WorldWideScience

Sample records for temperature programmed desorption

  1. Equilibrium adsorption data from temperature-programmed desorption measurements

    NARCIS (Netherlands)

    Foeth, F.; Mugge, J.M.; van der Vaart, R.; van der Vaart, Rick; Bosch, H.; Reith, T.

    1996-01-01

    This work describes a novel method that enables the calculation of a series of adsorption isotherms basically from a single Temperature-Programmed Desorption (TPD) experiment. The basic idea is to saturate an adsorbent packed in a fixed bed at a certain feed concentration and temperature and to

  2. Temperature-programmed desorption of water and ammonia on ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 115; Issue 4. Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for ... Author Affiliations. Vasant R Choudhary1 Abhijeet J Karkamkar1. Chemical Engineering Division, National Chemical Laboratory, Pune 411 008, India ...

  3. Temperature-programmed desorption of water and ammonia on ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Temperature-programmed desorption (TPD) of water and ammonia over. ZrO2 and sulphated ZrO2 prepared by different methods has been investigated for measuring strong acidity and acidity distribution on sulphated zirconia-type solid super-acid catalysts. The TPD of water provides a simple reliable method for ...

  4. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  5. TEMPERATURE-PROGRAMMED DESORPTION: PRINCIPLES, INSTRUMENT DESIGN, AND DEMONSTRATION WITH NAALH4

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, A; Ragaiy Zidan, R

    2006-11-07

    This article is a brief introduction to temperature-programmed desorption (TPD), an analytical technique devised to analyze, in this case, materials for their potential as hydrogen storage materials. The principles and requirements of TPD are explained and the different components of a generic TPD apparatus are described. The construction of a modified TPD instrument from commercially available components is reported together with the control and acquisition technique used to create a TPD spectrum. The chemical and instrumental parameters to be considered in a typical TPD experiment and the analytical utility of the technique are demonstrated by the dehydrogenation of titanium-doped NaAlH{sub 4} by means of thermally programmed desorption.

  6. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, James P., E-mail: james.tonks@awe.co.uk [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk; King, Martin O. [AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Kerherve, Gwilherm [VACGEN Ltd, St. Leonards-On-Sea, East Sussex TN38 9NN (United Kingdom); Watts, John F. [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  7. Stabilization of mercury over Mn-based oxides: Speciation and reactivity by temperature programmed desorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haomiao [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yongpeng [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Huang, Wenjun; Mei, Jian; Zhao, Songjian; Qu, Zan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yan, Naiqiang, E-mail: nqyan@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-01-05

    Highlights: • Hg-TPD method was used for speciation of mercury species. • Different elements modified MnO{sub x} have different mercury binding state. • Understanding mercury existed state was beneficial for designing novel materials. - Abstract: Mercury temperature-programmed desorption (Hg-TPD) method was employed to clarify mercury species over Mn-based oxides. The elemental mercury (Hg{sup 0}) removal mechanism over MnO{sub x} was ascribed to chemical-adsorption. HgO was the primary mercury chemical compound adsorbed on the surface of MnO{sub x}. Rare earth element (Ce), main group element (Sn) and transition metal elements (Zr and Fe) were chosen for the modification of MnO{sub x}. Hg-TPD results indicated that the binding strength of mercury on these binary oxides followed the order of Sn-MnO{sub x} < Ce-MnO{sub x} ∼ MnO{sub x} < Fe-MnO{sub x} < Zr-MnO{sub x}. The activation energies for desorption were calculated and they were 64.34, 101.85, 46.32, 117.14, and 106.92 eV corresponding to MnO{sub x}, Ce-MnO{sub x}, Sn-MnO{sub x}, Zr-MnO{sub x} and Fe-MnO{sub x}, respectively. Sn-MnO{sub x} had a weak bond of mercury (Hg-O), while Zr-MnO{sub x} had a strong bond (Hg≡O). Ce-MnO{sub x} and Fe-MnO{sub x} had similar bonds compared with pure MnO{sub x}. Moreover, the effects of SO{sub 2} and NO were investigated based on Hg-TPD analysis. SO{sub 2} had a poison effect on Hg{sup 0} removal, and the weak bond of mercury can be easily destroyed by SO{sub 2}. NO was favorable for Hg{sup 0} removal, and the bond strength of mercury was enhanced.

  8. Adsorption and desorption of dibenzothiophene on Ag-titania studied by the complementary temperature-programmed XPS and ESR

    Science.gov (United States)

    Samokhvalov, Alexander; Duin, Evert C.; Nair, Sachin; Tatarchuk, Bruce J.

    2011-02-01

    Adsorption, desorption and structure of the surface chemical compounds formed upon interaction of dibenzothiophene (DBT) in solution of n-octane with the sulfur-selective Ag/Titania sorbent for the ultradeep desulfurization of liquid fuels was characterized by the temperature-programmed X-ray photoemission spectroscopy (XPS) and Electron Spin Resonance. Adsorption of DBT proceeds via chemisorption via the oxygen-containing surface groups. Desorption of DBT and thermal regeneration of the “spent” Ag/Titania were studied by the complementary temperature-programmed XPS and ESR from 25 °C to 525 °C, in the high vacuum vs. air. The XPS spectrum of the pure DBT is reported for the first time.

  9. Adsorption and desorption of dibenzothiophene on Ag-titania studied by the complementary temperature-programmed XPS and ESR

    Energy Technology Data Exchange (ETDEWEB)

    Samokhvalov, Alexander, E-mail: alexsam@camden.rutgers.edu [Department of Chemical Engineering, Auburn University, Auburn, AL 36849 (United States); Department of Chemistry, Rutgers University, Camden, NJ 08102 (United States); Duin, Evert C. [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States); Nair, Sachin; Tatarchuk, Bruce J. [Department of Chemical Engineering, Auburn University, Auburn, AL 36849 (United States)

    2011-02-01

    Adsorption, desorption and structure of the surface chemical compounds formed upon interaction of dibenzothiophene (DBT) in solution of n-octane with the sulfur-selective Ag/Titania sorbent for the ultradeep desulfurization of liquid fuels was characterized by the temperature-programmed X-ray photoemission spectroscopy (XPS) and Electron Spin Resonance. Adsorption of DBT proceeds via chemisorption via the oxygen-containing surface groups. Desorption of DBT and thermal regeneration of the 'spent' Ag/Titania were studied by the complementary temperature-programmed XPS and ESR from 25 deg. C to 525 deg. C, in the high vacuum vs. air. The XPS spectrum of the pure DBT is reported for the first time.

  10. Processes for desorption from LiAlO sub 2 treated with H sub 2 as studied by temperature programmed desorption

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.K.

    1990-01-01

    The energetics and kinetics of the evolution of H{sub 2}O and H{sub 2} from LiAlO{sub 2} are being studied by the temperature programmed desorption technique. The concentrations of H{sub 2}, H{sub 2}O, N{sub 2}, and O{sub 2} in a helium stream during a temperature ramp are measured simultaneously with a mass spectrometer. Blank experiments with an empty sample tube showed that square wave spikes of H{sub 2} introduced into the helium gas stream were severely distorted by reaction with the tube walls. The tube could be stabilized, however, by sufficiently prolonged heat treatment with H{sub 2} so that H{sub 2} peaks would not be distorted up to approximately 923 K(650{degree}C). The amount of H{sub 2}adsorption/desorption is small compared to the amount of H{sub 2}O adsorption/desorption. After prolonged treatment with helium containing 990 ppm H{sub 2} at 400{degree}C, H{sub 2}O evolution into the He-H{sub 2} stream was observed during 473 to 1023 K (200 to 750{degree}C) ramps at rates of 2 or 5.6 K/min. The different peak shapes reflecting this process were deconvoluted to show that they are composites of only 2 or 3 reproducible processes. The activation energies and pre-exponential terms was evaluated. The different behavior originates in the differences among different surface sites for adsorption. The interpretation of higher temperature peaks (above 873 K (650{degree}C)) must still consider the possibility of contributions from interactions with steel walls. It was found that H{sub 2} enhances evolution of N{sub 2} from the steel. 1 tab., 6 figs., 11 refs.

  11. Nano-nitride cathode catalysts of Ti, Ta, and Nb for polymer electrolyte fuel cells: Temperature-programmed desorption investigation of molecularly adsorbed oxygen at low temperature

    KAUST Repository

    Ohnishi, Ryohji

    2013-01-10

    TiN, NbN, TaN, and Ta3N5 nanoparticles synthesized using mesoporous graphitic (mpg)-C3N4 templates were investigated for the oxygen reduction reaction (ORR) as cathode catalysts for polymer electrolyte fuel cells. The temperature-programmed desorption (TPD) of molecularly adsorbed O2 at 120-170 K from these nanoparticles was examined, and the resulting amount and temperature of desorption were key factors determining the ORR activity. The size-dependent TiN nanoparticles (5-8 and 100 nm) were then examined. With decreasing particle size, the density of molecularly adsorbed O2 per unit of surface area increased, indicating that a decrease in particle size increases the number of active sites. It is hard to determine the electrochemical active surface area for nonmetal electrocatalysts (such as oxides or nitrides), because of the absence of proton adsorption/desorption peaks in the voltammograms. In this study, O2-TPD for molecularly adsorbed O2 at low temperature demonstrated that the amount and strength of adsorbed O2 were key factors determining the ORR activity. The properties of molecularly adsorbed O2 on cathode catalysts are discussed against the ORR activity. © 2012 American Chemical Society.

  12. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    Science.gov (United States)

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  13. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2013-04-01

    Full Text Available An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT for NOx storage catalysts (NSC enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD. The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1 time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2 during the short-term thermal NOx release.

  14. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    Science.gov (United States)

    Groβ, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf

    2013-01-01

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366

  15. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig Richmond [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  16. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. First principle calculations for improving desorption temperature in ...

    Indian Academy of Sciences (India)

    ... we predict the improvement of the desorption temperature and the hydrogen storage properties of doped Mg-based hydrides such as,Mg15AMH32 (AM = Ca, Sr and Ba) as a super cell 2 × 2 × 2 of MgH2. In particular, the electronic structure has been obtained numerically using the all-electron full-potential local-orbital ...

  18. Development of ultralow energy (1-10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids.

    Science.gov (United States)

    Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J; Pradeep, T; Kephart, Luke; Walker, Jeff; Kuchta, Kevin; Martin, Dave; Wei, Jian

    2014-01-01

    Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1-10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition in view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH2(+).

  19. Temperature dependences in electron-stimulated desorption of neutral europium

    CERN Document Server

    Ageev, V N; Madey, T E

    2003-01-01

    The electron-stimulated desorption (ESD) yield for neutral europium (Eu) atoms from Eu layers adsorbed on oxygen-covered tungsten surfaces has been measured as a function of electron energy, europium coverage and degree of oxidation of tungsten, with an emphasis on effects of substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector. We expand on an earlier report, and compare ESD of multivalent Eu with ESD of monovalent alkali atoms, studied previously. The Eu atom ESD is a complicated function of Eu coverage, electron energy and substrate temperature. In the coverage range 0.05-0.35 monolayer (ML), overlapping resonant-like Eu atom yield peaks are observed at electron energies E sub e of 36 and 41 eV that might be associated with Eu or W shallow core level excitations. Additional resonant-like peaks are seen at E sub e of 54 and 84 eV that are associated with W 5p and 5s level excitations. The Eu atom yield peaks at 36 and 41 eV are seen only...

  20. Laboratory experiment on coalbed-methane desorption influenced by water injection and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, D.; Feng, Z.; Zhao, Y.

    2011-07-15

    The exploration of coalbed-methane (CBM) has significantly increased in the last decade, its exploitation is now widely spread. CBM exploitation technologies involve high-pressure water, which reduces the CBM-desorption capacity resulting in a low efficiency. This study has been conducted to examine the CBM desorption and output after water injection and temperature increase. They developed a new experimental system to simulate water-injection in ideal conditions and study the behaviour of water and methane in a coalbed. These experiments revealed that, at constant temperature, water injection pressure controls the CBM-desorption capacity; and that this capacity is highly increased when the temperature is increased. These results show that a higher temperature would increase the efficiency of CBM exploitation, thus producers are likely to use heating in future CBM technologies. Some advances were made in the knowledge of water pressure and temperature effects on desorption behaviour but further research has to be carried to fully define these effects.

  1. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    Science.gov (United States)

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  2. Design and fabrication of an automated temperature programmed ...

    Indian Academy of Sciences (India)

    Unknown

    *For correspondence. Design and fabrication of an automated temperature programmed reaction system to evaluate 3-way catalysts ... Since the design of the first desorption system by Cvetonovic and Amenomiya,1 .... tored by a software program through PC via RS232 interface. Typical heating rates range from 5°C min–1.

  3. Finite-temperature hydrogen adsorption and desorption thermodynamics driven by soft vibration modes.

    Science.gov (United States)

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina; Kim, Yong-Hyun

    2013-08-09

    It has been widely accepted that enhanced dihydrogen adsorption is required for room-temperature hydrogen storage on nanostructured porous materials. Here we report, based on results of first-principles total energy and vibrational spectrum calculations, finite-temperature adsorption and desorption thermodynamics of hydrogen molecules that are adsorbed on the metal center of metal-porphyrin-incorporated graphene. We have revealed that the room-temperature hydrogen storage is achievable not only with the enhanced adsorption enthalpy, but also with soft-mode driven vibrational entropy of the adsorbed dihydrogen molecule. The soft vibration modes mostly result from multiple orbital coupling between the hydrogen molecule and the buckled metal center, for example, in Ca-porphyrin-incorporated graphene. Our study suggests that the current design strategy for room-temperature hydrogen storage materials should be modified with explicitly taking the finite-temperature vibration thermodynamics into account.

  4. Investigation of the interaction of benzene with vanadium-molybdenum oxide catalysts by programmed thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    Belokopytov, Yu.V.; Pyatnitskii, Yu.I.; Grebennikov, Yu.N.

    1985-09-01

    Programmed thermal desorption was used to investigate the interaction of benzene with vanadium-molybdenum oxide catalysts. It was established that the amount of maleic anhydride desorbed from the catalyst surface depends on the catalyst composition and that it varies with its activity and selectivity.

  5. Structural and energetical studies of the adsorption of para and meta-isomers of xylene on pre-hydrated zeolite BaX. Characterization by neutron diffraction and temperature programmed desorption; Etude structurale et energetique de l'adsorption des isomeres para- et meta- du xylene dans la zeolithe BaX prehydratee. Caracterisation par diffraction des neutrons et thermodesorption programmee

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Ch.

    1999-10-19

    The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic materials. FAU-type zeolites are currently used for this separation and especially the partially hydrated BaX. The aim of this work is to characterize from a structural (by low temperature neutron powder diffraction) and an energetical (by temperature programmed desorption) point of view, the adsorption of para- and meta- isomers of xylene, for different fillings, as pure substances as well as mixtures, on pre-hydrated zeolite BaX. The influence of the water pre-adsorption on xylene adsorption selectivity is carefully discussed. The crystalline structure of the zeolite BaX (framework and compensation of charge cations) and of the adsorbed phase (water, p- and m-xylene molecules) are completely characterized by neutron diffraction. The location and the distribution of water and xylene molecules on their adsorption sites is especially followed as a function of the filling of the zeolite and of the composition of the adsorbed phase. Microscopic measurements were correlated to the energetical analysis (at a macroscopic level) in order to obtain a consistent description of adsorption phenomenon and to propose a possible origin for adsorption selectivity.

  6. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    Science.gov (United States)

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  7. Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis.

    Science.gov (United States)

    Jing, Fanqi; Pan, Minjun; Chen, Jiawei

    2018-02-09

    Biochar has the potential to sequester biomass carbon efficiently into land, simultaneously while improving soil fertility and crop production. Biochar has also attracted attention as a potential sorbent for good performance on adsorption and immobilization of many organic pollutants such as phthalic acid esters (PAEs), a typical plasticizer in plastic and presenting a current environmental issue. Due to lack of investigation on the kinetic and thermodynamic adsorption-desorption of PAEs on biochar, we systematically assessed adsorption-desorption for two typical PAEs, dimethyl phthalate (DMP) and diethyl phthalate (DEP), using biochar derived from peanut hull and wheat straw at different pyrolysis temperatures (450, 550, and 650 °C). The aromaticity and specific surface area of biochars increased with the pyrolysis temperature, whereas the total amount of surface functional groups decreased. The quasi-second-order kinetic model could better describe the adsorption of DMP/DEP, and the adsorption capacity of wheat straw biochars was higher than that of peanut hull biochars, owing to the O-bearing functional groups of organic matter on exposed minerals within the biochars. The thermodynamic analysis showed that DMP/DEP adsorption on biochar is physically spontaneous and endothermic. The isothermal desorption and thermodynamic index of irreversibility indicated that DMP/DEP is stably adsorbed. Sorption of PAEs on biochar and the mechanism of desorption hysteresis provide insights relevant not only to the mitigation of plasticizer mobility but also to inform on the effect of biochar amendment on geochemical behavior of organic pollutants in the water and soil.

  8. Temperature dependent field emission performances of carbon nanotube arrays: Speculation on oxygen desorption and defect annealing

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jianhua; Yang Yumei; Zheng Ruiting [Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Cheng Guoan, E-mail: gacheng@bnu.edu.cn [Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2012-07-01

    We report here a systematic study of the field emission (FE) properties of highly ordered carbon nanotube (CNT) arrays at different temperatures. The FE characteristics of the CNT arrays are significantly improved with temperature increasing from 298 K to 473 K, as evidenced by the decreases of turn-on electric field at 10 {mu}A/cm{sup 2} from 1.064 to 0.774 V/{mu}m and threshold field at 10 mA/cm{sup 2} from 1.628 to 1.418 V/{mu}m, respectively. Moreover, the stability behavior of the CNT arrays is ameliorated at or after suffering to temperatures. Raman, EDS, XPS, and photoelectron spectrometer were employed to characterize the CNT arrays before and after the FE-Temperature measurements for comparison. Our results demonstrate that the oxygen desorption induced work function decrease (from 4.89 to 4.68 eV) of the CNT arrays after longtime exposure to temperature is responsible for the improved FE behavior, while the annealing of defects on CNTs is the main reason for the improved FE stability, which provides an effective approach to stabilizing emitters by temperature processing.

  9. Temperature-jump investigation of adsorption/desorption kinetics at methylated silica/solution interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ren, F.Y.; Waite, S.W.; Harris, J.M. [Univ. of Utah, Salt Lake City, UT (United States)

    1995-10-01

    A temperature-jump relaxation technique is used to monitor reversible adsorption/desorption kinetics at the reversed-phase C1-silica/solution interface. A Joule discharge is used to heat a packed bed of trimethylchlorosilane-derivatized silica gel on a microsecond time scale. Single-exponential relaxation kinetics are observed for adsorption of an ionic fluorescent probe, 1-anilino-8-naphthalenesulfonate, to a C1-silica surface from methanol/water solution. The relaxation rate increases with concentration of solute in solution, which shows that adsorption kinetics are detectable in the relaxation. The adsorption rate of the ionic probe is slower than diffusion-controlled, exhibiting significant influence over the adsorption equilibrium constant. The adsorption rate of N-phenyl-1-naphthylamine is indistinguishable from the diffusion limit, indicating a negligible barrier to adsorption for this neutral species. 20 refs., 6 figs., 3 tabs.

  10. Competition between ionic adsorption and desorption on electrochemical double layer capacitor electrodes in acetonitrile solutions at different currents and temperatures

    Science.gov (United States)

    Park, Sieun; Kang, Seok-Won; Kim, Ketack

    2017-12-01

    The operation of electrochemical double layer capacitors at high currents and viscosities and at low temperatures is difficult. Under these conditions, ion transport is limited, and some of the electrode area is unavailable for adsorption, which results in a low capacitance. Increasing the temperature helps to increase the ionic movement, leading to enhanced adsorption and increased capacitance. In contrast, ion desorption (self-discharge) surpasses the capacitance improvement when ions gain a high amount of energy with increasing temperature. For example, temperatures as high as 70 °C cause a very high rate of ionic desorption in acetonitrile solutions in which the individual properties of the two electrolytes-tetraethylammonium tetrafluoroborate (TEA BF4) and ethylmethylimidazolium tetrafluoroborate (EMI BF4)-are not distinguishable. The capacitance improvement and self-discharge are balanced, resulting in a capacitance peak at mid-range temperatures, i.e., 35-45 °C, in the more viscous electrolyte, i.e., TEA BF4. The less viscous electrolyte, i.e., EMI BF4 has a wider capacitance peak from 25 to 45 °C and higher capacitance than that of TEA BF4. Because the maximum power is obtained in the mid-temperature range (35-45 °C), it is necessary to control the viscosity and temperature to obtain the maximum power in a given device.

  11. Electron Stimulated Molecular Desorption of a NEG St 707 at Room Temperature

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2001-01-01

    Electron stimulated molecular desorption (ESD) from a NEG St 707 (SAES GettersTM) sample after conditioning and after saturation with isotopic carbon monoxide2,13C18O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 1015 electrons s-1. The electrons were impinging on the 15 cm2 target surface at perpendicular incidence. It is found that the desorption yields h (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with 13C18O are lower than for OFHC copper baked at 120oC. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be accessible to ESD.

  12. Chemometric optimization of a low-temperature plasma source design for ambient desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Anastasia [University of Muenster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Muenster (Germany); Engelhard, Carsten, E-mail: engelhard@chemie.uni-siegen.de [University of Siegen, Department of Chemistry and Biology, Adolf-Reichwein-Straße 2, 57076 Siegen (Germany)

    2015-03-01

    Low-temperature plasmas (LTPs) are attractive sources for atomic and molecular mass spectrometry (MS). In the past, the LTP probe, which was first described by Harper et al., was used successfully for direct molecular mass spectrometric analysis with minimal sample pretreatment in a variety of applications. Unfortunately, the desorption/ionization source itself is commercially not available and custom-built LTP set-ups with varying geometry and operational configurations were utilized in the past. In the present study, a rapid chemometrics approach based on systematic experiments and multivariate data analysis was used to optimize the LTP probe geometry and positioning relative to the atmospheric-pressure inlet of a mass spectrometer. Several parameters were studied including the probe geometry, electrode configuration, quartz tube dimensions, probe positioning and operating conditions. It was found that the plasma-to-MS-inlet distance, the plasma-to-sample-plate distance, and the angle between the latter are very important. Additional effects on the analytical performance were found for the outer electrode width, the positioning of the electrodes, the inner diameter of the quartz tube, the quartz wall thickness, and the gas flow. All experiments were performed using additional heating of the sample to enhance thermal desorption and maximize the signal (T = 150 °C). After software-assisted optimization, attractive detection limits were achieved (e.g., 1.8 × 10{sup −7} mol/L for 4-acetamidothiophenol). Moreover, relative standard deviation (RSD) improved from values of up to 30% before optimization to < 15% RSD after the procedure was completed. This chemometrics approach for method optimization is not limited to LTP-MS and considered to be attractive for other plasma-based instrumentation as well. - Highlights: • Plasmas are useful in ambient desorption/ionization mass spectrometry. • Rapid and direct analysis is performed without sample preparation.

  13. Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study

    Directory of Open Access Journals (Sweden)

    Elisa Rodeghero

    2017-02-01

    Full Text Available The temperature-induced desorption of methyl tert-butyl ether (MTBE from aqueous solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and chromatographic techniques. This kind of information is crucial for designing and optimizing the regeneration treatment of such zeolite. The evolution of the structural features monitored by full profile Rietveld refinements revealed that a monoclinic (P21/n to orthorhombic (Pnma phase transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C. Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite crystallinity loss, but with slight deformations in the channel apertures.

  14. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  15. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. Scott; May, Robert A.; Kay, Bruce D.

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from grapheme covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multi- layer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The non-alignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.

  16. Low energy ion induced desorption on technical surfaces at room temperature

    CERN Document Server

    Hulla, Georg

    2009-01-01

    The ion-induced pressure instability is a hard limitation for the maximum intensity, and hence the ultimate luminosity achievable in a proton accelerator. This instability is due to the interaction of high intensity proton beams with the residual gas generating positive ions. These ions, accelerated by the beam space charge, impact on the vaccuum chamber wall and lead to the desorption of gaseous species like $H_{2}, CH_{4}, C_{2}H_{4}, C_{2}H_{6}, CO$ and $CO_{2}$. These gases can in turn be ionized by the circulating beam, and initiate a pressure run-away process causing the loss of the stored beam. This phenomenon was first registered right at the beginning of operation of the Intersecting Storage Rings (ISR) at CERN in 1970. Later on, a long term evolution of the pressure was recorded for a stable stored beam current where a change of the residual gas composition was measured. In order to adapt the pumping speed and the surface treatments to the desired circulating beam currents, mathematical tools (e.g. ...

  17. The use of thermal desorption in monitoring for the chemical weapons demilitarization program.

    Science.gov (United States)

    Harper, Martin

    2002-10-01

    Under international treaty, the United States and Russia are disposing of their aging stockpile of chemical weapons. Incineration and chemical neutralization are options for sites in the United States, although Russia prefers the latter. The storage and disposal of bulk and chemical agents and weapons involve unique hazards of handling extremely toxic materials. There are three major areas of concern--the storage stockpile, the disposal area, and the discovery and destruction of "found" material not considered part of the stockpile. Methods have been developed to detect the presence of chemical agents in the air, and these are used to help assure worker protection and the safety of the local population. Exposure limits for all chemical agents are low, sometimes nanograms per cubic meter for worker control limits and picograms per cubic meter for general population limits. There are three types of monitoring used in the USA: alarm, confirmation, and historical. Alarm monitors are required to give relatively immediate real-time responses to agent leaks. They are simple to operate and rugged, and provide an alarm in near real-time (generally a few minutes). Alarm monitors for the demilitarization program are based on sorbent pre-concentration followed by thermal desorption and simple gas chromatography. Alarms may need to be confirmed by another method, such as sample tubes collocated with the alarm monitor and analyzed in a laboratory by more sophisticated chromatography. Sample tubes are also used for historical perimeter monitoring, with sample periods typically of 12 h. The most common detector is the flame photometric detector, in sulfur or phosphorous mode, although others, such as mass-selective detectors, also have been used. All agents have specific problems with collection, chromatography and detection. Monitoring is not made easier by interferences from pesticide spraying, busy roadways or military firing ranges. Exposure limits drive the requirements for

  18. THE EFFECT OF MAGNETITE (Fe3O4CATALYST FROM IRON SANDS ON DESORPTION TEMPERATURE OF MgH2 HYDROGEN STORAGE MATERIAL

    Directory of Open Access Journals (Sweden)

    Maulinda Maulinda

    2016-03-01

    Full Text Available One of the future technologies for a safe hydrogen storage media is  metal hydrides. Currently, Mg-based metal hydride has a safety factor and efficient for vehicle applications. However, the thermodynamic properties of magnesium hydride (MgH2 found a relatively high temperature. High desorption temperatures caused MgH2 high thermodynamic stability resulting desorption enthalpy is also high. In this study, natural mineral (iron ore has been extracted from iron sand into powder of magnetite (Fe3O4 and used as a catalyst in an effort to improve the desorption properties of MgH2. Magnetie has been successfully extracted from iron sand using precipitation method with a purity of 85 % , where the purity of the iron sand before extracted was 81%. Then, MgH2-Fe3O4 was milling using mechanical alloying method with a variety of catalysts and milling time. The observation by XRD showed the material was reduced to nanocrystalline scale. MgH2 phase appears as the main phase. DSC test results showed with the addition of Fe3O4, the desorption temperature can be reduced up to 366oC, compared to pure pure MgH2 reached by 409o C. Furthermore, based on gravimetric test, the hydrogen release occurs at a temperature of 388o C, weight loss  of 0.66 mg during 16 minutes.

  19. Effect of Temperature on the Desorption and Decomposition of GB on Activated Carbon

    National Research Council Canada - National Science Library

    Karwacki, Christopher

    1999-01-01

    ...) and its decomposition products on coconut shell activated carbon (CSC). The results show that, under equilibrium conditions on dry CSC, changes in the partial pressure of GB are affected primarily by its loading and temperature of the adsorbent...

  20. Thermal desorption of Au from W(001) surface

    CERN Document Server

    Blaszczyszyn, R; Godowski, P J

    2002-01-01

    Adsorption of Au on W(001) at 450 K up to multilayer structures was investigated. Temperature programmed desorption technique was used in determination of coverage dependent desorption energy (region up to one monolayer). Results were discussed in terms of competitive interactions of Au-Au and Au-W atoms. Simple procedure for prediction of faceting behavior on the interface, basing on the desorption data, was postulated. It was deduced that the Au/W(001) interface should not show faceting tendency after thermal treatment. (author)

  1. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Qmax) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode

    DEFF Research Database (Denmark)

    Pitois, A.; Pilenga, A.; Pfrang, A.

    2010-01-01

    -modified catalysts, the interactions between underlayer and overlayer materials are worthy of consideration, since they can significantly modify the intrinsic properties of the active sites. The kinetics of the CO desorption process have been discussed with regard to the CO tolerance issue at the PEM fuel cell anode.......A Pt-on-Au/C fuel cell anode catalyst has been obtained by electrochemical deposition of platinum on carbon-supported gold nanoparticles. Its composition, structure and nanoparticle size distribution have been characterised before and after the desorption experiments using microstructural...

  3. NASA High Operating Temperature Technology Program Overview

    Science.gov (United States)

    Nguyen, Q. V.; Hunter, G. W.

    2017-11-01

    NASA’s Planetary Science Division has begun the High Operating Temperature Technology (HOTTech) program to address Venus surface technology challenges by investing in new technology development. This presentation reviews this HOTTech program.

  4. Oxygen sorption and desorption properties of selected lanthanum manganites and lanthanum ferrite manganites.

    Science.gov (United States)

    Nielsen, Jimmi; Skou, Eivind M; Jacobsen, Torben

    2015-06-08

    Temperature-programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid-oxide fuel cell (SOFC) cathode materials (La(0.85) Sr(0.15)0.95 MnO(3+δ) (LSM) and La(0.60) Sr(0.40) Fe(0.80) Mn(0.20) O(3-δ) (LSFM). The powders were characterized by X-ray diffractometry, atomic force microscopy (AFM), and BET surface adsorption. Sorbed oxygen could be distinguished from oxygen originating from stoichiometry changes. The results indicated that there is one main site for oxygen sorption/desorption. The amount of sorbed oxygen was monitored over time at different temperatures. Furthermore, through data analysis it was shown that the desorption peak associated with oxygen sorption is described well by second-order desorption kinetics. This indicates that oxygen molecules dissociate upon adsorption and that the rate-determining step for the desorption reaction is a recombination of monatomic oxygen. Typical problems with re-adsorption in this kind of TPD setup were revealed to be insignificant by using simulations. Finally, different key parameters of sorption and desorption were determined, such as desorption activation energies, density of sorption sites, and adsorption and desorption reaction order. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals.

    Science.gov (United States)

    Merzlikin, Sergiy V; Borodin, S; Vogel, D; Rohwerder, M

    2015-05-01

    In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Waste Isolation Safety Assessment Program. Task 4. Third Contractor Information Meeting. [Adsorption-desorption on geological media

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The study subject of this meeting was the adsorption and desorption of radionuclides on geologic media under repository conditions. This volume contans eight papers. Separate abstracts were prepared for all eight papers. (DLC)

  7. Electron stimulated molecular desorption of a non-evaporable Zr-V-Fe alloy getter at room temperature

    CERN Document Server

    Le Pimpec, Frederic; Laurent, Jean Michel

    2002-01-01

    Electron stimulated molecular desorption (ESD) from a non-evaporable getters (NEG) St 707 registered trademark (SAES Getters trademark ) sample after conditioning and after saturation with isotopic carbon monoxide (cf. nomenclature in Handbook of Chemistry and Physics, CRC Press, 1994), **1**3C**1**8O, has been studied on a laboratory setup. Measurements were performed using an electron beam of 300 eV kinetic energy, with an average electron intensity of 1.6 multiplied by 10**1**5 electrons s**-**1. The electrons were impinging on the 15 cm **2 target surface at perpendicular incidence. It is found that the desorption yields eta (molecules/electron) of the characteristic gases in an UHV system (hydrogen, methane, water, carbon monoxide, carbon dioxide) for a fully activated NEG as well as for a NEG fully saturated with **1**3C**1**8O are lower than for OFHC copper baked at 120 degree C. A small fraction only of the gas which is required to saturate the getter surface can be re-desorbed and thus appears to be ...

  8. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  9. CO Diffusion and Desorption Kinetics in CO2 Ices

    Science.gov (United States)

    Cooke, Ilsa R.; Öberg, Karin I.; Fayolle, Edith C.; Peeler, Zoe; Bergner, Jennifer B.

    2018-01-01

    The diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet, measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2 ice at low temperatures (T = 11–23 K) using CO2 longitudinal optical phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick’s second law and find that the temperature-dependent diffusion coefficients are well fit by an Arrhenius equation, giving a diffusion barrier of 300 ± 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2 ices deposited at 11–50 K by temperature programmed desorption and find that the desorption barrier ranges from 1240 ± 90 K to 1410 ± 70 K depending on the CO2 deposition temperature and resultant ice porosity. The measured CO–CO2 desorption barriers demonstrate that CO binds equally well to CO2 and H2O ices when both are compact. The CO–CO2 diffusion–desorption barrier ratio ranges from 0.21 to 0.24 dependent on the binding environment during diffusion. The diffusion–desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.

  10. Effect of programmed circadian temperature fluctuations on ...

    African Journals Online (AJOL)

    Effect of programmed circadian temperature fluctuations on population dynamics of. Biomphalaria pfeifferi (Krauss). K.N. de Kock and J.A. van Eeden. Snail Research Unit, Medical Research Council, Potchefstroom University for Christian Higher Education,. Potchefstroom. Until now all life-table studies on freshwater snails.

  11. Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th(IV) on attapulgite

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Q.H. [Lanzhou Univ., Gansu (China). Radiochemistry Lab.; Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics; Wu, W.S.; Xu, J.Z.; Niu, Z.W. [Lanzhou Univ., Gansu (China). Radiochemistry Lab.; Song, X.P. [Anhui Medical College, Hefei (China); Hu, J. [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics

    2008-07-01

    Sorption of Th(IV) on attapulgite as a function of pH and temperature in the presence and absence of humic acid and fulvic acid was studied under ambient conditions using batch technique. The results indicated that sorption of Th(IV) on attapulgite was strongly affected by pH values. The presence of humic acid and fulvic acid enhanced the sorption of Th(IV) at low pH values and no significant influence was observed at high pH values. Sorption of Th(IV) was mainly dominated by surface complexation. Sorption of Th(IV) increased with increasing temperature of the system. Enthalpy ({delta}H{sup 0}), entropy ({delta}S{sup 0}) and Gibbs free energy ({delta}G{sup 0}) were calculated from the temperature dependent sorption data, and the results indicated that the sorption of Th(IV) on attapulgite was a spontaneous process. The results of sorption and desorption of Th(IV) on HS bound attapulgite indicated that the sorption of Th(IV) on HS-attapulgite hybrids was reversible. (orig.).

  12. n-alkanes on Pt(111) and on C(0001)/Pt(111): Chain Length Dependence of Kinetic Desorption Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Tait, Steven L.; Dohnalek, Zdenek; Campbell, Charles T.; Kay, Bruce D.

    2006-12-21

    We have measured the desorption of seven small n-alkanes (CNH2N+2, N = 1-4, 6, 8, 10) from the Pt(111) and C(0001) surfaces by temperature programmed desorption. We compare these results to our recent study of the desorption kinetics of these molecules on MgO(100) [J. Chem. Phys. 122, 164708 (2005)]. There we showed an increase in the desorption pre-exponential factor by several orders of magnitude with increasing n-alkane chain length and a linear desorption energy scaling with a small y-intercept value. We suggest that the significant increase in desorption prefactor with chain length is not particular to the MgO(100) surface, but is a general effect for desorption of the small n-alkanes. This argument is supported by statistical mechanical arguments for the increase in the entropy gain of the molecules upon desorption. In this work, we demonstrate that this hypothesis holds true on both a metal surface and a graphite surface. We observe an increase in prefactor by five orders of magnitude over the range of n-alkane chain lengths studied here. On each surface, the desorption energies of the n-alkanes are found to increase linearly with the molecule chain length and have a small y-intercept value. Prior results of other groups have yielded a linear desorption energy scaling with chain length that has unphysically large y-intercept values. We demonstrate that by allowing the prefactor to increase according to our model, a reanalysis of their data resolves this y-intercept problem to some degree.

  13. Molecular Desorption of a NEG St 707 Irradiated at Room Temperature with Synchrotron Radiation of 194 eV Critical Photon Energy

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2002-01-01

    Photon stimulated molecular desorption from a NEG St 707 (SAES Getters$^{TM}$) surface after conditioning and after saturation with isotopic carbon monoxide, 13C18O, has been studied on a dedicated beam line at the EPA ring at CERN. The synchrotron radiation of 194 eV critical energy and with an average photon intensity of ~1 10**17 photons.s**-1 was impinging on the sample at perpendicular incidence. It is found that the desorption yields h molecules/photon) of the characteristic gases in an UHV system (hydrogen, methane, carbon monoxide and carbon dioxide) for a freshly activated NEG and for a NEG fully saturated with 13C18O are lower than that of 300 C baked stainless steel.

  14. An infrared measurement of chemical desorption from interstellar ice analogues

    Science.gov (United States)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  15. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene

    Science.gov (United States)

    Xie, Xiubo; Chen, Ming; Liu, Peng; Shang, Jiaxiang; Liu, Tong

    2017-12-01

    Nickel sulfides decorated reduced graphene oxide (rGO) has been produced by co-reducing Ni2+ and graphene oxide (GO), and is subsequently ball milled with Mg nanoparticles (NPs) produced by hydrogen plasma metal reaction (HPMR). The nickel sulfides of about 800 nm completely in situ change to MgS, Mg2Ni and Ni multiple catalysts after first hydrogenation/dehydrogenation process at 673 K. The Mg-5wt%NiS/rGO nanocomposite shows the highest hydrogen desorption kinetics and capacity properties, and the catalytic effect order of the additives is NiS/rGO, NiS and rGO. At 573 K, the Mg-NiS/rGO nanocomposite can quickly desorb 3.7 wt% H2 in 10 min and 4.5 wt% H2 in 60 min. The apparent hydrogen absorption and desorption activation energies of the Mg-5wt%NiS/rGO nanocomposite are decreased to 44.47 and 63.02 kJ mol-1, smaller than those of the Mg-5wt%rGO and Mg-5wt%NiS samples. The best hydrogen desorption properties of the Mg-5wt%NiS/rGO nanocomposite can be explained by the synergistic catalytic effects of the highly dispersed MgS, Mg2Ni and Ni catalysts on the rGO sheets, and the more nucleation sites between the catalysts, rGO sheets and Mg matrix.

  16. Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Gao, L.; Pal, Partha P.; Seideman, Tamar; Guisinger, Nathan P.; Guest, Jeffrey R.

    2016-02-04

    Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionization induced by inelastic tunneling electrons. The observed current-independence of the desorption yield suggests that the vibrational excitation is a singleelectron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (~ 2 eV), as would be expected from the identified desorption mechanism

  17. Molecular desorption of a nonevaporable getter St 707 irradiated at room temperature with synchrotron radiation of 194 eV critical photon energy

    CERN Document Server

    Le Pimpec, F; Laurent, Jean Michel

    2003-01-01

    Photon stimulated molecular desorption from a nonevaporable getter (NEG) St 707(R) (SAES Getters TM ) surface after conditioning and after saturation with isotopic carbon monoxide Ýcf. nomenclature in Handbook of Chemistry and Physics, 74th edition, edited by D. R. Lide (CRC Press, Boca Raton, 1994)¿ /sup 13/C/sup 18/O, has been studied on a dedicated beamline at the EPA ring at CERN. The synchrotron radiation of 194 eV critical energy and with an average photon intensity of ~1 * 10/sup 17/ photons s/sup -1/ was impinging on the sample at perpendicular incidence. It is found that the desorption yields eta (molecules/photon) of the characteristic gases in an UHV system (hydrogen, methane, carbon monoxide, and carbon dioxide) for a freshly activated NEG and for a NEG fully saturated with /sup 13/C /sup 18/O are lower than that of 300 degrees C baked stainless steel. (22 refs). Fully activated NEG was studied and found to desorb less as compared to a 300 degree c baked stainless-steel surface. Furthermore, it ...

  18. Desorption of Water from Distinct Step Types on a Curved Silver Crystal

    Directory of Open Access Journals (Sweden)

    Jakrapan Janlamool

    2014-07-01

    Full Text Available We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111 × (100] via (111 to [5(111 × (110]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a “two state” desorption model.

  19. Desorption of water from distinct step types on a curved silver crystal.

    Science.gov (United States)

    Janlamool, Jakrapan; Bashlakov, Dima; Berg, Otto; Praserthdam, Piyasan; Jongsomjit, Bunjerd; Juurlink, Ludo B F

    2014-07-25

    We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111) × (100)] via (111) to [5(111) × (110)]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a "two state" desorption model.

  20. Elevated temperature and temperature programming in conventional liquid chromatography--fundamentals and applications.

    Science.gov (United States)

    Vanhoenacker, Gerd; Sandra, Pat

    2006-08-01

    Temperature, as a powerful variable in conventional LC is discussed from a fundamental point of view and illustrated with applications from the author's laboratory. Emphasis is given to the influence of temperature on speed, selectivity, efficiency, detectability, and mobile phase composition (green chromatography). The problems accompanying the use of elevated temperature and temperature programming in LC are reviewed and solutions are described. The available stationary phases for high temperature operation are summarized and a brief overview of recent applications reported in the literature is given.

  1. Ultraviolet Photon-Induced Desorption and Decomposition Kinetics and Dynamics of Methyl Nitrite on SILVER(111)

    Science.gov (United States)

    Pressley, Laura Ann

    The wavelength-dependent cross section for decomposition and surface fragment reaction mechanisms for the photon -induced decomposition of CH_3ONO on Ag(111) are determined using the surface analytical techniques of temperature programmed desorption with mass spectroscopy (TPD), x-ray and ultraviolet photoelectron spectroscopy (XPS and UPS, respectively), residual gas analysis with mass spectroscopy (RGA), and secondary ion mass spectroscopy (SIMS). Methyl nitrite adsorbs reversibly on Ag(111) at 100 K with monolayer and multilayer desorption occurring at 131 and 118 K, respectively. The major photodecomposition fragments formed at 100 K include O(a), CH_2 (a), CH_3(a), CH _2O(a), and CH_3O(a). Upon heating to 350 K, these fragments recombine and desorb as H_2 and CH_2OHCH=O. The desorption channel at 350 K accounts for ~ 85% of the available fragments retained on the surface. The remaining fragments react and desorb as CH_3 OCH=O and CH_2OHCH=O at 200 K and 250 K, respectively. The photon-induced desorption dynamics of the nascent fragment, NO, is determined using time-of-flight mass spectroscopy (TOF). At 254, 308, and 313 nm, the translational energy distributions of the desorbing NO is measured at 100 K. Two desorption channels are observed in the TOF spectra at all wavelengths investigated. Irrespective of the excitation wavelength, the flux-weighted mean translational energy, /2k, of the slower channel is around 115 +/- 10 K. We propose that this channel results from an extended interaction of the NO with the Ag(111) surface. The measured /2k of the faster desorption channel of the nascent NO photofragment at 254, 308, and 351 nm is 1980 +/- 100 K, 617 +/- 100 K, and 846 +/- 100 K, respectively. Comparison of the surface and gas phase photochemical kinetics and dynamics indicates that the dominant photodecomposition mechanism on the Ag(111) surface is the direct absorbance of the photon by the adsorbate.

  2. Modification of reference temperature program in reactor regulating system

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sung Sik; Lee, Byung Jin; Kim, Se Chang; Cheong, Jong Sik [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Ji In; Doo, Jin Yong [Korea Electric Power Cooperation, Yonggwang (Korea, Republic of)

    1998-12-31

    In Yonggwang nuclear units 3 and 4 currently under commercial operation, the cold temperature was very close to the technical specification limit of 298 deg C during initial startup testing, which was caused by the higher-than-expected reactor coolant system flow. Accordingly, the reference temperature (Tref) program needed to be revised to allow more flexibility for plant operations. In this study, the method of a specific test performed at Yonggwang nuclear unit 4 to revise the Tref program was described and the test results were discussed. In addition, the modified Tref program was evaluated on its potential impacts on system performance and safety. The methods of changing the Tref program and the associated pressurizer level setpoint program were also explained. Finally, for Ulchin nuclear unit 3 and 4 currently under initial startup testing, the effects of reactor coolant system flow rate on the coolant temperature were evaluated from the thermal hydraulic standpoint and an optimum Tref program was recommended. 6 refs., 4 figs., 2 tabs. (Author)

  3. Fast temperature programming in gas chromatography using resistive heating

    NARCIS (Netherlands)

    Dallüge, J.; Ou-Aissa, R.; Vreuls, J.J.; Brinkman, U.A.T.; Veraart, J.R.

    1999-01-01

    The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed

  4. Design and fabrication of an automated temperature programmed ...

    Indian Academy of Sciences (India)

    A completely automated temperature-programmed reaction (TPR) system for carrying out gas-solid catalytic reactions under atmospheric flow conditions is fabricated to study CO and hydrocarbon oxidation, and NO reduction. The system consists of an all-stainless steel UHV system, quadrupole mass spectrometer SX200 ...

  5. Rapid prediction of long-term rates of contaminant desorption from soils and sediments.

    Science.gov (United States)

    Johnson, M D; Weber, W J

    2001-01-15

    A method using heated and superheated (subcritical) water is described for rapid prediction of long-term desorption rates from contaminated geosorbents. Rates of contaminant release are measured at temperatures between 75 and 150 degrees C using a dynamic water desorption technique. The subcritical desorption rate data are then modeled to calculate apparent activation energies, and these activation energies are used to predict desorption behaviors at any desired ambient temperature. Predictions of long-term release rates based on this methodology were found to correlate well with experimental 25 degrees C desorption data measured over periods of up to 640 days, even though the 25 degrees C desorption rates were observed to vary by up to 2 orders of magnitude for different geosorbent types and initial solid phase contaminant loading levels. Desorption profiles measured under elevated temperature and pressure conditions closely matched those at 25 degrees C and ambient pressure, but the time scales associated with the high-temperature measurements were up to 3 orders of magnitude lower. The subcritical water technique rapidly estimates rates of desorption-resistant contaminant release as well as those for more labile substances. The practical implications of the methodology are significant because desorption observed under field conditions and ambient temperatures typically proceeds over periods of months or years, while the high temperature experiments used for prediction of such field desorption phenomena can be completed within periods of only hours or days.

  6. Kinetic Ising model for desorption from a chain

    Science.gov (United States)

    Geldart, D. J. W.; Kreuzer, H. J.; Rys, Franz S.

    1986-10-01

    Adsorption along a linear chain of adsorption sites is considered in an Ising model with nearest neighbor interactions. The kinetics are studied in a master equation approach with transition probabilities describing single spin flips to mimic adsorption-desorption processes. Exchange of two spins to account for diffusion can be included as well. Numerical results show that desorption is frequently of fractional (including zero) order. Only at low coverage and high temperature is desorption a first order process. Finite size effects and readsorption are also studied.

  7. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  8. Study on hydrogen absorption/desorption properties of uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen absorption/desorption properties of two U-Mn intermetallic compounds, U{sub 6}Mn and UMn{sub 2}, were investigated. U{sub 6}Mn absorbed hydrogen and the hydrogen desorption pressure of U{sub 6}Mn obtained from this experiment was higher than that of U, which was considered to be the effect of alloying, whereas UMn{sub 2} was not observed to absorb hydrogen up to 50 atm at room temperature. (author)

  9. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?

    OpenAIRE

    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center

    1992-01-01

    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  10. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  11. Nonisothermal desorption of droplets of complex compositions

    Directory of Open Access Journals (Sweden)

    Nakoryakov Vladimir E.

    2012-01-01

    Full Text Available This paper presents the process of nonstationary evaporation of aqueous solutions of LiBr-H2O, CaCl2-H2O, NaCl-H2O droplets on a horizontal heating surface. The following typical stages of heat and mass transfer depending on wall temperature have been considered: evaporation below boiling temperature and nucleate boiling. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Formation of a surface crystallization front at evaporation of a droplet has been detected. We have developed the experimental method for direct measurements of the mass of evaporating droplet.

