WorldWideScience

Sample records for temperature oxide fuel

  1. High temperature transient deformation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1986-01-01

    The purpose of this paper is to present recent experimental results on fuel creep under transient conditions at high temperatures. The effect of temperature, stress, heating rate, density and grain size were considered. An empirical formulation is derived for the relationship between strain, stress, temperature and heating rate. This relationship provides a means for incorporating stress relief into the analysis of fuel-cladding interaction during an overpower transient. The effect of sample density and initial grain size is considered by varying the sample parameters. Previously derived steady-state creep relationships for the high temperature creep of mixed oxide fuel were combined with the time dependency of creep found for UO 2 to calculate a transient creep relationship for mixed oxide fuel. These calculated results were found to be in good agreement with the measured high temperature transient creep results

  2. Reirradiation of mixed-oxide fuel pins at increased temperatures

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, E.T.

    1976-05-01

    Mixed-oxide fuel pins from EBR-II irradiations were reirradiated in the General Electric Test Reactor (GETR) at higher temperatures than experienced in EBR-II to study effects of the increased operating temperatures on thermal/mechanical and chemical behavior. The response of a mixed-oxide fuel pin to a power increase after having operated at a lower power for a significant portion of its life-time is an area of performance evaluation where little information currently exists. Results show that the cladding diameter changes resulting from the reirradiation are strongly dependent upon both prior burnup level and the magnitude of the temperature increase. Results provide the initial rough outlines of boundaries within which mixed-oxide fuel pins can or cannot tolerate power increases after substantial prior burnup at lower powers

  3. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  4. Melting temperature of uranium - plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  5. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  6. Low temperature spent fuel oxidation under tuff repository conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project is studying the suitability of tuffaceous rocks at Yucca Mountain, Nye County, Nevada, for high level waste disposal. The oxidation state of LWR spent fuel in a tuff repository may be a significant factor in determining its ability to inhibit radionuclide migration. Long term exposure at low temperatures to the moist air expected in a tuff repository is expected to increase the oxidation state of the fuel. A program is underway to determine the spent fuel oxidation mechanisms which might be active in a tuff repository. Initial work involves a series of TGA experiments to determine the effectiveness of the technique and to obtain preliminary oxidation data. Tests were run at 200 0 C and 225 0 C for as long as 720 hours. Grain boundary diffusion appears to open up a greater surface area for oxidation prior to onset of bulk diffusion. Temperature strongly influences the oxidation rates. The effect of moisture is small but readily measurable. 25 refs., 7 figs., 4 tabs

  7. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  8. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  9. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  10. Test plan for long-term, low-temperature oxidation of spent fuel, Series 1

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1986-06-01

    Preliminary studies indicated the need for more spent fuel oxidation data in order to determine the probable behavior of spent fuel in a tuff repository. Long-term, low-temperature testing was recommended in a comprehensive technical approach to: (1) confirm the findings of the short-term thermogravimetric analyses scoping experiments; (2) evaluate the effects of variables such as burnup, atmospheric moisture and fuel type on the oxidation rate; and (3) extend the oxidation data base ot representative repository temperatures and better define the temperature dependence of the operative oxidation mechanisms. This document presents the Series 1 test plan to study, on a large number of samples, the effects of atmospheric moisture and temperature on oxidation rate and phase formation. Tests will run for up to two years, use characterized fragmented, and pulverized fuel samples, cover a temperature range of 110 0 C to 175 0 C and be conducted with an atmospheric moisture content rangeing from 0 C to approx. 80 0 C dew point. After testing, the samples will be examined and made available for leaching testing

  11. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  12. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  13. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  14. Medium-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, N.; Kuriakose, A.K. [Natural Resources Canada, Ottawa, ON (Canada). Materials Technology Lab

    2000-07-01

    The Materials Technology Laboratory (MTL) of Natural Resources Canada has been conducting research on the development of a solid oxide fuel cell (SOFC) for the past decade. Fuel cells convert chemical energy directly into electric energy in an efficient and environmentally friendly manner. SOFCs are considered to be good stationary power sources for commercial and residential applications and will likely be commercialized in the near future. The research at MTL has focused on the development of new electrolytes for use in SOFCs. In the course of this research, monolithic planar single cell SOFCs based on doubly doped ceria and lanthanum gallate have been fabricated and tested at 700 degrees C. This paper compared the performance characteristics of both these systems. The data suggested the presence of a significant electronic conductivity in the SOFC incorporating doubly doped ceria, resulting in lower than expected voltage output. The stability of the SOFC, however, did not appear to be negatively affected. The lanthanum gallate based SOFC performed well. It was concluded that reducing the operating temperature of SOFCs would improve their reliability and enhance their operating life. First generation commercial SOFCs will use a zirconium oxide-based electrolytes while second generation units might possibly use ceria-based and/or lanthanum gallate electrolytes. 24 refs., 6 figs.

  15. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  16. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Science.gov (United States)

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Sherazi, Tauqir A.; Ajmal Khan, M.; Abbas, Ghazanfar; Shakir, Imran; Mohsin, Munazza; Alvi, Farah; Javed, Muhammad Sufyan; Yasir Rafique, M.; Zhu, Bin

    2015-11-01

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O-2 (oxygen ions) and H+ (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm2, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  17. Cesium relocation in mixed-oxide fuel pins resulting from increased temperature reirradiation

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Woodley, R.E.; Weber, E.T.

    1976-06-01

    Mixed-oxide fuel pins from EBR-II test subassemblies PNL-3 and PNL-4 were reirradiated in the GETR to study effects of increased fuel and cladding temperatures on chemical and thermomechanical behavior. Radial and axial distributions of cesium were obtained using postirradiation nondestructive precision gamma-scanning techniques. Data presented relate to the dependence of cesium distribution and transport processes on temperature gradients which were altered after substantial steady-state operation

  18. Electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  19. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  20. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  1. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  2. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  3. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  4. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  5. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    Science.gov (United States)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  6. Influence of the starting materials on performance of high temperature oxide fuel cells devices

    Directory of Open Access Journals (Sweden)

    Emília Satoshi Miyamaru Seo

    2004-03-01

    Full Text Available High temperature solid oxide fuel cells (SOFCs offer an environmentally friendly technology to convert gaseous fuels such as hydrogen, natural gas or gasified coal into electricity at high efficiencies. Besides the efficiency, higher than those obtained from the traditional energy conversion systems, a fuel cell provides many other advantages like reliability, modularity, fuel flexibility and very low levels of NOx and SOx emissions. The high operating temperature (950-1000 °C used by the current generation of the solid oxide fuel cells imposes severe constraints on materials selection in order to improve the lifetime of the cell. Besides the good electrical, electrochemical, mechanical and thermal properties, the individual cell components must be stable under the fuel cell operating atmospheres. Each material has to perform not only in its own right but also in conjunction with other system components. For this reason, each cell component must fulfill several different criteria. This paper reviews the materials and the methods used to fabricate the different cell components, such as the cathode, the electrolyte, the anode and the interconnect. Some remarkable results, obtained at IPEN (Nuclear Energy Research Institute in São Paulo, have been presented.

  7. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  8. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-04

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Platinum redispersion on metal oxides in low temperature fuel cells.

    Science.gov (United States)

    Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan

    2013-03-07

    We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.

  10. Review of oxidation rates of DOE spent nuclear fuel : Part 1 : nuclear fuel

    International Nuclear Information System (INIS)

    Hilton, B.A.

