WorldWideScience

Sample records for temperature pem fuel

  1. High temperature PEM fuel cells

    Science.gov (United States)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven

    There are several compelling technological and commercial reasons for operating H 2/air PEM fuel cells at temperatures above 100 °C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for ∼90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation.

  2. Novel High Temperature Membrane for PEM Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  3. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reformed...... fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  4. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  5. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec P...... of the species as in a LTPEM fuel cell system. The use of the HTPEM fuel cell makes it possible to use reformed gas at high CO concentrations, still with a stable efficient performance....

  6. Design and Control of High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    . Converting a liquid renewable fuel such as methanol in a chemical reactor, a reformer system, can provide the high temperature PEM fuel cells with a hydrogen rich gas that e-ciently produces electricity and heat at similar e-ciencies as with pure hydrogen. The systems retain their small and simple...... configuration, because the high quality waste heat of the fuel cells can be used to support the steam reforming process and the heat and evaporation of the liquid methanol/water mixture. If e-cient heat integration is manageable, similar performance to hydrogen based systems can be expected. In many......E-cient fuel cell systems have started to appear in many dierent commercial applications and large scale production facilities are already operating to supply fuel cells to support an ever growing market. Fuel cells are typically considered to replace leadacid batteries in applications where...

  7. High temperature PEM fuel cell. Final report. Public part

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf (DTU (DK)); Yde Andersen, S.; Rycke, T. de (IRD Fuel Cells A/S (DK)); Nilsson, M. (Danish Power Systems ApS (DK)); Christensen, Torkild, (DONG Energy (DK))

    2006-07-01

    The main outcome of the project is the development of stacking technology for high temperature PEMFC stacks based on phosphoric acid doped polybenzimidazole membranes (PBI-membranes) and a study of the potential of a possible accommodation of HT-PEMFC in the national energy system. Stacks of different lengths (up to 40 cells) have been built using two different approaches in terms of plate materials and sealing. The stacks still need maturing and further testing to prove satisfactory reliability, and a steady reduction of production cost is also desired (as in general for fuel cells). However, during the project the process has come a long way. The survey of HT-PEM fuel cells and their regulatory power in the utility system concludes that fuel cells will most likely not be the dominating technique for regulation, but as no other technique has that potential alone, fuel cells are well suited to play a role in the system provided that the establishment of a communication system is not too complicated. In order to maintain an efficient power system with high reliability in a distributed generation scenario, it is important that communication between TSO (Transmission System Operator) and fuel cells is included in the fuel cell system design at an early stage. (au)

  8. High Temperature PEM Fuel Cells and Organic Fuels

    DEFF Research Database (Denmark)

    Vassiliev, Anton

    inside the cells and to determine the lifetime. Additionally, comparison was made with methanol as fuel, which is the main competitor to DME in direct oxidation of organic fuels in fuel cells. For the reference, measurements have also been done with conventional hydrogen/air operation. All...... of the electrolyte membrane having a much more pronounced effect on the final performance than the catalyst composition. The increased operating temperature showed improved performances for all 3 investigated fuels, hydrogen, DME and methanol, with the additional energy supplied in terms of heat helping to overcome...... of the latter. Gas chromatography study of the anode exhaust gas at open circuit voltage revealed a small degree of internal fuel reforming with different products when operated on dimethyl ether or methanol. While methanol seemed to reform to syngas, the DME yielded methane rather than CO as one...

  9. Transient response of high temperature PEM fuel cell

    Science.gov (United States)

    Peng, J.; Shin, J. Y.; Song, T. W.

    A transient three-dimensional, single-phase and non-isothermal numerical model of polymer electrolyte membrane (PEM) fuel cell with high operating temperature has been developed and implemented in computational fluid dynamic (CFD) code. The model accounts for transient convective and diffusive transport, and allows prediction of species concentration. Electrochemical charge double-layer effect is considered. Heat generation according to electrochemical reaction and ohmic loss are involved. Water transportation across membrane is ignored due to low water electro-osmosis drag force of polymer polybenzimidazole (PBI) membrane. The prediction shows transient in current density which overshoots (undershoots) the stabilized state value when cell voltage is abruptly decreased (increased). The result shows that the peak of overshoot (undershoot) is related with cathode air stoichiometric mass flow rate instead of anode hydrogen stoichiometric mass flow rate. Current is moved smoothly and there are no overshoot or undershoot with the influence of charge double-layer effect. The maximum temperature is located in cathode catalyst layer and both fuel cell average temperature and temperature deviation are increased with increasing of current load.

  10. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    OpenAIRE

    Nicola Zuliani

    2013-01-01

    High Temperature Proton Exchange Membrane (HT PEM) fuel cell based on polybenzimidazole (PBI) polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, onl...

  11. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    OpenAIRE

    Nicola Zuliani

    2011-01-01

    High Temperature Proton Exchange Membrane (HT PEM) fuel cell based on polybenzimidazole (PBI) polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, onl...

  12. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...

  13. Parametric Analysis of a High Temperature PEM Fuel Cell Based Microcogeneration System

    OpenAIRE

    Myalelo Nomnqa; Daniel Ikhu-Omoregbe; Ademola Rabiu

    2016-01-01

    This study focuses on performance analysis of a 1 kWe microcogeneration system based on a high temperature proton exchange membrane (HT-PEM) fuel cell by means of parametric investigation. A mathematical model for a system consisting of a fuel processor (steam reforming reactor and water-gas shift reactor), a HT-PEM fuel cell stack, and the balance-of-plant components was developed. Firstly, the fuel processor performance at different fuel ratios and equivalence ratio was examined. It is show...

  14. Development of a 400 W High Temperature PEM Fuel Cell Power Pack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Bang, Mads; Korsgaard, Anders

    2006-01-01

    reformer design because CO removal is not needed. A fuel like methanol would be a preferable choice for reforming when using HTPEM fuel cells because of its high energy density and low reforming temperatures. The thermal integration and use of HTPEM fuel cells with methanol reformers show promising results......When using pressurized hydrogen to fuel a fuel cell, much space is needed for fuel storage. This is undesirable especially with mobile or portable fuel cell systems, where refuelling also often is inconvenient. Using a reformed liquid carbonhydrate can reduce this fuel volume considerably. Nafion...... based low temperature PEM (LTPEM) fuel cells are very intolerant to reformate gas because of the presence of CO. PBI based high temperature PEM (HTPEM) fuel cells can operate stable at much higher CO concentrations. This makes the HTPEM very suitable for applications using a reformer, and could simplify...

  15. Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Schaltz, Erik

    2009-01-01

    temperature PEM (HTPEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell, is a Nyquist plot, which shows the imaginary and real part of the impedance...

  16. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature ...... of the MEA's is 160-180oC, depending on the purity of the hydrogen used, the load pattern and the desired lifetime. The advantages of the HTPEM fuel cell technology include fast response to load changes and high tolerance to CO (1-3%)......This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  17. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined...... for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich....... On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed...

  18. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    In designing and controlling fuel cell sys-tems it is advantageous having models predicting the behavior of the fuel cells in steady-state as well as in dynamic ope-ration. This work examines the use of electro-chemical impedance spectroscopy (EIS) for characterizing and developing a model for a ...... for a high temperature PEM (HTPEM) fuel cell stack. A Labview virtual interface has been developed to perform the signal generation and acquisition which is needed to perform EIS....

  19. Analytical correlations for intermediate temperature PEM fuel cells

    Science.gov (United States)

    Cheddie, Denver; Munroe, Norman

    This paper presents analytical correlations, which predict the polarization performance and thermal effects in an intermediate temperature proton exchange membrane fuel cell (PEMFC). Such correlations are useful for engineers and designers of fuel cells to expedite calculations without depending on complex computational models. Analytical results compare well with published experimental polarization data. They also indicate the temperature variations and dominant modes of heat transfer in a unit cell.

  20. Effects of Straight and Serpentine Flow Field Designs on Temperature Distribution in Proton Exchange Membrane (PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2016-01-01

    Full Text Available Proton exchange membrane fuel cells or sometimes called as polymer electrolyte membrane (PEM fuel cells is a device for energy transformation in a changing process from one form of energy to another form of energy. It became as an alternative especially for future use in stationary and vehicular applications. PEM fuel cells provide high efficiency and power density with null emission, low operating temperature, quickly start and long life. One of the aspects that are crucial in optimizing the PEM fuel cells performance is a flow field geometry. In this paper, a simulation case of PEM fuel cells was simulated to determine effects of a straight and serpentine flow field on temperature distribution in PEM fuel cells. ANSYS Fluent software was used to simulate 3-dimensional models of single PEM fuel cells in order to determine the effects of changes in the geometry flow field on temperature distributions. Results showed that the serpentine flow field design produces a better temperature distribution along the membrane. The simulation result shows a good agreement with the experiment, thus boost a higher confidence in the results to determine the effectiveness of the flow field design in PEM fuel cells.

  1. High Temperature PEM Fuel Cell Stacks with Advent TPS Meas

    Directory of Open Access Journals (Sweden)

    Neophytides Stylianos

    2017-01-01

    Full Text Available High power/high energy applications are expected to greatly benefit from high temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs. In this work, a combinatorial approach is presented, in which separately developed and evaluated MEAs, design and engineering are employed to result in reliable and effective stacks operating above 180°C and having the characteristics well matched to applications including auxiliary power, micro combined heat and power, and telecommunication satellites.

  2. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  3. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  4. Parametric Analysis of a High Temperature PEM Fuel Cell Based Microcogeneration System

    Directory of Open Access Journals (Sweden)

    Myalelo Nomnqa

    2016-01-01

    Full Text Available This study focuses on performance analysis of a 1 kWe microcogeneration system based on a high temperature proton exchange membrane (HT-PEM fuel cell by means of parametric investigation. A mathematical model for a system consisting of a fuel processor (steam reforming reactor and water-gas shift reactor, a HT-PEM fuel cell stack, and the balance-of-plant components was developed. Firstly, the fuel processor performance at different fuel ratios and equivalence ratio was examined. It is shown that high fuel ratios of 0.9–0.95 and equivalence ratios of less than 0.56 are suitable for acceptable carbon monoxide content in the synthetic gas produced. Secondly, a parametric study of the system performance at different fuel and equivalence ratios using key system operating parameters was conducted. Steam-to-carbon ratio, stack operating temperature, and anode stoichiometry were varied to observe the changes in the microcogeneration system. The analysis shows that the system can reach electrical and cogeneration efficiencies of 30% and 84%, respectively.

  5. Optimized High Temperature PEM Fuel Cell & High Pressure PEM Electrolyser for Regenerative Fuel Cell Systems in GEO Telecommunication Satellites

    Directory of Open Access Journals (Sweden)

    Farnes Jarle

    2017-01-01

    Full Text Available Next generation telecommunication satellites will demand increasingly more power. Power levels up to 50 kW are foreseen for the next decades. Battery technology that can sustain up to 50 kW for eclipse lengths of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS were identified years ago as a possible alternative to rechargeable batteries. CMR Prototech has investigated this technology in a series of projects initiated by ESA focusing on both the essential fuel cell technology, demonstration of cycle performance of a RFCS, corresponding to 15 years in orbit, as well as the very important reactants storage systems. In the last two years the development has been focused towards optimising the key elements of the RFCS; the HTPEM fuel cell and the High Pressure PEM electrolyser. In these ESA activities the main target has been to optimise the design by reducing the mass and at the same time improve the performance, thus increasing the specific energy. This paper will present the latest development, including the main results, showing that significant steps have been taken to increase TRL on these key components.

  6. A Direct DME High Temperature PEM Fuel Cell

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    2012-01-01

    Dimethyl ether (DME) has been identified as an alternative to methanol for use in direct fuel cells. It combines the advantages of hydrogen in terms of pumpless fuel delivery and high energy density like methanol, but without the toxicity of the latter. The performance of a direct dimethyl ether...... fuel cell suffers greatly from the very low DME-water miscibility. To cope with the problem polybenzimidazole (PBI) based membrane electrode assemblies (MEAs) have been made and tested in a vapor fed system. PtRu on carbon has been used as anode catalyst and air at ambient pressure was used as oxidant...

  7. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Sahlin, Simon Lennart; Justesen, Kristian Kjær

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...

  8. New electrocatalyst support for high temperature PEM fuel cells (HT-PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, M.; Brandao, L.; Mendes, A. [Porto Univ. (PT). Lab. de Engenharia de Processos, Ambiente e Energia (LEPAE)

    2010-07-01

    This work compares the performance of electrocatalysts based on platinum supported in single-wall carbon nanohorns (Pt-SWNH) and supported in carbon black (Pt-carbon black) during high temperature PEM fuel operation. MEAs made of phosphoric acid doped polybenzimidazole (PBI/H{sub 3}PO{sub 4}) were characterized by polarization curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), at 160 C. The Pt-SWNH electrocatalyst presented a higher electrochemical surface area (ESA) when compared to Pt-carbon black. However, electrochemical experiments showed a higher ohmic resistance of the Pt-SWNH electrode related to a higher hydrophobic character of the SWNH carbon. (orig.)

  9. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    National Research Council Canada - National Science Library

    N Zuliani

    2011-01-01

    ...% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided...

  10. PEM Fuel Cells - Fundamentals, Modeling and Applications

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Part I: Fundamentals Chapter 1: Introduction. Chapter 2: PEM fuel cell thermodynamics, electrochemistry, and performance. Chapter 3: PEM fuel cell components. Chapter 4: PEM fuel cell failure modes. Part II: Modeling and Simulation Chapter 5: PEM fuel cell models based on semi-empirical simulation. Chapter 6: PEM fuel cell models based on computational fluid dynamics. Part III: Applications Chapter 7: PEM fuel cell system design and applications.

  11. Thermal curing of PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Cleemann, Lars N.; Li, Qingfeng

    2012-01-01

    Phosphoric acid doped polybenzimidazole (PBI) has emerged as one of the most promising electrolyte materials for proton exchange membrane (PEM) fuel cells operating under anhydrous conditions at temperatures of up to 200 °C. The limited long-term durability of the membrane electrode assemblies...... long-term durability of the corresponding fuel cell MEAs. During continuous operation for 1800 h at 160 °C and 600 mA cm−2, the average cell voltage decay rate of the MEA based on the cured membrane was 43 μV h−1. This should be compared with an average cell voltage decay rate of 308 μV h−1 which...

  12. Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xue-Min; Mei, Ping; Mi, Yuanzhu; Gao, Lin; Qin, Shaoxiong [College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China)

    2009-01-15

    Novel water-retention proton exchange membrane of Nafion-phosphotungstic acid/mesoporous silica with hydrophilic capillaries has been fabricated to improve the elevated temperature performance of the PEM fuel cells. Due to the hydrophilic capillarity of the HPW/meso-SiO{sub 2} mesoporous structure, the Nafion-HPW/meso-SiO{sub 2} composite membrane retained 23.7 wt% of water after being dried in 100 C for 2 h and then exposed in 25 RH% gas for 2 h. As a result, under the condition of elevated temperature of 120 C and low humidity of 25 RH%, the Nafion-HPW/meso-SiO{sub 2} composite membrane showed a steady performance. (author)

  13. High Temperature PEM Fuel Cell Performance Characterisation with CO and CO2 using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Vang, Jakob Rabjerg; Kær, Søren Knudsen

    2011-01-01

    In this work, extensive electrochemical impedance measurements have been conducted on a 45 cm2 BASF Celtec P2100 high temperature PEM MEA. The fuel cell performance has been examined subject to some of the poisoning effects experienced when running on a reformate gas. The impedance is measured at...

  14. Long term testing of start-stop cycles on high temperature PEM fuel cell stack

    Science.gov (United States)

    Kannan, Arvind; Kabza, Alexander; Scholta, Joachim

    2015-03-01

    A PEM fuel cell with an operating temperature above 100 °C is desired for increasing the kinetics of reactions, reduced sensitivity to impurities of the fuel, as well as for the reduction of the requirements on thermal and water management systems. High Temperature Polymer Electrolyte Membrane Fuel Cells (HT-PEMFC) can effectively be combined with CHP systems to offer a simple system design and higher overall system efficiencies. For HT-PEMFC systems, the development of elaborated start/stop strategies is essential in mitigation of fuel cell degradation during these events. A 5 cell co-flow stack is assembled with BASF P1100W membrane electrode assembly (MEA) with an active area of 163.5 cm2. Continuous operation and more than 1500 start stop cycles have been performed in order to study the degradation effects of both continuous operation and of repeated start stops using a protective start-stop algorithm, which is designed to avoid the formation of aggressive cell potentials. The repeated use of this procedure led to a degradation of 26 μV/cycle at a current density of 0.25 A cm-2 and 11 μV/cycle at a current density of 0.03 A cm-2. At open circuit voltage (OCV), a higher degradation rate of 133 μV/cycle was observed.

  15. Temperature control of a PEM fuel cell test bench for experimental MEA assessment

    Energy Technology Data Exchange (ETDEWEB)

    More, J.J.; Puleston, P.F.; Kunusch, C. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata (UNLP), calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia, N 1917, C1033AAJ, Ciudad Autonoma de Buenos Aires (Argentina); Visintin, A. [Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia, N 1917, C1033AAJ, Ciudad Autonoma de Buenos Aires (Argentina); Instituto de Investigaciones Fisico-Quimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64 s/n, 1900, La Plata (Argentina)

    2010-06-15

    This paper presents the design, implementation and testing of a temperature control for a laboratory PEM fuel cell stack work bench intended for evaluation of experimental MEAs. The controller design is based on a thermal model of the fuel cell stack developed by the authors. The model is extended to the complete temperature range by considering a nonlinear description of the heating resistances. Its parameters are experimentally adjusted and its accuracy is validated in all the temperature operating range. Then, the temperature control is developed, using a proportional-integral structure with anti-windup features. It is implemented in a PC connected to an ad-hoc equipment of acquisition and control, that drives distributed cycles actuators to energize two heating resistances. The controller proved to be capable of regulating the stack temperature in a wide operating range, while eliminating the ripple typical of ON-OFF actuators. Finally, experimental results of closed loop operation are presented, demonstrating the good performance of the proposed control set up and thermal model. (author)

  16. PEM fuel cell degradation

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

  17. PEM/SPE fuel cell

    Science.gov (United States)

    Grot, Stephen Andreas

    1998-01-01

    A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.

  18. PORTABLE PEM FUEL CELL SYSTEM: WATER AND HEAT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    SITI NAJIBAH ABD RAHMAN

    2016-07-01

    Full Text Available Portable polymer electrolyte membrane (PEM fuel cell power generator is a PEM fuel cell application that is used as an external charger to supply the demand for high energy. Different environments at various ambient temperatures and humidity levels affect the performance of PEM fuel cell power generators. Thermal and water management in portable PEM fuel cells are a critical technical barrier for the commercialization of this technology. The size and weight of the portable PEM fuel cells used for thermal and water management systems that determine the performance of portable PEM fuel cells also need to be considered. The main objective of this paper review was to determine the importance of water and thermal management systems in portable PEM fuel cells. Additionally, this review investigated heat transfer and water transport in PEM fuel cells. Given that portable PEM fuel cells with different powers require different thermal and water management systems, this review also discussed and compared management systems for low-, medium-, and high-power portable PEM fuel cells.

  19. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  20. Corrosion resistant PEM fuel cell

    Science.gov (United States)

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  1. Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell

    Science.gov (United States)

    Giunta, Pablo; Amadeo, Norma; Laborde, Miguel

    In the last few years, a renewed interest in the water gas shift (WGS) reaction at low temperature has arisen due to its application to fuel cells. In this work, a simulation of a fixed bed reactor for this reaction, which forms part of a hydrogen production-purification train for a 10 kW PEM fuel cell using ethanol as the raw material, was carried out. A commercial Cu/Zn/Ba/Al 2O 3 catalyst was employed and a one-dimensional heterogeneous model was applied for the simulation. The catalyst deactivation due to thermal factors (sintering) was taken into account in the model. Isothermal and adiabatic regimes were analyzed as well. Results of the simulation indicate that the pellet can be considered isothermal but temperature gradients in the film cannot be disregarded. On the other hand, concentration gradients in the film can be ignored but CO profiles are established inside the pellet. Adiabatic operation can be recommended because of its simplicity of operation and construction. The reactor volume is strongly sensitive to the CO outlet concentration at CO levels lower than 6000 ppm. For a 10 kW PEM fuel cell, using adequate pellet size and taking into account the catalyst deactivation, a reactor volume of 0.64 l would be enough to obtain an outlet CO concentration of about 7160 ppm. This concentration value can be handled by the next purification stage, COPROX.

  2. PEM fuel cell monitoring system

    Science.gov (United States)

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  3. Electrochemical Impedance Spectroscopy (EIS) Characterization of Reformate-operated High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Simon Araya, Samuel; Andreasen, Søren Juhl

    2017-01-01

    This paper presents an experimental characterization of a high temperature protonexchange membrane fuel cell (HT-PEMFC) short stack carried out by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate...

  4. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2014-01-01

    fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling...

  5. Integration of high temperature PEM fuel cells with a methanol reformer

    DEFF Research Database (Denmark)

    Pan, Chao; He, Ronghuan; Li, Qingfeng

    2005-01-01

    On-board generation of hydrogen by methanol reforming is an efficient and practical option to fuel PEMFC especially for vehicle propulsion purpose. The methanol reforming can take place at temperatures around 200°C with a nearly 100% conversion at a hydrogen yield of about 400 L–(h–kg catalyst)-1...

  6. A comprehensive review of PBI-based high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Simon Araya, Samuel; Zhou, Fan; Liso, Vincenzo

    2016-01-01

    The current status on the understanding of the various operational aspects of high temperature proton exchange membrane fuel cells (HT-PEMFC) has been summarized. The paper focuses on phosphoric acid-doped polybenzimidazole (PBI)-based HT-PEMFCs and an overview of the common practices of their de...

  7. Experimental and Numerical Study on the Cold Start Performance of a Single PEM Fuel Cell

    OpenAIRE

    Calvin H. Li; G. P. Peterson

    2010-01-01

    A combined experimental and analytical investigation of single proton exchange membrane (PEM) fuel cells, during cold start, has been conducted. The temperature influence on the performance of a single PEM fuel cell and the cold start failure of the PEM fuel cell was evaluated experimentally to determine the failure mechanisms and performance. The voltage, current, and power characteristics were investigated as a function of the load, the hydrogen fuel flow rate, and the cell temperature. The...

  8. Potential Usage of Thermoelectric Devices in a High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Andreasen, Søren Juhl

    2012-01-01

    Methanol fuelled high temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved and they still rely on a large Li-ion battery...... for system startup. In this paper, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. Firstly, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas......-difference model is then employed and two main parameters are identified. Secondly, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well...

  9. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Grigoras, Ionela; Zhou, Fan

    2014-01-01

    This paper analyzes the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC) at varying temperatures, ranging from 140 °C to 180 °C. For the study, a H3PO4 – doped polybenzimidazole (PBI) – based membrane electrode assembly (MEA......) of 45 cm2 active surface area from BASF was employed. The study showed overall negligible effects of methanol-water vapor mixture slips on performance, even at relatively low simulated steam methanol reforming conversion of 90%, which corresponds to 3% methanol vapor by volume in the anode gas feed....... Temperature on the other hand has significant impact on the performance of an HT-PEMFC. To assess the effects of methanol-water vapor mixture alone, CO2 and CO are not considered in these tests. The analysis is based on polarization curves and impedance spectra registered for all the test points. After...

  10. Development of a Regenerative PEM Fuel Cell System

    Science.gov (United States)

    Balomenou, Stella; Papazisi, Kalliopi-Maria; Tsiplakides, Dimitrios; Schrotti, Nivedita; Niakolas, Dimitrios; Geormezy, Maria; Theodorakopoulou, Eleni; Neophytides, Stylianos; Schautz, Max

    2014-08-01

    The objective of the current project was the development of a regenerative high temperature PEM fuel cell stack combined with a high pressure PEM water electrolyser. For that purpose, a complete closed loop system was designed and constructed, consisting of a storage system for reactants (H2, O2 and H2O), a fuel cell, and an electrolyser. The HT-PEM fuel cell stack was based on Advent's TPS® high temperature polymeric membranes (150-200oC). The electrolyser stack employed FuMA-Tech low temperature membranes and in-house synthesized high surface area IrO2 electrocatalyst as anode and Pt/C as cathode electrodes. The RPEMFC system delivered multiple cycles of fuel cell and electrolysis operation under the predefined load profile. This paper summarizes the results obtained during the long term testing of the RPEMFC system.

  11. Modular PEM Fuel Cell SCADA & Simulator System

    National Research Council Canada - National Science Library

    Francisca Segura; Jose Manuel Andújar

    2015-01-01

      The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator) system that allows for real-time training in the actual operation of a modular PEM fuel cell system...

  12. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nickel Alloy Catalysts for the Anode of a High Temperature PEM Direct Propane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Shadi Vafaeyan

    2014-01-01

    Full Text Available High temperature polymer electrode membrane fuel cells that use hydrocarbon as the fuel have many theoretical advantages over those that use hydrogen. For example, nonprecious metal catalysts can replace platinum. In this work, two of the four propane fuel cell reactions, propane dehydrogenation and water dissociation, were examined using nickel alloy catalysts. The adsorption energies of both propane and water decreased as the Fe content of Ni/Fe alloys increased. In contrast, they both increased as the Cu content of Ni/Cu alloys increased. The activation energy for the dehydrogenation of propane (a nonpolar molecule changed very little, even though the adsorption energy changed substantially as a function of alloy composition. In contrast, the activation energy for dissociation of water (a molecule that can be polarized decreased markedly as the energy of adsorption decreased. The different relationship between activation energy and adsorption energy for propane dehydrogenation and water dissociation alloys was attributed to propane being a nonpolar molecule and water being a molecule that can be polarized.

  14. Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell

    Science.gov (United States)

    Parrondo, Javier; Mijangos, Federico; Rambabu, B.

    The performance of high temperature polymer electrolyte fuel cell (HT-PEMFC) using platinum supported over tin oxide and Vulcan carbon (Pt/SnOx/C) as cathode catalyst was evaluated at 160-200 °C and compared with Pt/C. This paper reports first time the Pt/SnOx/C preparation, fuel cell performance, and durability test up to 200 h. Pt/SnOx/C of varying SnO compositions were characterized using XRD, SEM, TEM, EDX and EIS. The face-centered cubic structure of nanosized Pt becomes evident from XRD data. TEM and EDX measurements established that the average size of the Pt nanoparticles were ∼6 nm. Low ionic resistances were derived from EIS, which ranged from 0.5 to 5 Ω-cm 2 for cathode and 0.05 to 0.1 Ω-cm 2 for phosphoric acid, doped PBI membrane. The addition of the SnOx to Pt/C significantly promoted the catalytic activity for the oxygen reduction reaction (ORR). The 7 wt.% SnO in Pt/SnO 2/C catalyst showed the highest electro-oxidation activity for ORR. High temperature PEMFC measurements performed at 180 °C under dry gases (H 2 and O 2) showed 0.58 V at a current density of 200 mA cm -2, while only 0.40 V was obtained in the case of Pt/C catalyst. When the catalyst contained higher concentrations of tin oxide, the performance decreased as a result of mass transport limitations within the electrode. Durability tests showed that Pt/SnOx/C catalysts prepared in this work were stable under fuel cell working conditions, during 200 h at 180 °C demonstrate as potential cathode catalyst for HT-PEMFCs.

  15. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest.

    Science.gov (United States)

    Asensio, Juan Antonio; Sánchez, Eduardo M; Gómez-Romero, Pedro

    2010-08-01

    The development of high-temperature PEM fuel cells (working at 150-200 degrees C) is pursued worldwide in order to solve some of the problems of current cells based on Nafion (CO tolerance, improved kinetics, water management, etc.). Polybenzimidazole membranes nanoimpregnated with phosphoric acid have been studied as electrolytes in PEMFCs for more than a decade. Commercially available polybenzimidazole (PBI) has been the most extensively studied and used for this application in membranes doped with all sorts of strong inorganic acids. In addition to this well-known polymer we also review here studies on ABPBI and other polybenzimidazole type membranes. More recently, several copolymers and related derivatives have attracted many researchers' attention, adding variety to the field. Furthermore, besides phosphoric acid, many other strong inorganic acids, as well as alkaline electrolytes have been used to impregnate benzimidazole membranes and are analyzed here. Finally, we also review different hybrid materials based on polybenzimidazoles and several inorganic proton conductors such as heteropoly acids, as well as sulfonated derivatives of the polymers, all of which contribute to a quickly-developing field with many blooming results and useful potential which are the subject of this critical review (317 references).

  16. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  17. PEM fuel cell testing and diagnosis

    CERN Document Server

    Wu, Jifeng; Zhang, Jiujun

    2013-01-01

    PEM Fuel Cell Testing and Diagnosis covers the recent advances in PEM (proton exchange membrane) fuel cell systems, focusing on instruments and techniques for testing and diagnosis, and the application of diagnostic techniques in practical tests and operation. This book is a unique source of electrochemical techniques for researchers, scientists and engineers working in the area of fuel cells. Proton exchange membrane fuel cells are currently considered the most promising clean energy-converting devices for stationary, transportation, and micro-power applications due to their

  18. Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode

    DEFF Research Database (Denmark)

    Pitois, A.; Pilenga, A.; Pfrang, A.

    2010-01-01

    -modified catalysts, the interactions between underlayer and overlayer materials are worthy of consideration, since they can significantly modify the intrinsic properties of the active sites. The kinetics of the CO desorption process have been discussed with regard to the CO tolerance issue at the PEM fuel cell anode.......A Pt-on-Au/C fuel cell anode catalyst has been obtained by electrochemical deposition of platinum on carbon-supported gold nanoparticles. Its composition, structure and nanoparticle size distribution have been characterised before and after the desorption experiments using microstructural...

  19. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.

    Science.gov (United States)

    Steininger, H; Schuster, M; Kreuer, K D; Kaltbeitzel, A; Bingöl, B; Meyer, W H; Schauff, S; Brunklaus, G; Maier, J; Spiess, H W

    2007-04-21

    The melting behaviour and transport properties of straight chain alkanes mono- and difunctionalized with phosphonic acid groups have been investigated as a function of their length. The increase of melting temperature and decrease of proton conductivity with increasing chain length is suggested to be the consequence of an increasing ordering of the alkane segments which constrains the free aggregation of the phosphonic acid groups. However, the proton mobility is reduced to a greater extent than the proton diffusion coefficient indicating an increasing cooperativity of proton transport with increasing length of the alkane segment. The results clearly indicate that the "spacer concept", which had been proven successful in the optimization of the proton conductivity of heterocycle based systems, fails in the case of phosphonic acid functionalized polymers. Instead, a very high concentration of phosphonic acid functional groups forming "bulky" hydrogen bonded aggregates is suggested to be essential for obtaining very high proton conductivity. Aggregation is also suggested to reduce condensation reactions generally observed in phosphonic acid containing systems. On the basis of this understanding, the proton conductivities of poly(vinyl phosphonic acid) and poly(meta-phenylene phosphonic acid) are discussed. Though both polymers exhibit a substantial concentration of phosphonic acid groups, aggregation seems to be constrained to such an extent that intrinsic proton conductivity is limited to values below sigma = 10(-3) S cm(-1) at T = 150 degrees C. The results suggest that different immobilization concepts have to be developed in order to minimize the conductivity reduction compared to the very high intrinsic proton conductivity of neat phosphonic acid under quasi dry conditions. In the presence of high water activities, however, (as usually present in PEM fuel cells) the very high ion exchange capacities (IEC) possible for phosphonic acid functionalized ionomers (IEC

  20. Estimation of CO concentration in high temperature PEM fuel cells using electrochemical impedance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2013-01-01

    Storing electrical energy is one of the main challenges for modern society grid systems containing increasing amounts of renewable energy from wind, solar and wave sources. Although batteries are excellent storage devices for electrical energy, their usage is often limited by a low energy density......) fuel cells can eciently run on the reformed hydrogen rich gas, although with reduced performance depending on the contaminants, such as CO, in the gas. By estimating the amount of CO in the fuel cell, it could be possible to adjust the fuel cell system operating parameters to increase performance...

  1. Fluctuation-Noise Model for PEM Fuel Cell

    Science.gov (United States)

    Denisov, E. S.; Salakhova, A. Sh.; Adiutantov, N. A.; Evdokimov, Yu. K.

    2017-08-01

    The fluctuation-noise model is presented. This model allows to describe the power spectral density of PEM fuel cell electrical fluctuation. The proposed model can be used for diagnostics of PEM fuel cell state of health.

  2. Improved Polymer Electrolytes and Carbon Nanotubes Based Electrodes for High Temperature PEM Fuel Cells

    Science.gov (United States)

    Daletou, M. K.; Andreopoulou, A. K.; Papadimitriou, K.; Orfanidi, A.; Geormezi, M.; Kallitsis, J. K.; Neophytides, S. G.

    2014-08-01

    High power/high energy applications are expected to greatly benefit from Polymer Electrolyte Membrane Fuel Cells (PEMFCs). In this work, a novel combinatorial approach is presented, at which separately developed and evaluated polymer membranes and electrocatalysts are presented that open the way for a unique HT PEMFC system operating well above 180oC. The herein developed cross-linked polymeric membranes along with the carbon allotrope Pt based catalysts of minimal Pt loadings, posses all prerequisites for an efficient long term stable operation of the final fuel cell, but additionally lead to a reduction of the overall system's cost.

  3. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl

    2016-01-01

    is investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  4. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  5. Roll-to-roll coated PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Hjuler, Hans Aage; Terkelsen, Carina

    2012-01-01

    low cost paper or plastic based carrier substrate and dried using a hot air oven with a length of 1 m at 140 °C. A web width of 305 mm, a working width of 250 mm and a web speed of 0.2 m min−1 were explored to ensure efficient drying of the thick wet film. A large air flow was found to efficiently...... characterization with respect to solubility, phosphoric acid doping and fuel cell performance. Our results showed that the PBI membranes prepared in this work have identical properties compared to traditionally cast membranes while enabling an increase of a factor of 100 in manufacturing speed....

  6. Fuel Starvation: irreversible degradation mechanisms in PEM Fuel Cells

    OpenAIRE

    Rangel, C. M.; Travassos, Maria Antónia; Fernandes, Vitor R.; SILVA, R. A.; Paiva, T. I.

    2010-01-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods use...

  7. Estimation of CO concentration in high temperature PEM fuel cells using electrochemical impedance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Andreasen, Søren Juhl; Kær, Søren Knudsen

    This work presents the results of using the electrochemical impedance to analyse the behaviour of a BASF Celtec P2100 MEA operated under varying operating conditions with different temperatures and gas concentrations. Figure 1 shows the experimental setup used for these measurements....

  8. Parametric Characterization of Reformate-operated PBI-based High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    2017-01-01

    This paper presents an experimental characterization of a HT-PEMFC short stack performed by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate their effects on a reformate operated stack. Polarization cur...... hydrogen, steam reforming and autothermal reforming gas at 160 ◦ C and showed how significantly lower performance with autoreformate at the same stoichiometry....

  9. Brazed bipolar plates for PEM fuel cells

    Science.gov (United States)

    Neutzler, Jay Kevin

    1998-01-01

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprising corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant.

  10. Functionalisation of mesoporous materials for application as additives in high temperature PEM fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Monir

    2012-03-06

    The presented thesis contains six original research articles dedicated to the preparation and characterization of organic-inorganic mesoporous materials as additives for polymer electroly1e membrane fuel cells (PEMFCs). The mesoporous materials Si-MCM-41 and benzene-PMO (periodic mesoporous organosilica) were chosen for the investigations. These materials were modified with functional groups for enhanced proton conductivity and water-keeping properties. In order to improve these materials Broenstedt acidic groups were introduced in the framework of mesoporous Si-MCM-41. Therefore, some silicium atoms in the framework were substituted by aluminium using different aluminium sources. Here NaAlO{sub 2} exhibits clearly the best results because the entire aluminium incorporated within the framework is tetragonally coordinated as observed by {sup 2}7AI MAS NMR. The increase of the proton conductivities results from an improved hydrophilicity, a decreased particle size, and newly introduced Broenstedt acidity in the mesoporous Al-MCM-41. However, mesoporous Si-MCM-41 materials functionalised by co-condensation with sulphonic acid groups exhibit the best results concerning proton conductivity, compared to those prepared by grafting. Hence, these materials where characterized in more detail by SANS and by MAS NMR measurements. The first one indicated that by co-condensation the entire inner pore surface is altered by functional groups which are, thus, distributed much more homogeneously than samples functionalised by grafting. This result explains the improved proton conductivities. Additionally, {sup 2}9Si NMR spectra proved that samples prepared by co-condensation lead to a successful and almost complete incorporation of mercaptopropyltrimethoxysilan (MPMS) into the mesoporous framework. Furthermore, it was shown by {sup 1}3C MAS NMR spectroscopy that the majority of the organic functional groups remained intact after H{sub 2}0{sub 2}-oxidation. However, proton

  11. Sensor Development for PEM Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  12. PEM Fuel Cells from Single Cell to Stack - Fundamental, Modeling, Analysis, and Applications

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Part I: Fundamentals Chapter 1: Introduction. Chapter 2: PEM fuel cell thermodynamics, electrochemistry, and performance. Chapter 3: PEM fuel cell components. Chapter 4: PEM fuel cell failure modes. Part II: Modeling and Simulation Chapter 5: PEM fuel cell models based on semi-empirical simulation. Chapter 6: PEM fuel cell models based on computational fluid dynamics (CFD). Part III: Analysis Chapter 7: PEM fuel cell analysis. Chapter 8: PEM fuel cell stack desig...

  13. PEM Fuel Cell Modelling Using Artificial Neural Networks

    OpenAIRE

    Doumbia, Mamadou Lamine

    2016-01-01

    Fuel cells are electrochemical devices that convert the chemical energy of a reaction directly into dc electrical energy. Proton Exchange Membrane (PEM) fuel cell is a suitable alternative for both electrical transportation and stationary applications. In this article, an Artificial Neural Network (ANN) modelling approach of a PEM fuel cell is developed. This model describes the behaviour of PEM fuel cell voltage under both steady-state and transient conditions. Moreover, the prediction of th...

  14. Materials Challenges for Automotive PEM Fuel Cells

    Science.gov (United States)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC environment more corrosion

  15. PEM fuel cells thermal and water management fundamentals

    CERN Document Server

    Wang, Yun; Cho, Sung Chan

    2014-01-01

    Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation-passenger cars, utility vehicles, and buses-and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; Reviews of basic principles pertaining to PEM fuel cel...

  16. Pattern recognition monitoring of PEM fuel cell

    Science.gov (United States)

    Meltser, Mark Alexander

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  17. Experimental and Numerical Study on the Cold Start Performance of a Single PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Calvin H. Li

    2010-01-01

    Full Text Available A combined experimental and analytical investigation of single proton exchange membrane (PEM fuel cells, during cold start, has been conducted. The temperature influence on the performance of a single PEM fuel cell and the cold start failure of the PEM fuel cell was evaluated experimentally to determine the failure mechanisms and performance. The voltage, current, and power characteristics were investigated as a function of the load, the hydrogen fuel flow rate, and the cell temperature. The characteristics of cold start for a single PEM fuel cell were analyzed, and the various failure mechanisms were explored and characterized. In an effort to better understand the operational behavior and failure modes, a numerical simulation was also developed. The results of this analysis were then compared with the previously obtained experimental results and confirmed the accuracy of the failure mechanisms identified.

