160 deg. C has been attributed to thermally induced helix-coil transition of collagen molecules. (author)

  17. Associations of day-to-day temperature change and diurnal temperature range with out-of-hospital cardiac arrest.

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2017-01-01

    Background Although the impacts of temperature on mortality and morbidity have been documented, few studies have investigated whether day-to-day temperature change and diurnal temperature range (DTR) are independent risk factors for out-of-hospital cardiac arrest (OHCA). Design This was a prospective, population-based, observational study. Methods We obtained all OHCA data from 2005-2013 from six major prefectures in Japan: Hokkaido, Tokyo, Kanagawa, Aichi, Kyoto, and Osaka. We used a quasi-Poisson regression analysis with a distributed-lag non-linear model to assess the associations of day-to-day temperature change and DTR with OHCA for each prefecture. Results In total, 271,698 OHCAs of presumed cardiac origin were reported during the study period. There was a significant increase in the risk of OHCA associated with cold temperature in five prefectures, with relative risks (RRs) ranging from 1.298 (95% confidence interval (CI) 1.022-1.649) in Hokkaido to 3.893 (95% CI 1.713-8.845) in Kyoto. DTR was adversely associated with OHCA on hot days in Aichi (RR 1.158; 95% CI 1.028-1.304) and on cold days in Tokyo (RR 1.030; 95% CI 1.000-1.060), Kanagawa (RR 1.042; 95% CI 1.005-1.082), Kyoto (RR 1.060; 95% CI 1.001-1.122), and Osaka (RR 1.050; 95% CI 1.014-1.088), whereas there was no significant association between day-to-day temperature change and OHCA. Conclusion We found that associations between day-to-day temperature change and DTR and OHCA were generally small compared with the association with mean temperature. Our findings suggest that preventative measures for temperature-related OHCA may be more effective when focused on mean temperature and DTR.

  18. Study of L-aspartic acid for its possible use as a dosimeter in the interval of 3.4-20 kGy at different irradiation temperatures

    Science.gov (United States)

    Meléndez-López, Adriana; Negrón-Mendoza, Alicia; Gómez-Vidales, Virginia; Uribe, Roberto M.; Ramos-Bernal, Sergio

    2014-11-01

    Certain commercial applications of radiation processing increase the efficiency of chemical reactions at low temperatures to decrease the free radicals in the bulk material and avoid the synergistic effects of heat. Such applications have motivated the search for a reliable, low-temperature dosimeter for use under the conditions of the irradiation process. For this purpose, polycrystalline samples of L-aspartic acid (2-aminobutanedioic acid) were irradiated with gamma rays at low temperatures and doses in the kiloGray range (3.4-64 kGy). The potential use of the aspartic acid system as a chemical dosimeter is based on the formation of stable free radicals when the amino acid is exposed to ionizing radiation. These radicals can be studied and quantified using electron spin resonance (ESR). The response curves at different temperatures show that the intensity of the ESR spectra (the five characteristic lines) depends on the dose received. The response of the dosimeter increases with increasing temperature, and this relationship is linear up to 20 kGy at 298 K. The decay characteristics show that the change in the ESR signal over time is low and reproducible. In addition, the L-aspartic acid dosimeter is easy to handle and has low cost.

  19. Test results of full-scale high temperature superconductors cable models destined for a 36 kV, 2 kA(rms) utility demonstration

    DEFF Research Database (Denmark)

    Daumling, M.; Rasmussen, C.N.; Hansen, F.

    2001-01-01

    Power cable systems using high temperature superconductors (HTS) are nearing technical feasibility. This presentation summarises the advancements and status of a project aimed at demonstrating a 36 kV, 2 kA(rms) AC cable system by installing a 30 m long full-scale functional model in a power...

  20. Determination and correlation of pyridoxine hydrochloride solubility in different binary mixtures at temperatures from (278.15 to 313.15) K

    International Nuclear Information System (INIS)

    Han, Dandan; Li, Xiaona; Wang, Haisheng; Wang, Yan; Du, Shichao; Yu, Bo; Liu, Yumin; Xu, Shijie; Gong, Junbo

    2016-01-01

    Highlights: • Solubility of pyridoxine hydrochloride in three binary mixtures was determined. • Experimental solubility of pyridoxine hydrochloride was correlated by four models. • Mixing thermodynamics of pyridoxine hydrochloride were calculated and discussed. - Abstract: The solubility of pyridoxine hydrochloride in binary solvent mixtures, including (acetone + water), (methanol + water) and (ethanol + water), was measured over temperature range from (278.15 to 313.15) K by a gravimetric method at atmospheric pressure (P = 0.1 MPa). The solubility increased with increasing temperature in binary solvent mixtures at constant solvent composition. Besides, the dissolving capacity of pyridoxine hydrochloride in the three binary solvent mixtures at constant temperature ranked as (methanol + water > ethanol + water > acetone + water) in general, partly depending on the polarity of the solvents. Additionally, the modified Apelblat equation, van’t Hoff equation, CNIBS/R–K model and Jouyban–Acree model were used to correlate the solubility data in binary mixtures, it turned out that all the selected thermodynamic models could give satisfactory results. Furthermore, the mixing thermodynamic properties of pyridoxine hydrochloride in different binary solvent mixtures were also calculated and discussed. The results indicate that the mixing process of pyridoxine hydrochloride in the selected solvents is exothermic.

  1. Changes in diurnal temperature range and national cereal yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D

    2007-04-26

    Models of yield responses to temperature change have often considered only changes in average temperature (Tavg), with the implicit assumption that changes in the diurnal temperature range (DTR) can safely be ignored. The goal of this study was to evaluate this assumption using a combination of historical datasets and climate model projections. Data on national crop yields for 1961-2002 in the 10 leading producers of wheat, rice, and maize were combined with datasets on climate and crop locations to evaluate the empirical relationships between Tavg, DTR, and crop yields. In several rice and maize growing regions, including the two major nations for each crop, there was a clear negative response of yields to increased DTR. This finding reflects a nonlinear response of yields to temperature, which likely results from greater water and heat stress during hot days. In many other cases, the effects of DTR were not statistically significant, in part because correlations of DTR with other climate variables and the relatively short length of the time series resulted in wide confidence intervals for the estimates. To evaluate whether future changes in DTR are relevant to crop impact assessments, yield responses to projected changes in Tavg and DTR by 2046-2065 from 11 climate models were estimated. The mean climate model projections indicated an increase in DTR in most seasons and locations where wheat is grown, mixed projections for maize, and a general decrease in DTR for rice. These mean projections were associated with wide ranges that included zero in nearly all cases. The estimated impacts of DTR changes on yields were generally small (<5% change in yields) relative to the consistently negative impact of projected warming of Tavg. However, DTR changes did significantly affect yield responses in several cases, such as in reducing US maize yields and increasing India rice yields. Because DTR projections tend to be positively correlated with Tavg, estimates of yields

  2. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  3. Low temperature deformation mechanisms in LiF single crystals

    International Nuclear Information System (INIS)

    Fotedar, H.L.; Stroebe, T.G.

    1976-01-01

    An analysis of the deformation behavior of high purity LiF single crystals is given using yielding and work hardening data and thermally activated deformation parameters obtained in the temperature range 77-423 0 K. It is found that while the Fleischer mechanism is apparently valid experimentally over the thermally activated temperature range, vacancies produced in large numbers at 77 0 K could also play a role in determining the critical resolved shear stress at that temperature

  4. Partial molar volume of mefenamic acid in alcohol at temperatures between T=293.15 and T=313.15 K

    OpenAIRE

    Iqbal, Muhammad J.; Siddiquah, Mahrukh

    2006-01-01

    Apparent molar volume (Vphi), partial molar volume (V), solute-solute interaction parameter (Sv), partial molar expansivity (E(0)2) and isobaric thermal expansion coefficient (alpha2) of mefenamic acid in six different organic solvents namely, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol, have been calculated from the measured solution densities over a temperature range of T=293.15 and T=313.15±0.1K. The solution densities were measured by an automated vibrating tube de...

  5. Vapour pressures for 1-(butoxymethoxy)butane (dibutoxymethane) and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (methyl nonafluorobutyl ether) over the pressure range of (15–80) kPa

    International Nuclear Information System (INIS)

    Gárate, María P.; Bejarano, Arturo; Fuente, Juan C. de la

    2016-01-01

    Highlights: • Vapour pressures of two pure potential dry-cleaning solvent were measured. • Measurements were made over the temperature range of (294.6–442.7) K. • Three commonly used vapour pressure equations were fitted to the experimental data. • The parameters of Antoine and Wagner type equations were estimated. • The relative deviations (rmsd) from the three vapour-pressure equations were <0.6%. - Abstract: Saturated pressures of 1-(butoxymethoxy)butane (dibutoxymethane) and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (methyl nonafluorobutyl ether), new potential solvents for dry-cleaning processes, were measured with a dynamic recirculation apparatus at a pressure range of (15–80) kPa, at temperatures of (390.4–442.7) K for dibutoxymethane and (294.6–322.4) K for methyl nonafluorobutyl ether. The vapour pressures were represented using the correlations of Antoine, extended Antoine and Wagner with relative root mean square deviations of, 1%, 6% and 0.6% for dibutoxymethane, and, 1%, 2% and 0.6% for methyl nonafluorobutyl ether, respectively. The experimental data of dibutoxymethane was compared with those available in literature, the result showed consistency between both data sets.

  6. Relationship between Magnetic Anisotropy below Pseudogap Temperature and Short-Range Antiferromagnetic Order in High-Temperature Cuprate Superconductor

    Science.gov (United States)

    Morinari, Takao

    2018-06-01

    The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., 10.1038/nphys4205" xlink:type="simple">Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.

  7. Conceptual design of a 0.1 W magnetic refrigerator for operation between 10 K and 2 K

    International Nuclear Information System (INIS)

    Helvensteijn, B.P.M.; Kashani, A.

    1990-01-01

    The design of a magnetic refrigerator for space applications is discussed. The refrigerator is to operate in the temperature range of 10 K-2 K, at a 2 K cooling power of 0.10 W. As in other magnetic refrigerators operating in this temperature range GGG has been selected as the refrigerant. Crucial to the design of the magnetic refrigerator are the heat switches at both the hot and cold ends of the GGG pill. The 2 K heat switch utilizes a narrow He II filled gap. The 10 K heat switch is based on a narrow helium gas gap. For each switch, the helium in the gap is cycled by means of activated carbon pumps. The design concentrates on reducing the switching times of the pumps and the switches as a whole. A single stage system (one magnet; one refrigerant pill) is being developed. Continuous cooling requires the fully stationary system to have at least two stages running parallel/out of phase with each other. In order to conserve energy, it is intended to recycle the magnetic energy between the magnets. To this purpose, converter networks designed for superconducting magnetic energy storage are being studied. 17 refs

  8. KEY COMPARISON Report to the CCT on key comparison EUROMET.T-K6 (EUROMET Project no. 621): Comparison of the realizations of local dew/frost-point temperature scales in the range -50 °C to +20 °C

    Science.gov (United States)

    Heinonen, Martti

    2010-01-01

    The first humidity CIPM key comparison, CCT-K6, will be completed in 2010. The corresponding European regional key comparison, EUROMET.T-K6, was carried out in 2004 to 2008. National metrology institutes from 24 countries participated in the comparison. The comparison covered the dew-point temperature range from -50 °C to +20 °C. It was organized as three parallel loops with two specially manufactured precision chilled mirror hygrometers as transfer standards in each loop. The comparison scheme was designed to ensure high quality results with evenly spread workload for the participants. MIKES was coordinating the project. This report presents the results of the comparison and provides detailed information on the measurements performed by all participating laboratories and the analysis of the results. Conclusions on the equivalence of the dew-point temperature standards are drawn on the basis of calculated bilateral degrees of equivalence and deviations from EURAMET comparison reference values (ERV). Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  9. Hydrogen migration in Lu at low temperatures

    International Nuclear Information System (INIS)

    Yamakawa, K.

    1997-01-01

    The migration of hydrogen in Lu is determined by electrical resistance measurements in temperature range of 140-170 K. Disordered hydrogen atoms, which are formed by quenching, migrate to order during annealing in the above temperature range. The rate of the resistance decrease depends on the ordering rate of hydrogen. From the resistance decrease during isothermal annealings, the activation energy of hydrogen migration is determined as 0.43 eV (41.5 kJ mol -1 ). (orig.)

  10. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    Science.gov (United States)

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  11. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Winter Precipitation Efficiency of Mountain Ranges in the Colorado Rockies Under Climate Change

    Science.gov (United States)

    Eidhammer, Trude; Grubišić, Vanda; Rasmussen, Roy; Ikdea, Kyoko

    2018-03-01

    Orographic precipitation depends on the environmental conditions and the barrier shape. In this study we examine the sensitivity of the precipitation efficiency (i.e., drying ratio (DR)), defined as the ratio of precipitation to incoming water flux, to mountain shape, temperature, stability, and horizontal velocity of the incoming air mass. Furthermore, we explore how the DR of Colorado mountain ranges might change under warmer and moister conditions in the future. For given environmental conditions, we find the DR to be primarily dependent on the upwind slope for mountain ranges wider than about 70 km and on both the slope and width for narrower ranges. Temperature is found to exert an influence on the DR for all Colorado mountain ranges, with DR decreasing with increasing temperature, under both the current and future climate conditions. The decrease of DR with temperature under warmer climate was found to be stronger for wider mountains than the narrower ones. We attribute this asymmetry to the sensitivity of DR to reduced horizontal velocity under warmer conditions. Specifically, while DR for wider mountains shows no sensitivity to changes in horizontal velocity, the DR for narrow ranges increases as the horizontal velocity decreases and more time is provided for precipitation to form. Thus, for narrower ranges, the horizontal velocity appears to offset the temperature effect slightly. The percentagewise decrease of DR for all examined mountain ranges is about 4%K-1. In comparison, the increase in precipitation is about 6%K-1 while the vapor flux increase is about 9%K-1.

  13. Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm

    Directory of Open Access Journals (Sweden)

    Joon Heo

    2009-06-01

    Full Text Available Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.

  14. Emission characteristics of uranium hexafluoride at high temperatures

    International Nuclear Information System (INIS)

    Krascella, N.L.

    1976-01-01

    An experimental study was conducted to ascertain the spectral characteristics of uranium hexafluoride (UF 6 ) and possible UF 6 thermal decomposition products as a function of temperature and pressure. Relative emission measurements were made for UF 6 /Argon mixtures heated in a plasma torch over a range of temperatures from 800 to about 3600 0 K over a wavelength range from 80 to 600 nm. Total pressures were varied from 1 to approximately 1.7 atm. Similarly absorption measurements were carried out in the visible region from 420 to 580 nm over a temperature range from about 1000 to 1800 0 K. Total pressure for these measurements was 1.0 atm

  15. Magnetic properties of hydrothermally synthesized greigite (Fe3S4)- II. High- and low-temperature characteristics

    NARCIS (Netherlands)

    Dekkers, M.J.; Passier, Hilde F.; Schoonen, M.A.A.

    1999-01-01

    The magnetic behaviour of hydrothermally synthesized greigite was analysed in the temperature range from 4 K to 700 °C. Below room temperature, hysteresis parameters were determined as a function of temperature, with emphasis on the temperature range below 50 K. Saturation magnetization and

  16. Passive Wireless Temperature Sensors with Enhanced Sensitivity and Range, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) temperature sensors with enhanced sensitivity and detection range for NASA application...

  17. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids

    Science.gov (United States)

    Brites, Carlos D. S.; Lima, Patrícia P.; Silva, Nuno J. O.; Millán, Angel; Amaral, Vitor S.; Palacio, Fernando; Carlos, Luís D.

    2013-07-01

    There is an increasing demand for accurate, non-invasive and self-reference temperature measurements as technology progresses into the nanoscale. This is particularly so in micro- and nanofluidics where the comprehension of heat transfer and thermal conductivity mechanisms can play a crucial role in areas as diverse as energy transfer and cell physiology. Here we present two luminescent ratiometric nanothermometers based on a magnetic core coated with an organosilica shell co-doped with Eu3+ and Tb3+ chelates. The design of the hybrid host and chelate ligands permits the working of the nanothermometers in a nanofluid at 293-320 K with an emission quantum yield of 0.38 +/- 0.04, a maximum relative sensitivity of 1.5% K-1 at 293 K and a spatio-temporal resolution (constrained by the experimental setup) of 64 × 10-6 m/150 × 10-3 s (to move out of 0.4 K - the temperature uncertainty). The heat propagation velocity in the nanofluid, (2.2 +/- 0.1) × 10-3 m s-1, was determined at 294 K using the nanothermometers' Eu3+/Tb3+ steady-state spectra. There is no precedent of such an experimental measurement in a thermographic nanofluid, where the propagation velocity is measured from the same nanoparticles used to measure the temperature.There is an increasing demand for accurate, non-invasive and self-reference temperature measurements as technology progresses into the nanoscale. This is particularly so in micro- and nanofluidics where the comprehension of heat transfer and thermal conductivity mechanisms can play a crucial role in areas as diverse as energy transfer and cell physiology. Here we present two luminescent ratiometric nanothermometers based on a magnetic core coated with an organosilica shell co-doped with Eu3+ and Tb3+ chelates. The design of the hybrid host and chelate ligands permits the working of the nanothermometers in a nanofluid at 293-320 K with an emission quantum yield of 0.38 +/- 0.04, a maximum relative sensitivity of 1.5% K-1 at 293 K and a spatio

  18. Orientation effect on sign and magnitude of excess thermodynamic functions of non electrolyte solutions at different temperatures (303.15 K, 308.15 K, and 313.15K)

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Jareena; Sankar, Manukonda Gowri; Ramachandran, Dittakavi; Rambabu, Chintala [Acharya Nagarjuna University, Guntur (India)

    2014-08-15

    Experimental values of the density and viscosity have been measured for binary mixtures of N-ethylaniline with isomeric butanols (1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol) at 303.15, 308.15 and 313.15 K over the entire mole fraction range. These data, the excess molar volumes, and deviation viscosity for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. The excess molar volumes, deviation viscosity and excess Gibbs energy of activation of viscous flow have been analyzed in terms of acid-base interactions, hydrogen bond, and dipole-dipole interaction between unlike molecules. The results obtained for dynamic viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, Katti-Chaudhri, and Hind et al. equations.