  12. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Buckley, S A; Stott, A W; Evershed, R P

    1999-04-01

    The techniques of gas chromatography-mass spectrometry (GC-MS) and sequential thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) have been utilised to characterise the constituents of tissue-derived or applied organic material from two Pharaonic Egyptian mummies with a view to identifying embalming practices/substances. The results obtained using TD-GC-MS revealed a series of monocarboxylic acids with the C16:0, C18:1 and C18:0 components dominating in both mummies. The thermal desorption products related to cholesterol, i.e., cholesta-3,5,7-triene and cholesta-3,5-diene (only in Khnum Nakht), were detected in both mummies. Khnum Nakht also contained a number of straight chain alkyl amides (C16-C18) and an alkyl nitrile (C18). Other products included the 2,5-diketopiperazine derivative (DKP) of proline-glycine (pro-gly) which was a major component (7.9%) in Khnum Nakht but only a very minor component in Horemkenesi. Py-GC-MS of samples of both specimens yielded a series of alkene/alkane doublets (Horemkenesi C6-C18, Khnum Nakht C6-C24) which dominated their chromatograms. Series of methyl ketones in the C9-C19 chain length range were also present, with C5-C7 cyclic ketones occurring in Horemkenesi only. These ketones are indicative of covalent bond cleavage, probably of polymerised acyl lipids. Nitrogenous products included nitriles (C9-C18) which were significant in both samples, and amides which were only detected in Khnum Nakht. Also present amongst the pyrolysis products were three steroidal hydrocarbons, cholest-(?)-ene, cholesta-3,5,7-triene and cholesta-3,5-diene. High temperature-GC-MS of trimethylsilylated lipid extracts yielded similar monocarboxylic acids to that obtained using TD-GC-MS, while a series of alpha, omega-dicarboxylic acids and a number of mono- and di-hydroxy carboxylic acids not seen in the thermal desorption or pyrolysis GC-MS analyses were significant

  13. A new desorption method for removing organic solvents from activated carbon using surfactant.

    Science.gov (United States)

    Hinoue, Mitsuo; Ishimatsu, Sumiyo; Fueta, Yukiko; Hori, Hajime

    2017-03-28

    A new desorption method was investigated, which does not require toxic organic solvents. Efficient desorption of organic solvents from activated carbon was achieved with an ananionic surfactant solution, focusing on its washing and emulsion action. Isopropyl alcohol (IPA) and methyl ethyl ketone (MEK) were used as test solvents. Lauryl benzene sulfonic acid sodium salt (LAS) and sodium dodecyl sulfate (SDS) were used as the surfactant. Activated carbon (100 mg) was placed in a vial and a predetermined amount of organic solvent was added. After leaving for about 24 h, a predetermined amount of the surfactant solution was added. After leaving for another 72 h, the vial was heated in an incubator at 60°C for a predetermined time. The organic vapor concentration was then determined with a frame ionization detector (FID)-gas chromatograph and the desorption efficiency was calculated. A high desorption efficiency was obtained with a 10% surfactant solution (LAS 8%, SDS 2%), 5 ml desorption solution, 60°C desorption temperature, and desorption time of over 24 h, and the desorption efficiency was 72% for IPA and 9% for MEK. Under identical conditions, the desorption efficiencies for another five organic solvents were investigated, which were 36%, 3%, 32%, 2%, and 3% for acetone, ethyl acetate, dichloromethane, toluene, and m-xylene, respectively. A combination of two anionic surfactants exhibited a relatively high desorption efficiency for IPA. For toluene, the desorption efficiency was low due to poor detergency and emulsification power.

  14. Multiyear Program Plan for the High Temperature Materials Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  15. Femtosecond laser pulse induced desorption: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lončarić, Ivor, E-mail: ivor.loncaric@gmail.com [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Alducin, Maite [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Juaristi, J. Iñaki [Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain)

    2016-09-01

    In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which O{sub 2} is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results.

  16. HYDROGEN AND ITS DESORPTION IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    HSEUH,H.C.

    2002-11-11

    Hydrogen is the dominating gas specie in room temperature, ultrahigh vacuum systems of particle accelerators and storage rings, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven. Rapid pressure increase of a few decades in hydrogen and other residual gases was observed during RHIC's recent high intensity gold and proton runs. The type and magnitude of the pressure increase were analyzed and compared with vacuum conditioning, beam intensity, number of bunches and bunch spacing. Most of these pressure increases were found to be consistent with those induced by beam loss and/or electron stimulated desorption from electron multipacting.

  17. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    OpenAIRE

    Yang Teng; Zhilin Liu; Gang Xu; Kai Zhang

    2017-01-01

    Tetraethylenepentamine (TEPA)-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C) and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-4...

  18. Electronically driven adsorbate excitation mechanism in femtosecond-pulse laser desorption

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Hedegård, Per; Heinz, T. F.

    1995-01-01

    Femtosecond-pulse laser desorption is a process in which desorption is driven by a subpicosecond temperature pulse of order 5000 K in the substrate-adsorbate electron system, whose energy is transferred into the adsorbate center-of-mass degrees of freedom by a direct coupling mechanism. We presen...

  19. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  20. The influence of various factors on the droplet desorption

    Science.gov (United States)

    Misyura, S. Y.; Morozov, V. S.

    2017-09-01

    Experimental data on sessile droplet desorption of aqueous salt solution of LiBr on a heated wall were implemented. High-temperature desorption of water-salt solutions in air atmosphere leads to significant difficulties at modeling heat and mass transfer. In this case, the evaporation rate multiply decreases with time and the diffusion coefficient, the desorption heat and the salt concentration change significantly. With the growth of salt concentration in solution from 10 % to 65 %, the steam partial pressure at the interface falls by dozens of times. In this study, we performed experiments in a wide range of salt concentrations and proposed a simple estimated method for calculating the mass flow. The resulting technique can predict the droplet solution behavior with a significant change in the partial vapor pressure on the droplet interphase with time.

  1. Erbium hydride thermal desorption : controlling kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  2. Co2 desorption from glycerol for reusable absorbent

    Science.gov (United States)

    Mindaryani, Aswati; Budhijanto, Wiratni; Narendratama, Roberto Delta

    2017-05-01

    Increasing demand of energy forces human to develop new energy sources. Biogas comes as a reliable option of sustainable energy fulfilment. Biogas consists of methane and some impurities such as CO2 and H2S. CO2 removal from biogas guarantees an elevation of biogas heating value. CO2 removal can be achieved by integrated absorption-desorption process using certain absorbent. Regeneration of absorbent is a necessity to recover CO2 absorption capability of used absorbent. This paper focuses on the study of CO2 desorption from glycerol absorbent using N2 as stripping gas. Effect of desorption temperature and N2 flow rate is studied. Three neck flask equipped with water bath is filled with 750 mL of glycerol. Waterbath temperature is set at 40°C. Absorption starts with flowing 1 LPM gas mixture of 40% CO2 to absorbent through sparger. CO2 concentration of outlet gas is analyzed using gas chromatograph every 10 seconds. Gas flow is stopped when outlet CO2 concentration reaches inlet concentration. Desorption process is conducted as follows, 0.1 LPM nitrogen is flowed through sparger to absorber. Samples of outlet gas are taken at several time. Samples are analyzed with gas chromatograph. The same experiments are conducted for temperature variation of 60°C and 80°C and nitrogen flow rate variation of 0.2 LPM and 0.3 LPM. The model of batch desorption process by gas stripping is developed. Mass transfer coefficient was determined by curve fitting. Result shows a noticeable increase of desorbed CO2 with increasing of temperature and N2 flow rate.

  3. Desorption of acetone from alkaline-earth exchanged Y zeolite after propane selective oxidation

    NARCIS (Netherlands)

    Xu, J.; Mojet, Barbara; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    The desorption of products from a series of alkaline-earth exchanged Y zeolites after room-temperature propane selective oxidation was investigated by in situ infrared and mass spectroscopy. The intermediate product, isopropylhydroperoxide (IHP), did not desorb during

  4. DEUTERIUM, TRITIUM, AND HELIUM DESORPTION FROM AGED TITANIUM TRITIDES. PART I.

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, K; Jeffrey Holder, J

    2006-07-10

    Six new samples of tritium-aged bulk titanium have been examined by thermal desorption and isotope exchange chemistry. The discovery of a lower temperature hydrogen desorption state in these materials, previously reported, has been confirmed in one of the new samples. The helium release of the samples shows the more severe effects obtained from longer aging periods, i.e. higher initial He/M ratios. Several of the more aged samples were spontaneously releasing helium. Part I will discuss the new results on the new lower temperature hydrogen desorption state found in one more extensively studied sample. Part II will discuss the hydrogen/helium release behavior of the remaining samples.

  5. Surface desorption and bulk diffusion models of tritium release from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.E., E-mail: ravila@cchen.c [Departamento de Materiales Nucleares, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile); Pena, L.A.; Jimenez, J.C. [Departamento de Produccion y Servicios, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile)

    2010-10-30

    The release of tritium from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles, in batch experiments, is studied by means of temperature programmed desorption. Data reduction focuses on the analysis of the non-oxidized and oxidized tritium components in terms of release limited by diffusion from the bulk of ceramic grains, or by first or second order surface desorption. By analytical and numerical methods the in-furnace tritium release is deconvoluted from the ionization chamber transfer functions, for which a semi-empirical form is established. The release from Li{sub 2}TiO{sub 3} follows second order desorption kinetics, requiring a temperature for a residence time of 1 day (T{sub 1dRes}) of 620 K, and 603 K, of the non-oxidized, and the oxidized components, respectively. The release from Li{sub 2}ZrO{sub 3} appears as limited by either diffusion from the bulk of the ceramic grains, or by first order surface desorption, the first possibility being the more probable. The respective values of T{sub 1dRes} for the non-oxidized component are 661 K, according to the first order surface desorption model, and 735 K within the bulk diffusion limited model.

  6. A soil-column gas chromatography (SCGC) approach to explore the thermal desorption behavior of hydrocarbons from soils.

    Science.gov (United States)

    Yu, Ying; Liu, Liang; Shao, Ziying; Ju, Tianyu; Sun, Bing; Benadda, Belkacem

    2016-01-01

    A soil-column gas chromatography approach was developed to simulate the mass transfer process of hydrocarbons between gas and soil during thermally enhanced soil vapor extraction (T-SVE). Four kinds of hydrocarbons-methylbenzene, n-hexane, n-decane, and n-tetradecane-were flowed by nitrogen gas. The retention factor k' and the tailing factor T f were calculated to reflect the desorption velocities of fast and slow desorption fractions, respectively. The results clearly indicated two different mechanisms on the thermal desorption behaviors of fast and slow desorption fractions. The desorption velocity of fast desorption fraction was an exponential function of the reciprocal of soil absolute temperature and inversely correlated with hydrocarbon's boiling point, whereas the desorption velocity of slow desorption fraction was an inverse proportional function of soil absolute temperature, and inversely proportional to the log K OW value of the hydrocarbons. The higher activation energy of adsorption was found on loamy soil with higher organic content. The increase of carrier gas flow rate led to a reduction in the apparent activation energy of adsorption of slow desorption fraction, and thus desorption efficiency was significantly enhanced. The obtained results are of practical interest for the design of high-efficiency T-SVE system and may be used to predict the remediation time.

  7. Internal friction and gas desorption of {C}/{C} composites

    Science.gov (United States)

    Serizawa, H.; Sato, S.; Kohyama, A.

    1994-09-01

    {C}/{C} composites are the most promising candidates as high heat flux component materials, where temperature dependence of mechanical properties and gas desorption behavior at elevated temperature are important properties. At the beginning, the newly developed internal friction measurement apparatus, which enables the accurate measurement of dynamic elastic properties up to 1373 K along with the measurement of gas desorption behavior, was used. The materials studied were unidirectional (UD) {C}/{C} composites reinforced with mesophase pitch-based carbon fibers, which were heat treated at temperatures ranging from 1473 to 2773 K which produced a variety of graphitized microstructures. Two-dimensional (2D) {C}/{C} composites reinfored with flat woven fabrics of PAN type carbon fibers were also studied. These materials were heat treated at 1873 K. From the temperature spectrum of internal friction of 2D {C}/{C} composites, these internal friction peaks were detected and were related to gas desorption. Also the temperature dependence of Young's modulus of UD {C}/{C} composites, negative and positive dependence of Young's modulus were observed reflecting microstructure changes resulting from the heat treatments.

  8. Sensor programming and concept implementation of a temperature monitoring system, using Arduino as prototyping platform

    DEFF Research Database (Denmark)

    Sbîrnă, Sebastian; Søberg, Peder Veng; Sbîrnă, Liana Simona

    2016-01-01

    The present work reports the programming paradigms that have been developed for a temperature monitoring system able to provide accurate data regarding food temperatures inside refrigerated vehicles and alert the driver accordingly, in relation to which temperature states are encountered. The men...

  9. Setup and programming of a one-wire temperature grid

    Energy Technology Data Exchange (ETDEWEB)

    Vischer, Janna [Georg-August-Universitaet, Goettingen (Germany)

    2016-07-01

    This project aims at building a field of ten by ten temperature Sensors as a prototype of a more precise temperature measurement in an inner detector layer. So it is possible to get a better resolution of the temperature near the sensitive pixel detectors there. A prominent example of such a detector is ATLAS at CERN. It is desirable to use as few wires as possible. This can be achieved with the One-wire technology where all sensors are connected in a row. They can be approached individually by unique addresses. With the help of an Arduino microcontroller the data can be read out, saved and displayed as a visual temperature map. This project was executed during the Netzwerk Teilchenwelt Projektwochen at CERN.

  10. Oregon Low-Temperature-Resource Assessment Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.; Black, G.L.; Woller, N.M.

    1981-01-01

    Numerous low-temperature hydrothermal systems are available for exploitation throughout the Cascades and eastern Oregon. All of these areas have heat flow significantly higher than crustal averages and many thermal aquifers. In northeastern Oregon, low temperature geothermal resources are controlled by regional stratigraphic aquifers of the Columbia River Basalt Group at shallow depths and possibly by faults at greater depths. In southeastern Oregon most hydrothermal systems are of higher temperature than those of northeastern Oregon and are controlled by high-angle fault zones and layered volcanic aquifers. The Cascades have very high heat flow but few large population centers. Direct use potential in the Cascades is therefore limited, except possibly in the cities of Oakridge and Ashland, where load may be great enough to stimulate development. Absence of large population centers also inhibits initial low temperature geothermal development in eastern Oregon. It may be that uses for the abundant low temperature geothermal resources of the state will have to be found which do not require large nearby population centers. One promising use is generation of electricity from freon-based biphase electrical generators. These generators will be installed on wells at Vale and Lakeview in the summer of 1982 to evaluate their potential use on geothermal waters with temperatures as low as 80/sup 0/C (176/sup 0/F).

  11. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma.

    Science.gov (United States)

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2017-09-01

    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N2 is used as desorbing gas. In addition, as air or O2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O2 plasmas generate active species to oxidize IPA to form acetone, CO2, and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  12. Analysis of the volatile organic matter of engine piston deposits by direct sample introduction thermal desorption gas chromatography/mass spectrometry.

    Science.gov (United States)

    Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M

    2009-12-01

    This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.

  13. Low-temperature resource assessment program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J. [Oregon Inst. of Tech., Klamath Falls, OR (United States). Geo-Heat Center; Ross, H. [Utah Univ., Salt Lake City, UT (United States). Earth Sciences and Resources Inst.

    1996-02-01

    The US Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation`s low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20{degrees}C to 150{degrees}C has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50{degrees}C located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy cost evaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  14. Final Report Low-temperature Resource Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J. [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR (US); Ross, H. [Earth Sciences and Resources Institute, University of Utah

    1996-02-01

    The U.S. Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation's low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20 degrees Celsius to 150 degrees Celsius has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50 degrees Celsius located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy costevaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  15. Kinetics of ethylene oxide desorption from sterilized materials.

    Science.gov (United States)

    Mendes, Gisela C; Brandão, Teresa R S; Silva, Cristina L M

    2013-01-01

    Ethylene oxide gas is commonly used to sterilize medical devices, and concerns about using this agent on biological systems are well-established. Medical devices sterilized by ethylene oxide must be properly aerated to remove residual gas and by-products. In this work, kinetics of ethylene oxide desorption from different sterilized materials were studied in a range of aeration temperatures. The experimental data were well-described by a Fickian diffusion mass transfer behavior, and diffusivities were estimated for two textile and two polymeric materials within the temperature range of 1.5 to 59.0 degrees C. The results will allow predictions of ethylene oxide desorption, which is a key step for the design of sterilization/aeration processes, contributing to an efficient removal of residual ethylene oxide content.

  16. 1992--1993 low-temperature geothermal assessment program, Colorada

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, J.A.; Hemborg, H.T.

    1995-01-01

    Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

  17. Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser

    DEFF Research Database (Denmark)

    Öberg, H.; Gladh, J.; Dell'Angela, M.

    2015-01-01

    We present density functional theory modeling of time-resolved optical pump/X-ray spectroscopic probe data of CO desorption from Ru(0001). The BEEF van der Waals functional predicts a weakly bound state as a precursor to desorption. The optical pump leads to a near-instantaneous (b100 fs) increase...... energy based on the computed potential of mean force along the desorption path, we find an entropic barrier to desorption (and by time-reversal also to adsorption). This entropic barrier separates the chemisorbed and precursor states, and becomes significant at the elevated temperature of the experiment...

  18. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Evans, L; Kollmus, H; Küchler, D; Scrivens, R; Severin, D; Wengenroth, M; CERN. Geneva. ATS Department

    2011-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and goldcoated copper, were bombarded under perpendicular impact with 4.2 MeV/u Pb54+ ions. Partial pressure rises of H2, CH4, CO, and CO2 and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  19. The desorption of condensed noble gases and gas mixtures from cryogenic surfaces

    CERN Document Server

    Tratnik, H; Störi, H

    2007-01-01

    In accelerators, operating at liquid-helium temperature, cold surfaces are exposed to intense synchrotron radiation and bombardment by energetic electrons and ions. Molecular desorption yield and secondary electron yield can strongly influence the performance of the accelerator. In order to predict the gas density during the operation, the knowledge of electron-induced desorption yields of condensed gases and of its variation with the gas coverage is necessary. Desorption yields under electron impact of various noble gases and gas mixtures condensed on a copper surface cooled at 4.2 K have been measured.

  20. Water Vapor Desorption Characteristics of Honeycomb Type Sorption Element Composed of Organic Sorbent

    Science.gov (United States)

    Inaba, Hideo; Kida, Takahisa; Horibe, Akihiko; Kaneda, Makoto; Okamoto, Tamio; Seo, Jeong-Kyun

    This paper describes the water vapor desorption characteristics of honeycomb shape type sorbent element containing new organic sorbent of the bridged complex of sodium polyacrylate. The transient experiments in which the dry air was passed into the honeycomb type sorbent element sorbed water vapor were carried out under various conditions of air velocity, temperature, relative humidity and honeycomb length. The obtained data for desorption process were compared with those for sorption process. Finally, Sherwood number of mass transfer of the organic sorbent for desorption process was derived in terms of Reynolds number, modified Stefan number and non-dimensional honeycomb length.

  1. Thermal desorption spectroscopy of palladium and copper on silica

    Science.gov (United States)

    Pierce, Daniel E.; Burns, Richard P.; Gabriel, Kenneth A.

    Thermal desorption spectroscopy of palladium and copper films grown on clean silica substrates was performed using CO2 laser heating. After cleaning the surface by high temperature heating, a controlled, low coverage dose of metal atoms was deposited on the substrate. Temperature ramping was achieved using a constant laser power, the value of which depended on the nature of the metal and substrate as well as the substrate size. At high temperatures (above 1025 K for palladium and above 975 K for copper), metal films vaporize and desorption spectra provide information about the nature of the metal deposit and metal-support interaction. With increasing coverage of palladium on silica, a positive temperature shift in the leading edge of desorption was seen. At higher coverages, above about 2 x 10(exp 15) atoms/sq cm, a common leading edge appears and zero-order kinetic analysis gave E(sub act) values between 3.9 and 4.3 +/- 0.1 eV which can be compared with the value of 3.83 eV for Delta (H(sub vap)) (1200 K) for palladium metal. Similar coverage-dependent properties were not seen for copper on silica; instead, a common desorption leading edge appeared down to submonolayer coverages. Zero-order analysis at about 1 x 10(exp 15) atoms/sq cm gave an E(sub act) of 3.3 +/- 0.1 eV, which is comparable with the value of 3.44 eV for Delta (H(sub vap)) (1100 K) for copper metal.

  2. Temperature Programmed Desorption and Infrared Spectroscopic Studies of Interfacial Hydrogen Bonds for Small Molecules Adsorbed on Silica and Within Metal Organic Frameworks

    OpenAIRE

    Abelard, Joshua Erold Robert

    2017-01-01

    Hydrogen bonds are arguably the most important reversible intermolecular forces. However, surprisingly few studies of their fundamental nature at the gas-surface interface have been performed. Our research investigated sulfur mustard (HD) adsorption by characterizing interfacial hydrogen bonding and dispersion forces for the simulant molecules 2-chloroethyl ethyl sulfide (2-CEES) and methyl salicylate on well-characterized hydroxyl-functionalized surfaces (silica and UiO-66). Our approach uti...

  3. Behaviour of neutron irradiated beryllium during temperature excursions up to and beyond its melting temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pajuste, Elina, E-mail: elina.pajuste@lu.lv; Kizane, Gunta; Avotiņa, Līga; Zariņš, Artūrs

    2015-10-15

    Beryllium pebble behaviour has been studied regarding the accidental operation conditions of tritium breeding blanket of fusion reactors. Structure evolution, oxidation and thermal properties have been compared for nonirradiated and neutron irradiated beryllium pebbles during thermal treatment in a temperature range from ambient temperature to 1600 K. For neutron irradiated pebbles tritium release process was studied. Methods of temperature programmed tritium desorption (TPD) in combination with thermogravimetry (TG) and temperature differential analysis (TDA), scanning electron microscopy (SEM) in combination with Energy Dispersive X-ray analysis (EDX) have been used. It was found that there are strong relation between tritium desorption spectra and structural evolution of neutron irradiated beryllium. The oxidation rate is also accelerated by the structure damages caused by neutrons.

  4. High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, Arvid [ORNL

    2007-08-01

    Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

  5. Programming Enhancements for Low Temperature Thermal Decomposition Workstation

    Energy Technology Data Exchange (ETDEWEB)

    Igou, R.E.

    1998-10-01

    This report describes a new control-and-measurement system design for the Oak Ridge Y-12 Plant's Low Temperature Thermal Decomposition (LTTD) process. The new design addresses problems with system reliability stemming from equipment obsolescence and addresses specific functional improvements that plant production personnel have identified, as required. The new design will also support new measurement techniques, which the Y-12 Development Division has identified for future operations. The new techniques will function in concert with the original technique so that process data consistency is maintained.

  6. Oxygen Sorption and Desorption Properties of Selected Lanthanum Manganites and Lanthanum Ferrite Manganites

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Skou, Eivind M.; Jacobsen, Torben

    2015-01-01

    Temperature‐programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid‐oxide fuel cell (SOFC) cathode materials (La0.85Sr0.15)0.95MnO3+δ (LSM) and La0.60Sr0.40Fe0.80Mn0.20O3‐δ (LSFM). The powders were characteriz...

  7. Gas Desorption and Electron Emission from 1 MeV Potassium Iion Bombardment of Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A; Covo, M K; Bieniosek, F; Prost, L; Seidl, P; Baca, D; Coorey, A; Sakumi, A

    2004-03-25

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 degrees from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86 degrees, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88 degrees. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub 0} were much larger, of order {gamma}{sub 0} = 10{sub 4}. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to {approx}220 degrees had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  8. Spiral Surface Growth without Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A.; Plapp, M. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115 (United States)

    1998-11-01

    Spiral surface growth is well understood in the limit where the step motion is controlled by the local supersaturation of adatoms near the spiral ridge. In epitaxial thin-film growth, however, spirals can form in a step-flow regime where desorption of adatoms is negligible and the ridge dynamics is governed by the nonlocal diffusion field of adatoms on the whole surface. We investigate this limit numerically using a phase-field formulation of the Burton-Cabrera-Frank model, as well as analytically. Quantitative predictions, which differ strikingly from those of the local limit, are made for the selected step spacing as a function of the deposition flux, as well as for the dependence of the relaxation time to steady-state growth on the screw dislocation density. {copyright} {ital 1998} {ital The American Physical Society }

  9. Adsorption of Molecular Gases on Silver/Carbon Nanotube Composites at Low Temperatures and Low Pressures

    Directory of Open Access Journals (Sweden)

    M. Barberio

    2014-01-01

    Full Text Available We present an experimental study adsorption of molecular gases (N2, H2, O2, CH4, C2H4, and C2H6 on multiwalled carbon nanotubes (MWCNTs and MWCNT doped with Ag at low temperatures (35 K and pressures (10−6 Torr using the temperature programmed desorption technique. Our results show that the desorption kinetics is of the first order; furthermore comparative measurements indicate that Ag/MWCNTs have an adsorption capacity higher than that of a pure sample suggesting that these composites are good candidates as gas cryosorbers for applications in cryopumps or sensor of latest generation.

  10. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  11. 67 FR 54410 - University Research for the High Temperature Superconductivity Program

    Science.gov (United States)

    2002-08-22

    ...The U.S. Department of Energy (DOE) Idaho Operations Office (ID) is seeking applications for university research projects in partnership with a national laboratory in support of the High Temperature Superconductivity Program to expand the research base. The research must support Superconductivity for Electric Systems Program milestones, research objectives, and long-term goals. Information on Superconductivity for Electric Systems Program can be found at URL: http://www.eren.doe.gov/superconductivity/pdfs/ superconelectric_reg_materials.pdf.

  12. Enhanced Atomic Desorption of 209 and 210 Francium from Organic Coating.

    Science.gov (United States)

    Agustsson, Steinn; Bianchi, Giovanni; Calabrese, Roberto; Corradi, Lorenzo; Dainelli, Antonio; Khanbekyan, Alen; Marinelli, Carmela; Mariotti, Emilio; Marmugi, Luca; Ricci, Leonardo; Stiaccini, Leonardo; Tomassetti, Luca; Vanella, Andrea

    2017-06-23

    Controlled atomic desorption from organic Poly-DiMethylSiloxane coating is demonstrated for improving the loading efficiency of (209,210)Fr magneto-optical traps. A three times increase in the cold atoms population is obtained with contact-less pulsed light-induced desorption, applied to different isotopes, either bosonic or fermionic, of Francium. A six times increase of (210)Fr population is obtained with a desorption mechanism based on direct charge transfer from a triboelectric probe to the adatom-organic coating complex. Our findings provide new insight on the microscopic mechanisms of atomic desorption from organic coatings. Our results, obtained at room temperature so as to preserve ideal vacuum conditions, represent concrete alternatives, independent from the atomic species in use, for high-efficiency laser cooling in critical conditions.

  13. A model for the catalytic reduction of NO with CO and N desorption

    Science.gov (United States)

    Díaz, J. J.; Buendía, G. M.

    2018-02-01

    In this work we have investigated by Monte Carlo simulations the dynamical behavior of a modified Yaldram-Khan (YK) model for the catalytic reduction of NO on a surface. Our model is simulated on a square lattice and includes the individual desorption of CO molecules and N atoms, processes associated with temperature effects. When CO desorption is added, strong fluctuations appear, which are associated with the spreading of N checkerboard structures on the surface. These structures take a long time to coalesce, allowing the existence of a unsteady but long lasting reactive state. N desorption also favors the reactivity of the system, this time by diminishing the size of the N structures and impeding their coalescence. The combined desorption of CO and N produces a reactive state as well, where reactive zones among N structures can take place on the surface.

  14. Sorption and desorption of tritiated water vapor on piping materials of nuclear fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Ohmori, Rumi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Sorption and desorption of D{sub 2}O on Cr{sub 2}O{sub 3}, NiO, SS316 powders were studied at ambient temperature. When D{sub 2}O were contacted with samples after drying at 303K, broad peak was observed at 2100-2700cm{sup -1} on Cr{sub 2}O{sub 3} and NiO. Sorption and desorption rate depended on wave numbers. Isotope exchange rate with H{sub 2}O vapor was faster than dry desorption rate. By heating pretreatment, sorption amount and desorption rate for Cr{sub 2}O{sub 3} and NiO decreased. For SS316, broad peak was observed only after heating pretreatment at 673K. (author)

  15. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  16. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  17. Investigations on ion-beam induced desorption from cryogenic surfaces; Untersuchungen zu ionenstrahlinduzierter Desorption von kryogenen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Christoph

    2017-07-03

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  18. Note: Heated sample platform for in situ temperature-programmed XPS.

    Science.gov (United States)

    Samokhvalov, Alexander; Tatarchuk, Bruce J

    2011-07-01

    We present the design, fabrication, and performance of the multi-specimen heated platform for linear in situ heating during the Temperature-Programmed XPS (TPXPS). The platform is versatile, compatible with high vacuum (HV) and bakeout. The heater platform is tested under in situ linear heating of typical high surface area sorbent∕catalyst support--nanoporous TiO(2). The platform allows the TPXPS of multiple samples located on specimen disk that can be transferred in and out of the TPXPS chamber. Electric characteristics, temperature and pressure curves are provided. Heating power supply, PID temperature controller, data-logging hardware and software are described.

  19. Desorption process of hydrogen starting from the Mg{sub 2}NiH{sub 4} and Mg{sub 2}NiH{sub 0.3}; Proceso de desorcion de hidrogeno a partir del hidruro intermetalico Mg{sub 2}NiH{sub 4} y Mg{sub 2}NiH{sub 0.3}

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Basurto S, R.; Lopez M, B.E. [Departamento de Quimica, ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work the desorption velocity of H{sub 2} was determined starting from the magnesium nickel hydride once the reaction between the intermetallic and the hydrogen was realized, the compound were analysed by means of a thermogravimetric equipment, the conditions for carrying out the analysis were: 10 C by minute in nitrogen atmosphere at a volume of 50 ml by minute, subsequently the isotherms at different times were programmed and the desorption velocity of hydrogen was determined. The results show that the desorption velocity of hydrogen depends of the temperature, using only the nitrogen flux which acts as a carrier gas. Observing that the hydrogen liberation is carried out by means of two mechanisms according to the isotherms obtained. (Author)

  20. Enhanced hydrogen desorption property of MgH{sub 2} with the addition of cerium fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huai-Jun, E-mail: huaijun.lin.489@s.kyushu-u.ac.jp [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Matsuda, Junko [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Li, Hai-Wen [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395 (Japan); Zhu, Min [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); China–Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510640 (China); Akiba, Etsuo [Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395 (Japan)

    2015-10-05

    Highlights: • Activation energy of MgH{sub 2} desorption is remarkably reduced with the dopant of CeF{sub 4}. • The improvement might be attributed to new Ce–F–Mg species at the CeF{sub 4}/MgH{sub 2} interface. • Easy electron transfer induced from the high valence Ce-cation benefits MgH{sub 2} desorption. - Abstract: Hydrogen desorption property of MgH{sub 2} doped with cerium fluorides with different valences prepared using ball milling has been studied. CeF{sub 4} is catalytically active for hydrogen desorption of MgH{sub 2}. Hydrogen desorption temperature and apparent activation energy of MgH{sub 2} are significantly reduced with dopant of 2 mol% of CeF{sub 4}, which might be attributed to the formation of a new Ce–F–Mg specie at the CeF{sub 4}/MgH{sub 2} interface and the easy electron transfer induced from the high valence Ce-cation. The apparent activation energy of hydrogen desorption of MgH{sub 2} is reduced from ∼160 kJ/mol to ∼110 kJ/mol with the dopant of CeF{sub 4}.

  1. Film growth, adsorption and desorption kinetics of indigo on SiO2

    Science.gov (United States)

    Scherwitzl, Boris; Resel, Roland; Winkler, Adolf

    2014-05-01

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  2. Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Scherwitzl, Boris, E-mail: b.scherwitzl@tugraz.at; Resel, Roland; Winkler, Adolf [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  3. Computer program determines thermal environment and temperature history of lunar orbiting space vehicles

    Science.gov (United States)

    Head, D. E.; Mitchell, K. L.

    1967-01-01

    Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.

  4. Heat-integrated liquid-desorption exchanger (HILDE) for CO2 desorption

    NARCIS (Netherlands)

    Ham, L.V. van der; Khakharia, P.M.; Goetheer, E.L.V.

    2016-01-01

    A novel type of separating heat exchanger, called a heat-integrated liquid-desorption exchanger (HILDE), applied to a typical CO2 desorption process, has been investigated both numerically and experimentally. Process simulations, hydrodynamic and mass transfer experiments, and a preliminary cost

  5. Desorption of 137Cs+ from mosses

    Directory of Open Access Journals (Sweden)

    OLGICA NEDIC

    2002-09-01

    Full Text Available Mosses are biomonitors that accumulate large amounts of various pollutants, including radionuclides. In this work we investigated the possibility of 137Cs extraction from mosses, as well as the significance of species specificity on the efficiency of 137Cs desorption. Salt and acid solutions were used as extraction media. It was shown that a 5 % solution of both ammonium oxalate and phosphoric acid was able to desorb 81.8 % of 137Cs+ from Homalothecium sericeum, which was 39.9 % more than desorption from water. At the same time, most of the desorbed 137Cs+ was incorporated in crystals that precipitated from the solution. An interspecies difference in respect to 137Cs+ desorption was noticed.

  6. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  7. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Horner, M.W.

    1980-12-01

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  8. Investigation of Catalytic Effects and Compositional Variations in Desorption Characteristics of LiNH2-nanoMgH2

    Directory of Open Access Journals (Sweden)

    Sesha S. Srinivasan

    2017-07-01

    Full Text Available LiNH2 and a pre-processed nanoMgH2 with 1:1 and 2:1 molar ratios were mechano-chemically milled in a high-energy planetary ball mill under inert atmosphere, and at room temperature and atmospheric pressure. Based on the thermogravimetric analysis (TGA experiments, 2LiNH2-nanoMgH2 demonstrated superior desorption characteristics when compared to the LiNH2-nanoMgH2. The TGA studies also revealed that doping 2LiNH2-nanoMgH2 base material with 2 wt. % nanoNi catalyst enhances the sorption kinetics at lower temperatures. Additional investigation of different catalysts showed improved reaction kinetics (weight percentage of H2 released per minute of the order TiF3 > nanoNi > nanoTi > nanoCo > nanoFe > multiwall carbon nanotube (MWCNT, and reduction in the on-set decomposition temperatures of the order nanoCo > TiF3 > nanoTi > nanoFe > nanoNi > MWCNT for the base material 2LiNH2-nanoMgH2. Pristine and catalyst-doped 2LiNH2-nanoMgH2 samples were further probed by X-ray diffraction, Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, thermal programmed desorption and pressure-composition-temperature measurements to better understand the improved performance of the catalyst-doped samples, and the results are discussed.

  9. Glyphosate sorption/desorption on biochars – Interactions of physical and chemical processes

    Science.gov (United States)

    BACKGROUND: Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350°C t...

  10. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Science.gov (United States)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  11. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  12. Temperature Programming of the Second Dimension in Comprehensive Two-Dimensional Gas Chromatography.

    Science.gov (United States)

    Chow, Hei-Yin J; Górecki, Tadeusz

    2017-08-15

    Comprehensive two-dimensional gas chromatography (GC × GC) provides a significant increase in selectivity and peak capacity for the separation of complex mixtures. Optimization of the system is often complicated, with many interconnected parameters between the two dimensions and additional problems like peak wraparound that need to be eliminated or minimized. Wraparound peaks are compounds with retention times in the second dimension that are longer than the modulation period. This results in broad peaks that elute in subsequent modulation cycles, potentially coeluting with separated compounds. The use of a secondary oven is often the solution to the problem. By applying a constant positive temperature offset from the main oven temperature, the retention of all analytes can be reduced so that they elute within their respective modulation periods. However, this reduces the separation of less retained compounds, a classical consequence of the general elution problem due to the isothermal conditions during the limited separation time in the second dimension. To overcome this problem, the second dimension was temperature-programmed by resistively heating an electrically conductive secondary column using constant current. The column was cooled through forced convection inside the GC oven within the time frame of a single modulation period. Temperature programming in the second dimension of GC × GC was able to improve separation while eliminating wraparound peaks and reducing peak widths, leading to significantly increased second dimension peak capacity.

  13. Program accomplishments and future prospects for low-temperature geothermal resource assessment in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Icerman, L.; Ruscetta, C.A. (ed.)

    1982-07-01

    An important component of the State-coupled program has been basic studies in specific regions of New Mexico, including areas adjacent to the cities of Albuquerque, Las Cruces, Socorro, and Truth or Consequences. Considerable geological, hydrological, electrical resistivity, gravity, magnetic, seismic, water analysis, and subsurface temperature data have been compiled and analyzed for these locations. During the four-year research program, a total of 25 tasks have been undertaken. Eleven of these tasks were focused toward collecting and compiling statewide data, six were regional studies covering more than one county, and eight were research projects directed primarily toward data collection near specific cities or known resource areas. Two of these latter studies contributed significantly to the confirmation of the Las Alturas geothermal anomaly east of Las Cruces. A brief summary of the program accomplishments by task is presented. The resource assessment programs in New Mexico have been very successful in (1) delineating low-temperature geothermal resources throughout New Mexico on statewide, regional, and area-specific scales; (2) developing a strong community of in-state geothermal energy research and development professionals and practitioners; and (3) elevating the level of awareness of geothermal energy potential among commerce, industry, and the general public. Future prospects for the state are presented.

  14. Product desorption limitations in selective photocatalytic oxidation

    NARCIS (Netherlands)

    Renckens, T.J.A.; Almeida, A.R.; Almeida, A.R.; Damen, M.R.; Kreutzer, M.T.; Mul, Guido

    2010-01-01

    The rate of photocatalytic processes can be significantly improved if strongly bound products rapidly desorb to free up active sites. This paper deals with the rate of desorption of cyclohexanone, the product of the liquid-phase photo-oxidation of cyclohexane. Dynamic step-response and

  15. Quantum theory of laser-stimulated desorption

    Science.gov (United States)

    Slutsky, M. S.; George, T. F.

    1978-01-01

    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  16. Structure, tritium depth profile and desorption from ‘plasma-facing’ beryllium materials of ITER-Like-Wall at JET

    Directory of Open Access Journals (Sweden)

    E. Pajuste

    2017-08-01

    Experimental results revealed that > 95% of the tritium was localized in the top 30 – 45µm of the ‘plasma-facing’ surface, however, possible tritium presence up to 100µm cannot be excluded. During temperature programmed desorption at 4.8K/min in the flow of purge gas He+ 0.1% H2 the tritium release started below 475K, the most intense release occurred at 725 – 915K and the degree of detritiation of > 91% can be obtained upon reaching 1075K. The total tritium activity in the samples was in range of 2 – 32kilo Becquerel per square centimetre of the plasma-facing surface area.

  17. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  18. WATER ADSORPTION AND DESORPTION ISOTHERMS ON MILK POWDER: II. WHOLE MILK

    Directory of Open Access Journals (Sweden)

    Edgar M. Soteras

    2014-03-01

    Full Text Available The aim of this research was the determination of adsorption and desorption isotherms of cow whole milk powder. The experiments have been carried out at 15, 25 and 40 ºC, in ranges of moisture and water activity characteristic of normal conditions in which the processes of drying, packaging and storage are developed. By studying the influence of the temperature on the experimental plots, the isosteric adsorption heat was determined. Experimental data were correlated to the referential model of Guggenheim, Anderson and Boer (GAB. For both, adsorption and desorption, a good model fit was observed. The isotherms showed very similar shapes between them and, by comparing adsorption and desorption isotherms, the phenomenon of hysteresis was confirmed.

  19. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata

    NARCIS (Netherlands)

    Boks, N.P.; Kaper, H.J.; Norde, W.; Busscher, H.J.; Mei, van der H.C.

    2008-01-01

    Adhesion and desorption are simultaneous events during bacterial adhesion to surfaces. although desorption is far less studied than adhesion. Here, desorption of Staphylococcus epidermidis from substratum surfaces is demonstrated to be residence time dependent. Initial desorption rate coefficients

  20. The New Weather Radar for America's Space Program in Florida: A Temperature Profile Adaptive Scan Strategy

    Science.gov (United States)

    Carey, L. D.; Petersen, W. A.; Deierling, W.; Roeder, W. P.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar replaces the modified WSR-74C at Patrick AFB that has been in use since 1984. The new radar is a Radtec TDR 43-250, which has Doppler and dual polarization capability. A new fixed scan strategy was designed to best support the space program. The fixed scan strategy represents a complex compromise between many competing factors and relies on climatological heights of various temperatures that are important for improved lightning forecasting and evaluation of Lightning Launch Commit Criteria (LCC), which are the weather rules to avoid lightning strikes to in-flight rockets. The 0 C to -20 C layer is vital since most generation of electric charge occurs within it and so it is critical in evaluating Lightning LCC and in forecasting lightning. These are two of the most important duties of 45 WS. While the fixed scan strategy that covers most of the climatological variation of the 0 C to -20 C levels with high resolution ensures that these critical temperatures are well covered most of the time, it also means that on any particular day the radar is spending precious time scanning at angles covering less important heights. The goal of this project is to develop a user-friendly, Interactive Data Language (IDL) computer program that will automatically generate optimized radar scan strategies that adapt to user input of the temperature profile and other important parameters. By using only the required scan angles output by the temperature profile adaptive scan strategy program, faster update times for volume scans and/or collection of more samples per gate for better data quality is possible, while maintaining high resolution at the critical temperature levels. The temperature profile adaptive technique will also take into account earth curvature and refraction

  1. Biogas upgrading by temperature swing adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Tamara; Url, Michael; Hofbauer, Hermann (Inst. of Chemical Engineering, Vienna Univ. of Technology, Vienna (Austria)), e-mail: tamara.mayer@tuwien.ac.at

    2010-07-15

    This paper presents a novel process for biogas upgrading by means of temperature swing adsorption. Temperature swing adsorption process experiments were carried out in a laboratory test rig focusing on the process step of desorption. Desorption experiments were performed using three different variations of regeneration. Further on, performance and efficiency of the applied desorption variations were investigated. As a result, desorption by any combination of direct and indirect heating is considered as the best and most efficient way. Referring to the adsorption step, separation performance is excellent, carbon dioxide is fully adsorbed and pure methane can be obtained. Keywords: biogas, upgrading, adsorbents

  2. The cooling effect by adsorption-desorption cycles

    Directory of Open Access Journals (Sweden)

    Wolak Eliza

    2017-01-01

    Full Text Available Adsorption appliances may turn out to be an alternative to compression-type refrigerators. The adsorption refrigeration machine may be driven by a low-grade heat source, especially solar energy. Solar adsorption cooling systems are environment-friendly and have zero ozone depletion potential. Therefore, the adsorption refrigeration is one kind of energy saving refrigeration methods. The merits of the adsorption refrigeration systems will be more significant especially when it is used in vehicles (automobiles, ships and locomotives, to preserve food and medicines and in air-conditioning. The paper presents the advantages and disadvantages as well as the evolution of the technology of adsorptive refrigeration systems. The methods of improving of adsorption refrigeration systems through improvements in adsorbents properties, use of advanced cycles and hybrid systems is also presented. Possible applications and perspectives for development of adsorption cooling systems are also analyzed. The paper describes a test stand of the adsorption-desorption refrigeration. The present investigations have been carried out utilizing the activated carbon granules as an adsorbent and methanol as an adsorbate. The paper demonstrates the measurement of temperature changes in the adsorbent bed and condenser during adsorption-desorption cycles.

  3. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K.

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  4. Thermal desorption of methanol in hot cores. Study with a quartz crystal microbalance

    Science.gov (United States)

    Luna, Ramón; Satorre, Miguel Ángel; Domingo, Manuel; Millán, Carlos; Luna-Ferrándiz, Ramón; Gisbert, Georgina; Santonja, Carmina

    2018-01-01

    The desorption process of methanol in the hot cores of massive young stars is addressed in this work. The study of pure methanol ice and when it is mixed or layered with water allows a better understanding of the physical and chemical processes which could have occurred during the formation of methanol and it is possible to infer the range of temperatures within which methanol can be found in the gas phase in these scenarios. The goal of this study was to model the desorption process of methanol as pure ice and mixed or layered with water under the conditions present in the early stages of hot cores whichcharacterize young star formation. The simulations of desorption of methanol, when it stands alone, performed in this work were compared to the values obtained by other authors to validate the method presented. In this work, the desorption of a water:methanol mixture under astrophysical conditions is also simulated. The theoretical results obtained for layered mixtures match with the temperatures at which an increase of the presence of methanol in the gas phase is detected when young massive mass stars are observed. This study has been performed using the frequency variation of a quartz crystal microbalance which provides a direct measure of the desorbing molecules during the experiments. This process was modelled using the Polanyi-Wigner equation and applied to astrophysical scenarios.

  5. Hydrogen absorption/desorption characteristics of room temperature ...

    Indian Academy of Sciences (India)

    ... hydrogen storage materials are found to be formed within the range of 1.35 to 1.45 where ∼ 2.5 to 2.9 H/F.U. can be reversibly stored under the ideal operating conditions. The heat of the reaction is found to be ∼ 17 kJ/mol, which means these are promising candidates for stationary and short range mobile applications.

  6. Hydrogen absorption/desorption characteristics of room temperature ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The present communication deals with the hydrogen storage characteristics of C15 laves phase. ZrMn2–xNix system tailored within the x values of 1\\25 to 1\\50. Drastic variations in thermodynamics of the hydride phase is observed for any little changes of concentration x within this narrow range. The most prom-.

  7. First principle calculations for improving desorption temperature in ...

    Indian Academy of Sciences (India)

    5Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat 10000, Morocco. 6Hassan II Academy of Science and Technology, Rabat 10000, Morocco. 7Institut Néel, CNRS-UJF, 38042 Grenoble cedex 9, France. MS received 26 June 2013; revised 25 December 2013. Abstract. Using ab initio calculations, we predict ...

  8. A hot hole-programmed and low-temperature-formed SONOS flash memory.

    Science.gov (United States)

    Chang, Yuan-Ming; Yang, Wen-Luh; Liu, Sheng-Hsien; Hsiao, Yu-Ping; Wu, Jia-Yo; Wu, Chi-Chang

    2013-07-31

    In this study, a high-performance TixZrySizO flash memory is demonstrated using a sol-gel spin-coating method and formed under a low annealing temperature. The high-efficiency charge storage layer is formed by depositing a well-mixed solution of titanium tetrachloride, silicon tetrachloride, and zirconium tetrachloride, followed by 60 s of annealing at 600°C. The flash memory exhibits a noteworthy hot hole trapping characteristic and excellent electrical properties regarding memory window, program/erase speeds, and charge retention. At only 6-V operation, the program/erase speeds can be as fast as 120:5.2 μs with a 2-V shift, and the memory window can be up to 8 V. The retention times are extrapolated to 106 s with only 5% (at 85°C) and 10% (at 125°C) charge loss. The barrier height of the TixZrySizO film is demonstrated to be 1.15 eV for hole trapping, through the extraction of the Poole-Frenkel current. The excellent performance of the memory is attributed to high trapping sites of the low-temperature-annealed, high-κ sol-gel film.

  9. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  10. Kinetics of petroleum generation by programmed-temperature closed- versus open-system pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, H.J.; Horsfield, B. (Juelich Research Centre (Germany))

    1993-02-01

    Bulk petroleum generation by programmed-temperature pyrolysis of immature (R[sub r] = 0.48%) Posidonia (Toarcian) Shale samples at heating rates of 0.1, 0.7, and 5.0 K/min has been studied comparatively under open- and closed-system conditions, using the microscale sealed vessel (MSSV) technique in the latter case. The comparison of formation rates required a differentiation (vs. temperature) of closed-system cumulative product evolution profiles. The kinetic analysis assuming twenty-five first order parallel reactions with activation energies regularly spaced between 46 and 70 kcal/mol and a single pre-exponential factor A yielded the same value of A = 1.08[center dot]10[sup 16] min[sup [minus]1] and very similar petroleum potential vs. activation energy distributions centered around 54 kcal/mol in both cases. In particular, both approaches turned out to be in excellent agreement with respect to predicting temperature ranges of oil and gas formation under geological heating conditions. This is in contrast to the case of petroleum yield assessment which appears to be more system-dependent. 67 refs., 6 figs.