    2000-01-01

    The long-term performance of Department of Energy (DOE) spent nuclear fuel (SNF) in a mined geologic disposal system depends highly on fuel oxidation and subsequent radionuclide release. The oxidation rates of nuclear fuels are reviewed in this two-volume report to provide a baseline for comparison with release rate data and technical rationale for predicting general corrosion behavior of DOE SNF. The oxidation rates of nuclear fuels in the DOE SNF inventory were organized according to metallic, Part 1, and non-metallic, Part 2, spent nuclear fuels. This Part 1 of the report reviews the oxidation behavior of three fuel types prototypic of metallic fuel in the DOE SNF inventory: uranium metal, uranium alloys and aluminum-based dispersion fuels. The oxidation rates of these fuels were evaluated in oxygen, water vapor, and water. The water data were limited to pure water corrosion as this represents baseline corrosion kinetics. Since the oxidation processes and kinetics discussed in this report are limited to pure water, they are not directly applicable to corrosion rates of SNF in water chemistry that is significantly different (such as may occur in the repository). Linear kinetics adequately described the oxidation rates of metallic fuels in long-term corrosion. Temperature dependent oxidation rates were determined by linear regression analysis of the literature data. As expected the reaction rates of metallic fuels dramatically increase with temperature. The uranium metal and metal alloys have stronger temperature dependence than the aluminum dispersion fuels. The uranium metal/water reaction exhibited the highest oxidation rate of the metallic fuel types and environments that were reviewed. Consequently, the corrosion properties of all DOE SNF may be conservatively modeled as uranium metal, which is representative of spent N-Reactor fuel. The reaction rate in anoxic, saturated water vapor was essentially the same as the water reaction rate. The long-term intrinsic

  11. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  13. FRAP-T, Temperature and Pressure in Oxide Fuel During LWR LOCA

    International Nuclear Information System (INIS)

    Siefken, L.J.; Shah, V.N.; Berna, G.A.; Hohorst, J.K.

    1984-01-01

    1 - Description of problem or function: FRAP-T6 is the most recent in the FRAP-T (Fuel Rod Analysis Program - Transient) series of programs for calculating the transient behavior of light water reactor fuel rods during reactor transients and hypothetical accidents, such as loss-of-coolant and reactivity-initiated accidents. The program calculates the temperature and deformation histories of fuel rods as functions of time-dependent fuel rod power and coolant boundary conditions. FRAP-T6 can be used as a 'stand-alone' code or, using steady state fuel rod conditions supplied by FRAPCON2 (NESC NO. 694), can perform a transient analysis. In either case, the phenomena modeled by FRAP-T6 include: heat conduction, heat transfer from cladding to coolant, elastic- plastic fuel and cladding deformation, cladding oxidation, fission gas release, fuel rod gas pressure, and pellet cladding mechanical interaction. Licensing audit models have been added, also. The program includes a user's option that automatically provides a detailed uncertainty analysis of the calculated fuel rod variables due to uncertainties in fuel rod fabrication, material properties, power and cooling. 2 - Method of solution: The models in FRAP-T6 use finite difference techniques to calculate the variables which influence fuel rod performance. The variables are calculated at user-specified slices of the fuel rod. Each slice is at a different elevation and is defined to be an axial node. At each axial node, the variables are calculated at user-specified locations. Each location is at a different radius and is defined to be a radial node. The variables at any given axial node are assumed to be independent of the variables at all other axial nodes. The solution for the fuel rod variables begins with the calculation of the fuel and cladding temperatures. Then, the temperature of the gases in the plenum of the fuel rod is calculated. Next, the stresses and strains in the fuel and cladding and the pressure of the

  14. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  15. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  16. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2006-09-07

    Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

  17. Fuel cracking in relation to fuel oxidation in support of an out-reactor instrumented defected fuel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Quastel, A.; Thiriet, C. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Lewis, B., E-mail: brent.lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada); Corcoran, E., E-mail: emily.corcoran@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    An experimental program funded by the CANDU Owners Group (COG) is studying an out-reactor instrumented defected fuel experiment in Stern Laboratories (Hamilton, Ontario) with guidance from Atomic Energy of Canada Limited (AECL). The objective of this test is to provide experimental data for validation of a mechanistic fuel oxidation model. In this experiment a defected fuel element with UO{sub 2} pellets will be internally heated with an electrical heater element, causing the fuel to crack. By defecting the sheath in-situ the fuel will be exposed to light water coolant near normal reactor operating conditions (pressure 10 MPa and temperature 265-310{sup o}C) causing fuel oxidation, especially near the hotter regions of the fuel in the cracks. The fuel thermal conductivity will change, resulting in a change in the temperature distribution of the fuel element. This paper provides 2D r-θ plane strain solid mechanics models to simulate fuel thermal expansion, where conditions for fuel crack propagation are investigated with the thermal J integral to predict fuel crack stress intensity factors. Finally since fuel crack geometry can affect fuel oxidation this paper shows that the solid mechanics model with pre-set radial cracks can be coupled to a 2D r-θ fuel oxidation model. (author)

  18. Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation

    DEFF Research Database (Denmark)

    Ortiz-Vitoriano, N.; Bernuy-Lopez, Carlos; Ruiz de Larramendi, I.

    2013-01-01

    -priced raw material and cost-effective production techniques.In this work the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 (LCFN) oxide has been used in order to optimize intermediate temperature SOFC cathode processing route. The advantages this material presents arise from the low temperature powder calcination......For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology suitable materials which allow operation at lower temperatures, while retaining cell performance, must be developed. At the same time, the cell components must be inexpensive - requiring both low...... (∼600°C) and electrode sintering (∼800°C) of LCFN electrodes, making them a cheaper alternative to conventional SOFC cathodes. An electrode polarization resistance as low as 0.10Ωcm2 at 800°C is reported, as determined by impedance spectroscopy studies of symmetrical cells sintered at a range...

  19. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    Science.gov (United States)

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  20. Interim results from UO2 fuel oxidation tests in air

    International Nuclear Information System (INIS)

    Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j.

    1987-08-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO 2 , fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO 2 pellets in the temperature range of 135 to 250 0 C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10 5 R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10 5 R/h gamma field. 33 refs., 51 figs., 6 tabs

  1. Solid Oxide Fuel Cell Based Upon Colloidal Deposition of Thin Films for Lower Temperature Operation (Preprint)

    National Research Council Canada - National Science Library

    Reitz, T. L; Xiao, H

    2006-01-01

    In order to reduce the operating temperature of solid oxide fuel cells (SOFCs), anode-supported cells incorporating thin film electrolytes in conjunction with anode/electrolyte and cathode/electrolyte interlayers were studied...

  2. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  3. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown

  4. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    . High performance cathodes were obtained from strontium-doped lanthanum cobaltite (LSC) infiltrated - Ce0.9Gd0.1O1.95 (CGO) ionic conducting backbone. Systematic tuning of the CGO and LSC firing temperatures and LSC loading resulted in a cathode with low polarization resistance, Rp = 0.044 cm2 at 600......This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones...... with increasing LSC firing temperature, highlighting the importance of materials compability over higher ionic conductivity. The potential of Ca3Co4O9+delta as an electrocatalyst for SOFCs has also been explored and encouraging results were found i.e., Rp = 0.64 cm2 for a Ca3Co4O9+delta/CGO 50 vol % composite...

  5. Low temperature chemical processing of graphite-clad nuclear fuels

    Science.gov (United States)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  6. Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shu-en [Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Alonso, Jose Antonio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States)

    2010-01-01

    We have developed a Co-free solid oxide fuel cell (SOFC) based upon Fe mixed oxides that gives an extraordinary performance in test-cells with H{sub 2} as fuel. As cathode material, the perovskite Sr{sub 0.9}K{sub 0.1}FeO{sub 3-{delta}} (SKFO) has been selected since it has an excellent ionic and electronic conductivity and long-term stability under oxidizing conditions; the characterization of this material included X-ray diffraction (XRD), thermal analysis, scanning microscopy and conductivity measurements. The electrodes were supported on a 300-{mu}m thick pellet of the electrolyte La{sub 0.8}Sr{sub 0.2}Ga{sub 0.83}Mg{sub 0.17}O{sub 3-{delta}} (LSGM) with Sr{sub 2}MgMoO{sub 6} as the anode and SKFO as the cathode. The test cells gave a maximum power density of 680 mW cm{sup -2} at 800 C and 850 mW cm{sup -2} at 850 C, with pure H{sub 2} as fuel. The electronic conductivity shows a change of regime at T {approx} 350 C that could correspond to the phase transition from tetragonal to cubic symmetry. The high-temperature regime is characterized by a metallic-like behavior. At 800 C the crystal structure contains 0.20(1) oxygen vacancies per formula unit randomly distributed over the oxygen sites (if a cubic symmetry is assumed). The presence of disordered vacancies could account, by itself, for the oxide-ion conductivity that is required for the mass transport across the cathode. The result is a competitive cathode material containing no cobalt that meets the target for the intermediate-temperature SOFC. (author)

  7. A complementary and synergistic effect of Fe-Zn binary metal oxide in the process of high-temperature fuel gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    翁斯灏; 吴幼青

    1996-01-01

    57Fe Mossbauer spectroscopy was used to investigate the evolution of Fe-Zn binary metal oxide sorbent in the process of high-temperature fuel gas desulfurization. The results of phase analyses show that Fe-Zn binary metal oxide sorbent is rapidly reduced in hot fuel gas and decomposed to new phases of highly dispersed microcrystalline elemental iron and zinc oxide, both of which become the active desulfurization constituents. A complementary and synergistic effect between active iron acting as a high sulfur capacity constituent and active zinc oxide acting as a deep refining desulfurization constituent exists in this type of sorbent for hot fuel gas desulfurization.