  19. Orientation effect on sign and magnitude of excess thermodynamic functions of non electrolyte solutions at different temperatures (303.15 K, 308.15 K, and 313.15K)

    International Nuclear Information System (INIS)

    Shaik, Jareena; Sankar, Manukonda Gowri; Ramachandran, Dittakavi; Rambabu, Chintala

    2014-01-01

    Experimental values of the density and viscosity have been measured for binary mixtures of N-ethylaniline with isomeric butanols (1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol) at 303.15, 308.15 and 313.15 K over the entire mole fraction range. These data, the excess molar volumes, and deviation viscosity for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. The excess molar volumes, deviation viscosity and excess Gibbs energy of activation of viscous flow have been analyzed in terms of acid-base interactions, hydrogen bond, and dipole-dipole interaction between unlike molecules. The results obtained for dynamic viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, Katti-Chaudhri, and Hind et al. equations

  20. Determination of plant growth rate and growth temperature range from measurement of physiological parameters

    Science.gov (United States)

    R. S. Criddle; B. N. Smith; L. D. Hansen; J. N. Church

    2001-01-01

    Many factors influence species range and diversity, but temperature and temperature variability are always major global determinants, irrespective of local constraints. On a global scale, the ranges of many taxa have been observed to increase and their diversity decrease with increasing latitude. On a local scale, gradients in species distribution are observable with...

  1. PdMn and PdFe: New Materials for Temperature Measurement Near 2K

    International Nuclear Information System (INIS)

    Adriaans, M.J.; Aselage, T.L.; Day, P.K.; Duncan, R.V.; Klemme, B.J.; Sergatskov, D.A.

    1999-01-01

    Interest in the critical dynamics of superfluid 4 He in microgravity conditions has motivated the development of new high resolution thermometry technol- ogy for use in space experiments near 2K. The current material commonly used as the temperature sensing element for high resolution thermometers (HRTs) is copper ammonium bromide [Cu(NH 4 ) 2 Br 4 2H 2 0) or ''CAB'', which undergoes a ferromagnetic phase transition at 1.8K1. HRTs made from CAB have demonstrated low drift ( -13 K/s

  2. Near fifty percent sodium substituted lanthanum manganites—A potential magnetic refrigerant for room temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Omari, I. A. [Department of Physics, Sultan Qaboos University, PC 123 Muscat, Sultanate of Oman (Oman); Suresh, K. G. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2014-03-03

    Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300 K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5 J·kg{sup −1}·K{sup −1} was observed near 300 K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300 K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300 K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62 K at 280 K.

  3. Calorimetric thermal-vacuum performance characterization of the BAe 80K space cryocooler

    International Nuclear Information System (INIS)

    Kotsubo, V.Y.; Johnson, D.L.; Ross, R.G. Jr.

    1992-01-01

    This paper on a comprehensive characterization program which is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precis individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heat-sink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stoke, drive frequency, and piston-displacer dc offset

  4. Meteorologická pozorování Alexandra Zawadzkého v Brně v letech 1861-1867

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Řezníčková, Ladislava; Valášek, H.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 334-355 ISSN 1212-0014 R&D Projects: GA ČR GA13-19831S Institutional support: RVO:67179843 Keywords : meteorological observation * air pressure * air temperature * precipitation * wind * atmospheric phenomena * Alexander Zawadzki * Pavel Olexík * Brno Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.400, year: 2013 http://geography.cz/sbornik/wp-content/uploads/downloads/2013/12/g13-4-s334-355-br%C3%A1zdil.pdf

  5. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    Science.gov (United States)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  6. Effect of temperature during ion sputtering on the surface segregation rate of antimony in an iron-antimony alloy at higher temperatures

    International Nuclear Information System (INIS)

    Oku, M.; Hirokawa, K.; Kimura, H.; Suzuki, S.

    1986-01-01

    The surface segregation of antimony in an iron-0.23 at% antimony alloy was studied by XPS. The segregation rate in the temperature range between 800 and 900 K depends on the temperature during sputtering with argon ion of kinetic energy of 1 keV. The sputtering at room temperature or 473 K gives higher values of the segregation rate than those at 673 K. Both cases give the activation energy of 170 kJmol -1 for the surface segregation rate. The segregation of antimony is not observed after the sample is heated at 1000 K. (author)

  7. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula

    Science.gov (United States)

    Rubal, Marcos; Veiga, Puri; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-03-01

    There are well-documented changes in abundance and geographical range of intertidal invertebrates related to climate change at north Europe. However, the effect of sea surface warming on intertidal invertebrates has been poorly studied at lower latitudes. Here we analyze potential changes in the abundance patterns and distribution range of rocky intertidal gastropods related to climate change along the Iberian Peninsula. To achieve this aim, the spatial distribution and range of sub-tropical, warm- and cold-water species of intertidal gastropods was explored by a fully hierarchical sampling design considering four different spatial scales, i.e. from region (100 s of km apart) to quadrats (ms apart). Variability on their patterns of abundance was explored by analysis of variance, changes on their distribution ranges were detected by comparing with previous records and their relationship with sea water temperature was explored by rank correlation analyses. Mean values of sea surface temperature along the Iberian coast, between 1949 and 2010, were obtained from in situ data compiled for three different grid squares: south Portugal, north Portugal, and Galicia. Lusitanian species did not show significant correlation with sea water temperature or changes on their distributional range or abundance, along the temperature gradient considered. The sub-tropical species Siphonaria pectinata has, however, increased its distribution range while boreal cold-water species showed the opposite pattern. The latter was more evident for Littorina littorea that was almost absent from the studied rocky shores of the Iberian Peninsula. Sub-tropical and boreal species showed significant but opposite correlation with sea water temperature. We hypothesized that the energetic cost of frequent exposures to sub-lethal temperatures might be responsible for these shifts. Therefore, intertidal gastropods at the Atlantic Iberian Peninsula coast are responding to the effect of global warming as it

  8. Viscosity of n-hexadecane, n-octadecane and n-eicosane at pressures up to 243 MPa and temperatures up to 534 K

    International Nuclear Information System (INIS)

    Baled, Hseen O.; Xing, Dazun; Katz, Harrison; Tapriyal, Deepak; Gamwo, Isaac K.; Soong, Yee; Bamgbade, Babatunde A.; Wu, Yue; Liu, Kun; McHugh, Mark A.; Enick, Robert M.

    2014-01-01

    Highlights: • A novel windowed Inconel rolling-ball viscometer is designed and used by our team. • Viscosity data are reported for n-hexadecane, n-octadecane, and n-eicosane at high temperatures and pressures. • The viscosity results are compared with the available literature data. • The viscosity results are modeled with the free volume theory model. - Abstract: Viscosity data are reported for n-hexadecane (C16), n-octadecane (C18), and n-eicosane (C20) at pressures between (3 and 243) MPa and temperatures between (304 and 534) K. These extreme conditions are representative of those encountered in ultra-deep petroleum formations beneath the deepwaters of the Gulf of Mexico. The measurements are taken with a novel windowed Inconel rolling-ball viscometer designed by our team that is calibrated with n-decane. A comparison of the reported viscosity values with the available literature data that cover limited pressure and temperature ranges, shows that the mean absolute percentage deviation, δ, ranges between 1.1% and 4.8%. The reported data extend the database of viscosity to the high-temperature, high-pressure region where most gaps occur in the literature data for n-hexadecane and n-octadecane. To the best of our knowledge, the results for n-eicosane are the first reported viscosity values at pressures above 2 MPa over the entire temperature range. The viscosity results are modeled with the free volume theory model in conjunction with density values obtained using the Peng–Robinson equation of state (EoS) and the PC-SAFT EoS. The δ values obtained with this model range from 2.0% to 3.5%. The data are also correlated by a non-linear surface fit as a simultaneous function of temperature and pressure that yields δ values of 0.40%, 0.43%, and 0.38% for C16, C18, and C20, respectively

  9. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  10. Linear thermal expansion coefficient (at temperatures from 130 to 800 K) of borosilicate glasses applicable for coupling with silicon in microelectronics

    OpenAIRE

    Sinev, Leonid S.; Petrov, Ivan D.

    2017-01-01

    Processing results of measurements of linear thermal expansion coefficients and linear thermal expansion of two brands of borosilicate glasses --- LK5 and Borofloat 33 --- are presented. The linear thermal expansion of glass samples have been determined in the temperature range 130 to 800 K (minus 143 to 526 $\\deg$C) using thermomechanical analyzer TMA7100. Relative imprecision of indirectly measured linear thermal expansion coefficients and linear thermal expansion of both glass brands is le...

  11. MTF measurement of IR optics in different temperature ranges

    Science.gov (United States)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  12. Neutron diffraction study of the magnetic long-range order in Tb

    DEFF Research Database (Denmark)

    Dietrich, O.W.; Als-Nielsen, Jens Aage

    1967-01-01

    Like other heavy rare-earth metals, Tb exhibits a magnetic phase with a spiral structure. This appears within the temperature region from 216 to 226deg K between the ferromagnetic phase and the paramagnetic phase. The transition between ferromagnetic and spiral structure is of first order and imp...... at 216deg K to 20.7deg at 226deg K. The temperature variation of the transverse magnetostriction has also been measured and was found to vary approximately in proportion to the square of the magnetic long-range order....

  13. Physical properties of {anisole + n-alkanes} at temperatures between (293.15 and 303.15) K

    International Nuclear Information System (INIS)

    Al-Jimaz, Adel S.; Al-Kandary, Jasem A.; Abdul-latif, Abdul-Haq M.; Al-Zanki, Adnan M.

    2005-01-01

    Density ρ, viscosity η, and refractive index n D , values of {anisole + hexane, or heptane, or octane, or nonane, or decane, or dodecane} binary mixtures over the entire range of mole fraction at temperatures (293.15, 298.15, and 303.15) K, have been investigated at atmospheric pressure. The excess molar volume V E , has been calculated from the experimental measurements. These results were fitted to Redlich and Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of Grunberg and Nissan, and McAllister. The refractive indices data were used to calculate the specific refractivity R 12 , and also correlated with Lorentz-Lorenz equation. While the excess molar volumes of {anisole + hexane} are negative, and {anisole + heptane} are sigmoidal S-shaped, the remaining binary mixtures are positive. The effects of n-alkanes chain length as well as the temperature on the excess molar volume have been studied. The calculated values have been qualitatively used to explain the intermolecular interaction between the mixing components

  14. The Temperature Dependence of the Debye-Waller Factor of Magnesium

    DEFF Research Database (Denmark)

    Sledziewska-Blocka, D.; Lebech, Bente

    1976-01-01

    The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi-harmonic appro......The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi......-harmonic approximations and results of previous experiments....

  15. Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications

    Science.gov (United States)

    Ramalingam, R.; Boguhn, D.; Fillinger, H.; Schlachter, S. I.; Süßer, M.

    2014-01-01

    In some cryogenic process measurement applications, for example, in hydrogen technology and in high temperature superconductor based generators, there is a need of robust temperature sensors. These sensors should be able to measure the large temperature range of 20 - 500 K with reasonable resolution and accuracy. Thin film PT 1000 sensors could be a choice to cover this large temperature range. Twenty one sensors selected from the same production batch were tested for their temperature sensitivity which was then compared with different batch sensors. Furthermore, the sensor's stability was studied by subjecting the sensors to repeated temperature cycles of 78-525 K. Deviations in the resistance were investigated using ice point calibration and water triple point calibration methods. Also the study of directional oriented intense static magnetic field effects up to 8 Oersted (Oe) were conducted to understand its magneto resistance behaviour in the cryogenic temperature range from 77 K - 15 K. This paper reports all investigation results in detail.

  16. A dynamic range upgrade for neutron backscattering spectroscopy

    International Nuclear Information System (INIS)

    Cook, J.C.; Petry, W.; Heidemann, A.; Barthelemy, J.F.

    1992-01-01

    We report on an instrumental development of the cold neutron backscattering spectrometer IN10 at the Institut Laue-Langevin which has led to a significant increase in its dynamic range. Thermal expansion of a variety of neutron monochromator crystals is used instead of a mechanical oscillation of the monochromator, yielding an increase in the energy transfer range by nearly two orders of magnitude in an elastic wave vector transfer range of 0.07≤Q (A -1 )≤2.0. Using this new configuration, first inelastic measurements have been performed using the (200) reflections from KCl and NaCl monochromators with crystal temperatures between 80 K and 700 K. The thermal expansion of these crystals in this temperature range gives rise to energy transfer ranges (neutron energy gain) of -16<ℎω(μeV)<+83 for KCl and -530<ℎω(μeV)<-420 for NaCl with energy resolution (FWHM) of around 0.6 and 1.4 μeV for KCl and NaCl respectively. These figures represent the highest energy resolution currently available at these energy and wave vector transfers. (orig.)

  17. Temperature dependence of deuterium retention mechanisms in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Roszell, J.P. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Davis, J.W., E-mail: jwdavis@starfire.utias.utoronto.ca [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Haasz, A.A. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada)

    2012-10-15

    The retention of 500 eV D{sup +} was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of {approx}2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  18. Temperature dependence of deuterium retention mechanisms in tungsten

    International Nuclear Information System (INIS)

    Roszell, J.P.; Davis, J.W.; Haasz, A.A.

    2012-01-01

    The retention of 500 eV D + was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ∼2 orders of magnitude over the temperature range of 350–550 K in SCW and a decrease of an order of magnitude over the temperature range of 600–700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  19. Temperature dependence of deuterium retention mechanisms in tungsten

    Science.gov (United States)

    Roszell, J. P.; Davis, J. W.; Haasz, A. A.

    2012-10-01

    The retention of 500 eV D+ was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ˜2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  20. Thermodynamics of aqueous methyldiethanolamine (MDEA) and methyldiethanolammonium chloride (MDEAH+Cl-) over a wide range of temperature and pressure: Apparent molar volumes, heat capacities, and isothermal compressibilities

    International Nuclear Information System (INIS)

    Hawrylak, B.; Palepu, R.; Tremaine, Peter R.

    2006-01-01

    Apparent molar volumes of aqueous methyldiethanolamine and its salt were determined with platinum vibrating tube densitometers over a range of temperatures from 283K= o , heat capacities C p o , and isothermal compressibilities κ T o . The standard partial molar volumes V o for the neutral amine and its salt show increasingly positive and negative values, respectively, at high temperatures and pressures, as predicted by corresponding states and group additivity arguments. The density model and the revised Helgeson-Kirkham-Flowers (HKF) model have been used to represent the temperature and pressure dependence of the standard partial molar properties to yield a full thermodynamic description of the system

  1. Carbon-13 kinetic isotope effects in the decarbonylations of lactic acid containing 13C at the natural abundance level

    International Nuclear Information System (INIS)

    Zielinski, M.; Czarnota, G.; Papiernik-Zielinska, H.

    1992-01-01

    The 13 C kinetic isotope fractionation in the decarbonylation of lactic acid of natural isotopic composition by sulfuric acid has been studied in the temperature range of 20-80 deg C. The 13 C (1) isotope separation in the decarbonylation of lactic acid by concentrated sulfuric acid depends strongly on the temperature above 40 deg C. Below this temperature the 13 C isotope effect in the decarbonylation of lactic acid by concentrated sulfuric acid is normal similarly as has been found in the decarbonylation of lactic [1- 14 C] acid. The experimental values of k (12C) /k (13C) ratios of isotopic rate constants for 12 C and 13 C are close to, but slightly higher than theoretical 13 C-kinetic isotope effects calculated (neglecting tunneling) under the asumption that the C (1) -OH bond is broken in the rate-controlling step of the dehydration reaction. Dilution of concentrated sulfuric acid with water up to 1.4 molar (H 2 O)/(H 2 SO 4 ) ratio caused the increase of the 13 C isotope fractionation from 1.0273 found in concentrated sulfuric acid at 80.5 deg C to 1.0536±0.0008 (at 80.6 deg C). A discussion of the abnormally high temperature dependence of 14 C and 13 C isotope fractionation in this reaction and the discussion of the problem of relative 14 C/ 13 C kinetic isotope effects is given. (author) 18 refs.; 2 tabs

  2. Wide-range vortex shedding flowmeter for high-temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Herndon, P.G.; Ennis, R.M. Jr.