  11. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-05-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.

  12. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  13. Adsorption and desorption of chlorpyrifos to soils and sediments.

    Science.gov (United States)

    Gebremariam, Seyoum Yami; Beutel, Marc W; Yonge, David R; Flury, Markus; Harsh, James B

    2012-01-01

    Chlorpyrifos, one of the most widely used insecticides, has been detected in air, rain, marine sediments, surface waters, drinking water wells, and solid and liquid dietary samples collected from urban and rural areas. Its metabolite, TCP, has also been widely detected in urinary samples collected from people of various age groups. With a goal of elucidating the factors that control the environmental contamination, impact, persistence, and ecotoxicity of chlorpyrifos, we examine, in this review, the peer-reviewed literature relating to chlorpyrifos adsorption and desorption behavior in various solid-phase matrices. Adsorption tends to reduce chlorpyrifos mobility, but adsorption to erodible particulates, dissolved organic matter, or mobile inorganic colloids enhances its mobility. Adsorption to suspended sediments and particulates constitutes a major off-site migration route for chlorpyrifos to surface waters, wherein it poses a potential danger to aquatic organisms. Adsorption increases the persistence of chlorpyrifos in the environment by reducing its avail- ability to a wide range of dissipative and degradative forces, whereas the effect of adsorption on its ecotoxicity is dependent upon the route of exposure. Chlorpyrifos adsorbs to soils, aquatic sediments, organic matter, and clay minerals to differing degrees. Its adsorption strongly correlates with organic carbon con- tent of the soils and sediments. A comprehensive review of studies that relied on the batch equilibrium technique yields mean and median Kd values for chlorpyrifos of 271 and 116 L/kg for soils, and 385 and 403 L/kg for aquatic sediments. Chlorpyrifos adsorption coefficients spanned two orders of magnitude in soils. Normalizing the partition coefficient to organic content failed to substantially reduce variability to commonly acceptable level of variation. Mean and median values for chlorpyrifos partition coefficients normalized to organic carbon, K, were 8,163 and 7,227 L/kg for soils and 13

  14. Medium-temperature air-heater development program. Final report, October 1, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-15

    A program to design, fabricate, and verify by test a low-cost (in volume production), modularized, practical solar air heater adaptable for new or retrofit space-heating and hot-water applications is described. The unique hardware elements of the SOLAIR II medium-temperature air heater described are the TCA solar collectors, energy transfer module, interconnecting ductwork, and mounting hardware. SOLAIR II is a two-tank domestic hot-water-augmented system. The system is described in detail; market and design analyses are described; fabrication procedures are noted; and design verification tests and results are discussed. The design used for the pre-production lot was essentially the SOLAIR II design and will serve as the basis for future design evaluations as the product is introduced into the commercial market.

  15. Laser Infrared Desorption Spectroscopy to Detect Complex Organic Molecules on Icy Planetary Surfaces

    Science.gov (United States)

    Sollit, Luke S.; Beegle, Luther W.

    2008-01-01

    Laser Desorption-Infrared Spectroscopy (LD-IR) uses an IR laser pulse to desorb surface materials while a spectrometer measures the emission spectrum of the desorbed materials (Figure 1). In this example, laser desorption operates by having the incident laser energy absorbed by near surface material (10 microns in depth). This desorption produces a plume that exists in an excited state at elevated temperatures. A natural analog for this phenomenon can be observed when comets approach the sun and become active and individual molecular emission spectra can be observed in the IR [1,2,3,4,5]. When this occurs in comets, the same species that initially emit radiation down to the ground state are free to absorb it, reducing the amount of detectable emission features. The nature of our technique results in absorption not occurring, because the laser pulse could easily be moved away form the initial desorption plume, and still have better spatial resolution then reflectance spectroscopy. In reflectance spectroscopy, trace components have a relatively weak signal when compared to the entire active nature of the surface. With LDIR, the emission spectrum is used to identify and analyze surface materials.

  16. Nickel (II) ion desorption kinetic modeling from unmodified and ...

    African Journals Online (AJOL)

    The desorption of Ni2+ from three oil palm fruit fibre adsorbents (UOPF, 0.5MOPF and 1.0MOPF) using five desorbing solutions showed a desorption efficiency following the trend, 0.1M HCl > 0.1MH2SO4 > 0.1MHNO3 > 0.1MNaOH >hot deionized H2O. The Elovich desorption constant, β values for the 0.1MHCl desorbent ...

  17. Sticking and desorption of hydrogen on graphite: A comparative study of different models

    Science.gov (United States)

    Lepetit, Bruno; Lemoine, Didier; Medina, Zuleika; Jackson, Bret

    2011-03-01

    We study the physisorption of atomic hydrogen on graphitic surfaces with four different quantum mechanical methods: perturbation and effective Hamiltonian theories, close coupling wavepacket, and reduced density matrix propagation methods. Corrugation is included in the modeling of the surface. Sticking is a fast process which is well described by all methods. Sticking probabilities are of the order of a few percent in the collision energy range 0-25 meV, but are enhanced for collision energies close to those of diffraction resonances. Sticking also increases with surface temperature. Desorption is a slow process which involves multiphonon processes. We show, however, how to correct the close coupling wavepacket method to account for such phenomena and obtain correct time constants for initial state decay. Desorption time constants are in the range of 20-50 ps for a surface temperature of 300 K.

  18. A Study on Thermal Desorption of Deuterium in D-loaded SS316LN for ITER Tritium Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myungchul; Kim, Heemoon; Ahn, Sangbok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jaeyong; Lee, Sanghwa; LanAhn, Nguyen Thi [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Because Type B radwaste includes tritium on its inside, especially at vicinity of surface, tritium removal from the radwaste is a matter of concern in terms of the radwaste processes. Tritium behavior in materials is related with temperature. Considering a diffusion process, it is expected that tritium removal efficiency is enhanced with increasing baking temperature. However, there is a limitation about temperature due to facility capacity and economic aspect. Therefore, it is necessary to investigate the effect of temperature on the desorption behavior of Tritium in ITER materials. TDS analysis was performed in SS316LN loaded at 120, 240 and 350 °C. D2 concentration and the desorption peak temperature increased with increasing loading temperature. Using peak shift method with three ramp rates of 0.166, 0.332, and 0.5 °C/sec, trap activation energy of D in SS316LN loaded at 350 °C was 56 kJ/mol.

  19. High temperature experiments on a 4 tons UF6 container TENERIFE program

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  20. Using Rainfall and Temperature Data in the Evaluation of National Malaria Control Programs in Africa.

    Science.gov (United States)

    Thomson, Madeleine C; Ukawuba, Israel; Hershey, Christine L; Bennett, Adam; Ceccato, Pietro; Lyon, Bradfield; Dinku, Tufa

    2017-09-01

    Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues.

  1. A universal, high recovery assay for protein quantitation through temperature programmed liquid chromatography (TPLC).

    Science.gov (United States)

    Orton, Dennis J; Doucette, Alan A

    2013-03-15

    As an alternative to direct UV absorbance measurements, estimation of total protein concentration is typically conducted through colorimetric reagent assays. However, for protein-limited applications, the proportion of the sample sacrificed to the assay becomes increasingly significant. This work demonstrates a method for quantitation of protein samples with high recovery. Temperature programmed liquid chromatography (TPLC) with absorbance detection at 214nm permits accurate estimation of total protein concentration from samples containing as little as 0.75μg. The method incorporates a temperature gradient from 25 to 80°C to facilitate elution of total protein into a single fraction. Analyte recovery, as measured from 1 and 10μg protein extracts of Escherichia coli, is shown to exceed 93%. Extinction coefficients at 214nm were calculated across the human proteome, providing a relative standard deviation of 21% (versus 42% at 280nm), suggesting absorbance values at 214nm provide a more consistent measure of protein concentration. These results translate to a universal protein detection strategy exhibiting a coefficient of variation below 10%. Together with the sensitivity and tolerance to contaminants, TPLC with UV detection is a favorable alternative to colorimetric assay for total protein quantitation, particularly in sample-limited applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Substrate-Enhanced Micro Laser Desorption Ionization Mass Spectrometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodyne Research, Inc. and the University of Massachusetts at Amherst will collaborate to develop laser desorption ionization (LDI) mass spectrometric analysis of...

  3. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  4. Low-Temperature Thermal Energy Storage Program. Annual progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, G.D.; Eissenberg, D.M.; Kedl, R.J.

    1979-05-01

    The Low-Temperature Thermal Energy Storage (LTTES) Program is part of a national effort to develop means for reducing United States dependence on oil and natural gas as primary energy sources. To this end, LTTES addresses the development of advanced sensible and latent heat storage technologies that permit substitution by solar or off-peak electrical energies or permit conservation by recovery and reuse of waste heat. Emphasis is on applying these technologies to heating and cooling of buildings. As the LTTES program continued to mature, a number of technologies were identified for development emphasis, including (1) seasonal storage of hot and cold water from waste or natural sources in aquifers, (2) short-term or daily storage of heat or coolness from solar or off-peak electrical sources in phase-change materials, and (3) recovery and reuse of rejected industrial heat through thermal storage. These areas have been further divided into three major and four minor activities; significant accomplishments are reported for each.

  5. Effect of programmed diurnal temperature cycles on plasma thyroxine level, body temperature, and feed intake of holstein dairy cows

    Science.gov (United States)

    Scott, I. M.; Johnson, H. D.; Hahn, G. L.

    1983-03-01

    Holstein cows exposed to simulated summer diurnal ambient temperature cycles of Phoenix, Arizona and Atlanta, Georgia and diurnal modifications of these climates displayed daily cycles fluctuations in plasma thyroxine (T4) and rectal temperatures (Tre). There were daily diurnal changes in T4 and Tre under all simulated climate conditions. Maximal values generally occurred in the evening hours and minimum values in the morning. Although the diurnal rhythm was influenced by the various simulated climates (diurnal modifications) a diurnal rhythm was very evident even under constant conditions at thermoneutral (Tnc) and at cyclic thermoneutral conditions (TN). The major significance of the study is that the initiation of night cooling of the animals at a time when their Tre was highest was most beneficial to maintenance of a TN plasma T4 level. There was a highly significant negative relationship of average T4 and average Tre. There was also a significant negative relationship of feed consumption and average temperature-humidity index (THI). These data suggest that night cooling may be a most effective method to alleviate thermoregulatory limitations of a hot climate on optimal animal performance. Decreasing the night time air temperature (Ta) or THI or increasing the diurnal range allows the cows to more easily dissipate excess body heat accumulated during the day and minimize the thermal inhibition on feed intake, and alterations in plasma T4 and Tre.

  6. Molecular desorption of stainless steel vacuum chambers irradiated with 42 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating) are reported in terms of the molecular desorption yields for H/sub 2 /, CH/sub 4/, CO, Ar, and CO/sub 2/. (16 refs).

  7. DETERMINING THE COMPOSITION OF HIGH TEMPERATURE COMBUSTION PRODUCTS OF FOSSIL FUEL BASED ON VARIATIONAL PRINCIPLES AND GEOMETRIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Velibor V Vujović

    2011-01-01

    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  8. Absorption and desorption mass transfer rates in chemically enhanced reactive systems. Part II : Reverse kinetic rate parameters

    NARCIS (Netherlands)

    Hamborg, Espen S.; Versteeg, Geert F.

    2012-01-01

    The forward and reverse kinetic rate parameters have been determined for CO2 absorption and desorption mass transfer processes in aqueous 2.0 M MDEA solutions at temperatures of 298.15, 313.15, and 333.15 K and the loading of CO2 ranging from 0 to 0.8. The derived kinetic rate parameters have been

  9. Field desorption mass spectrometry of oligosaccharides

    Science.gov (United States)

    Linscheid, Michael; D'Angona, Jay; Burlingame, Alma L.; Dell, Anne; Ballou, Clinton E.

    1981-01-01

    Field desorption mass spectrometry has been used to analyze carbohydrate polymers with 5 to 14 hexose units without prior derivatization. In all examples, the molecular weight of the oligosaccharide could be determined by means of the abundant quasimolecular ions of the type MNa+, MH+, MNa22+, and MNa33+. Fragmentation at glycosidic linkages was observed in varying extents. The reduced oligosaccharide Man8GlcNAcH2, obtained from IgM [Cohen, R. E. & Ballou, C. E. (1980) Biochemistry 19, 4345-4358], gave quasimolecular ion signals MNa+ at m/z 1544, MH+ at m/z 1522, MNa22+ at m/z 784, and MNa33+ at m/z 530, all corresponding to its assumed molecular weight of 1519.5. Mycobacterial methylmannose polysaccharides with the general structure ManxMeMany-OCH3 [Yamada, H., Cohen, R. E. & Ballou, C. E. (1979) J. Biol. Chem. 254, 1972-1979] were also successfully analyzed. Man1MeMan13-OCH3, the largest homolog, gave the expected signal of the quasimolecular ion MNa+ at m/z 2506. The larger polysaccharides were analyzed by using a KRATOS MS-50 mass spectrometer with a high-field magnet enabling full sensitivity to be maintained up to 3000 atomic mass units. Polysaccharides up to m/z 1978 were analyzed by using a KRATOS MS-9 mass spectrometer operated at 4 Kv. The signal-to-noise ratio, which becomes a serious problem in field desorption mass spectrometry at low accelerating voltages, and the low instrument sensitivity were improved considerably by our use of a method of adding scans with low total ion currents obtained over a longer desorption time. In this way, we obtained complete sequence information on methylmannose polysaccharides up to Man1MeMan9-OCH3(MNa+ at m/z 1802). Analysis of a presumed Man1MeMan7-OCH3, gave a spectrum consistent only with the structure Man2MeMan6-OCH3, revealing the existence of a methylmannose homolog with 2 unmethylated mannoses at the nonreducing end of the chain. PMID:6940169

  10. Sequential sorption and desorption of chlorinated phenols in organoclays.

    Science.gov (United States)

    Kim, J H; Shin, W S; Kim, Y H; Choi, S J; Jeon, Y W; Song, D I

    2003-01-01

    Effect of pH on the sorption and desorption of the chlorinated phenols (2-chlorophenol and 2,4-dichlorophenol) in HDTMA-montmorillonite organoclays was investigated using sequential batch experiments. 2,4-dichlorophenol exhibited higher affinity in both sorption and desorption than 2-chlorophenol at pH 4.85 and 9.15. For both chlorophenols, the protonated speciation (at pH 4.85) exhibited a higher affinity in both sorption and desorption than the predominant deprotonated speciation (about 80% and 95% of 2-chlorophenate and 2,4-dichlophenate anions at pH 9.15, respectively). Desorption of chlorinated phenols was strongly dependent on the current pH regardless of their speciation during the previous sorption stage. No appreciable desorption resistance of the chlorinated phenols was observed in organoclays after sequential desorptions. Affinity of both chlorophenols in bisolute competitive sorption and desorption was reduced compared to that in a single-solute system due to the competition between solutes. The ideal adsorbed solution theory coupled with the single-solute Freundlich model successfully predicted the bisolute competitive sorption and desorption equilibria.

  11. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  12. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  13. Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, A.M.; Martin, A.J.; Folgado, M.A.; Gallardo, B. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Daza, L. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2009-06-15

    Because of the different experimental conditions found in literature for the measurement of the electroactive area of Pt/C electrodes of proton exchange membrane fuel cells (PEMFC) by means of underpotential hydrogen adsorption (H{sub UPD}) voltammetry, specially concerning sweep rate and temperature, it was found necessary to perform an analysis of these parameters. With this aim, the electroactive area of PEMFC electrodes has been measured by means of H{sub UPD} voltammetry at different sweep rates and temperatures, in liquid electrolyte and solid polymer contact. Both configurations show that H{sub UPD} adsorption and desorption charges are strongly dependent on sweep rate voltage and temperature. The most common behaviour observed is a maximum in H{sub UPD} desorption charge, typically in the 100-10 mV s{sup -1} sweep rate range, whereas H{sub UPD} adsorption charge shows continuous increase with decreasing sweep rate. The decrease of desorption charge at low sweep rates is attributed to adsorbing species related with carbon support reactivity. These processes are also responsible for the increase in desorption H{sub UPD} charge at low sweep rate. At high sweep rate, both adsorption and desorption H{sub UPD} charges decrease due to limiting diffusion of protons through the microporous electrode. As a consequence, it is found that the closest approximation to the real electroactive area (i.e. the area accessible to protons) corresponds to the maximum in the H{sub UPD} desorption charge in the range of 10-100 mV s{sup -1} sweep rate. The influence of measuring temperature is also tested in the range 25 C-80 C. A dependence of the adsorption and desorption hydrogen charges is found, due to thermodynamic and kinetics factors. We observe that the processes competing with hydrogen adsorption, i.e. generation and adsorption of carbon species are enhanced with temperature, so a low measuring temperature is found as most appropriate. (author)

  14. Integrated field emission array for ion desorption

    Science.gov (United States)

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  15. Integrated field emission array for ion desorption

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David

    2016-08-23

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  16. Copper desorption from Gelidium algal biomass.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  17. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    Science.gov (United States)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2017-08-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  18. Very-large-volume sampling of water in gas chromatography using the through oven transfer adsorption desorption (TOTAD) interface for pesticide-residue analysis.

    Science.gov (United States)

    Alario, J; Perez, M; Vazquez, A; Villén, J

    2001-02-01

    The Through Oven Transfer Adsorption Desorption (TOTAD) interface is used to directly introduce large volumes of water (1 mL or more) into a capillary gas chromatograph. The TOTAD interface is a greatly modified programmed temperature vaporizer injector incorporating changes that affect the pneumatics, sample introduction, solvent elimination, and operation mode. The system can easily be automated. The technique is applied to the analysis of pesticide residue in standard solutions and real water samples from the Ebro River (northeastern Spain). The speed of sample introduction was 1 mL/min, and the solvent elimination was almost complete. A nitrogen phosphorous detector is used, and the relative standard deviation varied from 5.7% to 11.7% for the absolute peak areas. The sensitivity achieved by introducing 1 mL of the sample is sufficient for most pesticide-residue analyses in water. The limits of detection ranged from 0.5 to 8.1 ng/L.

  19. [Combination process of microwave desorption-catalytic combustion for toluene treatment].

    Science.gov (United States)

    Cao, Xiao-Qiang; Zhang, Hao; Huang, Xue-Min

    2013-07-01

    Using activated carbon as adsorbent, toluene waste gas was treated by adsorption process. After the adsorption process was completed, the adsorbent was desorbed by microwave irradiation; then Cu-Mn oxide composite catalysts were prepared by impregnation and the desorbed toluene gas was treated by catalytic combustion so as to completely purify the pollutant. The concentration of toluene was measured by gas chromatography (GC). The results indicated that it is feasible to add air to provide oxygen to the desorbed gas after the completion of the desorption process, in order to achieve the catalytic combustion; the ratio of desorbed gas and air was 1 : 1 (volume ratio), and the corresponding catalytic space velocity was 2.67 s(-1). Desorption temperature could affect the concentration of toluene in the desorption gas thereby affecting the catalytic combustion efficiency; the results indicated that 400 degrees C was an appropriate temperature for desorbing the activated carbon. When the catalytic combustion was kept at 300 degrees C, the final toluene treatment efficiency was higher than 90%, which was higher than 95% during the most time of the treatment process.

  20. Behavior of hydrogen atoms in boron films during H{sub 2} and He glow discharge and thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, K.; Natsir, M.; Inoue, N. [and others

    1995-09-01

    Hydrogen absorption and desorption characteristics in boron films deposited on a graphite liner have been studied. Number of hydrogen atoms absorbed in the films is estimated from a decrease in hydrogen pressure during a hydrogen glow discharge. It was 1.9 x 10{sup 17} atoms/cm{sup 2} in the 1 hour discharge after an evacuation of H atoms contained in the original boron films by thermal desorption. Hydrogen atoms were absorbed continuously without saturation for 3 hours during the discharge. Number of H atoms absorbed reached to 2.6 x 10{sup 17} atoms/cm{sup 2} at 3 hour. A discharge in helium was carried out to investigate H desorption characteristics from hydrogen implanted boron films. It was verified that reactivity for hydrogen absorption was recovered after the He discharge. Hydrogen atoms were accumulated in the films by repetition of alternate He and H{sub 2} discharge. Thermal desorption experiments have been carried out by raising the liner temperature up to 500degC for films after 1 hour, 3 hours hydrogen discharge and 6 times repetition of H{sub 2}/He discharges. Most of H atoms in the films were desorbed for all these cases. The slow absorption process was confirmed through the thermal desorption experiments. (author).

  1. Theoretical study of simultaneous water and VOCs adsorption and desorption in a silica gel rotor

    DEFF Research Database (Denmark)

    Zhang, G.; Zhang, Y.F.; Fang, Lei

    2008-01-01

    One-dimensional partial differential equations were used to model the simultaneous water and VOC (Volatile Organic Compound) adsorption and desorption in a silica gel rotor which was recommended for indoor air cleaning. The interaction among VOCs and moisture in the adsorption and desorption...... process was neglected in the model as the concentrations of VOC pollutants in typical indoor environment were much lower than that of moisture and the adsorbed VOCs occupied only a minor portion of adsorption capacity of the rotor. Consequently VOC transfer was coupled with heat and moisture transfer only...... by the temperatures of the rotor and the air stream. The VOC transfer equations were solved by discretizing them into explicit up-wind finite differential equations. The model was validated with experimental data. The calculated results suggested that the regeneration time designed for dehumidification may...

  2. Hydrogen absorption-desorption properties of UZr sub 0 sub . sub 2 sub 9 alloy

    CERN Document Server

    Shuai Mao Bing; WangZhenHong; Zhang Yi Tao

    2001-01-01

    Hydrogen absorption-desorption properties of UZr sub 0 sub . sub 2 sub 9 alloy are investigated in detail at hydrogen pressures up to 0.4 MPa and over the temperature range of 300 to 723 K. It absorbs hydrogen up to 2.3 H atoms per F.U. (formula unit) by only one-step reaction and hence each desorption isotherm has a single plateau over nearly the whole hydrogen composition range. The enthalpy and entropy changes of the dissociation reaction are of -78.9 kJ centre dot mol sup - sup 1 H sub 2 and 205.3 J centre dot(K centre dot mol H sub 2) sup - sup 1 , respectively. The alloy shows high durability against powdering upon hydrogenation and may have good heat conductivity. It is predicted that UZr sub 0 sub . sub 2 sub 9 alloy may be a suitable material for tritium treatment and storage

  3. Effect of Titanium Doping of Al(111) Surfaces on Alane Formation Mobility, and Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chopra I. S.; Graetz J.; Chaudhuri, S.; Veyan, J.-F.; Chabal, Y. J.

    2011-07-05

    Alanes are critical intermediates in hydrogen storage reactions for mass transport during the formation of complex metal hydrides. Titanium has been shown to promote hydrogen desorption and hydrogenation, but its role as a catalyst is not clear. Combining surface infrared (IR) spectroscopy and density functional theory (DFT), the role of Ti is explored during the interaction of atomic hydrogen with Ti-doped Al(111) surfaces. Titanium is found to reduce the formation of large alanes, due to a decrease of hydrogen mobility and to trapping of small alanes on Ti sites, thus hindering oligomerization. For high doping levels ({approx}0.27 ML Ti) on Al(111), only chemisorbed AlH{sub 3} is observed on Ti sites, with no evidence for large alanes. Titanium also dramatically lowers the desorption temperature of large alanes from 290 to 190 K, due to a more restricted translational motion of these alanes.

  4. Perioperative Temperature Measurement Considerations Relevant to Reporting Requirements for National Quality Programs Using Data From Anesthesia Information Management Systems.

    Science.gov (United States)

    Epstein, Richard H; Dexter, Franklin; Hofer, Ira S; Rodriguez, Luis I; Schwenk, Eric S; Maga, Joni M; Hindman, Bradley J

    2017-06-08

    Perioperative hypothermia may increase the incidences of wound infection, blood loss, transfusion, and cardiac morbidity. U.S. national quality programs for perioperative normothermia specify the presence of at least 1 "body temperature" ≥35.5°C during the interval from 30 minutes before to 15 minutes after the anesthesia end time. Using data from 4 academic hospitals, we evaluated timing and measurement considerations relevant to the current requirements to guide hospitals wishing to report perioperative temperature measures using electronic data sources. Anesthesia information management system databases from 4 hospitals were queried to obtain intraoperative temperatures and intervals to the anesthesia end time from discontinuation of temperature monitoring, end of surgery, and extubation. Inclusion criteria included age >16 years, use of a tracheal tube or supraglottic airway, and case duration ≥60 minutes. The end-of-case temperature was determined as the maximum intraoperative temperature recorded within 30 minutes before the anesthesia end time (ie, the temperature that would be used for reporting purposes). The fractions of cases with intervals >30 minutes between the last intraoperative temperature and the anesthesia end time were determined. Among the hospitals, averages (binned by quarters) of 34.5% to 59.5% of cases had intraoperative temperature monitoring discontinued >30 minutes before the anesthesia end time. Even if temperature measurement had been continued until extubation, averages of 5.9% to 20.8% of cases would have exceeded the allowed 30-minute window. Averages of 8.9% to 21.3% of cases had end-of-case intraoperative temperatures <35.5°C (ie, a quality measure failure). Because of timing considerations, a substantial fraction of cases would have been ineligible to use the end-of-case intraoperative temperature for national quality program reporting. Thus, retrieval of postanesthesia care unit temperatures would have been necessary. A

  5. Moisture sorption–desorption characteristics and the corresponding thermodynamic properties of carvedilol phosphate

    Directory of Open Access Journals (Sweden)

    Ravikiran Allada

    2017-01-01

    Full Text Available Aims: Carvedilol phosphate (CDP is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption–desorption characteristics and thermodynamic properties of CDP have been investigated. Materials and Methods: The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%–90% relative humidity and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C. The experimental sorption data determined were fitted to various models, namely, Brunauer–Emmett–Teller; Guggenheim-Anderson-De Boer (GAB; Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. Statistical Analysis Used: The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P, correlation (Correl, root mean square error, and model efficiency were considered as the criteria to select the best fit model. Results: The sorption–desorption isotherms have sigmoidal shape – confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. Conclusions: The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption–desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations.

  6. Moisture Sorption–desorption Characteristics and the Corresponding Thermodynamic Properties of Carvedilol Phosphate

    Science.gov (United States)

    Allada, Ravikiran; Maruthapillai, Arthanareeswari; Palanisamy, Kamaraj; Chappa, Praveen

    2017-01-01

    Aims: Carvedilol phosphate (CDP) is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption–desorption characteristics and thermodynamic properties of CDP have been investigated. Materials and Methods: The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%–90% relative humidity) and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C). The experimental sorption data determined were fitted to various models, namely, Brunauer–Emmett–Teller; Guggenheim-Anderson-De Boer (GAB); Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. Statistical Analysis Used: The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P), correlation (Correl), root mean square error, and model efficiency were considered as the criteria to select the best fit model. Results: The sorption–desorption isotherms have sigmoidal shape – confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. Conclusions: The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption–desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations. PMID:28584488

  7. Moisture Sorption-desorption Characteristics and the Corresponding Thermodynamic Properties of Carvedilol Phosphate.

    Science.gov (United States)

    Allada, Ravikiran; Maruthapillai, Arthanareeswari; Palanisamy, Kamaraj; Chappa, Praveen

    2017-01-01

    Carvedilol phosphate (CDP) is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption-desorption characteristics and thermodynamic properties of CDP have been investigated. The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%-90% relative humidity) and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C). The experimental sorption data determined were fitted to various models, namely, Brunauer-Emmett-Teller; Guggenheim-Anderson-De Boer (GAB); Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P), correlation (Correl), root mean square error, and model efficiency were considered as the criteria to select the best fit model. The sorption-desorption isotherms have sigmoidal shape - confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption-desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations.

  8. [Desorption characteristics of phosphorus in tea tree rhizosphere soil].

    Science.gov (United States)

    Yang, Wei; Zhou, Wei-Jun; Bao, Chun-Hong; Miao, Xiao-Lin; Hu, Wen-Min

    2013-07-01

    In order to explore the phosphorus (P) release process and its supply mechanism in tea tree rhizosphere soil, an exogenous P adsorption and culture experiment was conducted to study the P desorption process and characters in the tea tree rhizosphere soils having been cultivated for different years and derived from different parent materials. The least squares method was used to fit the isotherms of P desorption kinetics. There was an obvious difference in the P desorption process between the rhizosphere soils and non-rhizosphere soils. The P desorption ability of the rhizosphere soils was significantly higher than that of the non-rhizosphere soils. As compared with non-rhizosphere soils, rhizosphere soils had higher available P content, P desorption rate, and beta value (desorbed P of per unit adsorbed P), with the average increment being 5.49 mg x kg(-1), 1.7%, and 24.4%, respectively. The P desorption ability of the rhizosphere soils derived from different parent materials was in the order of granite > quaternary red clay > slate. The average available P content and P desorption ability of the rhizosphere soils increased with increasing cultivation years.

  9. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  10. Deuterium thermal desorption and re-emission from RAFM steels

    Science.gov (United States)

    Ryabtsev, S. A.; Gasparyan, Yu M.; Harutyunyan, Z. R.; Timofeev, I. M.; Ogorodnikova, O. V.; Pisarev, A. A.

    2017-12-01

    In the present work, deuterium (D) retention and release during and after ion irradiation of reduced-activation ferritic-marthensitic steels (Eurofer) in comparison with the D retention in pure iron (Fe) was studied. The irradiation was done with 5 keV {{{{D}}}3}+ ions at room temperature at the fluence varied in the range of 1 × 1020-1 × 1022 D m-2. Thermal desorption spectroscopy (TDS) was also performed in situ in 45 min after irradiation. The D release from both materials between the end of irradiation and the start of TDS was very intensive and the integral amount of D measured during outgassing exceeded the D retention measured by TDS. An influence of surface oxidation on the D release due to contact with an environmental air was also demonstrated by comparison of in situ and ex situ TDS. The integral D retention in Eurofer was 1-2 orders of magnitude higher than in pure iron (Fe) due to the initially high concentration of defects in Eurofer. However, pre-annealing of Eurofer at 800 K reduced the defect concentration in Eurofer and, therefore, reduced the difference in the D retention in Fe and Eurofer.

  11. Sn-Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window.

    Science.gov (United States)

    Xie, Jiangkun; Xu, Haomiao; Qu, Zan; Huang, Wenjun; Chen, Wanmiao; Ma, Yongpeng; Zhao, Songjian; Liu, Ping; Yan, Naiqiang

    2014-08-15

    A series of Sn-Mn binary metal oxides were prepared through co-precipitation method. The sorbents were characterized by powder X-ray diffraction (powder XRD), transmission electronic microscopy (TEM), H2-temperature-programmed reduction (H2-TPR) and NH3-temperature-programmed desorption (NH3-TPD) methods. The capability of the prepared sorbents for mercury adsorption from simulated flue gas was investigated by fixed-bed experiments. Results showed that mercury adsorption on pure SnO2 particles was negligible in the test temperature range, comparatively, mercury capacity on MnOx at low temperature was relative high, but the capacity would decrease significantly when the temperature was elevated. Interestingly, for Sn-Mn binary metal oxide, mercury capacity increased not only at low temperature but also at high temperature. Furthermore, the impact of SO2 on mercury adsorption capability of Sn-Mn binary metal oxides was also investigated and it was noted that the effect at low temperature was different comparing with that of high temperature. The mechanism was investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs). Moreover, a mathematic model was built to calculate mercury desorption activation energy from Sn to Mn binary metal oxides. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. FORTRAN 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization

    Science.gov (United States)

    Delaney, P.T.

    1988-01-01

    Temperature histories obtained from transient heat-conduction theory are applicable to most dikes despite potential complicating effects related to magma flow during emplacement, groundwater circulation, and metamorphic reaction during cooling. Here. machine-independent FORTRAN 77 programs are presented to calculate temperatures in and around dikes as they cool conductively. Analytical solutions can treat thermal-property contrasts between the dike and host rocks, but cannot address the release of magmatic heat of crystallization after the early stages of cooling or the appreciable temperature dependence of thermal conductivity and diffusivity displayed by most rock types. Numerical solutions can incorporate these additional factors. The heat of crystallization can raise the initial temperature at the dike contact, ??c1, about 100??C above that which would be estimated if it were neglected, and can decrease the rate at which the front of solidified magma moves to the dike center by a factor of as much as three. Thermal conductivity and diffusivity of rocks increase with decreasing temperature and, at low temperatures, these properties increase more if the rocks are saturated with water. Models that treat these temperature dependencies yield estimates of ??c1 that are as much as 75??C beneath those which would be predicted if they were neglected. ?? 1988.

  13. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Ayanna U. [Purdue University; Talaty, Nari [Purdue University; Cooks, R G [Purdue University; Van Berkel, Gary J [ORNL

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  14. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    Science.gov (United States)

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni

  15. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  16. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry.

    Science.gov (United States)

    Engel, Maya; Chefetz, Benny

    2016-06-01

    Increasing use of carbon nanotubes (CNTs) has led to their introduction into the environment where they can interact with dissolved organic matter (DOM). This study focuses on solution chemistry effects on DOM adsorption/desorption processes by single-walled CNTs (SWCNTs). Our data show that DOM adsorption is controlled by the attachment of DOM molecules to the SWCNTs, and that the initial adsorption rate is dependent on solution parameters. Adsorbed amount of DOM at high ionic strength was limited, possibly due to alterations in SWCNT bundling. Desorption of DOM performed at low pH resulted in additional DOM adsorption, whereas at high pH, adsorbed DOM amount decreased. The extent of desorption conducted at increased ionic strength was dependent on pre-adsorbed DOM concentration: low DOM loading stimulated additional adsorption of DOM, whereas high DOM loading facilitated release of adsorbed DOM. Elevated ionic strength and increased adsorbed amount of DOM reduced the oxidation temperature of the SWCNTs, suggesting that changes in the assembly of the SWCNTs had occurred. Moreover, DOM-coated SWCNTs at increased ionic strength provided fewer sites for atrazine adsorption. This study enhances our understanding of DOM-SWCNT interactions in aqueous systems influenced by rapid changes in salinity, and facilitates potential use of SWCNTs in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cesium sorption and desorption on selected Los Alamos soils

    Energy Technology Data Exchange (ETDEWEB)

    Kung, K.S.; Chan, J.; Longmire, P.; Fowler, M.

    1995-08-01

    Laboratory experiments were conducted to evaluate the sorptivity of cesium onto Los Alamos soils under controlled experimental conditions. Four soil profiles were collected and each soil profile which is broken into layers according to previously identified soil horizons were studied. Batch sorption isotherms were studied to quantify the chemical reactivity of each soil horizon toward cesium ion. Radioactive cesium-137 was used as sorbent and gamma counting was used to quantify the amount of sorption. Desorption experiments were conducted after the sorption experiments. Batch desorption isotherms were studied to quantify the desorption of presorbed cesium from these Los Alamos soils. This study suggests cesium may sorb strongly and irreversibly on most Los Alamos soils. The amount of cesium sorption and desorption is possibly related to the clay content of the soil sample since subsurface sample has a higher clay content than that of surface sample.

  18. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    Science.gov (United States)

    Li, Ming; Huang, Xiaobo; Kang, Zhan

    2015-08-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  19. Desorption of a methamphetamine surrogate from wallboard under remediation conditions

    Science.gov (United States)

    Poppendieck, Dustin; Morrison, Glenn; Corsi, Richard

    2015-04-01

    Thousands of homes in the United States are found to be contaminated with methamphetamine each year. Buildings used to produce illicit methamphetamine are typically remediated by removing soft furnishings and stained materials, cleaning and sometimes encapsulating surfaces using paint. Methamphetamine that has penetrated into paint films, wood and other permanent materials can be slowly released back into the building air over time, exposing future occupants and re-contaminating furnishings. The objective of this study was to determine the efficacy of two wallboard remediation techniques for homes contaminated with methamphetamine: 1) enhancing desorption by elevating temperature and relative humidity while ventilating the interior space, and 2) painting over affected wallboard to seal the methamphetamine in place. The emission of a methamphetamine surrogate, N-isopropylbenzylamine (NIBA), from pre-dosed wallboard chambers over 20 days at 32 °C and two values of relative humidity were studied. Emission rates from wallboard after 15 days at 32 °C ranged from 35 to 1400 μg h-1 m-2. Less than 22% of the NIBA was removed from the chambers over three weeks. Results indicate that elevating temperatures during remediation and latex painting of impacted wallboard will not significantly reduce freebase methamphetamine emissions from wallboard. Raising the relative humidity from 27% to 49% increased the emission rates by a factor of 1.4. A steady-state model of a typical home using the emission rates from this study and typical residential building parameters and conditions shows that adult inhalation reference doses for methamphetamine will be reached when approximately 1 g of methamphetamine is present in the wallboard of a house.

  20. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2008-06-15

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 {sup o}C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO{sub 3} and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater.

  1. Study on the Hydrogen Generation Rules of Coal Oxidation at Low Temperature

    OpenAIRE

    Shao He; Zhou Fubao; Chen Kaiyan; Cheng Jianwei; Melogh, Palu H.

    2014-01-01

    Based on a hydrogen desorption experiment and a comparative experiment of low-temperature coal oxidation performed prior to and after hydrogen desorption, this paper demonstrates the occurrence of hydrogen adsorption in coal at room temperature and reveals that the hydrogen generated in the process of coal oxidation originates from coal oxidation and desorption. The results show that the hydrogen accumulation generated only by coal oxidation and the hydrogen accumulation generated...

  2. Bahamas Sea Water Temperature Data 1988-2003, PIMS Environmental Monitoring Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record references seawater temperature data collected at various sites and depths in the vicinity of PIMS research station on Lee Stocking Island,...

  3. Isosteric heat of water adsorption and desorption in homoionic alkaline-earth montmorillonites

    Science.gov (United States)

    Belhocine, M.; Haouzi, A.; Bassou, G.; Phou, T.; Maurin, D.; Bantignies, J. L.; Henn, F.

    2018-02-01

    The aim of the present work is to study by means of thermodynamic measurements and Infrared spectroscopy, the effect of the interlayer cations on the adsorption-desorption of water in the case of a montmorillonite exchanged with alkaline-earth metals. For the first time, the net isosteric heat of water adsorption and desorption is determined from isotherms recorded at three temperatures. The net isosteric heat is a very useful parameter for getting more insights into the sorption mechanism since it provides information about the sorption energy evolution which can be complementary to that obtained from structural or gravimetric measurements. The homoionic montmorillonite samples are prepared from purification and cationic exchanged in aqueous solution of the raw material, i.e. the reference SWy-2 Wyoming material. XRD at the dry state and elemental chemical analysis confirm that the treatment does not deteriorate the clay structure and yield the expected homoionic composition. The sorption isotherms measured at various temperatures show that the nature of the interlayer, i.e. exchangeable, cation changes the adsorbed/desorbed amount of water molecules for a given water relative pressure. The total amount of water adsorbed at P/P∘ = 0.5 follows the cation sequence Ca ∼ Mg>Ba while the sorption isosteric heats follow a slightly different sequence, i.e. Ca > Mg>Ba. This discrepancy between the adsorption and desorption heat is due to the higher irreversibility of water sorption process in the Ca exchanged montmorillonite. Finally, analysis of the IR spectra recorded at room temperature and under a primary vacuum reveals that the amount of adsorbed water follows the same sequence as that of the isosteric heat of adsorption and shows the coexistence of liquid-like and solid-like water confined in the interlayer space.

  4. The Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's OceanThe Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's Ocean

    Science.gov (United States)

    Centurioni, Luca

    2017-04-01

    The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.

  5. Effect of Initial Moisture on the Adsorption and Desorption Equilibrium Moisture Contents of Polished Rice

    OpenAIRE

    Murata, Satoshi; Amaratunga, K.S.P.; Tanaka, Fumihiko; Hori, Yoshiaki

    1993-01-01

    The moisture adsorption and desorption properties for polished rice have been measured using a dynamic ventilatory method. Air temperatures of 10,20,30 and 40℃, relative humidities of 50,60,70,80 and 90%, and five levels of initial moisture contents ranging approximately from 8% to 19% d.b. were used to obtain moisture content data. The value of equilibrium moisture content for each initial moisture content at the range of air condition was determined by a method of nonlinear least squares. R...

  6. Application of ASTM E-1559 Apparatus to Study H2O Desorption

    Science.gov (United States)

    Woronowicz, Michael; Perry, Radford, III; Meadows, George A.

    2015-01-01

    The NASA James Webb Space Telescope project identified a need to measure water vapor desorption from cryogenic surfaces in order to validate predictions of spacecraft design performance. A review of available scientific literature indicated no such measurements had been reported below 131 K. Contamination control personnel at NASA Goddard Space Flight Center recognized the possibility they readily possessed the means to collect these measurements at lower temperatures using an existing apparatus commonly employed for making outgassing observations. This presentation will relate how the ASTM E-1559 Molekit apparatus was used without physical modification to measure water vapor sublimation down to 120 K and compare this data to existing equilibrium vapor pressure models.

  7. The role of electron-stimulated desorption in focused electron beam induced deposition

    DEFF Research Database (Denmark)

    van Dorp, Willem F.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2013-01-01

    We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor it is observed that the growth......, the majority desorbs from the surface rather than dissociates to contribute to the deposit. It is important to take this into account during FEBIP experiments, for instance when determining fundamental process parameters such as the activation energy for desorption....

  8. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    Science.gov (United States)

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s(-1) with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  9. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  10. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  11. Ultrasonic desorption of CO{sub 2} - a new technology to save energy and prevent solvent degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gantert, S.; Moeller, D. [Brandenburg University of Technology Cottbus, Berlin (Germany)

    2012-03-15

    A central concern of future research activities in the field of carbon capture and storage is the reduction of energy demand for solvent regeneration. This also includes, besides the development of more efficient CO{sub 2} absorbents, the exploration of alternative desorption methods. The stripping process is generally regarded as the state-of-the-art in amine scrubbing, although significant amounts of heat are required for steam generation in the stripper. Against this background, a new desorption technique on the basis of pressureless amine scrubbing is under development, in which an ultrasonic field is used to accelerate the CO{sub 2} desorption. With the new ultrasound method, applied for a patent, desorption of CO{sub 2} can be performed at temperatures below 80 C. This special feature of the ultrasonic-assisted CO{sub 2} degassing can be applied advantageously together with weakly binding CO{sub 2} absorbents which are in use in connection with a high CO{sub 2} partial pressure in the raw gas. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Experimental study and modelling of water sorption/desorption isotherms on two agricultural products: Apple and carrot

    Science.gov (United States)

    Timoumi, S.; Zagrouba, F.; Mihoubi, D.; Tlili, M. M.

    2004-12-01

    This work is focused on some properties of dried apple (Red Chief) and carrot (Misky). Water sorption isotherms of carrot and apple were investigated at three temperatures: 30, 40 and 60°C, corresponding to drying temperatures, by the static method consisting of the use of different sulphuric acid solutions. Guggenheim-Anderson-de Boer (G.A.B) model is found to describe the experimental curves better than Henderson, Hasley and Oswin models with a correlation coefficient superior to 0.97 for both products. The hysteresis phenomenon was clearly observed in the case of apple isotherms. The experimental data were also used to determine the isosteric enthalpy of desorption of apple and carrot. The isosteric enthalpy of desorption decreased with increase in moisture content and the trend became asymptotic.

  13. Summary of U. S. LMFBR programs on high temperature structural design and associated materials testing

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-01

    This document was prepared at the request of the Division of Reactor Development and Demonstration (DRDD), U.S. Energy Research and Development Administration. Four general areas of research and development are included: high-temperature structural design; irradiation effects--mechanical properties of structural materials; sodium environmental effects--influence of sodium on mechanical properties; and general material qualification.

  14. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  15. Energy audit of three energy-conserving devices in a steel industry demonstration program. Task III. GTE high temperature recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Holden, F.C.; Hoffman, A.O.; Lownie, H.W.

    1983-06-01

    The Office of Industrial Programs of the Department of Energy has undertaken a program to demonstrate to industry the benefits of installing various energy-conserving devices and equipment. This report presents results on one of those systems, a high-temperature ceramic recuperator designed and manufactured by Sylvania Chemical and Metallurgical Division, GTE Products Corporation of Towanda, Pennsylvania. The ceramic cross-flow recuperator unit recovers waste heat from the hot combustion gases and delivers preheated air to high-temperature burners of various manufacture. Of the 38 host site installations included in the program, sufficient operating data were obtained from 28 sites to evaluate the benefits in terms of energy and economic savings that can be achieved. Performance and cost data are analyzed and presented for those 28 installations, which covered a variety of applications, sizes, and industry types. Except for 5 sites where unusual operating or data-collection problems were encountered, the improvements in performance of the recuperated furnaces equalled or exceeded estimates; the average of the total fuel savings for these 23 sites was 44.0 percent, some portion of which resulted from furnace improvements other than recuperation. Payback times were calculated for both total costs and for recuperator-related costs, using a cumulative annual after-tax cash flow method which includes tax investment credits, estimates of general and fuel-price inflation, and maintenance costs.

  16. Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica)

    Energy Technology Data Exchange (ETDEWEB)

    Lahsasni, S.; Kouhila, M. E-mail: kouhila@hotmail.com; Mahrouz, M

    2004-01-01

    The equilibrium moisture contents were determined for prickly pear fruit using the gravimetric static method at t=30, 40 and 50 deg. C over a range of relative humidities from 0.05 to 0.9. The sorption curves of prickly pear fruit decreased with increase in temperature at constant relative humidity. The hysteresis effect was observed. The GAB, modified Halsey, modified Chung-Pfost, modified Oswin and modified Henderson models were tested to fit the experimental data. The GAB model was found to be the most suitable for describing the sorption curves. The monolayer moisture content values for the sorption at different temperatures are calculated using a modified BET equation. The isosteric heats of desorption and adsorption of water were determined from the equilibrium data at different temperatures.

  17. Thermal desorption of deuterium from Be, and Be with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V.; Van Veen, A.; Busker, G.J. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    1998-01-01

    Deuterium desorption measurements carried out on a single-crystalline beryllium sample are presented. Deuterium ions were implanted at room temperature at the energy of 0.7 and 1.2 keV up to doses ranging from 10{sup 19} to 3.6 x 10{sup 21} m{sup -2}. In order to eliminate the influence of the beryllium-oxide surface layer, before the implantation the surface of the sample was cleaned by argon sputtering. After the implantation the sample was annealed up to 1200 K at a constant rate of 10 K/s. Deuterium released from the sample was monitored by a calibrated quadrupole mass-spectrometer. The desorption spectra revealed two different contributions. One is a well defined and very narrow peak centered around 450 K. This peak is observed only at high implantation doses > 7.8 x 10{sup 20} m{sup -2}, which is close to the deuterium saturation limit of 0.3 D/Be and is related to deuterium release from blisters or interconnected bubbles. The activation energy of 1.1 eV and the threshold implantation dose are consistent with the values reported in literature. The second contribution in the release spectra is found in the temperature range from 600 to 900 K and is present throughout the whole range of the implantation doses. The activation energies corresponding to this release lie in the range between 1.8 and 2.5 eV and are ascribed to the release from deuterium-vacancy type of defects. In a number of experiments the deuterium implantation was preceded by helium implantation followed by partial annealing to create helium bubbles. The resulting deuterium desorption spectra indicate that deuterium detrapping from helium bubbles is characterized by an activation energy of 2.7 eV. (author)

  18. Sorption-desorption equilibrium and diffusion of tetracycline in poultry litter and municipal biosolids soil amendments.