  8. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Science.gov (United States)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru; Akbay, Taner; Hosoi, Kei

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 °C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 °C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system.

  9. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru [The Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-choume, Amagasaki, Hyogo 661-0974 (Japan); Akbay, Taner; Hosoi, Kei [Mitsubishi Materials Corporation, Corporate Technology and Development Division, 1002-14 Mukohyama, Naka, Ibaraki 311-0102 (Japan)

    2008-07-01

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system. (author)

  10. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    Directory of Open Access Journals (Sweden)

    D. Radhika

    2013-06-01

    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  11. An extension of a high temperature creep model to account for fuel sheath oxidation

    International Nuclear Information System (INIS)

    Boccolini, G.; Valli, G.

    1983-01-01

    Starting from the high-temperature creep model for Zircaloy fuel sheathing, the NIRVANA (developed by AECL), a multilayer model, is proposed in this paper: it includes the outer oxide plus alpha retained layers, and the inner core of beta or alpha plus beta material, all constrained to deform with the same creep rate. The model has been incorporated into the SPARA fuel computer code developed for the transient analysis of fuel rod behaviour in the CIRENE prototype reactor, but it is in principle valid for all Zircaloy fuel sheathings. Its predictions are compared with experimental results from burst tests on BWR and PWR type sheaths; the tests were carried out at CNEN under two research contracts with Ansaldo Meccanico Nucleare and Sigen-Sopren, respectively

  12. A conceptual model for the fuel oxidation of defective fuel

    International Nuclear Information System (INIS)

    Higgs, J.D.; Lewis, B.J.; Thompson, W.T.; He, Z.

    2007-01-01

    A mechanistic conceptual model has been developed to predict the fuel oxidation behaviour in operating defective fuel elements for water-cooled nuclear reactors. This theoretical work accounts for gas-phase transport and sheath reactions in the fuel-to-sheath gap to determine the local oxygen potential. An improved thermodynamic analysis has also been incorporated into the model to describe the equilibrium state of the oxidized fuel. The fuel oxidation kinetics treatment accounts for multi-phase transport including normal diffusion and thermodiffusion for interstitial oxygen migration in the solid, as well as gas-phase transport in the fuel pellet cracks. The fuel oxidation treatment is further coupled to a heat conduction equation. A numerical solution of the coupled transport equations is obtained by a finite-element technique with the FEMLAB 3.1 software package. The model is able to provide radial-axial profiles of the oxygen-to-uranium ratio and the fuel temperatures as a function of time in the defective element for a wide range of element powers and defect sizes. The model results are assessed against coulometric titration measurements of the oxygen-to-metal profile for pellet samples taken from ten spent defective elements discharged from the National Research Universal Reactor at the Chalk River Laboratories and commercial reactors

  13. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  14. Method of manufacturing gadolinium oxide-incorporated nuclear fuel sintering products

    International Nuclear Information System (INIS)

    Komono, Akira; Seki, Makoto; Omori, Sadayuki.

    1987-01-01

    Purpose: To manufacture nuclear fuel sintering products excellent in burning property and mechanical property. Constitution: In the manufacturing step for nuclear fuel sintering products, specific metal oxides are added for promoting the growth of crystal grains in the sintering. Those metal oxides melted at a temperature lower than the sintering temperature of a mixture of nuclear fuel oxide powder and oxide power, or those metal oxides causing eutectic reaction are used as the metal oxide. Particularly, those compounds having oxygen atom - metal atom ratio (O/M) of not less than 2 are preferably used. As such metal oxides usable herein transition metal oxides, e.g., Nb 2 O 5 , TiO 2 , MoO 3 and WO 3 are preferred, with Nb 2 O 3 and TiO 2 being preferred particularly. (Seki, T.)

  15. A review of the high temperature creep in oxide nuclear fuels (I)

    International Nuclear Information System (INIS)

    Lee, Young Woo; Na, S. H.; Lee, Y. W.; Kim, H. S.; Kim, S. H.; Joung, C. Y.

    1998-06-01

    Since the initial stage of fuel developmental until recently, considerable efforts have been extensively directed at studying the creep properties of uranium dioxide and its related phases largely due to the importance of their application to the reactor fuels. In this state-of-the-art report, the creep behavior and mechanisms of UO 2 and its related phases were reviewed and discussed in terms of experimental variables such as applied stress, temperature, microstructure and stoichiometry. The objective of this review is to obtain a complete understanding of the influences of these variables on the creep property and creep mechanism in these materials aiming at devising more proper methods for the improvement of the behavior. The database obtained from the results will be primarily utilized also, as the reference data for studying the creep behavior of UO 2 -based mixed oxide nuclear fuels. (author). 64 refs., 6 tabs., 25 figs

  16. Physicochemical analysis of interaction of oxide fuel with pyrocarbon coatings of fuel particles

    International Nuclear Information System (INIS)

    Lyutikov, R.A.; Khromov, Yu.F.; Chernikov, A.S.

    1990-01-01

    Equilibrium pressure of (CO+Kr,Xe) gases inside fuel particle with oxide kern depending on design features of fuel particle, on temperature. on (O/U) initial composition and fuel burnup is calculated using the suggested model. Analysis of possibility for gas pressure reduction by means of uranium carbide alloying of kern and degree increase of solid fission product retention (Cs for example) during alumosilicate alloying of uranium oxide is conducted

  17. Heat and mass transfer analysis intermediate temperature solid oxide fuel cells (IT-SOFC)

    International Nuclear Information System (INIS)

    Timurkutluk, B.; Mat, M. M.; Kaplan, Y.

    2007-01-01

    Solid oxide fuel cells (SOFCs) have been considered as next generation energy conversion system due to their high efficiency, clean and quite operation with fuel flexibility. To date, yittria stabilized zirconia (YSZ) electrolytes have been mainly used for SOFC applications at high temperatures around 1000 degree C because of their high ionic conductivity, chemical stability and good mechanical properties. However, such a high temperature is undesirable for fuel cell operations in the viewpoint of stability. Moreover, high operation temperature necessitates high cost interconnect and seal materials. Thus, the reduction in the operation temperature of SOFCs is one of the key issues in the aspects of the cost reduction and the long term operation without degradation as well as commercialization of the SOFC systems. With the reducing temperature, not only low cost stainless steels and glass materials can be used as interconnect and sealing materials respectively but the manufacturing technology will also extend. Therefore, the design of complex geometrical SOFC component will also be possible. One way to reduce the operation temperature of SOFC is use of an alternative electrolyte material to YSZ showing acceptable properties at intermediate temperatures (600-800 degree C). As being one of IT-SOFC electrolyte materials, gadolinium doped ceria (GDC) has been taken great deals. In this study, a mathematical model for mass and heat transfer for a single cell GDC electrolyte SOFC system was developed and numerical solutions were evaluated. In order to verify the mathematical model, set of experiments were performed by taking species from four different samples randomly and five various temperature measurements. The numerical results reasonably agree with experimental data

  18. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  19. Temperature sensitivity study of eddy current and digital gauge probes for nuclear fuel rod oxide measurement

    Science.gov (United States)

    Beck, Faith R.; Lind, R. Paul; Smith, James A.

    2018-04-01

    Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.