  18. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...

  19. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming

    Science.gov (United States)

    Martin, Stefan; Wörner, Antje

    2011-03-01

    In the 21st century biofuels will play an important role as alternative fuels in the transportation sector. In this paper different reforming options (steam reforming (SR) and autothermal reforming (ATR)) for the on-board conversion of bioethanol and biodiesel into a hydrogen-rich gas suitable for high temperature PEM (HTPEM) fuel cells are investigated using the simulation tool Aspen Plus. Special emphasis is placed on thermal heat integration. Methyl-oleate (C19H36O2) is chosen as reference substance for biodiesel. Bioethanol is represented by ethanol (C2H5OH). For the steam reforming concept with heat integration a maximum fuel processing efficiency of 75.6% (76.3%) is obtained for biodiesel (bioethanol) at S/C = 3. For the autothermal reforming concept with heat integration a maximum fuel processing efficiency of 74.1% (75.1%) is obtained for biodiesel (bioethanol) at S/C = 2 and λ = 0.36 (0.35). Taking into account the better dynamic behaviour and lower system complexity of the reforming concept based on ATR, autothermal reforming in combination with a water gas shift reactor is considered as the preferred option for on-board reforming of biodiesel and bioethanol. Based on the simulation results optimum operating conditions for a novel 5 kW biofuel processor are derived.

  20. The JPL Direct Methanol Liquid-feed PEM Fuel Cell

    Science.gov (United States)

    Halpert, G.; Surampudi, S.

    1994-01-01

    Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...

  1. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  2. Process simulation of a PEM fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff-Hey, K. [Gerhard-Mercator-Universitaet, Duisburg (Germany); Fraunhofer Inst. for Solar Energy Systems, Freiberg (Germany); Roes, J. [Gerhard-Mercator-Universitaet, Duisburg (Germany); Formanski, V. [Gerhard-Mercator-Universitaet, Duisburg (Germany); Gieshoff, J. [Fraunhofer Inst. for Solar Energy Systems, Freiberg (Germany); Vogel, B. [Fraunhofer Inst. for Solar Energy Systems, Freiberg (Germany)

    1996-01-01

    The thermodynamic performance of a PEM fuel cell system for producing electrical power from natural gas is investigated by considering the flows of energy and energy through the various steps of the whole system. The flows of energy are evaluated using a computer code for energy and energy analyses. The fuel cell system is designed to produce a hydrogen volumetric flow of nearly 5.0 m{sup 3} {sub NTP}/h, provided to the fuel cell at an absolute pressure of 2.9 bar. The fuel cell itself is working with an efficiency of about 60 % at an operating temperature of 65 - 75{degrees} C with an air ratio of four and provides a maximum electric power of 9 kW. Taking into consideration only the produced electric power as useful output of the fuel cell system a total efficiency of 42.2 % is calculated using the simulation results.

  3. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  4. Evaluation of a ZrO2 composite membrane in PEM fuel operating at high temperature and low relativity humidity

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Alvarez, A.; Godinez, Luis A.; Herrera, O.E.; Merida, W.; Ledesma-Garcia, J.; Arriaga, L.G.

    2011-01-15

    Using proton exchange fuel cells (PEMFC's) is a sustainable way to generate electrical power. High temperature PEMFC's (HT - PEMFC's) have enhanced electrode kinetics, increased CO tolerance and simplified water management that these operation conditions imply. Unfortunately, Nafion and other perfluorosulfonic acid membranes (PFSA) are characterized by a decreased proton conductivity at high temperatures (above 100 degree C) due to dehydration which also causes shrinkage and increases the contact resistance between the membrane and the electrode. For these reasons, fuel cell research aims to create new membranes capable of working at high temperatures and low relative humidity conditions. The inclusion of inorganic materials into the Nafion matrix are employed to improve the mechanical properties of the membrane and enhance the membrane's hydration. In this study, the composite membrane ZrO2 showed better performance at high temperature and low relative humidity than commercial Nafion membrane. The performance results confirmed that composite membranes retain water and help retain the membrane hydration.

  5. Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies

    Science.gov (United States)

    Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-06-01

    Methanol-fueled, high-temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved, and they still rely on a large Li-ion battery for system startup. In this article, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. First, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas-liquid heat exchanger to form a heat recovery subsystem jointly for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To improve the TEG subsystem performance, a finite-difference model is then employed and two main parameters are identified. Second, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well as to reduce the heat loss during system startup. The results demonstrate that the TE-assisted heat flux regulation and heat-loss reduction can also effectively help solve the abovementioned two issues. The preliminary analysis in this article shows that a TE device application inside HTPEMFC power systems is of great value and worthy of further study.

  6. Experimental analysis of a PEM fuel cell 15 W; Analise experimental de uma celula a combustivel PEM 15W

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], e-mail: miyake@labcet.ufsc.br, e-mail: ebazzo@emc.ufsc.br

    2006-07-01

    Fuel cells have been considered a promising alternative for electric energy generation. In order to contribute with the development of this technology, a PEM fuel cell was installed and new experiments were carried out at LabCET (Laboratory of Combustion and Thermal System Engineering). Previous results have shown polarization curves identifying the need of rigorous controlling of humidification temperature of the fuel cell. In this paper, new results were carried out considering the use of a fan connected to the fuel cell and possible degradation in the electrolyte, after a relative long time operation. New polarization curves were plotted for comparison with previous results. (author)

  7. Parameterization of electrical equivalent circuits for pem fuel cells; Parametrierung elektrischer Aequivalentschaltbilder von PEM Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Haubrock, J.

    2007-12-13

    Fuel cells are a very promising technology for energy conversion. For optimization purpose, useful simulation tools are needs. Simulation tools should simulate the static and dynamic electrical behaviour and the models should parameterized by measurment results which should be done easily. In this dissertation, a useful model for simulating a pem fuel cell is developed. the model should parametrizes by V-I curve measurment and by current step respond. The model based on electrical equivalent circuits and it is shown, that it is possible to simulate the dynamic behaviour of a pem fuel cell stack. The simulation results are compared by measurment results. (orig.)

  8. Quantify and improve PEM fuel cell durability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grahl-Madsen, L.; Odgaard, M.; Munksgaard Nielsen, R. (IRD Fuel Cell A/S, Svendborg (Denmark)); Li, Q.; Jensen, Jens Oluf (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Andersen, Shuang Ma; Speder, J.; Skou, E. (Syddansk Univ. (SDU), Odense (Denmark))

    2010-07-01

    The aim of the present project is to systematically quantify and improve the durability of the PEM FC including the following three PEM FC variants: LT PEM FC, DMFC, and HT PEM FC. Different factors influencing dissolution properties of noble metal catalyst platinum and platinum-ruthenium alloy has been studied. The dissolution was found to increase by increasing the CV cycle upper potential limit, number of potential cycles, solution acidity, oxygen partial pressure, involvement of chloride, and temperature. Ruthenium was found to deteriorate ten (10) times faster than platinum catalyst; and carbon supported catalyst (Pt: 20%, Ru: up to 100%) deteriorate ten (10) times faster than non-supported catalyst (Pt: 2%, Ru: 30%) at the same condition. Loss of sulphonic acid groups and fluoride from perfluorinated sulfonic acid membrane was confirmed by different techniques, which locally leads to loss of acidity, and consequently enhances dissolution of noble metal catalyst. Degradation of Nafion ionomer in the electrode was enhanced by noble metal catalyst and the thermal decomposition properties has synergetic effect with carbon degradation. Hydrophobicity of GDL and electrode on GDL were found to degrade e.g. radical attack, oxidation, and physical wear out. The very top micro surface structure turned out to be responsible for wetting property after chemical ageing. Optimal catalyst and ionomer ratio is also reflected in contact angle value, which can be understood in terms of catalyst/carbon - ionomer affinity and layered structure. Long-term tested and 'virgin' LT PEM MEAs have been characterised with respect to SEM, TEM, EDS, and XRD. Both failed and well-functioning MEAs have been characterised. The Post Mortem analysis has shown and quantified degradation mechanisms like catalyst growth and carbon corrosion. Furthermore, the effect of fuel starvation was shown by pronounced Ru-catalyst band within the membrane. The catalyst coarsening observed after

  9. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  10. An EIS alternative for impedance measurement of a high temperature PEM fuel cell stack based on current pulse injection

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    In this paper a method for estimating the fuel cell impedance is presented, namely the current pulse injection (CPI) method, which is well suited for online implementation. This method estimates the fuel cell impedance and unlike electrochemical impedance spectroscopy (EIS), it is simple to imple...

  11. Impedance Analysis of the Conditioning of PBI–Based Electrode Membrane Assemblies for High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Vang, Jakob Rabjerg; Andreasen, Søren Juhl

    2013-01-01

    This work analyses the conditioning of single fuel cell assemblies based on different membrane electrode assembly (MEA) types, produced by different methods. The analysis was done by means of electrochemical impedance spectroscopy, and the changes in the fitted resistances of the all the tested...

  12. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  13. Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle

    Science.gov (United States)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.

  14. PEM fuel cell modeling and simulation using Matlab

    CERN Document Server

    Spiegel, Colleen

    2011-01-01

    Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.Easy to read and understand, this book provides design and modelling tips for

  15. Transient analysis of water transport in PEM fuel cells

    Science.gov (United States)

    Yan, Wei-Mon; Chu, Hsin-Sen; Chen, Jian-Yao; Soong, Chyi-Yeou; Chen, Falin

    This paper theoretically studies the water transport phenomena in PEM fuel cells, mainly investigating the transient behavior in the gas diffusion layer (GDL), catalyst layer (CL) and proton exchange membrane (PEM). In the PEM, both diffusion and electro-osmosis processes are considered, while in the GDL and CL, only diffusion process is taken into account. The process of water uptake is employed to account for the water transport at the interface between the PEM and CL. The results indicate that the water content in the PEM and the time for reaching the steady state in the start-up process are influenced by the humidification constant, k, the humidification, and the thickness of PEM. The rise of the k increases the water content in the membrane and shortens the time for reaching the steady state. Insufficient humidification causes relatively small water content and long steady time. When the PEM is thinner, the water is more uniformly distributed, the water content gets higher, and the time for reaching the steady state is distinctly shorter.

  16. Use of biogas in PEM fuel cells; Einsatz von Biogas in PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Volkhard; Schmersahl, Ralf; Ellner, Janine (comps.)

    2009-06-15

    This research project was dedicated to two problems: 1. What demands must biogas meet in order to conform to the specifications of PEM fuel cell systems and permit safe operation? 2. How must a fuel cell system be designed and operated in order to be well-adapted to the special features of biogas as opposed to natural gas? For this purpose biogas samples were taken from laboratory-scale and commercial plants and analysed by gas chromatography using various substrates and methods. By combining this with the use of a mass spectroscopy detector (GC-MS system) it was possible to perform a qualitative and quantitative analysis of sulphurious trace gases in the biogas which might cause damage to the fuel cell system. Investigations were performed on an experimental reformer using either modelled or native biogas of different compositions, the intent being to obtain information for the design of the individual process stages. The two operating parameters steam-methane ratio (or S/C ratio) and reforming temperature were varied to optimise parameter settings in terms of energy efficiency. By linking the reformer to a 500 W fuel cell it was possible confirm the suitability of the reformed biogas for use in fuel cells. [German] In diesm Forschungsvorhaben werden zwei Fragestellungen bearbeitet: 1. Welche Anforderungen ergeben sich an das Biogas, um den Spezifikationen von PEM-Brennstoffzellensystemen zu genuegen und eine sicheren Betrieb zu ermoeglichen? 2. Wie muss das Brennstoffzellensystem ausgelegt und gefuehrt werden, um den Besonderheiten von Biogas im Vergleich zu Erdgas Rechnung zu tragen? Dazu wurden Biogasproben aus Labor- und Praxisanlagen unter Beruecksichtigung unterschiedlicher Substrate und Verfahren gaschromatisch analysiert. Die Kopplung mit einem massenspektroskopischen Detektor (GC-MS System) ermoeglicht dabei die Qualifizierung und Quantifizierung der vorhandenen schwefelhaltigen Spurengase, die eine Schaedigung von Brennstoffzellenanlagen verursachen. Die

  17. Requirements and testing methods for surfaces of metallic bipolar plates for low-temperature PEM fuel cells

    Science.gov (United States)

    Jendras, P.; Lötsch, K.; von Unwerth, T.

    2017-03-01

    To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.

  18. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell

  19. Novel Polyoxometalate Containing Membranes for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mason K. Harrup; Frederick F. Stewart; Thomas A Luther; Tammy Trowbridge

    2009-03-01

    Current proton exchange membrane (PEM) technologies are inadequate to address the projected needs for fuel cell performance above 80 ºC. Continuing research into traditional ion carriers in novel membrane materials offers the promise of marginal improvement, representing only an evolutionary increase in performance. This conclusion is supported by the role of water in conduction. Thus, the key to better PEMs is not to eliminate water, but to change the role of water by developing ion carriers that will bind water more tightly than traditional sulfur or phosphorus based carriers resulting in materials that will conduct at higher temperatures. This change entails having a carrier structure that interacts more intimately with water and by increasing the ion carrier anionic charge to result in more tightly held inner shell protonated waters of hydration. Both of these factors synergistically act to maintain a critical water concentration at the carrier necessary for conduction. In this work, polyoxometalate (POM) clusters were selected to serve as these different proton carriers.

  20. Advanced catalyst supports for PEM fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Shao, Yuyan; Sun, Junming; Yin, Geping; Liu, Jun; Wang, Yong

    2016-11-01

    Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.

  1. A novel analytical analysis of PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Mohamad Zardoshtizade; Kalbasi, Mansour [Chemical Engineering Department, Amirkabir University of Technology, Tehran (Iran)

    2010-02-15

    In this study, a quasi three-dimensional model was developed for a single proton exchange membrane (PEM) fuel cell. The model was used for a half-cell which includes the cathode gas channel, gas diffusion layer (GDL), cathode catalyst layer and membrane is modeled. This model includes mass transfer in the gas channel and GDL, electrochemistry reaction in cathode catalyst layer, and charge transfer in the membrane phase. These expressions were solved by analytical methods. An agglomerate approach was used to describe cathode catalyst layer. By using analytical solution, the expressions can predict the PEM fuel cell behavior in different conditions which is the advantage of this method. (author)

  2. Design of metallic bipolar plates for PEM fuel cells.

    Science.gov (United States)

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  3. Innovation processes of knowledge-based technologies. Example of PEM fuel cell; Innovationsprozesse wissensbasierter Technologien. Beispiel der PEM-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Bjoern

    2011-07-01

    Knowledge as distinguished from increasingly crucial factor of production and forms the basis for development of knowledge-based technologies. This study analyzed the example of the PEM fuel cell technology, this innovation process, drawing upon the heuristic of the innovation system. At the same time a detailed picture of the PEM technology as part of the electric mobility is drawn. (orig.)

  4. Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hyuk Chang

    2013-01-01

    Full Text Available Elevated-temperature (100~200 °C polymer electrolyte membrane (PEM fuel cells have many features, such as their high efficiency and simple system design, that make them ideal for residential micro-combined heat and power systems and as a power source for fuel cell electric vehicles. A proton-conducting solid-electrolyte membrane having high conductivity and durability at elevated temperatures is essential, and phosphoric-acid-containing polymeric material synthesized from cross-linked polybenzoxazine has demonstrated feasible characteristics. This paper reviews the design rules, synthesis schemes, and characteristics of this unique polymeric material. Additionally, a membrane electrode assembly (MEA utilizing this polymer membrane is evaluated in terms of its power density and lifecycle by an in situ accelerated lifetime test. This paper also covers an in-depth discussion ranging from the polymer material design to the cell performance in consideration of commercialization requirements.

  5. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  6. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  7. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  8. Injection moulded low cost bipolar plates for PEM fuel cells

    Science.gov (United States)

    Heinzel, A.; Mahlendorf, F.; Niemzig, O.; Kreuz, C.

    The development of bipolar plates that can be produced by standard mass production techniques is a main issue for the commercialization of PEM fuel cells, as bipolar plates contribute significantly to the cost structure of PEM stacks. In recent years, the University of Duisburg-Essen together with the Zentrum für BrennstoffzellenTechnik GmbH (ZBT) has identified a number of carbon-polymer composites with densities of 1.6 g/cm 3, specific bulk conductivities between 5 and 150 S/cm and material prices between 2 and 10 €/kg. Standard composite mixtures consist of a thermoplast and a carbon compound mixture with additional additives to increase the conductivity of the compound material. The composites generally show high corrosion resistance in the PEM fuel cell environment. Composite material samples proved to be absolutely stable in immersion tests in sulphuric acid and deionized water under pure oxygen atmosphere for several thousand hours. ZBT has successfully demonstrated the production of bipolar plates by injection moulding with cycle times of 30-60 s. With the help of tailored moulds injection moulding of bipolar plates becomes price competitive even for comparatively small series in the range of several thousand plates. PEM stacks with injection moulded bipolar plates of 2.5-4 mm thickness and an electrical power of up to 200 W have been constructed and successfully operated.

  9. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Walczyk, Daniel F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  10. PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

    Science.gov (United States)

    Fung, Keith Kin Kei

    Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.

  11. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    Science.gov (United States)

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  12. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  13. Analytical and numerical analysis of PEM fuel cell performance curve

    OpenAIRE

    Kulikovsky, A. A.; Wuester, T.; Egmen, A.; D. Stolten

    2005-01-01

    We present a novel approach for analyzing the experimental voltage-current curves of a polymer electrolyte membrane (PEM) fuel cell. State-of-the-art numerical models involve many poorly known parameters. This makes a comparison of numerical and experimental polarization curves unreliable. We suggest characterizing the cell by first using a simplified analytical model, which contains a minimal number of parameters and ignores three-dimensional (3D) effects. The resulting physical parameters a...

  14. Next Generation Bipolar Plates for Automotive PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Adrianowycz, Orest; Norley, Julian; Stuart, David J; Flaherty, David; Wayne, Ryan; ; Williams, Warren; Tietze, Roger; Nguyen, Yen-Loan H; Zawodzinski, Tom; Pietrasz, Patrick

    2010-04-15

    The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the

  15. PEM fuel cell geometry optimisation using mathematical modeling

    Directory of Open Access Journals (Sweden)

    E Carcadea

    2008-09-01

    Full Text Available There have been extensive efforts devoted to proton exchangemembrane (PEM fuel cell modeling and simulations to study fuel cellperformance. Although fuel cells have been successfully demonstrated inboth automotive and stationary power applications, there are numeroustechnical and logistic issues that still have to be solved, such asperformance, cost, and system issues. A model based on steady,isothermal, electrochemical, three-dimensional computational fluiddynamics using the FLUENT CFD software package has been developedto predict the fluid flow pattern within a PEMFC. Three types of flow field areinvestigated with serpentine, parallel or spiral channels in order todetermine the best configuration for the fuel cell performance. In thiscontext, the paper presents the results that we have obtained and, as aconclusion of the simulations, we have achieved the best configurationregarding the performance for the fuel cell with serpentine channels. Weconsider the mathematical and computational modeling as an importantalternative for fuel cell optimization and for the exploitation/experimentationin cost reduction.

  16. Advanced Materials for PEM-Based Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic

  17. Advanced Materials for PEM-Based Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and

  18. Assessment of humidity management effects on PEM fuel cell performance

    OpenAIRE

    Osamudiamen Ose Micah, Ose Micah

    2011-01-01

    The electrical energy output and the performance of a PEM fuel cell is dependent on the ion transfer in the fuel cell. The ion transport mechanism in the electrolyte cell membrane is dependent on the charge site in the membrane. The charge sites increases with an increase in the hydration of the membrane, this shows that the water content of the membrane is important to facilitate the ion transfer in the electrolyte membrane, hence proper management of water is essential to the operation of t...

  19. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  20. Molecular modeling of PEM fuel cell electrochemistry

    Science.gov (United States)

    Rai, Varun

    Polymer Electrolyte Membrane fuel cell (PEMFC) is an electrochemical power-generating device that combines hydrogen (H2) with oxygen (O2) via electrochemical (electron-transfer) processes to form water. Among other features, its low operating temperatures, high theoretical efficiencies, and quick startup make PEMFC promising as a power source for several applications, like laptops, small-scale power generation, automobiles, etc. Although tremendous progress has been made in PEMFC technology in the last decade or so, a number of key technological issues still remain to be addressed before PEMFC comes to the consumer markets. The two main challenges are the cost and the performance of the PEMFC technology. A major contributor to both these limitations is the catalyst used in PEMFC---used to improve the efficiency of PEMFC by enhancing the rate of the electrochemical reactions, catalyst materials form about 20% of the total system cost. And yet, 15--20% of the theoretical efficiency of PEMFC is lost due to poor reaction rates at the catalysts. For its superior catalytic activity for the oxygen reduction reaction (ORR), which is the main electrochemical reaction in PEMFCs, Pt remains the leading choice for the cathode catalyst in PEMFCs. So, a solid grasp of the fundamental electrochemical processes at the Pt-electrolyte interface is necessary for the design of optimal catalysts (based on cost, activity, stability, and tolerance to contaminants) for PEMFCs. In this thesis, molecular modeling techniques were used to study the ORR on Pt, which resulted in two main contributions. First, two new computational algorithms for simulating advanced catalyst systems were developed. Second, the ORR on Pt(111) in acid solutions was studied using a combination of first-principles simulation methodologies, where both Dynamic Monte Carlo (DMC) simulations and Density Functional Theory (DFT) quantum simulations were employed. The results from this study provided several new insights

  1. Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Han, In-Su; Shin, Hyun Khil [GS Caltex Corp, Daejeon (Korea, Republic of)

    2015-04-15

    We present two data-driven modeling methods, partial least square (PLS) and artificial neural network (ANN), to predict the major operating and performance variables of a polymer electrolyte membrane (PEM) fuel cell stack. PLS and ANN models were constructed using the experimental data obtained from the testing of a 30 kW-class PEM fuel cell stack, and then were compared with each other in terms of their prediction and computational performances. To reduce the complexity of the models, we combined a variables importance on PLS projection (VIP) as a variable selection method into the modeling procedure in which the predictor variables are selected from a set of input operation variables. The modeling results showed that the ANN models outperformed the PLS models in predicting the average cell voltage and cathode outlet temperature of the fuel cell stack. However, the PLS models also offered satisfactory prediction performances although they can only capture linear correlations between the predictor and output variables. Depending on the degree of modeling accuracy and speed, both ANN and PLS models can be employed for performance predictions, offline and online optimizations, controls, and fault diagnoses in the field of PEM fuel cell designs and operations.

  2. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  3. Method of making MEA for PEM/SPE fuel cell

    Science.gov (United States)

    Hulett, Jay S.

    2000-01-01

    A method of making a membrane-electrode-assembly (MEA) for a PEM/SPE fuel cell comprising applying a slurry of electrode-forming material directly onto a membrane-electrolyte film. The slurry comprises a liquid vehicle carrying catalyst particles and a binder for the catalyst particles. The membrane-electrolyte is preswollen by contact with the vehicle before the electrode-forming slurry is applied to the membrane-electrolyte. The swollen membrane-electrolyte is constrained against shrinking in the "x" and "y" directions during drying. Following assembly of the fuel cell, the MEA is rehydrated inside the fuel cell such that it swells in the "z" direction for enhanced electrical contact with contiguous electrically conductive components of the fuel cell.

  4. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Zia Mirza, Program Manager

    2011-12-06

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  5. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...

  6. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  7. Electrochemical H/D isotope effects in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kaninski, Milica P. Marceta; Nikolic, Vladimir M.; Maksic, Aleksandar D.; Tasic, Gvozden S. [Department of Physical Chemistry, Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (RS); Miljanic, Scepan S. [University of Belgrade, Faculty of Physical Chemistry, P.O. Box 276, 11001 Belgrade (RS)

    2008-10-15

    An electrochemical H/D separation system consisting of electrolyzer and PEM fuel cell has been proposed. Isotope separation could be important as a part of the energy saving process in an energy-hydrogen-energy cycle. Any transfer of energy into hydrogen or vice versa induces change of the H/D isotope ratio, which can be considered, as a method to produce heavy water as by-product. In this way, the separation efficiency can contribute to the overall efficiency of the cycle. (author)

  8. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Schwartz; Hankwon Lim; Raymond Drnevich

    2010-12-31

    A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

  9. Analytical Investigation and Improvement of Performance of a Proton Exchange Membrane (Pem) Fuel Cell in Mobile Applications

    OpenAIRE

    Khazaee I.

    2015-01-01

    In this study, the performance of a proton exchange membrane fuel cell in mobile applications is investigated analytically. At present the main use and advantages of fuel cells impact particularly strongly on mobile applications such as vehicles, mobile computers and mobile telephones. Some external parameters such as the cell temperature (Tcell ) , operating pressure of gases (P) and air stoichiometry (λair ) affect the performance and voltage losses in the PEM fuel cell. Because of the exis...

  10. Dynamic Response during PEM Fuel Cell Loading-up

    Directory of Open Access Journals (Sweden)

    Jun Gou

    2009-07-01

    Full Text Available A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.

  11. Dynamic Response during PEM Fuel Cell Loading-up

    Science.gov (United States)

    Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng

    2009-01-01

    A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.

  12. Small Portable PEM Fuel Cell Systems for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2005-01-01

    Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges

  13. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  14. Development of materials and processes for low-cost production of high-temperature bipolar plates for use in polymer electrolyte membrane fuel cells (PEMFC). Final report; Material- und Verfahrensentwicklung fuer eine kostenguenstige Herstellung von Hochtemperatur-Bipolarplatten zum Einsatz in Polymer-Elektrolyt-Membran Brennstoffzellen (PEM-BZ). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In the context of the project 'Verfahren zur spritzgiesstechnischen Herstellung von HT-BPP' (processes for injection moulding of high-temperature fuel cells), bipolar plates for high-temperature proton exchange membrane fuel cells (HT-PEM-FC) were produced by an injection moulding process suited for mass production. This implied extensive material analyses of fillers and matrix materials. A specific compound for application in fuel cells and suited for mass production was produced on this basis. (orig./AKB)

  15. MODELLING AND FUZZY LOGIC CONTROL OF PEM FUEL CELL SYSTEM POWER GENERATION FOR RESIDENTIAL APPLICATION

    OpenAIRE

    MAMMAR, Khaled; Chaker, Abdelkader

    2010-01-01

    This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposedinclude a fuel cell stack model, reformer model and DC/AC inverter model. More then an analytical details ofhow active and reactive power output of a proton-exchange-membrane (PEM) fuel cell system is controlled.Furthermore a fuzzy logic (FLC) controller is used to control active power of PEM fuel cell system. Thecontroller modifies the hydrogen flow feedback from the terminal load. Si...

  16. Test of a PEM fuel cell with low voltage static converter

    Science.gov (United States)

    Thounthong, Phatiphat; Raël, Stéphane; Davat, Bernard

    This paper presents a test of a 500 W polymer electrolyte membrane (PEM) fuel cell connected with a power electronic converter. The aim of this device is to develop fuel cell dynamic models and to study converter structure and control to adapt fuel cell to an electrical power train. The design of the converter is first discussed before presenting different experimental results involving thermodynamic and mechanical phenomena of the PEM fuel cell.

  17. Proton transport in functionalised additives for PEM fuel cells: contributions from atomistic simulations.

    Science.gov (United States)

    Tölle, Pia; Köhler, Christof; Marschall, Roland; Sharifi, Monir; Wark, Michael; Frauenheim, Thomas

    2012-08-07

    The conventional polymer electrolyte membrane (PEM) materials for fuel cell applications strongly rely on temperature and pressure conditions for optimal performance. In order to expand the range of operating conditions of these conventional PEM materials, mesoporous functionalised SiO(2) additives are developed. It has been demonstrated that these additives themselves achieve proton conductivities approaching those of conventional materials. However, the proton conduction mechanisms and especially factors influencing charge carrier mobility under different hydration conditions are not well known and difficult to separate from concentration effects in experiments. This tutorial review highlights contributions of atomistic computer simulations to the basic understanding and eventual design of these materials. Some basic introduction to the theoretical and computational framework is provided to introduce the reader to the field, the techniques are in principle applicable to a wide range of other situations as well. Simulation results are directly compared to experimental data as far as possible.

  18. Carbon xerogels as catalyst supports for PEM fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Job, Nathalie; Lambert, Stephanie [Laboratoire de Genie chimique, Universite de Liege, Institut de Chimie B6a, Sart-Tilman, B-4000 Liege (Belgium); Marie, Julien; Berthon-Fabry, Sandrine; Achard, Patrick [Ecole des Mines de Paris, Centre Energetique et Procedes, BP 207, F-06904 Sophia-Antipolis Cedex (France)

    2008-09-15

    Carbon xerogels with various pore textures were prepared by evaporative drying and pyrolysis of resorcinol-formaldehyde gels, and used as supports for Pt catalysts in PEM fuel cell cathodes. The goal of this study was to determine whether carbon xerogels could replace the carbon aerogels which were previously used as Pt catalyst supports in the same electrochemical system, and to determine how the pore texture influences the cell performances. Pt catalysts were prepared by impregnation of carbon supports with aqueous H{sub 2}PtCl{sub 6} solution followed by reduction in aqueous phase with NaBH{sub 4}. Fuel cell measurements show that the metal surface actually available for the oxygen reduction reaction and the voltage losses due to diffusion phenomena strongly depend on the carbon pore texture. Finally, some carbon xerogels yield similar performance than carbon aerogels. (author)

  19. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T.; de Lira, S.; Puig, V.; Quevedo, J. [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D.; Riera, J.; Serra, M. [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  20. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  1. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  2. Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Samuel Simon Araya

    2012-10-01

    Full Text Available In this work the effects of reformate gas impurities on a H3PO4-doped polybenzimidazole (PBI membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC are studied. A unit cell assembly with a BASF Celtec®-P2100 high temperature membrane electrode assembly (MEA of 45 cm2 active surface area is investigated by means of impedance spectroscopy. The concentrations in the anode feed gas of all impurities, unconverted methanol-water vapor mixture, CO and CO2 were varied along with current density according to a multilevel factorial design of experiments. Results show that all the impurities degrade the performance, with CO being the most degrading agent and CO2 the least. The factorial analysis shows that there is interdependence among the effects of the different factors considered. This interdependence suggests, for example, that tolerances to concentrations of CO above 2% may be compromised by the presence in the anode feed of CO2. Methanol has a poisoning effect on the fuel cell at all the tested feed ratios, and the performance drop is found to be proportional to the amount of methanol in feed gas. The effects are more pronounced when other impurities are also present in the feed gas, especially at higher methanol concentrations.

  3. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions

    DEFF Research Database (Denmark)

    Thomas, Sobi; Vang, Jakob Rabjerg; Araya, Samuel Simon

    2017-01-01

    The objective of this paper is to separate out the effects of methanol and water vapour on a high temperature polymer electrolyte membrane fuel cell under different temperatures (160°C and 180°C) and current densities (0.2Acm-2, 0.4Acm-2 and 0.6Acm-2). The degradation rates at the different current...... the presence of 5% methanol tends to degrade the cell performance. However, the presence of H2O mitigates some of the adverse effects of methanol. The effect of varying fuel compositions was found to be more prominent at lower current densities. The voltage improves significantly when adding water vapour...... to the anode after pure hydrogen operation at 180°C. A decrease in the total resistance corresponding to the voltage improvement is observed from the impedance spectra. There is minimal variation in performance with the introduction of 3% and 5% methanol along with water vapour in the anode feed at all current...

  4. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  5. Develop Hydrophilic Conductive Coating Technology with High Oxidation Resistance for Non-Flow-Through PEM Fuel Cells and Electrolyzers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes to develop oxidation resistant, electrically conductive, hydrophilic coatings in PEM fuel cells and in PEM electrolyzers. The use of hydrophilic...

  6. Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells - Effect of Humidification

    DEFF Research Database (Denmark)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Zhong, Lijie

    2017-01-01

    In the present work, high-temperature polymer electrolyte membrane fuel cells were subjected to accelerated stress tests of 30,000 potential cycles between 0.6 and 1.0 V at 160 textdegreeC (133 h cycling time). The effect that humidity has on the catalyst durability was studied by testing either...... with or without humidification of the nitrogen that was used as cathode gas during cycling segments. Pronounced degradation was seen from the polarization curves in both cases, though permanent only in the humidified case. In the unhumidified case, the performance loss was more or less recoverable following 24 h...... humidification of this region. Catalyst degradation due to platinum dissolution, transport of its ions, and eventual recrystallization is reduced when this portion of the acid dries out. Consequently, catalyst particles are only mildly affected by the potential cycling in the unhumidified case....

  7. Onboard fuel processor for PEM fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Brian J.; Zhao, Jian L.; Ruffo, Michael; Khan, Rafey; Dattatraya, Druva; Dushman, Nathan [Nuvera Fuel Cells, Inc, 20 Acorn Park, Cambridge, MA 02140 (United States); Beziat, Jean-Christophe; Boudjemaa, Fabien [Renault, Service 64240 - FR TCR GRA 0 75, Technocentre Renault - 1 avenue du Golf, 78288 Guyancourt (France)

    2007-07-15

    To lower vehicle greenhouse gas emissions, many automotive companies are exploring fuel cell technologies, which combine hydrogen and oxygen to produce electricity and water. While hydrogen storage and infrastructure remain issues, Renault and Nuvera Fuel Cells are developing an onboard fuel processor, which can convert a variety of fuels into hydrogen to power these fuel cell vehicles. The fuel processor is now small enough and powerful enough for use on a vehicle. The catalysts and heat exchangers occupy 80 l and can be packaged with balance of plant controls components in a 150-l volume designed to fit under the vehicle. Recent systems can operate on gasoline, ethanol, and methanol with fuel inputs up to 200 kWth and hydrogen efficiencies above 77%. The startup time is now less than 4 min to lower the CO in the hydrogen stream to the target value for the fuel cell. (author)

  8. Transients of Water Distribution and Transport in PEM Fuel Cells

    KAUST Repository

    Hussaini, Irfan S.

    2009-01-01

    The response of polymer electrolyte membrane (PEM) fuel cells to a step change in load is investigated experimentally in this work. Voltage undershoot, a characteristic feature of transient response following a step increase in current, is due to transients of water distribution in the membrane and ionomers occurring at subsecond time scales. The use of humidified reactants as a means to control the magnitude of voltage undershoot is demonstrated. Further, the response under a step decrease in current density is explored to determine the existence of hysteresis. Under sufficiently humidified conditions, the responses under forward and reverse step changes are symmetric, but under low relative humidity conditions, voltage undershoot is twice as large as the overshoot. © 2009 The Electrochemical Society.

  9. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  10. Structured modelling and nonlinear analysis of PEM fuel cells; Strukturierte Modellierung und nichtlineare Analyse von PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Hanke-Rauschenbach, R.

    2007-10-26

    In the first part of this work a model structuring concept for electrochemical systems is presented. The application of such a concept for the structuring of a process model allows it to combine different fuel cell models to form a whole model family, regardless of their level of detail. Beyond this the concept offers the opportunity to flexibly exchange model entities on different model levels. The second part of the work deals with the nonlinear behaviour of PEM fuel cells. With the help of a simple, spatially lumped and isothermal model, bistable current-voltage characteristics of PEM fuel cells operated with low humidified feed gases are predicted and discussed in detail. The cell is found to exhibit current-voltage curves with pronounced local extrema in a parameter range that is of practical interest when operated at constant feed gas flow rates. (orig.)

  11. Simulation and Experimental Study of Bipolar Plate on the Performance PEM Fuel cell

    Science.gov (United States)

    Chinnasa, Pornchai; Khamsuk, Pattama; Seechalee, Sarunya; Swatsitang, Ekaphan

    2017-09-01

    This research is a simulated and experimental study on effects of bipolar electrodes of a PEM fuel cell on its power conversion efficiency. The PEM fuel cell structure consists of bipolar electrodes, proton exchange membrane with catalysts, flow channels of gases. This research used fuel cell of 49 cm2 in active area as a research sample and the Comsol 4.4 was employed to simulate flow channels which are serpentine pattern for anode and parallel pattern for cathode. The parameters used were calculated effects of such parameters using Comsol 4.4. After the calculation has been completed, the prototype of the PEM fuel cell were fabricated using graphite plate as electrodes which had the channel height of 0.20 cm, proton exchange membrane using carbon-platinum catalyst. Finally, further it was found that the effect of temperature on the power conversion efficiency is not severely. And for anode, the concentration of hydrogen gas was reduced 64 wt% due to the reaction whereas in parallel channel of cathode the oxygen concentration was reduced by only 6 wt% from 23 wt% at the entrance to 17 wt% at the end. The maximum power output of the prototype operated under such condition was 0.28 W/cm2 calculated from maximum power output voltage (Vmp) of 0.70 V and maximum power output current density of 0.42 A/cm2 which was in good agreement with that simulated using Comsol 4.4 which revealed the power output of 0.29 W/cm2.

  12. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  13. Real life testing of a Hybrid PEM Fuel Cell Bus

    Science.gov (United States)

    Folkesson, Anders; Andersson, Christian; Alvfors, Per; Alaküla, Mats; Overgaard, Lars

    Fuel cells produce low quantities of local emissions, if any, and are therefore one of the most promising alternatives to internal combustion engines as the main power source in future vehicles. It is likely that urban buses will be among the first commercial applications for fuel cells in vehicles. This is due to the fact that urban buses are highly visible for the public, they contribute significantly to air pollution in urban areas, they have small limitations in weight and volume and fuelling is handled via a centralised infrastructure. Results and experiences from real life measurements of energy flows in a Scania Hybrid PEM Fuel Cell Concept Bus are presented in this paper. The tests consist of measurements during several standard duty cycles. The efficiency of the fuel cell system and of the complete vehicle are presented and discussed. The net efficiency of the fuel cell system was approximately 40% and the fuel consumption of the concept bus is between 42 and 48% lower compared to a standard Scania bus. Energy recovery by regenerative braking saves up 28% energy. Bus subsystems such as the pneumatic system for door opening, suspension and brakes, the hydraulic power steering, the 24 V grid, the water pump and the cooling fans consume approximately 7% of the energy in the fuel input or 17% of the net power output from the fuel cell system. The bus was built by a number of companies in a project partly financed by the European Commission's Joule programme. The comprehensive testing is partly financed by the Swedish programme "Den Gröna Bilen" (The Green Car). A 50 kW el fuel cell system is the power source and a high voltage battery pack works as an energy buffer and power booster. The fuel, compressed hydrogen, is stored in two high-pressure stainless steel vessels mounted on the roof of the bus. The bus has a series hybrid electric driveline with wheel hub motors with a maximum power of 100 kW. Hybrid Fuel Cell Buses have a big potential, but there are

  14. PEM fuel cell fault detection and identification using differential method: simulation and experimental validation

    Science.gov (United States)

    Frappé, E.; de Bernardinis, A.; Bethoux, O.; Candusso, D.; Harel, F.; Marchand, C.; Coquery, G.

    2011-05-01

    PEM fuel cell performance and lifetime strongly depend on the polymer membrane and MEA hydration. As the internal moisture is very sensitive to the operating conditions (temperature, stoichiometry, load current, water management…), keeping the optimal working point is complex and requires real-time monitoring. This article focuses on PEM fuel cell stack health diagnosis and more precisely on stack fault detection monitoring. This paper intends to define new, simple and effective methods to get relevant information on usual faults or malfunctions occurring in the fuel cell stack. For this purpose, the authors present a fault detection method using simple and non-intrusive on-line technique based on the space signature of the cell voltages. The authors have the objective to minimize the number of embedded sensors and instrumentation in order to get a precise, reliable and economic solution in a mass market application. A very low number of sensors are indeed needed for this monitoring and the associated algorithm can be implemented on-line. This technique is validated on a 20-cell PEMFC stack. It demonstrates that the developed method is particularly efficient in flooding case. As a matter of fact, it uses directly the stack as a sensor which enables to get a quick feedback on its state of health.