    Science.gov (United States)

    D'Angelo, E

    2017-12-01

    Tetracycline (TET) is commonly used to treat bacterial diseases in humans and chickens (Gallus gallus domesticus), is largely excreted, and is found at elevated concentrations in treated sewage sludge (biosolids) and poultry litter (excrement plus bedding materials). Routine application of these nutrient-and carbon-enriched materials to soils improves fertility and other characteristics, but the presence of antibiotics (and other pharmaceuticals) in amendments raises questions about potential adverse effects on biota and development of antibiotic resistance in the environment. Hazard risks are largely dictated by sorption-desorption and diffusion behavior in amendments, so these processes were evaluated from sorption-desorption equilibrium isotherm and diffusion cell experiments with four types amendments (biosolids, poultry manure, wood chip litter, and rice hull litter) at three temperatures (8 °C, 20 °C and 32 °C). Linear sorption-desorption equilibrium distribution constants (Kd) in native amendments ranged between 124-2418 L kg-1. TET sorption was significantly increased after treatment with alum, and there was a strong exponential relationship between Kd and the concentration of bound Al3+ in amendments (R2 = 0.94), which indicated that amendments contained functional groups capable of chelating Al3+ and forming metal bridges with TET. Effective diffusion coefficients of TET in amendments ranged between 0.1 and 5.2 × 10-6 cm2 s-1, which were positively related to temperature and inversely related to Kd by a multiple regression model (R2 = 0.86). Treatment of organic amendments with alum greatly increased Kd, would decrease Ds, and so would greatly reduce hazard risks of applying these organic amendments with this antibiotic to soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of temperature and humidity in a equine embryo transfer program, in the Baixada Fluminense, Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Jhonnatha Paulo Oliveira

    2015-06-01

    Full Text Available ABSTRACT. Oliveira J.P., Jacob J.C.F., Jesus V.L.T. & Silva P.C.A. [Influence of temperature and humidity in a equine embryo transfer program, in the Baixada Fluminense, Rio de Janeiro.] Influência da temperatura e umidade ambiente em um programa de transferência de embriões equinos, na Baixada Fluminense, Rio de Janeiro. Revista Brasileira de Medicina Veterinária, 37(2:158- 162, 2015. Departamento de Reprodução e Avaliação Animal, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 7, Seropédica, RJ 23890-970, Brasil. E-mail: juliorep@ufrrj.br This study aimed to evaluate the relationship between high environment temperature and humidity and reproductive rates in a equine embryo transfer program in Baixada Fluminense RJ. We evaluated the reproductive history of 60 donor mares and 111 recipient mares during summer of breeding seasons of 2008/2009, 2009/2010 and 2010/2011. Daily climatics data of environmental temperature (°C and relative humidity (% for the each breeding seasons were obtained from the web site of the National Institute of Meteorology (INMET, based on these data we calculated the temperature x humidity index (TUI wich measures the thermal comfort zone. The reproductive parameters assessed were embryo recovery rate (RR and pregnancy rate (PR. After the computation of reproductive and climatic data, these were compared to establish relationships between high temperatures and humidity on reproductive rates. There was a negative relationship between RR and high environmental temperatures, especially in the summer time, greater RR at 26°C (71% and lower RR at 27°C (51.4% (p <0.05. To PR there was a negative relationship to high environmental temperatures, the higher PR was obtained at 24°C (81.5% and lowest PG (35% at 27°C (p <0.05. We conclude that there are relationships between environmental variables and ET success.

  20. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Pacific Remote Island Areas from 2011 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  1. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in American Samoa from 2012 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  2. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Hawaiian Archipelago from 2010 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  3. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Marianas Archipelago from 2011 to 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  4. Water Resources Research program: nearshore currents and water temperatures in southwestern Lake Michigan. Progress report, June--December 1975

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, K.D.; Van Loon, L.S.

    1976-05-01

    Nearshore currents and water temperatures were measured almost continuously from June 23 through December 22, at five moorings in an array centered 4 km offshore of south Chicago. The mooring array was square, each side 1.6 km long. A current-meter mooring was placed at each corner, with one mooring in the center. One Bendix Q-15 current meter and one YSI temperature sensor were fixed to each mooring line. Each meter and associated temperature sensor was placed at middepth; the water depth averaged about 12 m. The following types of graphs are presented for current and wind observations: (1) U, V flow components versus time, (2) specific kinetic energy versus time, (3) flow speeds and directions versus time, (4) composite velocity histograms and associated U, V-component histograms, and (5) progressive-vector diagrams. Also presented are listings of the component programs used to reduce the data. Currents in the region were dominantly shore-parallel. Water temperatures reflected several episodes of upwelling and downwelling. Detailed analyses of the data will be presented in subsequent reports.

  5. State-coupled low temperature geothermal resource assessment program, fiscal year 1982. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Icerman, Larry

    1983-08-01

    This report summarizes the results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from June 15, 1981 through September 30, 1983, under the sponsorship of the US Department of Energy (Contract DE-AS07-78ID01717). The report is divided into four chapters which correspond to the tasks delineated in the contract. Chapter 5 is a brief summary of the tasks performed under this contract during the period October 1, 1978, through June 30, 1983. This work extends the knowledge of low-temperature geothermal reservoirs with the potential for direct heating applications in New Mexico. The research effort focused on compiling basic geothermal data throughout selected areas in New Mexico in a format suitable for direct transfer to the US Geological Survey for inclusion in the GEOTHERM data file and to the National Oceanic and Atmospheric Administration for use with New Mexico geothermal resources maps.

  6. A Computer Program for the Computation of Running Gear Temperatures Using Green's Function

    Science.gov (United States)

    Koshigoe, S.; Murdock, J. W.; Akin, L. S.; Townsend, D. P.

    1996-01-01

    A new technique has been developed to study two dimensional heat transfer problems in gears. This technique consists of transforming the heat equation into a line integral equation with the use of Green's theorem. The equation is then expressed in terms of eigenfunctions that satisfy the Helmholtz equation, and their corresponding eigenvalues for an arbitrarily shaped region of interest. The eigenfunction are obtalned by solving an intergral equation. Once the eigenfunctions are found, the temperature is expanded in terms of the eigenfunctions with unknown time dependent coefficients that can be solved by using Runge Kutta methods. The time integration is extremely efficient. Therefore, any changes in the time dependent coefficients or source terms in the boundary conditions do not impose a great computational burden on the user. The method is demonstrated by applying it to a sample gear tooth. Temperature histories at representative surface locatons are given.

  7. Temperature measurement

    Science.gov (United States)

    ... an oral temperature. Other factors to take into account are: In general, rectal temperatures are considered to ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  8. Comparison of a disposable sorptive sampler with thermal desorption in a gas chromatographic inlet, or in a dedicated thermal desorber, to conventional stir bar sorptive extraction-thermal desorption for the determination of micropollutants in water.

    Science.gov (United States)

    Wooding, Madelien; Rohwer, Egmont R; Naudé, Yvette

    2017-09-01

    The presence of micropollutants in the aquatic environment is a worldwide environmental concern. The diversity of micropollutants and the low concentration levels at which they may occur in the aquatic environment have greatly complicated the analysis and detection of these chemicals. Two sorptive extraction samplers and two thermal desorption methods for the detection of micropollutants in water were compared. A low-cost, disposable, in-house made sorptive extraction sampler was compared to SBSE using a commercial Twister sorptive sampler. Both samplers consisted of polydimethylsiloxane (PDMS) as a sorptive medium to concentrate micropollutants. Direct thermal desorption of the disposable samplers in the inlet of a GC was compared to conventional thermal desorption using a commercial thermal desorber system (TDS). Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS) was used for compound separation and identification. Ten micropollutants, representing a range of heterogeneous compounds, were selected to evaluate the performance of the methods. The in-house constructed sampler, with its associated benefits of low-cost and disposability, gave results comparable to commercial SBSE. Direct thermal desorption of the disposable sampler in the inlet of a GC eliminated the need for expensive consumable cryogenics and total analysis time was greatly reduced as a lengthy desorption temperature programme was not required. Limits of detection for the methods ranged from 0.0010 ng L-1 to 0.19 ng L-1. For most compounds, the mean (n = 3) recoveries ranged from 85% to 129% and the % relative standard deviation (% RSD) ranged from 1% to 58% with the majority of the analytes having a %RSD of less than 30%. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The study of 'microsurfaces' using thermal desorption spectroscopy

    Science.gov (United States)

    Thomas, M. E.; Poppa, H.; Pound, G. M.

    1979-01-01

    The use of a newly combined ultrahigh vacuum technique for studying continuous and particulate evaporated thin films using thermal desorption spectroscopy (TDS), transmission electron microscopy (TEM), and transmission electron diffraction (TED) is discussed. It is shown that (1) CO thermal desorption energies of epitaxially deposited (111) Ni and (111) Pd surfaces agree perfectly with previously published data on bulk (111) single crystal, (2) contamination and surface structural differences can be detected using TDS as a surface probe and TEM as a complementary technique, and (3) CO desorption signals from deposited metal coverages of one-thousandth of a monolayer should be detectable. These results indicate that the chemisorption properties of supported 'microsurfaces' of metals can now be investigated with very high sensitivity. The combined use of TDS and TEM-TED experimental methods is a very powerful technique for fundamental studies in basic thin film physics and in catalysis.

  10. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  11. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    Energy Technology Data Exchange (ETDEWEB)

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  12. Research and development program in fiber optic sensors and distributed sensing for high temperature harsh environment energy applications (Conference Presentation)

    Science.gov (United States)

    Romanosky, Robert R.

    2017-05-01

    he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and

  13. Airborne laser-spark for ambient desorption/ionisation.

    Science.gov (United States)

    Bierstedt, Andreas; Riedel, Jens

    A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die

  14. Desorption of toluene from modified clays using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Carneiro D. G. P.

    2004-01-01

    Full Text Available The main objective of this work is to study the regeneration capacity of modified clays using supercritical fluid. These modified clays are used as organic compound adsorvents. The experimental step was done using a packed column with the clay contaminated by toluene. The results obtained showed the influence of the density of the supercritical CO2 and of the organic modifier in the desorption process. These data were modeled with first- and second-order models. Better results were obtained using the second-order model. This study makes possible the scale-up of the desorption process for regeneration of solid matrices using supercritical fluids.

  15. Nonthermal current-stimulated desorption of gases from carbon nanotubes.

    Science.gov (United States)

    Salehi-Khojin, Amin; Lin, Kevin Y; Field, Christopher R; Masel, Richard I

    2010-09-10

    The desorption of gases from carbon nanotubes is usually a slow process that limits the nanotubes' utility as sensors or as memristors. Here, we demonstrate that flow in the nanotube above the Poole-Frenkel conduction threshold can stimulate adsorbates to desorb without heating the sensor substantially. The method is general: alcohols, aromatics, amines, and phosphonates were all found to desorb. We postulate that the process is analogous to electron-stimulated desorption, but with an internally conducted rather than externally applied source of electrons.

  16. Water adsorption-desorption isotherms of two-dimensional hexagonal mesoporous silica around freezing point.

    Science.gov (United States)

    Endo, Akira; Yamaura, Toshio; Yamashita, Kyohei; Matsuoka, Fumio; Hihara, Eiji; Daiguji, Hirofumi

    2012-02-01

    Zr-doped mesoporous silica with a diameter of approximately 3.8 nm was synthesized via an evaporation-induced self-assembly process, and the adsorption-desorption isotherms of water vapor were measured in the temperature range of 263-298 K. The measured adsorption-desorption isotherms below 273 K indicated that water confined in the mesopores did not freeze at any relative pressure. All isotherms had a steep curve, resulting from capillary condensation/evaporation, and a pronounced hysteresis. The hysteresis loop, which is associated with a delayed adsorption process, increased with a decrease in temperature. Furthermore, the curvature radius where capillary evaporation/condensation occurs was evaluated by the combined Kelvin and Gibbs-Tolman-Koening-Buff (GTKB) equations for the modification of the interfacial tension due to the interfacial curvature. The thickness of the water adsorption layer for capillary condensation was slightly larger, whereas that for capillary evaporation was slightly smaller than 0.7 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Temperature and salinity collected for MMS 'Deepwater Program: Northern Gulf of Mexico Continental Slope Habitat and Benthic Ecology' from the Gulf of Mexico, 1999 - 2002 (NODC Accession 0002185)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data collection includes profile data containing temperature and salinity collected in support of this research program to gain better knowledge of the benthic...

  18. Characterization of graphite-supported palladium-cobalt catalysts by temperature-programmed reduction and magnetic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, F.B.; Schmal, M. [Universidade Federal do Rio de Janeiro (Brazil); Nicot, C. [Institut de Recherches sur la Catalyse, Villeurbanne (France)] [and others

    1997-05-01

    Graphite-supported cobalt, palladium, and cobalt-palladium systems were prepared by a simple impregnation technique and submitted to hydrogen reduction in a temperature-programmed mode. Using X-ray diffraction to define the structure of the calcined precursors, magnetic measurements to determine the amount of metallic cobalt formed after reduction, and analysis of the gaseous medium during the reduction, a general model for the reduction of the graphite supported catalysts has been suggested. At room temperature, both pure PdO and PdO associated with Co{sub 3}O{sub 4} are reduced to the metallic state. In the case of bimetallic systems, a fraction of Co{sub 3}O{sub 4} in close proximity or interfaced with PdO can be reduced to the metallic state and to COO species, demonstrating a strong catalytic effect of palladium on the reduction of cobalt oxides. At temperatures between 298 and 500 K, depending on the catalyst formulation, the presence of metallic palladium promotes the reduction of a large fraction of oxidized cobalt. At higher reduction temperature, at least two competitive phenomena were detected: direct reduction of the residual oxidized cobalt by the graphite, leading to carbon monoxide and dioxide formation, and hydrogasification of the graphite catalyzed by the supported metals, leading mainly to methane formation. Together with a possible short-range palladium-activated hydrogen migration, at low and moderate temperatures, long-range migration of particles is necessary to explain the observations. These migrations, in turn, favor the formation of bimetallic particles, after reduction at 773 K. 53 refs., 5 figs., 3 tabs.

  19. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  20. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    Energy Technology Data Exchange (ETDEWEB)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief

  1. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    Science.gov (United States)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-12-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  2. A program for the Calculation of the Correlated colour Temperature. Application for Characterising Colour Changes in Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rosillo, F.; Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    The purpose of this work is to present a program for the calculation of the Correlated Colour Temperature (CCT) of any source of radiation. The methodology of calculating the colour coordinated and the corresponding CCT value of any light source is briefly reviewed. Sample program codes, including one to obtain the colour coordinates of blackbody radiators at different temperatures, have been also listed. This will allow to engineers and researchers to calculate and to obtain adequate solutions for their own illuminance problems. As an application example, the change in CCT values and colour coordinates of a reference spectrum when passing through semitransparent solar photovoltaic modules designed for building integration applications has been studied. This is used to evaluate the influence on the visual comfort of the building inner rooms. Several samples of different glass models used as covers in photovoltaic modules have been tested. Results show that all the samples tested do not modify substantially the initial characteristics of the sunlight, as otherwise expected. (Author) 5 refs.

  3. 50 nm AlxOy resistive random access memory array program bit error reduction and high temperature operation

    Science.gov (United States)

    Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken

    2014-01-01

    In order to decrease program bit error rate (BER) of array-level operation in AlxOy resistive random access memory (ReRAM), program BERs are compared by using 4 × 4 basic set and reset with verify methods on multiple 1024-bit-pages in 50 nm, mega-bit class ReRAM arrays. Further, by using an optimized reset method, 8.5% total BER reduction is obtained after 104 write cycles due to avoiding under-reset or weak reset and ameliorating over-reset caused wear-out. Then, under-set and over-set are analyzed by tuning the set word line voltage (VWL) of ±0.1 V. Moderate set current shows the best total BER. Finally, 2000 write cycles are applied at 125 and 25 °C, respectively. Reset BER increases 28.5% at 125 °C whereas set BER has little difference, by using the optimized reset method. By applying write cycles over a 25 to 125 to 25 °C temperature variation, immediate reset BER change can be found after the temperature transition.

  4. Application Guide for Thermal Desorption Systems

    Science.gov (United States)

    1998-04-01

    Flue Gas Cleaning System Used Fabric Filter, Sometimes Includes Wet Scrubber Fabric Filter, HEPA Filter, and Carbon Bed Fabric Filter, Carbon Bed...System Afterburner Afterburner Afterburner Typical Flue Gas Cleaning System Used Filter and Carbon Bed Catalytic Oxidizer Carbon Bed Carbon Bed...Average = 8 tph) Off-gas treatment Afterburner Afterburner operating temperature Over 1,500°F Flue gas cleaning system Fabric filter 8.1.3 Treatability

  5. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    Science.gov (United States)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  6. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  7. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph.

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, Richard D. (University of Michigan, Ann Arbor, MI); Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Lambertus, Gordon R. (University of Michigan, Ann Arbor, MI); Potkay, Joseph A. (University of Michigan, Ann Arbor, MI); Wise, Kensall D. (University of Michigan, Ann Arbor, MI)

    2006-10-01

    This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

  8. [Determination of trace selenium in plants by hydride generation atomic fluorescence spectrometry with program temperature-controlled graphite digestion].

    Science.gov (United States)

    Qian, Wei; Jiang, Qian; Wang, Ru-Hai; Gong, Hua; Han, Yong

    2014-01-01

    Discussed several methods of pretreatment for the determination of selenium were discussed, and a program temperature-controlled graphite digestion method was developed to digest 5 kinds of representative standard plant samples of citrus leaves, tea, cabbage leaves, shrubs and rice. The effect of the pretreatment method of digestion solution, digestion temperature and digestion time on the extraction of selenium was investigated in detail. The instrumental working parameters were optimized. For the reaction conditions of hydride generation atomic fluorescence spectrometry (HG-AFS), the effect of the concentration of KBH4 and HCl on the determination of selenium was emphasized. Not only the effect of the concentration of carrier flow HCl was considered, but also the effect of the concentration of sample HCl on the determination of selenium was studied. The best method for determination of trace selenium in plant samples by atomic fluorescence spectrometry with program temperature-controlled graphite digestion was established. Results indicated that the recovery of the method of selenium was 87.1% - 106.2%, the detection limit was 0.018 microg x L(-1) and the relative standard deviation (RSD) was less than 6.0%. In the range of 0-10 microg x L(-1) (low standard) and 0-100 microg x L(-1) (high standard) fluorescence was linearly related to the concentration of selenium, the coefficient of r was 0.9999 and r was 0.9997. Therefore, this method has wide linear range, high sensitivity, low detection limit and good stability, which was very suitable for the determination of trace selenium of plant. And the method was of easy and safe operation, strong practicability, low cost, and low toxicity of chemicals used, so it can be used as a routine analysis method in general laboratory.

  9. The Effects of composts on adsorption-desorption of three ...

    African Journals Online (AJOL)

    Michael Horsfall

    (1/n des). @JASEM. Pesticides adsorption and desorption are the key processes determining whether pesticide used will have any impact on environmental quality. For most of the pesticides soil organic matter and clay contents are the most important properties which affect the sorption and transformation (Durovic et al., ...

  10. Overview literature on matrix assisted laser desorption ionization ...

    Indian Academy of Sciences (India)

    Unknown

    Overview literature on matrix assisted laser desorption ionization mass spectroscopy (MALDI MS): basics and its .... Overview literature on MALDI MS. 517 mined as opposed to obtaining relative molecular ...... accurate representation of the overall molecular mass distribution in each of the fractionated materials. This.

  11. Characterizing and optimizing a laser-desorption molecular beam source

    Science.gov (United States)

    Teschmit, Nicole; Długołecki, Karol; Gusa, Daniel; Rubinsky, Igor; Horke, Daniel A.; Küpper, Jochen

    2017-10-01

    The design and characterization of a new laser-desorption molecular beam source, tailored for use in x-ray free-electron laser and ultrashort-pulse laser imaging experiments, is presented. It consists of a single mechanical unit containing all source components, including the molecular-beam valve, the sample, and the fiber-coupled desorption laser, which is movable in five axes, as required for experiments at central facilities. Utilizing strong-field ionization, we characterize the produced molecular beam and evaluate the influence of desorption laser pulse energy, relative timing of valve opening and desorption laser, sample bar height, and which part of the molecular packet is probed on the sample properties. Strong-field ionization acts as a universal probe and allows detecting all species present in the molecular beam, and hence enables us to analyze the purity of the produced molecular beam, including molecular fragments. We present optimized experimental parameters for the production of the purest molecular beam, containing the highest yield of intact parent ions, which we find to be very sensitive to the placement of the desorbed-molecule plumes within the supersonic expansion.

  12. Adsorption and laser-induced desorption of dimethylcadmium from silicon

    Science.gov (United States)

    Simonov, Alexander P.; Varakin, Vladimir N.

    1990-10-01

    The dynamics of Cd (cH ) 2 chemisorption and spontaneous decomposit ion on n-type 51(100) with native surface oxide the pathwa and efficiencies of the adsorbate desorption due to the absorption of the XeC1 laser radiation by silicon have been examined using laser-induced desorption miss spectrorrtry (LIDMS ) . The k inetics of these sur face processes has been found to depend on the preceding laser irradiation of the surface. The extremely fast chemisorption and efficient decomposition of the parent rrlecules have been observed on the irradiated silicon surface. The competition between intact dissociative and recombination desorption pathways was responsible for the observed laser fluence dependences of the desorption of Cd(CI-6) and i ts fragments. 1 . INTROOIJCTIct4 1 . 1 . Laser chemical vapour depos ition (LCVD). Laser-induced deposition of thin filme on solid surfaces by using volatile organometallic precursors has been the subject of numerous investigations in the 8Os2. Due to the spatial/temporal localization of laser radiation and the resonant nature of laser-rr1ecule interaction this deposition technique has such attractive features as submicrometer resolution of deposits high film growth rate and high quality lowtemperature processing. The deposition process can be controlled by varying the laser parameters (wavelength fluence beam spot on the substrate surface scanning speed ). A var iety of mater ials can be depos I ted using LCVD. Of special interest for microelectronics is the deposition of

  13. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  14. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  15. Desorption of plutonium from montmorillonite: An experimental and modeling study

    Science.gov (United States)

    Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.

    2017-01-01

    Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. We evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with Kd values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in Kd, indicating that true sorption equilibrium was not achieved within the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. A conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50-100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.

  16. Theoretical study of hydrogen absorption-desorption on LaNi3.8Al1.2-xMnx using statistical physics treatment

    Science.gov (United States)

    Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb

    2017-11-01

    The hydrogen absorption-desorption isotherms on LaNi3.8Al1.2-xMnx alloy at temperature T = 433 K is studied through various theoretical models. The analytical expressions of these models were deduced exploiting the grand canonical ensemble in statistical physics by taking some simplifying hypotheses. Among these models an adequate model which presents a good correlation with the experimental curves has been selected. The physicochemical parameters intervening in the absorption-desorption processes and involved in the model expressions could be directly deduced from the experimental isotherms by numerical simulation. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site n1 and n2, the receptor site densities N1m and N2m, and the energetic parameters P1 and P2. The behaviors of these parameters are discussed in relation with absorption and desorption processes to better understand and compare these phenomena. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 266 and 269.4 KJ/mol for absorption process and between 267 and 269.5 KJ/mol for desorption process comparable to usual chemical bond energies. Using the adopted model expression, the thermodynamic potential functions which govern the absorption/desorption process such as internal energy Eint, free enthalpy of Gibbs G and entropy Sa are derived.

  17. The synergistic effect of catalysts on hydrogen desorption properties of MgH2–TiO2–NiO nanocomposite

    Directory of Open Access Journals (Sweden)

    Farshad Rajabpour

    2016-10-01

    Full Text Available Abstract The high desorption temperature and slow desorption kinetics of MgH2 makes it less competitive for future mobile applications; using a catalyst accompanied by mechanical milling seems to be a good solution to overcome those problems. Therefore, the addition of TiO2 and NiO to MgH2 accompanied by 15 h of mechanical milling was considered in this study. The phase constituent and hydrogen desorption of the powder mixture were investigated using X-ray diffraction (XRD and a Sievert-type apparatus, respectively. XRD results showed that after milling, no binary or ternary compounds were formed, but hydrogen desorption time decreased and the desorbed hydrogen content increased. It seems that the increase in desorbed hydrogen was related to the simultaneous catalytic effect of TiO2 and NiO as well as mechanical milling. The results showed that the addition of both catalysts can improve the hydrogen desorption behavior of MgH2-based nanocomposite compared to the addition of only one catalyst of the same amount.

  18. Investigations into ultraviolet matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Heise, Theodore W. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm2. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  19. Sorption and desorption of carbamazepine from water by smectite clays.

    Science.gov (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Modulated hydrogen beam study of adsorption-induced desorption of deuterium from Si(100)-3×1:D surfaces

    Science.gov (United States)

    Rahman, F.; Kuroda, M.; Kiyonaga, T.; Khanom, F.; Tsurumaki, H.; Inanaga, S.; Namiki, A.

    2004-08-01

    We have studied the kinetic mechanism of the adsorption-induced-desorption (AID) reaction, H+D/Si(100)→D2. Using a modulated atomic hydrogen beam, two different types of AID reaction are revealed: one is the fast AID reaction occurring only at the beam on-cycles and the other the slow AID reaction occurring even at the beam off-cycles. Both the fast and slow AID reactions show the different dependence on surface temperature Ts, suggesting that their kinetic mechanisms are different. The fast AID reaction overwhelms the slow one in the desorption yield for 300 K⩽Ts⩽650 K. It proceeds along a first-order kinetics with respect to the incident H flux. Based on the experimental results, both two AID reactions are suggested to occur only on the 3×1 dihydride phase accumulated during surface exposure to H atoms. Possible mechanisms for the AID reactions are discussed.

  1. Molecular Beam Surface Scattering of Formaldehyde from Au(111): Characterization of the Direct Scatter and Trapping-Desorption Channels

    Science.gov (United States)

    Krueger, Bastian C.; Park, Barratt; Meyer, Sven; Wagner, Roman J. V.; Wodtke, Alec; Schaefer, Tim

    2017-06-01

    Quantum state resolved molecular beam scattering studies of small polyatomic molecules from metal surfaces present new challenges for experimentalists, but provide unprecedented new opportunities for detailed study of polyatomic molecular dynamics at surfaces. In the current work, we report preliminary characterization of the scattering of formaldehyde from the Au(111) surface. We report the measured desorption energy (0.31 eV), and characterize the distinct trapping-desorption and direct scattering channels, via the dependence of the scattered velocity and rotational distributions on surface temperature and incident molecular beam energy. Finally, we estimate the trapping probability as a function of incidence energy, which indicates the importance of molecular degrees of freedom in the mechanism for trapping.

  2. Ex-Stream: A MATLAB program for calculating fluid flux through sediment-water interfaces based on steady and transient temperature profiles

    Science.gov (United States)

    Swanson, Travis E.; Cardenas, M. Bayani

    2011-10-01

    Temperature is a useful environmental tracer for quantifying movement and exchange of water and heat through and near sediment-water interfaces (SWI). Heat tracing involves analyzing temperature time series or profiles from temperature probes deployed in sediments. Ex-Stream is a MATLAB program that brings together two transient and two steady one-dimensional coupled heat and fluid flux analytical models. The program includes a graphical user interface, a detailed user manual, and postprocessing capabilities that enable users to extract fluid fluxes from time-series temperature observations. Program output is written to comma-separated values files, displayed within the MATLAB command window, and may be optionally plotted. The models that are integrated into Ex-Stream can be run collectively, allowing for direct comparison, or individually.

  3. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    It is well known that sorption characteristics of building materials exhibit hysteresis in the way the equilibrium curves develop between adsorption and desorption, and that the sorption curves are also somewhat temperature dependent. However, these two facts are most often neglected in models...... measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...

  4. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2  MeV/u lead ions

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2003-01-01

    Full Text Available In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2  MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating are reported in terms of the molecular desorption yields for H_{2}, CH_{4}, CO, Ar, and CO_{2}. Unexpected large values of molecular yields per incident ion up to 2×10^{4} molecules/ion have been observed. The reduction of the ion-induced desorption yield due to continuous bombardment with lead ions (beam cleaning has been investigated for five different stainless steel vacuum chambers. The implications of these results for the vacuum system of the future Low Energy Ion Ring and possible remedies to reduce the vacuum degradation are discussed.

  5. Adsorption-desorption and leaching of pyraclostrobin in Indian soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-01-01

    Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow

  6. Analysis of organic compounds in water by direct adsorption and thermal desorption. [Dissertation

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.P. Jr.

    1980-03-01

    An instrument was designed and constructed that makes it possible to thermally desorb organic compounds from wet adsorption traps to a gas chromatograph in an efficient and reproducible manner. Based on this device, a method of analyzing organics in water was developed that is rapid, sensitive, and of broader scope than previously published methods. The system was applied to the analysis of compounds with a wide range of volatilities. Temperature and flow parameters were investigated and specific procedures for quantitation were established. Real samples, including tap water and well water, were also analyzed with this system. Depending on the analysis requirements, the thermal desorption instrument can be used with either packed column or high resolution open-tubular column gas chromatography. The construction plans of normal and high-resolution systems are presented along with chromatograms and data produced by each. Finally, an improved thermal desorption instrument is described. Modifications to the basic system, including splitless injection onto a capillary column, automation, dual cryogenic trapping, reduction of scale, and effluent splitting to dual detection are discussed at length as they relate to the improved instrument.

  7. Soot structure and reactivity analysis by Raman microspectroscopy, temperature-programmed oxidation, and high-resolution transmission electron microscopy.

    Science.gov (United States)

    Knauer, Markus; Schuster, Manfred E; Su, Dangsheng; Schlögl, Robert; Niessner, Reinhard; Ivleva, Natalia P

    2009-12-17

    Raman microspectroscopy (RM), temperature-programmed oxidation (TPO), high-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS) were combined to get comprehensive information on the relationship between structure and reactivity of soot in samples of spark discharge (GfG), heavy duty engine diesel (EURO VI and IV) soot, and graphite powder upon oxidation by oxygen at increasing temperatures. GfG soot and graphite powder represent the higher and lower reactivity limits. Raman microspectroscopic analysis was conducted by determination of spectral parameters using a five band fitting procedure (G, D1-D4) as well as by evaluation of the dispersive character of the D mode. The analysis of spectral parameters shows a higher degree of disorder and a higher amount of molecular carbon for untreated GfG soot samples than for samples of untreated EURO VI and EURO IV soot. The structural analysis based on the dispersive character of the D mode revealed substantial differences in ordering descending from graphite powder, EURO IV, VI to GfG soot. HRTEM images and EELS analysis of EURO IV and VI samples indicated a different morphology and a higher structural order as compared to GfG soot in full agreement with the Raman analysis. These findings are also confirmed by the reactivity of soot during oxidation (TPO), where GfG soot was found to be the most reactive and EURO IV and VI soot samples exhibited a moderate reactivity.

  8. Correlation of Chemisorption and Electronic Effects for Metal Oxide Interfaces: Transducing Principles for Temperature Programmed Gas Microsensors (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    S. Semancik; R. E. Cavicchi; D. L. DeVoe; T. J. McAvoy [National Institute of Standards and Technology (US)]|[University of Maryland (US)

    2001-12-21

    This Final Report describes efforts and results for a 3-year DoE/OST-EMSP project centered at NIST. The multidisciplinary project investigated scientific and technical concepts critical for developing tunable, MEMS-based, gas and vapor microsensors that could be applied for monitoring the types of multiple analytes (and differing backgrounds) encountered at DoE waste sites. Micromachined ''microhotplate'' arrays were used as platforms for fabricating conductometric sensor prototypes, and as microscale research tools. Efficient microarray techniques were developed for locally depositing and then performance evaluating thin oxide films, in order to correlate gas sensing characteristics with properties including composition, microstructure, thickness and surface modification. This approach produced temperature-dependent databases on the sensitivities of sensing materials to varied analytes (in air) which enable application-specific tuning of microsensor arrays. Mechanistic studies on adsorb ate transient phenomena were conducted to better understand the ways in which rapid temperature programming schedules can be used to produce unique response signatures and increase information density in microsensor signals. Chemometric and neural network analyses were also employed in our studies for recognition and quantification of target analytes.

  9. Deuterium thermal desorption from Ni-rich deuterated Mg thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Kale, A.; Mosaner, P.; Checchetto, R.; Miotello, A. [Dipartimento di Fisica dell' Universita di Trento, I-38050 Povo (Italy); Das, G. [Dipartimento di Medicina Sperimentale e Clinica, Universita degli Studi, Magna Grecia, I-88100 Catanzaro (Italy)

    2008-02-15

    Mg-Ni multilayers and Ni-rich Mg thin films were deposited by electron gun and pulsed laser deposition, respectively. Samples were submitted to thermal treatment in deuterium or hydrogen atmosphere at 423 K and {proportional_to}10{sup 5} Pa pressure to promote the metal to hydride phase transition. The H chemical bonding in the multilayer samples, after annealing in H{sub 2} atmosphere, was examined by Fourier transform infrared spectroscopy: the obtained spectra suggest that the samples with the Mg:Ni=2:1 atomic ratio contain the Mg{sub 2}NiH{sub 4} phase while the samples with lower Ni concentration contain both the MgH{sub 2} and the Mg{sub 2}NiH{sub 4} phases. The effect of the Ni additive on the stability of the deuteride phase was studied by thermal desorption spectroscopy (TDS). The TDS spectra of the single-phase Mg{sub 2}NiD{sub 4} samples show a TDS peak at 400 K. The TDS spectra of the two-phase samples show both the D{sub 2} desorption peak at 400 K and a second peak at higher temperature that we attributed to the dissociation of the MgD{sub 2} phase. The high-temperature peak shifts to lower temperatures by increasing the Ni content. It is suggested that in the two-phase samples, the lattice volumes having the Mg{sub 2}Ni structure resulting from the dissociation of the Mg{sub 2}NiD{sub 4} phase reduce the thermodynamic stability of the MgD{sub 2} phase. (author)

  10. Experimental study on desorption of soluble matter as influenced by cations in static water

    Directory of Open Access Journals (Sweden)

    Wen-sheng XU

    2015-10-01

    Full Text Available With variation of drainage basin environments, desorption of soluble matter has become one of the significant erosion processes in rivers. It has a considerable impact on flow and sediment transport, as well as processes of river bed deformation and landform evolution throughout a watershed. In this study, considering influences on sediment movement, especially on cohesive sediment transport, Ca2+ and H+ were chosen as characteristic ions of soluble matter, and the total desorption quantity of Ca2+ and pH value when the desorption equilibrium is reached were employed as two indexes representing the desorption of soluble matter. By means of an indoor experiment, desorption of soluble matter as influenced by cations in static water was investigated. The results show that the total desorption quantity of soluble matter increases with the initial cation concentration until a maximum desorption quantity value is obtained and maintained. The total desorption quantity of soluble matter depends on properties of the specific cations in static water, and the stronger the affinity is between the cation and sediment surface, the higher the total desorption quantity will be. Finally, a strong approximate linear relationship between desorption quantities for different kinds of soluble matters was obtained, which means that variation of pH values can accurately reflect the desorption results of soluble matter.

  11. Nonisothermal Desorption of the Libr Aqueous Salt Solution in Minichannels

    Directory of Open Access Journals (Sweden)

    Misyura S.Y.

    2015-01-01

    Full Text Available This work is devoted the research for two (three-phase flows of LiBr water solution in minichannels with different heat flux and wall thicknesses. Six flow patterns have been observed: a bubble flow, plug flow, laminar and oscillating laminar flow, mist flow, and flow locking. The physical solution properties and the equilibrium conditions change in time. The desorption rate depends not only on the heat flow and speed ratio of vapor to liquid, but also on the total area of the interface (liquid-vapor. The third phase (solid crystal hydrates are formed under high heat fluxes and in the presence of boiling crisis. A variation in the wall thickness leads to a change in the desorption mode. With increasing wall thickness the boiling crisis is realized at higher heat fluxes.

  12. Unconventional resource's production under desorption-induced effects

    Directory of Open Access Journals (Sweden)

    S. Sina Hosseini Boosari

    2016-06-01

    We have developed a numerical model to study the effect of changes in porosity, permeability and compaction on four major U.S. shale formations considering their Langmuir isotherm desorption behavior. These resources include; Marcellus, New Albany, Barnett and Haynesville Shales. First, we introduced a model that is a physical transport of single-phase gas flow in shale porous rock. Later, the governing equations are implemented into a one-dimensional numerical model and solved using a fully implicit solution method. It is found that the natural gas production is substantially affected by desorption-induced porosity/permeability changes and geomechancis. This paper provides valuable insights into accurate modeling of unconventional reservoirs that is more significant when an even small correction to the future production prediction can enormously contribute to the U.S. economy.

  13. The effect of microwave-frequency discharge-activated oxygen on the microscale structure of low-temperature water ice films

    Science.gov (United States)

    Doering, Skye R.; Strobush, Kirsten M.; Marschall, Jochen; Boulter, James E.

    2009-12-01

    Low-temperature, amorphous water ice films grown by vapor deposition under high-vacuum are exposed to microwave-frequency discharge-activated oxygen in order to investigate its effect on the ice surface. Adsorption of methane is used to probe alterations to microscale structures and surface morphology. Films are interrogated throughout the experiment by grazing-angle Fourier-transform infrared reflection-absorption spectroscopy, and after the experiment by temperature-programmed desorption mass spectrometry. Multilayer Fresnel thin-film optics simulations aid in the interpretation of absorbance spectra. Using these techniques, structural alterations are observed over a range of spatial and time scales. At first, spectral absorbance features arising from incompletely coordinated water molecules disappear. The density of high-energy methane adsorption sites is reduced, lowering the equilibrium amount of adsorbed methane. At longer exposure times, this is manifested in a narrowing of the width of the primary methane desorption peak, indicating a narrower range of methane adsorption energies on the ice surface. Together these observations indicate restructuring of micropores resulting in an increase in the structural homogeneity of the film. Enhancement of small, higher-temperature methane desorption features associated with methane encapsulation during thermal annealing indicates alterations to larger pore structures by the same restructuring process. Attribution of these effects to various energetic species in active oxygen is discussed. Based on their abundance, O(P3) and O2(aΔ1g) are the most likely candidates; other trace atomic and molecular species may also contribute.

  14. Adsorption, desorption, and film formation of quinacridone and its thermal cracking product indigo on clean and carbon-covered silicon dioxide surfaces

    Science.gov (United States)

    Scherwitzl, Boris; Lassnig, Roman; Truger, Magdalena; Resel, Roland; Leising, Günther; Winkler, Adolf

    2016-09-01

    The evaporation of quinacridone from a stainless steel Knudsen cell leads to the partial decomposition of this molecule in the cell, due to its comparably high sublimation temperature. At least one additional type of molecules, namely indigo, could be detected in the effusion flux. Thermal desorption spectroscopy and atomic force microscopy have been used to study the co-deposition of these molecules on sputter-cleaned and carbon-covered silicon dioxide surfaces. Desorption of indigo appears at temperatures of about 400 K, while quinacridone desorbs at around 510 K. For quinacridone, a desorption energy of 2.1 eV and a frequency factor for desorption of 1 × 1019 s-1 were calculated, which in this magnitude is typical for large organic molecules. A fraction of the adsorbed quinacridone molecules (˜5%) decomposes during heating, nearly independent of the adsorbed amount, resulting in a surface composed of small carbon islands. The sticking coefficients of indigo and quinacridone were found to be close to unity on a carbon covered SiO2 surface but significantly smaller on a sputter-cleaned substrate. The reason for the latter can be attributed to insufficient energy dissipation for unfavorably oriented impinging molecules. However, due to adsorption via a hot-precursor state, the sticking probability is increased on the surface covered with carbon islands, which act as accommodation centers.

  15. Direct analysis of anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption-dielectric barrier discharge ionization mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Nonami, Hiroshi; Hiraoka, Kenzo

    2014-08-11

    Rapid detection of trace level anabolic steroids in urine is highly desirable to monitor the consumption of performance enhancing anabolic steroids by athletes. The present article describes a novel strategy for identifying the trace anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption (LPTD) coupled to dielectric barrier discharge (DBD) ionization mass spectrometry. Using this method the steroid molecules are enriched within a liquid droplet during the thermal desorption process and desorbed all-together at the last moment of droplet evaporation in a short time domain. The desorbed molecules were ionized using a dielectric barrier discharge ion-source in front of the mass spectrometer inlet at open atmosphere. This process facilitates the sensitivity enhancement with several orders of magnitude compared to the thermal desorption at a lower temperature. The limits of detection (LODs) of various steroid molecules were found to be in the range of 0.05-0.1 ng mL(-1) for standard solutions and around two orders of magnitude higher for synthetic urine samples. The detection limits of urinary anabolic steroids could be lowered by using a simple and rapid dichloromethane extraction technique. The analytical figures of merit of this technique were evaluated at open atmosphere using suitable internal standards. The technique is simple and rapid for high sensitivity and high throughput screening of anabolic steroids in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Boron desorption and fractionation in Subduction Zone Fore Arcs: Implications for the sources and transport of deep fluids

    Science.gov (United States)

    Saffer, Demian M.; Kopf, Achim J.

    2016-12-01

    At many subduction zones, pore water geochemical anomalies at seafloor seeps and in shallow boreholes indicate fluid flow and chemical transport from depths of several kilometers. Identifying the source regions for these fluids is essential toward quantifying flow pathways and volatile fluxes through fore arcs, and in understanding their connection to the loci of excess pore pressure at depth. Here we develop a model to track the coupled effects of boron desorption, smectite dehydration, and progressive consolidation within sediment at the top of the subducting slab, where such deep fluid signals likely originate. Our analysis demonstrates that the relative timing of heating and consolidation is a dominant control on pore water composition. For cold slabs, pore water freshening is maximized because dehydration releases bound water into low porosity sediment, whereas boron concentrations and isotopic signatures are modest because desorption is strongly sensitive to temperature and is only partially complete. For warmer slabs, freshening is smaller, because dehydration occurs earlier and into larger porosities, but the boron signatures are larger. The former scenario is typical of nonaccretionary margins where insulating sediment on the subducting plate is commonly thin. This result provides a quantitative explanation for the global observation that signatures of deeply sourced fluids are generally strongest at nonaccretionary margins. Application of our multitracer approach to the Costa Rica, N. Japan, N. Barbados, and Mediterranean Ridge subduction zones illustrates that desorption and dehydration are viable explanations for observed geochemical signals, and suggest updip fluid migration from these source regions over tens of km.

  17. Adsorption and Desorption of Nitrogen and Water Vapor by clay

    Science.gov (United States)

    Cui, Deshan; Chen, Qiong; Xiang, Wei; Huang, Wei

    2015-04-01

    Adsorption and desorption of nitrogen and water vapor by clay has a significant impact on unsaturated soil physical and mechanical properties. In order to study the adsorption and desorption characteristics of nitrogen and water vapor by montmorillonite, kaolin and sliding zone soils, the Autosorb-iQ specific surface area and pore size analyzer instrument of United State was taken to carry out the analysis test. The adsorption and desorption of nitrogen at 77K and water vapor at 293K on clay sample were conducted. The theories of BET, FHH and hydration energy were taken to calculate the specific surface, surface fractal dimension and adsorption energy. The results show that the calculated specific surface of water vapor by clay is bigger than nitrogen adsorption test because clay can adsorb more water vapor molecule than nitrogen. Smaller and polar water vapor molecule can access the micropore and then adsorb on the mineral surface and mineral intralayer, which make the mineral surface cations hydrate and the mineral surface smoother. Bigger and nonpolar nitrogen molecule can not enter into the micropore as water vapor molecule and has weak interaction with clay surface.

  18. Sorption and desorption of silver ions by bentonite clays.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Monteiro, Alessandra Maffei; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2017-04-01

    Anthropogenic activities have increased the concentration of metal species in the environment. The toxicity of silver ions to aquatic and terrestrial organisms has required monitoring by analytical methods, besides actions to promote its control as pollutant. Sorption and desorption processes are directly related to the mobility and availability of metal ions in the environment. In this context, clay minerals can be used for pre-concentration, removal and recovery of silver ions from aqueous solution. Herein, two bentonite clays (BaVC-1 and SWy-2) were characterised and applied to investigate the sorption and desorption of silver ions. Isotherms were fitted to the dual-mode Langmuir-Freundlich model to qualify and quantify sorption sites and evaluate the mobilisation process. The maximum sorption capacity was 743 and 849 meq kg -1 for BaVC-1 and SWy-2, respectively. Hysteresis index (HI) and mobilisation factor (MF) suggest that the desorption of silver ions in BaVC-1 is about four times more conducive compared to that in SWy-2, although both materials have demonstrated a great potential for Ag + pre-concentration from aqueous solutions.

  19. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  20. Importance of the structure and nanoporosity of organic matter on the desorption kinetics of benzo[a]pyrene in sediments.

    Science.gov (United States)

    Huang, Youda; Zhang, Dainan; Duan, Dandan; Yang, Yu; Xiong, Yongqiang; Ran, Yong

    2017-06-01

    The desorption kinetics and mechanism were investigated using a Tenax extraction technique on different sediments spiked with radiocarbon-labeled benzo[a]pyrene (BaP). Five sedimentary fractions were sequentially fractionated, and the only nonhydrolyzable organic carbon fractions (NHC) were characterized using advanced solid-state (13)C nuclear magnetic resonance spectroscopy (NMR), improved six end-member model, and a CO2 gas adsorption technique. The sediments contained high percentages of algaenan and/or sporopollenin but low percentages of black carbon and lignin. A first-order, two-compartment kinetics model described the desorption process very well (R(2) > 0.990). Although some of the organic carbon fractions were significantly related to the desorption kinetics parameters, the NHC fractions showed the highly significant correlation. Moreover, the nanoporosity or specific surface area (SSA) of the NHC fractions was highly related to their OC contents and aliphatic C (R(2) = 0.960, p kinetics parameters, structural parameters, and nanoporosity were well established (R(2)=>0.999). Nanoporosity and aromatic C were the dominant contributors. Furthermore, the enhanced percentages of desorbed BaP at elevated temperatures significantly showed a linear regression with the structure and nanoporosity. To our knowledge, the above evidence demonstrates for the first time that the transfer (or diffusion) of BaP in the nanopores of condensed aromatic components is the dominant mechanism of the desorption kinetics of BaP at organic matter particle scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The effects of the biogeochemical properties of clay minerals on the Pb sorption and desorption in various redox condition

    Science.gov (United States)

    Koo, T. H.; Kim, J. Y.; Kim, J. W.

    2016-12-01

    The fate and transportation of hazardous trace metal in soil environment can be controlled by various factors including temperature, geological location, properties of bed rock or sediment, human behavior, and biogeochemical reactions. The sorption and desorption process is one of the major process for control the transportation of trace metal in soil-water system. Nonetheless, few studies were focused on the biological controlling parameters, particularly redox reaction of structural metal of clay minerals. Thus, the objective of the present study is to investigate the correlation between the sorption and desorption reaction of Pb and biogeochemical properties of clay minerals. The effects of redox state of structural Fe and layer charge of the minerals on the migration/speciation of Pb at the various geochemical environment will be elucidated. The Fe-rich smectite, nontronite (NAu-1), and bulk soil samples which were collected from abandoned mine areas were reduced by microbial respiration by Shewanella Oneidensis MR-1 and/or Na-dithionite to various oxidation state of structural Fe. Then the Pb-stock solution made with common lead and nitric acid were spiked into the mineral/soil slurry with various Pb concentration to test the sorption and desorption reaction upto 7 days. The reaction was stopped at each time point by freezing the pellet and supernatant separately after centrifugation. Then the concentration and stable isotope ratio of Pb in the supernatant were measured using Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Multicollector (MC)-ICP-MS. The structural as well as chemical modification on nontronite and bulk soil sample were measured using x-ray diffraction (XRD), scanning electron microscopy (SEM) and wet chemistry analysis. The changes in Pb species in supernatant by sorption and desorption and its consequences on the clay structural/biogeochemical properties will be discussed.

  2. Effects of He, D interaction on thermal desorption of He and D2 and microstructural evolution in pure Fe

    Science.gov (United States)

    Xu, Q.; Zhang, J.

    2016-10-01

    He and H atoms are produced in (n, α) and (n, p) nuclear reactions. In fusion reactors, energetic T and D, being isotopes of H, and He particles damage the surface materials. To investigate the He-D interaction, Fe, which is a model metal of choice in ferritic stainless steel that is used in fusion reactors, was irradiated separately by He or D2 ions and by combinations of He + D2 or D2 + He ions with the energy of 5 keV. The dose for single-species irradiation and each step of double-species irradiation was 1.0 × 1020 ions/m2. Thermal desorption analysis indicates that, in the case of single ion species irradiation, thermal desorption of D occurs at temperatures below 700 K, while the main thermal desorption of He occurs at 750 K and above 1200 K. The binding energy of He and defects is higher than that of D and defects. In the case of irradiation with combinations of ions species, however, the obtained thermal desorption spectra are the same, although the peak intensities are different, suggesting that the He-D interaction is weak. The sorption of D is more predominant for irradiations with He + D2. On the microstructure level, the irradiated samples exhibited larger voids following combined irradiations compared with those for irradiation with a single ion species after annealing to 1323 K. During the He + D2 irradiation, D atoms are effectively trapped owing to the defects induced by pre-irradiation with He.