  20. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO 2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO 2 to higher oxides. The oxidation of UO 2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO 2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO 2 to UO 2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO 2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO 2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO 2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  1. Microwave assisted sintering of gadolinium doped barium cerate electrolyte for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arumugam Senthil, E-mail: senthu.ramp@gmail.com [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Balaji, Ramamoorthy [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Jayakumar, Srinivasalu [Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, Tamilnadu (India); Pradeep, Chandran [Department of Physics, Indian Institute of Technology, Madras, 600 036, Tamilnadu (India)

    2016-10-01

    In Solid Oxide Fuel Cell (SOFC), electrolyte plays a vital role to increase the energy conversion efficiency. The main hurdle of such electrolyte in fuel cell is its higher operating temperature (1000 °C) which results in design limitation and higher fabrication cost. In order to reduce the operating temperature of SOFC, a suitable electrolyte has been prepared through co-precipitation method followed by microwave sintering of solid ceramic. The calcination temperature for the as-prepared powder was identified using Differential Scanning Calorimetry. The crystal structure of the sample was found to exhibit its orthorhombic perovskite structure. The particle size was determined using High-Resolution Transmission Electron Microscope with uniform in shape and size, match with XRD results and confirmed from structural analysis. Thus, the sample prepared via co-precipitation method and the solid ceramic sintered through microwave can be a promising electrolyte for fuel cells operated at intermediate temperature. - Highlights: • To synthesis the composite electrolyte by chemical method and sinter using microwave. • To reduce the operating temperature of electrolyte for high ionic conductivity in SOFC's. • To study the phase purity and to develop nanocomposite at reduced temperature.

  2. Oxidation Behavior of Some Cr Ferritic Steels for High Temperature Fuel Cells

    International Nuclear Information System (INIS)

    Mohamed, H.E.

    2012-01-01

    The oxidation behavior of three high Cr ferritic steels designated 1Al, RA and 5Al with different levels of Al, Si, Mn and Hf has been investigated in the present work. These steels have been developed as candidates for Solid Oxide Fuel Cell (SOFC) interconnect. Specimens of these alloys have been subjected to isothermal as well as cyclic oxidation in air. Isothermal oxidation tests are conducted in the temperature range 800 - 1000 degree C for time periods up to 1000 h. cyclic oxidation tests were carried out at 800 and 1000 degree C for twenty 25 - h cycles giving a total cyclic exposure time of 500 h. The growth rate of the oxide scales was found to follow a parabolic law over a certain oxidation period which changed with alloy composition and oxidation temperature. The value of the parabolic rate constant increased with increasing oxidation temperature. At 800 and 900 degree C alloy 1Al exhibited higher oxidation resistance compared to the other two alloys. Alloy RA showed spalling behavior when oxidized at 900 degree C and the extent of spalling increased with increasing the oxidation temperature to 1000 degree C. Alloy 5Al oxidized at 1000 degree C showed the highest oxidation resistance among the investigated alloys. Alloy 1Al and RA showed similar scale morphology and composition. X- ray diffraction analysis revealed that the scales developed on these alloys consist of Cr 2 O 3 with an outer layer of MnCr 2 O 4 and a minor amount of FeCr 2 O 4 spinels. Alloy 5Al developed scale consisting of γ- Al 2 O 3 at 800 degree C and γ and α- Al 2 O 3 at 900 degree C. Oxidation of alloy 5Al at 1000 degree C led to formation of a scale consisting mainly of the protective phase α Al 2 O 3 . The presence of 0.84 wt% Al and 0.95 wt % Si in alloy 1Al enhanced its oxidation resistance compared to alloy RA which contains only 0.29 wt% Si and is Al - free. This enhancement was attributed to formation of internal oxidation zone in alloy 1Al just beneath the oxide / alloy

  3. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature

    Science.gov (United States)

    Sauvet, A.-L.; Fouletier, J.

    The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.

  4. Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2017-01-01

    Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... to describe the high temperature inelastic deformational behaviors of Crofer 22 APU used for metallic interconnects in SOFC stacks.......Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... transients in operation including temporary shut downs. These stresses are highly affected by the transient creep behavior of metallic components in the SOFC stack. This study investigates whether a variation of the so-called Chaboche's unified power law together with isotropic hardening can represent...

  5. Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Wadood Taher Mohammed

    2015-02-01

    Full Text Available This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN and N-methyl – 2 - pyrrolidone (NMP as extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450 rpm, temperature (30 , 40 , 45 , and 50 oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5 , catalyst/oxidant ratio(0.125,0.25,0.5,and0.75 , and solvent/simulated diesel fuel ratio(0.5,0.6,0.75,and1 were examined as well as solvent type. The results exhibit that the highest removal of sulfur is 98.5% using NMP solvent while it is 95.8% for ACN solvent. The set of conditions that show the highest sulfur removal is: stirring speed of 350 rpm , temperature 50oC , oxidant/simulated diesel fuel ratio 1 , catalyst/oxidant ratio 0.5 , solvent/simulated diesel fuel ratio 1. These best conditions were applied upon real diesel fuel (produced from Al-Dora refinerywith 1000 ppm sulfur content . It was found that sulfur removal was 64.4% using ACN solvent and 75% using NMP solvent.

  6. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Science.gov (United States)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  7. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Directory of Open Access Journals (Sweden)

    Milewski Jarosław

    2013-02-01

    Full Text Available Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC and molten carbonate fuel cell (MCFC have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV for projects was estimated and commented.

  8. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...... for testing multiple samples at operational conditions providing a high throughput and thus the possibility achieve high reliability. Optical methods are used to measure deformations contactless, frictionless load measuring is achieved, and multiple samples are handled in one heat up. The methodology...... is validated at room temperature, and exemplified by measurement of the strength of solid oxide fuel cell anode supports at 800 C. © 2014 Elsevier B.V. All rights reserved....

  9. Experimental and thermodynamic evaluation of the melting behavior of irradiated oxide fuels

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.

    1985-01-01

    Onset of melting is an important performance limit for irradiated UO 2 and UO 2 -based nuclear reactor fuels. Melting (solidus) temperatures are reasonably well known for starting fuel materials such as UO 2 and (U,PU)O 2 , however the influence of burnup on oxide fuel melting behavior continues to represent an area of considerable uncertainty. In this paper we report the results of a variety of melting temperature measurements on pseudo-binary fuel-fissia mixtures such as UO 2 -PUO 2 , UO 2 -CeO 2 , UO 2 -BaO, UO 2 -SrO, UO 2 -BaZrO 3 and UO 2 -SrZrO 3 . These measurements were performed using the thermal arrest technique on tungsten-encapsulated specimens. Several low melting eutectics, the existence of which had previously been inferred from post-irradiation examinations of high burnup mixed oxide fuels, were characterized in the course of the investigation. Also, an assessment of melting temperature changes in irradiated oxide fuels due to the production and incorporation of soluble oxidic fission products was performed by application of solution theory to the available pseudo-binary phase diagram data. The results of this assessment suggest that depression of oxide fuel solidus temperatures by dissolved fission products is substantially less than that indicated by earlier experimental studies. (orig.)

  10. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  11. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  12. Dissolution of mixed oxide fuel as a function of fabrication variables

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution properties of mechanically blended mixed oxide fuel were very dependent on the six fuel fabrication variables studied. Fuel sintering temperature, source of PuO 2 and PuO 2 content of the fuel had major effects: (1) as the sintering temperature was increased from 1400 to 1700 0 C, pellet dissolution was more complete; (2) pellets made from burned metal derived PuO 2 were more completely dissolved than pellets made from calcined nitrate derived PuO 2 which in turn were more completely dissolved than pellets made from calcined nitrate derived PuO 2 ; (3) as the PuO 2 content decreased from 25 to 15 wt % PuO 2 , pellet dissolution was more complete. Preferential dissolution of uranium occurred in all the mechanically blended mixed oxide. Unirradiated mixed oxide fuel pellets made by the Sol Gel process were generally quite soluble in nitric acid. Unirradiated mixed oxide fuel pellets made by the coprecipitation process dissolved completely and rapidly in nitric acid. Fuel made by the coprecipitation process was more completely dissolved than fuel made by the Sol Gel process which, in turn, was more completely dissolved than fuel made by mechanically blending UO 2 and PuO 2 as shown below. Addition of uncomplexed fluoride to nitric acid during fuel dissolution generally rendered all fuel samples completely dissolvable. In boiling 12M nitric acid, 95 to 99% of the plutonium which was going to dissolve did so in the first hour. Irradiated mechanically blended mixed oxide fuel with known fuel fabrication conditions was also subjected to fuel dissolution tests. While irradiation was shown to increase completeness of plutonium dissolution, poor dissolubility due to adverse fabrication conditions (e.g., low sintering temperature) remained after irradiation

  13. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.