  15. Experimental Analysis of the Effects of CO and CO2 on High Temperature PEM Fuel Cell Performance using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Vang, Jakob Rabjerg

    2010-01-01

    of fuel cells offer many advantages, particularly the increased desorption rate of CO on the anode catalyst. In order to evaluate the impact of CO and CO2 on the dynamic performance of the HTPEM fuel cell, electrochemical impedance spectroscopy (EIS) has been implemented in Labview, and used on BASF...

  16. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies

    Science.gov (United States)

    Wu, Jinfeng; Yuan, Xiao Zi; Martin, Jonathan J.; Wang, Haijiang; Zhang, Jiujun; Shen, Jun; Wu, Shaohong; Merida, Walter

    This paper reviews publications in the literature on performance degradation of and mitigation strategies for polymer electrolyte membrane (PEM) fuel cells. Durability is one of the characteristics most necessary for PEM fuel cells to be accepted as a viable product. In this paper, a literature-based analysis has been carried out in an attempt to achieve a unified definition of PEM fuel cell lifetime for cells operated either at a steady state or at various accelerated conditions. Additionally, the dependence of PEM fuel cell durability on different operating conditions is analyzed. Durability studies of the individual components of a PEM fuel cell are introduced, and various degradation mechanisms are examined. Following this analysis, the emphasis of this review shifts to applicable strategies for alleviating the degradation rate of each component. The lifetime of a PEM fuel cell as a function of operating conditions, component materials, and degradation mechanisms is then established. Lastly, this paper summarizes accelerated stress testing methods and protocols for various components, in an attempt to prevent the prolonged test periods and high costs associated with real lifetime tests.

  17. X-ray computed tomography of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pfrang, Andreas; Veyret, Damien; Tsotridis, Georgios [Commission of the European Communities, Petten (Netherlands). Joint Reseach Centre, Inst. for Energy; Janssen, Gaby [Energy Research Centre of the Netherlands ECN, Petten (Netherlands). Dept. of Hydrogen and Clean Fossil Fuels

    2010-07-01

    Proton exchange membrane (PEM) fuel cells were investigated by 3D x-ray computed tomography at a voxel size of 0.7 {mu}m. It is shown that this lab-based technique is not only suitable for the investigation of gas diffusion layers (GDL) as well as the investigation of membrane electrode assemblies (MEA), but also allows the calculation of macroscopic physical properties. The resolution of computed tomography is clearly sufficient to image the carbon fiber structure of gas diffusion layers in the as received GDLs as well as GDLs integrated into membrane electrode assemblies. It is also possible to visualize the catalyst layer within the MEA, which allows the investigation of layer thickness and structural defects on a larger scale than with conventional techniques. The macroscopic effective thermal conductivities of the gas diffusion layers were computed based on the 3D GDL structure reconstructed from tomography data to produce more reliable input data for fuel cell modeling. The computation was carried out by solving the energy equation considering a pure thermal conduction problem. The computations show - in agreement with the expectation and experimental data - that the through-plane thermal conductivities are lower than the in-plane thermal conductivities. (orig.)

  18. Analytical Investigation and Improvement of Performance of a Proton Exchange Membrane (Pem) Fuel Cell in Mobile Applications

    Science.gov (United States)

    Khazaee, I.

    2015-05-01

    In this study, the performance of a proton exchange membrane fuel cell in mobile applications is investigated analytically. At present the main use and advantages of fuel cells impact particularly strongly on mobile applications such as vehicles, mobile computers and mobile telephones. Some external parameters such as the cell temperature (Tcell ) , operating pressure of gases (P) and air stoichiometry (λair ) affect the performance and voltage losses in the PEM fuel cell. Because of the existence of many theoretical, empirical and semi-empirical models of the PEM fuel cell, it is necessary to compare the accuracy of these models. But theoretical models that are obtained from thermodynamic and electrochemical approach, are very exact but complex, so it would be easier to use the empirical and smi-empirical models in order to forecast the fuel cell system performance in many applications such as mobile applications. The main purpose of this study is to obtain the semi-empirical relation of a PEM fuel cell with the least voltage losses. Also, the results are compared with the existing experimental results in the literature and a good agreement is seen.

  19. Proton Exchange Membrane (PEM) Fuel Cell Status and Remaining Challenges for Manned Space-Flight Applications

    Science.gov (United States)

    Reaves, Will F.; Hoberecht, Mark A.

    2003-01-01

    The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.

  20. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  1. HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery

    DEFF Research Database (Denmark)

    Gao, Xin

    This thesis presents two case studies on improving the efficiency and the loadfollowing capability of a high temperature polymer electrolyte membrane (HTPEM) fuel cell system by the application of thermoelectric (TE) devices. TE generators (TEGs) are harnessed to recover the system exhaust gas...... power output on the subsystem design and performance were also systematically analyzed. The TEG subsystem configuration is optimized. The usefulness and convenience of the model are proved. TE coolers (TECs) are integrated into the methanol evaporator of the HT-PEM system for improving the whole system...... developed three-dimensional numerical model in ANSYS Fluent®. This thesis introduces the progress of this project in a cognitive order. The first chapter initially prepares the theory and characteristics of the fuel cell system and TE devices. Project motivations are conceived. Then similar studies existing...

  2. Numerical analyses of a PEM fuel cell’s performance having a perforated type gas flow distributor

    OpenAIRE

    M Virk; Mustafa, M.; A Holdø

    2016-01-01

    This paper presents the steady state, isothermal, three dimensional (3D)numerical analyses of an intermediate temperature, proton electrolytemembrane (PEM) fuel cell’s performance with the perforated type gas flowchannels. Finite element based numerical technique is used to solve thismulti transport numerical model coupled with the flow in porous medium,charge balance, electrochemical kinetics and membrane water content.Numerical analyses provided a detailed insight of the various physicalphe...

  3. Zero-CO2 emission and low-crossover 'rechargeable' PEM fuel cells using cyclohexane as an organic hydrogen reservoir.

    Science.gov (United States)

    Kariya, Nobuko; Fukuoka, Atsushi; Ichikawa, Masaru

    2003-03-21

    High performance (open circuit voltage = 920 mV, maximum power density = 14-15 mW cm(-2)) of the PEM fuel cell was achieved by using cyclohexane as a fuel with zero-CO2 emission and lower-crossover through PEM than with a methanol-based fuel cell.

  4. Understanding of ammonia transport in PEM fuel cells

    Science.gov (United States)

    Jung, Myunghee

    This dissertation investigates ammonia (NH3) as a fuel contaminant to the anode in Proton Exchange Membrane Fuel Cells (PEMFCs). Since NH 3 is fed to the anode in a gas phase and transferred to the cathode, the effect of a contaminant is distributed through MEA and quite complicated. This study is focused on the investigation of mechanism of NH3 transport and the isolation of multiple effects to degrade the performance of fuel cell. An External Reference Electrode (ERE) was employed to decouple the effect of individual electrode and explain the mechanism of NH3 contamination. A mechanism of NH3 transport is proposed and supported by data for various inlet conditions in a N2/N2 laboratory-scale fuel cell at Open Circuit Conditions (OCC). With a commercialized GORE(TM) PRIMEA RTM 5631 MEAs at 70°C, data were obtained utilizing a material balance technique, which uses an ion selective electrode (ISE) to determine the concentration of ammonium ion in the process streams. The results indicate that ammonia is not transported across the membrane when the feeds to both electrodes are dry. However, with humidified feeds ammonia was transported from the anode to the cathode. The data also indicate the water content of in the MEA is the critical factor that causes NH3 crossover in the MEA. Diffusion coefficients of NH3 in MEA are also calculated at different relative humilities. An ERE was developed for PEM fuel cell by using a NafionRTM strip which was used to understand contamination mechanism. The voltage of anode electrode relative to ERE was measured during a polarization curve. The data showed the measurement of individual electrode potential was extremely affected by the misalignment between two electrodes. We compare the overpotential measured from the reference electrode and the calculated overpotential from subtracting the cell voltages between neat hydrogen and a 25 ppm CO in H 2 stream at same current. The studies indicated that the overpotentials obtained from

  5. Structural and Morphological Features of Acid-Bearing Polymers for PEM Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Yunsong; Siu, Ana; Peckham, Timothy J.

    2008-01-01

    Chemical structure, polymer microstructure, sequence distribution, and morphology of acid-bearing polymers are important factors in the design of polymer electrolyte membranes (PEMs) for fuel cells. The roles of ion aggregation and phase separation in vinylic- and aromatic-based polymers in proton...... conductivity and water transport are described. The formation, dimensions, and connectivity of ionic pathways are consistently found to play an important role in determining the physicochemical properties of PEMs. For polymers that possess low water content, phase separation and ionic channel formation...... in the design of the next generation of PEMs....

  6. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the

  7. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, F.D. Jr.; James, B.D. [Directed Technologies, Inc., Arlington, VA (United States); Mooradian, R.P. [Ford Motor Co., Dearborn, MI (United States)

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  8. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  9. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  10. Analytical modeling of PEM fuel cell i-V curve

    Energy Technology Data Exchange (ETDEWEB)

    Haji, Shaker [College of Engineering, Department of Chemical Engineering, University of Bahrain, P.O. Box 32038 (Bahrain)

    2011-02-15

    The performance of a fuel cell is characterized by its i-V curve. In this study, the performance of a bench scale fuel cell stack, run on hydrogen/air, is measured experimentally for different air flow rates and temperatures. The experimental data, obtained from the 40-W proton exchange membrane fuel cell (PEMFC), are used in estimating the parameters of a completely analytical model that describes the i-V curve. The analytical model consists of the three fundamental losses experienced by a fuel cell, namely: activation, ohmic, and concentration losses. The current loss is also considered in the model. While the Tafel constants, ohmic resistance, and the concentration loss constant are estimated through regression, the limiting current density and the current loss are obtained through measurements. The effect of temperature on the fuel cell performance, exchange current density, and current loss is also investigated. Both the exchange current density and the current loss are plotted against temperature on an Arrhenius-like plot and the related parameters are estimated. The theoretical equations derived in the literature, which model fuel cell performance, are found to reasonably fit the obtained experimental data. (author)

  11. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    Science.gov (United States)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  12. Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luczak, F.

    1998-03-01

    Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

  13. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    Science.gov (United States)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  14. Simulation of the PEM fuel cell hybrid power train of an automated guided vehicle and comparison with experimental results

    NARCIS (Netherlands)

    Bram Veenhuizen; J.C.N. Bosma

    2009-01-01

    At HAN University research has been started into the development of a PEM fuel cell hybrid power train to be used in an automated guided vehicle. For this purpose a test facility is used with the possibility to test all important functional aspects of a PEM fuel cell hybrid power train. In this

  15. A Central Composite Face-Centered Design for Parameters Estimation of PEM Fuel Cell Electrochemical Model

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2013-11-01

    Full Text Available In this paper, a new approach based on Experimental of design methodology (DoE is used to estimate the optimal of unknown model parameters proton exchange membrane fuel cell (PEMFC. This proposed approach combines the central composite face-centered (CCF and numerical PEMFC electrochemical. Simulation results obtained using electrochemical model help to predict the cell voltage in terms of inlet partial pressures of hydrogen and oxygen, stack temperature, and operating current. The value of the previous model and (CCF design methodology is used for parametric analysis of electrochemical model. Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. However this methodology is able to define the exact values of the parameters from the manufacture data. It was tested for the BCS 500-W stack PEM Generator, a stack rated at 500 W, manufactured by American Company BCS Technologies FC.

  16. PEM fuel cell impedance at open circuit: PEMFC cathode vs SOFC anode

    OpenAIRE

    Kulikovsky, Andrei

    2016-01-01

    A physical model for PEM fuel cell impedance Z at open circuit potential (OCP) is developed and analytical expression for Z is derived. The OCP impedance is a sum of the cathode catalyst layer (CCL) and the gas–diffusion layer (GDL) impedances connected in series. The GDL impedance differs from the Warburg impedance, which is often used in modeling of fuel cell electrodes. A key parameter determining the OCP impedance spectrum is the Newman’s dimensionless reaction penetration depth ε. In PEM...

  17. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  18. Start-up analysis for automotive PEM fuel cell systems

    Science.gov (United States)

    De Francesco, M.; Arato, E.

    The development of fuel cell cars can play an important role in resolving transport problems, due to the high environmental compatibility and high efficiency of this kind of vehicle. Among the different types of fuel cells, proton-exchange membrane fuel cells (PEMFCs) are considered the best solution for automotive applications at the moment. In this work, constructive criteria are discussed with the aim of obtaining a power generation module adaptable to a wide range of cars. A particular problem in accomplishing the overall project is represented by the definition of the compressor system for air feeding. In this work, the design approach to the problem will be delineated: some options are reviewed and the best solution is analysed. The transient response of the system (fuel cell and compressor) is investigated in order to optimise the start-up running through a model of a fuel cell stack and a compressor simulation. The model and its results are proposed as a work procedure to solve the problem, by varying external conditions: in fact, to perform the system start-up under stable conditions, the air relative humidity and temperature must be maintained in a proper range of values. The approach here presented has been utilised for the definition of the characteristics of the power module and layout of a middle-size hybrid city bus in the framework of a project promoted by the European Union.

  19. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    Science.gov (United States)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  20. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    Polymer electrolyte membrane (PEM) fuel cells requires an appropriate hydration in order to ensure high efficiency and long durability. As water is essential for promoting proton conductivity in the membrane, it is important to control membrane water hydration to avoid flooding. In this study we...

  1. Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells.

    Science.gov (United States)

    Long, Donghui; Li, Wei; Qiao, Wenming; Miyawaki, Jin; Yoon, Seong-Ho; Mochida, Isao; Ling, Licheng

    2011-09-07

    Partially unzipped carbon nanotubes prepared by strong oxidation and thermal expansion of carbon nanotubes were explored as an advanced catalyst support for PEM fuel cells. The unique hybrid structure of 1D nanotube and 2D double-side graphene resulted in an outstanding electrocatalytic performance. This journal is © The Royal Society of Chemistry 2011

  2. The effect of inhomogeneous compression on water transport in the cathode of a PEM fuel cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    A three-dimensional, multi-component, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS inc.), is used to investigate the effect of porous media compression on transport phenomenon of a PEM Fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas diffusion l...

  3. Analytic determination of the effective thermal conductivity of PEM fuel cell gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, E.; Bahrami, M.; Djilali, N. [Department of Mechanical Engineering and the Institute for Integrated Energy Systems, University of Victoria, Victoria, BC V8W 3P6 (Canada)

    2008-04-15

    Accurate information on the temperature field and associated heat transfer rates are particularly important in devising appropriate heat and water management strategies in proton exchange membrane (PEM) fuel cells. An important parameter in fuel cell performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL). Estimation of the effective thermal conductivity is complicated because of the random nature of the GDL micro structure. In the present study, a compact analytical model for evaluating the effective thermal conductivity of fibrous GDLs is developed. The model accounts for conduction in both the solid fibrous matrix and in the gas phase; the spreading resistance associated with the contact area between overlapping fibers; gas rarefaction effects in microgaps; and salient geometric and mechanical features including fiber orientation and compressive forces due to cell/stack clamping. The model predictions are in good agreement with existing experimental data over a wide range of porosities. Parametric studies are performed using the proposed model to investigate the effect of bipolar plate pressure, aspect ratio, fiber diameter, fiber angle, and operating temperature. (author)

  4. Analytic determination of the effective thermal conductivity of PEM fuel cell gas diffusion layers

    Science.gov (United States)

    Sadeghi, E.; Bahrami, M.; Djilali, N.

    Accurate information on the temperature field and associated heat transfer rates are particularly important in devising appropriate heat and water management strategies in proton exchange membrane (PEM) fuel cells. An important parameter in fuel cell performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL). Estimation of the effective thermal conductivity is complicated because of the random nature of the GDL micro structure. In the present study, a compact analytical model for evaluating the effective thermal conductivity of fibrous GDLs is developed. The model accounts for conduction in both the solid fibrous matrix and in the gas phase; the spreading resistance associated with the contact area between overlapping fibers; gas rarefaction effects in microgaps; and salient geometric and mechanical features including fiber orientation and compressive forces due to cell/stack clamping. The model predictions are in good agreement with existing experimental data over a wide range of porosities. Parametric studies are performed using the proposed model to investigate the effect of bipolar plate pressure, aspect ratio, fiber diameter, fiber angle, and operating temperature.

  5. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water......Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...

  6. Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Achim Kienle

    2009-03-01

    Full Text Available The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable.

  7. The Hardware Implementation of Demonstrator Air Independent Electric Supply System Based on Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Grzeczka G.

    2016-12-01

    Full Text Available The paper presents results of the research project whose the main goal was to build a technology demonstrator of an electric supply system based on the PEM fuel cell. The electric supply system is dedicated to operation on a board of a submarine during emergency situations. The underwater conditions influence on a specific architecture of supply subsystems of the PEM fuel cell system. In this case the fuel cell stack is supplied by both clean hydrogen and clean oxygen stored in pressurized tanks. The hydrogen has to be delivered in a closed loop, while the oxygen can be delivered in a closed or an open loop. In the technology demonstrator, the supply of the fuel cell stack by the hydrogen in the closed loop and the oxygen in the open loop with a precise control of its flow were used.

  8. FITTING A THREE DIMENSIONAL PEM FUEL CELL MODEL TO MEASUREMENTS BY TUNING THE POROSITY AND

    DEFF Research Database (Denmark)

    Bang, Mads; Odgaard, Madeleine; Condra, Thomas Joseph

    2004-01-01

    A three-dimensional, computational fluid dynamics (CFD) model of a PEM fuel cell is presented. The model consists ofstraight channels, porous gas diffusion layers, porous catalystlayers and a membrane. In this computational domain, most ofthe transport phenomena which govern the performance of the......PEM fuel cell are dealt with in detail.The model solves the convective and diffusive transport of thegaseous phase in the fuel cell and allows prediction of theconcentration of the species present. A special feature of themodel is a method that allows detailed modelling and predictionof electrode kinetics...... dependency on the gas concentration andactivation overpotential can thereby be addressed. The proposedmodel makes it possible to predict the effect of geometrical andmaterial properties on the fuel cell?s performance. It is shownhow the ionic conductivity and porosity of the catalyst layeraffects...

  9. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Grundler, M.; Derieth, T.; Beckhaus, P.; Heinzel, A. [centre for fuel cell technology ZBT GmbH (Germany)

    2010-07-01

    Using standard mass production techniques for the fabrication of fuel cell components, such as bipolar plates, is a main issue for the commercialisation of PEM fuel cell systems. Bipolar plates contribute significantly to the cost structure of PEM stacks. In an upcoming fuel cell market a large number of bipolar plates with specific high-quality standards will be needed. At the Centre for Fuel Cell Technology (ZBT) together with the University of Duisburg-Essen fuel cell stacks based on injection moulded bipolar plates have been developed and demonstrated successfully [1]. This paper focuses on the interactions between carbon filling materials (graphite, carbon black and carbon nanotubes (CNT)) in compound based bipolar plates and especially the potential of CNTs, which were used in bipolar plates for the first time. The entire value added chain based on the feedstock, the compounding and injection moulding process, the component bipolar plate, up to the operation of a PEM single fuel cell stack with CNT-based bipolar plates is disclosed. (orig.)

  10. Modeling and Design of Hybrid PEM Fuel Cell Systems for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    . The most common type of fuel cell used for automotive applications is the PEM fuel cell. They are known for their high efficiency, low emissions and high reliability. However, the biggest obstacles to introducing fuel cell vehicles are the lack of a hydrogen infrastructure, cost and durability of the stack...... a virtual fork-lift system. This investigation examines important performance metrics, such as hydrogen consumption and battery SOC as a function of the fuel cell and battery size, control strategy, drive cycle, and load variation for a fork-lift truck system. This study can be used as a benchmark...

  11. Advances in the development of a hydrogen/oxygen PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Tori, C.; Garaventta, G.; Visintin, A.; Triaca, W.E. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 16, Suc. 4 (1900) La Plata (Argentina); Baleztena, M.; Peralta, C.; Calzada, R.; Jorge, E. [Grupo de Investigacion en Energias Sustentables y Eficiencia Energetica (GIESEE), Departamento de Electrotecnia, Universidad Tecnologica Nacional, Facultad Regional La Plata, Av. 60 esq. 124 (1900) La Plata (Argentina); Barsellini, D. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 16, Suc. 4 (1900) La Plata (Argentina); Grupo de Investigacion en Energias Sustentables y Eficiencia Energetica (GIESEE), Departamento de Electrotecnia, Universidad Tecnologica Nacional, Facultad Regional La Plata, Av. 60 esq. 124 (1900) La Plata (Argentina)

    2008-07-15

    Recent advances in the design and construction of a hydrogen/oxygen PEM fuel cell stack are presented. A test bench including measurement and control devices to monitor the fuel cell operating parameters was mounted. The influence of the characteristics of the membrane electrode assembly, bipolar plates, etc., on the performance of the fuel cell stack was studied. The behavior of the fuel cell stack with a different number of cells in series was evaluated. In order to identify and minimize the energy losses a critical analysis of the results was done. (author)

  12. Three-wheel air turbocompressor for PEM fuel cell systems

    Science.gov (United States)

    Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel

    2003-08-19

    A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.

  13. Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hamza Qayyum

    2016-11-01

    Full Text Available The catalyst layers for polymer-electrolyte-membrane (PEM fuel cells were fabricated by deposition of platinum directly onto the gas diffusion layer using pulsed laser deposition (PLD. This technique reduced the number of steps required to synthesize the catalyst layers and the amount of Pt loading required. PEM fuel cells with various Pt loadings for the cathode were investigated. With a cathode Pt loading of 100 μ g·cm − 2 , the current density of a single cell reached 1205 mA·cm − 2 at 0.6 V, which was close to that of a single cell using an E-TEK (trademark Pt/C electrode with a cathode Pt loading of 400 μ g·cm − 2 . Furthermore, for a PEM fuel cell with both electrodes prepared by PLD and a total anode and cathode Pt loading of 117 μ g·cm − 2 , the overall Pt mass-specific power density at 0.6 V reached 7.43 kW·g − 1 , which was five times that of a fuel cell with E-TEK Pt/C electrodes. The high mass-specific power density was due to that a very thin nanoporous Pt layer was deposited directly onto the gas diffusion layer, which made good contact with the Nafion membrane and thus resulted in a low-resistance membrane electrode assembly.

  14. Mathematical modeling of channel-porous layer interfaces in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, M.; Fuhrmann, J.; Holzbecher, E.; Linke, A.

    2008-07-01

    In proton exchange membrane (PEM) fuel cells, the transport of the fuel to the active zones, and the removal of the reaction products are realized using a combination of channels and porous diffusion layers. In order to improve existing mathematical and numerical models of PEM fuel cells, a deeper understanding of the coupling of the flow processes in the channels and diffusion layers is necessary. After discussing different mathematical models for PEM fuel cells, the work focuses on the description of the coupling of the free flow in the channel region with the filtration velocity in the porous diffusion layer as well as interface conditions between them. The difficulty in finding effective coupling conditions at the interface between the channel flow and the membrane lies in the fact that often the orders of the corresponding differential operators are different, e.g., when using stationary (Navier-)Stokes and Darcy's equation. Alternatively, using the Brinkman model for the porous media this difficulty does not occur. We review different interface conditions, including the well-known Beavers-Joseph-Saffman boundary condition and its recent improvement by Le Bars and Worster. (orig.)

  15. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  16. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    at the scanning electron microscopy image of the cross-section of the degraded MEA and comparing it with that of a pristine MEA, great loss in platinum in the anode catalyst layer and carbon corrosion between the anode catalyst layer and the gas diffusion layer are observed, which contribute to the increase......This paper reports an accelerated degradation test of a high temperature PEM fuel cell under repeated H2 starvation condition. The H2 stoichiometry is cycled between 3.0 and 0.8 every 2 min during the test. The experimental results show that the polarity of the fuel cell is reversed under H2...... starvation condition, and the cell performance indicated by cell voltage at H2 stoichiometry of 3.0 declines from 0.59 V to 0.41 V in 19 cycles. Since CO2 is detected in anode exhaust under H2 starvation condition, carbon corrosion is believed to be the reason for the degradation in this test. After the test...

  17. Online Soft Sensor of Humidity in PEM Fuel Cell Based on Dynamic Partial Least Squares

    Directory of Open Access Journals (Sweden)

    Rong Long

    2013-01-01

    Full Text Available Online monitoring humidity in the proton exchange membrane (PEM fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results.

  18. Online soft sensor of humidity in PEM fuel cell based on dynamic partial least squares.

    Science.gov (United States)

    Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai

    2013-01-01

    Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results.

  19. An analytical study of the PEM fuel cell with axial convection in the gas channel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yur-Tsai; Lin, Cong-Ting [Yuan Ze University, Taoyuan (China). Department of Mechanical Engineering and Fuel Cells Research Center; Chen, Yen-Cho [National United University, Miaoli (China). Department of Energy and Resources; Yin, Ken-Ming [Yuan Ze University, Taoyuan (China). Department of Chemical Engineering; Yang, Chin-Ting [St. John' s University, Taipei (China). Department of Mechanical and Computer Aided Engineering

    2007-12-15

    A quasi two-dimensional mathematical model for a polymer electrolyte membrane (PEM) fuel cell is developed with consideration of axial convection in the gas channel and analytical solutions are obtained. A half-cell model which contains the cathode gas channel, gas diffuser, catalyst layer, and the membrane is investigated. To account for the effect of gas velocity in the gas channel, axial convection is included in the oxygen transport equation of the gas channel. Expressions for the oxygen mass fraction distribution in the gas channel, gas diffuser, and catalyst layer, and the current density and the membrane phase potential in the catalyst layer and membrane are derived. The solutions are presented in the form of infinite series. The polarization curve is also expressed as a function of the surface overpotential. Due to the advantage of the closed-form solutions this model can be easily employed as a diagnostic tool for PEM fuel cell simulations. (author)

  20. Oxygen reduction on a Pt(111 catalyst in HT-PEM fuel cells by density functional theory

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2017-08-01

    Full Text Available The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system’s energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn–Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111 surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system’s energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.

  1. Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory

    Science.gov (United States)

    Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu

    2017-08-01

    The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.

  2. Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell

    OpenAIRE

    Andrei Kulikovsky

    2014-01-01

    We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM) fuel cell with distributed (aged) along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA). We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel...

  3. Development of self-supporting MPLs for investigations of water transport in PEM fuel cells

    OpenAIRE

    Bauder, Alexander; Haußmann, Jan; Markötter, Henning; Wagner, Norbert; Manke, Ingo; Scholta, Joachim; Friedrich, K. Andreas

    2012-01-01

    The performance of a polymer electrolyte membrane (PEM) fuel cell has a strong dependence of its water management. The membrane needs humidity to have sufficient ion conductivity. But at high humidity, especially at high current densities, flooding of the electrodes can occur and consequently the available active area begins to decrease. The primary purpose of a micro porous layer (MPL) on a gas diffusion layer (GDL) is the effective wicking of liquid water from the catalyst layer into the di...

  4. Optimal Control of a PEM Fuel Cell for the Inputs Minimization

    Directory of Open Access Journals (Sweden)

    José de Jesús Rubio

    2014-01-01

    Full Text Available The trajectory tracking problem of a proton exchange membrane (PEM fuel cell is considered. To solve this problem, an optimal controller is proposed. The optimal technique has the objective that the system states should reach the desired trajectories while the inputs are minimized. The proposed controller uses the Hamilton-Jacobi-Bellman method where its Riccati equation is considered as an adaptive function. The effectiveness of the proposed technique is verified by two simulations.

  5. Fault detection and isolation of PEM fuel cell system based on nonlinear analytical redundancy

    OpenAIRE

    Aitouche, A; Yang, Q; Ould Bouamama, B.

    2011-01-01

    Abstract This paper presents a procedure dealing with the issue of fault detection and isolation (FDI) using nonlinear analytical redundancy (NLAR) technique applied in a proton exchange membrane (PEM) fuel cell system based on its mathematic model. The model is proposed and simplified into a five orders state space representation. The transient phenomena captured in the model include the compressor dynamics, the flow characteristics, mass and energy conservation and manifold fluid...

  6. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  7. A Study of influence on sulfonated TiO2-Poly (Vinylidene fluoride-co-hexafluoropropylene) nano composite membranes for PEM Fuel cell application

    Science.gov (United States)

    kumar, K. Selva; Rajendran, S.; Prabhu, M. Ramesh

    2017-10-01

    The present work describes the sulfonated Titania directly blended with Poly (Vinylidene fluoride-co-hexafluoropropylene) as a host polymer by solvent casting technique for PEM fuel cell application. Characterization studies such as FT-IR, SEM, EDX, AFM, Proton conductivity, contact angle measurement, IEC, TG, water uptake, tensile strength were performed by for synthesized proton conducting polymer electrolytes. The maximum proton conductivity value was found to be 3.6 × 10-3S/cm for 25 wt% sulfonated Titania based system at 80 °C. The temperature dependent proton conductivity of the polymer electrolyte follows an Arrhenius relationship. Surface morphology of the composite membranes was investigated by tapping mode. Thermal stability of the system was studied by TG analysis. The fabricated composite membranes with high proton conductivity, good water uptake and IEC parameters exhibited a maximum fuel cell power density of 85 Mw/cm2for PEM fuel cell application.

  8. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell.

    Science.gov (United States)

    Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Li, Wen-Wei; Wang, Long-Fei; Yu, Han-Qing

    2012-04-15

    The fouling characteristics of proton exchange membrane (PEM) in microbial fuel cell (MFC) and the resulting deterioration of MFC performance were explored in this study. It was observed that the ion exchange capacity, conductivity and diffusion coefficients of cations of PEM were reduced significantly after fouling. Imaging analysis coupled with FTIR analysis indicated that the fouling layer attached on PEM consisted of microorganisms encased in extracellular polymers and inorganic salt precipitations. The results clearly demonstrate that PEM fouling deteriorated the performance of MFCs and led to a decrease in electricity generation. Cation transfer limitation might play an important role in the deterioration of MFC performance because of the membrane fouling. This was attributed to the physical blockage of charge transfer in the MFC resulted from the membrane fouling. With the experimental results, the effect of membrane fouling on the electrical generation of MFCs was evaluated. It was found that the decreased diffusion coefficients of cations and cathodic potential loss after membrane fouling contributed mainly to the deterioration of the MFC performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for the PEM Fuel Cell

    Science.gov (United States)

    Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O.

    2003-08-01

    The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.

  10. Development of a PEM Fuel Cell City Bus with a Hierarchical Control System

    Directory of Open Access Journals (Sweden)

    Siliang Cheng

    2016-05-01

    Full Text Available The polymer electrolyte membrane (PEM fuel cell system is considered to be an ideal alternative for the internal combustion engine, especially when used on a city bus. Hybrid buses with fuel cell systems and energy storage systems are now undergoing transit service demonstrations worldwide. A hybrid PEM fuel cell city bus with a hierarchical control system is studied in this paper. Firstly, the powertrain and hierarchical control structure is introduced. Secondly, the vehicle control strategy including start-stop strategy, energy management strategy, and fuel cell control strategy, including the hydrogen system and air system control strategies, are described in detail. Finally, the performance of the fuel cell was analyzed based on road test data. Results showed that the different subsystems were well-coordinated. Each component functioned in concert in order to ensure that both safety and speed requirements were satisfied. The output current of the fuel cell system changed slowly and the output voltage was limited to a certain range, thereby enhancing durability of the fuel cell. Furthermore, the economic performance was optimized by avoiding low load conditions.

  11. Direct PEM fuel cell using "organic chemical hydrides" with zero-CO2 emission and low-crossover.

    Science.gov (United States)

    Kariya, Nobuko; Fukuoka, Atsushi; Ichikawa, Masaru

    2006-04-14

    A series of "organic chemical hydrides" such as cyclohexane, methylcyclohexane, cyclohexene, 2-propanol, and cyclohexanol were applied to the direct PEM fuel cell. High performances of the PEM fuel cell were achieved by using cyclohexane (OCV = 920 mV, PD(max) = 15 mW cm(-2)) and 2-propanol (OCV = 790 mV, PD(max) = 78 mW cm(-2)) as fuels without CO(2) emissions. The rates of fuel crossover for cyclohexane, 2-propanol, and methanol were estimated, and the rates of fuel permeation of cyclohexane and 2-propanol were lower than that of methanol. Water electrolysis and electro-reductive hydrogenation of acetone mediated by PEM were carried out and formation of 2-propanol in cathode side was observed. This system is the first example of a "rechargeable" direct fuel cell.

  12. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  13. Hydrogen as fuel carrier in PEM fuelcell for automobile applications

    Science.gov (United States)

    Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.

    2015-02-01

    The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.

  14. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely....... Membrane Electrode Assembly (MEA) is commonly considered as the heart of cell system [2]. Degradation of the noble metal catalysts in MEAs especially Three-Phase-Boundary (TPB) is a key factor directly influencing fuel cell durability. In this work, electrochemical degradation of Pt and Pt/Ru alloy were...

  15. Characterization and experimental results in PEM fuel cell electrical behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, Cristian; Puleston, Paul F.; More, Jeronimo J. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 48 y 116 s/n (CC 91), La Plata B1900TAG (Argentina); CONICET, Consejo de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, Buenos Aires C1033AAJ (Argentina); Mayosky, Miguel A. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 48 y 116 s/n (CC 91), La Plata B1900TAG (Argentina); CICpBA, Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Calle 526 entre 10 y 11, La Plata 1900 (Argentina)

    2010-06-15

    A control oriented electrochemical static model of a proton exchange membrane fuel cell (PEMFC) stack is developed in this paper. Even though its validation is performed on a specific 7-cell PEMFC stack fed by humidified air and pure hydrogen, the methodology and fit parameters can be applied to different fuel cell systems with minor changes. The fuel cell model was developed combining theoretical considerations and semi-empirical analysis based on the experimental data. The proposed model can be successfully included into a larger dynamic subsystem to complete the power generation system. (author)

  16. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  17. Modelling and Optimization of Reforming Systems for use in PEM Fuel Cell

    DEFF Research Database (Denmark)

    Berry, Melissa; Korsgaard, Anders Risum; Nielsen, Mads Pagh

    2004-01-01

    reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest......Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent...

  18. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  19. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2001-01-01

    A polymer electrolyte membrane fuel cell operational at temperatures around 150-200 degrees C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H/sub 3/PO/sub 4/-doped in a doping range from 30...

  20. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  1. Low Cost PEM Fuel Cell Metal Bipolar Plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Conghua [TreadStone Technologies, Inc.

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  2. Advances in PEM fuel cells with CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric; Cunha, Edgar Ferrari da; Zararya, Ahmed; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], Email: eric@ipen.br; Cekinski, Efrain [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2010-07-01

    This paper presents some applications of computational fluid dynamics techniques in the optimization of Proton Exchange Membrane Fuel Cell (PEMFC) designs. The results concern: modeling of gas distribution channels, the study for both porous anode and cathode and the three-dimensional modeling of a partial geometry layer containing catalytic Gas Diffusion Layers (GDL) and membrane. Numerical results of the simulations of graphite plates flow channels, using ethanol as fuel, are also presented. Some experimental results are compared to the corresponding numerical ones for several cases, demonstrating the importance and usefulness of this computational tool. (author)

  3. Parametric Sensitivity Tests- European PEM Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests...

  4. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  5. Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy

    Science.gov (United States)

    Zhu, Ying; Zhu, Wenhua H.; Tatarchuk, Bruce J.

    2014-06-01

    A temperature above 100 °C is always desired for proton exchange membrane (PEM) fuel cell operation. It not only improves kinetic and mass transport processes, but also facilitates thermal and water management in fuel cell systems. Increased carbon monoxide (CO) tolerance at higher operating temperature also simplifies the pretreatment of fuel supplement. The novel phosphoric acid (PA) doped polybenzimidazole (PBI) membranes achieve PEM fuel cell operations above 100 °C. The performance of a commercial high temperature (HT) PEM fuel cell stack module is studied by measuring its impedance under various current loads when the operating temperature is set at 160 °C. The contributions of kinetic and mass transport processes to stack impedance are analyzed qualitatively and quantitatively by equivalent circuit (EC) simulation. The performance of a traditional PEM fuel cell stack module operated is also studied by impedance measurement and EC simulation. The operating temperature is self-stabilized between 40 °C and 65 °C. An enhancement of the HT-PEM fuel cell stack in polarization impedance is evaluated by comparing to the traditional PEM fuel cell stack. The impedance study on two commercial fuel cell stacks reveals the real situation of current fuel cell development.

  6. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  7. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  8. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    Directory of Open Access Journals (Sweden)

    Hong eLiu

    2014-01-01

    Full Text Available In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for relatively large size fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  9. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  10. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications

    Science.gov (United States)

    Hoberecht, Mark A.; Jakupca, Ian J.

    2011-01-01

    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  11. Carbon nanotubes as electrode substrate material for PEM fuel cells; Kohlenstoff-Nanoroehrchen als Elektrodenmaterial fuer PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Soehn, Matthias

    2010-06-21

    This thesis reports an enhanced method to deposit nanoscaled noble metal catalysts (Pt/Ru) uniformly on carbon nanotubes based on wet chemical reduction of anorganic precursors via ethylene glycol. This well-known method is widely used to deposit noble metal catalyst particles on carbon black. Unfortunately, carbon nanotubes tend to agglomerate and therefore form bundles which cannot be penetrated by the precursor. Thus, effectiveness of the substrate is reduced. The new method prevents this by suspending the CNTs in butyl acetate by means of ultrasonic dispersion leading to a homogenous distribution. Because the butyl acetate is almost unpolar, it is nearly immiscible with the water-based ethylene glycol mixture. This problem has been solved by adding liquid Nafion {sup registered} which acts as an emulsifying agent. Thus an emulsion is created by ultrasonic treatment. This results in 30 {mu}m-sized droplets of butyl acetate with a layer of CNTs and Nafion {sup registered}. The large interface to the ethylene glycol phase yields a large surface for homogenous catalyst deposition. The prepared samples showed a narrow size distribution ({+-}0.5 nm) of small noble metal particles with loading up to 50% by weight and an average particle size of 3 nm. They are investigated using XRD, SEM, TEM, TGA-MS and CV. The added Nafion {sup registered} improves catalyst utilisation by establishing a proton conductive path to the catalyst particles. Furthermore, different manufacturing techniques for the CNT electrodes are evaluated. Thin layer Membrane-Electrode-Assemblies (MEAs) are prepared by the airbrush technique. Electrode thickness, composition and structure as well as membrane thickness is varied and the MEAs are tested in a single-cell hydrogen-oxygen-fed PEM fuel cell. The cells are characterised by cyclic IV curves which are recorded over an extended period of time, showing power densities up to 770mWcm-2 at a platinum loading of 0.3mgcm-2. Additionally, the MEAs are

  12. Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Andrei Kulikovsky

    2014-01-01

    Full Text Available We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM fuel cell with distributed (aged along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA. We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel by fitting the model equation to the cell polarization data is demonstrated.