  3. Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications

    Directory of Open Access Journals (Sweden)

    Shu Taira, Kenji Kitajima, Hikaru Katayanagi, Eiichiro Ichiishi and Yuko Ichiyanagi

    2009-01-01

    Full Text Available We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm and developed nanoparticle-assited laser desorption/ionization (nano-PALDI mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB, 4-hydroxy-α-cinnamic acid (CHCA and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.

  4. [Adsorption-desorption Characteristics of Fermented Rice Husk for Ferrous and Sulfur Ions].

    Science.gov (United States)

    Xie, Xiao-mei; Liao, Min; Hua, Jia-yuan; Chen, Na; Zhang, Nan; Xu, Pei-zhi; Xie Kai-zhi; XU, Chang-xu; Liu, Guang-rong

    2015-10-01

    To understand the potential of rice husk to fix Fe2+ and S2- ions, the sorption of Fe2+ and S2- by fermented rice husk was studied by using batch incubation experiments in the present study. The effects of adsorption time, Fe2+ and S2- concentration, pH, the temperature and ionic strength in adsorption reaction solution on the sorption were investigated. Therefore, the stability of Fe2+ and S2- adsorbed by fermented rice husk was further validated by desorption experiments performed under similar conditions as adsorption. The results showed that, the adsorption kinetics of Fe2+ (r = 0.912 1) and S2- (r = 0.901 1) by fermented rice husk fits the Elovich kinetics equation, and Freundlich isotherm model could simulate the isotherm adsorption processes of Fe2+ (R2 = 0.965 1) and S2- (R2 = 0.936 6) on fermented rice husk was better than other models. The adsorption processes on fermented rice husk were non- preferential adsorption for Fe2+ and S2, while the adsorption process of Fe2+ on fermented rice husk was spontaneous reaction and the adsorption process of S2- was non-spontaneous reaction. The adsorption processes of Fe2+ and S2- on fermented rice husk were endothermic process since high temperature could benefit to the adsorption. The adsorption mechanism of Fe2+ on fermented rice husk was mainly controlled by coordination adsorption, the adsorption mechanism of S2- on fermented rice husk was mainly controlled by ligand exchange adsorption. The adsorption processes of Fe2+ and S2- on fermented rice husk showed greater pH adaptability which ranged from 1.50 to 11.50. With the increasing of ionic strength, the amount of adsorbed Fe2+ on fermented rice husk wasincreased in some extent, the amount of adsorbed S2- on fermented rice husk was slightly decreased, which further proved the adsorption of Fe2+ was major in inner sphere complexation and the adsorption of S2- was major in outer complexation. The desorption rates of Fe2+ and S2- which was adsorbed by fermented

  5. Non-isothermal kinetics of the thermal desorption of mercury from a contaminated soil

    Directory of Open Access Journals (Sweden)

    López, Félix A.

    2014-03-01

    Full Text Available The Almadén mining district (Ciudad Real, Spain was the largest cinnabar (mercury sulphide mine in the world. Its soils have high levels of mercury a consequence of its natural lithology, but often made much worse by its mining history. The present work examines the thermal desorption of two contaminated soils from the Almadén area under non-isothermal conditions in a N2 atmosphere, using differential scanning calorimetry (DSC. DSC was performed at different heating rates between room temperature and 600 °C. Desorption temperatures for different mercury species were determined. The Friedman, Flynn-Wall-Ozawa and Coasts–Redfern methods were employed to determine the reaction kinetics from the DSC data. The activation energy and pre-exponential factor for mercury desorption were calculated.El distrito minero de Almadén (Ciudad Real, España tiene la mayor mina de cinabrio (sulfuro de mercurio del mundo. Sus suelos tienen altos niveles de mercurio como consecuencia de su litología natural, pero a menudo su contenido en mercurio es mucho más alto debido a la historia minera de la zona. Este trabajo examina la desorción térmica de dos suelos contaminados procedentes de Almadén bajo condiciones isotérmicas en atmósfera de N2, empleando calorimetría diferencial de barrido (DSC. La calorimetría se llevó a cabo a diferentes velocidades de calentamiento desde temperatura ambiente hasta 600 °C. Se determinaron las diferentes temperaturas de desorción de las especies de mercurio presentes en los suelos. Para determinar la cinética de reacción a partir de los datos de DSC se utilizaron los métodos de Friedman, Flynn-Wall-Ozawa y Coasts–Redfern. Además se calcularon las energías de activación y los factores pre-exponenciales para la desorción del mercurio.

  6. Boron desorption in subduction forearcs: Systematics and implications for the origin and transport of deeply-sourced fluids

    Science.gov (United States)

    Saffer, D. M.; Kopf, A.

    2015-12-01

    At many subduction zones, pore water geochemical anomalies at seafloor seeps and in shallow boreholes indicate upward fluid flow and chemical transport from depths of several km. Identifying the source regions and flow pathways of these fluids is a key step toward quantifying volatile fluxes through forearcs, and in understanding their potential connection to loci of excess pore pressure along the plate boundary. Here, we focus on observations of pore water freshening (reported in terms of [Cl]), elevated [B], and light δ11B. Pore water freshening is generally thought to result from clay dehydration, whereas the B and δ11B signatures are interpreted to reflect desorption of isotopically light B from pelitic sediments with increasing temperature. We develop a model to track the coupled effects of B desorption, smectite dehydration, and progressive consolidation within the underthrusting sediment section. Our model incorporates established kinetic models of clay dehydration, and experimental data that define the temperature-dependent distribution coefficient (Kd) and fractionation of B in marine sediments. A generic sensitivity analysis demonstrates that the relative timing of heating and consolidation is a dominant control on pore water composition. For cold slabs, freshening is maximized because dehydration releases bound water into low porosity sediment, whereas B concentrations and isotopic signatures are modest because desorption is only partially complete. For warmer slabs, [B] and [Cl] signals are smaller, because heating and desorption occur shallower and into larger porosities, but the predicted δ11B signal is larger. The former scenario is typical of non-accretionary margins where the insulating sediment layer on the subducting plate is commonly <1 km thick. This result provides a quantitative explanation for the global observation that [Cl] depletion and [B] enrichment signals are generally strongest at non-accretionary margins. Application of our multi

  7. Thermal desorption mass spectrometric and x-ray photoelectron studies of etched surfaces of polytetrafluoroethylene

    Science.gov (United States)

    Rye, R. R.; Kelber, J. A.

    1987-12-01

    The etching of polytetrafluoroethylene (PTFE) with Na solutions is known to lead to a loss of F, a loss which is correlated with enhanced adhesion. Subsequent heating partially restores surface F with a concurrent loss of adhesion strength. We have combined X-ray photoelectron spectroscopy (XPS) and gas phase mass spectroscopy for in situ measurements of the processes that occur as the fluorocarbon is heated. An array of volatile products, which vary with the specific treatment, desorb from etched PTFE. Among these are: N 2 and low molecular weight fluorocarbons, the amounts of which monotonically decrease with increasing exposure to the etching solution (and probably result from the bulk); species such as CO and CO 2, which in part result from surface impurities; and water and acetone which result from the rinse steps following the etching process. XPS measurements show that etching produces a major loss of surface F and a gain of surface O. The latter probably results from the subsequent rinse steps. Heating produces a substantial recovery in surface F with only a small decrease in the surface O, and the gain in surface F is shown to occur at a higher temperature than the desorption of any species from the surface. Thus, desorption of products from the surface is decoupled, in terms of both the distribution of products and their relative temperatures, from the surface changes as monitored by XPS. This decoupling suggests that the increase in surface F results from diffusion of low molecular weight fluorocarbons from the bulk or a transition region, or from a rearrangement of the sponge-like surface region produced in the etching process.

  8. Thermal desorption remediation in relation to landfill disposal at isolated sites in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.; Henze, M. [ATCO Electric Ltd., Edmonton, AB (Canada); Fernuik, N.; MacKinnon, B. [Thurber Environmental Consultants Ltd., Edmonton, AB (Canada); Nelson, D. [Nelson Environmental Remediation Ltd., Spruce Grove, AB (Canada)

    2005-07-01

    Thermal desorption (TD) involves the application of heat to organic-contaminated soil to release and thermally destruct contaminants using high temperatures. An overview of the technique used in the remediation of diesel-contaminated sites was presented. The paper was divided into 2 parts, the first of which provided an overview of TD at 2 electric company sites with a total of 29,000 tonnes of diesel-contaminated soil. Site contamination occurred mainly through the loading, storage and dispensing of diesel fuel. Petroleum lubricants, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), glycols and metals were among the other contaminants. Remediation work was comprised of dig and dump (DD) or thermal desorption (TD) treatment of contaminated soils as well as the removal of underground facilities including concrete foundations, screw anchors, storage tanks, pipelines and grounding grids. The TD process, and productivity with both clay and sand soil types was reviewed, and an analysis of direct, indirect and total costs was presented. Issues concerning planning, production rates, practical field experience and quality control procedures were discussed, in addition to limitations such the treatment's inability to remediate metals, sensitivity to soil water content, and water demands for soil processing. The second section described the role of TD in a staged remediation for 46,000 tonnes of diesel-contaminated soil at Fox Lake, a remote northern community accessible by winter road and ice bridges. The challenges of ice bridge construction and maintenance, excavation backfilling and soil transport at low temperature were reviewed. An outline of consultation processes with First Nations was presented, as well as details of site operations and soil hauling, truck restrictions and coordination over the ice bridge, alternate backfill sources, and TD soil treatment of the contaminated soil. 2 tabs.

  9. Structure, provenance and residence time of terrestrial organic carbon: insights from Programmed temperature Pyrolysis-Combustion of river sediments

    Science.gov (United States)

    Feng, X.; Galy, V.; Rosenheim, B. E.; Roe, K. M.; Williams, E. K.

    2010-12-01

    The terrestrial organic carbon (OC) represents one of the largest reservoirs of C on earth and thus plays a crucial role in the global C cycle, participating to the regulation of atmospheric chemistry. While degradation of sedimentary OC (petrogenic C) is a source of CO2 for the atmosphere, burial of biospheric C (e.g. plant debris and soil OC) is a long-term sequestration of atmospheric CO2. Over short timescales, the atmospheric CO2 level is also sensitive to variations of the residence time of carbon in continental reservoirs. Fluvial transport plays a crucial role in the organic carbon cycle, constituting the connection between the different reservoirs and promoting the transfer of C from one reservoir to the other. Moreover, thanks to the integrating effect of erosion, studying river sediments allows the spatial and temporal integration of organic carbon exchanges occurring in a given basin. OC transported by rivers (riverine OC) is known to be extremely heterogeneous in nature and reactivity, however; ranging from extremely refractory petrogenic C (e.g. graphite) to soil complex OC to labile vegetation debris. Here we use a recently developed method, a programmed-temperature pyrolysis-combustion system (PTP-CS) coupled to multiisotopic analysis, to determine the reactivity, age and nature of OC in river sediments. The method takes advantage of the wide range of reactivity and radiocarbon content of different components of riverine OC. We submitted to PTP-CS a set of river sediments from 1) the Ganges-Brahmputra river system and, 2) the lower Mississippi river. Preliminary results highlight the heterogeneous nature of riverine OC. Different components of the riverine OC pool decompose at different temperature and are characterized by extremely variable isotopic compositions. The decomposition of radiocarbon dead petrogenic C at very high temperature allows estimating the respective contribution of biospheric and petrogenic C. Moreover, biospheric OC appears to

  10. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    Science.gov (United States)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  11. Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids.

    Science.gov (United States)

    Ma, Xin; Yang, Sheng-Tao; Tang, Huan; Liu, Yuanfang; Wang, Haifang

    2015-06-15

    Carbon nanotubes (CNTs) had meaningful adsorption capacities for Pb(2+), Cu(2+), Zn(2+) and Cd(2+), while Pb(2+) showed the highest adsorption in the competitive adsorption evaluations. The desorption behaviors of heavy metal ions were completely different in various biofluids, where the desorption was significantly influenced by pH and the presence of proteins/other cations. The desorption was most effective in simulated stomach juice, and much less effective in other simulated biofluids. More Pb(2+) stuck to CNTs than others, resulting in less desorption. Interestingly, the competitive desorption behaviors of four ions were largely changed comparing to the individual desorption behaviors. The implications to the biosafety evaluations and synergistic effects of CNT are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. TEMLOPI/V.2: a computer program for estimation of fully transient temperatures in geothermal wells during circulation and shut-in

    Science.gov (United States)

    Espinosa-Paredes, G.; Garcia, A.; Santoyo, E.; Hernandez, I.

    2001-04-01

    This paper describes the development, validation and application of the TEMLOPI/V.2 computer program. This program is a useful tool for estimating in-situ the transient temperature distribution of the fluids employed for drilling geothermal wells. TEMLOPI/V.2 is based on a mathematical model which is developed to consider two-dimensional transient heat transfer during drilling and shut-in conditions in and around a geothermal well. The solution of the partial differential equations is based on the finite-difference technique with an implicit scheme. This scheme serves to demonstrate the numerical solution procedure. Each radial grid node is placed in a different thermal region: flow inside the pipe, metal pipe wall, flow inside annulus, and the surrounding formation. The program was written in FORTRAN 77 using modular programming and runs on most IBM compatible personal computers. The software code, its architecture, input and output files, the solution algorithm, flow diagrams and source programs are described in detail. From validation tests, computed temperatures differ by less than 5°C from analytically obtained temperatures. Comparison of results from the fully transient TEMLOPI/V.2 simulator and the pseudo-transient version, TEMLOPI/V.1, with measured data shows that the fully transient model provides better results. Application of TEMLOPI/V.2 is demonstrated in a practical application study of well EAZ-2 from Los Azufres Mexican geothermal field.

  13. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  14. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabio [BIOAGRI Labs., Piracicaba, SP (Brazil). Div. de Quimica. Lab. de Radioquimica; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Lavorenti, Arquimedes [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Secao de Toxicologia

    2003-03-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh{sub 2}PO{sub 4} at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha{sup -1} of P{sub 2}O{sub 5}, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L{sup -1}), with a {sup 14}C radioactivity of 0.233 kBq mL{sup -1}. Four steps of the desorption procedures withCaCl{sub 2} 0.01 mol L{sup -1} and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L{sup -1}). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm{sup -3}. Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  15. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D. [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  16. Radionuclide sorption-desorption pattern in soils from Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Garcia, C.J.; Rigol, A.; Rauret, G. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 3a Planta, 08028 Barcelona (Spain); Vidal, M. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 3a Planta, 08028 Barcelona (Spain)], E-mail: miquel.vidal@ub.edu

    2008-02-15

    The pattern of radiostrontium and radiocesium sorption-desorption was examined in 30 Spanish soils by the quantification of the distribution coefficients (K{sub d}) with batch tests, the evaluation of sorption reversibility with a single extraction, the estimation of sorption dynamics by the application of drying-wetting cycles, and the calculation of K{sub d}{sup adjusted} values as an input for risk assessment models. The data obtained overlapped with those found in soils from other climatic areas, suggesting identical interaction mechanisms and allowing the extrapolation of parameterisations and prediction models among different scenarios.

  17. Photodissociation of Gaseous Ions Formed by Laser Desorption.

    Science.gov (United States)

    1986-09-20

    produced by separate pathways from the (M-I)- ion or from consecutive photodissociations. Hesperidin : In the negative ion LD mass spectrum of this compound...an ion of m/z r𔃼 was produced from the sodium salt of hesperidin phosphoric acid ester. This ion was observed to dissociate by loss of the attached...Experimental conditions are same as in the top spectrum. Figure 8. Top. Negative ions formed by laser desorption from Na-salt of hesperidin phosphoric acid ester

  18. Enhanced Atomic Desorption of 209 and 210 Francium from Organic Coating

    OpenAIRE

    2017-01-01

    Controlled atomic desorption from organic Poly-DiMethylSiloxane coating is demonstrated for improving the loading efficiency of 209,210Fr magneto-optical traps. A three times increase in the cold atoms population is obtained with contact-less pulsed light-induced desorption, applied to different isotopes, either bosonic or fermionic, of Francium. A six times increase of 210Fr population is obtained with a desorption mechanism based on direct charge transfer from a triboelectric probe to the a...

  19. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  20. Evaluation of multi-walled carbon nanotubes performance in adsorption and desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    Gholipour Mina

    2012-01-01

    Full Text Available In this study, the removal of hexavalent chromium from aqueous solutions using multi-walled carbon nanotubes (MWCNTs has been investigated as a function of adsorbent dosage, initial Cr(VI concentration, initial pH, contact time and temperature. Low pH, low initial concentrations of Cr(VI, increasing contact time and high temperature were found as optimal conditions. A comparison of kinetics models applied to the adsorption of Cr(VI ions on the MWCNTs was evaluated for the pseudo first-order, the pseudo second-order, and Elovich kinetics models, respectively. Pseudo second-order kinetics model was found to correlate the experimental data well. Equilibrium isotherms were measured experimentally and results show that data were fitted well by the BET model. Thermodynamic parameters were estimated and results suggest that the adsorption process is spontaneous, physical and endothermic. The reversibility of Cr(VI adsorption onto MWCNTs by desorption process and the effect of operating factors such as regeneration solution characteristics, contact time and temperature on this process was investigated. Results show that MWCNTs are effective Cr(VI adsorbents and can be reused through many cycles of regeneration without any high decreasing in their performance.

  1. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.K. [Department of Health and Environment, Kosin University, Dong Sam Dong, Young Do Gu, Busan (Korea, Republic of); Sivakumar, S., E-mail: ssivaphd@yahoo.com [Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 627-706 (Korea, Republic of); Rood, M.J. [Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL (United States); Kim, B.J. [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center (ERDC-CERL), Champaign, IL (United States)

    2016-01-15

    Highlights: • We study the adsorption and desorption of VOCs by an activated carbon fiber cloth. • Desorption concentration was controlled via electrothermal heating. • The desorption rate was successfully equalized and controlled by this system. - Abstract: Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40–900 ppm{sub v}) and superficial gas velocity (6.3–9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  2. Recovery of ethanol from fermentation broths using selective sorption-desorption.

    Science.gov (United States)

    Pitt, W W; Haag, G L; Lee, D D

    1983-01-01

    Industrialized nations face a critical problem in replacing the sources of liquid fuels that traditionally have been supplied by petroleum. One solution that has gained increasing support in this country is the use of ethanol produced by fermentation of renewable biomass as an extender in, or supplement to, gasoline for transportation fuel. Distillation, the present method of separating ethanol from the fermentation broth, is an energy-intensive one and frequently uses more energy than is available from the ethanol recovered. There are many investigations under way to find alternative, less energy-intensive techniques for the ethanol-water separation. The separations method described in this article involves the use of solid materials to preferentially remove ethanol from fermentation broths. Subsequent stripping of the ethanol from the sorbent with a dry gas reduces dramatically the energy required for the separation. Three solid sorbents have been investigated experimentally. Their sorption/desorption characteristics are described, and their incorporation in an ethanol recovery process is evaluated. Three sorbents were investigated: two commercially available divinylbenzene crosslinked polystyrene resins in bead form (one with a nominal surface area of 300 m(2)/g, the other with 750 m(2)/g) and an experimental proprietary molecular sieve with hydrophobic properties. Equilibrium adsorption isotherms for two of the sorbents were obtained at ambient temperature (21 degrees C) for ethanol-water solutions containing up to 12 wt. % ethanol. In addition, 40 degrees C isotherms were obtained for the polystyrene sorbents. Although different, the equilibrium isotherms for the sorbents indicated that ethanol could be preferentially sorbed from a dilute solution. Column breakthrough curves indicated very favorable kinetics. Desorption of the ethanol was readily effected with warm (60-80 degrees C), dry nitrogen.

  3. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masashi

    2005-07-01

    This work is a part of the research program performed in the Department of Energy Systems, Institute for Energy Technology (Kjeller, Norway), which is focused on the development of the advanced hydrogen storage materials. The activities are aimed on studies of the mechanisms of hydrogen interactions with intermetallic alloys with focus on establishing an interrelation between the crystal structure, thermodynamics and kinetics of the processes in the metal-hydrogen systems, on the one hand, and hydrogen storage properties (capacity, rates of desorption, hysteresis). Many of the materials under investigation have potential to be applied in applications, whereas some already have been commercialised in the world market. A number of metals take up considerable amounts of hydrogen and form chemical compounds with H, metal hydrides. Unfortunately, binary hydrides are either very stable (e.g. for the rare earth metals [RE], Zr, Ti, Mg: metal R) or are formed at very high applied pressures of hydrogen gas (e.g. for the transition metals, Ni, Co, Fe, etc.: Metal T). However, hydrogenation process becomes easily reversible at very convenient from practical point of view conditions, around room temperature and at H2 pressures below 1 MPa for the two-component intermetallic alloys R{sub x}T{sub y}. This raised and maintains further interest to the intermetallic hydrides as solid H storage materials. Materials science research of this thesis is focused on studies of the reasons staying behind the beneficial effect of two non-transition elements M(i.e., In and Sn) contributing to the formation of the ternary intermetallic alloys R{sub x}T{sub y}M{sub 2}., on the hydrogen storage behaviours. Particular focus is on two aspects where the remarkable improvement of ordinary metal hydrides is achieved via introduction of In and Sn: a) Increase of the volume density of stored hydrogen in solid materials to the record high level. b) Improvement of the kinetics of hydrogen charge and

  4. 3rd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Knotek, Michael

    1988-01-01

    These proceedings are the result of the third international workshop on Desorption Induced by Electronic Transitions, DIET III, which took place on Shelter Island, NY, May. 20-22, 1987. The work contained in this volume is an excellent summary of the current status of the field and should be a valuable reference text for both "seasoned" researchers and newcomers in the field of DIET. Based on the success of the meeting it seems clear that interest and enthusiasm in the field is strong. It is also apparent, from the many lively discussions during the meeting, that many unanswered questions (and controversies) remain to be solved. It was particularly pleasing to see many new participants from new and rapidly advancing fields, ranging from gas phase dynamics to semiconductor processing. The resulting cross-fertilization from these separate but related fields is playing an important role in helping us understand desorption processes at solid surfaces. In general, the topics covered during the course of the worksh...

  5. 2nd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Menzel, Dietrich

    1985-01-01

    The second workshop on Desorption Induced by Electronic Transitions (DIET II) took place October 15-17, 1984, in SchloB Elmau, Bavaria. DIET II, fol­ lowing the great success of DIET I (edited by N. H. Tolk, M. M. Traum, J. C. Tully, T. E. Madey and published in Springer Ser. Chem. Phys. , Vol. 24), again brought together over 60 workers in this exciting field. The "hard co­ re of experts" was essentially the same as in DIET I but the general overlap of participants between the two meetings was small. While DIET I had the function of an exposition of the status of the field DIET II focussed more on new developments. The main emphasis was again on the microscopic under­ standing of DIET but a number of side aspects and the application of DIET ideas to other fields such as sputtering, laser-induced desorption, fractu­ re, erosion, etc. were considered, too. New mechanisms and new refined expe­ rimental techniques were proposed and discussed at the meeting critically but with great enthusiasm. In addition t...

  6. 5th International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Jennison, Dwight R; Stechel, Ellen B; DIET V; Desorption induced by electronic transitions

    1993-01-01

    This volume in the Springer Series on Surface Sciences presents a recent account of advances in the ever-broadening field of electron-and photon-stimulated sur­ face processes. As in previous volumes, these advances are presented as the proceedings of the International Workshop on Desorption Induced by Electronic Transitions; the fifth workshop (DIET V) was held in Taos, New Mexico, April 1-4, 1992. It will be abundantly clear to the reader that "DIET" is not restricted to desorption, but has for several years included photochemistry, non-thermal surface modification, exciton self-trapping, and many other phenomena that are induced by electron or photon bombardment. However, most stimulated surface processes do share a common physics: initial electronic excitation, localization of the excitation, and conversion of electronic energy into nuclear kinetic energy. It is the rich variation of this theme which makes the field so interesting and fruitful. We have divided the book into eleven parts in orde...

  7. Moisture adsorption and desorption behavior of sludge powder.

    Science.gov (United States)

    Freire, F B; Bentes Freire, F; Pires, E C; Freire, J T

    2007-11-01

    In this work, the moisture adsorption and desorption isotherms were determined with the aim of defining the range of moisture content for storage of sludge powder. Equilibrium moisture content provides the basis for information not only on how much water has been taken out of a system but also on how fast drying is taking place (drying rate). Once the drying process is accomplished, the main concern rests on the storage of the dried final product. Still, the equilibrium moisture content is valuable information in that it has a major effect on the product physical and chemical properties. The present work also addresses the problem of selecting the best fit for equilibrium moisture content of sludge powder out of six well-known correlations for moisture sorption isotherms of solids: Henderson, Henderson-Thompson, Chung-Pfost, Chen-Clayton, Modified Halsey and Oswin. The equilibrium moisture content was determined by the static method (saturated salt solutions), in which the atmosphere surrounding the product is in equilibrium with the product without mechanical movement of the air or the product. Experiments were carried out under isothermal conditions at 20 and 40 degrees C. By calculating the regression coefficient, the residuals and the bias measure of Box for the equilibrium moisture content, the study showed that the Oswin Model was the most suitable. The range enclosed within the adsorption isotherm at 40 degrees C and the desorption isotherm at 20 degrees C defines the moisture extremes for storage in most tropical areas of the world.

  8. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  9. Effect of the Network Structure and Programming Temperature on the Shape-Memory Response of Thiol-Epoxy “Click” Systems

    Directory of Open Access Journals (Sweden)

    Alberto Belmonte

    2015-10-01

    Full Text Available This paper presents a new methodology to develop “thiol-epoxy” shape-memory polymers (SMPs with enhanced mechanical properties in a simple and efficient manner via “click” chemistry by using thermal latent initiators. The shape-memory response (SMR, defined by the mechanical capabilities of the SMP (high ultimate strength and strain, the shape-fixation and the recovery of the original shape (shape-recovery, was analyzed on thiol-epoxy systems by varying the network structure and programming temperature. The glass transition temperature (Tg and crosslinking density were modified using 3- or 4- functional thiol curing agents and different amounts of a rigid triglycidyl isocyanurate compound. The relationship between the thermo-mechanical properties, network structure and the SMR was evidenced by means of qualitative and quantitative analysis. The influence of the programming temperature (Tprog on the SMR was also analyzed in detail. The results demonstrate the possibility of tailoring SMPs with enhanced mechanical capabilities and excellent SMR, and intend to provide a better insight into the relationship between the network structure properties, programming temperature and the SMR of unconstrained (stress-free systems; thus, making it easier to decide between different SMP and to define the operative parameters in the useful life.

  10. Feasibility of desorption atmospheric pressure photoionization and desorption electrospray ionization mass spectrometry to monitor urinary steroid metabolites during pregnancy.

    Science.gov (United States)

    Vaikkinen, Anu; Rejšek, Jan; Vrkoslav, Vladimír; Kauppila, Tiina J; Cvačka, Josef; Kostiainen, Risto

    2015-06-23

    Steroids have important roles in the progress of pregnancy, and their study in maternal urine is a non-invasive method to monitor the steroid metabolome and its possible abnormalities. However, the current screening techniques of choice, namely immunoassays and gas and liquid chromatography-mass spectrometry, do not offer means for the rapid and non-targeted multi-analyte studies of large sample sets. In this study, we explore the feasibility of two ambient mass spectrometry methods in steroid fingerprinting. Urine samples from pregnant women were screened by desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) Orbitrap high resolution mass spectrometry (HRMS). The urine samples were processed by solid phase extraction for the DESI measurements and by enzymatic hydrolysis and liquid-liquid-extraction for DAPPI. Consequently, steroid glucuronides and sulfates were detected by negative ion mode DESI-HRMS, and free steroids by positive ion mode DAPPI-HRMS. In DESI, signals of eleven steroid metabolite ions were found to increase as the pregnancy proceeded, and in DAPPI ten steroid ions showed at least an order of magnitude increase during pregnancy. In DESI, the increase was seen for ions corresponding to C18 and C21 steroid glucuronides, while DAPPI detected increased excretion of C19 and C21 steroids. Thus both techniques show promise for the steroid marker screening in pregnancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Development and application of a specially designed heating system for temperature-programmed high-performance liquid chromatography using subcritical water as the mobile phase.

    Science.gov (United States)

    Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H

    2006-05-05

    A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min.

  12. Gas adsorption and desorption effects on high pressure small volume cylinders and their relevance to atmospheric trace gas analysis

    Science.gov (United States)

    Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus

    2017-04-01

    Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3

  13. Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato

    Science.gov (United States)

    Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif

    2016-03-01

    In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.

  14. Carriers reactivation in p{sup +}-type porous silicon accompanies hydrogen desorption

    Energy Technology Data Exchange (ETDEWEB)

    Rivolo, P.; Geobaldo, F.; Salvador, G.P.; Pallavidino, L.; Garrone, E. [Dip. Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Ugliengo, P. [Dip. Chimica IFM, Universita di Torino, Via Giuria 7, 10125 Torino (Italy)

    2005-06-01

    FTIR spectra of p{sup +}-type mesoporous silicon (m-PS) outgassed in the 300-600 K range show a loss of transparency with increasing temperature, more pronounced at low frequencies. This is evidence of free-carrier formation. Previous work (F. Geobaldo et al., Sensors and Actuators B, in press [1]) concerning the reversible interaction of NO{sub 2} and NH{sub 3} has shown the presence at the surface of adsorption sites involving Si/B pairs. Thermal treatment of the sample causes desorption of molecular hydrogen, released through the homolytic splitting of Si-H bonds. Besides meeting each other forming a H{sub 2} molecule, H atoms may interact with an adsorption site, by creating a new H-Si-B bond. This new bond needs one additional electron to be formed and injection of a hole takes place into the solid. At higher temperatures, surface hydrogen is almost totally removed and the sample transparency recovered. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies.

    Science.gov (United States)

    Mushtaq, Mehwish; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2016-07-01

    Adsorption techniques are widely used to remove pollutants from wastewater; however, composites are gaining more importance due to their excellent adsorption properties. Bentonite composite with Eriobotrya japonica seed was prepared and used for the adsorption of copper (Cu) metal from aqueous media. The process variables such as pH, Cu(II) ions initial concentration, adsorbent dose, contact time and temperature were optimized for maximum Cu(II) adsorption. At pH 5, adsorbent dose 0.1 g, contact time 45 min, Cu(II) ions initial concentration 75 mg/L and temperature 45 °C, maximum Cu(II) adsorption was achieved. Desorption studies revealed that biocomposite is recyclable. Langmuir, Freundlich and Harkins-Jura isotherms as well as pseudo-first and pseudo-second-order kinetics models were applied to understand the adsorption mechanism. Thermodynamic parameters (ΔG(0), ΔH(0) and ΔS(0)) suggest that the adsorption process was spontaneous and endothermic in nature. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the adsorption data. Results showed that biocomposite was more efficient for Cu(II) adsorption in comparison to individuals native Eriobotrya japonica seed biomass and Na-bentonite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Diffusion, adsorption, and desorption of molecular hydrogen on graphene and in graphite.

    Science.gov (United States)

    Petucci, Justin; LeBlond, Carl; Karimi, Majid; Vidali, Gianfranco

    2013-07-28

    The diffusion of molecular hydrogen (H2) on a layer of graphene and in the interlayer space between the layers of graphite is studied using molecular dynamics computer simulations. The interatomic interactions were modeled by an Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. Molecular statics calculations of H2 on graphene indicate binding energies ranging from 41 meV to 54 meV and migration barriers ranging from 3 meV to 12 meV. The potential energy surface of an H2 molecule on graphene, with the full relaxations of molecular hydrogen and carbon atoms is calculated. Barriers for the formation of H2 through the Langmuir-Hinshelwood mechanism are calculated. Molecular dynamics calculations of mean square displacements and average surface lifetimes of H2 on graphene at various temperatures indicate a diffusion barrier of 9.8 meV and a desorption barrier of 28.7 meV. Similar calculations for the diffusion of H2 in the interlayer space between the graphite sheets indicate high and low temperature regimes for the diffusion with barriers of 51.2 meV and 11.5 meV. Our results are compared with those of first principles.

  17. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg−1) was measured in three soils amended with activated carbon (AC...... and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase....

  18. Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Engelund, Emil Tang; Thygesen, Lisbeth G.

    2011-01-01

    It is a commonly accepted notion that the equilibrium moisture content (EMC) of wood at a given relative humidity (RH) is highest during initial desorption of green wood due to an irreversible loss of hygroscopicity during the 1st desorption. The basis for this notion is investigated by assessing...

  19. Development of methods for thermal desorption of iodine from carbon sorbent

    Science.gov (United States)

    Shapovalova, E. A.; Hlopotov, R. A.

    2017-10-01

    The paper studies and proposes four circuits of thermal iodine desorption from coal, which excludes the use of chemical reagents. The method allows for the sublimation of iodine from coal, avoiding the stage of pre-concentration and crystallization of crude iodine-concentrate. The proposed solution allows carrying out the process of thermal desorption of iodine without unloading it from the reactor.

  20. Equilibrium, hysteresis and kinetics of cadmium desorption from sodium-feldspar using rhamnolipid biosurfactant.

    Science.gov (United States)

    Aşçi, Yeliz; Açikel, Unsal; Açikel, Yeşim Sağ

    2012-09-01

    In this study, the sorption/desorption equilibruim and the desorption kinetics of Cd by rhamnolipid biosurfactant from Na-feldspar as a soil component were investigated. The linear, Langmuir and Freundlich isotherms adequately fitted the equilibrium sorption data with regression coefficients ranging from 0.9836 - 0.9879. However, both the sorption/desorption equilibria were well characterized by the Freundlich model. The extent of hysteresis was quantified based on the differences obtained from sorption and desorption isotherms regarding the quantity of Cd(II) sorbed, the Freundlich exponent, concentration-dependent metal distribution coefficients, and the irreversibility index based on the metal distribution coefficient. The kinetics of desorption of Cd from Na-feldspar was investigated using 77 mM rhamnolipid and at pH 6.8. The first-order, an empirical first-order desorption model (two-coefficient), Lagergren-pseudo-first-order, pseudo-second-order, Elovich and modified Freundlich models were used to describe the kinetic data to estimate the rate constants. To determine the rate-controlling step, the intra-particle diffusion model was also applied to the desorption process. The desorption kinetics of Cd(II) on Na-feldspar was represented better by the pseudo-second-order, Elovich and modified Freundlich equations with correlation coefficients ranging from 0.9941- 0.9982 than by first-order equations. The rate-controlling stage was suggested to be mainly the surface reaction mechanism.

  1. Computer Program of SIE ASME-NH Code for Structural Integrity Evaluation of Next Generation Reactors Subjecting to Elevated Temperature Operations

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H

    2006-03-15

    In this report, the SIE ASME (Structural Integrity Evaluations by ASME-NH), which has a computerized implementation of ASME Pressure Vessels and Piping Code Section III Subsection NH rules, is developed to apply to the next generation reactor design subjecting to the elevated temperature operations over 500 .deg. C and over 30 years design lifetime, and the user's manual for this program is described in detail.

  2. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider (LHC) at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring (LEAR). These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow-discharges, non-evaporable getter coating) are reported in terms of the molecular desorption yields for H2, CH4, CO, Ar and CO2. Unexpected large values of molecular yields per incident ion up to 2 104 molecules/ion have been observed. The red...

  3. Decomposition kinetics study of zirconium hydride by interrupted thermal desorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Mingwang; Liang, Li; Tang, Binghua; Xiang, Wei; Wang, Yuan; Cheng, Yanlin; Tan, Xiaohua, E-mail: caepiee@163.com

    2015-10-05

    Highlights: • Interrupted TDS was applied to investigate the mechanism of ZrH{sub 2} decomposition. • The activation energies for the five desorption peaks were determined. • The origins of the five desorption peaks were identified. • The γZrH phase was observed at ambient conditions. - Abstract: Thermal desorption kinetics of zirconium hydride powder were studied using thermogravimetry and simultaneous thermal desorption spectroscopy. The activation energies for observed desorption peaks were estimated according to Kissinger relation. The intermediate phase composition was studied using X-ray diffraction by rapid cooling on different stages of heating. The origins of the peaks were described as the equilibrium hydrogen pressure of a number of consecutive phase regions that decomposition reaction passed through. The zirconium monohydride γZrH was observed for extended periods of time at ambient conditions, which has been supposed to be metastable for a long time.

  4. Binding energies: New values and impact on the efficiency of chemical desorption

    Science.gov (United States)

    Wakelam, V.; Loison, J.-C.; Mereau, R.; Ruaud, M.

    2017-03-01

    Recent laboratory measurements have confirmed that chemical desorption (desorption of products due to exothermic surface reactions) can be an efficient process. The impact of including this process into gas-grain chemical models entirely depends on the formalism used and the associated parameters. Among these parameters, binding energies are probably the most uncertain ones for the moment. We propose a new model to compute binding energy of species to water ice surfaces. We have also compared the model results using either the new chemical desorption model proposed by Minissale et al. (2016) or the one of Garrod et al. (2007). The new binding energies have a strong impact on the formation of complex organic molecules. In addition, the new chemical desorption model from Minissale produces a much smaller desorption of these species and also of methanol. Combining the two effects, the abundances of CH3OH and COMs observed in cold cores cannot be reproduced by astrochemical models anymore.

  5. Matrix-assisted laser desorption/ionization imaging mass spectrometry.

    Science.gov (United States)

    Zaima, Nobuhiro; Hayasaka, Takahiro; Goto-Inoue, Naoko; Setou, Mitsutoshi

    2010-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful tool that enables the simultaneous detection and identification of biomolecules in analytes. MALDI-imaging mass spectrometry (MALDI-IMS) is a two-dimensional MALDI-mass spectrometric technique used to visualize the spatial distribution of biomolecules without extraction, purification, separation, or labeling of biological samples. MALDI-IMS has revealed the characteristic distribution of several biomolecules, including proteins, peptides, amino acids, lipids, carbohydrates, and nucleotides, in various tissues. The versatility of MALDI-IMS has opened a new frontier in several fields such as medicine, agriculture, biology, pharmacology, and pathology. MALDI-IMS has a great potential for discovery of unknown biomarkers. In this review, we describe the methodology and applications of MALDI-IMS for biological samples.

  6. Solvent desorption dynamic headspace sampling of fermented dairy product volatiles.

    Science.gov (United States)

    Rankin, S A

    2001-01-01

    A method was developed based on solvent desorption dynamic headspace analysis for the identification and relative quantification of volatiles significant to the study of fermented dairy product aroma. Descriptions of applications of this method are presented including the measurement of diacetyl and acetoin in fermented milk, the evaluation of volatile-hydrocolloid interactions in dairy-based matrices, and the identification of volatiles in cheeses for canonical discriminative analysis. Advantages of this method include rapid analysis, minimal equipment investment, and the ability to analyze samples with traditional GC split/splitless inlet systems. Limitations of this method are that the sample must be in the liquid state and the inherent analytical limitation to those compounds that do not coelute with the solvent or solvent impurity peaks.

  7. Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization

    Science.gov (United States)

    Lu, I.-Chung; Lee, Chuping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2015-07-01

    In past studies, mistakes in determining the ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) were made because an inappropriate ion-to-neutral ratio was used. The ion-to-neutral ratio of the analyte differs substantially from that of the matrix in MALDI. However, these ratios were not carefully distinguished in previous studies. We begin by describing the properties of ion-to-neutral ratios and reviews early experimental measurements. A discussion of the errors committed in previous theoretical studies and a comparison of recent experimental measurements follow. We then describe a thermal proton transfer model and demonstrate how the model appropriately describes ion-to-neutral ratios and the total ion intensity. Arguments raised to challenge thermal ionization are then discussed. We demonstrate how none of the arguments are valid before concluding that thermal proton transfer must play a crucial role in the ionization process of MALDI.

  8. Hypotonic elution, a new desorption principle in immunoadsorbent chromatography

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Sjöström, H; Norén, O

    1982-01-01

    A largely unrecognized immunoadsorbent desorption technique, hypotonic elution, has been successfully used in the immunoadsorbent purification of the microvillar enzymes aminopeptidase N (EC 3.4.11.2), dipeptidyl peptidase IV (EC 3.4.14.5), sucrase-isomaltase (EC 3.2.1.48-10), lactase-phlorizin h...... of the enzymes but were considered unlikely on several grounds. Hypotonic elution in immunoadsorbent chromatography, therefore, may have a much broader range of applicability, and the method is recommended to be tried out by workers in other areas of protein chemistry.......-phlorizin hydrolase (EC 3.2.1.23-62) and maltase-glucoamylase (EC 3.2.1.20). This elution method proved capable of achieving an acceptable yield (30-70%) while at the same time preserving the purified enzymes in an enzymically active state. It hereby offers a solution to the problem in immunoadsorbent chromatography...

  9. Plasma Desorption Mass Spectrometry analysis of HCOOH ice

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, D.P.P.; Rocco, M.L.M. [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil); Boechat-Roberty, H.M. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Centro, Rio de Janeiro, RJ (Brazil); Iza, P.; Martinez, R. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, 22543-900 Rio de Janeiro (Brazil); Homem, M.G.P. [Laboratorio Nacional de Luz Sincrotron (LNLS), Box 6192, 13084-971 Campinas, SP (Brazil); Silveira, E.F. da [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, 22543-900 Rio de Janeiro (Brazil)], E-mail: enio@vdg.fis.puc-rio.br

    2007-03-15

    Planetary magnetospheres, in which outer planet satellites orbit, are bombarded by energetic particles inducing chemical and physical changes in their icy surfaces. The existing condensed gases react to form new products, which then undergo thermal evolution from the natural day/night cycles of these satellites. Plasma irradiation of ice causes phase changes, e.g., water ice from crystalline to amorphous over short timescales. When ice is recrystallized by heating, the surface layers retain some disorder, which promote reactions among adsorbed molecules such as H{sub 2}O, CO{sub 2}, CH{sub 2}CO, HCOOH and theirs radiolysis products. In this work, chemical reactions involving formic acid condensed at 56 K are analyzed by using Plasma Desorption Mass Spectrometry-time-of-flight ({sup 252}Cf-PDMS-TOF). Mass spectra of positive and negative desorbed ions were obtained, giving information on the structure and abundance of the molecules on the ice; the expected cations and anions generated by the HCOOH dissociation have been observed. Furthermore, several series of cluster ions were also detected, all exhibiting the structure X{sub n}Y{sub m}R{sup {+-}}, where X and Y are the neutral ice molecules, such as HCOOH or H{sub 2}O, and R{sup {+-}} is either an atomic or a molecular ion, such as H{sup +}, H{sub 3}O{sup +} or COOH{sup -}. In general, the desorption yields of the observed positive and negative ions are characterized by a decreasing exponential function as the emitted ion mass increases; however, the (HCOOH){sub n}OH{sup -} series presents its maximum at n = 8.

  10. Kinetics of thermal desorption of asymmetric dimethylhydrazine and products of its partial oxidation from soil by purging producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, T.B.; Laskin, B.M.; Pimkin, V.G.; Artamonov, D.G.; Luk`yanov, S.N. [Russian Scientific Center Applied Chemistry, St. Petersburg (Russian Federation)

    1995-07-20

    A study has been made of desorption of asymmetric dimethylhydrazine and nitrosodimethyl-amine from various types of soil by purging producer gas. The feasibility of the desorptive removal of these toxic compounds from soils has been demonstrated experimentally.

  11. State-coupled low-temperature geothermal-resource assessment program, Fiscal Year 1979. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Icerman, L.; Starkey, A.; Trentman, N. (eds.)

    1980-10-01

    The results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from 1 October 1978 to 30 June 1980 are summarized. The results of the efforts to extend the inventory of geothermal energy resources in New Mexico to low-temperature geothermal reservoirs with the potential for direct heating applications are given. These efforts focused on compiling basic geothermal data and new hydrology and temperature gradient data throughout New Mexico in a format suitable for direct transfer to the US Geological Survey and the National Oceanic and Atmospheric Administration for inclusion in the GEOTHERM data file and for preparation of New Mexico low-temperature geothermal resources maps. The results of geothermal reservoir confirmation studies are presented. (MHR)

  12. Temperature profile data from XBT casts by SEAS program participating vessels, November 2001 - January 2002 (NODC Accession 0000661)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the OLEANDER and other platforms from a world-wide distribution from 22 November 2001 to 23 January 2002....

  13. Northeast Cooperative Research Study Fleet (SF) Program Combined GPS, Temperature/Depth, and Effort Fishery Dependent Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, depth(TD), GPS and haul by haul effort and catch data are collected during normal fishing activity of commercial fishing vessels participating in the...

  14. Study of CeO₂ Modified AlNi Mixed Pillared Clays Supported Palladium Catalysts for Benzene Adsorption/Desorption-Catalytic Combustion.

    Science.gov (United States)

    Li, Jingrong; Zuo, Shufeng; Yang, Peng; Qi, Chenze

    2017-08-15

    A new functional AlNi-pillared clays (AlNi-PILC) with a large surface area and pore volume was synthesized. The performance of adsorption/desorption-catalytic combustion over CeO 2- modified Pd/AlNi-PILC catalysts was also studied. The results showed that the d 001 -value and specific surface area ( S BET ) of AlNi-PILC reached 2.11 nm and 374.8 m²/g, respectively. The large S BET and the d 001 -value improved the high capacity for benzene adsorption. Also, the strong interaction between PdCe mixed oxides and AlNi-PILC led to the high dispersion of PdO and CeO₂ on the support, which was responsible for the high catalytic performance. Especially, 0.2% Pd/12.5% Ce/AlNi-PILC presented high performance for benzene combustion at 240 °C and high CO₂ selectivity. Also, the combustion temperatures were lower compared to the desorption temperatures, which demonstrated that it could accomplish benzene combustion during the desorption process. Furthermore, its activity did not decrease after continuous reaction for 1000 h in dry air, and it also displayed good resistance to water and the chlorinated compound, making it a promising catalytic material for the elimination of volatile organic compounds.

  15. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  16. Effect of the calcium halides, CaCl{sub 2} and CaBr{sub 2}, on hydrogen desorption in the Li–Mg–N–H system

    Energy Technology Data Exchange (ETDEWEB)

    Bill, Rachel F. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Reed, Daniel; Book, David [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • H{sub 2} desorption from 2LiNH{sub 2}–MgH{sub 2}–xCaX{sub 2} (x = 0, 0.1, 0.15; X = Cl, Br) samples studied. • Addition of calcium halides reduced the desorption temperature in all samples. • Peak H{sub 2} release was around 150 °C lower in ball-milled than in hand-ground samples. • The 2LiNH{sub 2}–MgH{sub 2}–0.15CaBr{sub 2} sample showed the lowest peak desorption temperature. • CaBr{sub 2} reduced the activation energy to 78.8 kJ mol{sup −1}, 24% less than the undoped sample. - Abstract: Calcium-halide-doped lithium amide–magnesium hydride samples were prepared both by hand-grinding and ball-milling 2LiNH{sub 2}–MgH{sub 2}–xCaX{sub 2} (x = 0, 0.1, and 0.15; X = Cl or Br). The addition of calcium halides reduced the hydrogen desorption temperature in all samples. The ball-milled undoped sample (2LiNH{sub 2}–MgH{sub 2}) began to desorb hydrogen at around 125 °C and peaked at 170 °C. Hydrogen desorption from the 0.15 mol CaCl{sub 2}-containing sample began ca 30 °C lower than that of the undoped sample and peaked at 150 °C. Both the onset and peak temperatures of the CaBr{sub 2} sample (x = 0.15) were reduced by 15 °C compared to the chloride. Kissinger’s method was used to calculate the effective activation energy (E{sub a}) for the systems: E{sub a} for the 0.15 mol CaCl{sub 2}-containing sample was found to be 91.8 kJ mol{sup −1} and the value for the 0.15 mol CaBr{sub 2}-containing sample was 78.8 kJ mol{sup −1}.