    Science.gov (United States)

    Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying

    2012-02-21

    The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating.

  14. Study on low temperature solid oxide fuel cells using Y Doped BaZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ikw Hang; Ji, Sang Hoon; Paek, Jun Yeol; Lee, Yoon Ho; Park, Tae Hyun; Cha, Suk Won [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2012-09-15

    In this study, we fabricate and investigate low temperature solid oxide fuel cells with a ceramic substrate/porous matal/ceramic/porous metal structure. To realize low temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss Yttrium doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350nm thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1{mu}m thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200nm thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806V, and the maximum power density is 11.9mW/cm'2' at 350 .deg. C. Even though a fully dense electrolyte is deposited via PLD, a cross sectional transmission electron microscopy (TEM) image reveals many voids and defects.

  15. Iron oxide redox chemistry and nuclear fuel disposal

    International Nuclear Information System (INIS)

    Jobe, D.J.; Lemire, R.J.; Taylor, P.

    1997-04-01

    Solubility and stability data for iron (III) oxides and aqueous Fe(II) and Fe(III) species are reviewed, and selected values are used to calculate potential-pH diagrams for the iron system at temperatures of 25 and 100 deg C, chloride activities {C1 - } = 10 -2 and 1 mol/kg, total carbonate activity {C T } = 10 -3 mol/kg, and iron(III) oxide/oxyhydroxide solubility products (25 deg C values) K sp = {Fe 3+ }{OH - } 3 = 10 -38.5 , 10 -40 and 10 -42 . The temperatures and anion concentrations bracket the range of conditions expected in a Canadian nuclear fuel waste disposal vault. The three solubility products represent a conservative upper limit, a most probable value, and a minimum credible value, respectively, for the iron oxides likely to be important in controlling redox conditions in a disposal vault for CANDU nuclear reactor fuel. Only in the first of these three cases do the calculated redox potentials significantly exceed values under which oxidative dissolution of the fuel may occur. (author)

  16. Analytical investigation on cell temperature control method of planar solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Y.; Ito, N.; Nakajima, T.; Urata, A. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi (Japan)

    2006-09-15

    The solid oxide fuel cell (SOFC) has a problem in durability of the ceramics used as its cell materials because its operating temperature is very high and the cell temperature fluctuation induces thermal stress in the ceramics. The cell temperature distribution in the SOFC, therefore, should be kept as constant as possible during variable load operation through control of the average current density in the cell. Considering this fact, the authors numerically optimize the operating parameters of air utilization and the inlet gas temperature of the planar SOFC by minimizing the cell temperature shift from its nominal value and propose a new cell temperature control method that adopts these optimum operating parameters for each average current density. The effectiveness of the proposed method is very high and the temperature variation is suppressed to a very low level without lowering the single cell voltage for both the co-flow and counter-flow type cells, indicating that the proposed cell temperature control method makes variable load operation of the planar SOFC possible. (author)

  17. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  18. Spent fuel. Dissolution and oxidation

    International Nuclear Information System (INIS)

    Grambow, B.

    1989-03-01

    Data from studies of the low temperature air oxidation of spent fuel were retrieved in order to provide a basis for comparison between the mechanism of oxidation in air and corrosion in water. U 3 O 7 is formed by diffusion of oxygen into the UO 2 lattice. A diffusion coefficient of oxygen in the fuel matric was calculated for 25 degree C to be in the range of 10 -23 to 10 -25 m 2 /s. The initial rates of U release from spent fuel and from UO 2 appear to be similar. The lowest rates (at 25 degree c >10 -4 g/(m 2 d)) were observed under reducing conditions. Under oxidizing conditions the rates depend mainly of the nature and concentraion of the oxidant and/or on corbonate. In contact with air, typical initial rates at room temperature were in the range between 0.001 and 0.1 g/(m 2 d). A study of apparent U solubility under oxidizing conditions was performed and it was suggested that the controlling factor is the redox potential at the UO 2 surface rather than the E h of the bulk solution. Electrochemical arguments were used to predict that at saturation, the surface potential will eventually reach a value given by the boundaries at either the U 3 O 7 /U 3 O 8 or the U 3 O 7 /schoepite stability field, and a comparison with spent fuel leach data showed that the solution concentration of uranium is close to the calculated U solubility at the U 3 O 7 /U 3 O 8 boundary. The difference in the cumulative Sr and U release was calculated from data from Studsvik laboratory. The results reveal that the rate of Sr release decreases with the square root of time under U-saturated conditions. This time dependence may be rationalized either by grain boundary diffusion or by diffusion into the fuel matrix. Hence, there seems to be a possibility of an agreement between the Sr release data, structural information and data for oxygen diffusion in UO 2 . (G.B.)

  19. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  20. Modeling of mechanical behavior of quenched zirconium-based nuclear fuel claddings after a high temperature oxidation

    International Nuclear Information System (INIS)

    Cabrera-Salcedo, A.

    2012-01-01

    During the second stage of Loss Of Coolant Accident (LOCA) in Pressurized Water Reactors (PWR) zirconium-based fuel claddings undergo a high temperature oxidation (up to 1200 C), then a water quench. After a single-side steam oxidation followed by a direct quench, the cladding is composed of three layers: an oxide (Zirconia) outer layer (formed at HT), always brittle at Room Temperature (RT), an intermediate oxygen stabilized alpha layer, always brittle at RT, called alpha(O), and an inner 'prior-beta' layer, which is the only layer able to keep some significant Post Quench (PQ) ductility at RT. However, hydrogen absorbed because of service exposure or during the LOCA transient, concentrates in this layer and may leads to its embrittlement. To estimate the PQ mechanical properties of these materials, Ring Compression Tests (RCT) are widely used because of their simplicity. Small sample size makes RCTs advantageous when a comparison with irradiated samples is required. Despite their good reproducibility, these tests are difficult to interpret as they often present two or more load drops on the engineering load-displacement curve. Laboratories disagree about their interpretation. This study proposes an original fracture scenario for a stratified PQ cladding tested by RCT, and its associated FE model. Strong oxygen content gradient effect on layers mechanical properties is taken into account in the model. PQ thermal stresses resulting from water quench of HT oxidized cladding are investigated, as well as progressive damage of three layers during an RCT. The proposed scenario is based on interrupted RCT analysis, post- RCT sample's outer layers observation for damage evaluation, RCTs of prior-beta single-layer rings, and mechanical behavior of especially chemically adjusted samples. The force displacement curves appearance is correctly reproduced using the obtained FE model. The proposed fracture scenario elucidates RCTs of quenched zirconium-based nuclear fuel

  1. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    Science.gov (United States)

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  2. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  3. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, M. F. S.; Moraes, L. P. R.; Monteiro, N. K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte and in composite electrodes operating at low and intermediate temperatures. GDC exhibits high oxygen ion conductivity at a wide range of temperatures and displays a high...... resistance to carbon deposition when hydrocarbons are used as fuels. However, an inconvenience of ceria-based oxides is the high sintering temperature needed to obtain a fully dense ceramic body. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. The aqueous...

  4. Platinum redispersion on metal oxides in low temperature fuel cells

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Nagami, Tetsuo

    2013-01-01

    We have analyzed the aptitude of several metal oxide supports (TiO2, SnO2, NbO2, ZrO2, SiO2, Ta2O5 and Nb2O5) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in ...

  5. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  6. UO2 - Zr chemical interaction of PHWR fuel pins under high temperature

    International Nuclear Information System (INIS)

    Majumdar, P.; Mukhopadhyay, D.; Gupta, S.K.