    1983-01-01

    The existing design of a commercially available vortex shedding flowmeter (VSFM) was modified and optimized to produce three 4-in. and one 6-in. high-performance VSFMs for measuring helium flow in a gas-cooled fast reactor (GCFR) test loop. The project was undertaken because of the significant economic and performance advantages to be realized by using a single flowmeter capable of covering the 166:1 flow range (at 350/sup 0/C and 45:1 pressure range) of the tests. A detailed calibration in air and helium at the Colorado Engineering Experiment Station showed an accuracy of +-1% of reading for a 100:1 helium flow range and +-1.75% of reading for a 288:1 flow range in both helium and air. At an extended gas temperature of 450/sup 0/C, water cooling was necessary for reliable flowmeter operation.

  3. Conceptual design of a forced-flow-cooled 20-kA current lead using Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.

    1994-11-01

    The use of high-temperature superconductors in current leads to reduce refrigeration power has been investigated by many groups in the past. Most used YBCO and Bi-2212 bulk superconductors, although their critical current density is not very high. In this paper, BI-2223 HTSC tapes sheathed with Ag alloys are used in the design of a 20-kA current lead because of their higher critical current in medium magnetic fields. The lead current of 20 kA is related to the coil current of the planned stellarator WENDELSTEIN 7-X. Forced-now helium cooling has been used in the design, allowing position-independent and well-controlled operation. The design characteristics of the lead are presented and 4-K helium cooling of the whole lead, as well as 60-K helium cooling of the copper part of the lead, is discussed. The power consumption at zero current, and the lead's behaviour in case of loss of coolant flow, are given, The results of the design allow extrapolation to current leads of the 50-kA range

  4. Thermal properties of superconducting bulk metallic glasses at ultralow temperatures

    International Nuclear Information System (INIS)

    Rothfuss, Daniel Simon

    2013-01-01

    This thesis describes the first investigation of thermal properties of superconducting bulk metallic glasses in the range between 6mK and 300K. Measuring the thermal conductivity provides the possibility to probe the fundamental interactions governing the heat flow in solids. At ultralow temperatures a novel contactless measuring technique was used, which is based on optical heating and paramagnetic temperature sensors that are read out by a SQUID magnetometer. Below the critical temperature T c the results can be described by resonant scattering of phonons by tunneling systems. Above T c the phonon contribution to the thermal conductivity can be described successfully within a model considering not only electrons and phonons but also localized modes as scattering centres. To expand the accessible temperature range for experiments an adiabatic nuclear demagnetization refrigerator was set up. For measuring the base temperature a novel noise thermometer was developed which enables continuous measuring of the temperature in this temperature range for the first time. Therefore the magnetic Johnson noise of a massive copper cylinder is simultaneously monitored by two SQUID magnetometers. A subsequent cross-correlation suppresses the amplifier noise by more than one order of magnitude. The thermometer was characterized between 42μK and 0.8K showing no deviation from the expected linear behaviour between the power spectral density of the thermal noise and the temperature.

  5. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  6. Quantum-cascade lasers in the 7-8 μm spectral range with full top metallization

    Science.gov (United States)

    Kurochkin, A. S.; Babichev, A. V.; Denisov, D. V.; Karachinsky, L. Ya; Novikov, I. I.; Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E.; Bousseksou, A.; Egorov, A. Yu

    2018-03-01

    The paper demonstrates the generation of multistage quantum-cascade lasers (QCL) in the 7-8 μm spectral range in the pulse generation mode. The active region structure we used is based on a two-phonon resonance scheme. The QCL heterostructure based on a heteropair of In0.53Ga0.47As/Al0.48In0.52As solid alloys was grown by molecular beam epitaxy and includes 50 identical stages. A waveguide geometry with top cladding with full top metallization (surface- plasmon quantum-cascade lasers) has been used. The developed QCLs have demonstrated multimodal generation in the 7-8 μm spectral range in the pulse mode in the 78-250 K temperature range. The threshold current density for a 1.6 mm long laser and a 20 μm ridge width amounted to ˜ 2.8 kA/cm2 at a temperature of 78 К. A temperature increase to 250 K causes a long-wave shift of the wavelength from 7.6 to 7.9 μm and a jth increase to 5.0 kA/cm2.

  7. Isothermal phase (vapour + liquid) equilibrium data for binary mixtures of propene (R1270) with either 1,1,2,3,3,3-hexafluoro-1-propene (R1216) or 2,2,3-trifluoro-3-(trifluoromethyl)oxirane in the temperature range of (279 to 318) K

    International Nuclear Information System (INIS)

    Subramoney, Shalendra Clinton; Nelson, Wayne Michael; Courtial, Xavier; Naidoo, Paramespri; Coquelet, Christophe; Richon, Dominique; Ramjugernath, Deresh

    2015-01-01

    Highlights: • Phase equilibrium data for propene and hexafluoropropylene. • Phase equilibrium data for propene and hexafluoropropylene oxide. • Systems exhibit pressure-maximum azeotropes. • Data well correlated by Peng–Robinson equation of state with the Wong–Sandler mixing rule. - Abstract: Isothermal (vapour + liquid) equilibrium data (P–x–y) are presented for the 1-propene 1,1,2,3,3,3-hexafluoro-1-propene and the 1-propene + 2,2,3-trifluoro-3-(trifluoromethyl)oxirane binary systems. Both binary systems were studied at five temperatures, ranging from (279.36 to 318.09) K, at pressures up to 2 MPa. The experimental (vapour + liquid) equilibrium data were measured using an apparatus based on the “(static + analytic)” method incorporating a single movable Rapid On-Line Sampler-Injector to sample the liquid and vapour phases at equilibrium. The expanded uncertainties are approximated on average as T = 0.07 K, 0.008 MPa, and 0.007 and 0.009 for the temperature, pressure, and the liquid and vapour mole fractions, respectively. A homogenous maximum-pressure azeotrope was observed for both binary systems at all temperatures studied. The experimental data were correlated with the Peng–Robinson equation of state using the Mathias–Copeman alpha function, paired with the Wong–Sandler mixing rule and the Non-Random Two Liquid activity coefficient model. The model provided satisfactory representation of the phase equilibrium data measured

  8. The mobility of Li+ and K+ ions in helium and argon at 294 and 80 K and derived interaction potentials

    International Nuclear Information System (INIS)

    Cassidy, R.A.; Elford, M.T.

    1983-01-01

    The analysis of mobility data is a valuable technique for deriving ion-atom interaction potentials or testing at initio potentials particularly at relatively large internuclear separations. In order to obtain the most complete information on the long range part of the potential it is necessary to have mobility data at sufficiently low gas temperatures and small values of E/N that the mobility is determined only by the dipole polarization force. Although this condition can be reasonably well met at room temperature for gases of high polarizability, this is not the case for ions in helium and in particular for the most well studied case, that of Li + in helium. The prime purpose of the present measurements was to obtain low temperature data for Li + in helium in order to determine more accurately the attractive long range tail of the potential. The measurements were also extended to argon to demonstrate the effect of the polarizability on the derivation of potentials. The mobility measurements were made using a drift tube-mass spectrometer system employing the Bradbury-Nielsen time of flight technique. Measurements were performed at 294 K and 80 K. The 'three temperature' theory of Lin, Viehland and Mason was used to fit interaction potentials to the present data. Detailed comparisons are made here only for the case of Li + ions in helium. The new data for 80 K provide additional information on the potential at internuclear separations which cover the range to 5 A. (Authors)

  9. Reliable measurement of the Seebeck coefficient of organic and inorganic materials between 260 K and 460 K

    Energy Technology Data Exchange (ETDEWEB)

    Beretta, D.; Lanzani, G. [Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (MI) (Italy); Dipartimento di Fisica, P.zza Leonardo da Vinci 32, Politecnico di Milano, 20133 Milano (MI) (Italy); Bruno, P.; Caironi, M., E-mail: mario.caironi@iit.it [Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (MI) (Italy)

    2015-07-15

    A new experimental setup for reliable measurement of the in-plane Seebeck coefficient of organic and inorganic thin films and bulk materials is reported. The system is based on the “Quasi-Static” approach and can measure the thermopower in the range of temperature between 260 K and 460 K. The system has been tested on a pure nickel bulk sample and on a thin film of commercially available PEDOT:PSS deposited by spin coating on glass. Repeatability within 1.5% for the nickel sample is demonstrated, while accuracy in the measurement of both organic and inorganic samples is guaranteed by time interpolation of data and by operating with a temperature difference over the sample of less than 1 K.

  10. Densities, Viscosities and Related Properties for Binary Mixtures of Sulfolane + p-Xylene, Sulfolane + Ethylbenzene in the Temperature Range from 303.15 K to 353.15 K%二元混合物环丁酚和对二甲苯、乙苯在温度范围为303.15-353.15K下的密度、黏度及其相关性质

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 周清

    2004-01-01

    Densities and viscosities of the binary systems of sulfolane + ethylbenzene, sulfolane + p-xylene have been experimentally determined in temperature interval 303.15-353.15 K and at atmospheric pressure for the whole composition range. The excess molar volumes and viscosity deviations were computed. The computed quantities have been fitted to Redlich-Kister equation. Excess molar volumes and viscosity deviation show a systematic change with increasing temperature. Two mixtures exhibit negative excess volumes with a minimum which occurs approximately at x = 0.5. The effect of the size, shape and interaction of components on excess molar volumes and viscosity deviations is discussed.

  11. An Investigation on Attributes of Ambient Temperature and Diurnal Temperature Range on Mortality in Five East-Asian Countries.

    Science.gov (United States)

    Lee, Whan-Hee; Lim, Youn-Hee; Dang, Tran Ngoc; Seposo, Xerxes; Honda, Yasushi; Guo, Yue-Liang Leon; Jang, Hye-Min; Kim, Ho

    2017-08-31

    Interest in the health effects of extremely low/high ambient temperature and the diurnal temperature range (DTR) on mortality as representative indices of temperature variability is growing. Although numerous studies have reported on these indices independently, few studies have provided the attributes of ambient temperature and DTR related to mortality, concurrently. In this study, we aimed to investigate and compare the mortality risk attributable to ambient temperature and DTR. The study included data of 63 cities in five East-Asian countries/regions during various periods between 1972 and 2013. The attributable risk of non-accidental death to ambient temperature was 9.36% (95% confidence interval [CI]: 8.98-9.69%) and to DTR was 0.59% (95% CI: 0.53-0.65%). The attributable cardiovascular mortality risks to ambient temperature (15.63%) and DTR (0.75%) are higher than the risks to non-accidental/respiratory-related mortality. We verified that ambient temperature plays a larger role in temperature-associated mortality, and cardiovascular mortality is susceptible to ambient temperature and DTR.

  12. Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence

    Science.gov (United States)

    Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; En Naciri, A.

    2018-05-01

    We report the temperature dependence of the dielectric function, the exciton binding energy and the electronic transitions of crystallized ZnO thin film using spectroscopic ellipsometry (SE) and photoluminescence (PL). ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (Si) by spin coating technique. The ZnO optical properties were determined between 300 K and 620 K. Rigorous study of optical responses was achieved in order to demonstrate the quenching exciton of ZnO as a function of temperature. Numerical technique named constrained cubic splines approximation (CCS), Tauc-Lorentz (TL) and Tanguy dispersion models were selected for the ellipsometry data modeling in order to obtain the dielectric function of ZnO. The results reveals that the exciton bound becomes widely flattening at 470 K on the one hand, and on the other that the Tanguy dispersion law is more appropriate for determining the optical responses of ZnO thin film in the temperature range of 300 K-420 K. The Tauc-Lorentz, for its part, reproduces correctly the ZnO dielectric function in 470 K-620 K temperature range. The temperature dependence of the electronic transition given by SE and PL shows that the exciton quenching was observed in 420 K-∼520 K temperature range. This quenching effect can be explained by the equilibrium between the Coulomb force of exciton and its kinetic energy in the film. The kinetic energy was found to induce three degrees of freedom of the exciton.

  13. Structural phase transition at 205 K in stoichiometric vanadium nitride

    International Nuclear Information System (INIS)

    Kubel, F.; Lengauer, W.; Yvon, K.; Knorr, K.; Junod, A.

    1988-01-01

    Vanadium nitride (NaCl structure, [N]/[V]≥0.99, space group Fm3-barm, a = 4.1328(3) A at 298 K) transforms at 205(5) K into a tetragonal, noncentrosymmetric low-temperature modification [space group P4-bar2m, a = 4.1314(3) A, c = 4.1198(3) A at 45 K]. The low-temperature structure was refined from single-crystal x-ray diffraction data collected at two different temperatures (150 K, R = 2.3% for 301 reflections; 20 K, R = 3.9% for 393 reflections). It is characterized by a clustering of the metal atoms into tetrahedral V 4 units with V-V intracluster distances of 2.8534(9) and 2.8515(7) A, and V-V intercluster distances in the range of 2.9147(9) and 2.9853(7) A at 20 K. High-resolution heat-capacity data are presented (20--330 K). A discontinuity is observed at the onset of structural transformation, 204 +- 1 K

  14. Investigations of different doping concentration of phosphorus and boron into silicon substrate on the variable temperature Raman characteristics

    Science.gov (United States)

    Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng

    2018-01-01

    Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.

  15. Study of the process e+e- → K+K- in the center-of-mass energy range 1010-1060 MeV with the CMD-3 detector

    Science.gov (United States)

    Kozyrev, E. A.; Solodov, E. P.; Akhmetshin, R. R.; Amirkhanov, A. N.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. S.; Bashtovoy, N. S.; Berkaev, D. E.; Bondar, A. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Gribanov, S. S.; Grigoriev, D. N.; Ignatov, F. V.; Ivanov, V. L.; Karpov, S. V.; Kasaev, A. S.; Kazanin, V. F.; Korobov, A. A.; Koop, I. A.; Kozyrev, A. N.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lukin, P. A.; Lysenko, A. P.; Mikhailov, K. Yu.; Okhapkin, V. S.; Perevedentsev, E. A.; Pestov, Yu. N.; Popov, A. S.; Razuvaev, G. P.; Rogovsky, Yu. A.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Shatunov, Yu. M.; Talyshev, A. A.; Vorobiov, A. I.; Yudin, Yu. V.

    2018-04-01

    The process e+e- →K+K- has been studied using 1.7 ×106 events from a data sample corresponding to an integrated luminosity of 5.7 pb-1 collected with the CMD-3 detector in the center-of-mass energy range 1010-1060 MeV. The cross section is measured with about 2% systematic uncertainty and is used to calculate the contribution to the anomalous magnetic moment of the muon aμK+K- = (19.33 ± 0.40) ×10-10, and to obtain the ϕ (1020) meson parameters. We consider the relationship between the e+e- →K+K- and e+e- → KS0 KL0 cross sections and compare it to the theoretical prediction.

  16. Polaron variable range hopping in TiO2-δ(-0.04=<δ=<0.2) thin films

    International Nuclear Information System (INIS)

    Heluani, S.P.; Comedi, D.; Villafuerte, M.; Juarez, G.

    2007-01-01

    The mechanisms of electrical conduction in TiO 2-δ (-0.04= 2 +Ar gas atmospheres where changes in δ and film structure had been achieved by varying the O 2 flow rate and the substrate temperature. The electrical transport properties of these samples were investigated by measuring the conductivity as a function of temperature between 17K and room temperature. At the temperature range between 200 and 290K the best fit to the experimental data was obtained assuming a dependence characteristic of adiabatic variable range hopping. At lower temperature the activation energy for the conductivity tends to zero. The results suggest that the conduction mechanism is adiabatic small polaron hopping, which switches to conduction in a polaron band at low temperatures

  17. Low-temperature strain gauges based on silicon whiskers

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2008-08-01

    Full Text Available To create low-temperature strain gauges based on p-type silicon whiskers tensoresistive characteristics of these crystals in 4,2—300 K temperature range were studied. On the basis of p-type Si whiskers with different resistivity the strain gauges for different materials operating at cryogenic temperatures with extremely high gauge factor at 4,2 K were developed, as well as strain gauges operating at liquid helium temperatures in high magnetic fields.

  18. Positron annihilation in low-temperature rare gases. II. Argon and neon

    International Nuclear Information System (INIS)

    Canter, K.F.; Roellig, L.O.