  17. Long-term kinetics of uranyl desorption from sediments under advective conditions

    Science.gov (United States)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John

    2014-02-01

    Long-term (>4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge site at the U.S. Department of Energy Hanford 300 Area. The experimental results were used to evaluate alternative multirate surface complexation reaction (MRSCR) approaches to describe the short and long-term kinetics of U(VI) desorption under flow conditions. The surface complexation reaction (SCR) stoichiometry and equilibrium constants and multirate parameters in the MRSCR models were independently characterized in batch and stirred flow-cell reactors. MRSCR models that were either additively constructed using the MRSCRs for individual size fractions, or composite in nature, could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using the labile U concentration measured by carbonate extraction underestimated desorbable U(VI) and the long-term rate of U(VI) desorption. This study also found that the gravel size fraction (2-8 mm), which is typically treated as nonreactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application and identifies important parameters and uncertainties affecting model predictions.

  18. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential

    Directory of Open Access Journals (Sweden)

    Kovo G. Akpomie

    2015-09-01

    Full Text Available The potential of a low-cost Nigerian montmorillonite for the adsorption of Ni(II and Mn(II ions from aqueous solution was investigated by batch mode. XRD, SEM and BET analysis were used to characterize the adsorbent. The experiments were performed as a function of pH, particle size, adsorbent dose, initial metal ion concentration, contact time, ligands and temperature. The process was found to be dependent on all the parameters investigated, with a pH of 6.0 obtained for optimum removal of both metal ions. The Langmuir monolayer adsorption capacity of 166.67 and 142.86 mg/g was obtained for Ni(II and Mn(II ions respectively. The Freundlich isotherm gave the best fit to the experimental data than the Langmuir, Temkin and Dubinin–Radushkevich isotherms. The scatchard plot analysis indicated the existence of more than one type of active site on the montmorillonite which corroborates the good fit of the Freundlich model. The pseudo-first order, pseudo-second order and intraparticle diffusion models were applied to the kinetic data. The best fit was achieved with the pseudo-first order model and the existence of intraparticle diffusion mechanism was indicated. Thermodynamic studies showed an endothermic, dissociative, spontaneous and a physical adsorption process between the metal ions and the montmorillonite. Desorption studies revealed over 90% desorption of both metal ions from the metal loaded adsorbent.

  19. Improvement in hydrogen desorption from β- and γ-MgH2 upon transition-metal doping.

    Science.gov (United States)

    Hussain, Tanveer; Maark, Tuhina Adit; Chakraborty, Sudip; Ahuja, Rajeev

    2015-08-24

    A thorough study of the structural, electronic, and hydrogen-desorption properties of β- and γ-MgH2 phases substituted by selected transition metals (TMs) is performed through first-principles calculations based on density functional theory (DFT). The TMs considered herein include Sc, V, Fe, Co, Ni, Cu, Y, Zr, and Nb, which substitute for Mg at a doping concentration of 3.125 % in both the hydrides. This insertion of TMs causes a variation in the cell volumes of β- and γ-MgH2 . The majority of the TM dopants decrease the lattice constants, with Ni resulting in the largest reduction. From the formation-energy calculations, it is predicted that except for Cu and Ni, the mixing of all the selected TM dopants with the MgH2 phases is exothermic. The selected TMs also influence the stability of both β- and γ-MgH2 and cause destabilization by weakening the MgH bonds. Our results show that doping with certain TMs can facilitate desorption of hydrogen from β- and γ-MgH2 at much lower temperatures than from their pure forms. The hydrogen adsorption strengths are also studied by density-of-states analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of Thermal Desorption Unit (TDU) to treat low-toxicity mineral oil base cuttings in Barinas District, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Rendon, Ruben [Petroleos de Venezuela, Caracas (Venezuela); Luzardo, Janeth; Alcoba, Alcides [M-I SWACO, Houston, TX (United States)

    2008-07-01

    The potential environmental impact of oil-based drill cuttings is generating increased scrutiny in the oil and gas industry. If left untreated, oil-based cuttings not only increase the risk of environmental liabilities, but also affect revenue, as drilling generates wastes that in most cases require special treatment before disposal. Consequently, the oil industry is looking for technologies to help minimize environmental liabilities. Accordingly, the Barinas District of PDVSA has started a pilot trial to treat oil-based drilling cuttings by applying thermal desorption technology. The main objective of this technology is recovering trapped hydrocarbons, while minimizing wastes and preparing solids to be disposed of through a mobile treatment plant. This novel technology has been used worldwide to treat organic pollutants in soil. Thermal desorption is a technology based on the application of heat in soils polluted with organic compounds. With this technology, target temperatures vary according to the type and concentration of detected pollutants along with its characterization, in such a way that compounds are disposed of by volatilization. As part of the integral waste management development along with the pilot trial for hydrocarbon-contaminated solid waste treatment, trials on soils were undertaken by applying process-generated ashes in equally-sized bins, with different mixtures (ashes, ashes organic material, ashes-organic material-sand, ashes-land). The resulting process offers an immediate soil remediation and final disposal solution for toxic and dangerous waste. (author)

  1. Formaldehyde Adsorption into Clinoptilolite Zeolite Modified with the Addition of Rich Materials and Desorption Performance Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Amin Kalantarifard

    2016-01-01

    Full Text Available Granite, bentonite, and starch were mixed with clinoptilolite zeolite to produce a modified zeolite. The modified zeolite was tested for its ability to absorb formaldehyde from air. The modified sample formaldehyde adsorption capacity was then compared with those of commercially available clinoptilolite, faujasite (Y, mordenite, and zeolite type A. Studies were focused on the relationships between the physical characteristics of the selected zeolites (crystal structure, surface porosity, pore volume, pore size and their formaldehyde adsorption capacity. The removal of starch at high temperature (1100°C and addition of bentonite during modified clinoptilolite zeolite (M-CLZ preparation generated large pores and a higher pore distribution on the sample surface, which resulted in higher adsorption capacity. The formaldehyde adsorption capacities of M-CLZ, clinoptilolite, faujasite (Y, zeolite type A, and mordenite were determined to be 300.5, 194.5, 123.7, 106.7, and 70 mg per gram of zeolite, respectively. The M-CLZ, clinoptilolite, and faujasite (Y crystals contained both mesoporous and microporous structures, which resulted in greater adsorption, while the zeolite type A crystal showed a layered structure and lower surface porosity, which was less advantageous for formaldehyde adsorption. Furthermore, zeolite regeneration using microwave heating was investigated focusing on formaldehyde removal by desorption from the zeolite samples. XRD, XRF, N2 adsorption/desorption, and FE-SEM experiments were performed to characterize the surface structure and textural properties the zeolites selected in this study.

  2. Some properties of solid helium and helium nanoclusters using the effective HFD-like interaction potential: Adsorption and desorption inside carbon nanotube

    Science.gov (United States)

    Abbaspour, M.; Akbarzadeh, H.; Banihashemi, S. Z.; Sotoudeh, A.

    2018-02-01

    We have calculated the zero equation of state of solid helium using a two-body Hartree-Fock dispersion (HFD)-like potential from molecular dynamics (MD) simulation. To take many-body forces into account, our simple and accurate empirical expression is used with the HFD-like potential without requiring an expensive three-body calculation. This potential model also includes the quantum effects for helium at low temperatures. The results indicate that our effective HFD-like potential improves the prediction of the classical two-body results to get better agreement with experiment than many other two-body and three-body potentials of helium reported in the literature. We have also simulated the adsorption and desorption processes of the (He)55, (He)147, (He)309, (He)561, and (He)923 icosahedral nanoclusters confined into the different armchair and zigzag CNTs from 0 to 50 K using our effective model. We have observed an interesting phenomenon at 0 K for helium. The nanoclusters adsorb to the inner CNT wall as a melting process. But, the heavier noble gas clusters (such as Ne and Xe) show the different behavior than the He clusters. They form a multilayered solid structure into the CNT at zero temperature and adsorb into the inner wall of the CNT at higher temperatures. Our results for He clusters show that the absolute value of the adsorption energy increases as the size of the nanocluster increases. The desorption process begins at a certain temperature and represents itself by a jump in the configurational energy values. We have also investigated the structural and dynamical properties of the confined helium nanoclusters during the adsorption and desorption processes at different temperatures.

  3. The effect of temperature on the biology of Phytoseiulus macropilis (Banks (Phytoseiidae in applied biological control program

    Directory of Open Access Journals (Sweden)

    Catiane Dameda

    2016-10-01

    Full Text Available Phytoseiulus macropilis (Banks (Phytoseiidae is a natural enemy of Tetranychus urticae Koch (TSSM, a common pest in several cultures, especially in greenhouses. This research aimed to know the biological parameters of a strain of P. macropilis from Vale do Taquari, State of Rio Grande do Sul, feeding on TSSM at different temperatures. The study was initiated with 30 eggs individualized in arenas under the temperature of 20, 25 and 30 ± 1°C and relative humidity of 80 ± 10%. The average length (T of each generation decreased with the increase of temperature, ranging from 25.71 days at 20°C to 11.14 days at 30°C. The net reproductive rate (Ro ranged from 45.47 at 20°C to 18.25 at 30°C; the innate capacity for increase (rm was 0.15 at 20°C, reaching 0.26 at 30°C and the finite increase rate (λ ranged from 1.41 to 1.82 females day-1 at 20 and 30°C, respectively. In the present study, it was observed that the strain of the evaluated predatory mite from mild climate of South Brazil, might present a good performance to control TSSM when exposed to a temperature range between 20 and 30°C.

  4. First-principles calculations of helium and neon desorption from cavities in silicon.

    Science.gov (United States)

    Eddin, A Charaf; Pizzagalli, L

    2012-05-02

    Combining density functional theory, the nudged elastic band technique, and the ultradense fluid model, we investigated the desorption process of He and Ne in silicon. Our results show that the internal surfaces of gas-filled bubbles are not a limiting factor during desorption experiments, since the surface reconstruction opens diffusion paths easier than in the bulk. We show that the vibrational contribution to the energy of helium in the bulk has to be considered in order to determine realistic pressures in the bubbles, when comparing experiments and simulations. At the maximum of desorption, an average pressure of 1-2 GPa is computed. © 2012 IOP Publishing Ltd

  5. Effect of artificial root exudates on the sorption and desorption of PAHs in meadow brown soils

    Science.gov (United States)

    Wang, Hong

    2017-10-01

    The batch equilibrium experiment was conducted to investigate the effect of artificial root exudates on sorption and desorption of phenanthrene and pyrene. The result showed sorption isotherms were fitted well to the Freundlich equation with the treatment of artificial root exudates. Fructose had the most obvious effect on sorption. The artificial root exudates improved desorption of PAHs, while low molecular weight organic acids were better than serine and fructose. The capability of sorption and desorption was strengthened with the increase of organic acids concentration. And the DOM in the solution might be the most important factor of the adsorption of PAHs in solid phase.

  6. Adsorption and desorption of agricultural waste-derived DOMs in soil

    Science.gov (United States)

    Li, H. L.; Yang, G. H.; Zhu, G. Y.; Sun, Z. Q.; Yu, X. Y.

    2017-04-01

    The sorption and desorption of two forms of dissolved organic matter (DOM) extracted from agricultural wastes were studied by batch experiments. The adsorption of the two DOMs on the soil were well fitted to the Linear and Freundlich isotherms. DOM extracted from cow manure (MDOM) shows higher affinity to the soil than that extracted from wheat straw (SDOM). Significant desorption hysteresis was observed for both DOMs. Due to the desorption of some aromatic substances with larger molecular weight from the soil, the average molecular weight and aromaticity of the DOMs increased at sorption equilibrium compared with those before sorption.

  7. Mechanisms of absorption and desorption of CO2 by molten NaNO3-promoted MgO.

    Science.gov (United States)

    Jo, Seung-Ik; An, Young-In; Kim, Kang-Yeong; Choi, Seo-Yeong; Kwak, Jin-Su; Oh, Kyung-Ryul; Kwon, Young-Uk

    2017-02-22

    In order to realize carbon capture and sequestration (CCS), a technology proposed to circumvent the global warming problem while maintaining the present level of economic activity, the development of efficient carbon-capturing agents is of prime importance. In addition to the prevailing amine-based agents that operate at temperatures lower than 200 °C, agents that can operate at higher temperatures are being considered to reduce the cost of CCS. For the mid-temperature (200-500 °C) operation, alkali nitrate-promoted MgO is a promising candidate; whose detailed reaction mechanisms are not yet fully understood, however. In the present study, we have performed a comprehensive investigation on the mechanisms of CO2 absorption and desorption of NaNO3-promoted MgO. Highly efficient CO2 absorbents were obtained by decomposing Mg5(CO3)4(OH)2·4H2O with NaNO3 intimately mixed with it. Our collective data, including isothermal CO2 uptake curves, MgO solubility in molten NaNO3, and observations on the reaction of MgO wafers with CO2, indicate that the absorption takes place in the molten NaNO3 medium in which both CO2 and MgO are dissolved. MgCO3 is formed inside the molten promoter through the nucleation and growth steps. The decomposition of MgCO3 back to MgO, that is desorption of CO2, is also facilitated by molten NaNO3, which we attribute to the decreased relative stability of MgCO3 with respect to MgO when in contact with molten NaNO3. The relative affinity of molten nitrate to MgO and MgCO3 was estimated by measuring the 'contact angles' of nitrate on them. Implications of our findings for the real applications of alkali nitrate-promoted MgO absorbents with numerous repeated cycles of absorption and desorption of CO2 are discussed.

  8. Thermal desorption gas chromatography with mass spectrometry study of outgassing from polymethacrylimide foam (Rohacell®).

    Science.gov (United States)

    Carrasco-Correa, Enrique J; Herrero-Martínez, José M; Consuegra, Lina; Ramis-Ramos, Guillermo; Sanz, Rafael Mata; Martínez, Benito Gimeno; Esbert, Vicente E Boria; García-Baquero, David Raboso

    2015-09-01

    Polymethacrylimide foams are used as light structural materials in outer-space devices; however, the foam closed cells contain volatile compounds that are outgassed even at low temperatures. These compounds ignite as plasmas under outer-space radiation and the intense radio-frequency fields used in communications. Since plasmas may cause spacecraft fatal events, the conditions in which they are ignited should be investigated. Therefore, qualitative and quantitative knowledge about polymethacrylimide foam outgassing should be established. Using thermogravimetric analysis, weight losses reached 3% at ca. 200°C. Thermal desorption gas chromatography with mass spectrometry detection was used to study the offgassed compounds. Using successive 4 min heating cycles at 125°C, each one corresponding to an injection, significant amounts of nitrogen (25.3%), water (2.6%), isobutylene (11.3%), tert-butanol (2.9%), 1-propanol (11.9%), hexane (25.3%), propyl methacrylate (1.4%), higher hydrocarbons (11.3%), fatty acids (2.2%) and their esters (1.3%), and other compounds were outgassed. Other compounds were observed during the main stage of thermal destruction (220-280°C). A similar study at 175°C revealed the extreme difficulty in fully outgassing polar compounds from polymethacrylimide foams by baking and showed the different compositions of the offgassed atmosphere that can be expected in the long term. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Light desorption from an yttrium neutralizer for Rb and Fr magneto-optical trap loading

    Science.gov (United States)

    Coppolaro, V.; Papi, N.; Khanbekyan, A.; Marinelli, C.; Mariotti, E.; Marmugi, L.; Moi, L.; Corradi, L.; Dainelli, A.; Arikawa, H.; Ishikawa, T.; Sakemi, Y.; Calabrese, R.; Mazzocca, G.; Tomassetti, L.; Ricci, L.

    2014-10-01

    We present here the first evidence of photodesorption induced by low-intensity non-resonant light from an yttrium thin foil, which works as a neutralizer for Rb and Fr ions beam. Neutral atoms are suddenly ejected from the metal surface in a pulsed regime upon illumination with a broadband flash light and then released in the free volume of a pyrex cells. Here atoms are captured by a Magneto-Optical Trap (MOT), which is effectively loaded by the photodesorption. Loading times of the order of the flash rise time are measured. Desorption is also obtained in the continuous regime, by exploiting CW visible illumination of the metallic neutralizer surface. We demonstrate that at lower CW light intensities vacuum conditions are not perturbed by the photodesorption and hence the MOT dynamics remains unaffected, while the trap population increases thanks to the incoming desorbed atoms flux. Even with the Y foil at room temperature and hence with no trapped atoms, upon visible illumination, the number of trapped atoms reaches 105. The experimental data are then analyzed by means of an analytical rate equation model, which allows the analysis of this phenomenon and its dynamics and allows the determination of critical experimental parameters and the test of the procedure in the framework of radioactive Francium trapping. In this view, together with an extensive investigation of the phenomenon with 85Rb, the first demonstration of the photodesorption-aided loading of a 210Fr MOT is shown.

  10. Light desorption from an yttrium neutralizer for Rb and Fr magneto-optical trap loading

    Energy Technology Data Exchange (ETDEWEB)

    Coppolaro, V.; Papi, N.; Khanbekyan, A.; Marinelli, C.; Mariotti, E., E-mail: emilio.mariotti@unisi.it; Marmugi, L.; Moi, L. [DSFTA and CNISM, University of Siena, via Roma 56, 53100 Siena (Italy); Corradi, L.; Dainelli, A. [INFN – Laboratori Nazionali di Legnaro, viale dell’Università 2, 35020 Legnaro (Italy); Arikawa, H.; Ishikawa, T.; Sakemi, Y. [Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Calabrese, R.; Mazzocca, G.; Tomassetti, L. [University of Ferrara and INFN, via Saragat 1, 44122 Ferrara (Italy); Ricci, L. [Physics Department, University of Trento, via Sommarive 14, 38123 Povo (Italy)

    2014-10-07

    We present here the first evidence of photodesorption induced by low-intensity non-resonant light from an yttrium thin foil, which works as a neutralizer for Rb and Fr ions beam. Neutral atoms are suddenly ejected from the metal surface in a pulsed regime upon illumination with a broadband flash light and then released in the free volume of a pyrex cells. Here atoms are captured by a Magneto-Optical Trap (MOT), which is effectively loaded by the photodesorption. Loading times of the order of the flash rise time are measured. Desorption is also obtained in the continuous regime, by exploiting CW visible illumination of the metallic neutralizer surface. We demonstrate that at lower CW light intensities vacuum conditions are not perturbed by the photodesorption and hence the MOT dynamics remains unaffected, while the trap population increases thanks to the incoming desorbed atoms flux. Even with the Y foil at room temperature and hence with no trapped atoms, upon visible illumination, the number of trapped atoms reaches 10{sup 5}. The experimental data are then analyzed by means of an analytical rate equation model, which allows the analysis of this phenomenon and its dynamics and allows the determination of critical experimental parameters and the test of the procedure in the framework of radioactive Francium trapping. In this view, together with an extensive investigation of the phenomenon with {sup 85}Rb, the first demonstration of the photodesorption-aided loading of a {sup 210}Fr MOT is shown.

  11. A study on metal organic framework (MOF-177) synthesis, characterization and hydrogen adsorption -desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Viditha, V.; Venkateswer Rao, M.; Srilatha, K.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P. (India); Yerramilli, Anjaneyulu [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2013-07-01

    Hydrogen has long been considered to be an ideal alternative to fossil-fuel systems and much work has now been done on its storage. There are four main methods of hydrogen storage: as a liquid; as compressed hydrogen; in the form of metal hydrides; and by physisorption. Among all the materials metal organic frameworks (MOFs) are considered to have desirable properties like high porosity, pore volume and high thermal stability. MOF-177 is considered to be an ideal storage material. In this paper we study about its synthesis and hydrogen storage capacities of MOF-177 at different pressures ranging from 25, 50, 75 and 100 bar respectively. The obtained samples are characterized by XRD, BET and SEM. The recorded results show that the obtained hydrogen capacity is 1.1, 2.20, 2.4 and 2.80 wt%. The desorption capacity is 0.9, 2.1, 2.37 and 2.7 wt% at certain temperatures like 373 K.

  12. Effect of biosurfactants on crude oil desorption and mobilization in a soil system

    Energy Technology Data Exchange (ETDEWEB)

    Kuyukina, M.S.; Ivshina, I.B. [Ural Branch of the Russian Academy of Sciences, Perm (Russian Federation). Institute of Ecology and Genetics of Microorganisms; Makarov, S.O.; Litvinenko, L.V. [Perm State University, Perm (Russian Federation); Cunningham, C.J. [University of Edinburgh (United Kingdom). Contaminated Land Assessment and Remediation Research Centre; Philp, J.C. [Napier University, Edinburgh (United Kingdom). School of Life Sciences

    2005-02-01

    Microbially produced biosurfactants were studied to enhance crude oil desorption and mobilization in model soil column systems. The ability of biosurfactants from Rhodococcus ruber to remove the oil from the soil core was 1.4-2.3 times greater than that of a synthetic surfactant of suitable properties, Tween 60. Biosurfactant-enhanced oil mobilization was temperature-related, and it was slower at 15{sup o}C than at 22-28{sup o}C. Mathematical modelling using a one-dimensional filtration model was applied to simulate the process of oil penetration through a soil column in the presence of (bio)surfactants. A strong positive correlation (R{sup 2} = 0.99) was found between surfactant penetration through oil-contaminated soil and oil removal activity. Biosurfactant was less adsorbed to soil components than synthetic surfactant, thus rapidly penetrating through the soil column and effectively removing 65-82% of crude oil. Chemical analysis showed that crude oil removed by biosurfactant contained a lower proportion of high-molecular-weight paraffins and asphaltenes, the most nonbiodegradable compounds, compared to initial oil composition. This result suggests that oil mobilized by biosurfactants could be easily biodegraded by soil bacteria. Rhodococcus biosurfactants can be used for in situ remediation of oil-contaminated soils. (author)

  13. Desorption of protium and deuterium from different types of titanium beds

    Energy Technology Data Exchange (ETDEWEB)

    Ionete, Eusebiu Ilarian, E-mail: eusebiu.ionete@icsi.ro [National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Ramnicu Valcea (Romania); Dylst, Kris [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Gheorghe, Costeanu Claudiu; Stefan, Spiridon Ionut; Florian, Monea Bogdan [National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 240050 Ramnicu Valcea (Romania); Broeckx, Wouter [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2017-03-15

    When the long term tritium storage is intended, metal hydride materials, particularly the titanium (Ti) beds, seems to be the recommended option, due to its compliance with the criteria of selection (e.g. material cost, stability, storage capacity, loading and unloading conditions, or radioactivity). However few experimental and numerical analyses have been published so far to better support the understanding of the recovery capabilities for different forms of titanium beds. In this work, an investigation on the recovery of different hydrogen isotopes from two types of titanium (Ti) beds, namely Ti powder and Ti sponge, has been performed. Hydrogen isotope release was experimentally verified up to a temperature of 600 °C for both Ti powder and Ti sponge beds. The desorption percentages were determined to be from 24.98 to 20.54 in the case of D{sub 2} on Ti sponge, and from 34.36 to 29.77 in the case of H{sub 2} on Ti sponge. The paper describes in detail the experimental set up, the measurements and the drawn conclusions.

  14. Biosorption and desorption of Nickel on oil cake: batch and column studies.

    Science.gov (United States)

    Khan, Moonis Ali; Ngabura, Mohammad; Choong, Thomas S Y; Masood, Hassan; Chuah, Luqman Abdullah

    2012-01-01

    Biosorption potential of mustard oil cake (MOC) for Ni(II) from aqueous medium was studied. Spectroscopic studies showed possible involvement of acidic (hydroxyl, carbonyl and carboxyl) groups in biosorption. Optimum biosorption was observed at pH 8. Contact time, reaction temperature, biosorbent dose and adsorbate concentration showed significant influence. Linear and non-linear isotherms comparison suggests applicability of Temkin model at 303 and 313 K and Freundlich model at 323K. Kinetics studies revealed applicability of Pseudo-second-order model. The process was endothermic and spontaneous. Freundlich constant (n) and activation energy (Ea) values confirm physical nature of the process. The breakthrough and exhaustive capacities for 5 mg/L initial Ni(II) concentration were 0.25 and 4.5 mg/g, while for 10 mg/L initial Ni(II) concentration were 4.5 and 9.5 mg/g, respectively. Batch desorption studies showed maximum Ni(II) recovery in acidic medium. Regeneration studies by batch and column process confirmed reutilization of biomass without appreciable loss in biosorption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Preparation of single-crystal spherical γ-Mo2N by temperature-programmed reaction between β-MoO3 and NH3

    Science.gov (United States)

    Wang, Lu; Zhang, Guo-Hua; Chou, Kuo-Chih

    2017-10-01

    In the present wok, single-crystalline spherical γ-Mo2N powders was successfully prepared by the temperature-programmed reaction of single-crystal spherical β-MoO3 with NH3 in the temperature ranges of 1013-1073 K. Herein, the Mo source used was monoclinic system, β-MoO3, a metastable phase of MoO3. It is found that the characterizations of the as-prepared γ-Mo2N powders are strongly depended on the selection of the MoO3 precursor. In other words, the as-prepared γ-Mo2N powders inherited the shape, size and structure of the used β-MoO3 precursors upon reaction with NH3. In order to make a comparison, β-MoO3 was also reduced by the mixed gases of N2 and H2 with the flow rate ratio of 1:3 at the identical conditions. It was found that pure β-Mo2N polycrystalline can be obtained when the temperature was 1013 K; while further increasing the reaction temperature, metal Mo powder will be turned up.

  16. Solvent jet desorption capillary photoionization-mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.

  17. Laser desorption mass spectrometry for fast DNA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Ch`ang, L.Y.; Taranenko, N.I.; Allman, S.L.; Tang, K.; Matteson, K.J.

    1995-09-01

    During the past few years, major effort has been directed toward developing mass spectrometry to measure biopolymers because of the great potential benefit to biomedical research. Hellenkamp and his co-workers were the first to report that large polypeptide molecules can be ionized and detected without significant fragmentation when a greater number of nicotinic acid molecules are used as a matrix. This method is now well known as matrix-assisted laser desorption/ionization (MALDI). Since then, various groups have reported measurements of very large proteins by MALDI. Reliable protein analysis by MALDI is more or less well established. However, the application of MALDI to nucleic acids analysis has been found to be much more difficult. Most research on the measurement of nucleic acid by MALDI were stimulated by the Human Genome Project. Up to now, the only method for reliable routine analysis of nucleic acid is gel electrophoresis. Different sizes of nucleic acids can be separated in gel medium when a high electric field is applied to the gel. However, the time needed to separate different sizes of DNA segments usually takes from several minutes to several hours. If MALDI can be successfully used for nucleic acids analysis, the analysis time can be reduced to less than I millisecond. In addition, no tagging with radioactive materials or chemical dyes is needed. In this work, we will review recent progress related to MALDI for DNA analysis.

  18. Quantitative analysis of biopolymers by matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K.; Allman, S.L.; Jones, R.B.; Chen, C.H. (Oak Ridge National Lab., TN (United States))

    1993-08-01

    During the past few years, major efforts have been made to use mass spectrometry to measure biopolymers because of the great potential benefit to biological and medical research. Although the theoretical details of laser desorption and ionization mechanisms of MALDI are not yet fully understood, several models have been presented to explain the production of large biopolymer ions. In brief, it is very difficult to obtain reliable measurements of the absolute quantity of analytes by MALDI. If MALDI is going to become a routine analytical tool, it is obvious that quantitative measurement capability must be pursued. Oligonucleotides and protein samples used in this work were purchased from commercial sources. Nicotinic acid was used as matrix for both types of biopolymers. From this experiment, it is seen that it is difficult to obtain absolute quantitative measurements of biopolymers using MALDI. However, internal calibration with molecules having similar chemical properties can be used to resolve these difficulties. Chemical reactions between biopolymers must be avoided to prevent the destruction of the analyte materials. 10 refs., 8 figs.

  19. Kinetics of Surfactant Desorption at an Air–Solution Interface

    KAUST Repository

    Morgan, C. E.

    2012-12-18

    The kinetics of re-equilibration of the anionic surfactant sodium dodecylbenzene sulfonate at the air-solution interface have been studied using neutron reflectivity. The experimental arrangement incorporates a novel flow cell in which the subphase can be exchanged (diluted) using a laminar flow while the surface region remains unaltered. The rate of the re-equilibration is relatively slow and occurs over many tens of minutes, which is comparable with the dilution time scale of approximately 10-30 min. A detailed mathematical model, in which the rate of the desorption is determined by transport through a near-surface diffusion layer into a diluted bulk solution below, is developed and provides a good description of the time-dependent adsorption data. A key parameter of the model is the ratio of the depth of the diffusion layer, H c, to the depth of the fluid, Hf, and we find that this is related to the reduced Péclet number, Pe*, for the system, via Hc/Hf = C/Pe*1/2. Although from a highly idealized experimental arrangement, the results provide an important insight into the "rinse mechanism", which is applicable to a wide variety of domestic and industrial circumstances. © 2012 American Chemical Society.

  20. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    2016-10-23

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful development today requires a good knowledge of geothermal system design and operation.

  1. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    2016-12-01

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful development today requires a good knowledge of geothermal system design and operation.

  2. Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production.

    Science.gov (United States)

    Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro

    2017-11-01

    Sorbitol and xylitol yields can be improved by converting cellulose and xylan simultaneously, due to a synergetic effect between both substrates. Furthermore, both yields can be greatly enhanced by simply adjusting the reaction conditions regarding the optimum for the production of each product, since xylitol (from xylan) and sorbitol (from cellulose) yields are maximized when the reaction is carried out at 170 and 205°C, respectively. Therefore, the combination of a simultaneous conversion of cellulose and xylan with a two-step temperature approach, which consists in the variation of the reaction temperature from 170 to 205°C after 2h, showed to be a good strategy for maximizing the production of sorbitol and xylitol directly from mixture of cellulose and xylan. Using this new and environmentally friendly approach, yields of sorbitol and xylitol of 75 and 77%, respectively, were obtained after 6h of reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Review of Heavy-ion Induced Desorption Studies for Particle Accelerators

    CERN Document Server

    Mahner, E

    2008-01-01

    During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavyion program at CERN's Large Hadron Collider collisions between beams of fully stripped lead (208Pb82+) ions with a beam energy of 2.76 TeV/u and a nominal luminosity of 10**27 cm**-2 s**-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 10**12 uranium (238U28+) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the resu...

  4. In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization.

    Science.gov (United States)

    Cotte-Rodríguez, Ismael; Hernandez-Soto, Heriberto; Chen, Hao; Cooks, R Graham

    2008-03-01

    Desorption electrospray ionization (DESI) mass spectrometry is used for the rapid (process triggered by an unusual homolytic cleavage of the peroxide bond, forming a distonic ion. This is followed by elimination of a fragment of 30 mass units, shown to be the expected neutral molecule, formaldehyde, in the case of HMTD, but shown by isotopic labeling experiments to be ethane in the cases of TATP and TrATrP. Density functional theory (DFT) calculations support the suggested fragmentation mechanisms for the complexes. Binding energies of Na+ of 40.2 and 33.1 kcal/mol were calculated for TATP-Na(+) and HMTD-Na(+) complexes, suggesting a strong interaction between the peroxide groups and the sodium ion. Increased selectivity is obtained either by MS/MS or by doping the spray solvent with additives that produce the lithium and potassium complexes of TATP, HMTD, and TrATrP. Addition of dopants into the solvent spray increased the signal intensity by an order of magnitude. When pure alcohol or aqueous hydrogen peroxide was used as the spray solvent, the (HMTD + Na)+ complex was able to bind a molecule of alcohol (methanol or ethanol) or hydrogen peroxide, providing additional characteristic ions to increase the selectivity of analysis. DESI also allowed the rapid detection of peroxide explosives in complex matrixes such as diesel fuel and lubricants using single or multiple cation additives (Na(+), K(+), and Li(+), and NH4(+)) in the spray solvent. Low-nanogram detection limits were achieved for HMTD, TrATrP, and TATP in these complex matrixes. The DESI response was linear over 3 orders of magnitude for HMTD and TATP on paper surfaces (1-5000 ng), and quantification of both peroxide explosives from paper gave precisions (RSD) of less than 3%. The use of pure water and compressed air as the DESI spray solution and nebulizing gas, respectively, showed similar ionization efficiencies to those obtained using methanol/water mixtures and nitrogen gas (the typical choices). An

  5. Rapid detection of nicotine from breath using desorption ionisation on porous silicon.

    Science.gov (United States)

    Guinan, T M; Abdelmaksoud, H; Voelcker, N H

    2017-05-04

    Desorption ionisation on porous silicon (DIOS) was used for the detection of nicotine from exhaled breath. This result represents proof-of-principle of the ability of DIOS to detect small molecular analytes in breath including biomarkers and illicit drugs.

  6. The adsorption-desorption cycle. Reversibility of the BSA-silica system

    NARCIS (Netherlands)

    Giacomelli, CE; Norde, W

    2001-01-01

    The reversibility of the adsorption-desorption cycle was established by comparing the thermostability (determined by differential scanning calorimetry) and secondary structure (obtained by circular dichroism spectroscopy) of BSA before adsorption, adsorbed on, and exchanged from silica particles.

  7. Functional differential equations of neutral type with integrable weak singularity: hydrogen thermal desorption model

    Science.gov (United States)

    Zaika, Yury V.; Kostikova, Ekaterina K.

    2017-11-01

    One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a thermal desorption functional differential equations of neutral type with integrable weak singularity and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).

  8. In-injection port thermal desorption for explosives trace evidence analysis.

    Science.gov (United States)

    Sigman, M E; Ma, C Y

    1999-10-01

    A gas chromatographic method utilizing thermal desorption of a dry surface wipe for the analysis of explosives trace chemical evidence has been developed and validated using electron capture and negative ion chemical ionization mass spectrometric detection. Thermal desorption was performed within a split/splitless injection port with minimal instrument modification. Surface-abraded Teflon tubing provided the solid support for sample collection and desorption. Performance was characterized by desorption efficiency, reproducibility, linearity of the calibration, and method detection and quantitation limits. Method validation was performed with a series of dinitrotoluenes, trinitrotoluene, two nitroester explosives, and one nitramine explosive. The method was applied to the sampling of a single piece of debris from an explosion containing trinitrotoluene.

  9. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.

    Science.gov (United States)

    Marchal, Geoffrey; Smith, Kilian E C; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G

    2013-10-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg(-1)) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem

    Science.gov (United States)

    Kostikova, E. K.; Zaika, Yu V.

    2016-11-01

    One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).

  11. Site Specificity in Femtosecond Laser Desorption of Neutral H Atoms from Graphite(0001)

    DEFF Research Database (Denmark)

    Frigge, R.; Hoger, T.; Siemer, B.

    2010-01-01

    Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states of che...

  12. Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization.

    Science.gov (United States)

    Cotte-Rodríguez, Ismael; Chen, Hao; Cooks, R Graham

    2006-03-07

    Desorption electrospray ionization (DESI) mass spectrometry is used for rapid, specific and sensitive detection of trace amounts of the notorious explosive TATP present on ambient surfaces by alkali metal complexation in a simple spray technique.

  13. Temperature, salinity and associated variables collected for MMS Deepwater Program: Northern Gulf of Mexico Continental Slope Habitat and Benthic Ecology from the Gulf of Mexico, 1999 - 2002 (NODC Accession 0002099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data collection includes profile data containing temperature, salinity and associated variables collected in support of this research program to gain better...

  14. Desorption of Pb 2+ and Cu 2+ from Nipa palm ( Nypa fruticans ...

    African Journals Online (AJOL)

    The data shows that desorption in all the reagent increased with increase in contact time, reaching 75.3 and 63.7% in acid reagent, 18.9 and 14.06% in basic reagent and 3.35 and 2.44% in distilled water for Pb2+ and Cu2+, respectively, at a contact time of 140 min. The desorption kinetic showed that the release constant, ...

  15. Measurements of hydrogen content in bulk niobium by Thermal Desorption Spectroscopy

    CERN Document Server

    Hakovirta, M

    2001-01-01

    The hydrogen content of bulk niobium has been studied by Thermal Desorption Spectroscopy. The work has been focussed initially on the influence of the vacuum firing and the surface chemical treatment. It is planned to extend the investigation to niobium samples of different quality and origin to ascertain the interest of using the Thermal Desorption Spectroscopy technique to qualify the raw niobium sheets to be used for cavity manufacturing

  16. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.

    Science.gov (United States)

    Son, H K; Sivakumar, S; Rood, M J; Kim, B J

    2016-01-15

    Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900 ppm(v)) and superficial gas velocity (6.3-9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. ATRAZINE ADSORPTION-DESORPTION BEHAVIOR IN DAREHASALUIE KAVAR CORN FIELD SOIL

    Directory of Open Access Journals (Sweden)

    M. Dehghani, S. Nasseri, S. Amin, K. Naddafi, M. Yunesian, M. Taghavi and N. Maleki

    2005-10-01

    Full Text Available Adsorption desorption behaviors of widely applied atrazine soil were studied, employing a batch technique as a case study in Darehasaluie Kavar corn field in Fars Province in 2005. Samples were collected into 0 to 20 cm soil depth, where was cultivated under a crop rotation (corn-wheat during the past 10 years. Sorption kinetics exhibited two phenomena: an immediate rapid sorption (1.31 µg/g soil after 12 hours followed by a slow sorption process (1.37 µg/g soil after 24 hours. Desorption behavior of atrazine was similar to its adsorption, but at a very slower rate. Atrazine desorption efficiencies were much less effective and incomplete even after a long equilibration time (only 9.16% after 96 hours. The adsorption-desorption rate for most of the time was positively related to the amount of applied atrazine and the time required for equilibration (P<0.01. Desorption data exhibited hysteresis phenomena. Atrazine adsorption data described well according to Freundlich (r2=0.95, Langmuir (r2=0.82 and Temkin (r2=0.84 isotherms. However, the fit to Freundlich adsorption model in a non linear form (1/n <1 was closer than the others. Desorption isotherm could be well described by the Temkin (r2=0.96 and Freundlich (r2=0.92 isotherms, but the fit to Temkin model was closer than that of Freundlich.

  18. Optimal Modeling of Urban Ambient Air Ozone Concentration Based on Its Precursors' Concentrations and Temperature, Employing Genetic Programming and Genetic Algorithm.

    Science.gov (United States)

    Mousavi, Seyed Mahmoud; Husseinzadeh, Danial; Alikhani, Sadegh

    2014-04-01

    Efficient models are required to predict the optimum values of ozone concentration in different levels of its precursors' concentrations and temperatures. A novel model based on the application of a genetic programming (GP) optimization is presented in this article. Ozone precursors' concentrations and run time average temperature have been chosen as model's parameters. Generalization performances of two different homemade models based on genetic programming and genetic algorithm (GA), which can be used for calculating theoretical ozone concentration, are compared with conventional semi-empirical model performance. Experimental data of Mashhad city ambient air have been employed to investigate the prediction ability of properly trained GP, GA, and conventional semi-empirical models. It is clearly demonstrated that the in-house algorithm which is used for the model based on GP, provides better generalization performance over the model optimized with GA and the conventional semi-empirical ones. The proposed model is found accurate enough and can be used for urban air ozone concentration prediction.

  19. Gas-cooled reactor programs. High-temperature gas-cooled reactor technology development program. Annual progress report, December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1984-06-01

    ORNL continues to make significant contributions to the national program. In the HTR fuels area, we are providing detailed statistical information on the fission product retention performance of irradiated fuel. Our studies are also providing basic data on the mechanical, physical, and chemical behavior of HTR materials, including metals, ceramics, graphite, and concrete. The ORNL has an important role in the development of improved HTR graphites and in the specification of criteria that need to be met by commercial products. We are also developing improved reactor physics design methods. Our work in component development and testing centers in the Component Flow Test Loop (CFTL), which is being used to evaluate the performance of the HTR core support structure. Other work includes experimental evaluation of the shielding effectiveness of the lower portions of an HTR core. This evaluation is being performed at the ORNL Tower Shielding Facility. Researchers at ORNL are developing welding techniques for attaching steam generator tubing to the tubesheets and are testing ceramic pads on which the core posts rest. They are also performing extensive testing of aggregate materials obtained from potential HTR site areas for possible use in prestressed concrete reactor vessels. During the past year we continued to serve as a peer reviewer of small modular reactor designs being developed by GA and GE with balance-of-plant layouts being developed by Bechtel Group, Inc. We have also evaluated the national need for developing HTRs with emphasis on the longer term applications of the HTRs to fossil conversion processes.

  20. Surface effects and electrochemical cell capacitance in desorption electrospray ionization.

    Science.gov (United States)

    Volný, Michael; Venter, Andre; Smith, Scott A; Pazzi, Marco; Cooks, R Graham

    2008-04-01

    Time resolved measurements show that during a desorption electrospray ionization (DESI) experiment, the current initially rises sharply, followed by an exponential decrease to a relatively steady current. When the high voltage on the spray emitter is switched off, the current drops to negative values, suggesting that the direction of current flow in the equivalent DESI circuit is reversed. These data demonstrate that the DESI source behaves as a dc capacitor and that the addition of a surface between the sprayer and the counter electrode in DESI introduces a new electrically active element into the system. The charging and discharging behavior was observed using different surfaces and it could be seen both by making current measurements on a plate at the entrance to the mass spectrometer as well as by measuring ion current in the linear ion trap within the vacuum system of the mass spectrometer. The magnitude of the steady state current obtained without analyte present on the surface is different for different surface materials, and different capacitor time constants of the equivalent RC circuits were calculated for different DESI surfaces. The PTFE surface has by far the greatest time constant and is also able to produce the highest DESI currents. Surface properties play a crucial role in charge transfer during DESI in addition to the effects of the chemical properties of the analyte. It is suggested that surface energy (wettability) is an important factor controlling droplet behavior on the surface. The experimental data are correlated with critical surface tension values of different materials. It is proposed, based on the results presented, that super-hydrophobic materials with extremely high contact angles have the potential to be excellent DESI substrates. It is also demonstrated, using the example of the neurotransmitter dopamine, that the surface charge that develops during a DESI-MS experiment can cause electrochemical oxidation of the analyte.

  1. Technical basis for the reduction of the maximum temperature TGA-MS analysis of oxide samples from the 3013 destructive examination program

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-24

    Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processing samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.

  2. Formation of Hydroxylamine in Low-Temperature Interstellar Model Ices.

    Science.gov (United States)

    Tsegaw, Yetsedaw A; Góbi, Sándor; Förstel, Marko; Maksyutenko, Pavlo; Sander, Wolfram; Kaiser, Ralf I

    2017-10-12

    We irradiated binary ice mixtures of ammonia (NH3) and oxygen (O2) ices at astrophysically relevant temperatures of 5.5 K with energetic electrons to mimic the energy transfer process that occurs in the track of galactic cosmic rays. By monitoring the newly formed molecules online and in situ utilizing Fourier transform infrared spectroscopy complemented by temperature-programmed desorption studies with single-photon photoionization reflectron time-of-flight mass spectrometry, the synthesis of hydroxylamine (NH2OH), water (H2O), hydrogen peroxide (H2O2), nitrosyl hydride (HNO), and a series of nitrogen oxides (NO, N2O, NO2, N2O2, N2O3) was evident. The synthetic pathway of the newly formed species, along with their rate constants, is discussed exploiting the kinetic fitting of the coupled differential equations representing the decomposition steps in the irradiated ice mixtures. Our studies suggest the hydroxylamine is likely formed through an insertion mechanism of suprathermal oxygen into the nitrogen-hydrogen bond of ammonia at such low temperatures. An isotope-labeled experiment examining the electron-irradiated D3-ammonia-oxygen (ND3-O2) ices was also conducted, which confirmed our findings. This study provides clear, concise evidence of the formation of hydroxylamine by irradiation of interstellar analogue ices and can help explain the question how potential precursors to complex biorelevant molecules may form in the interstellar medium.

  3. Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

    2012-04-26

    The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge

  4. Low-temperature CO oxidation on Co(0 0 0 1)

    Science.gov (United States)

    Wu, Jiawei; Chen, Jun; Guo, Qing; Dai, Dongxu; Yang, Xueming

    2017-09-01

    Low-temperature oxidation of CO, perhaps the most extensively studied reaction in the history of heterogeneous catalysis, is becoming increasingly important in the context of cleaning air and lowering automotive emissions. Here, we have studied low-temperature CO oxidation on Co(0 0 0 1) using temperature programed desorption method. We show that chemisorbed O adlayer on Co(0 0 0 1) does not promote CO2 formation. However, when a Co3O4-like surface is formed at 90 K, large amount of CO2 is produced at 90 K in the presence of weakly bound oxygen species, demonstrating that low-temperature CO oxidation can be rationalized on O2-saturated Co3O4-like oxide surfaces. However, the formation of carbonate species via the CO2 product and weakly bound oxygen species reduces the yield of low temperature CO2. Thus, how to block the formation of carbonate plays a key role in enhancing the low-temperature CO2 production on the Co3O4-like oxide surfaces.

  5. Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Njikam, Eloh, E-mail: ennjikam@alaska.edu [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775 (United States); Schiewer, Silke, E-mail: sschiewer@alaska.edu [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775 (United States)

    2012-04-30

    Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO{sub 3}. The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO{sub 3}, desorption was incomplete and the model fit less perfect. Highlights: Black-Right-Pointing-Pointer Metal desorption was over 90% complete within 50 min for most desorbents. Black-Right-Pointing-Pointer Models for biosorbent desorption kinetics were developed. Black-Right-Pointing-Pointer Desorption kinetics best fit a novel first-order model related to remaining metal bound. Black-Right-Pointing-Pointer Cd uptake after desorption by HNO{sub 3} was similar to the original uptake. Black-Right-Pointing-Pointer The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO{sub 3}, NaNO{sub 3}, Ca(NO{sub 3}){sub 2}, EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by

  6. Determination of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene and related compounds in marine pore water by automated thermal desorption-gas chromatography/mass spectrometry using disposable optical fiber

    Science.gov (United States)

    Eganhouse, Robert P.; DiFilippo, Erica L

    2015-01-01

    A method is described for determination of ten DDT-related compounds in marine pore water based on equilibrium solid-phase microextraction (SPME) using commercial polydimethylsiloxane-coated optical fiber with analysis by automated thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Thermally cleaned fiber was directly exposed to sediments and allowed to reach equilibrium under static conditions at the in situ field temperature. Following removal, fibers were rinsed, dried and cut into appropriate lengths for storage in leak-tight containers at -20°C. Analysis by TD-GC/MS under full scan (FS) and selected ion monitoring (SIM) modes was then performed. Pore-water method detection limits in FS and SIM modes were estimated at 0.05-2.4ng/L and 0.7-16pg/L, respectively. Precision of the method, including contributions from fiber handling, was less than 10%. Analysis of independently prepared solutions containing eight DDT compounds yielded concentrations that were within 6.9±5.5% and 0.1±14% of the actual concentrations in FS and SIM modes, respectively. The use of optical fiber with automated analysis allows for studies at high temporal and/or spatial resolution as well as for monitoring programs over large spatial and/or long temporal scales with adequate sample replication. This greatly enhances the flexibility of the technique and improves the ability to meet quality control objectives at significantly lower cost.

  7. Electric field dependent structural and vibrational properties of the Si(100)-H(2 x 1) surface and its implications for STM induced hydrogen desorption

    DEFF Research Database (Denmark)

    Stokbro, Kurt

    1999-01-01

    We report a first principles study of the structure and the vibrational properties of the Si(100)-H(2 x 1) surface in an electric field. The calculated vibrational parameters are used to model the vibrational modes in the presence of the electric field corresponding to a realistic scanning...... at room temperature). We calculate the implications for current induced desorption of H using a recently developed first principles model of electron inelastic scattering. The calculations show that inelastic scattering events with energy transfer n (h) over bar omega, where n>1, play an important role...

  8. Programming Arduino to Control Bias Voltages to Temperature-Depedndent Gamma-ray Detectors aboard TRYAD Mission

    Science.gov (United States)

    Stevons, C. E.; Jenke, P.; Briggs, M. S.