    2001-01-01

    At high temperature Zircaloy clad interacts with the UO 2 fuel as well as with the steam to produce oxide layer of a-Zr(O) and ZrO 2 . This layer formation significantly reduces the structural strength of the clad. A computer code SFDCPA/MOD1 has been developed to simulate the interaction and predict the oxide layer thickness for any accidental transient condition. It is well validated with published experimental data on the isothermal and transient temperature condition. The program is applied to Indian Pressurized Heavy Water Reactor (PHWR) fuel pin under certain severe transient condition where it experiences temperature above 1000 C. The study gives an idea of the un-oxidized thickness of Zircaloy, which is an important criterion for fuel integrity. (author)

  7. Durable and Robust Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Knibbe, Ruth; Hauch, Anne

    project had as one of its’ overarching goals to improve durability and robustness of the Danish solid oxide fuel cells. The project focus was on cells and cell components suitable for SOFC operation in the temperature range 600 – 750 °C. The cells developed and/or studied in this project are intended......The solid oxide fuel cell (SOFC) is an attractive technology for the generation of electricity with high efficiency and low emissions. Risø DTU (now DTU Energy Conversion) works closely together with Topsoe Fuel Cell A/S in their effort to bring competitive SOFC systems to the market. This 2-year...... for use within the CHP (Combined Heat and Power) market segment with stationary power plants in the range 1 – 250 kWe in mind. Lowered operation temperature is considered a good way to improve the stack durability since corrosion of the interconnect plates in a stack is lifetime limiting at T > 750 °C...

  8. Technical test description of activities to determine the potential for spent fuel oxidation in a tuff repository

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1985-06-01

    The potential change in the oxidation state of spent fuel during its residence in a repository must be known to evaluate its radionuclide retention capabilities. Once the container breaches, the spent fuel in a repository sited above the water table will be exposed to a moist air atmosphere at low temperatures. Thermodynamically, there is no reason why the fuel should not oxidize to a higher oxidation state under these conditions, given enough time. Depending on the rate of oxidation, higher oxides with potentially higher leach rates may eventually form or the cladding may even split open. If either of these oxidation effects occurs, the ability of spent fuel to retard radionuclide migration will be reduced. A technical test description is presented to study spent fuel oxidation at low temperatures characteristic of the post-container breach period and at high temperatures in a moist inert atmosphere characteristic of a sealed container with waterlogged fuel, early in the repository life. The approach taken will be to perform tests and evaluations to gain understanding of the operative oxidation mechanisms, to obtain oxidation rate data, and to make projections of potential long-term fuel oxidation states. Time and temperature dependence of existing models will be evaluated, and the dependence of the model projections on fuel variables will be determined. 27 refs., 7 figs., 4 tabs

  9. High-temperature thermal-chemical analysis of nuclear fuel channels

    Energy Technology Data Exchange (ETDEWEB)

    Nekhamkin, Y; Rosenband, V; Hasan, D; Elias, E; Wacholder, E; Gany, A [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-12-01

    In a severe accident situation, e.g., a postulated loss of coolant accident with a coincident loss of emergency core cooling (LOCA/LOECC), the core may become partially uncovered and steam may become the only coolant available. The thermodynamic conditions in the core, in this case, depend on ability of the steam to effectively remove the fuel decay heat and the heat generated by the exothermic steam/Zircaloy reaction., Therefore, it is important to understand the high-temperature behavior of an oxidizing fuel channel. The main objective of this work is to develop a methodology for calculating the clad temperature and rate of oxidation of a partially covered fuel pin. A criterion is derived to define the importance of the chemical reaction in the overall heat balance. The main parameters affecting the fuel thermal behavior are outlined (authors).

  10. Behavior of molybdenum in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Giacchetti, G.; Sari, C.

    1976-01-01

    Metallic molybdenum, Mo--Ru--Rh--Pd alloys, barium, zirconium, and tungsten were added to uranium and uranium--plutonium oxides by coprecipitation and mechanical mixture techniques. This material was treated in a thermal gradient similar to that existing in fuel during irradiation to study the behavior of molybdenum in an oxide matrix as a function of the O/(U + Pu) ratio and some added elements. Result of ceramographic and microprobe analysis shows that when the overall O/(U + Pu) ratio is less than 2, molybdenum and Mo--Ru--Rh--Pd alloy inclusions are present in the uranium--plutonium oxide matrix. If the O/(U + Pu) ratio is greater than 2, molybdenum oxidizes to MoO 2 , which is gaseous at a temperature approximately 1000 0 C. Molybdenum oxide vapor reacts with barium oxide and forms a compound that exists as a liquid phase in the columnar grain region. Molybdenum oxide also reacts with tungsten oxide (tungsten is often present as an impurity in the fuel) and forms a compound that contains approximately 40 wt percent of actinide metals. The apparent solubility of molybdenum in uranium and uranium--plutonium oxides, determined by electron microprobe, was found to be less than 250 ppM both for hypo- and hyperstoichiometric fuels

  11. High Temperature Steam Oxidation Testing of Candidate Accident Tolerant Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nelson, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkison, Adam [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-12-23

    The Fuel Cycle Research and Development (FCRD) program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels in order to overcome the inherent shortcomings of light water reactor (LWR) fuels when exposed to beyond design basis accident conditions. The campaign has invested in development of experimental infrastructure within the Department of Energy complex capable of chronicling the performance of a wide range of concepts under prototypic accident conditions. This report summarizes progress made at Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory (LANL) in FY13 toward these goals. Alternative fuel cladding materials to Zircaloy for accident tolerance and a significantly extended safety margin requires oxidation resistance to steam or steam-H2 environments at ≥1200°C for short times. At ORNL, prior work focused attention on SiC, FeCr and FeCrAl as the most promising candidates for further development. Also, it was observed that elevated pressure and H2 additions had minor effects on alloy steam oxidation resistance, thus, 1 bar steam was adequate for screening potential candidates. Commercial Fe-20Cr-5Al alloys remain protective up to 1475°C in steam and CVD SiC up to 1700°C in steam. Alloy development has focused on Fe-Cr-Mn-Si-Y and Fe-Cr-Al-Y alloys with the aluminaforming alloys showing more promise. At 1200°C, ferritic binary Fe-Cr alloys required ≥25% Cr to be protective for this application. With minor alloy additions to Fe-Cr, more than 20%Cr was still required, which makes the alloy susceptible to α’ embrittlement. Based on current results, a Fe-15Cr-5Al-Y composition was selected for initial tube fabrication and welding for irradiation experiments in FY14. Evaluations of chemical vapor deposited (CVD) SiC were conducted up to 1700°C in steam. The reaction of H2O with the alumina reaction tube at 1700°C resulted in Al(OH)3

  12. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  13. Assessment of oxygen diffusion coefficients by studying high-temperature oxidation behaviour of Zr1Nb fuel cladding in the temperature range of 1100–1300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Négyesi, M., E-mail: negy@seznam.cz [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Chmela, T. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Veselský, T. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Krejčí, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); CHEMCOMEX Praha a.s., Elišky Přemyslovny 379, 156 10 Praha – Zbraslav (Czech Republic); Novotný, L.; Přibyl, A. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Bláhová, O. [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Burda, J. [NRI Rez plc, Husinec-Řež 130, 250 68 Řež (Czech Republic); Siegl, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Vrtílková, V. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic)

    2015-01-15

    The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the α-Zr(O) layer, in the double-phase (α + β)-Zr region, and in the β-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.

  14. High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-01-01

    Solid-Oxide-Fuel-Cell systems are efficient devices to convert the chemical energy stored in fuels into electricity. The functionality of the cell is related to the structural integrity of the ceramic electrolyte, since its failure can lead to drastic performance losses. The mechanical property which is of most interest is the strength distribution at all relevant temperatures and how it is affected with time due to the environment. This study investigates the impact of the temperature on the strength and the fracture toughness of different zirconia electrolytes as well as the change of the elastic constants. 3YSZ and 6ScSZ materials are characterised regarding the influence of sub critical crack growth (SCCG) as one of the main lifetime limiting effects for ceramics at elevated temperatures. In addition, the reliability of different zirconia tapes is assessed with respect to temperature and SCCG. It was found that the strength is only influenced by temperature through the change in fracture toughness. SCCG has a large influence on the strength and the lifetime for intermediate temperature, while its impact becomes limited at temperatures higher than 650 °C. In this context the tetragonal 3YSZ and 6ScSZ behave quite different than the cubic 10Sc1CeSZ, so that at 850 °C it can be regarded as competitive compared to the tetragonal compounds.

  15. Analysis of fuel cladding chemical interaction in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, J.W.; Dutt, D.S.