    1975-01-01

    Lifetime measurements of slow-positron and ortho-positronium (o-Ps) annihilation were made in argon and neon gases at room temperature and below. The argon experiments cover the temperature range 115 to 300 0 K and the density range 0.0356 to 0.0726 g/cm 3 (approximately equal to 20 to 40 amagat). The slow-positron spectra in argon exhibit a departure from free-positron annihilation below 200 0 K. The departure becomes more marked as the temperature is lowered. No deviation from free o-Ps pickoff annihilation is observed in argon at low temperatures. The neon measurements cover the temperature range 30 to 300 0 K and the density range 0.032 to 0.89 g/cm 3 (approximately equal to 35 to 980 amagat). No effect of temperature on the slow-positron spectra throughout the temperature and density ranges investigated in neon is observed. The spectra are very exponential with a corresponding decay rate which is temperature as well as time independent and is directly proportional to density over the ranges investigated. The o-Ps data are more eventful in that the o-Ps lifetime at near-liquid densities is approximately 20 nsec, a factor of nearly 4 greater than the value obtained using the pickoff-annihilation coefficient obtained at lower densities. This is evidence for positronium-induced cavities in low-temperature neon. A brief discussion of the argon and neon results is given in the context of the explanations offered for the low-temperature effects observed in helium gas

  19. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    Science.gov (United States)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  20. Interaction between Na+/K+-pump and Na+/Ca2+-exchanger modulates intercellular communication.

    Science.gov (United States)

    Matchkov, Vladimir V; Gustafsson, Helena; Rahman, Awahan; Briggs Boedtkjer, Donna M; Gorintin, Sarah; Hansen, Anne Kirstine; Bouzinova, Elena V; Praetorius, Helle A; Aalkjaer, Christian; Nilsson, Holger

    2007-04-13

    Ouabain, a specific inhibitor of the Na(+)/K(+)-pump, has previously been shown to interfere with intercellular communication. Here we test the hypothesis that the communication between vascular smooth muscle cells is regulated through an interaction between the Na(+)/K(+)-pump and the Na(+)/Ca(2+)-exchanger leading to an increase in the intracellular calcium concentration ([Ca(2+)](i)) in discrete areas near the plasma membrane. [Ca(2+)](i) in smooth muscle cells was imaged in cultured rat aortic smooth muscle cell pairs (A7r5) and in rat mesenteric small artery segments simultaneously with force. In A7r5 coupling between cells was estimated by measuring membrane capacitance. Smooth muscle cells were uncoupled when the Na(+)/K(+)-pump was inhibited either by a low concentration of ouabain, which also caused a localized increase of [Ca(2+)](i) near the membrane, or by ATP depletion. Reduction of Na(+)/K(+)-pump activity by removal of extracellular potassium ([K(+)](o)) also uncoupled cells, but only after inhibition of K(ATP) channels. Inhibition of the Na(+)/Ca(2+)-exchange activity by SEA0400 or by a reduction of the equilibrium potential (making it more negative) also uncoupled the cells. Depletion of intracellular Na(+) and clamping of [Ca(2+)](i) at low concentrations prevented the uncoupling. The experiments suggest that the Na(+)/K(+)-pump may affect gap junction conductivity via localized changes in [Ca(2+)](i) through modulation of Na(+)/Ca(2+)-exchanger activity.

  1. Experimental investigation of the energy and temperature dependence of beryllium self sputtering

    International Nuclear Information System (INIS)

    Korshunov, S.N.; Guseva, M.I.; Stolijarova, V.G.

    1995-01-01

    The low-Z metal beryllium is considered as plasma facing material (PFM) for the ITER. It is expected that operation temperature range of beryllium PFM will be (670 - 1070) K. While experimental Be-sputtering data bases exist for H + , D + and He + -ions, the self-sputtering yields of Be have only been estimated by computer simulation. In this paper we report the experimental results on the energy and temperature dependence of the beryllium self-sputtering yield (S). The energy dependence of S s in the energy range (0.5 - 10.0) keV was measured at 670 K. The self-sputtering yield of Be attains its maximal value at the ion energy of 1.5 keV, being equal to 0.32 ± at./ion. Comparison of the experimental results and theoretical prediction shows a good agreement for energy dependence of S s . The temperature dependence of S s in the temperature range (370-1070)K was obtained for 0.9keV Be + -ions. The value of S s is not changed up to 870 K. It sharply increases at the temperatures above 870 attaining the value of 0.75 at./ion at 1070 K

  2. Theoretical and experimental study of AC electrical conduction mechanism in the low temperature range of p-CuIn3Se5

    Science.gov (United States)

    Essaleh, L.; Amhil, S.; Wasim, S. M.; Marín, G.; Choukri, E.; Hajji, L.

    2018-05-01

    In the present work, an attempt has been made to study theoretically and experimentally the AC electrical conduction mechanism in disordered semiconducting materials. The key parameter considered in this analysis is the frequency exponent s(ω , T) =( ∂ln(σAC(ω , T))/∂ ln(ω)T , where σAC is the AC electrical conductivity that depends on angular frequency ω and temperature T. In the theoretical part of this work, the effect of the barrier hopping energy, the polaron radius and the characteristic relaxation time is considered. The theoretical models of Quantum Mechanical Tunneling (QMT), Non overlapping Small Polaron Tunneling (NSPT), Overlapping Large Polaron Tunneling (OLPT) and Correlated Barrier Hopping (CBH) are considered to fit experimental data of σAC in p-CuIn3Se5 (p-CIS135) in the low temperature range up to 96 K. Some important parameters, as the polaron radius, the localization length and the barrier hopping energies, are estimated and their temperature and frequency dependence discussed.

  3. Mechanical properties of polymer matrix composites at 77 K and at room temperature after irradiation with 60Co γ-rays

    International Nuclear Information System (INIS)

    Egusa, S.; Hagiwara, M.

    1986-01-01

    Ten different polymer matrix composites were irradiated with 60 Co γ-rays at room temperature, and were examined with regard to the mechanical properties at 77 K and at room temperature. The radiation resistance of these composites depends primarily on the radiation resistance of matrix resins, which increases in the order diglycidyl ether of bisphenol A < tetraglycidyl diaminodiphenyl methane < Kerimid 601. Comparison of the mechanical properties tested at 77 K and at room temperature demonstrates that the extent of radiation-induced decrease in the composite strength is appreciably greater in the 77 K test than in the room temperature test. (author)

  4. Temperature dependence of the dispersion of single crystals SrCl/sub 2/. [Temperature coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Kuzin, M P [L' vovskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1976-01-01

    The dispersion of the refractive index of SrCl/sub 2/ monocrystals in the spectral range 300-700 nm at temperatures of 223, 295 adn 373 K has been studied. The temperature coefficient of the refractive index as a function of the wave length has been determined for the room temperature. The function resembles the corresponding dependence for alkali-halide crystals.

  5. Carbon implantation into tungsten at elevated temperatures

    International Nuclear Information System (INIS)

    Eckstein, W.; Shulga, V.I.; Roth, J.

    1999-01-01

    The bombardment of W with 2.4 keV C at normal incidence in the temperature range between 293 and 973 K is investigated experimentally and by computer simulation. At room temperature the measured weight is at first increasing but then changing to a weight gain with the incident C fluence. This weight gain is reduced at temperatures above 750 K, and at 973 K a constant weight loss is observed. The computing approach was to couple the dynamic Monte Carlo program TRIDYN with the diffusion program PIDAT. Input data for C diffusion in W are taken from the literature. Agreement between experimental data and computed results can be achieved at temperatures around 800 K by using a smaller diffusion coefficient in the simulations than those found in the literature

  6. Modulation of auroral electron fluxes in the frequency range 50 kHz to 10 MHz

    Science.gov (United States)

    Spiger, R. J.; Murphree, J. S.; Anderson, H. R.; Loewenstein, R. F.

    1976-01-01

    A sounding rocket-borne electron detector of high time resolution is used to search for modulation of auroral electron fluxes in the frequency range 50 kHz to 10 MHz and energy range 5-7 keV. Data were telemetered to ground via a 93-kHz subcarrier. A cross-correlation analysis of the data collected indicates low-level modulation near the detection threshold of the instrument. Two U-1 events are observed which are interpreted as indications of modulation. The two modulation events occur during a period of increasing flux for a region marking the boundary between two current sheets detected by the payload magnetometer. The strongest argument against interference contamination is the lack of any observable modulation at times other than those mentioned in the study.

  7. K0/K+ ratio in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Russkikh, V.N.

    1996-11-01

    It is shown that ratio of production yields of K 0 and K + mesons in collisions of isotopically asymmetric nuclei at incident energies ∼ 1 GeV/nucleon is related directly enough to temperature of nuclear matter at the initial stage of the collision. Sensitivity of the K 0 /K + ratio to the temperature variation is analyzed. Ambiguities, associated with interpretation of this quantity as a probe of nuclear temperature, are discussed. It is argued that the K 0 /K + ratio is a fairly model-independent quantity, provided channels with Δ isobars dominate the kaon production. (orig.)

  8. Measurements of short-range ordering in Ni3Al

    International Nuclear Information System (INIS)

    Okamoto, J.K.; Ahn, C.C.

    1992-01-01

    This paper reports on extended electron energy-loss fine structure (EXELFS) that has been used to measure short-range ordering in Ni 3 Al. Films of fcc Ni 3 Al with suppressed short-range order synthesized by vacuum evaporation of Ni 3 Al onto room temperature substrates. EXELFS data were taken from both Al K and Ni L 23 edges. The development of short-range order was observed after the samples were annealed for various times at temperatures below 350 degrees C. Upon comparison with ab initio planewave EXELFS calculations, it was found that the Warren-Cowley short-range order parameter a(1nn) changed by about -0.1 after 210 minutes of annealing at 150 degrees C

  9. New England observed and predicted August stream/river temperature daily range points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature daily ranges in New England based on a spatial statistical...

  10. Low noise monolithic Si JFETs for operation in the 90-300K Range and in high radiation environments

    International Nuclear Information System (INIS)

    Radeka, V.; Citterio, M.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1994-12-01

    Development of low noise preamplifters for large ionization chambers with liquid argon (LAr) and liquid krypton (LKr) used in high energy physics experiments for measurement of energy of charged particles and photons requires die choice of a technology able to withstand the environment: a temperature of 90 K -120 K; an ionizing radiation dose of 1-2 Mrad; a neutron fluence of 0.5 -1.10 14 n/cm 2 . Silicon JFETs by virtue of their reliable noise behavior and their intrinsic radiation hardness appear to be very suitable devices for applications both at room and cryogenic temperatures. We describe the noise properties of JFET devices and a monolithic preamplifier suitable for amplification of charge and current signals

  11. Thermal conductivity measurements of PTFE and Al2O3 ceramic at sub-Kelvin temperatures

    Science.gov (United States)

    Drobizhev, Alexey; Reiten, Jared; Singh, Vivek; Kolomensky, Yury G.

    2017-07-01

    The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al2O3 ceramic (alumina) in the temperature ranges of 0.17-0.43 K and 0.1-1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.

  12. Long-term fluid circulation in extensional faults in the central Catalan Coastal Ranges: P-T constraints from neoformed chlorite and K-white mica

    Science.gov (United States)

    Cantarero, Irene; Lanari, Pierre; Vidal, Olivier; Alías, Gemma; Travé, Anna; Baqués, Vinyet

    2014-01-01

    The neoformation of chlorite and K-white mica in fault rocks from two main faults of the central Catalan Coastal Ranges, the Vallès and the Hospital faults, has allowed us to constrain the P-T conditions during fault evolution using thermodynamic modeling. Crystallization of M1 and M2 muscovite and microcline occured as result of deuteric alteration during the exhumation of the pluton (290 °C > T > 370 °C) in the Permian. After that, three tectonic events have been distinguished. The first tectonic event, attributed to the Mesozoic rifting, is characterized by precipitation of M3 and M4 phengite together with chlorite and calcite C1 at temperatures between 190 and 310 °C. The second tectonic event attributed to the Paleogene compression has only been identified in the Hospital fault with precipitation of low-temperature calcite C2. The shortcut produced during inversion of the Vallès fault was probably the responsible for the lack of neoformed minerals within this fault. Finally, the third tectonic event, which is related to the Neogene extension, is characterized in the Vallès fault by a new generation of chlorite, associated with calcite C4 and laumontite, formed at temperatures between 125 and 190 °C in the absence of K-white mica. Differently, the Hospital fault is characterized by the precipitation of calcite C3 during the syn-rift stage at temperatures around 150 °C and by low-temperature fluids precipitating calcites C5, C6 and PC1 during the post-rift stage. During the two extensional events (Mesozoic and Neogene), faults acted as conduits for hot fluids producing anomalous high geothermal gradients (50 °C/km minimum).

  13. Neutron diffraction study of high temperature phase of K2SeO4

    International Nuclear Information System (INIS)

    Iwata, Yutaka; Koyano, Nobumitsu; Shibuya, Iwao; Hidaka, Masanori; Okazaki, Atsushi.

    1984-01-01

    The crystal structure of high-temperature phase of K 2 SeO 4 has been determined by means of single crystal neutron diffraction. The space group is P6 3 /mmc of hexagonal system with two formula units per unit cell. The structure is characterized by an averaged dispositions of SeO 4 tetrahedra with one of its Se-O bonds pointing parallel and antiparallel to the hexagonal c-axis in addition to the split distribution of potassium atoms. Heavily distorted distribution of oxygen atoms in SeO 4 is observed in Fourier maps corrersponding to split positions and reorientational motion of tetrahedra. This disordered arrangement is found to have close relation with the room temperature orthorhombic structure. The hexagonal-orthorhombic phase transition of K 2 SeO 4 at 472 0 C is grouped to an order-disorder type. (author)

  14. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa

    Directory of Open Access Journals (Sweden)

    JianJun Jiang

    2016-03-01

    Full Text Available The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC, to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E 2 g 1 ,A1g, and 2LA(M. Over our experimental temperature and pressure range (300–600 K and 1 atm−18.5 GPa, the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3–4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  15. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa)

    Science.gov (United States)

    Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai

    2016-03-01

    The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  16. The structure factor and the pair potential of liquid rubidium at temperatures between 450 K and 1,400 K

    International Nuclear Information System (INIS)

    Block de Priego, R.A.

    1977-11-01

    The structure factor S(Q) of liquid rubidium has been measured for temperatures between 450 K and 1400 K and pressures up to 200 atm. The corresponding densities varied between 1.42 and 0.98 g cm -3 . The incident energy of the neutrons was 3.4 MeV, the momentum transfer Q being 0.2 - 2.5 A -1 . A significant change in the order of the liquid has been registrated. Compressibility and electrical conductivity were derived from the structure factors and compared with the direct measured quantities, showing a good agreement. Further interpretation of the data was done by means of a hard core and a square well potential. Using these models it was already possible to get some information about the interactions between the rubidium atoms. A more exact calculation with a modified STLS model and a pseudopotential leads to a good description of the measured S(Q). In order to describe at high temperatures S(Q) for smaller values a new term had to be added to the pseudopotential. (orig.) [de

  17. New England observed and predicted July stream/river temperature daily range points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature daily ranges in New England based on a spatial statistical network...

  18. The temperature dependences of electromechanical properties of PLZT ceramics

    Science.gov (United States)

    Czerwiec, M.; Zachariasz, R.; Ilczuk, J.

    2008-02-01

    The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.

  19. Isopiestic studies of aqueous solutions at elevated temperatures

    International Nuclear Information System (INIS)

    Holmes, H.F.; Mesmer, R.E.

    1981-01-01

    Isopiestic measurements have been made for LiCl(aq) and CsCl(aq) over the temperature range 382.96 to 473.61 K. NcCl(aq) served as the reference electrolyte for the calculation of osmotic coefficients and the molalities ranged from about 0.6 to 6 mol kg -1 , for NaCl(aq). An ion-interaction model gave an excellent fit to the experimental osmotic coefficients with a standard error of fit ranging from 0.0004 to 0.0016 in the osmotic coefficient. Parameters obtained from the fit were used to calculate the activity coefficients. The osmotic and activity coefficients both decreased with increasing temperature over this temperature range. LiCl(aq) is somewhat unusual among the alkali-metal chlorides in that the osmotic (and activity) coefficient is much more dependent on molality at the higher molalities and there is no maximum between 273.15 and 373.15 K in the osmotic coefficient as a function of temperature. For both LiCl(aq) and CsCl(aq) there is an excellent correlation between the isopiestic results and the vapor pressures of Lindsay and Liu. Existing electrochemical results between 283.15 and 343.15 K are consistent with the calculated activity coefficients for CsCl(aq). (author)

  20. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  1. An in situ Raman spectroscopy system for long-term corrosion experiments in high temperature water up to 673 K

    International Nuclear Information System (INIS)

    Domae, Masafumi; Tani, Jun-ichi; Fujiwara, Kazutoshi; Katsumura, Yosuke

    2006-01-01

    A Raman spectroscopy system has been developed, in order to identify oxides formed on the surfaces of metals and steels in high temperature water up to 673 K. A supercritical water loop system including a Raman cell was installed. The design of the loop system is up to 673 K and 40 MPa. The Raman cell has a diamond window without window-to-metal packing. Raman spectrum of alumina plate was measured at room temperature, at 523 and at 673 K under pressure of 25 MPa. A long-term measurement was also performed at 523 K and 25 MPa for 117.5 h. In all cases intense Raman peaks attributed to alumina were observed. Raman spectrum of anatase particles in suspension was measured at 673 K and 25 MPa. The results show that the Raman spectroscopy system developed in the present study works well not only for plate sample but also for suspension. Raman spectra observed for titanium plate in high temperature water of 673 K and 25 MPa show growth of several Raman peaks with time up to 257 h. The peaks disappeared after cooled down to room temperature. The experimental results have demonstrated importance of in situ Raman spectroscopy. (author)

  2. Lattice parameters and thermal expansion of delta-VNsub(1-x) from 298-1000 K

    International Nuclear Information System (INIS)

    Lengauer, W.; Ettmayer, P.