  13. Impedance Spectroscopy Study of the PEM Fuel Cell Cathode with Nonuniform Nafion Loading

    OpenAIRE

    Reshetenko, Tatyana; Kulikovsky, Andrei

    2017-01-01

    We report modeling and experimental study of impedance of the PEM fuel cell cathode with nonuniform ionomer loading. A physics–based model for the high–frequency impedance is developed and analytical solution for impedance is derived. Assuming that the CCL proton conductivity σp exponentially decays from the membrane surface, we fit the model to experimental spectra of the cell measured at the open circuit conditions. Fitting gives the characteristic scale of the σp decay, the average CCL pro...

  14. Research on water discharge characteristics of PEM fuel cells by using neutron imaging technology at the NRF, HANARO.

    Science.gov (United States)

    Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan

    2008-05-01

    An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.

  15. Application of Butler-Volmer equations in the modelling of activation polarization for PEM fuel cells

    Science.gov (United States)

    Mann, R. F.; Amphlett, J. C.; Peppley, B. A.; Thurgood, C. P.

    Proton exchange membrane (PEM) fuel cells have been under development for many years and appear to be the potential solution for many electricity supply applications. Modelling and computer simulation of PEM fuel cells have been equally active areas of work as a means of developing better understanding of cell and stack operation, facilitating design improvements and supporting system simulation studies. In general, fuel cell models must be capable of predicting values of the activation polarization at both the anode and the cathode. Since the magnitude of an activation polarization for a particular electrode depends on the inverse of the chemical (or electrochemical) reaction rate at that electrode, reaction rate expressions are normally required for each electrode. The reaction rate is commonly expressed as an 'exchange current density', typical symbol i 0, and mechanistic expressions to predict i 0 are, therefore, components of an ideal model. Most expressions for i 0 are based on the Butler-Volmer (B-V) equation or on more approximate equations derived from the B-V equation. Many publications use one of these B-V equations without a critical determination of the applicability or accuracy of the particular equation being used. The present paper examines these questions and makes some recommendations regarding the applicability of each equation in the 'B-V family of equations'. In addition, terminology and symbols have been modified, where possible, to make modelling based on B-V equations more easily understood and applied by those without an extensive background in electrochemistry.

  16. Model based PEM fuel cell state-of-health monitoring via ac impedance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, N.; Doulet, C.; Nouillant, C. [PSA Peugeot-Citroeen, Centre Technique de Velizy, 2, Route de Gisy, Bat. 91 VV141, 78943 Velizy-Villacoublay (France); Dauphin-Tanguy, G.; Ould-Bouamama, B. [LAGIS UMR CNRS 8146, Ecole Centrale de Lille, 59651 Villeneuve d' Ascq (France)

    2006-09-22

    The present paper deals with monitoring of flooding and drying out of a proton exchange membrane (PEM) fuel cell using a model-based approach coupled with ac impedance measurements. A study of the impedance response of a 150 cm{sup 2} six-cell air/H{sub 2} PEM fuel cell as a function of inlet gas relative humidity was carried out. Parameters of a Randles-like equivalent circuit were then fitted to the data. In order to improve the quality of the fit, the classical Randles cell was extended by changing the standard plane capacitor into a constant phase element (CPE). It was found that monitoring the evolution of the three resistances of this modified Randles model was an efficient and robust way of monitoring the state-of-health (SOH) of the fuel cell with respect to the water content of the membrane electrode assembly. Moreover, the non-integer power of the CPE was found to be statistically constant over a wide range of operating conditions, thus comforting the assumption that it has a physical meaning. Qualitative interpretation of the variation of the parameters as a function of the SOH is proposed in both flooded and dry conditions. (author)

  17. STEAM AND SOFC BASED REFORMING OPTIONS OF PEM FUEL CELLS FOR MARINE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Mohamed M. El Gohary

    2015-06-01

    Full Text Available The need for green energy sources without or with low emissions in addition to improve the using efficiency of current fossil fuels in the marine field makes it important to replace or improve current fossil-fuelled engines. The replacement process should work on narrowing the gap between the most scientific innovative clean energy technologies and the concepts of feasibility and cost-effective solutions. Early expectations of very low emissions and relatively high efficiencies have been met in marine power plants using fuel cell. In this study, steam and SOFC based reforming options of natural gas for PEM fuel cells are proposed as an attractive option to limit the environmental impact of the marine sector. The benefits of these two different reforming options can be assessed using computer predictions incorporating chemical flow sheeting software. It is found that a high overall efficiency approaching 60% may be achieved using SOFC based reforming systems which are significantly better than a reformed PEM system or an SOFC only system.

  18. Surface modified stainless steels for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  19. A CFD model for analysis of performance, water and thermal distribution, and mechanical related failure in PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-07-01

    Full Text Available This paper presents a comprehensive three–dimensional, multi–phase, non-isothermal model of a Proton Exchange Membrane (PEM fuel cell that incorporates significant physical processes and key parameters affecting the fuel cell performance. The model construction involves equations derivation, boundary conditions setting, and solution algorithm flow chart. Equations in gas flow channels, gas diffusion layers (GDLs, catalyst layers (CLs, and membrane as well as equations governing cell potential and hygro-thermal stresses are described. The algorithm flow chart starts from input of the desired cell current density, initialization, iteration of the equations solution, and finalizations by calculating the cell potential. In order to analyze performance, water and thermal distribution, and mechanical related failure in the cell, the equations are solved using a computational fluid dynamic (CFD code. Performance analysis includes a performance curve which plots the cell potential (Volt against nominal current density (A/cm2 as well as losses. Velocity vectors of gas and liquid water, liquid water saturation, and water content profile are calculated. Thermal distribution is then calculated together with hygro-thermal stresses and deformation. The CFD model was executed under boundary conditions of 20°C room temperature, 35% relative humidity, and 1 MPA pressure on the lower surface. Parameters values of membrane electrode assembly (MEA and other base conditions are selected. A cell with dimension of 1 mm x 1 mm x 50 mm is used as the object of analysis. The nominal current density of 1.4 A/cm2 is given as the input of the CFD calculation. The results show that the model represents well the performance curve obtained through experiment. Moreover, it can be concluded that the model can help in understanding complex process in the cell which is hard to be studied experimentally, and also provides computer aided tool for design and optimization of PEM

  20. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Harris, Aaron P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-01-01

    A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

  1. Design, construction and characterisation of a chip-integrated PEM fuel cell system; Auslegung, Aufbau und Charakterisierung eines chipintegrierten PEM-Brennstoffzellensystems

    Energy Technology Data Exchange (ETDEWEB)

    Erdler, G.

    2008-07-01

    A novel chip-integrated fuel cell system was designed, constructed and characterised. A novel construction concept was developed for miniaturisation and integration of a PEM fuel cell on a semiconductor substrate. The new construction concept integrates the hydrogen store in the fuel cell structure, where it is coupled directly to the fuel cell anode. This makes it possible to construct the fuel cell, together with integrated circuits and sensors, via CMOS-compatible process and thus opens up the perspective of constructing autonomous microsystems with monolithically integrated power supply. [German] In der vorliegenden Arbeit konnte ein neuartiges chipintegriertes Brennstoffzellensystem ausgelegt, aufgebaut und charakterisiert werden. Zur Miniaturisierung und Integration einer PEM-Brennstoffzelle auf ein Halbleitersubstrat wurde ein neuartiges Aufbaukonzept entwickelt. Das neue Aufbaukonzept integriert den Wasserstoffspeicher in den Brennstoffzellenaufbau hinein, der Wasserstoffspeicher wird direkt an die Anode der Brennstoffzelle angekoppelt. Dieses neuartige Aufbaukonzept erlaubt es, die Brennstoffzelle zusammen mit integrierten Schaltkreisen und Sensoren ueber CMOS kompatible Prozesse herzustellen und eroeffnet somit die Perspektive zum Aufbau autonomer Mikrosysteme mit monolithisch integrierter Energieversorgung.

  2. Simulation of the PEM fuel cell hybrid power train of an automated guided vehicle and comparison with experimental results

    OpenAIRE

    Veenhuizen, Bram; Bosma, J.C.N.

    2009-01-01

    At HAN University research has been started into the development of a PEM fuel cell hybrid power train to be used in an automated guided vehicle. For this purpose a test facility is used with the possibility to test all important functional aspects of a PEM fuel cell hybrid power train. In this paper the first experimental results of the testing of the power train are presented, driving a drive cycle designed especially for this automated guided vehicle. Experimental results are compared to r...

  3. Experimental determination of optimal clamping torque for AB-PEM Fuel cell

    Directory of Open Access Journals (Sweden)

    Noor Ul Hassan

    2016-04-01

    Full Text Available Polymer electrolyte Membrane (PEM fuel cell is an electrochemical device producing electricity by the reaction of hydrogen and oxygen without combustion. PEM fuel cell stack is provided with an appropriate clamping torque to prevent leakage of reactant gases and to minimize the contact resistance between gas diffusion media (GDL and bipolar plates. GDL porous structure and gas permeability is directly affected by the compaction pressure which, consequently, drastically change the fuel cell performance. Various efforts were made to determine the optimal compaction pressure and pressure distributions through simulations and experimentation. Lower compaction pressure results in increase of contact resistance and also chances of leakage. On the other hand, higher compaction pressure decreases the contact resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers, consequently, lowering cell performance. The optimal cell performance is related to the gasket thickness and compression pressure on GDL. Every stack has a unique assembly pressure due to differences in fuel cell components material and stack design. Therefore, there is still need to determine the optimal torque value for getting the optimal cell performance. This study has been carried out in continuation of deve­lopment of Air breathing PEM fuel cell for small Unmanned Aerial Vehicle (UAV application. Compaction pressure at minimum contact resistance was determined and clamping torque value was calcu­la­ted accordingly. Single cell performance tests were performed at five different clamping torque values i.e 0.5, 1.0, 1.5, 2.0 and 2.5 N m, for achieving optimal cell per­formance. Clamping pressure distribution tests were also performed at these torque values to verify uniform pressure distribution at optimal torque value. Experimental and theoretical results were compared for making inferences about optimal cell perfor­man­ce. A

  4. A PEM fuel cell based on electrocatalyst and membrane materials modified by PANAM dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma-Garcia, J.; Chapman, T.W.; Godinez, L.A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro (Mexico)

    2008-10-15

    Due to its high energy conversion efficiency and low emission of pollutants, fuel-cell technology has been generally recognized as a key twenty-first century energy source. For polymer electrolyte membrane fuel cells (PEMFC), it has been found that platinum and its alloys exhibit the best electrocatalytic activity for oxygen reduction. The highest electrocatalytic activity of platinum and its alloys can be achieved when the particles are produced in the nanometer range. In this context, organic molecules have been adopted as templates to control the size of metal nanoparticles. Dendrimers, in particular, have shown promising properties for this application, and strategies that include direct adsorption, electrostatic attachment and covalent bonding have been developed for connecting metal-bearing dendrimers to conducting substrates. This paper reported on the preliminary results of a study that involved the construction and testing of a hydrogen-oxygen PEM fuel cell based on carbon-fiber-paper electrodes coated with hydroxyl-terminated dendrimers that encapsulated nanoparticles of platinum. This prototype cell also employed an ion exchange membrane comprising a cellulose acetate filter functionalized with proton-exchanging dendrimers. A proton-exchange membrane was prepared by binding duplex amine-carboxylate dendrimers to a cellulose-acetate support. With these dendrimer-based materials, a hydrogen-oxygen fuel cell was assembled and the performance compared with cells prepared with Nafion-based membranes. The voltage-current profiles and the power-density curves from the new cell provide encouragement to continue work with these dendrimer-modified materials. The paper discussed the experimental methods, with particular reference to materials; electrode preparation and characterization; proton-exchange membrane preparation; and PEM fuel-cell assembly and testing. It was concluded that the use of the dendritic macromolecules as supports for the nanoparticulate

  5. Mesoporous nanostructured Nb-doped titanium dioxide microsphere catalyst supports for PEM fuel cell electrodes.

    Science.gov (United States)

    Chevallier, Laure; Bauer, Alexander; Cavaliere, Sara; Hui, Rob; Rozière, Jacques; Jones, Deborah J

    2012-03-01

    Crystalline microspheres of Nb-doped TiO(2) with a high specific surface area were synthesized using a templating method exploiting ionic interactions between nascent inorganic components and an ionomer template. The microspheres exhibit a porosity gradient, with a meso-macroporous kernel, and a mesoporous shell. The material has been investigated as cathode electrocatalyst support for polymer electrolyte membrane (PEM) fuel cells. A uniform dispersion of Pt particles on the Nb-doped TiO(2) support was obtained using a microwave method, and the electrochemical properties assessed by cyclic voltammetry. Nb-TiO(2) supported Pt demonstrated very high stability, as after 1000 voltammetric cycles, 85% of the electroactive Pt area remained compared to 47% in the case of commercial Pt on carbon. For the oxygen reduction reaction (ORR), which takes place at the cathode, the highest stability was again obtained with the Nb-doped titania-based material even though the mass activity calculated at 0.9 V vs RHE was slightly lower. The microspherical structured and mesoporous Nb-doped TiO(2) is an alternative support to carbon for PEM fuel cells. © 2012 American Chemical Society

  6. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.

    Science.gov (United States)

    Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H

    2006-08-15

    The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

  7. Numerical study of changing the geometry of the flow field of a PEM fuel cell

    Science.gov (United States)

    Khazaee, I.; Sabadbafan, H.

    2016-05-01

    The geometry of channels of a PEM fuel cell is an important parameter that affects the performance of it that the lower voltage loss in polarization curve can indicate the better performance. In this study a complete three-dimensional and single phase model is used to investigate the effect of increasing the number of serpentine channels in the bipolar plates and also increasing the area (depth) of channels of a PEM fuel cell with rectangular, triangular and elliptical cross-section geometry. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region is developed and numerically solved using a finite volume based computational fluid dynamics technique. The results show that there are good agreement with the numerical results and experimental results of the previous work of authors. Also the results show that by increasing the number of channels from one to four and eight, the performance improved about 18 % and by decreasing the area of channels from 2 to 1 mm2 the performance improved about 13 %.

  8. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  9. Durability of Membrane Electrode Assemblies (MEAs) in PEM Fuel Cells Operated on Pure Hydrogen and Oxygen

    Science.gov (United States)

    Stanic, Vesna; Braun, James; Hoberecht, Mark

    2003-01-01

    Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of

  10. Design, Fabrication and Prototype testing of a Chip Integrated Micro PEM Fuel Cell Accumulator combined On-Board Range Extender

    Science.gov (United States)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2014-11-01

    In this work we present the design, fabrication and prototype testing of Chip Integrated Micro PEM Fuel Cell Accumulator (CIμ-PFCA) combined On-Board Range Extender (O-BRE). CIμ-PFCA is silicon based micro-PEM fuel cell system with an integrated hydrogen storage feature (palladium metal hydride), the run time of CIμ-PFCA is dependent on the stored hydrogen, and in order to extend its run time an O-BRE is realized (catalytic hydrolysis of chemical hydride, NaBH4. Combining the CIμ-PFCA and O-BRE on a system level have few important design requirements to be considered; hydrogen regulation, gas -liquid separator between the CIμ-PFCA and the O-RE. The usage of traditional techniques to regulate hydrogen (tubes), gas-liquid phase membranes (porous membrane separators) are less desirable in the micro domain, due to its space constraint. Our approach is to use a passive hydrogen regulation and gas-liquid phase separation concept; to use palladium membrane. Palladium regulates hydrogen by concentration diffusion, and its property to selectively adsorb only hydrogen is used as a passive gas-liquid phase separator. Proof of concept is shown by realizing a prototype system. The system is an assembly of CIμ-PFCA, palladium membrane and the O-BRE. The CIμ-PFCA consist of 2 individually processed silicon chips, copper supported palladium membrane realized by electroplating followed by high temperature annealing process under inter atmosphere and the O-BRE is realized out of a polymer substrate by micromilling process with platinum coated structures, which functions as a catalyst for the hydrolysis of NaBH4. The functionality of the assembled prototype system is demonstrated by the measuring a unit cell (area 1 mm2) when driven by the catalytic hydrolysis of chemical hydride (NaBH4 and the prototype system shows run time more than 15 hours.

  11. WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Tungsten carbide (WC) nanopowder was tested as a non-platinum cathode electrocatalyst for polymer electrolyte membrane (PEM) water electrolysers, operating at elevated temperatures. It was prepared in thermal plasma reactor with confined plasma jet from WO3 precursor in combination with CH4...... carburizing agent. The results of the investigation showed that the activity of tungsten carbide as cathode electrocatalyst increases significantly with temperature and this effect is more pronounced than for platinum, especially, at 150 °C....

  12. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    Operation under fuel starvation has been proved to be harmful to the fuel cell by causing severe and irreversible degradation. To characterize the behaviors of the high temperature PEM fuel cell under fuel starvation conditions, the cell voltage and local current density is measured simultaneousl...

  13. Experimental validation of modelling tools for a PEM fuel cell; Validation experimentale d'outils de modelisation d'une pile a combustible de type PEM

    Energy Technology Data Exchange (ETDEWEB)

    Boillot, M.

    2005-10-15

    In this work, a global view of the phenomena occurring in a PEM fuel cell is given. An original methodology was developed in order to determine the main parameters: thermodynamics, kinetics and transport phenomena. The gas flow in bipolar plates was characterised using experimental determination of residence time distributions and numerical simulations. Kinetics of both electrochemical reactions were analysed feeding the cell by diluted gases. In this part, the diffusion of reactants in the membrane electrodes assembly was taken into account. Finally, the relationship between humidity and electrical performance was investigated and the ohmic resistance of the cell was estimated. (author)

  14. Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications

    Science.gov (United States)

    Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang

    2017-02-01

    Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided

  15. Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Duleep, Dr. K. G. [Energy and Environmental Analysis, Inc., an ICF Company

    2008-10-01

    The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supply is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required. PEM fuel cells appear to be potentially competitive in two markets: (1) Backup power (BuP) supply, and (2) electrically-powered MHE (Mahadevan et al., 2007a, 2007b). There are several Original Equipment Manufacturers (OEMs) of PEM fuel cell systems for these applications but production levels have been quite low (on the order of 100-200 per year) and cumulative production experience is also limited (on the order of 1,000 units to date). As a consequence, costs remain above target levels and PEM fuel cell OEMs are not yet competitive in these markets. If cost targets can be reached and acceptable solutions to hydrogen supply found, a sustainable North American PEM fuel cell industry could be established. If not, the industry and its North American supply chain could disappear within a year or two. The Hydrogen Fuel Cell and Infrastructure Technologies (HFCIT) program of the U.S. Department of Energy (DOE) requested a rapid assessment of the potential for a government acquisition program to bootstrap the market for non-automotive PEM fuel cells by driving down costs via economies of scale and learning-by-doing. The six week study included in-depth interviews of three manufacturers

  16. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    Energy Technology Data Exchange (ETDEWEB)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated

  17. Investigation of Advanced Components in a High Pressure Single-Cell Electrolyser for the Development of a HP-PEM-ELY Stack as Part of a Regenerative Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Niakolas Dimitrios K.

    2017-01-01

    Full Text Available The objective of the presented work, done under current ESA activity (Contract No. 4000109578/13/NL/SC, is the performance and tolerance evaluation of selected components and materials for the development of a High Pressure, Polymer Electrolyte Membrane (PEM Electrolyser (HP-PEM-ELY Stack, aiming to operate at 80 bar with a performance output of 0.3 A/cm2 at 1.6 V. An extensive study was performed on a single-cell high pressure PEM electrolyser manifold, leading to a list of materials with suitable properties and engineering solutions towards operation in space environment. This investigation provided the necessary feedback for the design of a HP-PEM-ELY stack, which is also discussed. The ultimate target of the current ESA activity is to implement research findings, develop and operate a complete regenerative fuel cell system, comprising of a High Temperature Fuel Cell Stack and the HP-PEM-ELY stack. System aspects are briefly discussed.

  18. Non-dimensional analysis of PEM fuel cell phenomena by means of AC impedance measurements

    Science.gov (United States)

    Iranzo, Alfredo; Muñoz, Miguel; Pino, Fco. Javier; Rosa, Felipe

    AC impedance or electrochemical impedance spectroscopy (EIS) is becoming a fundamental technique used by researchers and scientists in proton exchange membrane (PEM) fuel cell analysis and development. In this work, in situ impedance measurements are presented for a series of operating conditions in a 50 cm 2 fuel cell. The electrode charge transfer resistance was determined from the corresponding arcs of the Nyquist diagrams. The analyses were performed for H 2/O 2 and H 2/air operation at different stoichiometric factors and reactant gases humidification. Characteristic time scales of charge transfer processes at the different operating conditions were estimated from the corresponding Bode plots. These values were used for a non-dimensional analysis of the different fuel cell electrochemical and transport processes, namely electrochemical reaction versus GDL reactant transport. Fuel cell adapted Damkhöler numbers are thus presented, where the results indicate that the GDL diffusion transport is the limiting process for the cases under analysis, especially when air is used as oxidant. Additional analysis of channel convective mass transport versus GDL diffusive mass transport is also presented.

  19. Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.

  20. Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2003-01-01

    This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.

  1. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.

    2005-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.

  2. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  3. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  4. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis.

    Science.gov (United States)

    Zhu, Xiaobing; Zhang, Huamin; Zhang, Yu; Liang, Yongmin; Wang, Xiaoli; Yi, Baolian

    2006-07-27

    An ultrathin poly(tetrafluoroethylene) (PTFE)-reinforced multilayer self-humidifying composite membrane (20 microm, thick) is developed. The membrane is composed of Nafion-impregnated porous PTFE composite as the central layer, and SiO2 supported nanosized Pt particles (Pt-SiO2) imbedded into the Nafion as the two side layers. The proton exchange membrane (PEM) fuel cell employing the self-humidifying membrane (Pt-SiO2/NP) turns out a peak power density of 1.40 W cm(-2) and an open circuit voltage (OCV) of 1.032 V under dry H2/O2 condition. The excellent performance is attributed to the combined result of both the accelerated water back-diffusion in the thin membrane and the adsorbing/releasing water properties of the Pt-SiO2 catalyst in the side layers. Moreover, the inclusion of the hygroscopic Pt-SiO2 catalyst inside the membrane results in an enhanced anode self-humidification capability and also the decreased cathode polarization (accordingly an improved cell OCV). Several techniques, such as transmission electronic microscopy, scanning electronic microscopy, energy dispersive spectroscopy, thermal analysis and electrochemical impedance spectroscopy etc., are employed to characterize the Pt-SiO2/NP membrane. The results are discussed in comparison with the plain Nafion/PTFE membrane (NP). It is established that the reverse net water drag (from the cathode to the anode) across the Pt-SiO2/NP membrane reaches 0.16 H2O/H+. This implies a good hydration of the Pt-SiO2/NP membrane and thus ensures an excellent PEM fuel cell performance under self-humidification operation.

  5. Experimental study of humidity changes on the performance of an elliptical single four-channel PEM fuel cell

    Science.gov (United States)

    Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman

    2017-01-01

    Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.

  6. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2006-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.

  7. Modelling and Identification of Oxygen Excess Ratio of Self-Humidified PEM Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Edi Leksono

    2012-07-01

    Full Text Available One essential parameter in fuel cell operation is oxygen excess ratio which describes comparison between reacted and supplied oxygen number in cathode. Oxygen excess ratio relates to fuel cell safety and lifetime. This paper explains development of air feed model and oxygen excess ratio calculation in commercial self-humidified PEM fuel cell system with 1 kW output power. This modelling was developed from measured data which was limited in open loop system. It was carried out to get relationship between oxygen excess ratio with stack output current and fan motor voltage. It generated fourth-order 56.26% best fit ARX linear polynomial model estimation (loss function = 0.0159, FPE = 0.0159 and second-order ARX nonlinear model estimation with 75 units of wavenet estimator with 84.95% best fit (loss function = 0.0139. The second-order ARX model linearization yielded 78.18% best fit (loss function = 0.0009, FPE = 0.0009.

  8. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction.

    Science.gov (United States)

    Bing, Yonghong; Liu, Hansan; Zhang, Lei; Ghosh, Dave; Zhang, Jiujun

    2010-06-01

    In this critical review, we present the current technological advances in proton exchange membrane (PEM) fuel cell catalysis, with a focus on strategies for developing nanostructured Pt-alloys as electrocatalysts for the oxygen reduction reaction (ORR). The achievements are reviewed and the major challenges, including high cost, insufficient activity and low stability, are addressed and discussed. The nanostructured Pt-alloy catalysts can be grouped into different clusters: (i) Pt-alloy nanoparticles, (ii) Pt-alloy nanotextures such as Pt-skins/monolayers on top of base metals, and (iii) branched or anisotropic elongated Pt or Pt-alloy nanostructures. Although some Pt-alloy catalysts with advanced nanostructures have shown remarkable activity levels, the dissolution of metals, including Pt and alloyed base metals, in a fuel cell operating environment could cause catalyst degradation, and still remains an issue. Another concern may be low retention of the nanostructure of the active catalyst during fuel cell operation. To facilitate further efforts in new catalyst development, several research directions are also proposed in this paper (130 references).

  9. Experimental comparison of standard fuel cells PEM in radial configuration, coil and spiral; Comparacion experimental de celdas de combustible tipo PEM en configuracion radial, serpentin y espiral

    Energy Technology Data Exchange (ETDEWEB)

    Cano Andrade, Sergio

    2008-12-15

    After analyzing each one of the possible energy sources to replace oil the following question arises: which of all the possible sources is the suitable one? With no doubt another important factor in the election of this source is due to take into account, which has to do with the great problem that the humanity deals on a daily basis: the greenhouse effect. Taking into account the greenhouse effect, the fuel cells on the basis of hydrogen are the more viable energy source to substitute oil, since in their operation they are friendly with the environment since they do not produce polluting agents, reducing enormously the problem of global heating in which the planet is bottled. It is very certain that many disadvantages in these fuel cells on the basis of hydrogen still exist, but the arduous investigations realized until the present time foresee an excellent future where the planet will be able to satisfy its daily energy demand on the basis of the hydrogen technology. In future works one must have special care of the humidity control of gases before entering the fuel cell, since it is an important parameter in the correct operation of the standard fuel cells PEM. In the present investigation the advance in the state-of-the-art of the hydrogen technology is illustrated, specifically with the generation of electricity on the basis of the novel configurations of standard fuel cells PEM. Until the moment similar work it has not been found in the bibliography similar work where it is experienced with this type of radial configuration for the hydrogen technologies. The geometry and the results presented/displayed in this analysis correspond to a work of the highest category in the state-of-the-art of the fuel cells; in addition, an ample expectation due to the highly satisfactory results found, either numerically as well as experimentally, in comparison with other geometries is obtained. [Spanish] Despues de analizar cada una de las posibles fuentes de energia para

  10. Break-in and Performance Issues on a single cell PBI-based PEM Fuel Cell

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Jespersen, Jesper Lebæk

    of the fuel cell, even though break-in of a fuel cell implemented in a commercial application would most likely not be feasible. In the present work a commercially available PBI-based high temperature MEA is subject to a break-in procedure, as specified by the manufacturer. The cell was operated at 160 °C......Depending on the application in question and the load cycle of operation, fuel cell degradation can be a serious problem. Fuel cell degradation of PBI-based MEA's and fuel cells in general is quite complex. The rate of degradation depends on several parameters, where the operating temperature...... and the current drawn from the fuel cell are of great importance. One must therefore choose the point of operation carefully in order for the fuel cell to fulfil the requirements for lifetime perform-ance of the system. Break-in of fuel cells is often done in scientific experiments to improve the performance...

  11. Design of an 80 kWe PEM fuel cell system: Scale up effect investigation

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C.; Carre, P. [Laboratoire des Sciences du Genie Chimique, Nancy-University-CNRS, 1 rue Grandville, BP20451, 54001 Nancy (France); Didierjean, S.; Colinart, T. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, Nancy-University-CNRS, 2 avenue de la Foret de Haye, 54504 Vandoeuvre les Nancy (France); Guillet, N. [CEA-Grenoble LITEN/DTH/LCPEM, 17, rue des martyrs, 38054 Grenoble Cedex 9 (France); Besse, S. [Helion, Domaine du Petit Arbois, Batiment Jules Verne, BP71, 13545 Aix en Provence Cedex 4 (France)

    2008-08-01

    In the frame of SPACT-80 project to design and manufacture a robust and durable air/hydrogen 80 kWe PEM fuel cell for transportation application, experiments have been carried out on various electrode active surfaces since the full scale system could be damaged by some particular operating conditions. Thus, the main objective of this paper was to verify that a 25 cm{sup 2} single cell, a 5-cell pilot stack and a 90-cell stack exhibit the same behaviour and that they are representative of the full device's performance. After a brief description of the studied device the scaling up effect was checked. In non-optimal conditions, experiments were mainly conducted on single cell and pilot stack. In driving cycle and when studying various gas flows, they present similar evolution for the cell voltage as well as for the water management. The water transport coefficient and the diffusion resistance values determined by impedance spectroscopy highlight the presence of liquid water that could have an effect on the gas transport to the electrode. Investigation on the air humidification conditions shows that at lower relative humidity (RH), the two fuel cells have similar behaviour but above 60% RH different evolutions appear. Whatever the air humidification conditions, liquid water is present in both compartments. (author)

  12. Polymers and composites synthesis and characterization for application on PEM type fuel cells; Sintese e caracterizacao de polimeros e compositos para aplicacao em celulas a combustivel do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, Raigenis da Paz; Souza, Daniele Ribeiro; Barreto, Ednardo Gomes; Boaventura Filho, Jaime Soares; Jose, Nadia Mamede [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)]. E-mail: raigenis@gmail.com

    2006-07-01

    The PEM (proton exchanging membrane) type fuel cell presents good potential for the energy production without the residue generation. However, its manufacture presents high costs for commercial application, mainly due to the electrolyte. Sulfonated Peek (polish-ether-ether-ketone) supported or auto immobilized the in a silicone matrix is an interesting alternative as electrolyte for PEM fuel cells. The commercial PEEK in powder form was functionalized with sulfuric acid, giving the SPEEK (Sulfonated PEEK). The membranes were produced by hot pressing the SPEEK immobilized in a silicone matrix produced by the sol-gel process. The membranes obtained were characterized by DRX, FTIR, TGA, MEV, DSC and protonic conductivity measurements. (author)

  13. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    Science.gov (United States)

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. PEM fuel cell stack testing in the framework of an EU-harmonized fuel cell testing protocol: Results for an 11kW stack

    OpenAIRE

    BOVE ROBERTO; MALKOW THOMAS; SATURNIO ANTONIO; TSOTRIDIS GEORGIOS

    2008-01-01

    Fuel cell testing and standardization thematic network (FCTESTNET) was a Thematic Network funded by the European Commission under the FifthFramework Program(FP5), whichwascomprised of 55 European partners. The project concluded in 2006 and the main output was the collection and compilation of agreed testing procedures for different fuel cell technologies (PEM, SOFC, MCFC), applications (stationary, portable, transport), as well as balance of plant. Experimental validation of su...

  15. Simplified evaluation of PEM-fuel cells by reduction of measurement parameters and using optimised measurement algorithms

    Science.gov (United States)

    Purmann, M.; Styczynski, Z.

    PEM-fuel cells operated with hydrogen and air offer promising possibilities for the decentralised energy supply in stationary and mobile applications. But, there is still a remarkable need for more research for the optimisation of the single components even though the research, especially the development of membrane-electrode units and bipolar plates, has made considerable progress within recent years. This also applies to the definition of suitable test algorithms and parameters for recording the characteristics as well as long time tests. The investigations for single cells or stacks can thereby be subdivided into investigations in the stationary and the dynamic state. This paper shows a simplified approach for the evaluation and modelling of PEM-fuel cell stacks for the stationary state. Based on the definition of regression approaches for the dependence of several parameters the number of stack parameters is initially reduced to a sufficient number of values. The remaining parameters are used to form an energy model which can be combined with the energy models of auxiliary components like air compressors and sinus inverters [1]. Algorithms for recording the parameters still have to be defined. Therefore, the tests for the preparation of a set of characteristic curves can be very time consuming because of the multitude of variable parameters. This paper presents and discusses optimised measurement algorithms for the evaluation of PEM-fuel cell stacks to reduce this time exposure.

  16. An experimental study of a PEM fuel cell power train for urban bus application

    Science.gov (United States)

    Corbo, P.; Migliardini, F.; Veneri, O.

    An experimental study was carried out on a fuel cell propulsion system for minibus application with the aim to investigate the main issues of energy management within the system in dynamic conditions. The fuel cell system (FCS), based on a 20 kW PEM stack, was integrated into the power train comprising DC-DC converter, Pb batteries as energy storage systems and asynchronous electric drive of 30 kW. As reference vehicle a minibus for public transportation in historical centres was adopted. A preliminary experimental analysis was conducted on the FCS connected to a resistive load through a DC-DC converter, in order to verify the stack dynamic performance varying its power acceleration from 0.5 kW s -1 to about 4 kW s -1. The experiments on the power train were conducted on a test bench able to simulate the vehicle parameters and road characteristics on specific driving cycles, in particular the European R40 cycle was adopted as reference. The "soft hybrid" configuration, which permitted the utilization of a minimum size energy storage system and implied the use of FCS mainly in dynamic operation, was compared with the "hard hybrid" solution, characterized by FCS operation at limited power in stationary conditions. Different control strategies of power flows between fuel cells, electric energy storage system and electric drive were adopted in order to verify the two above hybrid approaches during the vehicle mission, in terms of efficiencies of individual components and of the overall power train. The FCS was able to support the dynamic requirements typical of R40 cycle, but an increase of air flow rate during the fastest acceleration phases was necessary, with only a slight reduction of FCS efficiency. The FCS efficiency resulted comprised between 45 and 48%, while the overall power train efficiency reached 30% in conditions of constant stack power during the driving cycle.

  17. Mechanism for degradation of Nafion in PEM fuel cells from quantum mechanics calculations.

    Science.gov (United States)

    Yu, Ted H; Sha, Yao; Liu, Wei-Guang; Merinov, Boris V; Shirvanian, Pezhman; Goddard, William A

    2011-12-14

    We report results of quantum mechanics (QM) mechanistic studies of Nafion membrane degradation in a polymer electrolyte membrane (PEM) fuel cell. Experiments suggest that Nafion degradation is caused by generation of trace radical species (such as OH(●), H(●)) only when in the presence of H(2), O(2), and Pt. We use density functional theory (DFT) to construct the potential energy surfaces for various plausible reactions involving intermediates that might be formed when Nafion is exposed to H(2) (or H(+)) and O(2) in the presence of the Pt catalyst. We find a barrier of 0.53 eV for OH radical formation from HOOH chemisorbed on Pt(111) and of 0.76 eV from chemisorbed OOH(ad), suggesting that OH might be present during the ORR, particularly when the fuel cell is turned on and off. Based on the QM, we propose two chemical mechanisms for OH radical attack on the Nafion polymer: (1) OH attack on the S-C bond to form H(2)SO(4) plus a carbon radical (barrier: 0.96 eV) followed by decomposition of the carbon radical to form an epoxide (barrier: 1.40 eV). (2) OH attack on H(2) crossover gas to form hydrogen radical (barrier: 0.04 eV), which subsequently attacks a C-F bond to form HF plus carbon radicals (barrier as low as 1.00 eV). This carbon radical can then decompose to form a ketone plus a carbon radical with a barrier of 0.86 eV. The products (HF, OCF(2), SCF(2)) of these proposed mechanisms have all been observed by F NMR in the fuel cell exit gases along with the decrease in pH expected from our mechanism. © 2011 American Chemical Society

  18. Cathodes for high-temperature PEM fuel cells based on a Si{sub 0.97}Al{sub 0.03}C promoter and a Sn{sub 0.95}In{sub 0.05}P{sub 2}O{sub 7} ionomer

    Energy Technology Data Exchange (ETDEWEB)

    Harada, T.; Jin, Y.C.; Heo, P.; Hibino, T. [Graduate School of Environmental Studies, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan)

    2010-10-15

    This paper presents a promising approach to reduce the quantity of Pt required in cathodes for high-temperature proton exchange membrane (PEM) fuel cells. Based on preliminary experiments, thermally stable Si{sub 0.97}Al{sub 0.03}C and Sn{sub 0.95}In{sub 0.05}P{sub 2}O{sub 7} were selected as promoter and ionomer, respectively. Si{sub 0.97}Al{sub 0.03}C particles ({proportional_to}40 nm) and Sn{sub 0.95}In{sub 0.05}P{sub 2}O{sub 7} particles ({proportional_to}45 nm) were successfully produced on a carbon support. Pt particles ({proportional_to}9 nm) were selectively impregnated in the vicinity of the ionomer. Polarisation measurements revealed that the Pt-Sn{sub 0.95}In{sub 0.05}P{sub 2}O{sub 7}-Si{sub 0.97}Al{sub 0.03}C/C cathode exhibited much higher oxygen reduction reaction (ORR) activity than that observed for a pure Pt/C cathode, due to the enhanced dissociative oxygen adsorption on the Si{sub 0.97}Al{sub 0.03}C particles and the increased number of reaction sites for the ORR provided by the Sn{sub 0.95}In{sub 0.05}P{sub 2}O{sub 7} particles. Fuel cell operation tests demonstrated that a Pt-Sn{sub 0.95}In{sub 0.05}P{sub 2}O{sub 7}-Si{sub 0.97}Al{sub 0.03}C/C cathode with a low Pt loading of 0.1 mg cm{sup -2} provides better cell performance than a Pt/C cathode with a Pt loading of 1.0 mg cm{sup -2}. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. High temperature PEMFC and the possible utilization of the excess heat for fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf; Li, Qingfeng; Pan, Chao; Vestboe, Andreas P.; Mortensen, Kasper; Nybo Petersen, Henrik; Lau Soerensen, Christian; Nedergaard Clausen, Thomas; Bjerrum, Niels J. [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Schramm, Jesper [Department of Mechanical Engineering, Building 404, Technical University of Denmark, DK-2800 Lyngby (Denmark)

    2007-07-15

    In this paper simple heat balances are calculated for systems with methanol and methane reformers in combination with a high temperature PEM fuel cell. In the methanol system at least 11.1% of the fuel energy can be saved by using the excess heat from the fuel cell for vaporization of water and methanol if the cell is operated at temperatures between 150 and 200 {sup circle} C. Similarly, in the methane system, 9.6% can be saved under equivalent conditions. Integration of a high temperature PEM fuel cell with a metal hydride system based on NaAlH{sub 4} is considered briefly with respect to desorption heat. Dead-end operation is studied, and stable performance is seen for 100 min at 150 {sup circle} C without purging. Finally, experiments are reported indicating that preheating of the air has no influence on the fuel cell performance at 150 or 200 {sup circle} C under moderate load. (author)

  20. PEM fuel stack dynamics, constraining supervisory control for propulsion systems in fuel cell busses

    NARCIS (Netherlands)

    Edwin Tazelaar; E. Middelman; P. van den Bosch; Bram Veenhuizen

    2013-01-01

    The last decade several prototypes of fuel cell busses have been presented [1, 2]. A closer observation of these prototypes shows remarkable differences in both sizing and control of the system components. Some busses are essentially electric vehicles with a relative low power fuel cell system used

  1. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  2. Deformation of PEM fuel cell gas diffusion layers under compressive loading: An analytical approach

    Science.gov (United States)

    Norouzifard, Vahid; Bahrami, Majid

    2014-10-01

    In the PEM fuel cell stack, the fibrous porous gas diffusion layer (GDL) provides mechanical support for the membrane assembly against the compressive loads imposed by bipolar plates. In this study, a new mechanistic model is developed using fundamental beam theory that can accurately predict the mechanical deflection of GDL under compressive loads. The present analytical model is built on a unit cell approach, which assumes a simplified geometry for the complex and random GDL microstructure. The model includes salient microstructural parameters and properties of the fibrous porous medium including: carbon fiber diameter, fiber elastic modulus, pore size distribution, and porosity. Carbon fiber bending is proved to be the main deformation mechanism at the unit cell level. A comprehensive optical measurement study with statistical analysis is performed to determine the geometrical parameters of the model for a number of commercially available GDL samples. A comparison between the present model and our experimental stress-strain data shows a good agreement for the linear deformation region, where the compressive pressure is higher than 1 MPa.