    1976-01-01

    An analysis is presented of the observed interaction between mixed oxide 75 wt percent UO 2 --25 wt percent PuO 2 fuel and 316--20 percent CW stainless steel cladding in LMFBR type fuel pins irradiated in EBR-II. A description is given of the test pins and their operating conditions together with, metallographic observations and measurements of the fuel/cladding reaction, and a correlation equation is developed relating depth of cladding attack to temperature and burnup. Some recent data on cladding reaction in fuel pins with low initial O/M in the fuel are given and compared with the correlation equation curves

  16. Towards an efficient conversion of ethanol in low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vineet [Technische Universitaet Muenchen, Physik Department E19, James-Franck-Str. 1, D-85747 Garching (Germany); Stimming, Ulrich [Technische Universitaet Muenchen, Physik Department E19, James-Franck-Str. 1, D-85747 Garching (Germany); ZAE Bayern, Abteilung 1, Walther-Meissner-Str. 6, D-85748 Garching (Germany)

    2009-07-01

    Direct conversion of ethanol in low temperature fuel cells is a major goal in the development of fuel cells. Advantages of ethanol are its availability from biomass and the high energy density of such liquid fuel. Nevertheless, a major drawback is the incomplete oxidation of ethanol. Recent research focused mainly on novel catalyst materials for the ethanol oxidation reaction (EOR) based on e.g. Pt-Sn. Furthermore, some groups have carried out tests on solid OH- ion exchange membrane fuel cells. Better kinetics of fuel cell processes in such exchange membrane fuel cells could allow using also higher alcohols as fuel. Ethanol has slower kinetics of oxidation in acidic media and several by-products are formed because of incomplete oxidation. In our studies we investigated EOR in alkaline membrane electrode assemblies (MEA). Here, ethanol undergoes significantly more complete electro-oxidation to CO{sub 2} than in case of acidic MEA with same Pt anode.

  17. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    KAUST Repository

    Chen, Bingjie

    2016-06-23

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  18. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    KAUST Repository

    Chen, Bingjie; Togbé , Casimir; Wang, Zhandong; Dagaut, Philippe; Sarathy, Mani

    2016-01-01

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  19. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting...... of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode...

  20. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed......V higher than that of methanol, indicating less fuel crossover....

  1. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Inagaki, Toru; Nishiwaki, Futoshi; Kanou, Jirou; Yamasaki, Satoru; Hosoi, Kei; Miyazawa, Takashi; Yamada, Masaharu; Komada, Norikazu

    2006-01-01

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 o C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O 3-δ , Ni-(CeO 2 ) 1-x (SmO 1.5 ) x cermet anode, and Sm(Sr)CoO 3-δ cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 o C was obtained using high temperature off-gas from SOFC

  3. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan)]. E-mail: inagaki@rdd.kepco.co.jp; Nishiwaki, Futoshi [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Kanou, Jirou [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Yamasaki, Satoru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Hosoi, Kei [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Miyazawa, Takashi [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Yamada, Masaharu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Komada, Norikazu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan)

    2006-02-09

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 {sup o}C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O{sub 3-{delta}}, Ni-(CeO{sub 2}){sub 1-x}(SmO{sub 1.5}) {sub x} cermet anode, and Sm(Sr)CoO{sub 3-{delta}} cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 {sup o}C was obtained using high temperature off-gas from SOFC.

  4. Chemical interaction of dual-fuel mixtures in low-temperature oxidation, comparing n -pentane/dimethyl ether and n -pentane/ethanol

    KAUST Repository

    Jin, Hanfeng

    2018-03-22

    With the aim to study potential cooperative effects in the low-temperature oxidation of dual-fuel combinations, we have investigated prototypical hydrocarbon (CH) / oxygenated (CHO) fuel mixtures by doping n-pentane with either dimethyl ether (DME) or ethanol (EtOH). Species measurements were performed in a flow reactor at an equivalence ratio of ϕ = 0.7, at a pressure of p = 970 mbar, and in the temperature range of 450–930 K using electron ionization molecular-beam mass spectrometry (EI-MBMS). Series of different blending ratios were studied including the three pure fuels and mixtures of n-pentane containing 25% and 50% of CHO. Mole fractions and signals of a significant number of species with elemental composition CHO (n = 1–5, x = 0–(n + 2), y = 0–3) were analyzed to characterize the behavior of the mixtures in comparison to that of the individual components. Not unexpectedly, the overall reactivity of n-pentane is decreased when doping with ethanol, while it is promoted by the addition of DME. Interestingly, the present experiments reveal synergistic interactions between n-pentane and DME, showing a stronger effect on the negative temperature coefficient (NTC) for the mixture than for each of the individual components. Reasons for this behavior were investigated and show several oxygenated intermediates to be involved in enhanced OH radical production. Conversely, ethanol is activated by the addition of n-pentane, again involving key OH radical reactions. Although the main focus here is on the experimental results, we have attempted, in a first approximation, to complement the experimental observations by simulations with recent kinetic models. Interesting differences were observed in this comparison for both, fuel consumption and intermediate species production. The inhibition effect of ethanol is not predicted fully, and the synergistic effect of DME is not captured satisfactorily. The exploratory analysis of the experimental results with current

  5. Conversion of hydrocarbons in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Kammer Hansen, K.

    2003-01-01

    Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700degreesC) have been published. Even though the conversion of almost dry CH4 at 1000degreesC on ceramic anodes was demonstrated more than 10 years...

  6. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  7. Breaking up of pure and simulated 'burnt' mixed oxide fuel by chemical interaction with oxidized sodium

    International Nuclear Information System (INIS)

    Besnard, R.; Chaudat, J.P.

    1983-01-01

    A large experimental program have permitted to investigate the behaviour of mixed oxide fuel coming in contact with hot oxidized sodium. The kinetic of the reaction, the size and the chemical nature of the particules after interaction have been studied. The main part of experiments have been performed using mixed oxide fuel non irradiated at first and with simulated fission products afterwards. Complementary informations have been obtained with UO 2 fuel pellets. After description of the experimental devices, the results are discussed and the importance of the main parameters, like temperature and fission products effect, are pointed out. (orig.)

  8. Effects of an oxidizing atmosphere in a spent fuel packaging facility

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1991-09-01

    Sufficient oxidation of spent fuel can cause a cladding breach to propagate, resulting in dispersion of fuel particulates and gaseous radionuclides. The literature for spent fuel oxidation in storage and disposal programs was reviewed to evaluate the effect of an oxidizing atmosphere in a preclosure packaging facility on (1) physical condition of the fuel and (2) operations in the facility. Effects such as cladding breach propagation, cladding oxidation, rod dilation, fuel dispersal, 14 C and 85 Kr release, and crud release were evaluated. The impact of these effects, due to oxidation, upon a spent fuel handling facility is generally predicted to be less than the impact of similar effects due to fuel rod breached during handling in an inert-atmosphere facility. Preliminary temperature limits of 240 degree C and 227 degree C for a 2-week or 4-week handling period and 175 degree C for 2-year lag storage would prevent breach propagation and fuel dispersal. Additional data that are needed to support the assumptions in this analysis or complete the database were identified

  9. URANIUM OXIDE-CONTAINING FUEL ELEMENT COMPOSITION AND METHOD OF MAKING SAME

    Science.gov (United States)

    Handwerk, J.H.; Noland, R.A.; Walker, D.E.

    1957-09-10

    In the past, bodies formed of a mixture of uranium dioxide and aluminum powder have been used in fuel elements; however, these mixtures were found not to be suitable when exposed to temperatures of about 600 deg C, because at such high temperatures the fuel elements were distorted. If uranosic oxide, U/sub 3/O/sub 8/, is substituted for UO/sub 2/, the mechanical properties are not impaired when these materials are used at about 600 deg C and no distortion takes place. The uranosic oxide and aluminum, both in powder form, are first mixed, and after a homogeneous mixture has been obtained, are shaped into fuel elements by extrusion at elevated temperature. Magnesium powder may be used in place of the aluminum.

  10. Modelling of Zircaloy-steam-oxidation under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Malang, S.; Neitzel, H.J.