    1986-01-01

    The thermal expansion of VNsub(1-x) was determined from measurements of the lattice parameters in the temperature range of 298-1000 K and in the composition range of VNsub(0.707) - VNsub(0.996). Within the accuracy of the results the expansion of the lattice parameter with temperature is not dependent on the composition. The lattice parameter as a function of composition ([N]/[V] = 0.707-0.996) and temperature (198-1000 K) is given by a([N]/[V], T) = 0.38872+0.02488 ([N]/[V]) - (1.083+-0.021) x 10 -4 Tsup(1/2) + (6.2+-0.1) x 10 - sup6T. The coefficient of linear thermal expansion as a function of temperature (in the same range) is given by α(T) = a([N]/[V], T) -1 [(-5.04+-0.01) x 10 -5 Tsup(1/2) + (6.2+-0.1) x 10 -6 ]. The average linear thermal expansion coefficient is αsub(av) = 9.70 +- 0.15 x 10 -6 K -1 (298-1000 K). The data are compared with those of several fcc transition metal nitrides collected and evaluated from the literature. (Author)

  3. Flux mapping at 77 K and local measurement at lower temperature of thin-wall YBaCuO single-domain samples oxygenated under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chaud, X., E-mail: Xavier.chaud@grenoble.cnrs.f [CRETA, CNRS, 25, Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Noudem, J. [CRISMAT/ENSICAEN, CNRS, 6 bd Marechal Juin, 14050 Caen (France); Prikhna, T.; Savchuk, Y. [ISM, National Acad. of Sciences of Ukraine, 2 Avtozavodskaya Street, Kiev, 04074 (Ukraine); Haanappel, E. [LNCMP, UMR 5147, 143 avenue de Rangueil, 31400 Toulouse (France); Diko, P. [IEP, Slovak Acad. of Sciences, Watsonova 47, 043 53, Kosice (Slovakia); Zhang, C.P. [SMRC, NIN, 96 Weiyang Road, Xi' an 710016 (China)

    2009-10-15

    YBCO single-domain samples are suitable for the production of high trapped fields in the range 20-77 K using a cryocooler or liquid nitrogen. But the oxygenation process required to actually transform the single domains into superconductors induces an extensive crack network that is limiting the material performances. Thin-wall geometry has been introduced to reduce the diffusion paths and to enable a progressive oxygenation strategy. As a consequence cracks are drastically reduced. In addition the use of a high oxygen pressure (16 MPa) speeds up further the process by displacing the oxygen-temperature equilibrium towards the higher temperature of the phase diagram. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample. Remarkable results are obtained without any doping by the combination of thin walls and oxygen high pressure. While classical plain samples yield 300-400 mT, a trapped field of 840 mT has been measured at 77 K on a 16 mm diameter Y123 thin-wall single-domain sample with an annealing time as short as 3 days. Local measurements with a fixed Hall probe on top of the sample were performed at lower temperature after magnetization either in a static field or in a pulse field. The trapped field is significantly higher at lower temperature. Cryocoolers become the key to compromise between performances and cryogenic cost around 40 K.

  4. Charging kinetics in virgin and 1 MeV-electron irradiated yttria-stabilized zirconia in the 300-1000 K range

    International Nuclear Information System (INIS)

    Thome, T.; Braga, D.; Blaise, G.; Cousty, J.; Pham Van, L.; Costantini, J.M.

    2006-01-01

    A study performed with a dedicated scanning electron microscope (SEM) on the surface electrical properties of (1 0 0)-oriented yttria-stabilized zirconia (YSZ) single crystals irradiated with 1 MeV electrons is presented. When compared with virgin YSZ, the 1 MeV-irradiated YSZ shows a decrease of the intrinsic total electron emission coefficient σ 0 and an increase of the time constant τ associated with the charging kinetics of the material at room temperature. These measurements performed with the SEM beam at 10 keV indicate that the defects induced by the 1 MeV-electron irradiation generate a positive electric field of the order of 0.5 x 10 6 V/m at a depth of about 1 μm that prevents electrons to escape. When the SEM beam with a 1.1 keV energy is used, a smaller field (∼0.5 x 10 3 V/m) is detected closer to the surface (∼20 nm). The fading of these fields during the thermal annealing in the 400-1000 K temperature range provides information on the nature of defects induced by the 1 MeV-electron irradiation

  5. Temperature measurements in a wall stabilized steady flame using CARS

    KAUST Repository

    Sesha Giri, Krishna; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.

    2017-01-01

    -Stokes Raman Scattering (CARS) thermometry as close as 275 μm to a convex wall cooled with water has been carried out. The standard deviation of mean temperatures is observed to be ~6.5% for high temperatures (>2000K) and ~14% in the lower range (<500K

  6. Nitrosyl hemoglobins: EPR above 80 K

    Energy Technology Data Exchange (ETDEWEB)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs.

  7. Nitrosyl hemoglobins: EPR above 80 K

    International Nuclear Information System (INIS)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs

  8. Low Temperature Photoluminescence of 6H fluorescent SiC

    DEFF Research Database (Denmark)

    Wei, Yi; Künecke, Ulrike; Jokubavicius, Valdas

    . The PL was excited by a diode laser source with wavelength of 405 nm and power of 5 mW. The temperature of the PL measurement was ranged from 25K to 300K when the liquid nitrogen cryostat was used, while lower temperature from 5K was achieved when the cryostat with liquid helium was applied....... The anomalous temperature dependences of the PL intensity spectrum of f-SiC samples were found. The PL peak energy’s S-shape dependence on the temperature was observed which was caused by nitrogen induced localization effect. For strong p-type f-SiC, one more PL intensity peak at 5 k was observed at wavelength...

  9. Dust Temperatures in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

    CERN Document Server

    Bendo, G J; Wells, M; Gallais, P; Haas, M; Heras, A M; Klaas, U; Laureijs, R J; Leech, K; Lemke, D; Metcalfe, L; Rowan-Robinson, M; Schulz, B; Telesco, C M; Bendo, George J.; Joseph, Robert D.; Wells, Martyn; Gallais, Pascal; Haas, Martin; Heras, Ana M.; Klaas, Ulrich; Laureijs, Rene J.; Leech, Kieron; Lemke, Dietrich; Metcalfe, Leo; Rowan-Robinson, Michael; Schulz, Bernhard; Telesco, Charles

    2003-01-01

    We examine far-infrared and submillimeter spectral energy distributions for galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For the 71 galaxies where we had complete 60-180 micron data, we fit blackbodies with lambda^-1 emissivities and average temperatures of 31 K or lambda^-2 emissivities and average temperatures of 22 K. Except for high temperatures determined in some early-type galaxies, the temperatures show no dependence on any galaxy characteristic. For the 60-850 micron range in eight galaxies, we fit blackbodies with lambda^-1, lambda-2, and lambda^-beta (with beta variable) emissivities to the data. The best results were with the lambda^-beta emissivities, where the temperatures were ~30 K and the emissivity coefficient beta ranged from 0.9 to 1.9. These results produced gas to dust ratios that ranged from 150 to 580, which were consistent with the ratio for the Milky Way and which exhibited relatively little dispersion compared to fits with fixed emissivities.

  10. Kinetics and Products of the Reactions of Fluorine Atoms with ClNO and Br2 from 295 to 950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2017-11-09

    The kinetics and products of the reactions of F atoms with Br 2 and ClNO have been studied in a flow reactor coupled with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium and over a wide temperature range, T = 295-950 K. The rate constant of the reaction F + ClNO → products (1) was determined under pseudo-first order conditions, monitoring the kinetics of F atom consumption in excess of ClNO. The measured temperature independent rate constant, k 1 = (1.29 ± 0.13) × 10 -10 cm 3 molecule -1 s -1 (T = 299-950 K), was found to be in excellent agreement with the only previous low temperature study which allowed to recommend the value of k 1 in an extended temperature range, 228-950 K. FCl and Cl atoms were observed as the reactions products (corresponding to two reaction pathways: Cl-atom abstraction and replacement with fluorine atom, respectively) with the independent of temperature, in the range 295-948 K, yields of 0.68 ± 0.10 and 0.32 ± 0.05, respectively. Rate constant of the reaction F + Br 2 (2), k 2 = (1.28 ± 0.20) × 10 -10 cm 3 molecule -1 s -1 , determined using both absolute and relative rate methods, was found to be independent of temperature at T = 299-940 K.

  11. Isothermal (vapour + liquid) equilibrium for binary mixtures of polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, or 2-propanol

    International Nuclear Information System (INIS)

    Khoiroh, Ianatul; Lee, Ming-Jer

    2011-01-01

    Highlights: → An autoclave apparatus was used for binary (vapour + liquid) equilibrium data measurement. → The studied systems are polyethylene glycol mono-4-nonylphenyl ether with alcohols. → The saturated pressure data were fitted accurately to the Antoine equation. → The NRTL model correlated well the phase equilibrium data. → The solvent activities have been calculated. - Abstract: Saturated pressures of three binary systems of oligomeric polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, and 2-propanol have been measured by using an autoclave (vapour + liquid) equilibrium (VLE) apparatus at temperatures ranging from (340 to 455) K and the oligomer content ranging from 0.100 to 0.400 in mole fraction. With a given feed composition, equilibrium pressures were measured at various temperatures to obtain VLE data. The experimental data were fitted to the Antoine equation and also correlated with activity coefficient models, the NRTL and the UNIQUAC. The correlation results showed good agreement between the calculated values and the experimental data. In general, the NRTL model yielded better results. Additionally, the solvent activities were evaluated from the experimental results and were compared with those from the NRTL and the UNIQUAC models.

  12. Temperature-specific inhibition of human red cell Na+/K+ ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz continuous wave microwave radiation to confirm and extend a report of Na+ transport inhibition under certain conditions of temperature and exposure. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect between 23 and 24 degrees C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity change only for the Na+/K+ ATPase at 25 degrees C. The activity decreased by approximately 35% compared to sham-irradiated samples. A possible explanation for the unusual temperature/microwave interaction is proposed.

  13. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain

    Directory of Open Access Journals (Sweden)

    Qingzhang Zhu

    2017-01-01

    Full Text Available Objective: IP6 kinases (IP6Ks regulate cell metabolism and survival. Mice with global (IP6K1-KO or adipocyte-specific (AdKO deletion of IP6K1 are protected from diet induced obesity (DIO at ambient (23 °C temperature. AdKO mice are lean primarily due to increased AMPK mediated thermogenic energy expenditure (EE. Thus, at thermoneutral (30 °C temperature, high fat diet (HFD-fed AdKO mice expend energy and gain body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which do not express UCP1. Methods: Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR, fatty acid metabolism assays, and immunoblot studies were conducted in IP6K1-KO and WT mice or cells. Results: Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 °C. As a result, IP6K1-KO mice are protected from DIO, insulin resistance, and fatty liver even at 30 °C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 °C exposure enhances carbohydrate expenditure, whereas 23 °C and 30 °C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation of the AMPK signaling pathway. Conclusions: Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions, which strengthens its validity as an anti-obesity target. Keywords: IP6K, Obesity, Diabetes, Energy expenditure, β-oxidation

  14. Deformation mechanism in LiF single crystals at 1.7 to 330 K

    International Nuclear Information System (INIS)

    Niaz, S.; Butt, M.Z.

    1999-01-01

    The experimental data appertaining to the influence of temperature on the critical resolved shear stress (CRSS) of LiF ionic single crystals containing 10/sup -3/ wt% of divalent metal impurities in the range 1.7 to 330 K have been analyzed within the framework of the kink-pair nucleation (KPN) model of plastic flow in crystalline materials. The CRSS-T data when plotted in log-linear coordinates exhibit three distinct regions represented by straight lines of different slopes. In the temperature range 1.7 to 90 K, the CRSS 6 determined primarily by the stress-assisted thermally-activated escape of screw dislocations trapped in the Peierls troughs. At temperatures between 90 and 260 K, the rate process of plastic deformation is unpinning of edge-dislocation segments from short was rows of randomly dispersed point defects, e.g. residual metal impurities atoms, divalent metal ion-vacancy dipoles, induced defects formed during the pre-yield stage etc. 4. However, at higher temperatures up to 330 K, the CRSS decreases rapidly with rise in temperature, probably due to the mobility of the point defects referred to, and the KPN model becomes inapplicable. (author)

  15. Salinity/temperature ranges for application of seawater SA-T-P models

    Science.gov (United States)

    Marion, G. M.; Millero, F. J.; Feistel, R.

    2009-01-01

    At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g. Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases (e.g. CaCO3(s) or CaSO42H2O(s)) will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric concentrations of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on homogeneous nucleation was extended from 25-40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-1 and 40°C (at SA=66 g kg-1. At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of -4.93°C. Increasing atmospheric CO2 from 385 μatm (in Year 2008) to 550 μatm (in Year 2100) would increase the SA and t boundaries as much as 11 g kg-1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculations) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.

  16. Apparatus to measure emissivities of metallic films between 90K and room temperature

    International Nuclear Information System (INIS)

    Bekeris, V.I.; Ramos, E.D.; Sanchez, D.H.

    1975-01-01

    The development of multilayer insulations is aerospace and cryogenic required to know the emissivity of the metallic films used as reflective layers. This work describes an emissometer that measures the total hemispherical emissivity of metallic films evaporated on polyester substrates. The apparatus works at liquid oxigen temperatures and permits to get emissivities from 90K to room temperatures within a 15% precision. The emissometer construction and operation are described in detail. Results of measurements done on Single Aluminized Mylar are presented [pt

  17. Apparatus to measure emissivities of metallic films between 90K and room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bekeris, V I [Nunez Univ. Nacional (Argentina). Faculdad de Ciencias Exactas Y Naturales; Ramos, E D [Santa Rosa Univ. Nacional (Argentina). Facultad de Ciencias Exactas Y Naturales; Sanchez, D H [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1975-09-01

    The development of multilayer insulations is aerospace and cryogenic required to know the emissivity of the metallic films used as reflective layers. This work describes an emissometer that measures the total hemispherical emissivity of metallic films evaporated on polyester substrates. The apparatus works at liquid oxigen temperatures and permits to get emissivities from 90K to room temperatures within a 15% precision. The emissometer construction and operation are described in detail. Results of measurements done on Single Aluminized Mylar are presented.

  18. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites

    Directory of Open Access Journals (Sweden)

    Wenjun Zhao

    2018-02-01

    Full Text Available Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE behaviors with the coefficients of thermal expansion (CTE of −285.23 × 10−6 K−1 (192–305 K and −1167.09 × 10−6 K−1 (246–305 K have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from −64.92 × 10−6 K−1 (125–274 K to −4.73 × 10−6 K−1 (173–229 K with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM state into ferromagnetic (FM state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  19. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.

    Science.gov (United States)

    Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  20. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K

    Science.gov (United States)

    Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  1. Experimental investigation on tritium release from lithium titanate pebble under high temperature of 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Kentaro, E-mail: howartre@onid.oregonstate.edu [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Edao, Yuki; Kawamura, Yoshinori [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Hoshino, Tsuyoshi [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Ohta, Masayuki; Sato, Satoshi; Konno, Chikara [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2015-10-15

    Highlights: • We have performed the tritium recovery experiment with the DT neutron source at 1073 K. • The tritium recovery corresponded with the calculated tritium production. • The chemical form of recovered tritium is affected by the temperature and kind of sweep gas. • The recovered HT increases at higher temperature and dry hydrogen circumstance. - Abstract: The temperature of Li{sub 2}TiO{sub 3} pebble breeder in a fusion DEMO blanket is assumed to be more than 1000 K. For the investigation of tritium release from a Li{sub 2}TiO{sub 3} pebble breeder blanket at such a high temperature, we have carried out a tritium release experiment with the DT neutron source at the JAEA-FNS. The Li{sub 2}TiO{sub 3} pebble (1.0–1.2 mm in diameter) of 70 g was put into a stainless steel container and installed into an assembly stratified with beryllium and Li{sub 2}TiO{sub 3} layers. During the DT neutron irradiation, the temperature was kept at 1073 K with wire heaters in the blanket container. Helium gas including 1% hydrogen gas (H{sub 2}/He) mainly flowed inside the container as the purge gas. Two chemical forms, HT and HTO, of extracted tritium were separately collected during the DT neutron irradiation by using water bubblers and CuO bed. The tritium activity in the water bubbler was measured by a liquid scintillation counter. To investigate the effect of moisture in the purge gas, we also performed the same experiments with H{sub 2}O/He gas (H{sub 2}O content: 1%) or pure helium gas. From our experiment at 1073 K, in the case of the purge gas includes H{sub 2}, it is indicated that the increasing tendency of HT release is similar to that of the dry H{sub 2}/He.