  3. Investigation of resided water effects on PEM fuel cell after cold start

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Junbo; Hao, Lixing; Song, Wei; Fu, Yu. [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian (China). Fuel Cell System and Engineering Laboratory; Graduate School of the Chinese Academy of Sciences, Beijing (China); Yi, Baolian; Yu, Hongmei; Shao, Zhigang [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian (China). Fuel Cell System and Engineering Laboratory

    2007-12-15

    The effects of the residual water in the PEM fuel cell after cold start on the performance, electrode electrochemical characteristics, and cell components were investigated by controlling the cold-start processes of three cells at -5 {sup circle} C. Neither the cell performance loss nor the cell resistance increase with the start number was observed. There was no change in the electrochemical active surface area (ECA) and charge transfer resistance at low current density. The correlation between the amount of the residual water and the ohmic polarization and cell resistance showed mass-transport process slightly changed with the water amount in the cell. This trend correlated well with the charge transfer resistance at high current density. The change of mass-transport process came from the gas diffusion layer by the analysis of ECA. It was found that hydrogen crossover rate of the membrane at the three hydrated states did not change through eight start-ups at -5 {sup circle} C. Based on the analysis of SEM and water-storage capacity, it was believed that less water was stored in the catalyst layer even though much water resided in the cell. (author)

  4. Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers

    DEFF Research Database (Denmark)

    Mathiesen, Brian vad; Ridjan, Iva; Connolly, David

    , by either using it directly in vehicles or indirectly via the production of synthetic fuels. Electrolysers are necessary to convert electricity to hydrogen and so they will have an essential role in the future smart energy system. However, at present there is a lot of uncertainty in relation to the current...... and forecasted development of electrolysers. The aim in this report is to reduce this uncertainty by gathering and aligning current knowledge in relation to the technical and economic potential of electrolysers. The results highlight existing and forecasted costs and efficiencies for alkaline, polymer...... electrolyte membrane (PEM), and solid oxide (SOEC) electrolysers between 2012 and 2050. These inputs can be usedfor analysing energy systems that include electrolysers....

  5. X-ray absorption spectroscopy for characterisation of catalysts for PEM fuel cells; Roentgenabsorptionsspektroskopie zur Charakterisierung von Katalysatoren fuer die PEM-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, G.

    2001-10-01

    The investigation of bimetallic nanoparticles is of great interest for the development of powerful anode catalysts in PEM fuel cells. The determination of their electronic and geometric structure is crucial for the optimization of the activity and selectivity in the fuel cell. Especially carbon supported PtRu particles have shown superior activity as anode catalysts due to their high CO tolerance. To state the reason on an atomic level, X-ray absorption spectroscopy (XAS) with synchrotron radiation has been used to examine several Pt and PtRu nanoparticle systems. They were either prepared on the basis of preformed PtRu alloy colloids stabilized by different surfactants or by chemical reduction of precursors, Na{sub 6}Pt(SO{sub 3}){sub 4} and Na{sub 6}Ru(SO{sub 3}){sub 4}. Although a PtRu interaction was observed in all systems, a nonstatistical distribution of Pt and Ru atoms in the nanoparticles could be verified. In additional investigations the reaction mechanism during the synthesis of an organometallic stabilized Pt colloid was examined. In-situ measurements revealed the formation of an hitherto unknown Pt complex as intermediate state prior to the nucleation of the particles. (orig)

  6. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different heat...

  7. A methodology for investigating new nonprecious metal catalysts for PEM fuel cells.

    Science.gov (United States)

    Susac, D; Sode, A; Zhu, L; Wong, P C; Teo, M; Bizzotto, D; Mitchell, K A R; Parsons, R R; Campbell, S A

    2006-06-08

    This paper reports an approach to investigate metal-chalcogen materials as catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells. The methodology is illustrated with reference to Co-Se thin films prepared by magnetron sputtering onto a glassy-carbon substrate. Scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) have been used, in parallel with electrochemical activity and stability measurements, to assess how the electrochemical performance relates to chemical composition. It is shown that Co-Se thin films with varying Se are active for oxygen reduction, although the open circuit potential (OCP) is lower than for Pt. A kinetically controlled process is observed in the potential range 0.5-0.7 V (vs reversible hydrogen electrode) for the thin-film catalysts studied. An initial exposure of the thin-film samples to an acid environment served as a pretreatment, which modified surface composition prior to activity measurements with the rotating disk electrode (RDE) method. Based on the SAM characterization before and after electrochemical tests, all surfaces demonstrating activity are dominated by chalcogen. XRD shows that the thin films have nanocrystalline character that is based on a Co(1-x)Se phase. Parallel studies on Co-Se powder supported on XC72R carbon show comparable OCP, Tafel region, and structural phase as for the thin-film model catalysts. A comparison for ORR activity has also been made between this Co-Se powder and a commercial Pt catalyst.

  8. Dynamic Thermal Model And Control Of A Pem Fuel Cell System

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2013-01-01

    power output, cooling water flow rate, air flow rate, and environmental temperature) and parameter interactions on the system thermal performance. The model represents a useful tool to determine the operating temperatures of the various components of the thermal system, and thus to fully assess......A lumped parameter dynamic model is developed for predicting the stack performance, temperatures of the exit reactant gases and coolant liquid outlet in a proton-exchange membrane fuel cell (PEMFC) system. The air compressor, humidifier and cooling heat exchanger models are integrated to study...... the fuel cell system. A PID temperature control is implemented to study the effect of stack temperature on settling times of other variables such as stack voltage, air flow rate, oxygen excess ratio and net power of the stack. The model allows an assessment of the effect of operating parameters (stack...

  9. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  10. On the Existence of a Weak Solution of a Half-Cell Model for PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Shuh-Jye Chern

    2010-01-01

    Full Text Available A nonlinear boundary value problem (BVP from the modelling of the transport phenomena in the cathode catalyst layer of a one-dimensional half-cell single-phase model for proton exchange membrane (PEM fuel cells, derived from the 3D model of Zhou and Liu (2000, 2001, is studied. It is a BVP for a system of three coupled ordinary differential equations of second order. Schauder's fixed point theorem is applied to show the existence of a solution in the Sobolev space 1.

  11. Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell

    OpenAIRE

    Bessarabov, Dmitri; Shen, Jun; Zhou, Jianqin; Astrath, Nelson G.C.; Navessin, Titichai

    2011-01-01

    In this work, using an in-house made Loschmidt diffusion cell, we measure the effective coefficient of dry gas (O2–N2) diffusion in cathode catalyst layers of PEM fuel cells at 25 °C and 1 atmosphere. The thicknesses of the catalyst layers under investigation are from 6 to 29 μm. Each catalyst layer is deposited on an Al2O3 membrane substrate by an automated spray coater. Diffusion signal processing procedure is developed to deduce the effective diffusion coefficient, which is found to be (1....

  12. Potentials near the curved anode edge in a PEM fuel cell: Analytical solution for placing a reference electrode

    OpenAIRE

    Kulikovsky, Andrei

    2015-01-01

    We consider a PEM fuel cell with concentric circular electrodes: the small anode and the large cathode. A model for in-plane distributions of the cathode overpotential ηc and the membrane potential Φ in the anode-free region of the cell is developed. Mathematically, the problem reduces to the axially symmetric Poisson–Boltzmann equation for ηc. An approximate analytical solution shows that |ηc| exhibits rapid decay to zero with the radius, while |Φ| grows to the value of |η0c|, the cathode ov...

  13. Fault detection and isolation of PEM fuel cell system based on nonlinear analytical redundancy. An application via parity space approach

    Science.gov (United States)

    Aitouche, A.; Yang, Q.; Ould Bouamama, B.

    2011-05-01

    This paper presents a procedure dealing with the issue of fault detection and isolation (FDI) using nonlinear analytical redundancy (NLAR) technique applied in a proton exchange membrane (PEM) fuel cell system based on its mathematic model. The model is proposed and simplified into a five orders state space representation. The transient phenomena captured in the model include the compressor dynamics, the flow characteristics, mass and energy conservation and manifold fluidic mechanics. Nonlinear analytical residuals are generated based on the elimination of the unknown variables of the system by an extended parity space approach to detect and isolate actuator and sensor faults. Finally, numerical simulation results are given corresponding to a faults signature matrix.

  14. Multi-channel Optical Fiber Thermometer for PEM Fuel-Cell Applications

    Science.gov (United States)

    Rosso, L.; Fernicola, V.; Pedrazzo, F.

    2011-08-01

    Miniature, durable, and fast-responding temperature sensors are needed for proton exchange membrane fuel cells (PEMFCs). When embedded in a single cell or in a cell stack, they can provide useful information both at the design stage for optimizing the cell efficiency and during operation for monitoring the working conditions and thus preventing failures. Optical fiber sensors are especially promising in this field because they are small, rugged, and inexpensive. In addition, they can provide safe temperature measurements in an electrically hostile environment. A four-channel optical fiber thermometer, based on intensity-independent fluorescence lifetime thermometry was developed at INRIM. It consists of a photonic unit for the excitation/detection of the fluorescence signals and a set of custom optical fiber probes based on a temperature-sensitive fluorescent material attached to the distal end of an optical fiber. The system was characterized in the range from room temperature to about 100 °C in order to point out its metrological features. A temperature repeatability to within 0.06 °C with a response time lower than 1 s to a step temperature change was obtained. A preliminary investigation inside a PEMFC stack using the optical fiber fluorescence thermometer was also performed. In order to check the temperature uniformity along the stack, temperatures within an adjacent membrane electrode assembly (MEA) of a six-fuel-cell stack were measured during the unit operation. The system design, the probe construction, and its laboratory testing are presented in this article together with an assessment of the overall system performance. The application of such a system in a fuel-cell test rig is also described. The experimental results demonstrate the suitability of the system in real-time temperature mapping in operating fuel cells.

  15. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells. Tech Team Meeting Presentaion

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L. [Los Alamos National Laboratory; Elbaz Alon, Lior [Los Alamos National Laboratory; Henson, Neil J. [Los Alamos National Laboratory; Rockward, Tommy [Los Alamos National Laboratory; Roy, Aaron [University of New Mexico; Serov, Alexey [University of New Mexico; Ward, Timothy [University of New Mexico

    2012-08-13

    Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the goal of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. Ceramic materials that are prepared using conventional solid-state methods have large grain sizes and low surface areas that can only be minimally ameliorated through grinding and ball milling. Other synthesis routes to produce ceramic materials must be investigated and utilized in order to obtain desired surface areas. In this work, several different synthesis methods are being utilized to prepare electronically conductive ceramic boride, nitride, and oxide materials with high surface areas and have the potential for use as PEMFC catalyst supports. Polymer-assisted deposition (PAD) and aerosol-through plasma (A-T-P) torch are among several methods used to obtain ceramic materials with surface areas that are equal to, or exceed Vulcan XC-72R supports. Cubic Mo-based ceramic phases have been prepared with average XRD-determined crystallite sizes as low as 1.6 nm (from full profile, XRD fitting) and a BET surface area exceeding 200 m{sup 2}/g. Additionally, black, sub-stoichiometric TiO{sub 2-x}, have been prepared with an average crystallite size in the 4 nm range and surface areas exceeding 250 m{sup 2}/gr. Pt disposition using an incipient wetness approach produced materials with activity for hydrogen redox reactions and ORR. Cyclic voltammetry data will be shown for a variety of potential Pt/ceramic catalysts. Initial experiments indicate enhanced Pt metal-support interactions as well. Plane wave periodic density functional calculations (VASP) are being used to

  16. Large scale model predictions on the effect of GDL thermal conductivity and porosity on PEM fuel cell performance

    Directory of Open Access Journals (Sweden)

    Obaid ur Rehman

    2017-12-01

    Full Text Available The performance of proton exchange membrane (PEM fuel cell majorly relies on properties of gas diffusion layer (GDL which supports heat and mass transfer across the membrane electrode assembly. A novel approach is adopted in this work to analyze the activity of GDL during fuel cell operation on a large-scale model. The model with mesh size of 1.3 million computational cells for 50 cm2 active area was simulated by parallel computing technique via computer cluster. Grid independence study showed less than 5% deviation in criterion parameter as mesh size was increased to 1.8 million cells. Good approximation was achieved as model was validated with the experimental data for Pt loading of 1 mg cm-2. The results showed that GDL with higher thermal conductivity prevented PEM from drying and led to improved protonic conduction. GDL with higher porosity enhanced the reaction but resulted in low output voltage which demonstrated the effect of contact resistance. In addition, reduced porosity under the rib regions was significant which resulted in lower gas diffusion and heat and water accumulation.

  17. Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method

    Science.gov (United States)

    Molaeimanesh, G. R.; Nazemian, M.

    2017-08-01

    Proton exchange membrane (PEM) fuel cells with a great potential for application in vehicle propulsion systems will have a promising future. However, to overcome the exiting challenges against their wider commercialization further fundamental research is inevitable. The effects of gas diffusion layer (GDL) compression on the performance of a PEM fuel cell is not well-recognized; especially, via pore-scale simulation technique capturing the fibrous microstructure of the GDL. In the current investigation, a stochastic microstructure reconstruction method is proposed which can capture GDL microstructure changes by compression. Afterwards, lattice Boltzmann pore-scale simulation technique is adopted to simulate the reactive gas flow through 10 different cathode electrodes with dissimilar carbon paper GDLs produced from five different compression levels and two different carbon fiber diameters. The distributions of oxygen mole fraction, water vapor mole fraction and current density for the simulated cases are presented and analyzed. The results of simulations demonstrate that when the fiber diameter is 9 μm adding compression leads to lower average current density while when the fiber diameter is 7 μm the compression effect is not monotonic.

  18. Parameter changes during gradual flooding of a PEM fuel cell through EIS studies; Cambio en parametros de una celda de combustible PEM durante inundacion gradual mediante estudios de EIS

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Cruz Manzo, Samuel; Arriaga Hurtado, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Ortiz, Alondra; Orozco, German [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C. (CIDETEQ) (Mexico)

    2008-07-01

    The gradual flooding of a single PEM fuel cell was produced and Electrochemical Impedance Spectroscopy (EIS) measurements were realized in order to follow changes of the fuel cell impedance parameters. These changes were followed by using two equivalent circuit models: one simple model of the Randles type accounting for cathode and anode interfaces and a more complex model based on distributed elements, more suitable for porous electrodes in order to include protonic resistance of the catalyst layers. [Spanish] La inundacion gradual de una monocelda de combustible tipo PEM fue estudiada empleando espectroscopia de impedancia electroquimica (EIS), con el proposito de seguir cambios en los parametros de impedancia de la celda. Estos cambios fueron estudiados utilizando dos circuitos equivalentes: un modelo simple de tipo Randles, el cual considerara las interfaces del catodo y del anodo, y un modelo mas complejo basado en elementos distribuidos, el cual fuera adecuado para electrodos porosos, a fin de incluir la resistencia protonica de las capas catalizadoras.

  19. Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Vad Mathiesen, B.; Ridjan, I.; Connolly, D.; Pagh Nielsen, M. [Aalborg Univ., Aalborg (Denmark); Vang Hendriksen, P.; Bjerg Mogensen, M.; Hoejgaard Jensen, S.; Dalgaard Ebbesen, S. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)

    2013-08-15

    The transition to 100% renewable energy systems will require a more integrated energy system. Connecting the electricity sector to transport is one of the major challenges in this transition, especially for long-distance and heavy-duty transport. Hydrogen is one potential solution to this challenge, by either using it directly in vehicles or indirectly via the production of synthetic fuels. Electrolysers are necessary to convert electricity to hydrogen and so they will have an essential role in the future smart energy system. However, at present there is a lot of uncertainty in relation to the current and forecasted development of electrolysers. The aim in this report is to reduce this uncertainty by gathering and aligning current knowledge in relation to the technical and economic potential of electrolysers. The results highlight existing and forecasted costs and efficiencies for alkaline, polymer electrolyte membrane (PEM), and solid oxide (SOEC) electrolysers between 2012 and 2050. These inputs can be used for analysing energy systems that include electrolysers. (Author)

  20. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Frostell, Bjoern [Royal Inst. of Technology, Stockholm (Sweden). Div. of Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Technology, Stockholm (Sweden). Div. of Chemical Technology

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second

  1. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  2. Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach

    Science.gov (United States)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2013-12-01

    A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.

  3. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  4. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    Science.gov (United States)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  5. In-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part II: Operational applications

    Science.gov (United States)

    Niroumand, Amir M.; Homayouni, Hooman; DeVaal, Jake; Golnaraghi, Farid; Kjeang, Erik

    2016-08-01

    This paper describes a diagnostic tool for in-situ characterization of the rate and distribution of hydrogen transfer leaks in Polymer Electrolyte Membrane (PEM) fuel cell stacks. The method is based on reducing the air flow rate from a high to low value at a fixed current, while maintaining an anode overpressure. At high air flow rates, the reduction in air flow results in lower oxygen concentration in the cathode and therefore reduction in cell voltages. Once the air flow rate in each cell reaches a low value at which the cell oxygen-starves, the voltage of the corresponding cell drops to zero. However, oxygen starvation results from two processes: 1) the electrochemical oxygen reduction reaction which produces current; and 2) the chemical reaction between oxygen and the crossed over hydrogen. In this work, a diagnostic technique has been developed that accounts for the effect of the electrochemical reaction on cell voltage to identify the hydrogen leak rate and number of leaky cells in a fuel cell stack. This technique is suitable for leak characterization during fuel cell operation, as it only requires stack air flow and voltage measurements, which are readily available in an operational fuel cell system.

  6. An Innovative Hybrid 3D Analytic-Numerical Approach for System Level Modelling of PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gregor Tavčar

    2013-10-01

    Full Text Available The PEM fuel cell model presented in this paper is based on modelling species transport and coupling electrochemical reactions to species transport in an innovative way. Species transport is modelled by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the gas-flow and coupling consecutive 2D solutions by means of a 1D numerical gas-flow model. The 2D solution is devised on a jigsaw puzzle of multiple coupled domains which enables the modelling of parallel straight channel fuel cells with realistic geometries. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. A hybrid 3D analytic-numerical fuel cell model of a laboratory test fuel cell is presented and evaluated against a professional 3D computational fluid dynamic (CFD simulation tool. This comparative evaluation shows very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at computational times short enough to be suitable for system level simulations. This computational efficiency is owed to the semi-analytic nature of its species transport modelling and to the efficient computational coupling of electrochemical kinetics and species transport.

  7. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, D.; Zuettel, A.

    2008-04-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  8. To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.

    Science.gov (United States)

    Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E

    2008-01-01

    The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.

  9. Performance of the PdNi and PdNiSe as cathodes in PEM fuel cells; Desempeno de PdNi y PdNiSe como catodos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.; Ramos-Sanchez, G.; Vazquez, G.; Solorza-Feria, O. [Centro de Investigaciones y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: gramos@cinvestav.mx

    2009-09-15

    The search for new materials capable of catalyzing oxygen reactions in low temperature fuel cells continues to be one of the key issues in the development of a hydrogen economy. Electrochemical and physical characterization studies have demonstrated that the PdNi and PdNiSe catalysts have adequate properties for use as cathodes in fuel cells. Nevertheless, the performance of the materials in proton exchange membrane (PEM) fuel cells depends not only on the catalytic properties but also on the adequate preparation of the electrocatalyst membrane interface (EMI). This work presents the results of the search for optimal conditions to prepare the EMIs with PdNi and PdNiSe cathodes. There are many variables for handling the preparation of the interfaces, nevertheless our search focuses on two: catalyst ratio/Vulcan Carbon® and the catalyst amount. Interfaces were prepared with an active area of 5 cm{sup 2} with PdNi and PdNiSe cathodes and carbon fabric anode with Pt E-tek®. These interfaces were tested with an ElectroChem model under different gas pressure and temperature conditions. The optimization method was carried out using a simplex method with the variables mentioned above and power density per unit mass and catalyst area as response variables. [Spanish] La busqueda de nuevos materiales capaces de catalizar la Reaccion de Oxigeno (RRO) en celdas de combustible de baja temperatura, sigue siendo uno de los temas clave para el desarrollo de una Economia del Hidrogeno. Estudios electroquimicos y de caracterizacion fisica han demostrado que los catalizadores PdNi y PdNiSe, tienen las propiedades adecuadas para poder ser utilizados como catodos en celdas de combustible; sin embargo el desempeno de los materiales en celdas de combustible de membrana de intercambio protonico (PEM), no solo depende de las propiedades del catalizador, sino tambien de la preparacion adecuada del Ensamble Membrana Electrocatalizador (EME). En este trabajo se presentan los resultados de la

  10. Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Harnevie, H.; Sarkoezi, L.; Trenkle, S.

    1996-08-01

    An alternative method for estimation of NO{sub x}-emissions from biomass fired plants has been investigated. The method, `Predictive emission monitoring` (PEMS), implicates the creation of a mathematical formula. The formula expresses the relations between NO{sub x}-emissions and various operating and external parameters, such as flue gas temperature, excess combustion air and heat load. In this study the applicability of PEMS has been tested for two plants both of type travelling stokers. The most important results of the study are: PEMS is suitable for emission monitoring for some types of biomass fired plants (for example travelling stokers) even if the plant is fired with fuel with varying water content. In most cases it should be sufficient if the relation is based on oxygen level in the flue gas and plant load, with the possible addition of flue gas temperature and/or furnace temperature rate. These parameters are usually measured in any case, which means that no additional investment in instrumentation is necessary. In this study many measured parameters (for example the throttle levels) did not affect the NO{sub x}-emissions. A PEMS relation is only applicable for a specific plant and for a fixed validity range. Thus the function should be performed in such a way that it covers the limits of the operating parameters of the plant. Usage of different fuels or drift optimization can only be done within the validity range. Good combustion conditions could be necessary to receive a usable PEMS-function. Before creating the PEMS-function the combustion and the emission levels must be optimized. In plants with very fluctuating combustion, for example fixed stokers, it is possible that PEMS leads to not satisfying results. The total cost for a PEM-function can be calculated to be about 50-70% compared to a CEM during a period of a decade. 8 refs, 13 figs, 15 tabs, 8 appendices

  11. Preparation and Characterization of Components for Intermediate Temperature Fuel Cells And Electrolyzers

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede

    range. For the electrodes, carbon cloth and carbon paper were tested as gas diffusion layers with different catalytic compositions, and of the two, carbon paper with a platinum loading of 7 mg cm−2 had the better performance. However, carbon is unstable at the conditions in the fuel cell cathode......The intermediate temperature region for fuel cells (200-400°C) is of interest as it may combine advantages from low and high temperature technologies. Increasing the temperature above what is used in polymer electrolyte membrane (PEM) fuel cells enhances the catalyst kinetics, and therefore...... it might become possible to use non-noble metal catalysts. On the other hand, the temperature is low enough for a wide range of materials to be used as construction materials. In this work a set-up was built and fuel cell hardware was made for demonstration of fuel cells for the intermediate temperature...

  12. Investigation into the Implications of Fuel Cell Shipboard Integration into the T-AGOS 19 Class

    Science.gov (United States)

    2012-02-01

    with each defined by its fundamental electrolyte: i. Alkali Fuel Cells (AFC) ii. Polymer Exchange Membrane ( PEM ) iii. Phosphoric Acid Fuel Cells ...of the PEM family (High Temperature – HTPEM and Direct Methanol Fuel Cells – DMFC) were assessed against a range of basic ship requirements...of Stationary PEM Fuel Cell Systems”, DOE hydrogen program 2010 annual report. [11] US Energy Information Administration, “EIA - Weekly Retail

  13. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  14. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  15. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells

    Science.gov (United States)

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-01-01

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode. PMID:26538366

  16. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells.

    Science.gov (United States)

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-11-05

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm(2) at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.

  17. Evaluation of materials for bipolar plates in simulated PEM fuel-cell cathodic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, S.V.; Belmonte, M.R.; Moron, L.E.; Torres, J.; Orozco, G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica S.C. Parcque Sanfandila, Queretaro (Mexico); Perez-Quiroz, J.T. [Mexican Transport Inst., Queretaro (Mexico); Cortes, M. A. [Mexican Petroleum Inst., Mexico City (Mexico)

    2008-04-15

    The bipolar plates in proton exchange membrane fuel cells (PEMFC) are exposed to an oxidizing environment on the cathodic side, and therefore are susceptible to corrosion. Corrosion resistant materials are needed for the bipolar plates in order to improve the lifespan of fuel cells. This article described a study in which a molybdenum (Mo) coating was deposited over austenitic stainless steel 316 and carbon steel as substrates in order to evaluate the resulting surfaces with respect to their corrosion resistance in simulated anodic and cathodic PEMFC environments. The molybdenum oxide films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The article presented the experiment and discussed the results of the corrosion behaviour of coated stainless steel. In general, the electrochemical characterization of bare materials and coated steel consisted of slow potentiodynamic polarization curves followed by a constant potential polarization test. The test medium was 0.5M sulfuric acid with additional introduction of oxygen to simulate the cathodic environment. All tests were performed at ambient temperature and at 50 degrees Celsius. The potentiostat used was a Gamry instrument. It was concluded that it is possible to deposit Mo-oxides on steel without using another alloying metal. The preferred substrate for corrosion prevention was found to be an alloy with high chromium content. 24 refs., 4 figs.

  18. Development of a 100 W PEM fuel cell stack for portable applications

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Inci; Erkan, Serdar [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering

    2010-07-01

    In this work, an air cooled 100 W stack was designed, manufactured and tested. The bipolar plates were manufactured by CNC machining of graphite. Membrane electrode assemblies (MEAs) were produced by spraying catalyst ink onto the gas diffusion layer (GDL). A fuel cell stack was assembled with 20 cells each having 12.25 cm{sup 2} active area. The test was carried out with H{sub 2} at anode and air at cathode side both at 100% relative humidity having 1.2 and 2 stoichiometric ratios, respectively. The operating temperature of the stack was kept at 60 C during the test. The results indicated that the stack has a maximum power of 60 W at 12 V operation. Cell numbers 1, 2, 3 and 20 always had less potential than the 0.6 V average cell voltage. Uniform cell voltage distribution has been achieved by improving thermal management and reactant distribution. (orig.)

  19. Modelling and characterization of the PEM fuel cell to study interactions with power converters; Modelisation et caracterisation de la pile pem pour l'etude des interactions avec les convertisseurs statiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, G.

    2005-09-15

    The climatic and energy challenges were now clearly stated. The use of hydrogen is one of the best ways which gives many hopes. Fuel cells are an essential link in the chain of the use of hydrogen. Thus, a lot of studies have been undertaken throughout the world on fuel cells in many fields of physics. Concerning the field of power electronics, a lot of work on distributed generation technologies using fuel cells has been realised too and a great number of power converters dedicated to fuel cells have been studied. However, very few studies have been undertaken on the interactions between fuel cells and power converters. The goals of this work are to study interactions between fuel cells and power converters. Some requirements for the power electronic engineer can follow from this work. This work proposes high signal dynamic models of a H{sub 2}/O{sub 2} PEM fuel cell. These models include the different physical and chemical phenomena. Specific methods based on a limited number of original experiments (low frequency current sweeps) allow to extract the model parameters. These models are used to study the interactions between fuel cells and power converters which are the most used: buck chopper, boost chopper, inverters. The important part of the double layer capacitors has thus been underlined: they can filter the current harmonics created by the power converters. Finally, some choices of filtering elements to be connected to the fuel cell are proposed. (author)

  20. DanDan. Final report. [PEM fuel cells for back-up power and UPS]; DanDan. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The project has provided valuable results for the partners involved, and has resulted in the construction and demonstration of a modular UPS system that can be used with fuel cells. Dantherm Power has provided a 5 kW fuel cell module, based on LT-pem technology, for use in the demonstration and testing facility. The function of the unit is verified by both internal testing and demonstrations from at third parties were it currently is set up to perform tests regarding lifetime. The development of a DC / DC converter, was made. The module has been tested under various conditions, and the development process has resulted in detailed specs of both technique and test process. The module has been tested both in laboratory environment and demonstrated at third parties. The module is part of the systems described in connection with initial test runs - performed at strategic partners - and in connection with the demonstration of the systems both in Japan and in South Africa. The modules are presently in a stage of demonstration, while subjected to substantial service life tests. The purchased reformers are part of the systems used for demonstration in the project and as such they will supply valuable data trough the comprehensive test and verification program initiated. (LN)

  1. An innovative hybrid 3D analytic-numerical model for air breathing parallel channel counter-flow PEM fuel cells.

    Science.gov (United States)

    Tavčar, Gregor; Katrašnik, Tomaž

    2014-01-01

    The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport.

  2. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  3. Manufacturing the Gas Diffusion Layer for PEM Fuel Cell Using a Novel 3D Printing Technique and Critical Assessment of the Challenges Encountered.

    Science.gov (United States)

    Jayakumar, Arunkumar; Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M; Pethaiah, Sethu Sundar

    2017-07-14

    The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamide (PA) is used as the base powder and titanium metal powder is added at an optimised level to enhance the electrical conductivity, thermal, and mechanical properties. The application of selective laser sintering to fabricate a robust gas diffusion substrate for PEM fuel cell applications is quite novel and is attempted here for the first time.

  4. Manufacturing the Gas Diffusion Layer for PEM Fuel Cell Using a Novel 3D Printing Technique and Critical Assessment of the Challenges Encountered

    OpenAIRE

    Jayakumar, Arunkumar; Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M.; Pethaiah, Sethu Sundar

    2017-01-01

    The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamid...

  5. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  6. Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation

    Directory of Open Access Journals (Sweden)

    Idoia San Martín

    2014-02-01

    Full Text Available This paper reports on the modelling of a commercial 1.2 kW proton exchange membrane fuel cell (PEMFC, based on interrelated electrical and thermal models. The electrical model proposed is based on the integration of the thermodynamic and electrochemical phenomena taking place in the FC whilst the thermal model is established from the FC thermal energy balance. The combination of both models makes it possible to predict the FC voltage, based on the current demanded and the ambient temperature. Furthermore, an experimental characterization is conducted and the parameters for the models associated with the FC electrical and thermal performance are obtained. The models are implemented in Matlab Simulink and validated in a number of operating environments, for steady-state and dynamic modes alike. In turn, the FC models are validated in an actual microgrid operating environment, through the series connection of 4 PEMFC. The simulations of the models precisely and accurately reproduce the FC electrical and thermal performance.

  7. Assessing cell polarity reversal degradation phenomena in PEM Fuel Cells by electrochemical impedance spectroscopy

    OpenAIRE

    Travassos, Maria Antónia; Vitor V. Lopes; Novais, Augusto Q.; Rangel, C. M.

    2011-01-01

    The mechanisms of fuel cell degradation are multiple and not well understood. Irreversible changes in the kinetic and/or transport properties of the cell are fostered by thermal, chemical and mechanical issues which constrain stability, power and fuel cell lifetime. Within the in-situ diagnostics methods and tools available, in-situ electrochemical impedance spectroscopy (EIS) is within the most promising to better understand and categorize changes during fuel cell ageing. In this work, the d...

  8. The efficient and economic design of PEM fuel cell systems by multi-objective optimization

    Science.gov (United States)

    Na, Woonki; Gou, Bei

    Since the efficiency of fuel cells is the ratio of the electrical power output and the fuel input, it is a function of power density, system pressure, and stoichiometric ratios of hydrogen and oxygen. Typically, the fuel cell efficiency decreases as its power output increases. In order for the fuel cell system to obtain highly efficient operation with the same power generation, more cells and other auxiliaries such as a high-capacity compressor system, etc. are required. In other words, fuel cell efficiency is closely related to fuel cell economics. Therefore, an optimum efficiency should exist and should result in the definition of a cost-effective fuel cell system. Using a multi-objective optimization technique, the sequential quadratic programming (SQP) method, the efficiency and cost of a fuel cell system have been optimized under various operating conditions. This paper has obtained some analytical results that provide a useful suggestion for the design of a cost-effective fuel cell system with high operation efficiency.

  9. DESIGN AND IMPLEMENTATION OF A PEM FUEL CELL EMULATOR FOR STATIC AND DYNAMIC BEHAVIOR

    Directory of Open Access Journals (Sweden)

    CARLOS ANDRÉS RAMOS-PAJA

    2011-01-01

    Full Text Available Este artículo presenta el diseño, implementación y validación experimental de un emulador controlado digitalmente de pilas de combustible con membrana de intercambio protónico (PEM, tanto para comportamiento estático como dinámico, el cual es fácil de usar y proporciona autonomía y portabilidad a bajo costo. El emulador permite la evaluación de sistemas de potencia y estrategias de control en sistemas basados en pilas de combustible. Para la implementación del emulador se seleccionó, ajustó y validó un modelo matemático apropiado. El modelo es procesado digitalmente en el emulador, el cual genera el comportamiento eléctrico apropiado a la carga. La etapa de potencia fue implementada usando un convertidor DC/DC conmutado de dos inductores, controlado directamente con el sistema de procesamiento digital. El artículo presenta el esquema eléctrico y diagrama de bloques de la etapa de potencia, y el comportamiento del emulador es ilustrado con resultados de simulación. Finalmente, el emulador es validado experimentalmente.

  10. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  11. Feasibility of implementation of an autonomous hybrid system for PEM fuel cells to electrify localities in rural Cuba; Factibilidad de implementacion de un sistema hibrido autonomo con celda de combustible PEM para electrificar localidades rurales en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Torres, Yamir [Centro de Estudios de Tecnologias Energeticas Renovables (CETER), Ciudad de la Habana (Cuba)] e-mail: yamir@ceter.cujae.edu.cu

    2009-09-15

    The use of PEM fuel cells to produce electric energy in autonomous systems is closely linked with the production and storage of hydrogen. Eventually joined with sources of renewable energy, this creates an ecologically clean and sustainable system. In several developing countries, localities exist that do not have electricity but have significant unexploited renewable energy power, where an autonomous hybrid system can be designed to electrify these population centers. This work presents a hybrid electricity scheme with a PEM fuel cell to produce hydrogen and electricity in order to electrify rural zones far from the national power grid in Cuba. The electric demand of the zone and available energy power was calculated using the informatics modeling and simulation programs HOMER, PVSYST and Matlab 1,2,3. Variability in wind and photovoltage power was determined based on daylight hours and seasonal periods throughout the year as well as their effect on the production of hydrogen and electricity. It was shown that the energy demand is met even for the most adverse scenarios. This work offers a detailed description of the behavior of the system and evidence of no effect on the environment, enabling the electrification and wellbeing of residents of the locality. [Spanish] El uso de celdas de combustible PEM para la produccion de energia electrica en sistemas autonomos esta estrechamente ligado a la produccion y almacenamiento de hidrogeno. Esto eventualmente unido a las fuentes renovables de energia forma un sistema ecologicamente limpio y sustentable. En varios paises subdesarrollados existen localidades que no cuentan con electricidad y que tienen importantes potenciales energeticos renovables no explotados actualmente en los cuales se puede disenar un sistema hibrido autonomo para electrificar estas poblaciones. En este trabajo se presenta el esquema de un sistema hibrido autonomo con celda de combustible PEM, para la produccion de hidrogeno y electricidad encaminado

  12. Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell.

    Science.gov (United States)

    Zhang, Ziheng; Martin, Jonathan; Wu, Jinfeng; Wang, Haijiang; Promislow, Keith; Balcom, Bruce J

    2008-08-01

    Water management is critical to optimize the operation of polymer electrolyte membrane fuel cells. At present, numerical models are employed to guide water management in such fuel cells. Accurate measurements of water content variation in polymer electrolyte membrane fuel cells are required to validate these models and to optimize fuel cell behavior. We report a direct water content measurement across the Nafion membrane in an operational polymer electrolyte membrane fuel cell, employing double half k-space spin echo single point imaging techniques. The MRI measurements with T2 mapping were undertaken with a parallel plate resonator to avoid the effects of RF screening. The parallel plate resonator employs the electrodes inherent to the fuel cell to create a resonant circuit at RF frequencies for MR excitation and detection, while still operating as a conventional fuel cell at DC. Three stages of fuel cell operation were investigated: activation, operation and dehydration. Each profile was acquired in 6 min, with 6 microm nominal resolution and a SNR of better than 15.

  13. Realization of an Electronic Load for Testing Low Power PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Djordje Šaponjić

    2011-06-01

    Full Text Available A realized electronic load system intended for testing and characterization of hydrogen fuel sells is described. The system is based on microcontroller PIC16F877 by applying the concept of virtual instrumentation. The accomplished accuracy of the developed electronic system allows performing efficiently investigations of the electro-chemical phenomena involved in the process of designing hydrogen fuel cells.

  14. Artificial Neural Network Modeling of Pt/C Cathode Degradation in PEM Fuel Cells

    Science.gov (United States)

    Maleki, Erfan; Maleki, Nasim

    2016-08-01

    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks (ANNs) have been used to solve, predict, and optimize a wide range of scientific problems. In this study, several rates of change at the cathode were modeled using ANNs. The backpropagation (BP) algorithm was used to train the network, and experimental data were employed for network training and testing. Two different models are constructed in the present study. First, the potential cycles, temperature, and humidity are used as inputs to predict the resulting Pt dissolution rate of the Pt/C at the cathode as the output parameter of the network. Thereafter, the Pt dissolution rate and Pt ion diffusivity are regarded as inputs to obtain values of the Pt particle radius change rate, Pt mass loss rate, and surface area loss rate as outputs. The networks are finely tuned, and the modeling results agree well with experimental data. The modeled responses of the ANNs are acceptable for this application.

  15. Novel Conductive Water Removal Membrane (CWRM) for PEM Passive Fuel Cell Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Too much water, resulting in flooding, or too little water, resulting in electrolyte dryout, have both had negative impact upon fuel cell performance. ElectroChem...

  16. Long-Life MEAs and Catalysts for PEM Electrolyzers/Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nanostructured Thin Films (NSTF), used as substrates for catalysts, have proven to be highly active for oxygen reduction in fuel cells. This improvement in activity...

  17. Development of a 10 kW PEM fuel cell for stationary applications

    Energy Technology Data Exchange (ETDEWEB)

    Barthels, H.; Mergel, J.; Oetjen, H.F. [Institute fuer Energieverfahrenstechnik (IEV), Juelich (Germany)] [and others

    1996-12-31

    A 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) is being developed as part of a long-term energy storage path for electricity in the photovoltaic demonstration plant called PHOEBUS at the Forschungszentrum Julich.