    2016-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are sub-millisecond gamma-ray flashes that are correlated with lightning have been observed with numerous satellites since their discovery in the early 1990s. Although substantial research has been conducted on TGFs, puzzling questions regarding their origin are still left unanswered. Consequently, the Terrestrial RaYs Analysis and Detection (TRYAD) mission is designed to solve many issues about TGFs by measuring the beam profile and orientation of TGFs in low Earth orbit. This project consists of sending two CubeSats into low-Earth orbit where they will independently sample TGF beams. Both of the TRYAD CubeSats will contain a gamma-ray detector composed of lead doped plastic scintillator coupled to silicon photomultiplier (SiPM) arrays. The gain readings of the SiPMs vary with temperature and the bias voltage must be corrected to compensate. Using an Arduino micro-controller, circuitry and software was developed to control the gain in response to the resistance of a thermistor. I will present the difficulties involved with this project along with our solutions.

  9. CAREER: Hydrothermal vent flow and temperature fluctuations: exploring long-term variability through an integrated research and education program

    Science.gov (United States)

    Di Iorio, D.

    2011-12-01

    An acoustic scintillation system was built in partnership with ASL Environmental Sciences (Sidney BC Canada), which provided a unique opportunity for two engineering undergraduate students to live and work abroad. The acoustic instrumentation was tested in coastal waters and then deployed to study deep-sea hydrothermal plume dynamics. Undergraduate students were involved in the deployment of instrumentation and the development of processing software to give vertical velocities and temperature fluctuations from a vigorous hydrothermal vent. A graduate student thesis has yielded insights into the vertical and azimuthal dependence of entrainment and into plume bending and rise height. Teachers and Ocean Science Bowl students also participated in research cruises describing physical oceanography of estuaries, coastal waters, and deep-sea hydrothermal vents and participated in data collection, processing and analysis. Teachers used the knowledge they gained to develop creative educational curricula at their schools, to present their experiences at national conferences and to publish an article in the National Science Teachers Association - The Science Journal. One of the teachers was recently recognized with the Presidential Award for Excellence in Mathematics and Science Teaching. Working with the ocean bowl team at Oconee County High School has led to top ten placements in the national championships in 2005 (fourth place) and 2006 (sixth place). In order to increase quantitative methods in an undergraduate class, students acquire data from an ocean observatory and analyze the data for specific quantities of interest. One such project led to the calculation of the upper ocean heat content for the Greenland Sea using 7 years of Argo profiles, which showed a 0.04oC/year trend. These results were then published in JGR.

  10. Nano-Scale Au Supported on Carbon Materials for the Low Temperature Water Gas Shift (WGS Reaction

    Directory of Open Access Journals (Sweden)

    Paula Sánchez

    2011-12-01

    Full Text Available Au-based catalysts supported on carbon materials with different structures such as graphite (G and fishbone type carbon nanofibers (CNF-F were prepared using two different methods (impregnation and gold-sol to be tested in the water gas shift (WGS reaction. Atomic absorption spectrometry, transmission electron microscopy (TEM, temperature-programmed oxidation (TPO, X-ray diffraction (XRD, Raman spectroscopy, elemental analyses (CNH, N2 adsorption-desorption analysis, temperature-programmed reduction (TPR and temperature-programmed decomposition were employed to characterize both the supports and catalysts. Both the crystalline nature of the carbon supports and the method of gold incorporation had a strong influence on the way in which Au particles were deposited on the carbon surface. The higher crystallinity and the smaller and well dispersed Au particle size were, the higher activity of the catalysts in the WGS reaction was noted. Finally, catalytic activity showed an important dependence on the reaction temperature and steam-to-CO molar ratio.

  11. Solvent-Assisted Desorption of 2,5-Lutidine from Polyurethane Films.

    Science.gov (United States)

    Boyne, Devon A; Varady, Mark J; Lambeth, Robert H; Eikenberg, Janlyn H; Bringuier, Stefan A; Pearl, Thomas P; Mantooth, Brent A

    2018-02-08

    A fundamental understanding of chemical interactions and transport mechanisms that result from introducing multiple chemical species into a polymer plays a key role in the development and optimization of membranes, coatings, and decontamination formulations. In this study, we explore the solvent-assisted desorption of a penetrant (2,5-lutidine) in polyurethane with aprotic (acetonitrile) and protic (methanol) solvents. Chemical interactions between solvent, penetrant, and polymer functional groups are characterized via time-resolved Fourier transform infrared spectroscopy (FTIR) during single and multicomponent exposures. For both solvents, an increase in the extraction rate of the penetrant is observed when the solvent is applied during desorption. Inspection of the FTIR spectra reveals two potential mechanisms that facilitate the enhanced desorption rate: (1) penetrant/solvent competition for hydrogen donor groups on the polymer backbone and (2) disruption of the self-interaction (cohesive forces) between neighboring polymer chains. Finally, the aprotic solvent is found to generate an order of magnitude greater desorption rate of the penetrant, which is attributed to a greater disruption of the self-interaction during penetrant desorption compared to the protic solvent and the inability of an aprotic solvent to form larger and potentially slower penetrant-solvent complexes.

  12. The characteristics of phosphorus adsorption and desorption in gray desert soil of Xinjiang, China

    Science.gov (United States)

    Wang, B.; Sun, J. S.; Liu, H.; Ma, Y. B.

    2017-07-01

    The characteristics of phosphorus (P) adsorption and desorption in Xinjiang gray desert soil (0 - 200 mm) of China in the long-term fertilization condition is affected by the level of soil P content which studied through an isothermal adsorption and desorption experiments of P. The results stated that within the experimental concentration range, with the increase of the amount of outer-source phosphorus, P adsorption, desorption and desorption rate increased and adsorption rate decreased gradually in different Olsen-P levels of gray desert soil in Xinjiang, China. Olsen-P content is significantly correlated with the P adsorption saturation (DPS) of gray desert soil. The maximum adsorption capacity (Xm ) of the treatments followed an extremely significant decreasing order of CK>NPK≈NPKM>PK≈NPKS. The maximum buffer capacity (MBC) and adsorption constant (K) of the NPK treatment was much higher than NPKM, NPKS, PK and CK treatments. And, MBC value of CK treatment was extremely higher than NPKS and PK, however, the differences between NPKM and CK, NPKS and PK were not significant. The comparison between NPKM, NPKS, PK and CK treatments showed no significant difference in K value, but these four showed significantly lower than NPK treatments. The value of soil easy desorption P (RDP) of NPKS and NPKM was significantly higher than NPK and PK, and the chemical fertilizer with organic fertilizer was a best way to release the phosphorus for Xinjiang agricultural production, China.

  13. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  14. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Elizabeth Guthrie [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)], E-mail: elizabeth_nichols@ncsu.edu; Gregory, Samuel T.; Musella, Jennifer S. [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)

    2008-12-15

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C{sub 3}-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k{sub slow} and k{sub veryslow}. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior.

  15. Molecular-Scale Description of SPAN80 Desorption from a Squalane-Water Interface.

    Science.gov (United States)

    Tan, L; Pratt, L R; Chaudhari, M I

    2017-12-15

    Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with sorbitan monooleate (SPAN80), at T = 300 K, are analyzed for the surface tension equation of state, desorption free-energy profiles as they depend on loading, and to evaluate escape times for adsorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple through the range of high tension to high loading studied, and the desorption free-energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 headgroup ring is well-described by a diffusional model near the minimum of the desorption free-energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 7 × 10-2 s (into the squalane) and 3 × 102 h (into the water). The latter value is consistent with desorption times of related lab-scale experimental work.

  16. Simultaneous effect of dissolved organic carbon, surfactant, and organic acid on the desorption of pesticides investigated by response surface methodology

    DEFF Research Database (Denmark)

    Trinh, Ha Thu; Duong, Hanh Thi; Ta, Thao Thi

    2017-01-01

    Desorption of pesticides (fenobucarb, endosulfan, and dichlorodiphenyltrichloroethane (DDT)) from soil to aqueous solution with the simultaneous presence of dissolved organic carbon (DOC), sodium dodecyl sulfate (SDS), and sodium oxalate (Oxa) was investigated in batch test by applying a full...... caused the minimum desorption. This point at conditions of concern for flooding water is high content of organic compounds causing potentially high contamination by desorption, and the remarkably lower desorption at organic matter-free conditions. The suspended organic matter is one of the common...

  17. Laser diode thermal desorption mass spectrometry for the analysis of quinolone antibiotic residues in aquacultured seafood.

    Science.gov (United States)

    Lohne, Jack J; Andersen, Wendy C; Clark, Susan B; Turnipseed, Sherri B; Madson, Mark R

    2012-12-30

    Veterinary drug residue analysis of meat and seafood products is an important part of national regulatory agency food safety programs to ensure that consumers are not exposed to potentially dangerous substances. Complex tissue matrices often require lengthy extraction and analysis procedures to identify improper animal drug treatment. Direct and rapid analysis mass spectrometry techniques have the potential to increase regulatory sample analysis speed by eliminating liquid chromatographic separation. Flumequine, oxolinic acid, and nalidixic acid were extracted from catfish, shrimp, and salmon using acidified acetonitrile. Extracts were concentrated, dried onto metal sample wells, then rapidly desorbed (6 s) with an infrared diode laser for analysis by laser diode thermal desorption atmospheric pressure chemical ionization with tandem mass spectrometry (LDTD-MS/MS). Analysis was conducted in selected reaction monitoring mode using piromidic acid as internal standard. Six-point calibration curves for each compound in extracted matrix were linear with r(2) correlation greater than 0.99. The method was validated by analyzing 23 negative samples and 116 fortified samples at concentrations of 10, 20, 50, 100, and 600 ng/g. Average recoveries of fortified samples were greater than 77% with method detection levels ranging from 2 to 7 /g. Three product ion transitions were acquired per analyte to identify each residue. A rapid method for quinolone analysis in fish muscle was developed using LDTD-MS/MS. The total analysis time was less than 30 s per sample; quinolone residues were detected below 10 ng/g and in most cases residue identity was confirmed. This represents the first application of LDTD to tissue extract analysis. Published 2012. This article is a US Government work and is in the public domain in the USA. Published 2012. This article is a US Government work and is in the public domain in the USA.

  18. Adsorption-desorption kinetics and chemical potential of adsorbed and gas-phase particles

    Science.gov (United States)

    Zhdanov, V. P.

    2001-03-01

    In the literature, one can find two alternative ways of using the chemical potential of adsorbed and gas-phase particles, μa and μg, for describing the adsorption-desorption kinetics. According to the first approach, the desorption rate depends only on μa. The second approach, proposed by Ward et al. in a series of papers published in the Journal of Chemical Physics, predicts that the desorption rate is proportional to exp[(μa-μg)/kBT]. Scrutinizing the formalism used by Ward et al., we show that the latter dependence makes no sense because it contradicts the basic principles of the general theory of activated rate processes.

  19. Gas Desorption Behavior of Graphite Anodes in Lithium Ion Secondary Batteries After Adsorption of Electrolytes

    Science.gov (United States)

    Watanabe, Toshinori; Nobuta, Yuji; Yamauchi, Yuji; Hino, Tomoaki; Kubota, Yoshihiro; Ohzeki, Katsutomo

    When it was soaked, more were desorbed In this study, gas desorption behaviors of graphite anode samples after various surface treatments and electrolyte solvent adsorption properties were investigated. The total amount of desorbed gases for the natural graphite samples increased after soaking in propylene carbonate, and increased even further with Raman R value, suggesting that surface defects act as an effective adsorption site for the electrolyte. These findings indicate that surface treatment such as a coating might be an effective remedy to reduce the amount of desorption gases in natural graphite samples. It was also found that the total amount of gas desorption largely decreased with the coating with polymer resin and subsequent heat treatment at 423 K for 12 hours in a medium of air. It is likely that the dominant gas species present in the natural graphite after the electrolyte soaking are dependent on the binding energy and the molecular structure of the electrolyte solvent.

  20. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  1. Adsorption-desorption dynamics of cyprodinil and fludioxonil in vineyard soils.

    Science.gov (United States)

    Arias, M; Torrente, A C; López, E; Soto, B; Simal-Gándara, J

    2005-07-13

    Cyprodinil and fludioxonil are new-generation fungicides that are employed to protect grapevines from botrytis and various rots. In this work, their adsorption and desorption dynamics in eight vineyard soils from Galicia (northwestern Spain) were examined in batch and column experiments. Both fungicides exhibited linear adsorption isotherms, with more ready adsorption (greater Kd) of fludioxonil. Kd values for cyprodinil were significantly correlated with soil organic matter content (r 2= 0.675, p pesticides exhibited adsorption-desorption hysteresis, but desorption was easier and more variable for cyprodinil (12-21%, RSD = 17%) than for fludioxonil (3-5%, RSD = 13%) and appeared to depend on the formation of irreversible bonds in the former case and on poor solubility in the latter. A linear adsorption model involving nonequilibrium conditions and an irreversible adsorption term was found to reproduce transport behavior accurately.

  2. Electron stimulated desorption of anions and cations from condensed allyl glycidyl ether.

    Science.gov (United States)

    Yildirim, Y; Balcan, M; Bass, A D; Cloutier, P; Sanche, L

    2010-07-28

    We report measurements of the electron stimulated desorption (ESD) of anions and cations from thin films of allyl glycidyl ether (AGE), formed by condensation onto multilayer Kr and Pt substrates using a high sensitivity time of flight mass analyser. Measurements were performed as a function of film thickness, incident electron energy (E(i)) and effective incident current. Below incident electron energies of 20 eV the desorption of anions is dominated by the process of dissociative electron attachment (DEA) via several transient negative ions at E(i) between 5.5 and 16.5 eV. Comparisons between measurements for AGE and ethyl oxirane show that the ESD of anions is essentially that of the glycidyl (epoxide) ring, though DEA occurring at the ether, within the linear part of the AGE molecule is also observed. Cation yields are dominated by the desorption of small fragments formed via scission of the same ether bond.

  3. Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia).

    Science.gov (United States)

    Gonzalez, Mariana; Miglioranza, Karina S B; Aizpún, Julia E; Isla, Federico I; Peña, Aránzazu

    2010-09-01

    Pesticide distribution in the soil profile depends on soil and pesticide properties as well as on the composition of irrigation water. Water containing surfactants, acids or solvents, may alter pesticide desorption from soil. The distribution of organochlorine pesticides (OCPs) in two Argentinean agricultural areas, Pampa and Patagonia, was evaluated. Furthermore, pesticide desorption from aged and freshly spiked soils was performed by the batch technique, using solutions of sodium oxalate and citrate, dissolved organic carbon (DOC), wastewater and surfactants. Patagonian soil showed the highest OCP levels (46.5-38.1 μg g(-1) OC) from 0 to 30 cm depth and the predominance of p,p'-DDE residues reflected an extensive and past use of DDT. Pampean soil with lower levels (0.039-0.07 μg g(-1) OC) was mainly polluted by the currently used insecticide endosulfan. Sodium citrate and oxalate, at levels usually exuded by plant roots, effectively enhanced desorption of p,p'-DDT, p,p'-DDE and α-cypermethrin, while no effects were observed for α-endosulfan and endosulfan sulfate. The non-ionic surfactant Tween 80 behaved similarly to the acids, whereas the anionic sodium dodecyl sulfate enhanced desorption of all pesticides. Increased desorption of the hydrophobic pesticides also occurred when DOC from humic acids but not from sewage sludge or wastewater were used. Soil profile distribution of pesticides was in accordance with results from desorption studies. Data suggest pesticide leaching in Pampean and Patagonian soils, with risk of endosulfan to reach groundwater and that some organic components of wastewaters may enhance the solubilisation and leaching of recalcitrant compounds such as p,p'-DDT and p,p'-DDE. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Experimental design of diffusion and desorption of contaminant in heterogeneous media.

    Science.gov (United States)

    Jiang, Guannan; Crimi, Michelle; Fowler, Kathleen; Fu, Xiaojing

    2011-01-01

    Storage of contaminants in low permeability media (LPM) presents a great challenge for prediction of remediation effectiveness and efficiency. The reason lies in the contaminants' complex behaviors within heterogeneous media. Both interparticle and intraparticle diffusion contribute to the difficulty of precise site assessment. Sorption of contaminants--especially within LPM--may sequester the contaminants from active treatment, while desorption over a long period of time leads to contaminant release from storage and consequent re-contamination. Research has been conducted toward better understanding of contaminant diffusion and sorption/desorption processes to better predict contaminant response to site treatment. However, most of the research has been carried out within homogeneous media, while real scenarios in environmental problems feature media whose permeability and other characteristics vary significantly over the treatment volume. Further, few efforts have combined the interparticle/intraparticle diffusion and sorption/desorption processes together. This research aims at a feasible experimental design of diffusion and desorption of contaminant in heterogeneous media to address the gaps in previous research. A 2-D experimental system was designed to evaluate interparticle/intraparticle diffusion processes of trichloroethylene (TCE) in heterogeneous media. The 2-D system was modified to include organic matter in media for simulation of sorption/desorption processes. Results of the research will improve the understanding of how these different transport processes act together within heterogeneous media. Results will also allow for the evaluation of the impact of contaminant mass transport from within low permeability media at a potential treatment site and can support the development of mathematical tools/models combining interparticle/intraparticle and sorption/desorption processes. Such a model will promote more accurate site assessment and provide more

  5. Surface coverage effects on the desorption kinetics of selenite from a hydroxyaluminum-montmorillonite complex.

    Science.gov (United States)

    Saha, U K; Huang, P M

    2010-10-01

    Information on the desorption of metals and metalloids from soils and clays are essential for a better understanding of their mobility, transport, and fate in natural environments. We investigated nitrate-, phosphate-, and citrate-induced desorption kinetics of preadsorbed selenite (presented as Se henceforth) from a hydroxyaluminum-montmorillonite (HyA-Mt) complex at three different surface coverages of 8%, 25%, and 69% of its Langmuir predicted adsorption maximum (262.61 mmole kg(-1)). Generally the mole fraction of preadsorbed Se released after the attainment of desorption equilibrium was significantly higher with increasing surface coverage. Desorption kinetics of Se from the clay was best described by the Elovich model. The Elovich model parameter beta representing the rate of Se desorption increased as the surface coverage increased. Both kinetic data and mole fraction of Se released at desorption equilibrium supported the contention that adsorption bond strength progressively decreases with increasing surface coverage. Both citrate and phosphate remobilized Se at significantly faster rates than nitrate at any surface coverage level. Citrate showed a significantly faster rate of Se release than phosphate only at 8% surface coverage but not at 25% and 69% surface coverages, suggesting that differential ability of these two ligands to influence the kinetics of Se release was also surface coverage dependent. The findings of the present study would help better understand the consequences of different surface coverages on soil colloids by preadsorbed Se as well as the impacts of phosphate fertilization and rhizospheric processes in influencing Se mobility in soil and related environments. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Experimental Setup for Determining Ammonia-Salt Adsorption and Desorption Behavior Under Typical Heat Pump Conditions. Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M.; De Boer, R.; Veldhuis, J.B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    For the aim of obtaining a better understanding of the performance of a salt-ammonia sorption reactor/heat exchanger a new test-rig was developed. This test-rig enables the measurement of the performance in adsorption and desorption mode of different sorption reactor designs. It measures the speed of uptake and release of ammonia gas of various salt-ammonia reactions under well-controlled and well-monitored process conditions, similar to the heat pump conditions. The test-rig measures the ammonia uptake and release under controlled pressure and temperature conditions. Temperatures of the salt reactor can be varied from ambient temperature up to 200{sup o}C and the ammonia pressure can be varied between 0.02 to 2 MPa. These conditions can be set independently and repeated at regular time-intervals. Besides NH3-mass-flow meters, pressure and temperature sensors, the setup also contains an endoscope to observe any macroscopic structural changes in the material during uptake and release of ammonia. Measurements so far have shown a liquid phase of LiCl.3NH3 at pressures of 0.5 MPa and temperatures exceeding 90{sup o}C. Voilent foaming is observed at 120{sup o}C resulting in salt losses. A correlation was determined between the reaction rate of MgCl{sub 2}(2-6)NH3 and the relative pressure gradient yielding a reaction time of about 1500 seconds for a relative pressure difference of 1. Multiple sorption cycles of the CaCl{sub 2}(2-4)NH3 reaction, showed a reduced activity from 85% of the theoretical maximum sorbed mass at the first sorption cycle, to 15% after 300+ cycles.

  7. Pacific Reef Assessment and Monitoring Program: Subsurface Temperature Recorders (STRs) at selected coral reef locations across the Pacific Ocean from 2001 to 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  8. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Wang, Jing; Liu, Qian; Liang, Yong; Jiang, Guibin

    2016-04-01

    Carbon nanomaterials have attracted great interest over past decades owing to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this article, we review recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry (LDI MS). Various types of carbon nanomaterials, including fullerenes, carbon nanotubes, graphene, carbon nanodots, nanodiamond, nanofibers, nanohorns, and their derivative forms, are involved. The applications of these materials as new matrices or probes in matrix-assisted or surface-enhanced laser desorption/ionization mass spectrometry (MALDI or SELDI MS) are discussed. Finally, we summarize current challenges and give our perspectives on the future of applications of carbon nanomaterials in LDI MS.

  9. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel

    2015-01-01

    The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments....... We used the stirred flow chamber (SFC) procedure to achieve this goal. All three antibiotics showed high affinity for both soils, with greater adsorption intensity for soil 1, the one with the highest organic matter and Al and Fe oxides contents. Desorption was always ... on soils and other media, thus increasing knowledge on the behavior and evolution of these pharmaceutical residues in the environment....

  10. Frontal analysis for characterizing the adsorption-desorption behavior of beta-lactoglobulin on immunoadsorbents.

    Science.gov (United States)

    Puerta, Angel; Vidal-Madjar, Claire; Jaulmes, Alain; Diez-Masa, Jose-Carlos; de Frutos, Mercedes

    2006-06-30

    High-performance frontal affinity chromatography was employed to study the adsorption-desorption kinetics characterizing the retention of beta-lactoglobulin (beta-LG) onto polyclonal anti-beta-lactoglobulin (anti-beta-LG) chromatographic supports. The adsorption and desorption processes were studied by analyzing two different elution fronts separated by a relatively long rinsing step. The method consists in performing two successive frontal injections of the protein. In between, the column was rinsed with a given volume of mobile phase (buffer alone). During this rinsing stage, a partial desorption may occur and a novel amount of protein could be adsorbed in the second frontal injection step. The whole process (first adsorption, possible desorption, and second adsorption) was simulated by a numerical procedure, in which the column was divided into a large number of slices. A model based on bi-Langmuir type kinetics was used to describe the adsorption of the protein on the support. The model assumes a non-uniform adsorbent with two types of binding sites. At equilibrium the adsorption isotherm is of the bi-Langmuir type. A global adsorption effect was considered which includes the effective binding process and the mass transfer resistances due to the transport to the binding site. Therefore, the column capacity and the kinetic parameters of the model (apparent adsorption and desorption rate constants) were determined from the best fit of the first and second adsorption fronts to the experimental ones. The other parameters of the model are the saturation capacities for the adsorption on each type of sites. The equilibrium affinity constants were estimated in a single experiment from the ratio of the apparent adsorption and desorption rate constants. The high values found (around 10(8) M(-1)) reveal a strong interaction of beta-LG with the immunoadsorbent. Kinetic measurements were carried out at different flow rates. Both the apparent adsorption and desorption

  11. Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads.

    Science.gov (United States)

    Vijayalakshmi, K; Devi, B Mahalakshmi; Latha, Srinivasan; Gomathi, Thandapani; Sudha, P N; Venkatesan, Jayachandran; Anil, Sukumaran

    2017-11-01

    The feasibility of adsorption and desorption behavior of nanochitosan(NCS)/sodium alginate(SA)/microcrystalline cellulose (MC) bead prepared in 2:8:1 ratio for Pb(II) removal has been investigated through batch studies. The proof of adsorption of Pb(II) ions onto NCS/SA/MC beads was identified from FT-IR and EDX-SEM Studies. Studies of the effect of pH, adsorbent dose, metal ion concentration and temperature reveals that the optimum conditions for adsorption was found to be pH:6; adsorbent dose:4g; initial metal concentration: 62.5mg/L and temperature:50°C. Various equilibrium adsorption isotherm models namely Langmuir, Freundlich, Temkin and D-R applied for the analysis of isotherm data indicate that the Freundlich adsorption isotherm model was found to be followed. On the basis of kinetic studies, specific rate constants involved in the processes were calculated and the observed result shows that the pseudo second order kinetics was found to be a better fit. The desorption studies reveals that the recovery of Pb(II) from NCS/SA/MC bead was found to be effective by using 0.1M HCl solution. From the results it was evident that the NCS/SA/MC bead showed better Pb(II) uptake performance and regeneration for further use and hence it was found to be an efficient biosorbent for treating industrial effluent. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature.

    Science.gov (United States)

    Zhang, Changbin; Li, Yaobin; Wang, Yafei; He, Hong

    2014-05-20

    Catalytic oxidation of formaldehyde (HCHO) to CO2 at ambient conditions is of great interest for indoor HCHO purification. Here, we report that sodium-doped Pd/TiO2 is a highly effective catalyst for the catalytic oxidation of HCHO at room temperature. It was observed that Na doping has a dramatic promotion effect on the Pd/TiO2 catalyst and that nearly 100% HCHO conversion could be achieved over the 2Na-Pd/TiO2 catalyst at a GHSV of 95000 h(-1) and HCHO inlet concentration of 140 ppm at 25 °C. The mechanism of the Na-promotion effect was investigated by using Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), CO chemisorption, Temperature-programmed reduction by H2 (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption of O2 (O2-TPD) methods. The results showed that Na species addition can induce and further stabilize a negatively charged and well-dispersed Pd species, which then facilitates the activation of H2O and chemisorbed oxygen, therefore resulting in the high performance of the 2Na-Pd/TiO2 catalyst for the ambient HCHO destruction.

  13. Comparative studies of H absorption/desorption kinetics and evaporation of liquid lithium in different porous systems and free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzabal, E., E-mail: eider.oyarzabal@externos.ciemat.es [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Calle de Guzmán el Bueno, 133, 28003 Madrid (Spain); Martín-Rojo, A.B. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Calle de Guzmán el Bueno, 133, 28003 Madrid (Spain); Tabarés, F.L. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain)

    2017-04-15

    In the present work, a study of the two most relevant properties of liquid lithium with respect to its suitability as a Plasma Facing Component (PFC) element in a Reactor, namely, its evaporation rate and the uptake/release of hydrogen, eventually leading to the formation of a stable hydride was carried out for Li in different porous systems and Li as a free surface. These properties were characterized in a temperature range of 200–500 °C. The H{sub 2} absorption kinetics at low pressure (<1torr) were measured for the different studied porous systems and then outgassed. Particle balance and chemical analysis were used to assess the retention properties of lithium for each case. Thermal Desorption Spectroscopy (TDS) analysis was used for the assessment of possible hydride formation. Evaporation rates were determined by using a Quartz Microbalance (QMB). A significant reduction of the evaporation rate was observed when Li was trapped in a microstructure of sintered stainless steel with a characteristic porous size of 5–10 μm. On the other hand, a negligible rate of H{sub 2} uptake was found at temperatures above 500 °C in all cases.

  14. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    can be degraded at all, the desorption and biodegradation of low concentrations of 14C-labelled phenanthrene (⩽5μgL−1) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene...

  15. Retention of Nickel in Soils: Sorption-Desorption and Extended X-ray Absorption Fine Structure Experiments

    Science.gov (United States)

    Adsorption and desorption of heavy metals in soils are primary factors that influence their bioavailability and mobility in the soil profile. To examine the characteristics of nickel (Ni) adsorption-desorption in soils, kinetic batch experiments were carried out followed by Ni re...

  16. The interaction of hyperthermal argon atoms with CO-covered Ru: Scattering and collision-induced desorption

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M. A.; Kleyn, A. W.

    2011-01-01

    Hyperthermal Ar atoms were scattered under grazing incidence (theta(i) = 60 degrees) from a CO-saturated Ru(0001) surface held at 180 K. Collision-induced desorption involving the ejection of fast CO (similar to 1 eV) occurs. The angularly resolved in-plane CO desorption distribution has a peak

  17. Summary of Adsorption/Desorption Experiments for the European Database on Indoor Air Pollution Sources in Buildings

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Tirkkonen, T.

    1996-01-01

    Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings.......Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings....

  18. Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek; Lyubinetsky, Igor

    2016-08-04

    The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Both STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.

  19. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOxwith NH3.

    Science.gov (United States)

    Jiang, Haoxi; Wang, Qianyun; Wang, Huiqin; Chen, Yifei; Zhang, Minhua

    2016-10-12

    In this work, Mn-MOF-74 with hollow spherical structure and Co-MOF-74 with petal-like shape have been prepared successfully via the hydrothermal method. The catalysts were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry-mass spectrum analysis (TG-MS), N 2 adsorption/desorption, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It is found that MOF-74(Mn, Co) exhibits the capability for selective catalytic reduction (SCR) of NO x at low temperatures. Both experimental (temperature-programmed desorption, TPD) and computational methods have shown that Co-MOF-74 and Mn-MOF-74 owned high adsorption and activation abilities for NO and NH 3 . The catalytic activities of Mn-MOF-74 and Co-MOF-74 for low-temperature denitrification (deNO x ) in the presence of NH 3 were 99% at 220 °C and 70% at 210 °C, respectively. It is found that the coordinatively unsaturated metal sites (CUSs) in M-MOF-74 (M = Mn and Co) played important roles in SCR reaction. M-MOF-74 (M = Mn and Co), especially Mn-MOF-74, showed excellent catalytic performance for low-temperature SCR. In addition, in the reaction process, NO conversion on Mn-MOF-74 decreased with the introduction of H 2 O and SO 2 and almost recovered when gas was cut off. However, for Co-MOF-74, SO 2 almost has no effect on the catalytic activity. This work showed that MOF-74 could be used prospectively as deNO x catalyst.

  20. Geophysical Characterization by the SAGE Program of a Newly Proposed, Low Temperature-EGS Prospect in the Central Rio Grande Rift, New Mexico

    Science.gov (United States)

    Jiracek, G. R.; Zablowski, P.; Castro, B.; Le Pape, F.; Biagini, B.; Kennedy, M.; Feucht, D. W.; Pellerin, L.; Bedrosian, P. A.; Hasterok, D. P.; Biehler, S.; McPhee, D. K.; Ferguson, J. F.

    2011-12-01

    In 2011 the SAGE (Summer of Applied Geophysical Experience) program began initial field evaluation of a recently proposed geothermal prospect located approximately 20 km northwest of Santa Fe, New Mexico. New magnetotelluric (MT) and gravity measurements in the Caja del Rio volcanic field have been combined with previous industry seismic results and SAGE MT, gravity, and seismic data to define parameters important for potential low temperature and EGS development. A thick, 2.0-2.5 km-deep, water-saturated, electrically conductive section overlies resistive basement, presumably Paleozoic limestone on top of Precambrian granite. Therefore, by projecting a measured 58oC/km near-surface temperature gradient, the area would easily meet the criterion for high grade EGS of impermeable basement rock at >200oC at less than 4 km depth. MT-derived depth estimates of a ubiquitous, highly conductive midcrustal conductor along with thermal conductivity values, and estimates of radiogenic heat flow allowed thermal modeling of the entire upper crust. This relies on recent evidence that the midcrustal conductor depth is a good proxy for the depth to the 500oC isotherm in active tectonic areas. The resulting thermal calculations yield a surface heat flow of 80 mW/m2 for a 2 km-deep sedimentary column and a 14 km-deep conductor. Forced, westward flowing groundwater convection over a basement high has been proposed for the thermal anomaly. Our initial geophysical results do not provide strong evidence for this. Rather, we favor the possibility that deeply penetrating, permeable fault conduits provide pathways for ascending warm water beneath the volcanic field. This is supported by high 3He/4He ratios measured in groundwater samples. The Caja del Rio area appears to be the most attractive geothermal prospect in the central Rio Grande rift outside of the near-by, world-class Valles caldera geothermal area.

  1. Fatty acid composition of soybean/sunflower mix oil, fish oil and butterfat applying the AOCS Ce 1j-07 method with a modified temperature program

    Directory of Open Access Journals (Sweden)

    Masson, L.

    2015-03-01

    Full Text Available Gas-Liquid Chromatography (GLC methods such as AOAC Fat in foods 966.06 (2005, AOCS Official Methods Ce 1h-05 (2005, Ce 1j-07 (2007, allow for analyzing the fatty acids (FAs in dietary fats using highly polar liquid phase capillary columns. However, there are still difficulties in completely separating butiric acid from solvent, FA critical pairs with similar polarity, conjugated linoleic acid (CLA isomers, and long chainpolyunsaturated FAs (LC-PUFAs. Therefore, the selection of the temperature program to be employed is important. This work aimed to improve the AOCS Ce 1j-07 Method for the FA composition of a mixture of soybean and sunflower oil, fish oil, and butterfat, using a modified temperature program, tested among five laboratories. It takes more time, but it allows to completely separate butyric acid from the solvent, trans-18:1 from cis-18:1, 20:1 isomers from 18:3 n-3, 22:1 n-9 from 20:4 n-6, 20:5 n-3 from 24:0 and the main CLA isomers, thus permitting FA quantification in fats and oils for different purposes such as nutritional labeling, quality control and research.Métodos por cromatografía gas-líquido, AOAC 966.06 (2005, AOCS Ce 1h-05 (2005, Ce 1j-07 (2007 permiten determinar ácidos grasos (AG en matrices grasas usando columnas capilares altamente polares y distintos programas de temperatura. No obstante, aún existen dificultades para separar ácido butírico del solvente, pares críticos de AG con polaridades similares, isómeros del ácido linoleico conjugado (CLA, AG de cadena larga poliinsaturados (LC-PUFAs. El objetivo fue mejorar el Método AOCS Ce 1j-07 aplicándolo a la composición en AG de mezcla de aceite soja/girasol, aceite de pescado, mantequilla, usando un programa de temperatura modificado, entre cinco laboratorios. El programa de temperatura elegido, si bien emplea más tiempo, permite separar completamente ácido butírico del solvente, trans-18:1 de cis-18:1, isómeros 20:1 de 18:3 n-3, 22:1 n-9 de 20:4 n-6

  2. Oxygen atom-induced D 2 and D 2O desorption on D/Si(1 1 1) surfaces

    Science.gov (United States)

    Rahman, F.; Khanom, F.; Inanaga, S.; Tsurumaki, H.; Namiki, A.

    2003-12-01

    We studied reaction of oxygen atoms with D-terminated Si(1 1 1) surfaces from a desorption point of view. As the D (1 ML)/Si(1 1 1) surface was exposed to O atoms D 2 and D 2O molecules were found to desorb from the surface. The desorption kinetics of D 2 and D 2O molecules exhibited a feature characterized with a quick rate jump at the very beginning of O exposure, which was followed by a gradual increase with a delayed maximum and then by an exponential decrease. The O-induced D 2 desorption spectra as a function of Ts appeared to be very similar to the H-induced D 2 desorption spectrum from the D/Si(1 1 1) surfaces. Possible mechanisms for the O-induced desorption reactions were discussed.

  3. Interactions of methanol, ethanol, and 1-propanol with polar and nonpolar species in water at cryogenic temperatures.

    Science.gov (United States)

    Souda, Ryutaro

    2017-01-18

    Methanol is known as a strong inhibitor of hydrate formation, but clathrate hydrates of ethanol and 1-propanol can be formed in the presence of help gases. To elucidate the hydrophilic and hydrophobic effects of alcohols, their interactions with simple solute species are investigated in glassy, liquid, and crystalline water using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Nonpolar solute species embedded underneath amorphous solid water films are released during crystallization, but they tend to withstand water crystallization under the coexistence of methanol additives. The CO2 additives are released after crystallization along with methanol desorption. These results suggest strongly that nonpolar species that are hydrated (i.e., caged) associatively with methanol can withstand water crystallization. In contrast, ethanol and 1-propanol additives weakly affect the dehydration of nonpolar species during water crystallization, suggesting that the former tend to be caged separately from the latter. The hydrophilic vs. hydrophobic behavior of alcohols, which differs according to the aliphatic group length, also manifests itself in the different abilities of surface segregation of alcohols and their effects on the water crystallization kinetics.

  4. Application of microwave-assisted desorption/headspace solid-phase microextraction as pretreatment step in the gas chromatographic determination of 1-naphthylamine in silica gel adsorbent.

    Science.gov (United States)

    Yan, Cheing-Tong; Jen, Jen-Fon; Shih, Tung-Sheng

    2007-03-30

    Pretreatment of silica gel sample containing 1-naphthylamine by microwave-assisted desorption (MAD) coupled to in situ headspace solid phase microextraction (HS-SPME) has been investigated as a possible alternative to conventional methods prior to gas chromatographic (GC) analysis. The 1-naphthylamine desorbs from silica gel to headspace under microwave irradiation, and directly absorbs onto a SPME fiber located in a controlled-temperature headspace area. After being collected on the SPME fiber, and desorbed in the GC injection port, 1-naphthylamine is analyzed by GC-FID. Parameters that influence the extraction efficiency of the MAD/HS-SPME, such as the extraction media and its pH, the microwave irradiation power and irradiation time as well as desorption conditions of the GC injector, have been investigated. Experimental results indicate that the extraction of a 150mg silica gel sample by using 0.8ml of 1.0M NaOH solution and a PDMS/DVB fiber under high-powered irradiation (477W) for 5min maximizes the extraction efficiency. Desorption of 1-naphthylamine from the SPME fiber in GC injector is optimal at 250 degrees C held for 3min. The detection limit of method is 8.30ng. The detected quantity of 1-naphthylamine obtained by the proposed method is 33.3 times of that obtained by the conventional solvent extraction method for the silica gel sample containing 100ng of 1-naphthylamine. It provides a simple, fast, sensitive and organic-solvent-free pretreatment procedure prior to the analysis of 1-naphthylamine collected on a silica gel adsorbent.

  5. Determination of Teucrium chamaedrys volatiles by using direct thermal desorption-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    Science.gov (United States)

    Ozel, Mustafa Z; Göğüş, Fahrettin; Lewis, Alastair C

    2006-05-05

    The direct qualification and quantification of the volatile components of Teucrium chamaedrys was studied using a direct thermal desorption (DTD) technique with comprehensive two-dimensional (2D) gas chromatography-time-of-flight mass spectrometry (GC x GC-TOF/MS). The GC x GC separation chromatographically resolved hundreds of components within this sample, and with the separation coupled with TOF/MS for detection, high probability identifications were made for 68 compounds. The quantitative results were determined through the use of internal standards and the desorption of differing amounts of raw material in the injector. The highest yield of volatile compounds (0.39%, w/w) was obtained at 150 degrees C thermal desorption temperature using 1.0mg of dried sample placed in a glass injector liner when studied over the range 1.0-7.0mg. Lowest yield of 0.33% (w/w) was found for the largest sample size of 7.0mg. Relative standard deviation (RSD) for 10 replicates at each size sample were in the range 3.9-21.6%. The major compounds identified were beta-pinene, germacrene D, alpha-pinene, alpha-farnesene, alpha-gurjunene, gamma-elemene and gamma-cadinene. All identified compounds were quantified using total ion chromatogram (TIC) peak areas. DTD is a promising method for quantitative analysis of complex mixtures, and in particular for quantitative analysis of plant samples, which can yield data without the traditional obligation for costly and time-consuming extraction techniques.

  6. Absorption and desorption mass transfer rates in non-reactive systems

    NARCIS (Netherlands)

    Hamborg, Espen S.; Kersten, Sascha R. A.; Versteeg, Geert F.

    2010-01-01

    Liquid phase mass transfer coefficients have been measured in a controlled environment during gas absorption into a liquid and gas desorption from a liquid in a batch operated stirred tank reactor over a wide range of operating conditions. At identical operating conditions, the mass transfer

  7. The importance of environmental factors and matrices in the adsorption, desorption, and toxicity of butyltins

    DEFF Research Database (Denmark)

    Fang, Liping; Xu, Cuihong; Li, Ji

    2017-01-01

    detrimental effects on humans and aquatic organisms. This work provides a critical review of recent studies on the adsorption, desorption, bioaccumulation, and toxicity of BTs that can notably influence the distribution of BTs in the environment. Influence of environmental factors (e.g., pH and salinity...

  8. Effect of the ionic status and drying on radiocesium adsorption and desorption in organic soils

    Energy Technology Data Exchange (ETDEWEB)

    Rigol, A.; Vidal, M.; Rauret, G.

    1999-11-01

    Radiocesium (RCs) interaction in organic soils has been studied using adsorption and desorption experiments, and the effects of the ionic status and drying were evaluated. Four organic soils were used: three peaty podzols containing illite and a peat without illitic materials, RCs solid-liquid distribution coefficients (K{sub D}) were determined for each soil in water and in several solutions containing Ca, K, or a mixture of the two. RCs contamination was performed either with a single equilibration or after a three-step preequilibration. Whereas the ionic strength of the solution controlled RCs adsorption in the peat, the level of monovalent species was the most important factor in RCs adsorption in the peaty podzols. Reversibility of RCs adsorbed in the different conditions was assessed in the moist sample and after drying by single and consecutive extractions with either CaCl{sub 2} or CH{sub 3}COONH{sub 4}. RCs adsorption was totally reversible in the peat regardless of the ionic status and the desorption approach used. For the three peaty podzols, due to the presence of specific sites, adsorption reversibility was dependent on the scenario in which this adsorption was performed and on the cation used in desorption. Finally, although NH{sub 4} is known to desorb RCs specifically adsorbed in the soil, it was shown to induce interlayer collapse, and consecutive extractions with CaCl{sub 2} led to higher desorption yields.

  9. Description of the phosphorus sorption and desorption processes in lowland peaty clay soils

    NARCIS (Netherlands)

    Schoumans, O.F.

    2013-01-01

    To determine phosphorus (P) losses from agricultural land to surface water, information is needed about the behavior of P in soils. In this study, the sorption and desorption characteristics of lowland peaty clay soils are described based on experimental laboratory studies. The maximum P sorption

  10. Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van

    2000-01-01

    Chemical analysis for the characterisation of micro-organisms is rapidly evolving, after the recent advent of new ionisation methods in mass spectrometry (MS): electrospray (ES) and matrix-assisted laser desorption/ionisation (MALDI). These methods allow quick characterisation of micro-organisms,

  11. Desorption of cryogenic layers of the solid hydrogens by electron bombardment

    DEFF Research Database (Denmark)

    Schou, Jørgen; Tratnik, Herbert; Thestrup Nielsen, Birgitte

    2008-01-01

    For solid hydrogenic films in the thickness range from similar to 50 ML to similar to 500 ML the desorption yield falls off inversely proportional to the thickness for both H-2 and D-2 films. This behavior is common for data obtained at CERN for solid H-2 and at Riso National Laboratory for solid...

  12. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  13. Bioaerosol detection by aerosol TOF-mass spectrometry: Application of matrix assisted laser desorption/ionisation

    NARCIS (Netherlands)

    Wuijckhuijse, A.L. van; Stowers, M.A.; Kientz, Ch.E.; Marijnissen, J.C.M.; Scarlett, B.

    2000-01-01

    In previous publications the use of an aerosol time of flight mass spectrometer was reported for the on-line measurements of aerosols (Weiss 1997, Kievit 1995). The apparatus is capable of measuring the size as well as the chemical composition, by the use of Laser Desorption/Ionisation (LDI), of an

  14. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  15. Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon.

    Science.gov (United States)

    Kruse, R A; Li, X; Bohn, P W; Sweedler, J V

    2001-08-01

    Desorption/ionization on porous silicon (DIOS) is a relatively new laser desorption/ionization technique for the direct mass spectrometric analysis of a wide variety of samples without the requirement of a matrix. Porous silicon substrates were fabricated using the recently developed nonelectrochemical H2O2-metal-HF etching as a versatile platform for investigating the effects of morphology and physical properties of porous silicon on DIOS-MS performance. In addition, laser wavelength, mode of ion detection, pH, and solvent contributions to the desorption/ionization process were studied. Other porous substrates such as GaAs and GaN, with similar surface characteristics but differing in thermal and optical properties from porous silicon, allowed the roles of surface area, optical absorption, and thermal conductivities in the desorption/ionization process to be investigated. Among the porous semiconductors studied, only porous silicon has the combination of large surface area, optical absorption, and thermal conductivity required for efficient analyte ion generation under the conditions studied. In addition to these substrate-related factors, surface wetting, determined by the interaction of deposition solvent with the surface, and charge state of the peptide were found to be important in determining ion generation efficiency.

  16. Effect of biochar amendment on tylosin adsorption-desorption and transport in two different soils

    Science.gov (United States)

    Chang Yoon Jeong; Jim J. Wang; Syam K. Dodla; Thomas L. Eberhardt; Les Groom

    2012-01-01

    The role of biochar as a soil amendment on the adsorption¨C desorption and transport of tylosin, a macrolide class of veterinary antibiotic, is little known. In this study, batch and column experiments were conducted to investigate the adsorption kinetics and transport of tylosin in forest and agricultural corn field soils amended with hardwood and softwood biochars....

  17. Distinguishing boron desorption from mineral dissolution in arid-zone soils

    Science.gov (United States)

    Boron release from six arid-zone soils from the San Joaquin Valley of California was investigated as a function of reaction time, solution pH, and suspension density. A multiple batch extraction experiment was carried out for 362 days to distinguish B desorption from mineral dissolution. Amounts o...

  18. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  19. Desorption of H atoms from graphite (0001) using XUV free electron laser pulses

    DEFF Research Database (Denmark)

    Siemer, B.; Olsen, Thomas; Hoger, T.

    2010-01-01

    , and identifies the highest vibrational state in the adsorbate potential as a major source for the slow atoms. It is evident that multiple electron scattering processes are required for this desorption. A direct electronic excitation of a repulsive hydrogen-carbon bond seems not to be important....

  20. Desorption electrospray ionization mass spectrometry in the analysis of chemical food contaminants in food

    NARCIS (Netherlands)

    Nielen, M.W.F.; Hooijerink, H.; Zomer, P.; Mol, J.G.J.

    2011-01-01

    Since its introduction, desorption electrospray ionization (DESI) mass spectrometry (MS) has been mainly applied in pharmaceutical and forensic analysis. We expect that DESI will find its way in many different fields, including food analysis. In this review, we summarize DESI developments aimed at

  1. Role of organic matter on boron adsorption-desorption hysteresis of soils

    Science.gov (United States)

    In this study we evaluated the boron (B) adsorption/desorption reaction in six soils and examined the extent to which organic matter content, as well as incubation time affected B release. Six soils varying in initial pH, clay content, and were selected for the study. Adsorption experiments were c...

  2. Influence of soil properties and test conditions on sorption and desorption of testosterone

    Science.gov (United States)

    In this study, batch sorption and desorption experiments were conducted for testosterone using four agricultural soils and five clay minerals. Significant differences in sorption behavior were observed between abiotic and biotic systems. The Freundlich sorption coefficient Kf (µg per g)/(µg per mL) ...

  3. Adsorption and desorption of phosphate on limestone in experiments simulating seawater intrusion

    Science.gov (United States)

    The absorption and desorption of phosphorus on a large block of limestone was investigated using deionized water (DIW) and seawater. The limestone had a high affinity to adsorb phosphorus in DIW. Phosphate adsorption was significantly less in seawater, and more phosphorus was desorbed in the seawate...

  4. The desorption of ammonia and carbon dioxide from multicomponent solutions: I. Model description and development

    Directory of Open Access Journals (Sweden)

    Jotanović Milovan B.

    2002-01-01

    Full Text Available A mathematical model of the desorption process based on the synthesised technological topology of the regeneration process gas components NH3 and CO2, was developed. The logical principle methodology of the mathematical modelling of desorption processes was worked out in detail. The mathematical model of the process, including the following: - The synthesized technological scheme of the desorption of components NH3 and CO2, with all the necessary requirements and limitations of the mathematical model; - The relevant multicomponent systems which exist in the process were defined in which the interphase transformation occurs; - The considered units (aparatus are defined which make up the basic technological topology of the process; - Desorption processes in towers with different types of trays were defined and mathematically described; - The cooling process and condensation of gas phase in a complex multicomponent system was of the gas phase in a complex multicomponent system was defined and mathematically described. Many variants of the process were analyzed by using developed model with the aim of determining the relevant functional dependences between some basic parameters of the process. They will be published in the second part of this study.

  5. Kinetic modeling of metal ion transport for desorption of Pb(II) ion ...

    African Journals Online (AJOL)

    The kinetics of desorption of lead (II) ion from metal loaded adsorbent of mercaptoacetic acid modified and unmodified oil palm (Elaeis guineensis) fruit fiber was studied using different solutions, at different contact times. At the end of 25 minutes, 79.19%, 75.99%, 57.14%, 50.56% and 32.72% of Pb2+ were desorbed using ...