  2. Vapour pressure of D2O - Ice at temperatures below 237 K

    International Nuclear Information System (INIS)

    Heras, J.M.; Asensio, M.C.; Estiu, G.; Viscido, L.

    1984-01-01

    Accurate measurements of heavy water ice vapour pressures between 193 and 253 K have been carried out and an equation based on thermodynamic data has been derived in order to calculate the D 2 O-ice vapour pressures between 173 and 273 K. The agreement between our calculated vapour pressures and the available experimental data including those in this paper, is very good. The comparison between the theoretical calculations of H 2 O-ice and D 2 O-ice vapour pressures confirms the experimental evidence that H 2 O-ice is more volatile than D 2 O-ice at all temperatures in agreement with the vapour isotopic effect theory (VPIE).(author)

  3. Efficacy of Vitamin K2 for Glucocorticoid-induced Osteoporosis in Patients with Systemic Autoimmune Diseases.

    Science.gov (United States)

    Shikano, Kotaro; Kaneko, Kaichi; Kawazoe, Mai; Kaburaki, Makoto; Hasunuma, Tomoko; Kawai, Shinichi

    2016-01-01

    Objective Vitamin K2 (menatetrenone) is an effective treatment for patients with postmenopausal osteoporosis. We herein performed a subanalysis of patients with systemic autoimmune diseases undergoing glucocorticoid therapy in our previous prospective study. Methods Sixty patients were categorized into a group with vitamin K2 treatment (n=20, Group A) and a group without vitamin K2 treatment (n=40, Group B). All patients were treated with bisphosphonates. Results Serum levels of osteocalcin and undercarboxylated osteocalcin decreased significantly after the start of glucocorticoid therapy in both groups, while the serum osteocalcin level was significantly higher in Group A than Group B during the third (p=0.0250) and fourth weeks (p=0.0155). The serum level of the N-terminal peptide of type I procollagen, a bone formation marker, decreased during glucocorticoid therapy, but was significantly higher in Group A than Group B during the fourth week (p=0.0400). The bone mineral density and fracture rate showed no significant differences between the two groups. Conclusion Although vitamin K2 improves bone turnover markers in patients with osteoporosis on glucocorticoid therapy, it has no significant effect on the bone mineral density and fracture rate after 1.5 years of treatment.

  4. Temperature behavior of electrical properties of high-k lead-magnesium-niobium titanate thin-films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wenbin, E-mail: cwb0201@163.com [Electromechanical Engineering College, Guilin University of Electronic Technology (China); McCarthy, Kevin G. [Department of Electrical and Electronic Engineering, University College Cork (Ireland); Copuroglu, Mehmet; O' Brien, Shane; Winfield, Richard; Mathewson, Alan [Tyndall National Institute, University College Cork (Ireland)

    2012-05-01

    This paper reports on the temperature dependence of the electrical properties of high-k lead-magnesium-niobium titanate thin films processed with different compositions (with and without nanoparticles) and with different annealing temperatures (450 Degree-Sign C and 750 Degree-Sign C). These characterization results support the ongoing investigation of the material's electrical properties which are necessary before the dielectric can be used in silicon-based IC applications.

  5. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  6. Possibility of high temperature superconducting phases in PdH

    Science.gov (United States)

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-01

    Possible new superconducting phases with a high critical transition temperature (Tc) have been found in stable palladium-hydrogen (PdHx) samples for stoichiometric ratio x=H/Pd⩾1, in addition to the well-known low critical transition temperature (0⩽Tc⩽9) when x is in the range (0.75⩽x⩽1.00). Possible new measured superconducting phases with critical temperature in the range 51⩽Tc⩽295 K occur. This Tc varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density Jc⩾6.1×104 A cm-2 has been measured at 77 K with HDC=0 T.

  7. Thermodynamic and kinetic aspects of UO 2 fuel oxidation in air at 400-2000 K

    Science.gov (United States)

    Taylor, Peter

    2005-09-01

    Most nuclear fuel oxidation research has addressed either low-temperature (1500 K) steam oxidation linked to reactor safety. This paper attempts to unify modelling for air oxidation of UO 2 fuel over a wide range of temperature, and thus to assist future improvement of the ASTEC code, co-developed by IRSN and GRS. Phenomenological correlations for different temperature ranges distinguish between oxidation on the scale of individual grains to U 3O 7 and U 3O 8 below ˜700 K and individual fragments to U 3O 8 via UO 2+ x and/or U 4O 9 above ˜1200 K. Between about 700 and 1200 K, empirical oxidation rates slowly decline as the U 3O 8 product becomes coarser-grained and more coherent, and fragment-scale processes become important. A more mechanistic approach to high-temperature oxidation addresses questions of oxygen supply, surface reaction kinetics, thermodynamic properties, and solid-state oxygen diffusion. Experimental data are scarce, however, especially at low oxygen partial pressures and high temperatures.

  8. Structure of spinel at high temperature using in-situ XANES study at the Al and Mg K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, 69622 Villeurbanne (France); Neuville, D R [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Flank, A-M; Lagarde, P, E-mail: deligny@pcml.univ-lyon1.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 France (France)

    2009-11-15

    We present structural information obtained on spinel at high temperature (298-2400 K) using in situ XANES at the Mg and Al K-edge. Spinel, {sup [4]}(Al{sub x},Mg{sub 1-x}){sup [6]}(Al{sub 2-x},Mg{sub x})O{sub 4}, with increasing temperature, show a substitution of Mg by Al and Al by Mg in their respective sites. This substitution corresponds to an inversion of the Mg and Al sites. Furthermore, both experiments at the Al and Mg K-edges are in good agreement with XANES calculation made using FDMNES code.

  9. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  10. Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K

    International Nuclear Information System (INIS)

    Pal, Amalendu; Gaba, Rekha

    2008-01-01

    The densities, ρ and the speeds of sound, u, for {2-(2-hexyloxyethoxy)ethanol (C 6 E 2 ) + methanol, +1-propanol, +1-pentanol, and +1-heptanol} have been measured as a function of composition using an Anton-Paar DSA 5000 densimeter at temperatures (288.15, 293.15, 298.15, 303.15, and 308.15) K and atmospheric pressure over the whole concentration range. The ρ and u values were used to calculate excess molar volumes, V E , and excess molar isentropic compressibility, K S,m E , respectively. Also, thermal expansivity, α, partial molar volume, V-bar i , and partial molar volume of the components at infinite dilution, V-bar i 0 , have been calculated. The variation of these properties with composition and temperature of the mixtures are discussed in terms of molecular interactions

  11. Temperature hysteretic effect and its influence on colossal ...

    Indian Academy of Sciences (India)

    Record values of colossal magnetoresistance (CMR) have been achieved. The CMR value reaches nearly 99% in the temperature ranges of 90 K to 140 K and 90 K to 170 K for 20 kOe and 40 kOe magnetic fields in the cooling mode, respectively. The observed unusual behavior is attributed to the co-existence of La-rich ...

  12. Effect of temperature and solvent composition on acid dissociation equilibria, I: Sequenced {sup s}{sub s}pK{sub a} determination of compounds commonly used as buffers in high performance liquid chromatography coupled to mass spectroscopy detection

    Energy Technology Data Exchange (ETDEWEB)

    Padro, Juan M.; Acquaviva, Agustin; Tascon, Marcos [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina); Gagliardi, Leonardo G., E-mail: leogagliardi@quimica.unlp.edu.ar [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina); Castells, Cecilia B., E-mail: castells@isis.unlp.edu.ar [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer We developed a rapid potentiometric method for sequential pK{sub a} determinations. Black-Right-Pointing-Pointer We measured pK{sub a} of buffers from 0 to 90% (v/v) acetonitrile/water and from 20 to 60 Degree-Sign C. Black-Right-Pointing-Pointer Sequences of 42 pK{sub a}-data spanned over a wide solvent composition range needed 2 h. Black-Right-Pointing-Pointer We measured pK{sub a} of formic acid and triethylamine/HCl in up to 90% (v/v) acetonitrile. Black-Right-Pointing-Pointer The high-throughput method was applied to obtain pK{sub a} of two common buffers in LC/MS. - Abstract: A new automated and rapid potentiometric method for determining the effect of organic-solvent composition on pK{sub a} has been developed. It is based on the measurements of pH values of buffer solutions of variable solvent compositions using a combined glass electrode. Additions of small volumes of one precisely thermostated solution into another, both containing exactly the same analytical concentrations of the buffer components, can produce continuous changes in the solvent composition. Two sequences of potential measurements, one of increasing and the other of decreasing solvent content, are sufficient to obtain the pK{sub a} values of the acidic compound within the complete solvent-composition range in about 2 h. The experimental design, procedures, and calculations needed to convert the measured pH into the thermodynamic pK{sub a} values are thoroughly discussed. This rapid and automated method allows the systematic study of the effect of solvent compositions and temperatures on the pK{sub a}. It has been applied to study the dissociation constants of two monoprotic acids: formic acid and triethylamine:HCl in acetonitrile/water mixtures within the range from 0 to 90% (v/v) at temperatures between 20 Degree-Sign C and 60 Degree-Sign C. These volatile compounds are frequently used to control the pH of the mobile phase in HPLC, especially in

  13. K{sub α} x-ray imaging of laser-irradiated, limited-mass zirconium foils

    Energy Technology Data Exchange (ETDEWEB)

    Storm, M.; Orban, C.; Jiang, S.; Freeman, R. R.; Akli, K. [Department of Physics, The Ohio State University, 191 West Woodruff Road, Columbus, Ohio 43210 (United States); Eichman, B.; Fiksel, G.; Stoeckl, C.; Theobald, W.; Delettrez, J. A. [The Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Dyer, G.; Ditmire, T. [The Texas Center of High Energy Density Science, The University of Texas at Austin, 2511 Speedway Street, Austin, Texas 78712 (United States); Stephens, R. [General Atomics, 3550 General Atomics Court, San Diego, California 92121-1200 (United States)

    2014-07-15

    X-ray fluorescence measurements to determine the effect of target heating on imaging efficiency, at a photon energy of 15.7 keV corresponding to the K{sub α} line of zirconium, have been carried out using limited-mass foils irradiated by the Texas Petawatt Laser. Zirconium foils that ranged in volume from 3000 × 3000 × 21 μm{sup 3} to 150 × 150 × 6 μm{sup 3} were irradiated with 100 J, 8 ps-long pulses and a mean intensity of 4 × 10{sup 19} W/cm{sup 2}. The K{sub α} emission was measured simultaneously using a highly ordered pyrolytic graphite crystal spectrometer and a curved quartz imaging crystal. The measured ratio of the integrated image signal to the integrated spectral signal was, within the experimental error, constant, indicating that the imaging efficiency's dependence on temperature is weak throughout the probed range. Based on our experience of target heating under similar conditions, we estimate a temperature of ∼200 eV for the smallest targets. The successful imaging of K{sub α} emission for temperatures this high represents an important proof of concept for Zr K{sub α} imaging. At these temperatures, the imaging of K{sub α} emission from lower-Z materials (such as Cu) is limited by temperature-dependent shifts in the K{sub α} emission energy.

  14. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  15. INVESTIGATION OF THE FREQUENCY-TEMPERATURE RELATIONSHIP OF THE DIELECTRIC PERMITTIVITY OF THE PZT PIEZOCERAMICS IN THE LOW FREQUENCY RANGE

    Directory of Open Access Journals (Sweden)

    A. I. ZOLOTAREVSKIY

    2018-05-01

    Full Text Available Purpose. To investigate the frequency-temperature relationship of the dielectric permittivity of PZT piezoceramics in the low frequency range. Methodology. To obtain the frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics, a technique was used to determine the capacitance of the capacitor, between which plates the sample was placed. The value of the dielectric permittivity of the sample was calculated from the capacitor capacitance obtained. Findings. The frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics in the low frequency range has been obtained by the authors. The dielectric permittivity is not practically related to the frequency of the alternating voltage at a low temperature, with increasing in temperature its value increases and frequency relationship is observed. The temperature relationship of the dielectric permittivity of the PZT piezoceramics is satisfactorily described by the exponential functional dependence in the low-temperature range. The activation energy of the PZT piezoceramics polarization is determined from the graph of the dependence of the logarithm of the dielectric permittivity upon the inverse temperature. Different values of the activation energy for the two temperature regions prove on the existence of different mechanisms of the PZT piezoceramics polarization in the temperature range being investigated. Originality. The authors investigated the frequency-temperature relationship of the dielectric permittivity of the PZT piezoceramics in the low-frequency range. It is established that the temperature relationship of the dielectric permittivity of the PZT piezoceramics is satisfactorily described by an exponential functional relationship in the lowtemperature range. The activation energy of polarization is determined for two temperature sections. Practical value. The research results can be used to study the mechanism of polarization of

  16. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature

    Science.gov (United States)

    Austin, Ryan A.

    2018-01-01

    The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.

  17. Deformability of 12MKh steel within the temperature range of polymorphous transformations

    International Nuclear Information System (INIS)

    Surovtsev, A.P.; Sukhanov, V.E.

    1987-01-01

    Deformability and the structure of 12 MKh steel under tension, upsetting and torsion within the temperature range of polymorphous transformations have been investigated. Tests for tension showed the presence of two plasticity maxima, which correspond to the temperatures of P-A and F-A structural transformation beginning. Loss of strength during deformation is connected with dynamic polygonization and the initial stage of dynamic recrystallization as well as the state preceding ferrite transformation. Loss of plasticity is observed at the temperature accompanying the end of F-A transformation; it is explained by the formation of more strength martensite and by increase of material porosity as a result of the transformation with volume decrease

  18. Deformability of 12MKh steel within the temperature range of polymorphous transformations

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, A P; Sukhanov, V E

    1987-01-01

    Deformability and the structure of 12 MKh steel under tension, upsetting and torsion within the temperature range of polymorphous transformations have been investigated. Tests for tension showed the presence of two plasticity maxima, which correspond to the temperatures of P-A and F-A structural transformation beginning. Loss of strength during deformation is connected with dynamic polygonization and the initial stage of dynamic recrystallization as well as the state preceding ferrite transformation. Loss of plasticity is observed at the temperature accompanying the end of F-A transformation; it is explained by the formation of more strength martensite and by increase of material porosity as a result of the transformation with volume decrease.

  19. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.

    Science.gov (United States)

    Jiang, Z D; Zhao, G; Lu, G R

      BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca 2 Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.

  20. Broad-temperature range spectroscopy of the two-centre modular redox metalloprotein Desulfovibrio desulfuricans desulfoferrodoxin

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Harnung, S.E.; Trabjerg, I.

    2003-01-01

    /VIS, MCD, CD, and EPR spectroscopy. The UV/VIS spectra of grey DFx at room temperature is characterised by broad charge transfer (CT) transitions associated with oxidised centre 1 (495 and 368 nm) and II (335 and 635 nm). The transitions are resolved at 78 K, substantiated by VT-MCD and -CD. The data offer...

  1. Thermodynamic studies on the ferroelectric phase transition in neutron irradiated (LixK1-x)2SO4 crystals at high temperature

    International Nuclear Information System (INIS)

    Kassem, M.E.; El-Khatib, A.M.; Ammar, E.A.; Denton, M.M.

    1989-05-01

    Thermodynamic studies of (Li x K 1-x ) 2 SO 4 , LKS, mixed crystals have been made in the concentration range (x=0.1,0.2,...,x=0.5). The thermal behavior has been investigated by differential thermal analysis, DTA, and differential scanning calorimeter, DSC, in the vicinity of high temperature phases. Also, the effect of the mixed neutron field of fast and thermal neutrons (10% of the reactor neutron pile is fast neutrons) on the thermal properties of mixed crystals was studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat Cp at transition temperature, due to the change of stoichiometric ratio and radiation doses. The change of enthalpy and entropy of mixed crystals have been estimated numerically. The obtained small values of ΔS/R is characteristic of incommensurate phase transition as previously confirmed by the results of neutron diffraction technique. (author). 16 refs, 5 figs, 1 tab

  2. Synthesis, thermodynamic and transport properties of the compounds Sr3FeMO7-δ(M = Fe, Ni) in the temperature range of 400≤T≤1000oC

    International Nuclear Information System (INIS)

    Mogni, L; Prado, E; Caneiro, A

    2004-01-01

    The synthesis is presented for the mixed conductors Sr 3 FeMO 7-δ (M = Fe, Ni) belonging to the Ruddlesden Popper series A n+1 B n O3 n+1 with n = 2 using the acetates method. The samples were characterized using X-ray diffraction techniques, scanning electron microscopy and EDS. The variation of the chemical potential of oxygen was determined with the oxygen content of these compounds (7-δ) in a wide range of partial oxygen pressure 10 -5 ≤pO2≤ 1 atm and temperatures (673-1273 K). The electrical conductivity as a function of the temperature and the pO2 were measured by the four points method. Based on an analysis of the test data the effect of the cationic substitution of Fe by Ni on the thermodynamic, structural properties and on the structure of defects in the temperature range of interest for the electrochemical devices is discussed (WC)

  3. Low temperature thermal conductivities of glassy carbons

    International Nuclear Information System (INIS)

    Anderson, A.C.