  18. Proton Conductors based on Metal Phosphonate Hybrid Materials for PEM Fuel Cells

    OpenAIRE

    Cabeza-Diaz, Aurelio; Colodrero, Rosario M. P.; Bazaga-García, Montse; Hernández Alonso, Daniel; Compaña Prieto, José Manuel; Olivera-Pastor, Pascual; Losilla, Enrique R.; Aranda, Miguel A. G.; León-Reina, Laura

    2014-01-01

    The necessity of energy and power generation is constantly growing. Fossils fuels are quickly becoming unsatisfactory substrates due to both their emission of pollutants and their finite expectancy. Fuel cells are one of the best alternatives as they are clean, durable, and highly efficient 1. MOFs will be attractive candidates for this application because of their tuneable pore size functionality as well as their chemical and thermal stability and presence of acidic protons within their stru...

  19. Traction Power Converter for PEM Fuel Cell Multi-Stack Generator

    OpenAIRE

    VULTURESCU, B; DE-BERNARDINIS, A; LALLEMAND, R; COQUERY, G

    2007-01-01

    This paper presents the study, based on technical specifications, of a power converter structure candidate to fuel cell multi-stack association for urban transport applications. This study is carried out in the frame of the French SPACT-80 research project. The converter topology is based on a DC-DC 3-phase IGBT interleaved boost converter which should meet the following relevant criteria: high efficiency, redundancy, minimisation of fuel cell current ripple, compactness, fault handling and s...

  20. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  1. Design of experiments with four-factors for a PEM fuel cell optimization

    Science.gov (United States)

    Olteanu, V.; Pǎtularu, L.; Popescu, C. L.; Popescu, M. O.; Crǎciunescu, A.

    2017-07-01

    Nowadays, many research efforts are allocated for the development of fuel cells, since they constitute a carbon-free electrical energy generator which can be used for stationary, mobile and portable applications. The maximum value of the delivered power of a fuel cell depends on many factors as: the height of plates' channels, the stoichiometry level of the air flow, the air pressure for the cathode, and of the actual operating electric current density. In this paper, two levels, full four-factors factorial experiment has been designed in order to obtain the appropriate response surface which approximates the maximum delivered power dependence of the above-mentioned factors. The optimum set of the fuel-cell factors which determine the maximum value of the delivered power was determined and a comparison between simulated and measured optimal Power versus Current Density characteristics is given.

  2. Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2010-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidificat...... net water transport coefficient. Thus we can reduce flooding at the cathode and may obtain improved cell performance due to a better humidified membrane. The results also suggest that membrane dehydration may occur at either anode or cathode depending on the net water transport....

  3. An analytical, control-oriented state space model for a PEM fuel cell system

    OpenAIRE

    Grasser, Félix; Rufer, Alfred

    2007-01-01

    If fuel cell technology – with its inherent benefits of high efficiency and low emissions – is to be used in decentralised power sources, in mobile or transportation applications, the systems have to be able to adapt to fast load changes and varying operating conditions. In order to achieve such performance, the balance of plant systems – typically governed by an on-board system controller – need to dynamically supply the fuel cell stack with reactant gases at the right flow rates, pressures ...

  4. An analytical, control-oriented state space model for a PEM fuel cell system

    OpenAIRE

    Grasser, Félix

    2006-01-01

    If fuel cell technology – with its inherent benefits of high efficiency and low emissions – is to be used in decentralised power sources, in mobile or transportation applications, the systems have to be able to adapt to fast load changes and varying operating conditions. In order to achieve such performance, the balance of plant systems – typically governed by an on-board system controller – need to dynamically supply the fuel cell stack with reactant gases at the right flow rates, pressures ...

  5. Harvesting of PEM fuel cell heat energy for a thermal engine in an underwater glider

    Science.gov (United States)

    Wang, Shuxin; Xie, Chungang; Wang, Yanhui; Zhang, Lianhong; Jie, Weiping; Hu, S. Jack

    The heat generated by a proton exchange membrane fuel cell (PEMFC) is generally removed from the cell by a cooling system. Combining heat energy and electricity in a PEMFC is highly desirable to achieve higher fuel efficiency. This paper describes the design of a new power system that combines the heat energy and electricity in a miniature PEMFC to improve the overall power efficiency in an underwater glider. The system makes use of the available heat energy for navigational power of the underwater glider while the electricity generated by the miniature PEMFC is used for the glider's sensors and control system. Experimental results show that the performance of the thermal engine can be obviously improved due to the high quality heat from the PEMFC compared with the ocean environmental thermal energy. Moreover, the overall fuel efficiency can be increased from 17 to 25% at different electric power levels by harvesting the PEMFC heat energy for an integrated fuel cell and thermal engine system in the underwater glider.

  6. Harvesting of PEM fuel cell heat energy for a thermal engine in an underwater glider

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuxin; Xie, Chungang; Wang, Yanhui; Zhang, Lianhong; Jie, Weiping [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2007-06-20

    The heat generated by a proton exchange membrane fuel cell (PEMFC) is generally removed from the cell by a cooling system. Combining heat energy and electricity in a PEMFC is highly desirable to achieve higher fuel efficiency. This paper describes the design of a new power system that combines the heat energy and electricity in a miniature PEMFC to improve the overall power efficiency in an underwater glider. The system makes use of the available heat energy for navigational power of the underwater glider while the electricity generated by the miniature PEMFC is used for the glider's sensors and control system. Experimental results show that the performance of the thermal engine can be obviously improved due to the high quality heat from the PEMFC compared with the ocean environmental thermal energy. Moreover, the overall fuel efficiency can be increased from 17 to 25% at different electric power levels by harvesting the PEMFC heat energy for an integrated fuel cell and thermal engine system in the underwater glider. (author)

  7. A multi-fluid model to simulate heat and mass transfer in a PEM fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2011-01-01

    and leaves at the anode side. Only a fundamental understanding of the various mechanisms involved can lead to proper water management and hence can prevent "flooding" of either anode or cathode side while keeping the membrane humidified, and consequently can optimize the fuel cell performance and durability...

  8. Experimental Study on Improvement of Performance by Wave Form Cathode Channels in a PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Sun-Joon Byun

    2018-02-01

    Full Text Available We propose a wave-like design on the surface of cathode channels (wave form cathode channels to improve oxidant delivery to gas diffusion layers (GDLs. We performed experiments using proton-exchange membrane fuel cells (PEMFCs combined with wave form surface design on cathodes. We varied the factors of the distance between wave-bumps (the adhesive distance, AD, and the size of the wave-bumps (the expansion ratio, ER. The ADs are three, four, and five times the size of the half-circle bump’s radius, and the ERs are two-thirds, one-half, and one-third of the channel’s height. We evaluated the performances of the fuel cells, and compared the current-voltage (I-V relations. For comparison, we prepared PEMFCs with conventional flat-surfaced oxygen channels. Our aim in this work is to identify fuel cell operation by modifying the surface design of channels, and ultimately to find the optimal design of cathode channels that will maximize fuel cell performance.

  9. Modeling and simulation of PEM fuel cell's flow channels using CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Edgar F.; Andrade, Alexandre B.; Robalinho, Eric; Bejarano, Martha L.M.; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: efcunha@ipen.br; abodart@ipen.br; eric@ipen.br; mmora@ipen.br; mlinardi@ipen.br; Cekinski, Efraim [Instituto de Pesquisas Tecnologicas (IPT-SP), Sao Paulo, SP (Brazil)]. E-mail: cekinski@ipt.br

    2007-07-01

    Fuel cells are one of the most important devices to obtain electrical energy from hydrogen. The Proton Exchange Membrane Fuel Cell (PEMFC) consists of two important parts: the Membrane Electrode Assembly (MEA), where the reactions occur, and the flow field plates. The plates have many functions in a fuel cell: distribute reactant gases (hydrogen and air or oxygen), conduct electrical current, remove heat and water from the electrodes and make the cell robust. The cost of the bipolar plates corresponds up to 45% of the total stack costs. The Computational Fluid Dynamic (CFD) is a very useful tool to simulate hydrogen and oxygen gases flow channels, to reduce the costs of bipolar plates production and to optimize mass transport. Two types of flow channels were studied. The first type was a commercial plate by ELECTROCELL and the other was entirely projected at Programa de Celula a Combustivel (IPEN/CNEN-SP) and the experimental data were compared with modelling results. Optimum values for each set of variables were obtained and the models verification was carried out in order to show the feasibility of this technique to improve fuel cell efficiency. (author)

  10. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    Energy Technology Data Exchange (ETDEWEB)

    Dever, Thomas J.

    2011-11-29

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies

  11. Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell.

    Science.gov (United States)

    Roth, Christina; Benker, Nathalie; Buhrmester, Thorsten; Mazurek, Marian; Loster, Matthias; Fuess, Hartmut; Koningsberger, Diederik C; Ramaker, David E

    2005-10-26

    A special in situ PEM fuel cell has been developed to allow X-ray absorption measurements during real fuel cell operation. Variations in both the coverage of O[H] (O[H] indicates O and/or OH) and CO (applying a novel Deltamu(L3) = mu(L3)(V) - mu(L3)(ref) difference technique), as well as in the geometric (EXAFS) and electronic (atomic XAFS) structure of the anode catalyst, are monitored as a function of the current. In hydrogen, the N(Pt)(-)(Ru) coordination number increases much slower than the N(Pt)(-)(Pt) with increasing current, indicating a more reluctant reduction of the surface Pt atoms near the hydrous Ru oxide islands. In methanol, both O[H] and CO adsorption are separately visible with the Deltamu technique and reveal a drop in CO and an increase in OH coverage in the range of 65-90 mA/cm(2). With increasing OH coverage, the Pt-O coordination number and the AXAFS intensity increase. The data allow the direct observation of the preignition and ignition regions for OH formation and CO oxidation, during the methanol fuel cell operation. It can be concluded that both a bifunctional mechanism and an electronic ligand effect are active in CO oxidation from a PtRu surface in a PEM fuel cell.

  12. Results of Current Density Distribution Mapping in PEM Fuel Cells Dependent on Operation Parameters

    Directory of Open Access Journals (Sweden)

    Zbigniew A. Styczynski

    2013-07-01

    Full Text Available This paper presents in situ measurements of a newly developed current density measurement system for proton exchange membrane fuel cells (PEMFC. While the functional principle and technical evaluation of the measurement system were presented in a previous paper, this paper analyzes the influence of various operation parameters, including multiple start-stop operation, at the anode, cathode and cooling locations on the distribution and long-term development of the current density. The system was operated for 500 h over two years with long periods of inactivity between measurements. The measurement results are evaluated and provide additional information on how to optimize the operation modes of fuel cells, including the start and stop of such systems as well as the water balance.

  13. Modeling of Diffusive Convective and Electromechanical Processes in PEM fuel cells

    DEFF Research Database (Denmark)

    Bang, Mads

    and chemical species. Since analytical solutions to these three dimensional convections diffusion problems can rarely be obtained, the CFX code makes use of a finite volume discretization and numerical techniques, in order to obtain a solution. The model developed solves the convective and diffusive transport...... of the gaseous phase in the fuel cell and allows prediction of the concentration of the species present. A special feature of the approach developed is a method that allows detailed modelling and prediction of electrode kinetics. The transport of electrons in the gas diffusion layer and catalyst layer, as well....... The proposed model makes it possible to predict the effect of geometrical and material properties on fuel cells performance, which means that the model can predict how the gas diffusion layer (GDL) and catalyst layers physical properties affects the distribution of current density, and how this affects...

  14. Properties of molded graphite bi-polar plates for PEM fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Barbir, F.; Braun, J.; Neutzler, J. [Energy Partners, West Palm Beach, FL (United States)

    1999-07-01

    The electrical resistance of the bi-polar collector plate plays a major role in fuel cell stack performance. Typically, the plates in laboratory fuel cells are made of graphite, which has acceptable electrical, thermal and mechanical properties, but is expensive. Less expensive graphite/polymer mixtures can be used but they have lower electrical conductivity. This paper discusses the properties of molded graphite/composite plates with enhanced electrical conductivity, as developed by Energy Partners of West Palm Beach, Florida. By optimizing collector plate materials, compounding and the molding processes, the resistance of the molded collector/backing layer sandwich was significantly reduced, with a corresponding improvement in performance of more than 50 mV per cell at 1 A/sq.cm. in a 10-cell stack with an active area of 300 sq. cm.

  15. Design and Control of PEM Fuel Cell Diffused Aeration System using Artificial Intelligence Techniques

    OpenAIRE

    Doaa M. Atia; Faten H. Fahmy; Ninet M. Ahmed; Hassen T. Dorrah

    2011-01-01

    Fuel cells have become one of the major areas of research in the academia and the industry. The goal of most fish farmers is to maximize production and profits while holding labor and management efforts to the minimum. Risk of fish kills, disease outbreaks, poor water quality in most pond culture operations, aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system ar...

  16. Sliding Mode Strategy for PEM Fuel Cells Stacks Breathing Control Using a Super-Twisting Algorithm

    OpenAIRE

    Kunusch, Cristian; Puleston, Pablo Federico; Mayosky, Miguel Ángel; Riera, Jordi

    2009-01-01

    A second-order sliding mode strategy to control the breathing subsystem of a polymer electrolyte membrane fuel cell stack for transportation applications is presented. The controller is developed from a design model of the plant derived from open literature, and well suited for the design of second-order sliding mode strategies. Stability issues are solved using a super twisting algorithm. The resulting approach exhibits good dynamic characteristics, being robust to uncertainties and disturba...

  17. The start-up analysis of a PEM fuel cell system in vehicles

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud; Hosseinzadeh, Elham

    2014-01-01

    results for start-up scenario are presented. It is shown that system stability is influenced by slow thermal management controls. High loads at start-up affect voltage and system efficiency adversely. Cathode inlet water levels are found to be adequate for humidification of recirculated fuel stream....... Liquid water at cathode outlet is considerably higher at high current density start-ups, pertaining to water removal issues. © 2013 Copyright Taylor and Francis Group, LLC....

  18. Development of Tailored High-Performance and Durable Electrocatalysts for Advanced PEM Fuel Cells.

    Czech Academy of Sciences Publication Activity Database

    Larsen, M.J.; Morales, I.J.; Cavaliere, S.; Zajac, J.; Jones, J.D.; Rozière, J.; Kaluža, Luděk; Gulková, Daniela; Odgaard, M.

    2017-01-01

    Roč. 42, č. 10 (2017), s. 7166-7176 ISSN 0360-3199. [International Conference on Innovative Electrochemical Energy Materials and Technologies (EEMT). Nanjing, 08.11.2015-11.11.2015] R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : fuel-cell catalyst * platinum deposition * oxygen reduction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.582, year: 2016

  19. The dynamic and steady state behavior of a PEM fuel cell as an electric energy source

    Energy Technology Data Exchange (ETDEWEB)

    Costa, R.A. [Fundacao Educacional de Barretos (FEB), School of Electrical Engineering, Av. Prof. Roberto Frade Monte, 389 Aeroporto, 14783.226, Barretos, SP (Brazil); Camacho, J.R. [Universidade Federal de Uberlandia, School of Electrical Engineering, Rural Electricity and Alternative Energy Sources Lab., Av. Joao N. de Avila, 2121, 38400.902, Uberlandia, MG (Brazil)

    2006-10-27

    The main objective of this work is to extract information on the internal behavior of three small polymer electrolyte membrane fuel cells under static and dynamic load conditions. A computational model was developed using Scilab [SCILAB 4, Scilab-a free scientific software package, http://www.scilab.org/, INRIA, France, December, 2005] to simulate the static and dynamic performance [J.M. Correa, A.F. Farret, L.N. Canha, An analysis of the dynamic performance of proton exchange membrane fuel cells using an electrochemical model, in: 27th Annual Conference of IEEE Industrial Electronics Society, 2001, pp. 141-146] of this particular type of fuel cell. This dynamic model is based on electrochemical equations and takes into consideration most of the chemical and physical characteristics of the device in order to generate electric power. The model takes into consideration the operating, design parameters and physical material properties. The results show the internal losses and concentration effects behavior, which are of interest for power engineers and researchers. (author)

  20. Modeling fluid flow and heat transfer in PEM fuel cell using lattice Boltzmann approach

    Science.gov (United States)

    Afsharpoya, Behnam

    2005-11-01

    The fluid flow and species transport in fuel cells are affected by diffusion, advection, thermal gradients, material properties, electrochemical effects, and interfacial forces. A consistent approach capable of modeling these processes has not yet been developed. There have been studies addressing transport of reactants and products in the gas phase, however, water management and convective / thermal effects are still poorly understood. While most modeling efforts in fuel-cell research adopt the traditional CFD approach based on the continuum governing equations, we are developing lattice- Boltzmann (LB) methods to model fluid and thermal transport inside flow channels and gas diffusion layers in proton exchange membrane fuel cells. Specifically, we have developed and tested a new method for implementing structured non-uniform mesh using Lagrangian interpolations. A three-dimensional LB code has been developed for thermal flows through a section of serpentine channel with a gas diffusion layer. The gas diffusion layer is modelled as a porous medium using a modified LB equation and a forcing term. A separate distribution is used to model thermal effects. Methods of validating the approach and preliminary results will be presented.

  1. Effect of nitrogen crossover on purging strategy in PEM fuel cell systems

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    and system efficiency decline due to nitrogen accumulation in fuel cell. Different purging techniques are simulated to address hydrogen dilution issue at reaction sites. Anode bleed out of 3% is found to be limit for prevention of N2 buildup and retains the concentration levels to less than 1%. An alternate...... strategy for automatic initiation of anode recirculation purge was simulated by employing nitrogen detectors. It is observed that purge interval is a direct function of current density and H2 residual flow rates. Moreover, during transient load changes, automatic purge catered well to prevent nitrogen...

  2. Experimental and Numerical Investigation of Humidity Effect on Performance of PEM Fuel Cells

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Al Shakhshir, Saher; Nielsen, Mads Pagh

    2017-01-01

    In this study, a single proton exchange membrane fuel cell electrical performance is tested and modelled. The aim is to investigate the effect of reactants and membrane humidity on cell electrical performance. We discuss cell performance in terms of various variables affecting water transport...... in the membrane, such as electro-osmotic drag, water diffusion and ionic conductivity. The experimental results show that membrane hydration mainly affects ohmic losses and especially when humidity at cathode side is reduced. The developed model can estimate the contribution of different overpotentials...

  3. Demonstration of a residential CHP system based on PEM fuel cells

    Science.gov (United States)

    Gigliucci, G.; Petruzzi, L.; Cerelli, E.; Garzisi, A.; La Mendola, A.

    Fuel cell-based CHP systems are very attractive for stationary energy generation, since they allow production of electricity and heat in a decentralised, quiet, efficient and environmentally friendly way. As a means of evaluating this new technology, Enel Produzione installed a beta-version fuel cell CHP system, supplied by H-Power, at its experimental area sited in Livorno (Italy), and submitted it to a series of tests. The system is a co-generative unit, converting natural gas into electricity and heat: the former is delivered to local loads using electric load following capability; the latter is delivered to the experimental area hydraulic refrigeration circuit. Experiments were aimed at assessing the suitability of this kind of system to supply Italian residential customers. Factors such as performances, flexibility and operational requirements were evaluated under all the possible operating conditions, both under grid connected and stand alone configurations. At the same time, a mathematical model of the FC/CHP unit was developed to allow for the prediction of system performances and operating parameters under off-design conditions. This model can be used as an effective tool to optimise system operation when a particular customer has to be supplied. Results show that the prototype behaved as expected by a first "proof of concept" system and outline improvements to be achieved in order to satisfy the energy needs of small residential applications.

  4. Uninterruptible power supply for GSM/UMTS base stations using fuel cells. PEM-FC back-up system - Final report; Unterbrechungsfreie Stromversorgung (USV) fuer GSM/UMTS-Basisstationen mit Brennstoffzellen. PEM-FC Back-Up System - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Trachte, U.; Wellig, B.; Luethi, E.; Gander, T.; Haerri, V.

    2010-06-15

    The Lucerne University of Applied Sciences and Arts - Lucerne School of Engineering and Architecture conducted field tests with an uninterruptible power supply (UPS) with fuel cell technology since January 2006. The project took place in collaboration with the industrial partners Swisscom (Schweiz) AG, as a user of UPS-systems in telecommunications and the American Power Conversion Corporation as a producer and market leader of UPS-Systems. In this project, the lead-acid batteries were replaced by a PEM fuel cell system. The delayed start-up behaviour of the fuel cell was bridged with supercapacitor technology. The system was connected to an existing working base station of a telecommunication installation, which was installed on the roof of the Lucerne School of Engineering and Architecture in Horw. Hydrogen was provided by two pressurized tanks. The full quantity of hydrogen assured a stand-alone operation for about 6 hours under the load of the telecommunication base station. The field test included monthly grid failure simulations of 5x5 minutes and 2x20 minutes power failures. Also during grid failure simulations for more than 4 hours and during two real outages up to one and a half hour the system provided the demanded power. The field test was performed for a period of three and a half years. Excellent results of the approximately 350 start-up's confirm the functionality, reliability and performance of the system. Under the load of the base station the fuel cell system started with a reliability of 100%. At the end of the tests a decrease of the fuel cell voltage of about 3.3% was measured. The fuel cell system was still fully operational at this time. An amount of energy of about 470 kWh was provided. In addition to the field test, the environmental impact of the lead-acid batteries, which are normally used, and of the fuel cell system was investigated. The comparison between the fuel cell system and lead-acid batteries without recycling showed a

  5. Development of high-integrated steam reformer for mobile PEM-fuel cell systems; Entwicklung eines hochintegrierten Dampfreformers fuer mobile PEM-Brennstoffzellensysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J.

    2007-07-01

    Auxiliary Power Units (APUs) based on fuel cells are an interesting means of satisfying the increasing demand of electrical energy in automobiles, since they have the potential to be efficient, low emission and operate independent of the engine. In this context, fuel cell systems based on hydrogen driven polyelectrolyte fuel cell (PEFC), a steam reformer, and a hydrogen selective membrane are a promising option. It was the scope of this work to design an optimal system configuration and develop an integrated burnerreformerunit for the system under examination. In system design, Aspen Plus was used to model the steadystate operation of the fuel cell system at full load. Sensitivity analyses were conducted to understand the interdependencies of the systems components and identify starting points for system optimization. Based on these starting points several new system configurations have been developed and simulated. Comparing these systems, a system in which the retentate is recirculated partly turned out to be optimal. By partly recirculating retentate, the system's efficiency increases by 6 % and the maximum temperature allowing the closure of the water balance rises by 10%. In general, the presence of hydrogen and the increase in the steam molar fraction going along with the recirculating have a positive impact on catalyst life time (mild operation conditions). The conceptual design, manufacture and test of a steam reformer heated by a porous burner were other key activities of this work. The operation of the reformer fed with gasoline was critical. Although single measuring points could be gathered, a trouble and cokefree operation of the reformer was even under mild operation conditions not possible. A comparison of the reformer to new steam reformers known from the literature is based on experiments operating the reformer on methane. It shows the superiority concerning the load changing capability (1:20 instead of 1:5) as well as the comparability of the

  6. Analyzing Structural Changes of Fe-N-C Cathode Catalysts in PEM Fuel Cell by Mößbauer Spectroscopy of Complete Membrane Electrode Assemblies.

    Science.gov (United States)

    Kramm, Ulrike I; Lefèvre, Michel; Bogdanoff, Peter; Schmeißer, Dieter; Dodelet, Jean-Pol

    2014-11-06

    The applicability of analyzing by Mößbauer spectroscopy the structural changes of Fe-N-C catalysts that have been tested at the cathode of membrane electrode assemblies in proton exchange membrane (PEM) fuel cells is demonstrated. The Mößbauer characterization of powders of the same catalysts was recently described in our previous publication. A possible change of the iron species upon testing in fuel cell was investigated here by Mößbauer spectroscopy, energy-dispersive X-ray cross-sectional imaging, and neutron activation analysis. Our results show that the absorption probability of γ rays by the iron nuclei in Fe-N-C is strongly affected by the presence of Nafion and water content. A detailed investigation of the effect of an oxidizing treatment (1.2 V) of the non-noble cathode in PEM fuel cell indicates that the observed activity decay is mainly attributable to carbon oxidation causing a leaching of active iron sites hosted in the carbon matrix.

  7. Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, D.; Suelves, I.; Moliner, R.; Lazaro, M.J. [Instituto de Carboquimica (CSIC), Energy and Environment, C/Miguel Luesma Castan 4, 50018 Zaragoza (Spain); Calderon, J.C.; Gonzalez-Exposito, J.A.; Pastor, E. [Universidad de La Laguna, Dpto de Quimica-Fisica, Avda. Astrofisico Francisco Sanchez s/n, 38071 La Laguna, Tenerife (Spain); Martinez-Huerta, M.V. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, 28049 Madrid (Spain)

    2010-09-15

    Novel carbonaceous supports for electrocatalysts are being investigated to improve the performance of polymer electrolyte fuel cells. Within several supports, carbon nanofibers blend two properties that rarely coexist in a material: a high mesoporosity and a high electrical conductivity, due to their particular structure. Carbon nanofibers have been obtained by catalytic decomposition of methane, optimizing growth conditions to obtain carbon supports with different properties. Subsequently, the surface chemistry has been modified by an oxidation treatment, in order to create oxygen surface groups of different nature that have been observed to be necessary to obtain a higher performance of the electrocatalyst. Platinum has then been supported on the as-prepared carbon nanofibers by different deposition methods and the obtained catalysts have been studied by different electrochemical techniques. The influence of carbon nanofibers properties and functionalization on the electrochemical behavior of the electrocatalysts has been studied and discussed, obtaining higher performances than commercial electrocatalysts with the highest electrical conductive carbon nanofibers as support. (author)

  8. Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.

    Science.gov (United States)

    Zhang, Weimin; Chen, Jun; Swiegers, Gerhard F; Ma, Zi-Feng; Wallace, Gordon G

    2010-02-01

    Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions. The supporting single-wall carbon nanotubes (SWNTs), functionalized with carboxyl groups, were studied by thermogravimetric analysis (TGA), cyclic voltammetry (CV), and Raman spectroscopy. The loading level, morphology, and crystallinity of the Pt/SWNT catalysts were determined using TGA, SEM, and XRD. The electrochemically active catalytic surface area of the Pt/FCNT catalysts was 72.9 m(2)/g-Pt.

  9. The Characterisation of a PEM Fuel-Cell System with a Focus on UAS Applications

    Science.gov (United States)

    2014-01-01

    powered UAV [6, 27]; 2.5-kg KAIST UAV [28, 29]; 2.6-kg Hy-Fly [30-32]; 3.1-kg Spider Lion [24, 33-35]; 5.3-kg SOFC UAV [6, 27, 36]; 5.4-kg Puma [15, 20, 21...Institute HHV Higher heating value KAIST Korea Advanced Institute of Science and Technology LED Light-emitting diode LHV Lower heating value...0.065-kg MITE [22-24]; 0.17-kg Hornet [12, 15, 25, 26]; 1.9-kg solid-oxide-fuel-cell- (SOFC-) powered UAV [6, 27]; 2.5-kg KAIST UAV [28, 29]; 2.6-kg Hy

  10. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  11. An XAS experimental approach to study low Pt content electrocatalysts operating in PEM fuel cells.

    Science.gov (United States)

    Principi, Emiliano; Witkowska, Agnieszka; Dsoke, Sonia; Marassi, Roberto; Di Cicco, Andrea

    2009-11-21

    We present an X-ray absorption spectroscopy (XAS) study of a low Pt content catalyst layer (Pt loading 0.1 mg cm(-2)) operating at the cathode of a proton exchange membrane fuel cell (PEMFC). This catalyst is based on the use of a mesoporous inorganic matrix as a support for the catalyst Pt nanoparticles. Due to the high Pt dilution, in situ measurements of its structural properties by XAS are challenging and suitable experimental strategies must be devised for this purpose. In particular, we show that accurate XAS in situ fluorescence measurements can be obtained using an optimized fuel cell, suitable protocols for alignment of a focused X-ray beam and an appropriate filter for the background signal of the other atomic species contained in the electrodes. Details, advantages and limitations of the XAS technique for in situ measurements are discussed. Analysis of the near-edge XAS and EXAFS (extended X-ray absorption fine structure) data, corroborated by a HRTEM (high-resolution transmission electron microscopy) study, shows that the Pt particles have a local structure compatible with that of bulk Pt (fcc) and coordination numbers match those expected for particles with typical sizes in the 1.5-2.0 nm range. Substantial changes in the oxidation state and in local atomic arrangement of the Pt particles are found for different applied potentials. The catalyst support, containing W atoms, exhibits a partial reduction upon PEMFC activation, thus mimicking the catalyst behavior. This indicates a possible role of the mesoporous matrix in favouring the oxygen reduction reaction (ORR) and stimulates further research on active catalyst supports.

  12. CFD modelling of cooling channel geometry of PEM fuel cell for ...

    African Journals Online (AJOL)

    The evaluation is performed using a computational fluid dynamics (CFD) code based on a finite volume approach. The systems performances are presented as a function of the system temperature, operating parameters and cooling channel geometry. The results obtained indicate that incorporating cooling channels within ...

  13. EIS Characterization of the Poisoning Effects of CO and CO2 on a PBI based HT-PEM Fuel Cell

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Mosbæk, Rasmus; Vang, Jakob Rabjerg

    2010-01-01

    This paper presents test results regarding the poisoning effects of CO and CO2 on H3PO4/Polybenzimidazole (PBI) membrane based high temperature proton exchange membrane fuel cell (HT-PEMFC). Electrochemical impedance spectroscopy (EIS), which is a non intrusive diagnostic tool for electrochemical...... frequency resistances, which is attributable to the adsorption of CO on Pt catalyst....

  14. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  15. Design of Pt/Carbon Xerogel Catalysts for PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nathalie Job

    2015-01-01

    Full Text Available The design of efficient catalytic layers of proton exchange membrane fuel cells (PEMFCs requires the preparation of highly-loaded and highly-dispersed Pt/C catalysts. During the last few years, our work focused on the preparation of Pt/carbon xerogel electrocatalysts, starting from simple impregnation techniques that were further optimized via the strong electrostatic adsorption (SEA method to reach high dispersion and a high metal weight fraction. The SEA method, which consists of the optimization of the precursor/support electrostatic impregnation through an adequate choice of the impregnation pH with regard to the support surface chemistry, leads to very well-dispersed Pt/C samples with a maximum 8 wt.% Pt after drying and reduction under H2. To increase the metal loading, the impregnation-drying-reduction cycle of the SEA method can be repeated several times, either with fresh Pt precursor solution or with the solution recycled from the previous cycle. In each case, a high dispersion (Pt particle size ~3 nm is obtained. Finally, the procedure can be simplified by combination of the SEA technique with dry impregnation, leading to no Pt loss during the procedure.

  16. A Novel Hybrid Actuator Driven Magnetically in the Bi-Cell PEM Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2017-10-01

    Full Text Available This study develops an air breathing pump driven by a piezoelectric actuator for a proton exchange membrane fuel cell (PEMFC stack. Permanent magnets are combined with a piezoelectric actuator to drive three air breathing pumps using magnetic force. This design enables the pump to provide a sufficient amount of air simultaneously to six cathode flow field plates in a stack of three “bi-cell PZTmag–PEMFCs”. When both the PZTmag and the PDMSmag had a magnet with a 6-mm diameter and 1-mm thickness, a maximum amplitude of 87 μm was generated at 0.03 W of power under operating conditions of 70 Hz and 40 V. In computational fluid dynamics (CFD, when the nozzle and the diffuser of an air breathing pump have an aspect ratio of 13.13, air flow distributes uniformly inside the pump, thus allowing for uniform transmission of oxygen to the membrane electrode assembly. This aspect ratio was applied to the bi-cell PZTmag–PEMFC stack and yielded a maximum net power flux of 0.1925 W·cm−2, 20% higher than that reported in a previous study (Ma, 2013, with 68% and 76% less volume and weight, respectively.

  17. Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells.

    Science.gov (United States)

    Narayanamoorthy, B; Datta, K K R; Eswaramoorthy, M; Balaji, S

    2012-07-25

    A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.

  18. Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells

    Science.gov (United States)

    Ashrafi, Moosa; Shams, Mehrzad; Bozorgnezhad, Ali; Ahmadi, Goodarz

    2016-12-01

    In this study, dynamics of droplets in the channels of proton exchange membrane fuel cells with straight and serpentine flow-fields was investigated. Tapered and filleted channels were suggested for the straight and serpentine flow-fields respectively in order to improve water removal in channels. Surface tension and wall adhesion forces were applied by using the volume of fluid method. The hydrophilic walls and hydrophobic gas diffusion layer were considered. The mechanism of droplets movement with different diameters was studied by using the Weber and capillary numbers in simple and tapered straight channels. It was illustrated that the flooding was reduced in tapered channel due to increase of water removal rate, and available reaction sites improved subsequently. In addition, film flow was formed in the tapered channel more than the simple channel, so pressure fluctuation was decreased in the tapered channel. Moreover, the water coverage ratio of hydrophilic tapered surface was more than the simple channel, which enhanced water removal from the channel. The filleted serpentine channel was introduced to improve water removal from the simple serpentine channel. It was shown by observation of the unsteady and time-averaged two-phase pressure drop that in the filleted serpentine channels, the two-phase pressure drop was far less than the simple serpentine channel, and also the accumulation of water droplets in the elbows was less leading to lower pressure fluctuation. The numerical simulation results were validated by experiments.

  19. Performance Evaluation and Durability Enhancement of FEP-Based Gas Diffusion Media for PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Saverio Latorrata

    2017-12-01

    Full Text Available Nowadays, micro-porous layers (MPLs for polymer electrolyte membrane fuel cells (PEMFCs are commonly deposited onto gas diffusion layer (GDL substrates starting from hydrophobic carbon-based dispersions. In this work, different quantities of fluorinated ethylene propylene (FEP, a fluorinated copolymer proven to be superior to polytetrafluoroethylene (PTFE for a proper water management, were used to make both GDL and MPL hydrophobic. After the identification of the optimal amount of FEP, carboxymethylcellulose (CMC was also added to gas diffusion media (GDM to reduce overall ohmic resistance of the whole device and adhesion of MPLs to GDLs. Ex-situ chemical and mechanical accelerated stress tests (ASTs were carried out to accelerate degradation of materials aiming to assess their durability. The highest quantity of FEP in GDMs led to the best electrochemical and diffusive properties. The presence of CMC allowed reducing overall ohmic resistance due to a better electrolyte hydration. A satisfactory durability was proven since the fundamental properties related to gas diffusion medium, such as wettability, ohmic and mass transport resistances, revealed to be quasi-stable upon ASTs.

  20. The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels

    Directory of Open Access Journals (Sweden)

    Yue-Tzu Yang

    2013-01-01

    Full Text Available The objective of this study is to use a new style of waved flow channel instead of the plane surface channel in the proton exchange membrane fuel cell (PEMFC. The velocity, concentration, and electrical performance with the waved flow channel in PEMFC are investigated by numerical simulations. The results show that the waved channel arises when the transport benefits through the porous layer and improves the performance of the PEMFC. This is because the waved flow channel enhances the forced convection and causes the more reactant gas flow into the gas diffusion layer (GDL. The performance which was compared to a conventional straight gas flow channel increases significantly with the small gap size when it is smaller than 0.5 in the waved flow channel. The performance is decreased at the high and low velocities as the force convection mechanism is weakened and the reactant gas supply is insufficient. The pressure drop is increased as the gap size becomes smaller, and the wave number decreases. (gap size δ > 0.3 has a reasonable pressure drop. Consequently, compared to a conventional PEMFC, the waved flow channel improves approximately 30% of power density.

  1. Development and Characterization of Non-Conventional Micro-Porous Layers for PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Riccardo Balzarotti

    2015-07-01

    Full Text Available Gas diffusion medium (GDM is a crucial component in proton exchange membrane fuel cells (PEMFCs. Being composed of a gas diffusion layer (GDL with a micro-porous layer (MPL coated onto it, it ensures a proper water management due to the highly hydrophobic materials employed in cell assembly. In current commercial applications, the desired water repellent behaviour is usually obtained by using polytetrafluoroethylene (PTFE. In this work, Fluorolink® P56 (Solvay Specialty Polymers, Milan, Italy, a commercially available, anionic, segmented high molecular weight polyfluorourethane with perfluoropolyether groups was extensively evaluated as an alternative to PTFE for micro-porous layer hydrophobization. A change in polymer used is desirable in order to simplify the production process, both in terms of ink formulation and thermal treatment, as well as to get a higher hydrophobicity and, consequently, more efficient water management. Innovative prepared samples were compared to a PTFE-based GDM, in order to assess differences both from morphological and from an electrochemical point of view.

  2. Linear identification and model adjustment of a PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, C.; Puleston, P.F.; More, J.J. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Husar, A. [Institut de Robotica i Informatica Industrial (CSIC-UPC), c/ Llorens i Artigas 4-6, 08028 Barcelona (Spain); Mayosky, M.A. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Comision de Investigaciones Cientificas (CIC), Provincia de Buenos Aires (Argentina)

    2008-07-15

    In the context of fuel cell stack control a mayor challenge is modeling the interdependence of various complex subsystem dynamics. In many cases, the states interaction is usually modeled through several look-up tables, decision blocks and piecewise continuous functions. Many internal variables are inaccessible for measurement and cannot be used in control algorithms. To make significant contributions in this area, it is necessary to develop reliable models for control and design purposes. In this paper, a linear model based on experimental identification of a 7-cell stack was developed. The procedure followed to obtain a linear model of the system consisted in performing spectroscopy tests of four different single-input single-output subsystems. The considered inputs for the tests were the stack current and the cathode oxygen flow rate, while the measured outputs were the stack voltage and the cathode total pressure. The resulting model can be used either for model-based control design or for on-line analysis and errors detection. (author)

  3. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    Science.gov (United States)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  4. Multi-port power converter for segmented PEM fuel cell in transport application. Simulation with fault-tolerant strategy

    Science.gov (United States)

    De Bernardinis, A.; Frappé, E.; Béthoux, O.; Marchand, C.; Coquery, G.

    2012-05-01

    To fulfill the transport applications, either for traction or on-board auxiliaries systems, a power generator based on fuel cell needs significant power. For this purpose, long fuel cell stacks, either mono- or multi-stack systems, are already implemented as technological solutions. Long stacks though may be affected by spatial discrepancies (fluidics, temperature) causing possible failures. The latter often occur on localized stack sections. A corrective action has to be taken to quickly restore the fuel cell's state of health. As an alternative to fluidic action, segmented electric action is explored in this paper. First, an "All or Nothing" solution achieved with electrical by-pass circuits is analyzed: it proved simple to implement but restrictive to exploit. Consequently, a "gradual" action is proposed by using the power electronics converter associated to the fuel cell. Hence, the present work investigates the approach consisting in individually driving the electric power delivered by each segment of a long polymer electrolyte membrane fuel cell stack. Each segment is controlled independently according to its state of health. To achieve this objective, the article provides an extended multi-criteria analysis of several power converter topologies. The converter topology has to be in agreement with transportation specifications: simple, compact, having a high efficiency and should be adapted to manage fuel cell degraded modes. Among several studied topologies, resonant isolated boost stands out as a candidate topology. The related multi-port architecture and algorithm structure are analyzed by numerical simulations, taking into account degraded modes and technology considerations.