  6. Adsorption, desorption and isotopic exchange of cadmium on illite: evidence for complete reversibility

    NARCIS (Netherlands)

    Comans, R.N.J.

    1987-01-01

    Adsorption, desorption and isotopic exchange of Cd on illite clay have been studied at low Cd concentrations and low ionic strength. The results indicate that under the conditions of the experiments Cd sorption on illite is completely reversible. Long equilibration times (7–8 weeks) were shown to be

  7. Protolytic decomposition of n-octane on graphite at near room temperature

    Science.gov (United States)

    Kawashima, Yasushi; Iwamoto, Mitsumasa

    2016-06-01

    Graphite basal surface is inert, and decomposition of n-alkanes on the graphite surface has not been discovered. We here report the evidence of decomposition of n-octanes on highly oriented pyrolytic graphite (HOPG) surface, heat-treated up to 1200 °C under high vacuum (10-7 Pa), at near room temperatures. Using a temperature programmed desorption apparatus equipped with a quadrupole mass spectrometer showed the production of hydrogen molecules, methane, and ethane, suggesting that the protonation of n-octane takes place on graphite surface at near room temperature. It is known that acidic functional groups are terminated at edges on the air-cleaved HOPG surface and they increase their acidity via reactions with water. However, it is most unlikely that they protonate n-alkanes at near room temperature such as superacids. We anticipate that superacidic protons, which can protonate n-octanes, are produced on the graphite surface through a novel reaction mechanism.

  8. Derivatization coupled to headspace programmed-temperature vaporizer gas chromatography with mass spectrometry for the determination of amino acids: Application to urine samples.

    Science.gov (United States)

    González Paredes, Rosa María; García Pinto, Carmelo; Pérez Pavón, José Luis; Moreno Cordero, Bernardo

    2016-09-01

    A new method based on headspace programmed-temperature vaporizer gas chromatography with mass spectrometry has been developed and validated for the determination of amino acids (alanine, sarcosine, ethylglycine, valine, leucine, and proline) in human urine samples. Derivatization with ethyl chloroformate was employed successfully to determine the amino acids. The derivatization reaction conditions as well as the variables of the headspace sampling were optimized. The existence of a matrix effect was checked and the analytical characteristics of the method were determined. The limits of detection were 0.15-2.89 mg/L, and the limits of quantification were 0.46-8.67 mg/L. The instrumental repeatability was 1.6-11.5%. The quantification of the amino acids in six urine samples from healthy subjects was performed with the method developed with the one-point standard additions protocol, with norleucine as the internal standard. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rapid determination of thermodynamic parameters from one-dimensional programmed-temperature gas chromatography for use in retention time prediction in comprehensive multidimensional chromatography.

    Science.gov (United States)

    McGinitie, Teague M; Ebrahimi-Najafabadi, Heshmatollah; Harynuk, James J

    2014-01-17

    A new method for estimating the thermodynamic parameters of ΔH(T0), ΔS(T0), and ΔCP for use in thermodynamic modeling of GC×GC separations has been developed. The method is an alternative to the traditional isothermal separations required to fit a three-parameter thermodynamic model to retention data. Herein, a non-linear optimization technique is used to estimate the parameters from a series of temperature-programmed separations using the Nelder-Mead simplex algorithm. With this method, the time required to obtain estimates of thermodynamic parameters a series of analytes is significantly reduced. This new method allows for precise predictions of retention time with the average error being only 0.2s for 1D separations. Predictions for GC×GC separations were also in agreement with experimental measurements; having an average relative error of 0.37% for (1)tr and 2.1% for (2)tr. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Overproduced ethylene causes programmed cell death leading to temperature-sensitive lethality in hybrid seedlings from the cross Nicotiana suaveolens x N. tabacum.

    Science.gov (United States)

    Yamada, Tetsuya; Marubashi, Wataru

    2003-09-01

    Reproductive isolation mechanisms (RIMs) often become obstacles in crossbreeding. Hybrid lethality is a subtype of RIM but its physiological mechanism remains poorly elucidated. Interspecific hybrids of Nicotiana suaveolens Lehm. x N. tabacum L. cv. Hicks-2 expressed temperature-sensitive lethality. This lethality was induced by programmed cell death (PCD) that was accompanied by the characteristic changes of animal apoptosis in hybrid seedlings at 28 degrees C but not at 36 degrees C. When hybrid seedlings were cultured at 28 degrees C, DNA fragmentation started in the cotyledon, and nuclear fragmentation subsequently progressed with lethal symptoms spreading throughout the seedlings. At 28 degrees C, ethylene production in hybrid seedlings was detectable at a high level compared with the level in parental seedlings. In contrast, the ethylene production rate in hybrid seedlings cultured at 36 degrees C was equal to that in parental seedlings. Treatment with ethylene biosynthetic inhibitors, amino-oxyacetic acid and amino-ethoxyvinyl glycine, suppressed lethal symptoms and apoptotic changes, and also prolonged survival of hybrid seedlings. Thus, the increase in the ethylene production rate correlated closely with expression of lethal symptoms and apoptotic changes in hybrid seedlings. From these observations, we conclude that overproduced ethylene acts as an essential factor mediating PCD and subsequent lethality in hybrid seedlings. Furthermore, the present study has provided the first evidence that ethylene is involved in the phenomenon of hybrid lethality.

  11. Sea surface temperature estimates for the mid-Piacenzian Indian Ocean—Ocean Drilling Program sites 709, 716, 722, 754, 757, 758, and 763

    Science.gov (United States)

    Robinson, Marci M.; Dowsett, Harry J.; Stoll, Danielle K.

    2018-01-30

    Despite the wealth of global paleoclimate data available for the warm period in the middle of the Piacenzian Stage of the Pliocene Epoch (about 3.3 to 3.0 million years ago [Ma]; Dowsett and others, 2013, and references therein), the Indian Ocean has remained a region of sparse geographic coverage in terms of microfossil analysis. In an effort to characterize the surface Indian Ocean during this interval, we examined the planktic foraminifera from Ocean Drilling Program (ODP) sites 709, 716, 722, 754, 757, 758, and 763, encompassing a wide range of oceanographic conditions. We quantitatively analyzed the data for sea surface temperature (SST) estimation using both the modern analog technique (MAT) and a factor analytic transfer function. The data will contribute to the U.S. Geological Survey (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project’s global SST reconstruction and climate model SST boundary condition for the mid-Piacenzian and will become part of the PRISM verification dataset designed to ground-truth Pliocene climate model simulations (Dowsett and others, 2013).

  12. Pu Sorption, Desorption and Intrinsic Colloid Stability under Granitic Chemical Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pihong [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Zurong [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-04

    This progress report (M4FT-14LL0807031) describes research conducted at LLNL as part of the Crystalline Repository effort within the UFD program. Part I describes the dissolution kinetics of intrinsic Pu colloids synthesized in an alkaline solution. Part II describes the morphology and dissolution characteristics of various forms of Pu oxides prepared over a range of solution and temperature conditions. Proposed FY15 activities are identified.

  13. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok, E-mail: hchoi@uta.edu [Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019-0308 (United States); Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Lawal, Wasiu [Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)

    2015-04-28

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls.

  14. Kinetic desorption of fluoride in a granitic soil column: Experiments and reactive transport modeling

    Science.gov (United States)

    Padhi, S.; Tokunaga, T.

    2016-12-01

    The transport of fluoride or other contaminants in subsurface largely depends on their interaction with mineral surfaces of contact. Hence, the methods to evaluate and predict the extent of these interactions are of great importance. The commonly used distribution coefficient (Kd) model does not account for temporally and spatially variable geochemical conditions (Curtis et al., 2006). This study aims to investigate the reactive transport of fluoride in a natural soil column by laboratory experiments and solute transport modeling by introducing surface complexation of fluoride to the transport simulation. For our purpose, column experiments for fluoride sorption and desorption under saturated conditions were conducted in the laboratory on a granitic soil from Tsukuba, Japan. Stable isotopes of water (δ18O and δ2H) were used as conservative tracers to evaluate the flow and transport properties. Existence of physical and chemical nonequilibrium during fluoride transport was evaluated by applying stop flow events. Long tailing during fluoride desorption was observed, and the linear Kd model failed to explain this phenomenon. Hence, a geochemical model considering fluoride sorption in soil by surface complexation was developed to explain fluoride transport in the column. The intrinsic surface complexation constants for fluoride sorption reactions and surface site protonation and deprotonation reactions were corrected from that of the optimized results from batch experiments based as suggested by Sverjensky (2003). The model with fluoride sorption defined by surface complexation explained the observed fluoride desorption data quite satisfactorily, especially the long tailing. An overshoot in the breakthrough curve observed by the simulation during early period of desorption could be due to competitive desorption, which need to be further analyzed. References: (1) Curtis, JP, Davis, JA, Nafiz, DL 2006. Wat. Res. Res., 42, W04404, doi:10.1029/2005WR003979; (2

  15. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    Science.gov (United States)

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  16. Effect of soil type and organic manure on adsorption-desorption of flubendiamide.

    Science.gov (United States)

    Das, Shaon Kumar; Mukherjee, Irani; Kumar, Aman

    2015-07-01

    Laboratory study on adsorption-desorption of flubendiamide was conducted in two soil types, varying in their physical and chemical properties, by batch equilibrium method. After 4 h of equilibrium time, adsorption of flubendiamide on soil matrix exhibited moderately low rate of accumulation with 4.52 ± 0.21% in red soil and low rate with 3.55 ± 0.21% in black soil. After amending soils with organic manure, adsorption percentage increased to 6.42 ± 0.21% in red soil and (4.18 ± 0.21%) in black soil indicating that amendment significantly increased sorption. Variation in sorption affinities of the soils as indicated by distribution coefficient (K d) for sorption was in the range of 2.98-4.32, 4.91-6.64, 1.04-1.45 and 1.92-2.81 ml/g for red soil, organic manure-treated red soil, black soil and organic manure-treated black soil, respectively. Desorption was slightly slower than adsorption indicating a hysteresis effect having hysteresis coefficient ranges between 0.023 and 0.149 in two test soils. The adsorption data for the insecticide fitted well the Freundlich equation. Results revealed that adsorption-desorption was influenced by soil types and showed that the maximum sorption and minimum desorption of the insecticide was observed in soils with higher organic carbon and clay content. It can be inferred that crystal lattice of the clay soil plays a significant role in flubendiamide adsorption and desorption. Adsorption was lower at acidic pH and gradually increased towards alkaline pH. As this insecticide is poorly sorbed in the two Indian soil types, there may be a possibility of their leaching to lower soil profiles.

  17. Sorption and desorption kinetics of cadmium from soils: Influence of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurti, G.S.R.; Huang, P.M.; Kozak, L.M.

    1999-12-01

    The mobility and availability of heavy metals is controlled by sorption-desorption characteristics of the soils. There is much literature available about the sorption characteristics of heavy metals by soils. However, the influence of ionic environments on the desorption kinetics of heavy metals, particularly Cd, have not been studied in detail. The present study reports the kinetic data of desorption of Cd from two soils, with contrasting Cd availability characteristics, using 1 M NH{sub 4}Cl. The soils were preadsorbed with different amounts of Cd in the presence of monoammonium phosphate. The Cd was sorbed onto the soils almost instantaneously in the absence of phosphate, with >97% of the Cd added to the soils sorbed within the first 15 min of reaction time. The Freundilich parameter a, the sorption coefficient, which is related to the Cd sorption capacity, indicated that the phosphate retarded Cd sorption by both soils by at least one order of magnitude. The overall diffusion coefficient of Cd release from the Luseland soil by 1 M NH{sub 4}Cl, obtained using the parabolic diffusion model for the desorption kinetics, was 1.62 to 10.1 times higher than that of the Judburgh soil, depending on the initial amount of Cd preadsorbed. The lower the amount of initial Cd preadsorbed, the greater the difference in the rate of Cd released between the two soils. The presence of phosphate during Cd adsorption by the soils increased the amount of Cd released in the initial 30-min reaction period as well as the overall diffusion coefficients of Cd release. The kinetic data of Cd desorption reflect well the Cd availability index and grain Cd content of the durum wheat crops, Kyle and Arcola, grown in the two soils.

  18. Molecular Modeling of Chem-Bio (CB) Contaminant Sorption/Desorption and Reactions in Chlorinated Water Systems

    Science.gov (United States)

    2012-05-01

    investigation of the behavior of the OP-hydroxyl interactions was undertaken using the Polarizable Continuum Model ( PCM ) to simulate liquid water implicitly...through a regimen of simulations, where it was first simulated at high temperatures (7000 K) and gradually cooled to room temperature. Coordinates...1 CHARMM is a versatile and widely used molecular simulation program with broad application to many- particle systems

  19. A temperature programmed reaction/single-photon ionization time-of-flight mass spectrometry system for rapid investigation of gas-solid heterogeneous catalytic reactions under realistic reaction conditions

    NARCIS (Netherlands)

    He, Songbo; Cui, Huapeng; Lai, Yulong; Sun, Chenglin; Luo, Sha; Li, Haiyang; Seshan, Kulathuiyer

    2015-01-01

    A Temperature-Programmed Reaction (TPRn)/Single-Photon Ionization Time-of-Flight Mass Spectrometry (SPI-TOF-MS) system is described. The TPRn/SPI-TOF-MS system allows rapid characterization of heterogeneous catalytic reactions under realistic reaction conditions and at the same time allows for the

  20. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications; Desorption laser et spectrometrie de masse par temps de vol. Aspects fondamentaux. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chaurand, P.

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10{sup 6} W/cm{sup 2}. In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10{sup -4}. We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10{sup 4} m/s and 10{sup 5} m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10{sup 4} m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C{sub 60} molecules and derivated C{sub 60} are presented. Desorption methods are compared. (author). 32 refs., 34 figs.

  1. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago in 2013 (NCEI Accession 0161327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  2. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Pacific Remote Island Areas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  3. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  4. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  5. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  6. VAC*TRAX - thermal desorption for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    McElwee, M.J.; Palmer, C.R. [RUST-Clemson Technical Center, Anderson, SC (United States)

    1995-10-01

    The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 2600{degrees}C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost.

  7. Determination of antioxidants in new and used lubricant oils by headspace-programmed temperature vaporization-gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nogal Sanchez, Miguel del; Perez Pavon, Jose Luis; Garcia Pinto, Carmelo; Moreno Cordero, Bernardo [Universidad de Salamanca, Departamento de Quimica Analitica, Nutricion y Bromatologia, Salamanca (Spain); Glanzer, Paul [University of Vienna, Department of Analytical Chemistry, Vienna (Austria)

    2010-12-15

    A sensitive method is presented to determine antioxidants (2-, 3-, and 4-tert-butylphenol, 2,6-di-tert-butylphenol, 3-tert-butyl-4-hydroxyanisol, 2,6-di-tert-butyl-4-methylphenol, 1-naphthol, and diphenylamine) in new and used lubricant oil samples. Research was carried out on a GC device equipped with a headspace sampler, a programmed temperature vaporizer, and an MS detector unit. The proposed method does not require sample treatment prior to analyses, hence eliminating possible errors occurring in this step. Sample preparation is reduced when placing the oil sample (2.0 g) in the vial and adding propyl acetate (20 {mu}L). Solvent vent injection mode permits a pre-concentration of the compounds of interest in the liner filled with Tenax-TA {sup registered}, while venting other species present in the headspace. Thereby, both the life of the liner and the capillary column is prolonged, and unnecessary contamination of the detector unit is avoided. Calibration was performed by adding different concentrations of analytes to a new oil which did not contain any of the studied compounds. Limits of detection as low as 0.57 {mu}g/L (2-tert-butylphenol) with a precision lower or equal to 5.3% were achieved. Prediction of the antioxidants in new oil samples of different viscosities (5W40, 10W40, and 15W40) was accomplished with the previous calibration, and the results were highly satisfactory. To determine antioxidants in used engine oils, standard addition method was used due to the matrix effect. (orig.)

  8. Coupling of a headspace autosampler with a programmed temperature vaporizer for stable carbon and hydrogen isotope analysis of volatile organic compounds at microgram per liter concentrations.

    Science.gov (United States)

    Herrero-Martín, Sara; Nijenhuis, Ivonne; Richnow, Hans H; Gehre, Matthias

    2015-01-20

    One major challenge for the environmental application of compound-specific stable isotope analysis (CSIA) is the necessity of efficient sample treatment methods, allowing isolation of a sufficient mass of organic contaminants needed for accurate measurement of the isotope ratios. Here, we present a novel preconcentration technique--the coupling of a headspace (HS) autosampler with a programmed temperature vaporizer (PTV)--for carbon (δ(13)C) and hydrogen (δ(2)H) isotope analysis of volatile organic compounds in water at concentrations of tens of micrograms per liter. The technique permits large-volume injection of headspace samples, maintaining the principle of simple static HS extraction. We developed the method for multielement isotope analysis (δ(13)C and δ(2)H) of methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and o-xylene (BTEX), and analysis of δ(13)C for chlorinated benzenes and ethenes. Extraction and injection conditions were optimized for maximum sensitivity and minimum isotope effects. Injection of up to 5 mL of headspace sample from a 20 mL vial containing 13 mL of aqueous solution and 5 g of NaCl (10 min of incubation at 90 °C) resulted in accurate δ(13)C and δ(2)H values. The method detection limits (MDLs) for δ(13)C were from 2 to 60 μg/L (MTBE, BTEX, chlorinated ethenes, and benzenes) and 60-97 μg/L for δ(2)H (MTBE and BTEX). Overall, the HS-PTV technique is faster, simpler, isotope effect-free, and requires fewer treatment steps and less sample volume than other extraction techniques used for CSIA. The environmental applicability was proved by the analysis of groundwater samples containing BTEX and chlorinated contaminants at microgram per liter concentrations.

  9. The application of two-step linear temperature program to thermal analysis for monitoring the lipid induction of Nostoc sp. KNUA003 in large scale cultivation.

    Science.gov (United States)

    Kang, Bongmun; Yoon, Ho-Sung

    2015-02-01

    Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemica lionization

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Van Berkel, Gary J [ORNL

    2010-01-01

    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  11. An Optimized Adsorbent Sampling Combined to Thermal Desorption GC-MS Method for Trimethylsilanol in Industrial Environments

    Directory of Open Access Journals (Sweden)

    Jae Hwan Lee

    2012-01-01

    Full Text Available Trimethylsilanol (TMSOH can cause damage to surfaces of scanner lenses in the semiconductor industry, and there is a critical need to measure and control airborne TMSOH concentrations. This study develops a thermal desorption (TD-gas chromatography (GC-mass spectrometry (MS method for measuring trace-level TMSOH in occupational indoor air. Laboratory method optimization obtained best performance when using dual-bed tube configuration (100 mg of Tenax TA followed by 100 mg of Carboxen 569, n-decane as a solvent, and a TD temperature of 300°C. The optimized method demonstrated high recovery (87%, satisfactory precision (<15% for spiked amounts exceeding 1 ng, good linearity (R2=0.9999, a wide dynamic mass range (up to 500 ng, low method detection limit (2.8 ng m−3 for a 20-L sample, and negligible losses for 3-4-day storage. The field study showed performance comparable to that in laboratory and yielded first measurements of TMSOH, ranging from 1.02 to 27.30 μg/m3, in the semiconductor industry. We suggested future development of real-time monitoring techniques for TMSOH and other siloxanes for better maintenance and control of scanner lens in semiconductor wafer manufacturing.

  12. A DFT analysis of the adsorption of nitrogen oxides on Fe-doped graphene, and the electric field induced desorption

    Science.gov (United States)

    Cortés-Arriagada, Diego; Villegas-Escobar, Nery

    2017-10-01

    Density functional theory calculations were carried out to study the adsorption and sensing properties of Fe-doped graphene nanosheets (FeG) toward nitrogen oxides (NO, NO2, and N2O). The results indicated the adsorption of nitrogen oxides is significantly increased onto FeG compared to pristine graphene, reaching adsorption energies of 1.1-2.2 eV, even with a high stability at room temperature. As a result of the larger charge transfer and strong chemical binding, the bandgap of the adsorbent-adsorbate systems is increased in up to 0.5 eV with respect to the free FeG, indicating that FeG is highly sensitive to nitrogen oxides. It was also evidenced the adsorption and sensing properties remain even in the presence of O2 currents for N2O, where a co-adsorption mechanism was analyzed. Besides, NO2 is capable to induce the largest magnetization of FeG. Finally, positive electric fields of at least 0.04 a.u. decrease the stability of the adsorbent-adsorbate interactions, inducing the desorption process. Therefore, FeG emerges as a promising low-dimensional material with excellent adsorption and sensing properties to be applied in solid state sensors of nitrogen oxides, where electric fields can be used as a strategy for the FeG reactivation in repetitive sensing applications.

  13. Laser desorption ionization and MALDI time-of-flight mass spectrometry for low molecular mass polyethylene analysis.

    Science.gov (United States)

    Chen, R; Yalcin, T; Wallace, W E; Guttman, C M; Li, L

    2001-11-01

    Polyethylene's inert nature and difficulty to dissolve in conventional solvents at room temperature present special problems for sample preparation and ionization in mass spectrometric analysis. We present a study of ionization behavior of several polyethylene samples with molecular masses up to 4000 Da in laser desorption ionization (LDI) time-of-flight mass spectrometers equipped with a 337 nm laser beam. We demonstrate unequivocally that silver or copper ion attachment to saturated polyethylene can occur in the gas phase during the UV LDI process. In LDI spectra of polyethylene with molecular masses above approximately 1000 Da, low mass ions corresponding to metal-alkene structures are observed in addition to the principal distribution. By interrogating a well-characterized polyethylene sample and a long chain alkane, C94H190, these low mass ions are determined to be the fragmentation products of the intact metal-polyethylene adduct ions. It is further illustrated that fragmentation can be reduced by adding matrix molecules to the sample preparation.

  14. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds.

    Science.gov (United States)

    Marcillo, Andrea; Jakimovska, Viktorija; Widdig, Anja; Birkemeyer, Claudia

    2017-09-08

    Volatile organic compounds (VOCs) are commonly collected from gaseous samples by adsorption to materials such as the porous polymer Tenax TA. Adsorbed compounds are subsequently released from these materials by thermal desorption (TD) and separated then by gas chromatography (GC) with flame ionization (FID) or mass spectrometry (MS) detection. Tenax TA is known to be particularly suitable for non-polar to semipolar volatiles, however, many volatiles from environmental and biological samples possess a rather polar character. Therefore, we tested if the polymer XAD-2, which so far is widely used to adsorb organic compounds from aqueous and organic solvents, could provide a broader coverage for (semi)polar VOCs during gas-phase sampling. Mixtures of volatile compounds covering a wide range of volatility (bp. 20-256°C) and different chemical classes were introduced by liquid spiking into sorbent tubes with one of the two porous polymers, Tenax TA or XAD-2, and analyzed by TD/GC-MS. At first, an internal standard mixture composed of 17 authentic standards was used to optimize desorption temperature with respect to sorbent degradation and loading time for calibration. Secondly, we tested the detectability of a complex standard mixture composed of 57 volatiles, most of them common constituents of the body odor of mammals. Moreover, the performance of XAD-2 compared with Tenax TA was assessed as limit of quantitation and linearity for the internal standard mixture and 33 compounds from the complex standard mixture. Volatiles were analyzed in a range between 0.01-∼250ng/tube depending on the compound and material. Lower limits of quantitation were between 0.01 and 3 ng±0.9). Interestingly, we found different kinetics for compound adsorption with XAD-2, and a partially better sensitivity in comparison with Tenax TA. For these analytes, XAD-2 might be recommended as an alternative of Tenax TA for TD/GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Temperature Measurement for the LSST

    OpenAIRE

    Czekala, Ian; Paul O'Connor

    2014-01-01

    We explore the various means of temperature measurement to search for a low-cost accurate temperature measuring device.  This poster was completed as part of the Brookhaven National Laboratory High School intern program in 2005.

  16. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent.

    Science.gov (United States)

    Park, Chan Woo; Kim, Bo Hyun; Yang, Hee-Man; Seo, Bum-Kyoung; Lee, Kune-Woo

    2017-04-05

    We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH 4 + treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH 4 + yielded efficient desorption (95%) of an extremely low concentration of radioactive 137 Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.

    Science.gov (United States)

    Yao, Qihan; Shi, Zhou; Liu, Qingqing; Gu, Zhengyang; Ning, Ruihuan

    2017-11-17

    This research focused on the influence of different separator compartments on the performance of capacitive deionization (CDI) cells in terms of brackish water treatment. For comparison, different separators including filter paper(FP), carbon nanotube (CNT), and stainless steel fiber (SSF) on deionization and desorption rate of salt were examined. The best performance was obtained when the CNT separator was packed, followed by SSF and FP. Reducing the cell voltage from 1.2 to 0.4 V decreased the salt removal and electrode regeneration rate of SSF-CDI. Electrochemical impedance spectrometry (EIS) analysis revealed that the resistance and specific capacitance of separator materials are essential to the desalination and desorption performance of CDI. The electric double layers (EDLs) accelerated the ion transfer in the flow chamber due to storing excess ions, therefore increasing the desalination and electrode regeneration rate.

  18. Simultaneous adsorption/desorption of quaternary ammonium herbicides by acid vineyard soils

    Science.gov (United States)

    Conde Cid, Manuel; Paradelo Núñez, Remigio; Fernández Calviño, David; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel

    2017-04-01

    Competitive adsorption and desorption of three quaternary ammonium herbicides (paraquat, diquat, and difenzoquat) have been studied in four sandy-loam acid vineyard soils from NW Spain and Portugal. The soils present organic matter contents between 3 and 48 g kg-1 and copper contents ranging from 25 to 107 mg kg-1. Adsorption has been studied under equilibrium conditions in batch experiments, and kinetics were studied in a stirred-flow chamber. Adsorption and desorption followed a Freundlich model and kinetics were well described by the pseudo-first-order model. The retention capacity for the pesticides by the four soils followed the sequence: paraquat > diquat > difenzoquat. The different adsorption capacities of each soil were not related to pH, clay or organic matter contents, as could be expected, but rather to soil copper content. The results show that competition with copper for adsorption sites is an important factor in quaternary ammonium herbicides retention in soils with these characteristics.

  19. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments

    Science.gov (United States)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.; Zhang, Guannan

    2014-01-01

    Multi-rate surface complexation models have been proposed to describe the kinetics of uranyl (U(VI) surface complexation reactions (SCR) rate-limited by diffusive mass transfer to and from intragranular sorption sites in subsurface sediments. In this study, a Bayesian-based, Differential Evolution Markov Chain method was used to assess the uncertainty and to identify factors controlling the uncertainties of the multi-rate SCR model. The rate constants in the multi-rate SCR were estimated with and without assumption of a specified lognormal distribution to test the lognormal assumption typically used to minimize the number of the rate constants in the multi-rate model. U(VI) desorption under variable chemical conditions from a contaminated sediment at US Hanford 300 Area, Washington was used as an example. The results indicated that the estimated rate constants without a specified lognormal assumption approximately followed a lognormal distribution, indicating that the lognormal is an effective assumption for the rate constants in the multi-rate SCR model. However, those rate constants with their corresponding half-lives longer than the experimental durations for model characterization had larger uncertainties and could not be reliably estimated. The uncertainty analysis revealed that the time-scale of the experiments for calibrating the multi-rate SCR model, the assumption for the rate constant distribution, the geochemical conditions involved in predicting U(VI) desorption, and equilibrium U(VI) speciation reaction constants were the major factors contributing to the extrapolation uncertainties of the multi-rate SCR model. Overall, the results from this study demonstrated that the multi-rate SCR model with a lognormal distribution of its rate constants is an effective approach for describing rate-limited U(VI) desorption; however, the model contains uncertainties, especially for those smaller rate constants, that require careful consideration for predicting U

  20. A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps

    Science.gov (United States)

    2016-03-26

    reveal crystalline patterns from atom probe microscopy desorption maps Lan Yao Department of Materials Science and Engineering, University of Michigan, Ann...reveal the crystallographic information present in Atom Probe Microscopy (APM) data is presented. Themethod filters atoms based on the time difference...between their evaporation and the evaporation of the previous atom . Since this time difference correlates with the location and the local structure of

  1. The Sorption/Desorption Behavior of Uranium in Transport Studies Using Yucca Mountain Alluvium

    Energy Technology Data Exchange (ETDEWEB)

    Scism, Cynthia D. [Univ. of New Mexico, Albuquerque, NM (United States)

    2005-12-01

    Yucca Mountain, Nevada is the proposed site of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste in the United States. In the event repository engineered barriers fail, the saturated alluvium located south of Yucca Mountain is expected to serve as a natural barrier to the migration of radionuclides to the accessible environment. The purpose of this study is to improve the characterization of uranium retardation in the saturated zone at Yucca Mountain to support refinement of an assessment model. The distribution of uranium desorption rates from alluvium obtained from Nye County bore holes EWDP-19IM1, EWDP-10SA, EWDP-22SA were studied to address inconsistencies between results from batch sorption and column transport experiments. The alluvium and groundwater were characterized to better understand the underlying mechanisms of the observed behavior. Desorption rate constants were obtained using an activity based mass balance equation and column desorption experiments were analyzed using a mathematical model utilizing multiple sorption sites with different first-order forward and reverse reaction rates. The uranium desorption rate constants decreased over time, suggesting that the alluvium has multiple types of active sorption sites with different affinities for uranium. While a significant fraction of the initially sorbed uranium desorbed from the alluvium quite rapidly, a roughly equivalent amount remained sorbed after several months of testing. The information obtained through this research suggests that uranium may experience greater effective retardation in the alluvium than simple batch sorption experiments would suggest. Electron Probe Microanalysis shows that uranium is associated with both clay minerals and iron oxides after sorption to alluvial material. These results provide further evidence that the alluvium contains multiple sorption sites for uranium.

  2. Approach for predicting P sorption/desorption behaviour of potentially eroded topsoil in watercourses

    Czech Academy of Sciences Publication Activity Database

    Borovec, Jakub; Jan, Jiří

    2018-01-01

    Roč. 624, May (2018), s. 1316-1324 ISSN 0048-9697 R&D Projects: GA TA ČR TA04021342; GA MZe QI102A265; GA MŠk(CZ) EF16_013/0001782 Institutional support: RVO:60077344 Keywords : erosion * Mehlich 3 * sorption/desorption Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.900, year: 2016

  3. Strontium Adsorption and Desorption Reactions in Model Drinking Water Distribution Systems

    Science.gov (United States)

    2014-02-04

    One system was maintained with chlorine-disinfected drinking water and the other with the same water with secondary chloramine disinfection. Flow...constant flow conditions. Differences between adsorption and desorption based on disinfection type (chlorine versus chlorine plus chloramine ) cannot be...systems (DWDS). One system was maintained with chlorine-disinfected drinking water and the other with the same water with secondary chloramine

  4. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Derrick [Colorado School of Mines, Golden, CO (United States)

    2014-12-22

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  5. Adsorption, desorption, and diffusion of k-mers on a one-dimensional lattice.

    Science.gov (United States)

    Loncarević, I; Budinski-Petković, Lj; Vrhovac, S B; Belić, A

    2009-08-01

    Kinetics of the deposition process of k -mers in the presence of desorption or/and diffusional relaxation of particles is studied by Monte Carlo method on a one-dimensional lattice. For reversible deposition of k-mers, we find that after the initial "jamming," a stretched exponential growth of the coverage theta(t) toward the steady-state value theta(eq) occurs, i.e., theta(eq)-theta(t) is proportional to exp[-(t/tau)(beta)]. The characteristic time scale tau is found to decrease with desorption probability P(des) according to a power law, tau is proportional to P(des)(-gamma), with the same exponent gamma=1.22+/-0.04 for all k-mers. For irreversible deposition with diffusional relaxation, the growth of the coverage theta(t) above the jamming limit to the closest packing limit (CPL) theta(CPL) is described by the pattern theta(CPL)-theta(t) is proportional to E(beta)[-(t/tau)(beta)], where E(beta) denotes the Mittag-Leffler function of order beta(0,1) . Similarly to the reversible case, we found that the dependence of the relaxation time tau on the diffusion probability P(dif) is consistent again with a simple power-law, i.e., tau is proportional to P(dif)(-delta). When adsorption, desorption, and diffusion occur simultaneously, coverage always reaches an equilibrium value theta(eq), which depends only on the desorption/adsorption probability ratio. The presence of diffusion only hastens the approach to the equilibrium state, so that the stretched exponential function gives a very accurate description of the deposition kinetics of these processes in the whole range above the jamming limit.

  6. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    Science.gov (United States)

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  7. Mechanical desorption of immobilized proteins using carbon dioxide aerosols for reusable biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Renu; Hong, Seongkyeol [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Jang, Jaesung, E-mail: jjang@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2015-01-01

    Highlights: • Immobilized proteins were removed using carbon dioxide aerosols. • We observed high removal efficiencies due to the aerosol treatment. • We confirmed the removal with FTIR and X-ray photoelectron spectroscopy. • This CO{sub 2} aerosol treatment did not undermine re-functionalization. • This technique is a fast and damage-free method to reuse a sensor surface. - Abstract: Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO{sub 2}) aerosols (a mixture of solid and gaseous CO{sub 2}), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL{sup −1}) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO{sub 2} aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors.

  8. Molecular-scale Description of SPAN80 Desorption from the Squalane-Water Interface

    OpenAIRE

    Tan, L.; Pratt, L. R.; Chaudhari, M. I.

    2016-01-01

    Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with sorbitan monooleate (SPAN80), at $T=300$K, are analyzed for the surface tension equation of state, desorption free energy profiles as they depend on loading, and to evaluate escape times for absorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface te...

  9. Design of a low-temperature plasma (LTP) probe with adjustable output temperature and variable beam diameter for the direct detection of organic molecules.

    Science.gov (United States)

    Martínez-Jarquín, Sandra; Winkler, Robert

    2013-03-15

    The direct detection of organic molecules by mass spectrometry requires ionization methods which are compatible with ambient conditions. A relatively new strategy is the use of a free low-temperature plasma beam for ionization. The objective is to design a safe and adjustable plasma beam to enable optimal ionization and desorption parameters for specific molecules. A plasma probe based on a dielectric barrier discharge was designed, where the plasma is guided through an internal second tube. This setup permits different beam diameter settings and the control of the plasma temperature. The ionization and desorption of pure organic compounds, as well as their direct detection from roasted coffee beans, were tested. The presented plasma probe provides improved safety with respect to arcing, ozone generation and electric shock, compared with conventional designs. The functionality of previously reported devices is expanded. A defined plasma diameter can be set by choosing the appropriate insert, while the input voltage controls the plasma temperature. The variation of measurement parameters enables the optimized direct detection of target compounds from roasted coffee beans, such as caffeine, guaiacol and vanillin. The presented low-temperature plasma probe allows the fine-tuning of ionization and desorption parameters, according to the target molecules. Possible applications include: (1) The ambient ionization and desorption of organic compounds with different volatility and (2) The direct analysis of food products such as roasted coffee beans. Copyright © 2013 John Wiley & Sons, Ltd.

  10. High-Temperature Decomposition of Brønsted Acid Sites in Gallium-Substituted Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    K Al-majnouni; N Hould; W Lonergan; D Vlachos; R Lobo

    2011-12-31

    The dehydroxylation of Broensted acid sites (BAS) in Ga-substituted zeolites was investigated at temperatures up to 850 C using X-ray absorption spectroscopy (XAS), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry-temperature programmed desorption (MS-TPD). X-ray absorption near-edge spectroscopy (XANES) revealed that the majority of gallium has tetrahedral coordination even after complete dehydroxylation. The interatomic gallium-oxygen distance and gallium coordination number determined by extended X-ray absorption fine structure (EXAFS) are consistent with gallium in tetrahedral coordination at low T (< 550 C). Upon heating Ga-Beta and Ga-ZSM5 to 850 C, analysis of the EXAFS showed that 70 and 80% of the gallium was still in tetrahedral coordination. The remainder of the gallium was found to be in octahedral coordination. No trigonal Ga atoms were observed. FTIR measurements carried out at similar temperatures show that the intensity of the OH vibration due to BAS has been eliminated. MS-TPD revealed that hydrogen in addition to water evolved from the samples during dehydroxylation. This shows that dehydrogenation in addition to dehydration is a mechanism that contributes to BAS decomposition. Dehydrogenation was further confirmed by exposing the sample to hydrogen to regenerate some of the BAS as monitored by FTIR and MS-TPD.

  11. PCDD/F formation during thermal desorption of p,p'-DDT contaminated soil.

    Science.gov (United States)

    Zhao, Zhonghua; Ni, Mingjiang; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua

    2017-05-01

    Thermal treatment of polychlorinated biphenyls (PCB) contaminated soil was shown in earlier work to generate polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). In this study, the PCDD/F were studied arising during the remediation of p,p'-DDT contaminated soil by thermal desorption. Three kinds of soil (sandy, clayey and lateritic soil) were tested to investigate the effect of soil texture on PCDD/F formation. Those soils were artificially polluted with p,p'-DDT, obtaining a concentration level of 100 mg/kg. Thermal desorption experiments were conducted for 10 min at 300 °C in an air atmosphere. The total concentration of PCDD/F generated for three soils were 331, 803 and 865 ng/kg, respectively, and TeCDD and TeCDF were dominant among all PCDD/F congeners. After thermal desorption, the total amount of PCDD/F generated both in soil and in off-gas correlated positively with the amount of DDT added to soil. In addition, a possible pathway of the formation of PCDD/F was presented.

  12. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles.

    Science.gov (United States)

    Phan, Nhu T N; Mohammadi, Amir Saeid; Dowlatshahi Pour, Masoumeh; Ewing, Andrew G

    2016-02-02

    Laser desorption ionization mass spectrometry (LDI-MS) is used to image brain lipids in the fruit fly, Drosophila, a common invertebrate model organism in biological and neurological studies. Three different sample preparation methods, including sublimation with two common organic matrixes for matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) using gold nanoparticles, are examined for sample profiling and imaging the fly brain. Recrystallization with trifluoroacetic acid following matrix deposition in MALDI is shown to increase the incorporation of biomolecules with one matrix, resulting in more efficient ionization, but not for the other matrix. The key finding here is that the mass fragments observed for the fly brain slices with different surface modifications are significantly different. Thus, these approaches can be combined to provide complementary analysis of chemical composition, particularly for the small metabolites, diacylglycerides, phosphatidylcholines, and triacylglycerides, in the fly brain. Furthermore, imaging appears to be beneficial using modification with gold nanoparticles in place of matrix in this application showing its potential for cellular and subcellular imaging. The imaging protocol developed here with both MALDI and SALDI provides the best and most diverse lipid chemical images of the fly brain to date with LDI.

  13. Processes of adsorption/desorption of iodides and cadmium cations onto/from Ag(111

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIĆ

    2011-02-01

    Full Text Available In this work, the adsorption/desorption processes of iodides and cadmium cations in the presence of iodides onto/from Ag(111 were investigated. It was shown that both processes were complex, characterized by several peaks on the cyclic voltammograms (CVs. By PeakFit analysis of the recorded CVs and subsequent fitting of the obtained peaks by the Frumkin adsorption isotherm, the interaction parameter (f and the Gibbs energy of adsorption (DGads for each adsorbed phase were determined. In the case of iodide adsorption, four peaks were characterized by negative values of f, indicating attractive lateral interaction between the adsorbed anions, while two of them possessed value of f < –4, indicating phase transition processes. The adsorption/desorption processes of cadmium cations (underpotential deposition – UPD of cadmium in the presence of iodide anions was characterized by two main peaks, each of them being composed of two or three peaks with negative values of f. By the analysis of charge vs. potential dependences obtained either from the CVs or current transients on potentiostatic pulses, it was concluded that adsorbed iodides did not undergo desorption during the process of Cd UPD, but became replaced by Cd ad-atoms and remained adsorbed on top of a Cd layer and/or in between Cd the ad-atoms.

  14. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Ultraviolet photoelectron spectroscopy and electron stimulated desorption from CaF sub 2

    CERN Document Server

    Huisinga, M

    1999-01-01

    resulted in a positively charged sample surface, thus giving an undetermined electrostatic contribution to the F+ desorption energies. In this thesis, a method was developed allowing for the first time to measure a positive surface potential of an insulator under electron irradiation. Thus, the kinetic energy of F+ ions desorbing from CaF sub 2 crystals could be corrected for surface charge to determine the energy characteristic for the desorption process. The corrected peak of the F+ kinetic energy distribution was at about 0.9 eV for crystals cleaved in UHV. It was shown that coverage of the surface with oxygen or fluorine results in a high positive potential, while metallization causes a low surface potential. In particular, the surface potential of crystals cleaved in UHV shows a pronounced minimum after about 10 to 20 min of electron irradiation. This effect could be explained by a balance of F sup + desorption and diffusion of fluorine from the bulk. Calcium difluoride crystals were investigated with ul...

  16. Competitive sorption and desorption of heavy metals by individual soil components

    Energy Technology Data Exchange (ETDEWEB)

    Covelo, E.F. [Departamento de Biologia Vegetal y Ciencia del Suelo, Universidad de Vigo, As Lagoas, Marcosende, 36310 Vigo (Spain)]. E-mail: emmaf@uvigo.es; Vega, F.A. [Departamento de Biologia Vegetal y Ciencia del Suelo, Universidad de Vigo, As Lagoas, Marcosende, 36310 Vigo (Spain)]. E-mail: florav@uvigo.es; Andrade, M.L. [Departamento de Biologia Vegetal y Ciencia del Suelo, Universidad de Vigo, As Lagoas, Marcosende, 36310 Vigo (Spain)]. E-mail: mandrade@uvigo.es

    2007-02-09

    Knowledge of sorption and desorption of heavy metals by individual soil components should be useful for modelling the behaviour of soils of arbitrary composition when contaminated by heavy metals, and for designing amendments increasing the fixation of heavy metals by soils polluted by these species. In this study the competitive sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by humified organic matter, Fe and Mn oxides, kaolinite, vermiculite and mica were investigated. Due to the homogeneity of the sorbents, between-metal competition for binding sites led to their preferences for one or another metal being much more manifest than in the case of whole soils. On the basis of k {sub d100} values (distribution coefficients calculated in sorption-desorption experiments in which the initial sorption solution contained 100 mg L{sup -1} of each metal), kaolinite and mica preferentially sorbed and retained chromium; vermiculite, copper and zinc; HOM, Fe oxide and Mn oxide, lead (HOM and Mn oxide also sorbed and retained considerable amounts of copper). Mica only retained sorbed chromium, Fe oxide sorbed cadmium and lead, and kaolinite did not retain sorbed copper. The sorbents retaining the greatest proportions of sorbed metals were vermiculite and Mn oxide, but the ratios of k {sub d100} values for retention and sorption suggest that cations were least reversibly bound by Mn oxide, and most reversibly by vermiculite.

  17. Status of the project TRAPSENSOR: Performance of the laser-desorption ion source

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, J.M.; Lorenzo, A. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada (Spain); Renisch, D. [Institut für Kernchemie, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany); Düllmann, Ch.E. [Institut für Kernchemie, Johannes Gutenberg-Universität, 55099 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany); SHE Chemistry section, Helmholtz-Institut Mainz, 55099 Mainz (Germany); Rodríguez, D., E-mail: danielrodriguez@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada (Spain)

    2013-12-15

    Highlights: • Description of the status of the project TRAPSENSOR. • Study of a laser desorption ion source to perform experiments with Penning traps. • Production of calcium, rhenium and osmium ions by laser desorption for precision experiments. -- Abstract: Penning traps provide mass measurements on atomic nuclei with the highest accuracy and sensitivity. Depending on the experiment and on the physics goal, a relative mass uncertainty varying from 10{sup −7} to below 10{sup −11} is required. Regarding sensitivity, the use of only one ion for the measurement is crucial, either to perform mass measurements on superheavy elements (SHE), or to reach δm/m≈10{sup -11} in order to contribute to the direct determination of the mass of the electron-antineutrino with accurate mass measurements on specific nuclei. This has motivated the development of a new technique called Quantum Sensor based on a laser-cooled ion stored in a Penning trap, to perform mass measurements using fluorescence photons instead of electronic detection. The device is currently under development at the University of Granada (Spain) within the project TRAPSENSOR. We describe the physics which motivates the construction of this device, the expected performance of the Quantum Sensor compared to that from existing techniques, and briefly present the main components of the project. As a specific aspect of the project, the performance of the laser-desorption ion source utilized to produce calcium, rhenium and osmium ions at different kinetic energies is presented.

  18. Changes of structural and hydrogen desorption properties of MgH2 indused by ion irradiation

    Directory of Open Access Journals (Sweden)

    Kurko Sandra V.

    2010-01-01

    Full Text Available Changes in structural and hydrogen desorption properties of MgH2 induced by ion irradiation have been investigated. MgH2 powder samples have been irradiated with 45 keV B3+ and 120 keV Ar8+ions, with ion fluence of 1015 ions/cm2. The effects of ion irradiation are estimated by numerical calculations using SRIM package. The induced material modifications and their consequences on hydrogen dynamics in the system are investigated by XRD, particle size distribution and TPD techniques. Changes of TPD spectra with irradiation conditions suggest that there are several mechanisms involved in desorption process which depend on defect concentration and their interaction and ordering. The results confirmed that the near-surface area of MgH2 and formation of a substoichiometric MgHx (x<2 play a crucial role in hydrogen kinetics and that various concentrations of induced defects substantially influence H diffusion and desorption kinetics in MgH2. The results also confirm that there is possibility to control the thermodynamic parameters by controlling vacancies concentration in the system.

  19. Arsenite oxidation by a poorly-crystalline manganese oxide. 3. Arsenic and manganese desorption.

    Science.gov (United States)

    Lafferty, Brandon J; Ginder-Vogel, Matthew; Sparks, Donald L

    2011-11-01

    Arsenic (As) mobility in the environment is greatly affected by its oxidation state and the degree to which it is sorbed on metal oxide surfaces. Manganese oxides (Mn oxides) have the ability to decrease overall As mobility both by oxidizing toxic arsenite (As(III)) to less toxic arsenate (As(V)), and by sorbing As. However, the effect of competing ions on the mobility of As sorbed on Mn-oxide surfaces is not well understood. In this study, desorption of As(V) and As(III) from a poorly crystalline phyllomanganate (δ-MnO(2)) by two environmentally significant ions is investigated using a stirred-flow technique and X-ray absorption spectroscopy (XAS). As(III) is not observed in solution after desorption under any conditions used in this study, agreeing with previous studies showing As sorbed on Mn-oxides exists only as As(V). However, some As(V) is desorbed from the δ-MnO(2) surface under all conditions studied, while neither desorptive used in this study completely removes As(V) from the δ-MnO(2) surface.

  20. Scattering, Adsorption, and Langmuir-Hinshelwood Desorption Models for Physisorptive and Chemisorptive Gas-Surface Systems

    Science.gov (United States)

    Bentley, Brook I.

    Surface effects limit the performance of hypersonic vehicles, micro-electro-mechanical devices, and directed energy systems. This research develops methods to predict adsorption, scattering, and thermal desorption of molecules on a surface. These methods apply to physisorptive (adsorption and scattering) and chemisorptive (thermal desorption) gas-surface systems. Engineering and design applications will benefit from these methods, hence they are developed under the Direct Simulation Monte Carlo construct. The novel adsorption and scattering contribution, the Modified Kisliuk with Scattering method, predicts angular and energy distributions, and adsorption probabilities. These results agree more closely with experiment than the state-of-the-art Cercignani-Lampis-Lord scattering kernel. Super-elastic scattering is predicted. Gas-adlayer interactions are included for the first time. Accommodation coefficents can be determined by fitting simulations to experimental data. The new thermal desorption model accurately calculates angular, translational, rotational, and vibrational distributions, and the rotational alignment parameter. The model is validated by comparing with experiments. Multiple transition states are considered in a set of non-dimensionalized equations of motion, linked with temporally-accurate event timing. Initial conditions are chosen from a new truncated Maxwell-Boltzmann distribution. Run times are improved by eliminating the Gaussian Weighting of desorbing products. The absorption energy barrier is shown to significantly contribute only to the translational energy of desorbing molecules by contributing energy to each adatom in a similar manner.