    1979-01-01

    The thermal conductivity of glassy carbon in the temperature range 0.1 to 100 0 K appears to depend only on the temperature at which the material was pyrolyzed. The thermal conductivity can be related to the microscopic structure of glassy carbon. The reticulated structure is especially useful for thermal isolation at cryogenic temperatures

  4. Use of Polythiophene as a Temperature Sensor

    Directory of Open Access Journals (Sweden)

    D. S. KELKAR

    2011-06-01

    Full Text Available The polythiophene was chemically synthesized using 2,5–dibromothiophene by debromination with magnesium, catalyzed by nickel chloride. The synthesized polymer was undoped using liquid ammonia and then doped again using 5 % aqueous FeCl3 for 2.5 and 5 hour duration. Characterization of undoped as well as doped samples using elemental analysis has been carried out. Elemental analysis shows that concentration of Fe+ ions increases as the duration of doping increases. All samples were pressed into pellets of about 1cm in diameter and were coated, on both sides, by aluminum using vacuum deposition technique. I – V measurements of undoped and FeCl3 doped samples, after coating have been carried out using two probe method. I – V measurements were carried out by applying +ve potential on one side from 0 V to 1 V in steps of 0.1 V and then from 1 V to 10 V in steps of 1 V. The measurements were again carried out after interchanging the polarity of the applied voltage. I – V measurements were also carried out at room temperature as well as at various temperatures in the range from 301 K to 331 K in steps of 5K. These characteristics are just similar to the characteristics of conventional p – n junction diode. The effect of doping is to reduce the knee voltage. I – V characteristics of undoped polythiophene after interchanging the polarity (like reverse bias condition in p–n junction diode at various temperature are plotted. From the graphs it is observed that the magnitude of current increases as temperature is increased. A straight line graph of temperature versus current for an applied voltage of 3 V indicates that undoped polythiophene can be used as temperature sensor in the temperature range from 301 K to 331 K.

  5. Natural circulation studies in a LBE loop for a wide range of temperature

    International Nuclear Information System (INIS)

    Borgohain, A.; Srivastava, A.K.; Jana, S.S.; Maheshwari, N.K.; Kulkarni, R.D.; Vijayan, P.K.; Tewari, R.; Ram, A. Maruthi; Jha, S.K.

    2016-01-01

    Highlights: • A high temperature Lead Bismuth Eutectic loop named as Kilo Temperature Loop (KTL) has been made. • Natural circulation experimental studies were carried out and reported in the range of 200–780 °C. • The experiments at high temperature were carried in inert atmosphere to avoid oxidation of the loop material. • Theoretical studies are carried out to simulate the loop with natural circulation in primary as well as in the secondary side. • The predictions of the code LeBENC used to simulate the natural circulation in the loop are compared with the experimental results. - Abstract: Lead–Bismuth Eutectic (LBE) is increasingly getting more attention as a coolant for advanced reactor systems. It is also the primary coolant of the Compact High Temperature Reactor (CHTR) being designed at Bhabha Atomic Research Centre (BARC). A high temperature liquid metal loop named as Kilo Temperature Loop (KTL) has been installed at BARC for thermal hydraulics, instrument development and material related studies. Natural circulation experimental studies were carried out for the power range of 200–1200 W in the loop. The corresponding LBE flow rate is calculated to be in the range of 0.075–0.12 kg/s. Transient studies for start-up of natural circulation in the loop, loss of heat sink and step power change have also been carried out. The maximum temperature of the loop operated so far is 1100 °C. A computer code named LeBENC has been developed at BARC to simulate the natural circulation characteristics in closed loops. The salient features of the code include ability to handle non-uniform diameter components, axial thermal conduction in fluid and heat losses from the piping to the environment. The code has been modified to take into account of two natural circulation loops in series so that the natural cooling by argon gas in the secondary side of the loop can be simulated. This paper deals with the description of the loop and its operation. The various

  6. The mid-IR Absorption Cross Sections of α- and β-NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K

    Science.gov (United States)

    Iannarelli, R.; Rossi, M. J.

    2015-11-01

    Growth and Fourier transform infrared (FTIR) absorption in transmission of the title nitric acid hydrates have been performed in a stirred flow reactor (SFR) under tight control of the H2O and HNO3 deposition conditions affording a closed mass balance of the binary mixture. The gas and condensed phases have been simultaneously monitored using residual gas mass spectrometry and FTIR absorption spectroscopy, respectively. Barrierless nucleation of the metastable phases of both α-NAT (nitric acid trihydrate) and NAD (nitric acid dihydrate) has been observed when HNO3 was admitted to the SFR in the presence of a macroscopic thin film of pure H2O ice of typically 1 µm thickness. The stable β-NAT phase was spontaneously formed from the precursor α-NAT phase through irreversible thermal rearrangement beginning at 185 K. This facile growth scheme of nitric acid hydrates requires the presence of H2O ice at thicknesses in excess of approximately hundred nanometers. Absolute absorption cross sections in the mid-IR spectral range (700-4000 cm-1) of all three title compounds have been obtained after spectral subtraction of excess pure ice at temperatures characteristic of the upper troposphere/lower stratosphere. Prominent IR absorption frequencies correspond to the antisymmetric nitrate stretch vibration (ν3(NO3-)) in the range 1300 to 1420 cm-1 and the bands of hydrated protons in the range 1670 to 1850 cm-1 in addition to the antisymmetric O-H stretch vibration of bound H2O in the range 3380 to 3430 cm-1 for NAT.

  7. 1400 Liter 1.8K Test Facility

    International Nuclear Information System (INIS)

    Peterson, T.J.; Rabehl, R.J.; Sylvester, C.D.

    1997-08-01

    A double bath superfluid helium dewar has been constructed and operated at Fermilab's Magnet Test Facility. The 1.8 K portion of the dewar is sized to contain a superconducting magnet up to 0.5 meters in diameter and 4 meters long in a vertical orientation in 0.12 MPa pressurized superfluid. The dewar can also provide a subcooled Helium I environment for tests; the entire temperature range from 4.4 K to 1. 8 K at 0.12 MPa is available. This paper describes the system design, lambda plate, heat exchanger, and performance

  8. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  9. The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells

    Science.gov (United States)

    Sachenko, A. V.; Kryuchenko, Yu. V.; Kostylyov, V. P.; Korkishko, R. M.; Sokolovskyi, I. O.; Abramov, A. S.; Abolmasov, S. N.; Andronikov, D. A.; Bobyl', A. V.; Panaiotti, I. E.; Terukov, E. I.; Titov, A. S.; Shvarts, M. Z.

    2016-03-01

    Temperature dependences of the photovoltaic characteristics of ( p)a-Si/( i)a-Si:H/( n)c-Si singlecrystalline- silicon based heterojunction-with-intrinsic-thin-layer (HIT) solar cells have been measured in a temperature range of 80-420 K. The open-circuit voltage ( V OC), fill factor ( FF) of the current-voltage ( I-U) characteristic, and maximum output power ( P max) reach limiting values in the interval of 200-250 K on the background of monotonic growth in the short-circuit current ( I SC) in a temperature range of 80-400 K. At temperatures below this interval, the V OC, FF, and P max values exhibit a decrease. It is theoretically justified that a decrease in the photovoltaic energy conversion characteristics of solar cells observed on heating from 250 to 400 K is related to exponential growth in the intrinsic conductivity. At temperatures below 200 K, the I-U curve shape exhibits a change that is accompanied by a drop in V OC. Possible factors that account for the decrease in V OC, FF, and P max are considered.

  10. Bidirectional reconfiguration and thermal tuning of microcantilever metamaterial device operating from 77 K to 400 K

    Science.gov (United States)

    Pitchappa, Prakash; Manjappa, Manukumara; Krishnamoorthy, Harish N. S.; Chang, Yuhua; Lee, Chengkuo; Singh, Ranjan

    2017-12-01

    We experimentally report the bidirectional reconfiguration of an out-of-plane deformable microcantilever based metamaterial for advanced and dynamic manipulation of terahertz waves. The microcantilever is made of a bimaterial stack with a large difference in the coefficient of thermal expansion of the constituent materials. This allows for the continuous deformation of microcantilevers in upward or downward direction in response to positive or negative temperature gradient, respectively. The fundamental resonance frequency of the fabricated microcantilever metamaterial is measured at 0.4 THz at room temperature of 293 K. With decreasing temperature, the resonance frequency continuously blue shifts by 30 GHz at 77 K. On the other hand, with increasing temperature, the resonance frequency gradually red shifts by 80 GHz and saturates at 0.32 THz for 400 K. Furthermore, as the temperature is increased above room temperature, which results in the downward actuation of the microcantilever, a significant resonance line-narrowing with an enhanced quality factor is observed due to tight field confinement in the metamaterial structure. The thermal control of the microcantilever possesses numerous inherent advantages such as enhanced tunable range (˜37.5% in this work compared to previously reported microcantilever metamaterials), continuous tunability, and repeatable operations. The microcantilever metamaterial also shows high robustness to operate at cryogenic conditions and hence opens up the possibility of using meta-devices in harsh environments such as space, polar, and deep sea applications.

  11. Temperature dependence of diffusion coefficients of trivalent uranium ions in chloride and chloride-fluoride melts

    International Nuclear Information System (INIS)

    Komarov, V.E.; Borodina, N.P.

    1981-01-01

    Diffusion coefficients of U 3+ ions are measured by chronopotentiometric method in chloride 3LiCl-2KCl and in mixed chloride fluoride 3LiCl(LiF)-2KCl melts in the temperature range 633-1235 K. It is shown It is shown that experimental values of diffusion-coefficients are approximated in a direct line in lg D-1/T coordinate in chloride melt in the whole temperature range and in chloride-fluoride melt in the range of 644-1040 K. Experimental values of diffusion coefficients diviate from Arrhenius equation in the direction of large values in chloride-fluoride melt at further increase of temperature up to 1235 K. Possible causes of such a diviation are considered [ru

  12. Innovative use of Distributed Temperature Sensing and Meteorological Data to Understand Thermoregulation of Free-Ranging Howling Monkeys

    Science.gov (United States)

    Suarez, F. I.; Vinyard, C. J.; Williams, S. H.; Hausner, M. B.; Tyler, S. W.; Glander, K.

    2011-12-01

    Temperature fluctuations are a major driver of change in natural habitats and influence the lifestyle of all organisms because temperature impacts molecular, physiological, and behavioral processes. However, there is a lack of understanding on how temperature affects metabolism, behavior, and ecology at the organismal level. Even though physiological responses to temperature fluctuations have been well documented in laboratory conditions, it has been challenging to collect the required environmental data to study thermoregulation of free-ranging mammals such as mantled howling monkeys (Alouatta palliata). Fortunately, recent advances in fiber-optic distributed temperature sensing (DTS) now permit the observation of temperature fields in the environment at scales ranging from millimeters to kilometers. This has opened an exciting opportunity for temperature monitoring at scales that were previously not feasible. This study addresses the main limitations of previous studies of primate behavior by integrating real-time environmental data with the behavior and physiological response of free-ranging primates. In this work, we present preliminary DTS data collected in a natural habitat of howling monkeys. Fiber-optic cables were hung between the ground and an elevation of approximately 15 m within the forest canopy, providing continuous profiles of temperature without any disturbance due to the animals and habitat. These measurements were integrated with conventional meteorological data and with the ambient temperature at the location of the animal, as well as with measurements of primate's subcutaneous and core body temperatures. These data will be utilized to determine how environmental conditions relate to primate behavioral and physiological responses in time and space. The methodologies used in this study provide tools to test theories of physiological thermoregulation of other free-ranging animals.

  13. Combining 2-m temperature nowcasting and short range ensemble forecasting

    Directory of Open Access Journals (Sweden)

    A. Kann

    2011-12-01

    Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous

  14. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    Science.gov (United States)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  15. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan; Iwasa, Yukikazu, E-mail: iwasa@jokaku.mit.edu [Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139 (United States); Voccio, John [Wentworth Institute of Technology, 550 Huntington Ave, Boston, Massachusetts 02115 (United States); Hahn, Seungyong [National High Magnetic Field Laboratory, Florida State University, Tallahassee, 2031 Paul Dirac Drive, Florida 32310 (United States)

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  16. The temperature dependence of 1/f noise in InP

    NARCIS (Netherlands)

    Chen, X.Y.; Hooge, F.N.; Leijs, M.R.

    1997-01-01

    Noise spectra were measured on CBE grown InP samples in the frequency range from 1 Hz to 104 kHz at temperatures from 77 to 500 K. The experimental results show that llfnoise stems from the lattice scattering. The 1/f noise in InP is well characterised by a parameter CtL~,, in this temperature

  17. Heat capacity measurements on ThO2 by temperature modulated differential scanning calorimetry (TMDSC)

    International Nuclear Information System (INIS)

    Venkatakrishnan, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2001-01-01

    Heat capacity measurements were carried out on ThO 2 in the temperature range 330-820 K by using temperature modulated DSC. An underlying heating rate of 5 K. min -1 , a temperature modulation with an amplitude of 0.398K and a period of 150s were used for these measurements. The heat capacity values are within ± 2-4% of the literature data. (author)

  18. La0.7Sr0.3MnO3 Thin Films for Magnetic and Temperature Sensors at Room Temperature

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2012-03-01

    Full Text Available In this paper, the potentialities of the manganese oxide La0.7Sr0.3MnO3 (LSMO for the realization of sensitive room temperature thermometers and magnetic sensors are discussed. LSMO exhibits both a large change of the resistance versus temperature at its metal-to-insulator transition (about 330 K and low field magnetoresistive effects at room temperature. The sensor performances are described in terms of signal-to-noise ratio in the 1 Hz - 100 kHz frequency range. It is shown that due to the very low 1/f noise level, LSMO based sensors can exhibit competitive performances at room temperature.

  19. Volumetric properties of binary mixtures of {difluoromethane (R32) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E))} at temperatures from 283.15 K to 363.15 K and pressures up to 100 MPa

    International Nuclear Information System (INIS)

    Jia, Tao; Bi, Shengshan; Hu, Xiaozhen; Meng, Xianyang; Wu, Jiangtao

    2016-01-01

    Highlights: • Densities of R32+R1234ze(E) mixtures were measured with a vibrating-tube densimeter. • Densities of mixtures were conducted from (283 to 363) K, at pressures up to 100 MPa. • Excess molar volumes were correlated with the Redlich–Kister equation. - Abstract: Values of experimental density of difluoromethane (R32) and five compositions of {R32 + trans-1,3,3,3-tetrafluoropropene (R1234ze(E))} binary mixtures are reported over the temperature range from 283 K to 363 K and at pressures up to 100 MPa with a vibrating-tube densimeter. The excess molar volumes were calculated from experimental results and fitted to the Redlich–Kister equation. The maximum standard deviation and average standard deviations of the experimental and calculated values of excess molar volume from Redlich–Kister equation are 0.07789 cm"3·mol"−"1 and 0.01645 cm"3·mol"−"1, respectively.

  20. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  1. Thermoluminescence in KBr:D electron irradiated at room temperature

    International Nuclear Information System (INIS)

    Paredes Campoy, J.C.; Lopez Carranza, E.

    1991-07-01

    The thermoluminescence of KBr:D samples electron irradiated at room temperature after thermal annealing at 673 K for 1 hour have been studied in the temperature range 360-730 K. The experimental TL-curve was discomposed by computer analysis in seven overlapping TL peaks, giving for them the order of the kinetics of thermal stimulation, the activation energy, the frequency factor, the relative values of the electronic concentration in traps at the initial heating temperature and the temperature at the maximum of the peak. (author). 18 refs, 1 fig., 3 tabs

  2. Thermoluminescence in alkali halides irradiated at 80K; Termoluminiscencia en haluros alcalinos irradiados a 80K

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez de Castro, M

    1978-07-01

    The thermoluminescence, the thermally stimulated currents and the thermal stability of the F centres induced in pure NaCl and KC1 crystals by X irradiation at 80K have been studied in detail, In the range between 80 and 300K. The thermoluminescent processes induced by illumination at 80K with F light in samples previously irradiated at room temperature has also been studied. It has been clearly observed the existence of thermoluminescent processes due to electrons and holes thermally released from traps, in which the F centres are not involved. The existence of hole-F centre recombination has not been observed. There are several thermoluminescent processes in both materials which are scribed to the recombination of F centres with mobile interstitial halogen atoms thermally released from traps, which are likely monovalent impurities in this temperature interval. The light emitting stage in these processes is originated by the formation of self trapped excitons. (Author) 66 refs.