  5. Development of Novel Non-Pt Group Metal Electrocatalysts for PEM Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, Sanjeev [Northeastern Univ., Boston, MA (United States). Dept. of Chemistry and Chemical Biology; Atanassov, Plamen [Univ. of New Mexico, Albuquerque, NM (United States); Barton, Scott [Michigan State Univ., East Lansing, MI (United States); Dale, Nilesh [Nissan Technical Center North America (NTCNA), Farmington Hills, MI (United States); Halevi, Bar [Pajarito Powder LLC, Albuquerque, NM (United States)

    2016-01-04

    The objective of this multi-institutional effort was to comprehensively pursue the goal of eliminating noble metal (Pt group metals, PGM) from the cathodic oxygen reduction reaction (ORR) electrode thereby providing a quantum leap in lowering the overall PGM loading in a polymer electrolyte fuel cell (PEMFC). The overall project scope encompassed (a) comprehensive materials discovery effort, (b) a concomitant effort to scale up these materials with very high ( ±5%) reproducibility, both intra and inter, (c) understanding mass transport in porous medium both in gas diffusion and micro-porous layers for enhanced areal activity, (d) understanding mechanistic aspects of active site structure and ORR electrocatalytic pathway. Overall project milestones and metrics were (a) first phase effort based on performance in oxygen where the project’s Go/No-Go decision point milestone of 100 mA/cm2 at 0.8 V (internal resistance-free, iR-free) at 80°C, pure H2/O2, with 1.5 bar total pressure was met. Subsequently, the principle objectives were to (a) transition the project from H2/O2 to H2/Air with slated target of exceeding 30 mA/cm2 @ 0.8 V, 2.5 bar total pressure and an end of the project target of 1 A/cm2 @ 0.4 V (same total pressure), both under 100% relative humidity. The target for catalyst material scale up was to achieve 100 g batch size at the end of the program. This scale up target had a quality control milestone of less than 5% variation of activity measured with H2/Air (2.5 bar total pressure) at 0.8 V. In addition, the project also aimed at arriving at a unified understanding of the nature of active sites in these catalysts as well as some preliminary understanding of the mechanistic pathway. Also addressed is the development of an integrated method for determination of mass transport parameters using a combination of Helox experiments and modeling of the gas

  6. Development of a portable PEM fuel cell system with bipolar plates consisting an electronically conductive thermoplastic Compound material; Entwicklung eines portablen PEM-Brennstoffzellensystems mit Bipolarplatten aus einem elektronisch leitfaehigen thermoplastischen Compound-Material

    Energy Technology Data Exchange (ETDEWEB)

    Niemzig, O.C.

    2005-07-18

    In order to meet the cost targets of PEM fuel cells for commercialization significant cost reductions of cell stack components like membrane/electrode assemblies and bipolar plates have become key aspects of research and development. Central topics of his work are the bipolar plates and humidification for portable applications. Best results concerning conductivity of an extensive screening of a variety of carbon polymer compounds with polypropylene as matrix could be achieved with the carbon black/graphite/polypropylene-base system. Successful tests of this material in a fuel cell stack could be performed as well as the proof of suitability concerning material- and manufacturing costs. Dependent on application a decrease of material cost to 2 Euro/kg to 1,8 Euro/kW seems to be possible. Finally bipolar plates consisting of a selected carbon polymer compound were successfully integrated and tested in a 20-cell stack which was implemented in a portable PEFC-demonstrator unit with a power output between 50 and 150 W. (orig.)

  7. Advanced computational tools for PEM fuel cell design. Part 2. Detailed experimental validation and parametric study

    Science.gov (United States)

    Sui, P. C.; Kumar, S.; Djilali, N.

    This paper reports on the systematic experimental validation of a comprehensive 3D CFD-based computational model presented and documented in Part 1. Simulations for unit cells with straight channels, similar to the Ballard Mk902 hardware, are performed and analyzed in conjunction with detailed current mapping measurements and water mass distributions in the membrane-electrode assembly. The experiments were designed to display sensitivity of the cell over a range of operating parameters including current density, humidification, and coolant temperature, making the data particularly well suited for systematic validation. Based on the validation and analysis of the predictions, values of model parameters, including the electro-osmotic drag coefficient, capillary diffusion coefficient, and catalyst specific surface area are determined adjusted to fit experimental data of current density and MEA water content. The predicted net water flux out of the anode (normalized by the total water generated) increases as anode humidification water flow rate is increased, in agreement with experimental results. A modification of the constitutive equation for the capillary diffusivity of water in the porous electrodes that attempts to incorporate the experimentally observed immobile (or irreducible) saturation yields a better fit of the predicted MEA water mass with experimental data. The specific surface area parameter used in the catalyst layer model is found to be effective in tuning the simulations to predict the correct cell voltage over a range of stoichiometries.

  8. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  9. Development and design of experiments optimization of a high temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor

    Science.gov (United States)

    Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan

    In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.

  10. Conductor polymeric membranes with potential for application in PEM type fuel cells; Membranas polimericas condutoras com potencialidades para aplicacao em celulas a combustivel do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, Michel de Meireles; Sodre, Livia Farias; Boaventura Filho, Jaime Soares; Jose, Nadia Mamede [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2006-07-01

    In this work two series of membranes were prepared; they were based on hybrid organic-inorganic or composite materials and presented potentiality for application in Proton Exchange Membrane Fuel Cell, PEMFC. The polymeric phase was constituted of poly(dimethylsiloxane), PDMS, crosslinked with tetra ethoxysilane, TEOS, with a 70%/30% ratio. Phosphotungstic acid (PWA) or the sodium monododecylsulphate (MDS), as proton conductors, were added to the inorganic network, close to the gel point; the mixtures were transferred to a cast. The films were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The membranes showed good properties, as flexibility, thermal and mechanical stability with potentiality to be used as conducting membranes in technological applications. (author)

  11. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  12. Synthesis of protons exchange polymeric membranes via co-poly-esters doped with sodium dodecyl sulfate for application in PEM fuel cells; Sintese de membranas polimericas condutoras de protons por imobilizacao de MDs em copoliesteres para aplicacao em PEM-FC

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Brioude, M.M.; Bresciani, D.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2008-07-01

    Polymers are largely studied for use in PEM-type fuel cell (Proton Exchange membrane, PEMFC). These fuel cells are based on polymer membranes as electrolyte, also called protons conductor. This work developed co-polyesters made electrical conductors by doping with sodium dodecyl sulfate. The copolymers were synthesized from the copolymerization of terephthalic and adipic acids with glycerol. The material was processed in a reactor and shaped by hot pressing, yielding homogeneous and flexible plates, with excellent surface finish. The co-polyesters were analyzed by SEM, FTIR, TG, DSC, and XRD. The thermal analysis showed that the composites were thermally stable up to about 250 deg C. The micrographics revealed the MDS homogeneously dispersed in the polymeric matrix. These copolymers showed electrical conductivity between 10-7 to 10-1 S/cm, suggesting strong potential use in PEM fuel cells. (author)

  13. Influence of air contaminants on planar, self-breathing hydrogen PEM fuel cells in an outdoor environment

    Science.gov (United States)

    Biesdorf, Johannes; Zamel, Nada; Kurz, Timo

    2014-02-01

    In this study, the effects of air contaminants on the operation of air-breathing fuel cells in an outdoor environment are investigated. For this purpose, a unique testing platform, which allows continuous operation of 30 cells at different locations, was developed. Three of these testing platforms were placed at different sites in Freiburg im Breisgau, Germany, with high variances of weather and pollution patterns. These locations range from a highly polluted place next to a busy highway to a location with virtually pure air at an altitude of 1205 m. The fuel cells were tested at all sites for over 4500 h in continuous operation. The degradation of the cells due to air pollutants was measured as a voltage decrease for three different operation loads and membranes from two different manufactures. As the temperature of the fuel cells has not been regulated, the irreversible degradation of the cell voltages could not be isolated from the dominant influence of the temperature in the raw data. With the use of the measured data, the impact of real mixtures of air contaminants was observed to be mainly reversible.

  14. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    Science.gov (United States)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  15. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  16. Modeling of laser cladding with application to fuel cell manufacturing.

    Science.gov (United States)

    2010-01-01

    Polymer electrolyte membrane (PEM) fuel cells have many advantages such as compactness, : lightweight, high power density, low temperature operation and near zero emissions. Although : many research organizations have intensified their efforts toward...

  17. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    Directory of Open Access Journals (Sweden)

    Sang Soon Hwang

    2009-11-01

    Full Text Available In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  18. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.

    Science.gov (United States)

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  19. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM.

    Science.gov (United States)

    Maity, Sudhangshu; Jana, Tushar

    2014-05-14

    A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.

  20. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    Science.gov (United States)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  1. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  2. Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Ridjan, Iva; Connolly, David

    , by either using it directly in vehicles or indirectly via the production of synthetic fuels. Electrolysers are necessary to convert electricity to hydrogen and so they will have an essential role in the future smart energy system. However, at present there is a lot of uncertainty in relation to the current......The transition to 100% renewable energy systems will require a more integrated energy system. Connecting the electricity sector to transport is one of the major challenges in this transition, especially for long-distance and heavy-duty transport. Hydrogen is one potential solution to this challenge...

  3. Carbon nanofiber growth optimization for their use as electrocatalyst support in proton exchange membrane (PEM) fuel cells.

    Science.gov (United States)

    Lázaro, M J; Sebastián, D; Suelves, I; Moliner, R

    2009-07-01

    Carbon nanofiber (CNF) growth by catalytic decomposition of methane in a fixed-bed reactor was studied out to elucidate the influence of some important reaction conditions: temperature, space velocity and reactant partial pressure, in the morphological properties of the carbonaceous material obtained. The main objective is to synthesize a suitable carbonaceous nanomaterial to be used as support in platinum based electrocatalysts for Proton Exchange Membrane Fuel Cells (PEMFC) which improves current carbon blacks. High specific surface area is required in an electrocatalyst support since platinum dispersion is enhanced and so a cost-effective usage and high catalytic activity. Good electrical conductivity of carbon support is also required since the fuel cell power density is improved. With this proposal, characterization was carried out by nitrogen physisorption, XRD, SEM and TPO. The results were analysed by a factorial design and analysis of variance (ANOVA) in order to find an empirical correlation between operating conditions and CNF characteristics. It was found that the highest specific surface area and pore volume were found at 823 K and at a space velocity of 10 L gcat(-1) h(-1). The graphitic character of CNF, which is known to influence the electrical conductivity, presented a maximum value at temperatures between 923 K and 973 K. SEM images showed a narrow size distribution of CNF diameter between 40 and 90 nm and homogeneous appearance.

  4. Fuel Temperature Fluctuations During Storage

    Science.gov (United States)

    Levitin, R. E.; Zemenkov, Yu D.

    2016-10-01

    When oil and petroleum products are stored, their temperature significantly impacts how their properties change. The paper covers the problem of determining temperature fluctuations of hydrocarbons during storage. It provides results of the authors’ investigations of the stored product temperature variations relative to the ambient temperature. Closeness and correlation coefficients between these values are given. Temperature variations equations for oil and petroleum products stored in tanks are deduced.

  5. Draft, development and optimization of a fuel cell system for residential power generation with steam reformer; Entwurf, Aufbau und Optimierung eines PEM-Brennstoffzellensystems zur Hausenergieversorgung mit Dampfreformer

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.

    2006-05-17

    The first development cycle of a residential power generation system is described. A steam reformer was chosen to produce hydrogen out of natural gas. After carbon monoxide purification with a preferential oxidation (PrOx) unit the hydrogen rich reformat gas is feed to the anode of the PEM-fuel cell, where due to the internal reaction with air oxygen form the cathode side water, heat and electricity is produced. Due to an incomplete conversion the anode off gas contains hydrogen and residual methane, which is feed to the burner of the steam reformer to reduce the needed amount of external fuel to heat the steam reformer. To develop the system the components are separately investigated and optimized in their construction or operation to meet the system requirements. After steady state and dynamic characterization of the components they were coupled one after another to build the system. To operate the system a system control was developed to operate and characterize this complex system. After characterization the system was analyzed for further optimization. During the development of the system inventions like a water cooled PrOx, an independent fuel cell controller or a burner for anodic off gas recirculation were made. The work gives a look into the interactions between the components and allows to understand the problems by coupling such components. (orig.)

  6. Influence of carbon monoxide on the cathode in high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Søndergaard, Stine; Cleemann, Lars Nilausen; Jensen, Jens Oluf

    2017-01-01

    This paper describes the results of adding small amounts of CO gas to the cathode side in a HT-PEM fuel cell with a polybenzimidazole (PBI) membrane running on either oxygen or air. Experimental conditions: Temperature ranges 120–160 °C, constant current either 200 mA/cm2 or 800 mA/cm2 and CO...... ranges 0.1–1.3%. In this case it was found that small amounts of CO under special conditions have a beneficial effect on the potential of the fuel cells, whereas larger amounts can bring the potential down to almost zero. An interesting phenomenon is that after the flow of CO is switched off a temporary...

  7. A Study of the Influence of Gas Channel Parameters on HT-PEM Fuel Cell Performance Using FEM Analysis

    Directory of Open Access Journals (Sweden)

    Ionescu Viorel

    2016-01-01

    Full Text Available Proton Exchange Membrane Fuel Cells (PEMFC are highly efficient power generators, achieving up to 50–60% conversion efficiency, even in sizes of a few kilowatts. Comsol Multiphysics, a commercial solver based on the Finite Element Method (FEM was used for developing a three dimensional model of a high temperature PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. Cathode gas flow velocity influence on the cell performance was investigated at first. Polarization curves for three different channel widths (0.8, 1.6 and 2.4 mm and three different channel depths (1, 2 and 3 mm were computed at a cathode inlet flow velocity of 0.06 m/s. Oxygen molar concentration at cathode catalyst layer-GDL channel interface and local current density variation along the cell length were also studied for specific gas channel geometries.

  8. Design and construction of a go-kart hybrid PEM fuel cell / rechargeable battery; Diseno y construccion de un go-kart hibrido pila de combustible PEM / bateria recargable

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Alcantara, Karina; Rodriguez Castellanos, Andres; Soloza Feria, Omar [Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: k.suarez.alcantara@gmail.com

    2008-11-15

    An hybrid Polymer Electrolyte Membrane Fuel Cell, PEMFC-Rechargeable Battery Go-kart has been designed and manufactured using AutoCAD software for the design and a CNC mechanical machine for the manufacture of components of the fuel cell. The membrane-electrode assemblies, MEAs, were integrated with a Gore-Select membrane and carbon cloth with Pt (20 wt % /C) 0.5 mg/cm{sup 2} anode and cathode electrode catalysts loading. High density graphite collector plates with 5mm thickness were used as collector plates. The estimated weigh of the go-kart with a driver is about 120 kg. The demand of the motor of the go-kart is 20 V and 5 A (100W), supplied by an hybrid system integrated by three 30Watts PEMFC. The commercially available Pb/acid rechargeable battery supplies energy for peripheral equipment. [Spanish] En este trabajo se presenta el diseno y la construccion de un go-kart hibrido pila de combustible con membrana de conduccion protonica tipo PEM (Proton Exchange Membrane, por sus siglas en ingles) y pila recargable. El diseno de los colectores de corriente de la pila se realizo utilizando el programa AutoCAD y la construccion mediante una fresadora con control numerico, CNC. Los ensambles membrana-electrocatalizador de la pila estan formados por membranas Gore-Select y por electrodos de Pt soportado en tela de carbon al 20 %peso/C con carga de 0.5 mg /cm{sup 2}, en anodo y catodo. Los platos colectores de corriente fueron manufacturados en grafito de alta densidad con espesor de 5 mm. La caracterizacion de la pila de combustible se realizo mediante ensayos de polarizacion potenciostatica. El peso total del go-kart y una persona a bordo es de 120 kg. La potencia del go-kart es generada por un motor de corriente directa de 20 V y 5 A (100 Watts). Para tal efecto, se construyeron tres pilas de combustible de 30 W cada una, con un respaldo de baterias recargables comerciales de Pb/acido para energizar equipos perifericos.

  9. Study of the flooding and dehydration processes of a PEM fuel cell using the EIS technique; Estudio de los procesos de inundacion y deshidratacion en una celda de combustible tipo PEM mediante la tecnica EIS

    Energy Technology Data Exchange (ETDEWEB)

    Loyola-Morales, F.; Cano-Castillo, U. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: feloyola@yahoo.com.mx

    2009-09-15

    In this work, a study was conducted of the flooding and dehydration processes of a PEM fuel cell using the EIS technique. The experiments were conducted in a 50 cm{sup 2} cell. The gradual flooding of the system was induced by operating the cell at a potential of 0.3 V and maintaining the gas outlet closed (that is, stoichiometry of 1 for the anode (H{sub 2}) and the cathode (O{sub 2})) to enable the water produced by the reaction to accumulate inside. The gradual dehydration was induced by operating the cell at a potential of 0.3V and establishing a oxidized gas flow at a stoichiometry of 4. EIS tests were applied throughout both processes. The results showed that the EIS technique is highly sensitive for the analysis of the different degrees of the flooding processes by monitoring variations in the imaginary components of total impedance (Z{sup )} or the phase angle ({theta}). For low degrees of flooding, the technique had good sensitivity, between 1 and 6 Hz, while at high degrees of flooding the technique's greatest sensitivity was limited to a range between 1 and 2 Hz. In the case of the dehydration process of the system, the results showed that this type of process can be analyzed for variations in the value of the real component (Z{sup '}) as well as for the imaginary component of total impedance and variations in the phase angle. The analysis of dehydration with Z{sup '} was possible at a rather wide range, from 100 to 1000 Hz; with Z{sup }or {theta} it was only possible at a range of 20 to 200 Hz. [Spanish] En el presente trabajo, se llevo a cabo el estudio de los procesos de inundacion y deshidratacion de una celda de combustible tipo PEM mediante la tecnica EIS. Los experimentos fueron realizados en una celda de 50 cm{sup 2}. La inundacion gradual del sistema se indujo operando la celda a un potencial de 0.3 V de celda y manteniendo la salida de gases cerrada (i. e. estequiometria de 1 tanto en anodo (H{sub 2}) como en catodo (O{sub 2

  10. Degradation of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell under Stressed Operating Conditions

    DEFF Research Database (Denmark)

    Zhou, Fan

    . Given the current challenges for production and storage of the H2, it is more practical to use a liquid fuel such as methanol as the energy carrier. However, the reformate gas produced from methanol contains impurities such as CO, CO2 and unconverted methanol. For stationary applications, especially...... of the HT-PEM fuel cell are studied in the current work. Both in-situ and ex-situ characterization techniques are conducted to gain insight into the degradation mechanisms of the HT-PEM fuel cell under these operating conditions. The experimental results in this work suggest that the presence of methanol......The Polymer electrolyte membrane (PEM) fuel cells are promising fuel cell technology which can convert the chemical energy in for example hydrogen into electricity efficiently and environmentally friendly. In this work, some degradation issues of the HT-PEM fuel cell are experimentally investigated...

  11. Comparison of Different Fuel Temperature Models

    Energy Technology Data Exchange (ETDEWEB)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  12. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    Science.gov (United States)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  13. Low temperature chemical processing of graphite-clad nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  14. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    Science.gov (United States)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  15. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole

    Science.gov (United States)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Becker, Hans; Aili, David; Steenberg, Thomas; Hjuler, Hans Aage; Seerup, Larisa; Li, Qingfeng; Jensen, Jens Oluf

    2017-02-01

    Long-term durability of high temperature polymer electrolyte membrane fuel cells based on thermally cross-linked polybenzimidazole membranes was studied and compared with reference membranes based on linear polybenzimidazole. The test was conducted at 160 °C under constant load currents of 200 mA cm-2 for periods of 1000, 4400, and 13,000 h. Extensive beginning-of-life (BoL) and end-of-test (EoT) characterisation was carried out, and disturbance of the steady state operated cells was minimised by limiting in-line diagnostics to the low-invasive technique of electrochemical impedance spectroscopy (EIS). Up until the operating time of 9200 h, the cell equipped with the cross-linked membrane showed an average degradation rate of 0.5 μV h-1, compared to 2.6 μV h-1 for the reference membrane, though parallel tests for a shorter period of time showed deviations, likely due to malfunctioning contact between layers or cell components. For the full test period of 13,000 h, the average voltage decay rate was about 1.4 and 4.6 μV h-1 for cells equipped with cross-linked and linear polybenzimidazole membranes, respectively. EIS and post-test analysis revealed that the cross-linked membrane showed better stability in terms of area specific resistance due to improved acid retention characteristics.

  16. Parameter optimization of thermal-model-oriented control law for PEM fuel cell stack via novel genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Li Xi, E-mail: lixi@hust.edu.cn [Department of Control Science and Engineering, Key Laboratory of Education, Ministry for Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China); Deng Zhonghua, E-mail: ldarmy@126.com [Department of Control Science and Engineering, Key Laboratory of Education, Ministry for Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China); Wei Dong [Department of Automation, China Jiliang University, Hangzhou 310018, Zhejiang (China); Xu Chunshan; Cao Guangyi [Institute of Fuel Cell, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-10-15

    Highlights: {yields}We build up the thermal expressions of PEMFC stack. {yields} The expressions are converted into the affine state space control-oriented model for the VSC strategy. {yields} The NGA is developed to optimize the parameter of thermal-model-oriented control law. {yields} Numerical results demonstrate the effectiveness and rationality of the method proposed. - Abstract: It is critical to understand and manage the thermal effects in optimizing the performance and durability of proton exchange membrane fuel cell (PEMFC) stack. And building up the control-oriented thermal model of PEMFC stack is necessary. The thermal model, a set of differential equations, is established according to the conservation equations of mass and energy, which can be used to reflect truly the actual temperature response of PEMFC stack, however, the expressions of the model are too complicated to be used in the design of control. For this reason, the expressions are converted into the affine state space control-oriented model in detail for the variable structure control (VSC) strategy. Meanwhile, the accurate model must be established for the VSC and the parameters of VSC laws should be optimized. Consequently, a novel genetic algorithm (NGA) is developed to optimize the parameter of thermal-model-oriented control law for PEMFC stack. Finally, numerical test results demonstrate the effectiveness and rationality of the method proposed in this paper. It lays the foundation for the realization of online thermal management of PEMFC stack based on VSC.

  17. Combustion temperature charts for industrial gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matouskova, V.; Gerak, A.; Hlavacka, V.

    1975-12-01

    Researchers at Czechoslovakia's State Research Institute of Mechanical Engineering offer a method for calculating the theoretical flame temperature that includes the effect of endothermic reactions, especially the dissociation of combustion products. Charts presented for eight types of fuel gases can be used to determine the flame temperature relative to the temperature of the combustion air and to the excess-air ratio. Also considered is the relationship between these parameters and the characteristic temperature relationships for equipment using heat recovered from the flue gases to preheat incoming combustion air.

  18. DC-DC power Converter Topology for PEM Fuel Cell Large Stack Operating in Potential Cycling Mode for Embedded Applications

    OpenAIRE

    DE BERNARDINIS, Alexandre; Candusso, Denis; DIAW, Ibrahima; Harel, Fabien

    2012-01-01

    The aim of the research work is to propose a power converter topology for a Proton Exchange Membrane Fuel Cell (PEMFC) operating in potentiostatic mode and which allows applying the Cyclic Voltammetry (CV) technique to a large stack composed of about one hundred cells. In CV mode, the fuel cell behavior is rather particular and the definition of a suitable power converter interface is not trivial. It implies to control the fuel cell potential during the cycling profiles applied, which is not ...

  19. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells...... methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%....

  20. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  1. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  2. 40 CFR 1065.120 - Fuel properties and fuel temperature and pressure.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Fuel properties and fuel temperature... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.120 Fuel properties and fuel temperature and pressure. (a) Use fuels as specified in the standard-setting part, or as...

  3. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...

  4. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allen [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-01

    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  5. Evaluation of the CR{sub 3}C{sub 2}(NICR) coating deposited on S4400 with the HVOF process for PEM fuel flow plates; Evaluacion del recubrimiento CR{sub 3}C{sub 2}(NICR) depositado sobre S4400 por el proceso HVOF para placas de flujo de celdas de combustible PEM

    Energy Technology Data Exchange (ETDEWEB)

    Rendon Belmonte, M.; Perez Quiroz, J.T. [Instituto Mexicano del Transporte, Queretaro, Queretaro (Mexico)]. E-mail: marielarb17@hotmail.com; Porcayo Calderon, J. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Orozco, G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S. C., Queretaro, Queretaro (Mexico)

    2009-09-15

    This research studied the behavior of Cr{sub 3}C{sub 2}(NiCr) coating deposited on S4400 with the HVOF (High Velocity Oxygen-Fuel) thermal projection process. Coating was applied after the surface of the plate was prepared with ceramic granulated metal burst according to norm NACE No. 1/ SSPC-SP 5 and cleaned with acetone. The electrolyte used was an H{sub 2}SO{sub 4} 0,5 M + 2 ppm F{sup -} solution at ambient temperature. Mercury sulfate (Hg{sub 2}SO{sub 4}) electrode was used as the reference electrode and the counter electrode used was a graphite bar. To study the electrochemical behavior, polarization curves were generated with a sweep speed of 0.15 mV/s, according to norms ASTM G5 and ASTM G59. Before testing, the Ecorr was measured with a high impedance multimeter (10{sup 6}). The morphological aspect of the coating evaluated was analyzed with SEM (sweep electron microscopy). Based on the obtained icorr values of 1.7*10{sup -4} mA/cm{sup 2} for a period of 576 hours, we can state that this coating meets the criteria for resistance to corrosion required by the DOE (U.S. Department of Energy) for consideration of its use in PEM fuel cell flow plates. [Spanish] En esta investigacion se estudio el comportamiento del recubrimiento Cr{sub 3}C{sub 2}(NiCr), depositado sobre S4400 mediante el proceso de proyeccion termica HVOF (High Velocity Oxygen-Fuel). Previo a la aplicacion del recubrimiento, la placa fue preparada superficialmente mediante rafaga de granalla ceramica de acuerdo con la norma NACE No. 1/ SSPC-SP 5, limpiada con acetona y en esta condicion se procedio a la aplicacion del recubrimiento. El electrolito empleado fue una solucion de H{sub 2}SO{sub 4} 0,5 M + 2 ppm F{sup -} a temperatura ambiente, como electrodo de referencia se empleo un electrodo de sulfato mercuroso (Hg{sub 2}SO{sub 4}) y como contraelectrodo una barra de grafito. Para estudiar el comportamiento electroquimico se realizaron curvas de polarizacion con una velocidad de barrido de 0

  6. Numerical analysis on the effect of voltage change on removing condensed water inside the GDL of a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nam Woo [Fuel Cell Technology Development Team, Eco-Technology Center, Hyundai-Kia Motors, Yongin (Korea, Republic of); Kim, Young Sang; Kim, Min Soo [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Min Sung [School of Energy Systems Engineering, Chung-Ang University, Seoul (Korea, Republic of)

    2016-09-15

    Decreasing the voltage of a fuel cell through hydrogen mixing or using low-air stoichiometry ratio is beneficial to remove condensed water inside GDL under flooding condition. In this study, the effect of voltage level of a fuel cell on water distribution in GDL under flooding condition was numerically analyzed. Water content in GDL was dependent on the voltage level of a fuel cell, that is, the water content was low when the cell voltage was maintained low. The effect of voltage change under flooding condition was also simulated. The flow rate of condensed water inside GDL considerably increased immediately after decreasing the cell voltage. The oxygen concentration in the catalyst layer was increased by decreasing the voltage of the fuel cell. Consequently, the cell voltage was recovered. Therefore, decreasing cell voltage under flooding condition can facilitate removal of condensed water in GDL.

  7. Evaluation of assemblies based on carbon materials modified with dendrimers containing platinum nanoparticles for PEM-fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma-Garcia, J.; Barbosa, R.; Chapman, T.W.; Arriaga, L.G.; Godinez, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C. Parque Tecnologico Queretaro-Sanfandila, 76703 Pedro Escobedo, Qro. (Mexico)

    2009-02-15

    Polyamidoamine (PAMAM) dendrimer-encapsulated Pt nanoparticles (G4OHPt) are synthesized by chemical reduction and characterized by transmission electronic microscopy. An H{sub 2}-O{sub 2} fuel cell has been constructed with porous carbon electrodes modified with the dendrimer nanocomposites. Electrochemical and physical impregnation methods of electrocatalyst immobilization are compared. The modified surfaces are used as electrodes and gas-diffusion layers in the construction of three different membrane-electrode assemblies (MEAs). The MEAs have been tested in a single polymer-electrolyte membrane-fuel cell at 30 C and 20 psig. The fuel cell is, then characterized by electrochemical impedance spectroscopy and cyclic voltammetry, and its performance evaluated in terms of polarization curves and power profiles. The highest fuel cell performance is reached in the MEA constructed by physical impregnation method. The results are compared with a 32 cm{sup 2} prototype cell using commercial electrocatalyst operated at 80 C, obtaining encouraging results. (author)

  8. Intermediate Temperature Solid Oxide Fuel Cell Development

    Energy Technology Data Exchange (ETDEWEB)

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600

  9. Development of a computational model applied to a unitary 144 cm{sup 2} proton exchange membrane fuel cell; Desenvolvimento de um modelo numerico computacional aplicado a uma celula a combustivel unitaria de 144 CM{sup 2} tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric

    2009-07-01

    This work presents the development of a numerical computer model and methodology to study and design polymeric exchange membrane fuel cell - PEM. For the validation of experimental results, a sequence of routines, appropriate to fit the data obtained in the laboratory, was described. At the computational implementation it was created a new strategy of coupling two 3-dimensional models to satisfy the requirements of the comprehensive model of the fuel cell, including its various geometries and materials, as well as the various physical and chemical processes simulated. To effective assessment of the real cell analogy with numerical model, numerical studies were carried out. Comparisons with values obtained in the literature, characterization of variables through laboratory experiments and estimates from models already tested in the literature were also performed. Regarding the experimental part, a prototype of a fuel cell unit of 144 cm of geometric area was designed, produced and operated at laboratory with the purpose of validating the numerical computer model proposed, with positive results. The results of simulations for the 2D and 3D geometries proposed are presented in the form of polarization curves, highlighting the catalytic layer model based on the geometry of agglomerates. Parametric and sensitivity studies are presented to illustrate the change in performance of the fuel cell studied. The final model is robust and useful as a tool for design and optimization of PEM type fuel cells in a wide range of operating conditions. (author)

  10. Development of a computational model applied to a unitary 144 CM{sup 2} proton exchange membrane fuel cell; Desenvolvimento de um modelo numerico computacional aplicado a uma celula a combustivel unitaria de 144 CM{sup 2} tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric

    2009-07-01

    This work presents the development of a numerical computer model and methodology to study and design polymeric exchange membrane fuel cell - PEM. For the validation of experimental results, a sequence of routines, appropriate to fit the data obtained in the laboratory, was described. At the computational implementation it was created a new strategy of coupling two 3-dimensional models to satisfy the requirements of the comprehensive model of the fuel cell, including its various geometries and materials, as well as the various physical and chemical processes simulated. To effective assessment of the real cell analogy with numerical model, numerical studies were carried out. Comparisons with values obtained in the literature, characterization of variables through laboratory experiments and estimates from models already tested in the literature were also performed. Regarding the experimental part, a prototype of a fuel cell unit of 144 cm{sup 2} of geometric area was designed, produced and operated at laboratory with the purpose of validating the numerical computer model proposed, with positive results. The results of simulations for the 2D and 3D geometries proposed are presented in the form of polarization curves, highlighting the catalytic layer model based on the geometry of agglomerates. Parametric and sensitivity studies are presented to illustrate the change in performance of the fuel cell studied. The final model is robust and useful as a tool for design and optimization of PEM type fuel cells in a wide range of operating conditions. (author)

  11. High and rapid hydrogen release from thermolysis of ammonia borane near PEM fuel cell operating temperature

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Arvind; Hwang, Hyun Tae; Al-Kukhun, Ahmad

    2016-11-15

    A system for generating and purifying hydrogen. To generate hydrogen, the system includes inlets configured to receive a hydrogen carrier and an inert insulator, a mixing chamber configured to combine the hydrogen carrier and the inert insulator, a heat exchanger configured to apply heat to the mixture of hydrogen carrier and the inert insulator, wherein the applied heat results in the generation of hydrogen from the hydrogen carrier, and an outlet configured to release the generated hydrogen. To purify hydrogen, the system includes a primary inlet to receive a starting material and an ammonia filtration subassembly, which may include an absorption column configured to absorb the ammonia into water for providing purified hydrogen at a first purity level. The ammonia filtration subassembly may also include an adsorbent member configured to adsorb ammonia from the starting material into an adsorbent for providing purified hydrogen at a second purity level.

  12. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Gao, Xin; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    cell stack. All through this study, different electrical connection styles of all the thermoelectric generator (TEG) modules in the subsystem and their influences are also discussed. In the end, the subsystem configuration is further optimized and a higher subsystem power output is achieved. All TEG...

  13. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf

    2009-01-01

    Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...

  14. Research and Development of Proton-Exchange Membrane (PEM) Fuel Cell System for Transportation Applications: Initial Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-30

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source, and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  15. Research and development of Proton-Exchange Membrane (PEM) fuel cell system for transportation applications: Initial conceptual design report

    Science.gov (United States)

    1993-11-01

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  16. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.

    Science.gov (United States)

    Sherrell, Peter C; Zhang, Weimin; Zhao, Jie; Wallace, Gordon G; Chen, Jun; Minett, Andrew I

    2012-07-01

    Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    The reforming of methanol can be an alternative source of hydrogen for fuel cells because it has many practical advantages over hydrogen, mainly due to the technological limitations related to the storage, supply, and distribution of the latter. However, despite the ease of methanol handling......, impurities in the reformate gas produced from methanol steam reforming can affect the performance and durability of fuel cells. In this paper different vapor delivery systems, intended to assist in the study of the effects of some of the impurities, are described and compared with each other. A system based...... on a pump and electrically heated evaporator was found to be more suitable for the typical flow rates involved in the anode feed of an H3PO4/PBI based HT-PEMFC unit cell assembly. Test stations composed of vapor delivery systems and mass flow controllers for testing the effects of methanol slip, water vapor...

  18. Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell.

    Science.gov (United States)

    Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai

    2011-10-28

    The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating. This journal is © the Owner Societies 2011

  19. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  20. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM Fuel Cell with Micro Parallel Flow Field

    Directory of Open Access Journals (Sweden)

    Sang Soon Hwang

    2008-03-01

    Full Text Available Modeling and simulation for heat and mass transport in micro channel are beingused extensively in researches and industrial applications to gain better understanding of thefundamental processes and to optimize fuel cell designs before building a prototype forengineering application. In this study, we used a single-phase, fully three dimensionalsimulation model for PEMFC that can deal with both anode and cathode flow field forexamining the micro flow channel with electrochemical reaction. The results show thathydrogen and oxygen were solely supplied to the membrane by diffusion mechanism ratherthan convection transport, and the higher pressure drop at cathode side is thought to becaused by higher flow rate of oxygen at cathode. And it is found that the amount of water incathode channel was determined by water formation due to electrochemical reaction pluselectro-osmotic mass flux directing toward the cathode side. And it is very important tomodel the back diffusion and electro-osmotic mass flux accurately since the two flux wasclosely correlated each other and greatly influenced for determination of ionic conductivityof the membrane which directly affects the performance of fuel cell.

  1. Synthesis of Pt-Ni-Fe/CNT/CP nanocomposite as an electrocatalytic electrode for PEM fuel cell cathode

    Science.gov (United States)

    Litkohi, Hajar Rajaei; Bahari, Ali; Ojani, Reza

    2017-08-01

    In order to use carbon nanotube (CNT)-supported catalyst as fuel cell electrodes, Pt-Ni-Fe/CNT/carbon paper (CP) electrode was prepared using an ethylene glycol reduction method. CNTs were directly synthesized on Ni-impregnated carbon paper, plain carbon cloth, and Teflonized carbon cloth using chemical vapor deposition. FESEM and TEM images and thermogravimetric analysis indicated that in situ CNT on carbon paper (ICNT/CP) possesses more appropriate structural quality and stronger adhesion to the substrate than other substrates. The contact angle analysis demonstrated that the degree of ICNT/CP surface hydrophobicity encountered a 24% increase in comparison to CP and promoted to superhydrophobicity from hydrophobicity. The polarization curves and electrochemical impedance spectroscopy results of the loaded Pt-Ni-Fe on in situ and ex situ CNT/CP illustrated that the power density increased and charge transfer resistance reduced compared to commercial Pt/C loaded on CP. The results can be attributed to the outstanding properties of CNTs and high catalytic activity of triple catalysts causing alloying of Pt with Ni and Fe, which makes them a proper candidate to be used as cathode electrodes in proton exchange membrane fuel cells.

  2. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field.

    Science.gov (United States)

    Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon

    2008-03-03

    Modeling and simulation for heat and mass transport in micro channel are beingused extensively in researches and industrial applications to gain better understanding of thefundamental processes and to optimize fuel cell designs before building a prototype forengineering application. In this study, we used a single-phase, fully three dimensionalsimulation model for PEMFC that can deal with both anode and cathode flow field forexamining the micro flow channel with electrochemical reaction. The results show thathydrogen and oxygen were solely supplied to the membrane by diffusion mechanism ratherthan convection transport, and the higher pressure drop at cathode side is thought to becaused by higher flow rate of oxygen at cathode. And it is found that the amount of water incathode channel was determined by water formation due to electrochemical reaction pluselectro-osmotic mass flux directing toward the cathode side. And it is very important tomodel the back diffusion and electro-osmotic mass flux accurately since the two flux wasclosely correlated each other and greatly influenced for determination of ionic conductivityof the membrane which directly affects the performance of fuel cell.

  3. Cost related sensitivity analysis for optimal operation of a grid-parallel PEM fuel cell power plant

    Science.gov (United States)

    El-Sharkh, M. Y.; Tanrioven, M.; Rahman, A.; Alam, M. S.

    Fuel cell power plants (FCPP) as a combined source of heat, power and hydrogen (CHP&H) can be considered as a potential option to supply both thermal and electrical loads. Hydrogen produced from the FCPP can be stored for future use of the FCPP or can be sold for profit. In such a system, tariff rates for purchasing or selling electricity, the fuel cost for the FCPP/thermal load, and hydrogen selling price are the main factors that affect the operational strategy. This paper presents a hybrid evolutionary programming and Hill-Climbing based approach to evaluate the impact of change of the above mentioned cost parameters on the optimal operational strategy of the FCPP. The optimal operational strategy of the FCPP for different tariffs is achieved through the estimation of the following: hourly generated power, the amount of thermal power recovered, power trade with the local grid, and the quantity of hydrogen that can be produced. Results show the importance of optimizing system cost parameters in order to minimize overall operating cost.

  4. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling.

    Science.gov (United States)

    Yasuda, Kazuaki; Taniguchi, Akira; Akita, Tomoki; Ioroi, Tsutomu; Siroma, Zyun

    2006-02-14

    The behavior of platinum dissolution and deposition in the polymer electrolyte membrane of a membrane-electrode-assembly (MEA) for a proton-exchange membrane fuel cell (PEMFC) was studied using potential cycling experiment and high-resolution transmission electron microscopy (HRTEM). The electrochemically active surface area decreased depending on the cycle number and the upper potential limit. Platinum deposition was observed in the polymer electrolyte membrane near a cathode catalyst layer. Platinum deposition was accelerated by the presence of hydrogen transported through the membrane from an anode compartment. Platinum was transported across the membrane and deposited on the anode layer in the absence of hydrogen in the anode compartment. This deposition was also affected by the presence of oxygen in the cathode compartment.