  3. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K., E-mail: pkbanipal@yahoo.co [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Chahal, Amanpreet K.; Singh, Vickramjeet [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143005 (India)

    2010-08-15

    The viscosities, {eta} of mono-, di-, tri-saccharides and methylglycosides, viz., D(+)-xylose (XYL), D(-)-arabinose (ARA), D(-)-ribose (RIB), D(-)-fructose (FRU), D(+)-galactose (GAL), D(+)-mannose (MAN), D(+)-glucose (GLU), D(+)-melibiose (MEL), D(+)-cellobiose (CEL), D(+)-lactose monohydrate (LAC), D(+)-maltose monohydrate (MAL), D(+)-trehalose dihydrate (TRE), sucrose (SUC), D(+)-raffinose pentahydrate (RAF), {alpha}-methyl-D(+)-glucoside ({alpha}-Me-GLU), methyl-{alpha}-D-xylopyranoside (Me-{alpha}-XYL), and methyl-{beta}-D-xylopyranoside (Me-{beta}-XYL) in water and in (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} aqueous solutions of potassium chloride (KCl) have been determined at T = (288.15, 298.15, 308.15, and 318.15) K from efflux time measurements by using a capillary viscometer. Densities used to determine viscosities have been reported earlier. The viscosity data have been utilized to determine the viscosity B-coefficients employing the Jones-Dole equation at different temperatures. From these data, the viscosity B-coefficients of transfer, {Delta}{sub t}B have been estimated for the transfer of various saccharides/methylglycosides from water to aqueous potassium chloride solutions. The {Delta}{sub t}B values have been found to be positive, whose magnitude increases with the increase in concentration of potassium chloride in all cases. The dB/dT coefficients, pair, {eta}{sub AB} and triplet, {eta}{sub ABB} viscometric interaction coefficients have also been determined. Gibbs free energies of activation and related thermodynamic parameters of activation of viscous flow have been determined employing Feakin's transition-state theory. The signs and magnitudes of various parameters have been discussed in terms of solute-solute and solute-solvent interactions occurring in these solutions. The effect of substitution of -OH by methoxy group, -OCH{sub 3} has also been discussed.

  4. Fabrication and temperature dependent magnetic properties of Ni–Cu–Co composite nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Muhammad [Nanomaterials Research Group, Physics Division PINSTECH, Islamabad 44000 (Pakistan); Khan, Maaz, E-mail: maaz@impcas.ac.cn [Nanomaterials Research Group, Physics Division PINSTECH, Islamabad 44000 (Pakistan); Sun, Hongyu [Beijing National Center for Electron Microscopy, Laboratory of Advanced Materials and The State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Nairan, Adeela [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Karim, Shafqat; Nisar, Amjad [Nanomaterials Research Group, Physics Division PINSTECH, Islamabad 44000 (Pakistan); Maqbool, M. [Department of Physics and Astronomy, Ball State University, Muncie, IN 47306 (United States); Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [Nanomaterials Research Group, Physics Division PINSTECH, Islamabad 44000 (Pakistan)

    2015-10-15

    Ni–Cu–Co composite magnetic nanowires have been successfully synthesized by electrochemical deposition. Microstructural and compositional analyses were carried out using FESEM, TEM, HRTEM and XRD. Magnetic measurements were performed from in the temperature range 5–300 K. A strong diamagnetic contribution, which results from the polycarbonate template, was found to show s-shape behavior of the hysteresis loops of the nanowires. The coercivity of the samples was found to increase with the decreasing temperature following simple model of thermal activation of particle’s moment over the anisotropy barrier in the temperature range 50–300 K. Saturation magnetization was found to increase with decreasing temperature following the modified Bloch’s law at low temperatures.

  5. Fabrication and temperature dependent magnetic properties of Ni–Cu–Co composite nanowires

    International Nuclear Information System (INIS)

    Hussain, Muhammad; Khan, Maaz; Sun, Hongyu; Nairan, Adeela; Karim, Shafqat; Nisar, Amjad; Maqbool, M.; Ahmad, Mashkoor

    2015-01-01

    Ni–Cu–Co composite magnetic nanowires have been successfully synthesized by electrochemical deposition. Microstructural and compositional analyses were carried out using FESEM, TEM, HRTEM and XRD. Magnetic measurements were performed from in the temperature range 5–300 K. A strong diamagnetic contribution, which results from the polycarbonate template, was found to show s-shape behavior of the hysteresis loops of the nanowires. The coercivity of the samples was found to increase with the decreasing temperature following simple model of thermal activation of particle’s moment over the anisotropy barrier in the temperature range 50–300 K. Saturation magnetization was found to increase with decreasing temperature following the modified Bloch’s law at low temperatures

  6. A neutron diffraction study of pyridinium-1-dicyanomethylide, C8D5N3, at 294 K and 118 K

    International Nuclear Information System (INIS)

    Devos, L.; Baert, F.; Fouret, R.; Thomas, M.

    1980-01-01

    A neutron diffraction study of perdeuterated pyridium-1-dicyanomethylide has been carried out at room temperature and at 118 K at the high-flux beam reactor of the Institut Laue-Langevin. Low temperature was obtained with a cryostat based on the Joule-Thomson expansion of gaseous helium, with a maximum long-term variation of +-1 K. The crystals are monoclinic, space group P2 1 /m. The data refinements, including extinction parameters, gave final Rsub(w)(F 2 ) values of 0.038 (RT, 552 independent reflections) and 0.028 (118 K, 1869 independent reflections). A TLS thermal analysis indicated rigid-body behaviour of the non-deuterium atoms. The non-planarity of the molecule was confirmed. The bond distances were corrected for thermal motion and their e.s.d.'s ranged from 0.0012 to 0.0030 A (RT) and from 0.0003 to 0.0008 A (118 K). (Auth.)

  7. Reactions of the HO2 radical with OH, H, Fe2+ and Cu2+ at elevated temperatures

    DEFF Research Database (Denmark)

    Lundström, T.; Christensen, H.; Sehested, K.

    2004-01-01

    was studied in the temperature range 20-296degreesC (k = 7.0 x 10(9), E-a = 7.4) and the reaction with H in the temperature range 5-149degreesC (k = 8.5 x 10(9), E-a = 17.5). The reaction with Fe2+ was studied in the temperature range 16-118degreesC (k = 7.9 x 10(5), E-a = 36.8) and the reaction with Cu2......+ in the temperature range 17-211degreesC (k = 1.1 x 10(8), E-a = 14.9). (C) 2003 Elsevier Ltd. All rights reserved....

  8. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.

    1998-01-01

    Vitrification is the technology that has been chosen to solidify approximately 15,500 tons of geologic mill tailings at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. The geologic mill tailings are residues from the processing of pitchlende ore during 1949-1958. These waste residues are contained in silos in Operable Unit 4 (OU4) at the FEMP facility. Operable Unit 4 is one of five operable units at the FEMP. Operating Unit 4 consists of four concrete storage silos and their contents. Silos 1 and 2 contain K-65 mill tailing residues and a bentonite cap, Silo 3 contains non-radioactive metal oxides, and Silo 4 is empty. The K-65 residues contain radium, uranium, uranium daughter products, and heavy metals such as lead and barium.The K-65 waste leaches lead at greater than 100 times the allowable Environmental Protection Agency (EPA) Resource, Conservation, and Recovery Act (RCRA) concentration limits when tested by the Toxic Characteristic Leaching Procedure (TCLP). Vitrification was chosen by FEMP as the preferred technology for the Silos 1, 2, 3 wastes because the final waste form met the following criteria: controls radon emanation, eliminates the potential for hazardous or radioactive constituents to migrate to the aquifer below FEMP, controls the spread of radioactive particulates, reduces leachability of metals and radiological constituents, reduces volume of final wasteform for disposal, silo waste composition is favorable to vitrification, will meet current and proposed RCRA TCLP leaching criteria Glasses that melt at 1350 degrees C were developed by Pacific Northwest National Laboratory (PNNL) and glasses that melt between 1150-1350 degrees C were developed by the Vitreous State Laboratory (VSL) for the K-65 silo wastes. Both crucible studies and pilot scale vitrification studies were conducted by PNNL and VSL. Subsequently, a Vitrification Pilot Plant (VPP) was constructed at FEMP capable of operating at temperatures up to 1450

  9. Recent progress in low-temperature silicon detectors

    International Nuclear Information System (INIS)

    Abreu, M.; D'Ambrosio, N.; Bell, W.; Berglund, P.; Borchi, E.; Boer, W. de; Borer, K.; Bruzzi, M.; Buontempo, S.; Casagrande, L.; Chapuy, S.; Cindro, V.; Devine, S.R.H.; Dezillie, B.; Dierlamm, A.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Grohmann, S.; Hauler, F.; Heijne, E.; Heising, S.; Hempel, O.; Herzog, R.; Haerkoenen, J.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; De Masi, R.; Menichelli, D.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieri, V.G.; Paul, S.; Pretzl, K.; Smith, K.; Solano, B. Pere; Sousa, P.; Pirollo, S.; Rato Mendes, P.; Ruggiero, G.; Sonderegger, P.; Tuominen, E.; Verbitskaya, E.; Da Via, C.; Watts, S.; Wobst, E.; Zavrtanik, M.

    2003-01-01

    The CERN RD39 Collaboration studies the possibility to extend the detector lifetime in a hostile radiation environment by operating them at low temperatures. The outstanding illustration is the Lazarus effect, which showed a broad operational temperature range around 130 K for neutron irradiated silicon detectors

  10. An important role of temperature dependent scattering time in understanding the high temperature thermoelectric behavior of strongly correlated system: La0.75Ba0.25CoO3.

    Science.gov (United States)

    Singh, Saurabh; Kumar, Devendra; Pandey, Sudhir K

    2017-03-15

    In the present work, we report the temperature dependent thermopower (α) behavior of La 0.75 Ba 0.25 CoO 3 compound in the temperature range 300-600 K. Using the Heikes formula, the estimated value of α corresponding to high-spin configuration of Co 3+ and Co 4+ ions is found to be  ∼16 [Formula: see text], which is close to the experimental value, ∼13 [Formula: see text], observed at  ∼600 K. The temperature dependent TE behavior of the compound is studied by combining the WIEN2K and BoltzTrap code. The self consistency field calculations show that the compound have ferromagnetic ground state structure. The electronic structure calculations give half metallic characteristic with a small gap of  ∼50 meV for down spin channel. The large and positive value for down spin channel is obtained due to the unique band structure shown by this spin channel. The temperature dependent relaxation time for both the spin-channel charge carriers is considered to study the thermopower data in temperature range 300-600 K. For evaluation of α, almost linear values of [Formula: see text] and a non-linear values of [Formula: see text] are taken into account. By taking the temperature dependent values of relaxation time for both the spin channels, the calculated values of α using two current model are found to be in good agreement with experimental values in the temperature range 300-600 K. At 300 K, the calculated value of electrical conductivity by using the same value of relaxation time, i.e. 0.1 [Formula: see text] 10 -14 seconds for spin-up and [Formula: see text] seconds for spin-dn channel, is found to be equal to the experimentally reported value.

  11. Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, A.V., E-mail: abondarev88@gmail.com; Kiryukhantsev-Korneev, Ph.V.; Levashov, E.A.; Shtansky, D.V., E-mail: shtansky@shs.misis.ru

    2017-02-28

    Highlights: • TiNbCN–Ag coatings for wide temperature range tribological applications. • Alloying with Nb and Ag improve tribological properties and oxidation resistance. • Ag-rich TiNbCN coatings show friction coefficient below 0.45 in range of 25–700 °C. • Ag-doped coatings show active oxidation protection and self-healing functionality. - Abstract: Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC{sub 0.5} + 10%Nb{sub 2}C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25–700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25–700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.

  12. Ultrasonic attenuation of CdSe at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B.J., E-mail: braulio@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Calderon, E.; Bracho, D.B. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Perez, J.F. [Laboratorio de Instrumentacion Cientifica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of)

    2010-08-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter {gamma} is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter {gamma}, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  13. Ultrasonic attenuation of CdSe at low temperatures

    International Nuclear Information System (INIS)

    Fernandez, B.J.; Calderon, E.; Bracho, D.B.; Perez, J.F.

    2010-01-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter γ is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter γ, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  14. Formation of Medium Carbon TRIP Steel Microstructure During Annealing in the Intercritical Temperature Range

    Directory of Open Access Journals (Sweden)

    Kokosza A.

    2014-10-01

    Full Text Available The paper presents the results of research conducted on austenite formation in the microstructure of 41MnSi6-5 TRIP steel during annealing in the intercritical temperature range. The influence of the annealing temperature on the volume fraction of retained austenite in the microstructure of the investigated steel after water quenching was also determined.

  15. Communication: Anomalous temperature dependence of the intermediate range order in phosphonium ionic liquids

    International Nuclear Information System (INIS)

    Hettige, Jeevapani J.; Kashyap, Hemant K.; Margulis, Claudio J.

    2014-01-01

    In a recent article by the Castner and Margulis groups [Faraday Discuss. 154, 133 (2012)], we described in detail the structure of the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)-amide ionic liquid as a function of temperature using X-ray scattering, and theoretical partitions of the computationally derived structure function. Interestingly, and as opposed to the case in most other ionic-liquids, the first sharp diffraction peak or prepeak appears to increase in intensity as temperature is increased. This phenomenon is counter intuitive as one would expect that intermediate range order fades as temperature increases. This Communication shows that a loss of hydrophobic tail organization at higher temperatures is counterbalanced by better organization of polar components giving rise to the increase in intensity of the prepeak

  16. Temperature-dependent magnetic EXAFS investigation of Gd

    CERN Document Server

    Wende, H; Poulopoulos, P N; Rogalev, A; Goulon, J; Schlagel, D L; Lograsso, T A; Baberschke, K

    2001-01-01

    Magnetic EXAFS (MEXAFS) is the helicity-dependent counterpart of the well-established EXAFS technique. By means of MEXAFS it is possible not only to analyze the local magnetic structure but also to learn about magnetic fluctuations. Here we present the MEXAFS of a Gd single crystal at the L sub 3 sub , sub 2 -edges in the temperature range of 10-250 K. For the first time MEXAFS was probed over a large range in reduced temperature of 0.04<=T/T sub C<=0.85 with T sub C =293 K. We show that the vibrational damping described by means of a Debye temperature of theta sub D =160 K must be taken into account for the spin-dependent MEXAFS before analyzing magnetic fluctuations. For a detailed analysis of the MEXAFS and the EXAFS, the experimental data are compared to ab initio calculations. This enables us to separate the individual single- from the multiple-scattering contributions. The MEXAFS data have been recorded at the ID 12A beamline of the European Synchrotron Radiation Facility (ESRF). To ensure that th...

  17. The upper end of climate model temperature projections is inconsistent with past warming

    International Nuclear Information System (INIS)

    Stott, Peter; Good, Peter; Jones, Gareth; Gillett, Nathan; Hawkins, Ed

    2013-01-01

    Climate models predict a large range of possible future temperatures for a particular scenario of future emissions of greenhouse gases and other anthropogenic forcings of climate. Given that further warming in coming decades could threaten increasing risks of climatic disruption, it is important to determine whether model projections are consistent with temperature changes already observed. This can be achieved by quantifying the extent to which increases in well mixed greenhouse gases and changes in other anthropogenic and natural forcings have already altered temperature patterns around the globe. Here, for the first time, we combine multiple climate models into a single synthesized estimate of future warming rates consistent with past temperature changes. We show that the observed evolution of near-surface temperatures appears to indicate lower ranges (5–95%) for warming (0.35–0.82 K and 0.45–0.93 K by the 2020s (2020–9) relative to 1986–2005 under the RCP4.5 and 8.5 scenarios respectively) than the equivalent ranges projected by the CMIP5 climate models (0.48–1.00 K and 0.51–1.16 K respectively). Our results indicate that for each RCP the upper end of the range of CMIP5 climate model projections is inconsistent with past warming. (letter)

  18. Temperature-sensitive host range mutants of herpes simplex virus type 2

    International Nuclear Information System (INIS)

    Koment, R.W.; Rapp, F.

    1975-01-01

    Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblast cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties

  19. Degradation of natural toxins by phthalocyanines-example of cyanobacterial toxin, microcystin

    Czech Academy of Sciences Publication Activity Database

    Jančula, D.; Blahová, L.; Karásková, M.; Maršálek, Blahoslav

    2010-01-01

    Roč. 62, č. 2 (2010), s. 273-278 ISSN 0273-1223 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : microcystin * phthalocyanine * singled oxygen Subject RIV: EF - Botanics Impact factor: 1.056, year: 2010

  20. Isopiestic studies of aqueous solutions at elevated temperatures

    International Nuclear Information System (INIS)

    Holmes, H.F.; Mesmer, R.E.

    1981-01-01

    Isopiestic measurements have been made on SrCl 2 (aq) and BaCl 2 (aq) over the temperature range 382.96 to 473.61 K with NaCl(aq) as the reference solution for the calculation of osmotic coefficients. The molalities corresponded to NaCl(aq) molalities ranging from 0.6 to 6.5 mol kg -1 . An ion-interaction model was fitted to the osmotic coefficients of SrCl 2 (aq) and BaCl 2 (aq) with a standard deviation of fit (in the osmotic coefficient) ranging from 0.0007 to 0.0048. Parameters derived from the fit were used to calculate the activity coefficients. The osmotic and activity coefficients decrease with increasing temperature and become less dependent on molality. Previous isopiestic results between 318 and 394 K agree with the present study. Activity coefficients from electrochemical measurements between 283.15 and 343.15 K are not consistent with the isopiestic results. (author)