  5. Integration and evaluation of a power system for remote application based on PV panels and PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Llerena, F.I.; Hebrero, C.A.; Argumosa, P.; Gonzalez, A.; Gonzalez, C. [Departamento de Aerodinamica y Propulsion. Instituto Nacional de Tecnica Aeroespacial (INTA), Madrid (Spain)

    2003-09-01

    The 'Fuel Cell Innovative Remote Systems for Telecom' is a Research, Development and Demonstration project co-funded by the European Commission. Seven institutions from four different European countries are partners of the project and carry out the technical work of the project, there are four research centres and three private companies. In addition a 'Board of Interest', integrated by companies dealing with remote telecom systems and uninterrupted power systems, has been established and takes the responsibilities for the exploitation plan of the whole developed system. INTA is the coordinator of the project and this paper will be focused in the showcase 1, installed at INTA facilities. The total budget of the project is 3.400.000 Euro. The project will finish on March 2004. (authors)

  6. Fuzzy control for the operation of an electrical energy generation system based on standard fuel cells PEM; Control difuso para la operacion de un sistema de generacion de energia electrica basado en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez R, Miguel; Gutierrez A, Ruben [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Rodriguez P, Alejandro [Centro Nacional de Investigacion y Desarrollo Tecnologico (Cenidet), Cuernavaca, Morelos (Mexico)

    2005-07-01

    Fuel cells, as totally clean power plants, have many applications in the industry in general, in the transport system, in the electricity generation for domestic consumption and in the communication systems, among others. When developing new forms of generation with renewable energy sources, it must be considered that petroleum will stop in being an available power resource. The interest in the study of the fuel cells has been increased in the last years because it is considered a solution to the supply of distributed energy problem. Therefore, already exist research institutions that are developing work on this technology. A generation of electrical energy system based on fuel cells is a nonlinear system where the control of the variables of the process, such as the temperature of the system and the pressurization of the reactants, are an important aspect for its proper operation, since it influences in the water balance and therefore in the global efficiency of the system. [Spanish] Las celdas de combustible, como fuente de energia totalmente limpia, tienen muchas aplicaciones en la industria en general: en el sistema de transporte, en la generacion de electricidad para consumo domestico y en los sistemas de comunicacion, entre otros. Al desarrollar nuevas formas de generacion con fuentes de energia renovables, se debe considerar que el petroleo dejara de ser un recurso energetico disponible. El interes en el estudio de las celdas de combustible se ha incrementado en los ultimos anos debido a que se le considera una solucion al problema de abasto de energia distribuida. Por lo tanto, ya existen instituciones de investigacion que estan desarrollando trabajos sobre esta tecnologia. Un sistema de generacion de energia electrica basado en celdas de combustible es un sistema no lineal en donde el control de las variables del proceso, tales como la temperatura del sistema y la presurizacion de los reactantes, es un aspecto importante para su buen funcionamiento, ya que

  7. Determination of polymer electrolyte membrane (PEM) degradation products in fuel cell water using electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Zedda, Marco; Tuerk, Jochen; Peil, Stefan; Schmidt, Torsten C

    2010-12-30

    Within the scope of research of membrane degradation phenomena during fuel cell operation a reliable analytical procedure for the extraction, detection and quantification of possible membrane oxidation products has been developed. These oxidation products originate from the attack of hydroxyl or peroxyl radicals on the membrane polymer. Such radicals are formed in situ (during fuel cell operation) or ex situ (Fenton test as oxidative stress simulation). The analysis of membrane oxidation products was carried out by electrospray ionization tandem mass spectrometry. Five potential membrane oxidation products (4-hydroxybenzoic acid (4-HBA), 4-hydroxybenzaldehyde (4-HBAD), 4,4-biphenol (4,4-BP), 4-hydroxybenzenesulfonate (4-HBS), and 4,4-sulfonylbiphenol (4,4-SBP)) were selected based on the molecular structure of the sulfonated polyarylether membrane used. In conjunction with the development of a multiple reaction monitoring (MRM) method, the ionization and fragmentation of the selected compounds were investigated. For 4,4-BP a molecular ion (M(+•) ) was observed in the positive ionization mode and used for MRM method development. Reproducible extraction of the model compounds was achieved using a mixed-mode sorbent material with both weak anion-exchange and reversed-phase retention properties. By using the developed analytical procedure, the identities of two membrane degradation products (4-HBA and 4-HBAD) were determined in situ and ex situ. In addition to the investigation of membrane degradation phenomena, the combination of extraction on a mixed-mode sorbent material and tandem mass spectrometric detection is attractive for the analysis of aromatic sulfonic acids, phenolic acids and phenols. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  9. Equivalent Circuit Parameters Estimation for PEM Fuel Cell Using RBF Neural Network and Enhanced Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Wen-Yeau Chang

    2013-01-01

    Full Text Available This paper proposes an equivalent circuit parameters measurement and estimation method for proton exchange membrane fuel cell (PEMFC. The parameters measurement method is based on current loading technique; in current loading test a no load PEMFC is suddenly turned on to obtain the waveform of the transient terminal voltage. After the equivalent circuit parameters were measured, a hybrid method that combines a radial basis function (RBF neural network and enhanced particle swarm optimization (EPSO algorithm is further employed for the equivalent circuit parameters estimation. The RBF neural network is adopted such that the estimation problem can be effectively processed when the considered data have different features and ranges. In the hybrid method, EPSO algorithm is used to tune the connection weights, the centers, and the widths of RBF neural network. Together with the current loading technique, the proposed hybrid estimation method can effectively estimate the equivalent circuit parameters of PEMFC. To verify the proposed approach, experiments were conducted to demonstrate the equivalent circuit parameters estimation of PEMFC. A practical PEMFC stack was purposely created to produce the common current loading activities of PEMFC for the experiments. The practical results of the proposed method were studied in accordance with the conditions for different loading conditions.

  10. Polarization losses under dynamic load cycle using multiwall carbon nanotube supported Pt catalyst in PEM fuel cell

    Science.gov (United States)

    Irmawati, Yuyun; Indriyati, Chaldun, Elsy Rahimi; Devianto, Hary

    2016-02-01

    Durability is one of the most important issues that are still being a hindrance for commercialization of polymer electrolyte membrane fuel cell (PEMFC). In this study, the degradation of PEMFC using multiwall carbon nanotube supported Pt catalyst (Pt/CNT) was investigated under dynamic load cycle procedure. The degradation was characterized by current density-voltage curves, cross-sectional scanning electron microscopy (SEM) images, and Fourier transforms infrared spectroscopy (FTIR) spectra. The load-cycle procedure was carried out for 50 cycles, where one cycle consisted of three steps (OCV-load current-constant voltage). An analysis of cell overpotentials indicated that the predominant source of performance degradation was due to ohmic losses, especially significant increase in the area specific resistance (Ra). After 50 cycles, Ra was calculated three times higher than that before durability test, from 0.67 to 1.74 Ωcm2. Based on the results from SEM images and FTIR spectra, there was no evidence of membrane degradation or thinning. Noticeable degradation was only observed from the increase in the interface gap between membrane, catalyst layer, and gas diffusion layer.

  11. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Science.gov (United States)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  12. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.

    2002-06-01

    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  13. Temperature Stratification in a Cryogenic Fuel Tank

    Science.gov (United States)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  14. Preparation of new crosslinking agents and additives for use in polymer electrolyte membranes (PEMs) for fuel cell applications

    Science.gov (United States)

    Zhou, Yangliu

    The most commonly used proton conductive membrane in polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC) studies to date is DuPont's NafionRTM, which is a perfluorinated copolymer of tetrafluoroethylene (TFE) and perfluorovinyl ether with a pendant sulfonic acid group. A focus of this work is to find ways to improve the performance of NafionRTM membranes. Crosslinking the TFE chains of fluorinated ionomeric copolymers to improve their thermal and mechanical stability is a proven route to this goal. A straightforward synthetic route to perfluorinated divinyl ethers of the formula CF2=CFO(CF 2)3[OCF(CF3)CF2]mOCF=CF 2 (m = 0-1) has been demonstrated. The compounds CF2=CFO(CF 2)3OCF=CF2 and CF2=CFO(CF2) 3OCF(CF3)CF2OCF=CF2 were prepared and characterized by GC-MS, 13C and 19F NMR, and gas-IR spectroscopy. Synthetic routes to fluorosulfato-tetrafluoropropionyl fluoride [FSO3CF2CF2C(O)F] and difluoromalonyl difluoride [F(O)CCF2C(O)F] with improved yields were found. The second focus of the dissertation was the development of fluorous triarylphosphines for use as new doping materials for the modification of NafionRTM membranes and for use as ligands in catalysts for biphasic catalysis. The synthesis and characterization of a series of new polyhexafluoropropylene oxide derivatives for preparation of fluorous triarylphosphines and phosphonium salts was studied, such as F[CF(CF3)CF2O] 4CF(CF3)CH2CH2I, F[CF(CF3)CF 2O]4CF(CF3)CH=CH2, F[CF(CF3)CF 2O]4CF(CF3) CH2CH2C6H5, and F[CF(CF 3)CF2O]4CF(CF3)CH2CH 2C6H4Br. In a separate study, the photochlorination of 2,2,3,3-tetrafluoro-1-propanol (HCF2CF2CH2OH) and 2,2,3,3-tetrafluoropropyl 2,2,3,3-tetrafluoropropionate [HCF2CF2C(O)OCH2 CF2CF2H] with super diazo blue light (lambda max = 420 nm) were investigated. The photochemical products are different from those obtained under mercury light (lambda = 253.7nm). A new compound ClCF2CF2C(O)OC(H)ClCF2CF2Cl was prepared and characterized by GC-MS, elemental

  15. PEM-INST-001: Instructions for Plastic Encapsulated Microcircuit (PEM) Selection, Screening, and Qualification

    Science.gov (United States)

    Teverovsky, Alexander; Sahu, Kusum

    2003-01-01

    Potential users of plastic encapsulated microcircuits (PEMs) need to be reminded that unlike the military system of producing robust high-reliability microcircuits that are designed to perform acceptably in a variety of harsh environments, PEMs are primarily designed for use in benign environments where equipment is easily accessed for repair or replacement. The methods of analysis applied to military products to demonstrate high reliability cannot always be applied to PEMs. This makes it difficult for users to characterize PEMs for two reasons: 1. Due to the major differences in design and construction, the standard test practices used to ensure that military devices are robust and have high reliability often cannot be applied to PEMs that have a smaller operating temperature range and are typically more frail and susceptible to moisture absorption. In contrast, high-reliability military microcircuits usually utilize large, robust, high-temperature packages that are hermetically sealed. 2. Unlike the military high-reliability system, users of PEMs have little visibility into commercial manufacturers proprietary design, materials, die traceability, and production processes and procedures. There is no central authority that monitors PEM commercial product for quality, and there are no controls in place that can be imposed across all commercial manufacturers to provide confidence to high-reliability users that a common acceptable level of quality exists for all PEMs manufacturers. Consequently, there is no guaranteed control over the type of reliability that is built into commercial product, and there is no guarantee that different lots from the same manufacturer are equally acceptable. And regarding application, there is no guarantee that commercial products intended for use in benign environments will provide acceptable performance and reliability in harsh space environments. The qualification and screening processes contained in this document are intended to

  16. Temperature feedback of TRIGA MARK-II fuel

    Energy Technology Data Exchange (ETDEWEB)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Minhat, M. S.; Rabir, M. H.; Rawi, M. Z. M. [Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.

  17. Temperature feedback of TRIGA MARK-II fuel

    Science.gov (United States)

    Usang, M. D.; Minhat, M. S.; Rabir, M. H.; M. Rawi M., Z.

    2016-01-01

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.

  18. Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Nores-Pondal, F.J.; Granada, M.; Corti, H.R. [Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), General Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Vilella, I.M.J.; de Miguel, S.R.; Scelza, O.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE), Facultad de Ingenieria Quimica (Universidad Nacional del Litoral) - CONICET, Santiago del Estero 2654, 3000 Santa Fe (Argentina); Troiani, H. [Departamento de Fisica, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

    2009-10-15

    In this work nanoparticulated platinum catalysts have been prepared on carbon Vulcan XC-72 using three methods starting with chloroplatinic acid as a precursor: (i) formic acid as a reductor agent; (ii) impregnation method followed by reduction in hydrogen atmosphere at moderated temperature; and (iii) microwave-assisted reduction in ethylene glycol. The catalytic and size studies were also performed on a commercial Pt catalyst (E-Tek, De Nora). The characterization of the particle size and distribution was performed by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD). The characterizations of the catalytic and electrocatalytic properties of the catalysts were determined by studying the cyclohexane dehydrogenation reaction (CHD) and the behavior under cyclic voltammetry (CV) in sulfuric acid solutions. The measured electrochemical activity, along with the hydrogen chemisorption of the catalysts allows the estimation of effective particle sizes, which are much larger than those measured by TEM and XRD. The catalysts prepared by reduction with formic acid and ethylene glycol (microwave-assisted) show electrochemical activities very close to those of the commercial catalyst, and are almost insensitive to the Pt dispersion or Pt particle size. The chemical activity in CHD correlates well with the metallic dispersion determined by hydrogen chemisorption, indicating similar accesibility of H{sub 2} and cyclohexane to the catalyst surface. (author)

  19. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chang

    2011-01-01

    Full Text Available In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS. These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  20. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  1. Measurement and correlation of jet fuel viscosities at low temperatures

    Science.gov (United States)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  2. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  3. Biomass gasification and fuel cells: system with PEM fuel cell; Gaseificacao de biomassa e celula a combustivel: sistema com celula tipo PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, Alexandre; Lobkov, Dmitri D.; Lopes, Daniel Gabriel; Rodrigues, Jean Robert Pereira [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Mecanica], e-mail: asordi@fem.unicamp.br, e-mail: lobkov@fem.unicamp.br, e-mail: danielg@fem.unicamp.br, e-mail: jrobert@fem.unicamp.br; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Fisica Gleb Wataghin], e-mail: Lh2ennio@ifi.unicamp.br

    2006-07-01

    The objective of this paper is to present the operation flow diagram of an electricity generation system based on the biomass integrated gasification fuel cell of the type PEMFC (Proton Exchange Membrane Fuel Cell). The integration between the gasification and a fuel cell of this type consists of the gas methane (CH4) reforming contained in the synthesis gas, the conversion of the carbon monoxide (CO), and the cleaning of the gaseous flow through a PSA (Pressure Swing Adsorption) system. A preliminary analysis was carried out to estimate the efficiency of the system with and without methane gas reforming. The performance was also analyzed for different gasification gas compositions, for larger molar fractions of hydrogen and methane. The system electrical efficiency was 29% respective to the lower heating value of the gasification gas. The larger the molar fraction of hydrogen at the shift reactor exit, the better the PSA exergetic performance. Comparative analysis with small gas turbines exhibited the superiority of the PEMFC system. (author)

  4. Proton conducting ceramics for use in intermediate temperature proton conducting fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Browning, D.; Weston, M.; Lakeman, J. B.; Jones, P. [Qinetiq Haslar Marine Technology Park, Gosport, Hampshire (United Kingdom); Cherry, M. [Cambridge Discovery Chemistry, Merrifield Centre, Cambridge (United Kingdom); Irvine, J. T. S.; Corcoran, D. J. D. [University of St, Andrews, School of Chemistry, (United Kingdom)

    2002-01-01

    A new proton conducting perovskite material Sr{sub 3}CaZr{sub 0}.9Ta{sub 1}.1O{sub 8}.55 (SCZT) was synthesized and the mode of conduction was demonstrated through modelling. Changes in protonic conductivity under fuel cell conditions were examined using AC impedance techniques. Result showed that the material was less conducive than the standard BaCe{sub 0}.95Y{sub 0}.05O{sub 2}.975 material, although it was more stable under reformate conditions. The maximum power output generated by the SCZT85 cell was 0.2mW/sq cm at 600 degrees C. The low power densities reported in this study may be improved upon by utilizing thin film technologies, or even by simple spraying. Results obtained at low temperatures suggest the possibility of developing an intermediate fuel cell capable of bridging the gap between PEM and SOFC/MCFC systems. 8 refs., 1 tab., 10 figs.

  5. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  6. PEM Degradation Investigation Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dan Stevenson; Lee H Spangler

    2007-11-02

    The objectives of this paper are: (1) Develop a system capable of measuring current and voltage performance for each membrane in a Polymer Electrolyte Membranes (PEM) fuel cell stack and record the performance of each individual cell; (2) Develop a single cell PEM FC to allow in situ synchrotron x-ray measurements of the cell in operation and to perform spatially resolved x-ray measurements on fuel cell elements before and after degradation; and (3) Perform initial magnetic resonance microimaging experiments on membrane materials. The Montana State University PEM Membrane Degradation program is geared towards determining how and why membranes in fuel cells degrade and fail. By monitoring every individual membrane in a fuel cell 2000 times/sec while the cell is subjected to real-world type use, we hope to: (1) cause the types of degradation users see, but in a controlled environment; (2) determine an electrical signature that will identify what causes failure, or at least warns of impending failure; (3) allows us to perform advanced x-ray and MRI characterization of the degraded membranes to provide information that may result in improvements of the membrane material; and (4) perhaps allow design of electronic control systems that will prevent fuel cells from operating under conditions where damage is likely to occur.

  7. Innovative High Temperature Fuel Cell systems

    OpenAIRE

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in theory fuel cell systems can be far more efficient than thermal power systems. This advantage is only partly utilized in present fuel cell pilot plants and additional optimization is needed. The comp...

  8. Degradation modeling of high temperature proton exchange membrane fuel cells using dual time scale simulation

    Science.gov (United States)

    Pohl, E.; Maximini, M.; Bauschulte, A.; vom Schloß, J.; Hermanns, R. T. E.

    2015-02-01

    HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifetime testing. The physical phenomena of short term and long term effects are commonly modeled separately due to the different time scales. However, in accelerated lifetime testing, long term degradation effects have a crucial impact on the short term dynamics. Our approach addresses this problem by applying a novel method for dual time scale simulation. A transient system simulation is performed for an open voltage cycle test on a HT-PEM fuel cell for a physical time of 35 days. The analysis describes the system dynamics by numerical electrochemical impedance spectroscopy. Furthermore, a performance assessment is performed in order to demonstrate the efficiency of the approach. The presented approach reduces the simulation time by approximately 73% compared to conventional simulation approach without losing too much accuracy. The approach promises a comprehensive perspective considering short term dynamic behavior and long term degradation effects.

  9. Development and optimization of radiographic and tomographic methods for characterization of water transport processes in PEM fuel cell materials; Entwicklung und Optimierung von radiographischen und tomographischen Verfahren zur Charakterisierung von Wassertransportprozessen in PEM-Brennstoffzellenmaterialien

    Energy Technology Data Exchange (ETDEWEB)

    Markoetter, Henning

    2013-02-18

    Water transport in polymer electrolyte membrane fuel cells (PEMFC) was non-destructively studied during operation with synchrotron X-ray radiography and tomography. The focus was set on the influence of the three-dimensional morphology of the cell materials on the water distribution and transport. Water management is still one of the mayor issues in PEMFC research. If the fuel cell is too dry, the proton conductivity (of the membrane) decreases leading to a performance loss and, in the worst case, to an irreversible damage of the membrane. On the other hand, the presence of water hinders the gas supply and causes a decrease in the cell performance. For this reason, effective water transport is a prerequisite for successful fuel cell operation. In this work the three-dimensional water transport through the gas diffusion layer (GDL) and its correlated with the 3D morphology of the cell materials has been revealed for the first time. It was shown that water is transported preferably through only a few larger pores which form transport paths of low resistance. This effect is pronounced because of the hydrophobic properties of the employed materials. In addition, water transport was found to be bidirectional, i. e. at appropriate locations a back and forth transport between GDL and flow field channels was observed. Furthermore, liquid water in the GDL was found to agglomerate preferably at the ribs of the flow field. This can be explained by condensation due to a temperature gradient in the cell and by the position, which is sheltered from the gas flow. Larger water accumulations in the gas supply channels were mainly attached to the channel wall opposing the GDL. The gas flow can bypass these agglomerations allowing a continuous gas supply. Moreover, it was shown that randomly distributed cracks in the micro porous layers (MPL) play an important role for the agglomeration of liquid water as they form preferred low resistance transport paths. In this work also

  10. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Shabanikia, Akbar; Enhessari, Morteza

    2015-02-01

    Novel PBI (polybenzimidazole)-BaZrO3 (PBZ) nanocomposite membranes have been prepared for the high temperature proton exchange membrane (HT-PEM) fuel cells. The results showed that the water uptake, acid doping level and proton conductivity of the PBZ nanocomposite membranes were higher than that of virgin PBI membrane due to the presence of perovskite structure BaZrO3 nanoparticles, which as protonic conductor can perform as a special pathway for hydrogen transport. The proton conductivity of the PBZ nanocomposite membranes with 13 mol phosphoric acid per PBI repeat unit was obtained 125 mS/cm at 180 °C and 5% relative humidity. It was found that the performance of the fuel cells increases by increasing temperature; this was explained by faster reaction kinetic and higher proton conductivity. The power density and current density at 0.5 V 180 °C with 5% relative humidity were observed 0.56 W/cm2 and 1.12 A/cm2, respectively for PBZ nanocomposite membranes containing 4 wt% of the nanofillers. The results suggested that PBZ nanocomposite membranes are promising electrolytes for HT-PEM fuel cells with improved proton conductivity.

  11. Modelling of the vapour-liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell

    Science.gov (United States)

    Kazdal, Timur J.; Lang, Sebastian; Kühl, Frank; Hampe, Manfred J.

    2014-03-01

    The fuel cell technology is a key element for the hydrogen energy economy and therefore crucial for sustainable development. High temperature proton exchange membrane (HT-PEM) fuel cells (FC) can be operated with reformate gas and thus represent an important bridging technology for the energy transition to a renewable energy based system. HT-PEM FCs based on phosphoric acid (PA) are still subject to intense research, investigating the electrolyte behaviour. By enhancing state of the art 2D FEM simulations of FCs with the vapour liquid equilibrium of water-phosphoric acid and evaporation kinetics, a model was created in which the local concentration of PA can be calculated. Knowledge of the concentration field yields the basis for calculating the locally varying ionic conductivity and other physical properties. By describing the volume expansion behaviour of PA it was possible to predict the catalyst particle deactivation due to the swelling of PA. The in situ concentration predicted by the simulation ranges from 96 to 111 wt%. The model was validated using measured data of a single cell design for different temperatures and pressures. By varying the PA content flooding of the simulated fuel cell could be observed and was linked to humidification effects.

  12. Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells

    DEFF Research Database (Denmark)

    Henkensmeier, Dirk; My Hanh Duong, Ngoc; Brela, Mateusz

    2015-01-01

    interesting for use in a high temperature fuel cell (HT PEMFC). Based on these findings, two polymers incorporating the proposed TZ groups were synthesised, formed into membranes, doped with PA and tested for fuel cell relevant properties. At room temperature, TZ-PEEN and commercial meta-PBI showed...

  13. Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yongzhu Fu

    2012-10-01

    Full Text Available Fuel cells hold great promise for wide applications in portable, residential, and large-scale power supplies. For low temperature fuel cells, such as the proton exchange membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs, proton-exchange membranes (PEMs are a key component determining the fuel cells performance. PEMs with high proton conductivity under anhydrous conditions can allow PEMFCs to be operated above 100 °C, enabling use of hydrogen fuels with high-CO contents and improving the electrocatalytic activity. PEMs with high proton conductivity and low methanol crossover are critical for lowering catalyst loadings at the cathode and improving the performance and long-term stability of DMFCs. This review provides a summary of a number of novel acid-base blend membranes consisting of an acidic polymer and a basic compound containing N-heterocycle groups, which are promising for PEMFCs and DMFCs.

  14. Performance Analysis of Air Breathing Proton Exchange Membrane Fuel Cell Stack (PEMFCS) At Different Operating Condition

    Science.gov (United States)

    Sunil, V.; Venkata siva, G.; Yoganjaneyulu, G.; Ravikumar, V. V.

    2017-08-01

    The answer for an emission free power source in future is in the form of fuel cells which combine hydrogen and oxygen producing electricity and a harmless by product-water. A proton exchange membrane (PEM) fuel cell is ideal for automotive applications. A single cell cannot supply the essential power for any application. Hence PEM fuel cell stacks are used. The effect of different operating parameters namely: type of convection, type of draught, hydrogen flow rate, hydrogen inlet pressure, ambient temperature and humidity, hydrogen humidity, cell orientation on the performance of air breathing PEM fuel cell stack was analyzed using a computerized fuel cell test station. Then, the fuel cell stack was subjected to different load conditions. It was found that the stack performs very poorly at full capacity (runs only for 30 min. but runs for 3 hours at 50% capacity). Hence, a detailed study was undertaken to maximize the duration of the stack’s performance at peak load.

  15. Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles

    Science.gov (United States)

    Walker, James F.; Civinskas, Kestutis C.

    2004-01-01

    Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.

  16. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    De Wit, J.H.W.; Kouffeld, R.W.J.; Hemmes, K.; Au, Siu Fai

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in

  17. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in

  18. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    the anode and cathode flow plates. The purpose of this study is to investigate the feasibility of the proposed temperature characterization method and to identify the temperature distribution on an operating HT-PEM in various modes of operation, including a 700 h sensors durability test. The embedded......The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both...... sensors showed minimal influence on cell performance, this difference seen in performance is believed to be caused by different bipolar plate materials. The measurement method is suitable for obtaining detailed data for validation of computational models, moreover the results indicate that the method can...

  19. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Rømer, Carsten; Kær, Søren Knudsen

    2016-01-01

    In this work, the use of a circular-planar, interdigitated flow field for the anode of a high pressure proton exchange membrane (PEM) water electrolysis cell is investigated in a numerical study. While PEM fuel cells have separated flow fields for reactant transport and coolant, it is possible...... to operate a PEM electrolysis cell with the anode flow field serving as both. This allows for a simpler system and a thinner design, however sets new and more strict requirements for the flow field to distribute uniformly. For the present study, two computational fluid dynamics models are developed; a single...... causes maldistribution, if land areas of equal width are applied. Moreover, below a water stoichiometry of 350, and at a current density of 1 A/cm2, flow and temperature maldistribution is adversely affected by the presence of the gas phase; particularly gas hold-up near outlet channels can cause...

  20. PEM Low Cost Endplates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Martin; Clyens, S.; Steenstrup, F.R.; Christiansen, Jens [Danish Technological Institute. Plastics Technology, Taastrup (Denmark); Yde-Andersen, S. [IRD Fuel Cell A/S, Svendborg (Denmark)

    2013-03-15

    In the project, an endplate for the PEM-type fuel cells has been developed. The initial idea was to use an injection mouldable fibre reinforced polymer to produce the endplate and thereby exploit the opportunities of greater geometrical freedom to reduce weight and material consumption. Different PPS/glass-fibre compounds were produced and tested in order to use the results to optimize the results on the computer through FEM simulations. As it turned out, it was impossible to achieve adequate stiffness for the endplates within the given geometrical limitations. At the relatively high temperatures at which the endplates operate the material simply goes to soft. Material focus shifted to fibre reinforced high strength concrete composite. Test specimens were produced and tested so the results again could be used for FEM-simulations which also accounted for the technical limitations the concrete composite has regarding casting ability. In the process, the way the endplate is mounted was also alternated to better accommodate the properties of the concrete composite. A number of endplates were cast in specially produced moulds in order to map the optimum process parameters, and a final endplate was tested at IRD Fuel Cells A/S. The field test was in many aspects successful. However, the gas sealing and the surface finish can be further improved. The weight may still be an issue for some applications, even though it is lower than the endplate currently used. This issue can be addressed in a future project. The work has resulted in a new endplate design, which makes the stack assembly simpler and with fewer components. The endplates fabrication involves low cost methods, which can be scaled up as demand of fuel cells begin to take off. (Author)

  1. ARPA advanced fuel cell development

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.

  2. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Directory of Open Access Journals (Sweden)

    Milewski Jarosław

    2013-02-01

    Full Text Available Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC and molten carbonate fuel cell (MCFC have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV for projects was estimated and commented.

  3. Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell.

    Science.gov (United States)

    El-Eskandarany, M Sherif; Shaban, Ehab; Aldakheel, Fahad; Alkandary, Abdullah; Behbehani, Montaha; Al-Saidi, M

    2017-10-16

    Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank's manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to -252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH2. There are two major issues should be solved first. One related to MgH2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH2/5 wt. % TiMn2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.

  4. Lowering the temperature of solid oxide fuel cells.

    Science.gov (United States)

    Wachsman, Eric D; Lee, Kang Taek

    2011-11-18

    Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.

  5. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  6. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  7. Polymeric membranes obtained from S-PEEK for application in PEM fuel cells; Caracterizacao de membranas polimericas obtidas a partir dos S-PEEK para aplicacao em celulas combustiveis do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Ednardo G.; Fiuza, Raildo A.; Catao, Ronei S.; Jose, Nadia M.; Boaventura, Jaime S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica], e-mail: ednardobarreto@yahoo.com.br, e-mail: raildofiuza@gmail.com, e-mail: roneicatao@ig.com.br, e-mail: nadia@ufba.br, e-mail: bventura@ufba.br; Pepe, Yuri [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Fisica

    2007-07-01

    This work had the objective to develop and to characterize S-PEEK membranes (sulfonated poly ether ether ketone) through chemical and electrochemical analyses. Conductivity test in function of the frequency and tension had been carried through; as well as, the open circuit tension of a fuel cell using the S-PEEK as electrolyte. Additional tests included TGA (Thermogravimetric Analysis), water absorption test, DSC (Differential Scanning Calorimetry), as tools to characterize conducting, thermal and mechanical proprieties of polymeric membrane. (author)

  8. Degradation of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell under Stressed Operating Conditions:Effect of Start/Stop Cycling, Impurities Poisoning and H2 Starvation

    OpenAIRE

    Zhou, Fan

    2015-01-01

    The Polymer electrolyte membrane (PEM) fuel cells are promising fuel cell technology which can convert the chemical energy in for example hydrogen into electricity efficiently and environmentally friendly. In this work, some degradation issues of the HT-PEM fuel cell are experimentally investigated. Given the current challenges for production and storage of the H2, it is more practical to use a liquid fuel such as methanol as the energy carrier. However, the reformate gas produced from methan...

  9. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.

    2004-01-01

    of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high...... or anode. In terms of mitigating global warming, the ability of the SOFC to use commonly available fuels at high efficiency, promises an effective and early reduction in carbon dioxide emissions, and hence is one of the lead new technologies for improving the environment. Here, we discuss recent...

  10. Synthesis of a new electrolyte by co-poly-esters doped with sodium dodecyl sulfate for application on PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, J.R.A.; Boaventura, F.J.S.; Jose, N.M.; Bresciani, D. [Univ. Federal da Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    Proton exchange membrane fuel cells (PEMFCs) use polymer membranes as electrolytes and protons as conductors. This paper reported on a study in which co-polyesters were doped with sodium dodecyl sulfate. The co-polymers were synthesized by a copolymerization process that used terephthalic and adipic acids with glycerol. A reactor was used to process the material, which was then hot-pressed to produce homogenous and flexible plates. X-ray diffraction (XRD) scanning electron microscopy (SEM), thermogravimetric, direct scanning calorimetry (DSC) and Fourier Transform Infrared (FTIR) analyses were conducted. Results of the analyses demonstrated that the composite material was stable up to a temperature of 250 degrees C. A micrographics study showed that MDS was homogeneously dispersed in the polymeric matrix. It was concluded that with an electrical conductivity between 10-7 to 10-1 S per cm, the copolymers were suitable for use in PEMFC applications.

  11. Platinum-cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells - Long term behavior under ex-situ and in-situ conditions

    Science.gov (United States)

    Schenk, Alexander; Grimmer, Christoph; Perchthaler, Markus; Weinberger, Stephan; Pichler, Birgit; Heinzl, Christoph; Scheu, Christina; Mautner, Franz-Andreas; Bitschnau, Brigitte; Hacker, Viktor

    2014-11-01

    Platinum cobalt catalysts (Pt-Co) have attracted much interest as cathode catalysts for proton exchange membrane fuel cells (PEMFCs) due to their high activity toward oxygen reduction reaction (ORR). Many of the reported catalysts show outstanding performance in ex-situ experiments. However, the laborious synthesis protocols of these Pt-Co catalysts disable an efficient and economic production of membrane electrode assemblies (MEAs). We present an economic, flexible and continuous Pt-M/C catalyst preparation method as part of a large scale membrane electrode assembly manufacturing. In comparison, the as-prepared Pt-Co/C based high temperature (HT)-PEM MEA showed an equal performance to a commercially available HT-PEM MEA during 600 h of operation under constant load, although the commercial one had a significantly higher Pt loading at the cathode.

  12. 21st Century Renewable Fuels, Energy, and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Berry, K. Joel [Kettering Univ., Flint, MI (United States); Das, Susanta K. [Kettering Univ., Flint, MI (United States)

    2012-11-29

    The objectives of this project were multi-fold: (i) conduct fundamental studies to develop a new class of high temperature PEM fuel cell material capable of conducting protons at elevated temperature (180°C), (ii) develop and fabricate a 5k We novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature PEM fuel cell systems, (iii) research and develop improved oxygen permeable membranes for high power density lithium air battery with simple control systems and reduced cost, (iv) research on high energy yield agriculture bio-crop (Miscanthus) suitable for reformate fuel/alternative fuel with minimum impact on human food chain and develop a cost analysis and production model, and (v) develop math and science alternative energy educator program to include bio-energy and power.

  13. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes

    Science.gov (United States)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo

    2015-01-01

    In this work, the feasibility of a 150 cm2 high-temperature proton exchange membrane fuel cell (HT-PEMFC) stack operated with modified proton exchange membranes is demonstrated. The short fuel cell stack was manufactured using a total of three 50 cm2 membrane electrode assemblies (MEAs). The PEM technology is based on a polybenzimidazole (PBI) membrane. The obtained results were compared with those obtained using a HT-PEMFC stack with unmodified membranes. The membranes were cast from a PBI polymer synthesized in the laboratory, and the modified membranes contained 2 wt.% micro-sized TiO2 as a filler. Long-term tests were performed in both constant and dynamic loading modes. The fuel cell stack with 2 wt.% TiO2 composite PBI membranes exhibited an irreversible voltage loss of less than 2% after 1100 h of operation. In addition, the acid loss was reduced from 2% for the fuel cell stack with unmodified membranes to 0.6% for the fuel cell stack with modified membranes. The results demonstrate that introducing filler into the membranes enhances the durability and stability of this type of fuel cell technology. Moreover, the fuel cell stack system also exhibits very rapid and stable power and voltage output responses under dynamic load regimes.

  14. Applications with proton exchange membrane (PEM) fuel cells for a de-regulated market place; Applications avec des piles a combustible a membrane echangeuse de protons (PEM) pour une place sur le marche deregule

    Energy Technology Data Exchange (ETDEWEB)

    Kohlstruck, B. [Alstom Energietechnik GmbH (Germany)

    2000-07-01

    The electric utility is in a period of rapid change. The deregulation and restructuring of the utilities will lead to massive industry change-with new structures of energy supply. This market's change creates a significant opportunity for fuel cells as on-site generation solutions. This paper considers the applications of Proton Exchange Membrane Fuel Cells (PEMFC) recent development, in particular for premium power applications, commercial distributed power plants, and for users of secure power supplies. The criteria to be considered is separated into broad categories namely, key features, electrical and system aspects, economics and emissions and costs as well. PEMFC will, in the near future, be used in the automotive industry and also in distributed power supply. Due to its excellent dynamic characteristics, PEMFC can be used as emergency generating set for customer, who have special requirements for their critical equipment in case of power interruptions, harmonics etc. in the public electricity supply. This, however, requires the fulfillment of very detailed specifications concerning the grid connections. The bridging time is defined by the size of the hydrogen storage. The quality problems of normal electricity experienced by commercial and small industrial users have an impact on applications, which provide high quality. Reliable electricity is becoming increasingly popular. Use of this technology in housing areas for electricity and heat generation will be possible in the future, when the costs of production have been greatly reduced. General introduction to the market at a large scale is dependent on reasonable costs, and the chances for cost digression of PEMFC are highest through the use in various market sectors. The paper will end with the conclusion of how to approach the goals and what are the steps between. (author)

  15. Fuel particles for high temperature reactors; Combustibles a particules pour reacteurs a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pheip, M. [CEA Cadarache (DEN/CAD/DEC/SESC/LIPA), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Combustibles; Masson, M. [CEA Valrho, Dept. Radiochimie et Procedes, 30 (France); Perrais, Ch. [CEA Cadarache (DEN/DEC/SPUA), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Combustibles; Pelletier, M. [CEA Cadarache (DEN/DEC/SESC), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Combustibles

    2007-07-15

    The concept of fuel particles with a millimeter size was born at the end of the 1950's and is the reference concept of high or very high temperature gas-cooled reactors (HTR/VHTR). The specificity of this fuel concerns its fine divided structure, its all-ceramic composition and its micro-confining properties with respect to fission products. These 3 properties when combined together allow the access to high temperatures and to a high level of safety. This article presents: 1 - the general properties of particle fuels; 2 - the fabrication and control of fuel elements: nuclei elaboration processes, vapor deposition coating of nuclei, shaping of fuel elements, quality control of fabrication; 3 - the fuel particles behaviour under irradiation: mechanical and thermal behaviour, behaviour and diffusion of fission products, ruining mode; 4 - the reprocessing of particle fuels: stakes and options, direct storage, separation of constituents, processing of carbonous wastes; 5 - conclusion. (J.S.)

  16. A possible temperature measurement model for fuel cell

    Science.gov (United States)

    Yu, Qiaoling; Zhang, Pu; Mao, Wenping; Liu, Wenzhong

    2017-11-01

    In this paper, an improved temperature measuring model for fuel cell temperature measurement is proposed based on the existed nanothermometer model, which is regarded as traditional temperature measuring model. With more realistic cases taken into consideration, the results of the improved model are more practical and accurate compared with the traditional one. Limited by the existed experimental conditions, this paper emphases on simulating the different conditions of the temperature distribution inside SOFC. As a result, the experiments are carried out with similar temperature distribution but under relatively lower temperatures, which can come to similar conclusions as by simulation.

  17. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  18. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2...... in the performance during the H2 continuous tests, because of a decrease in the reaction kinetic resistance mainly in the cathode due to the redistribution of PA between the membrane and electrodes. The performance of both single cells decreased in the following tests, with highest performance decay rate...... to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with methanol containing H2 as the fuel the reaction kinetic resistance and mass transfer resistance of both single cells increased, which may be caused by the adsorption of methanol...

  19. Highly Sulfonated Diamine Synthesized Polyimides and Protic Ionic Liquid Composite Membranes Improve PEM Conductivity

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2015-06-01

    Full Text Available A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy benzene [pBAB]. Sulfonated polyimides (SPIs were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs made of novel SPIs and a protic ionic liquid (PIL 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene dianiline (9FDA as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells.

  20. The Model of Temperature Dynamics of Pulsed Fuel Assembly

    CERN Document Server

    Bondarchenko, E A; Popov, A K

    2002-01-01

    Heat exchange process differential equations are considered for a subcritical fuel assembly with an injector. The equations are obtained by means of the use of the Hermit polynomial. The model is created for modelling of temperature transitional processes. The parameters and dynamics are estimated for hypothetical fuel assembly consisting of real mountings: the powerful proton accelerator and the reactor IBR-2 core at its subcritica l state.