    1983-01-01

    Small break loss-of-coolant accidents and special transients in an LWR, in combination with loss of required safety systems, may lead to an uncovered core for an extended period of time. As a consequence, the cladding temperature could rise up to the melting point due to the decay heat, resulting in severely damaged fuel rods. During heat-up the claddings oxidize due to oxygen uptake from the steam atmosphere in the core. The modeling and assessment of the Zircaloy-steam oxidation under such conditions is important, mainly for two reasons: The oxidation of the cladding influences the temperature transients due to the exothermic heat of reaction; the amount of liquified fuel depends on the oxide layer thickness and the oxygen content of the remaining Zircaloy metal when the melting point is reached. (author)

  11. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    Science.gov (United States)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  12. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    Science.gov (United States)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  13. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  14. A technique of melting temperature measurement and its application for irradiated high-burnup MOX fuels

    International Nuclear Information System (INIS)

    Namekawa, Takashi; Hirosawa, Takashi

    1999-01-01

    A melting temperature measurement technique for irradiated oxide fuels is described. In this technique, the melting temperature was determined from a thermal arrest on a heating curve of the specimen which was enclosed in a tungsten capsule to maintain constant chemical composition of the specimen during measurement. The measurement apparatus was installed in an alpha-tight steel box within a gamma-shielding cell and operated by remote handling. The temperature of the specimen was measured with a two-color pyrometer sighted on a black-body well at the bottom of the tungsten capsule. The diameter of the black-body well was optimized so that the uncertainties of measurement were reduced. To calibrate the measured temperature, two reference melting temperature materials, tantalum and molybdenum, were encapsulated and run before and after every oxide fuel test. The melting temperature data on fast reactor mixed oxide fuels irradiated up to 124 GWd/t were obtained. In addition, simulated high-burnup mixed oxide fuel up to 250 GWd/t by adding non-radioactive soluble fission products was examined. These data shows that the melting temperature decrease with increasing burnup and saturated at high burnup region. (author)

  15. Effects of self-absorption on simultaneous estimation of temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames using a spectrometer

    Science.gov (United States)

    Liu, Guannan; Liu, Dong

    2018-06-01

    An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.

  16. Electroplating of Protective Coatings on Interconnects Used for Solid Oxide Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Harthøj, Anders

    Solid oxide fuel Cell (SOFC) technology can with a high efficiency produce environmentally clean electricity by converting the chemical energy in a fuel to electrical energy. SOFC systems have a high operation temperature, approx. 600-850 °C. Advantages compared to other types of fuel cells......, are they can utilize a wide range of fuels, e.g. hydrogen, natural gas and methanol, do not contain noble metals and have a high efficiency. A major obstacle to the commercialization of SOFC technology is the high degradation rates and costs of the systems. A significant source of degradation is high...... on the side facing its anode. Two high temperature corrosion issues, which both affect the air side of the interconnect, are especially significant, both of: Formation of thick oxide scales on its surface and evaporation of chromium species from the oxide. The oxide scales increases the electrical resistance...

  17. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2015-07-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton-conducting oxides in both solid oxide fuel cells (SOFCs) and sold oxide electrolysis cells (SOECs) provides unique advantages compared with the use of conventional oxygen-ion conducting conductors, including the formation of water at the air electrode site. Since the discovery of proton conduction in some oxides about 30. years ago, the development of proton-conducting oxides in SOFCs and SOECs (the reverse mode of SOFCs) has gained increased attention. This paper briefly summarizes the development in the recent years of R-SOFCs with proton-conducting electrolytes, focusing on discussing the importance of adopting chemically stable materials in both fuel cell and electrolysis modes. The development of electrode materials for proton-conducting R-SOFCs is also discussed. © 2015 Elsevier B.V.

  18. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  19. NiO-YSZ cermets supported low temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Yick, Sing; Styles, Edward; Roller, Justin; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 3250 East Mall, Vancouver, BC (Canada V6T 1W5)

    2006-10-20

    Solid oxide fuel cells with thin electrolyte of two types, Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) (15{mu}m) single-layer and 8mol% Yttria stabilized zirconia (YSZ) (5{mu}m)+SDC (15{mu}m) bi-layer on NiO-YSZ cermet substrates were fabricated by screen printing and co-firing. A Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} cathode was printed, and in situ sintered during a cell performance test. The SDC single-layer electrolyte cell showed high electrochemical performance at low temperature, with a 1180mWcm{sup -2} peak power density at 650{sup o}C. The YSZ+SDC bi-layer electrolyte cell generated 340mWcm{sup -2} peak power density at 650{sup o}C, and showed good performance at 700-800{sup o}C, with an open circuit voltage close to theoretical value. Many high Zr-content micro-islands were found on the SDC electrolyte surface prior to the cathode preparation. The influence of co-firing temperature and thin film preparation methods on the Zr-islands' appearance was investigated. (author)

  20. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada)

    2007-02-10

    A solid oxide fuel cell with Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) electrolyte of 10 {mu}m in thickness and Ni-SDC anode of 15 {mu}m in thickness on a 0.8 mm thick Ni-YSZ cermet substrate was fabricated by tape casting, screen printing and co-firing. A composite cathode, 75 wt.% Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} (SSCo) + 25 wt.% SDC, approximately 50 {mu}m in thickness, was printed on the co-fired half-cell, and sintered at 950 C. The cell showed a high electrochemical performance at temperatures ranging from 500 to 650 C. Peak power density of 545 mW cm{sup -2} at 600 C was obtained. However, the cell exhibited severe internal shorting due to the mixed conductivity of the SDC electrolyte. Both the amount of water collected from the anode outlet and the open circuit voltage (OCV) indicated that the internal shorting current could reach 0.85 A cm{sup -2} or more at 600 C. Zr content inclusions were found at the surface and in the cross-section of the SDC electrolyte, which could be one of the reasons for reduced OCV and oxygen ionic conductivity. Fuel loss due to internal shorting of the thin SDC electrolyte cell becomes a significant concern when it is used in applications requiring high fuel utilization and electrical efficiency. (author)

  1. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  2. Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells

    Science.gov (United States)

    Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom

    2018-06-01

    We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.

  3. Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol

    Directory of Open Access Journals (Sweden)

    Fotini Tzorbatzoglou

    2012-10-01

    Full Text Available In the present work, an ethanol fed Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT system has been parametrically analyzed in terms of exergy and compared with a single SOFC system. The solid oxide fuel cell was fed with hydrogen produced from ethanol steam reforming. The hydrogen utilization factor values were kept between 0.7 and 1. The SOFC’s Current-Volt performance was considered in the range of 0.1–3 A/cm2 at 0.9–0.3 V, respectively, and at the intermediate operating temperatures of 550 and 600 °C, respectively. The curves used represent experimental results obtained from the available bibliography. Results indicated that for low current density values the single SOFC system prevails over the SOFC-GT hybrid system in terms of exergy efficiency, while at higher current density values the latter is more efficient. It was found that as the value of the utilization factor increases the SOFC system becomes more efficient than the SOFC-GT system over a wider range of current density values. It was also revealed that at high current density values the increase of SOFC operation temperature leads in both cases to higher system efficiency values.

  4. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.

    2011-01-01

    the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending...... on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom......Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...

  5. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  6. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    International Nuclear Information System (INIS)

    Perez, Emmanuel; Keiser Jr, Dennis D.; Forsmann, Bryan; Janney, Dawn E.; Henley, Jody; Woolstenhulme, Eric C.

    2016-01-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  7. Performance of advanced oxide fuel pins in EBR-II

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Jensen, S.M.; Hales, J.W.; Karnesky, R.A.; Makenas, B.J.

    1986-05-01

    The effects of design and operating parameters on mixed-oxide fuel pin irradiation performance were established for the Hanford Engineering Development Laboratory (HEDL) advanced oxide EBR-II test series. Fourteen fuel pins breached in-reactor with reference 316 SS cladding. Seven of the breaches are attributed to FCMI. Of the remaining seven breached pins, three are attributed to local cladding over-temperatures similar to the breach mechanism for the reference oxide pins irradiated in EBR-II. FCCI was found to be a contributing factor in two high burnup, i.e., 11.7 at. % breaches. The remaining two breaches were attributed to mechanical interaction of UO 2 fuel and fission products accumulated in the lower cladding insulator gap, and a loss of cladding ductility possibly due to liquid metal embrittlement. Fuel smear density appears to have the most significant impact on lifetime. Quantitative evaluations of cladding diameter increases attributed to FCMI, established fuel smear density, burnup, and cladding thickness-to-diameter ratio as the major parameters influencing the extent of cladding strain

  8. Mathematical modeling of solid oxide fuel cells

    Science.gov (United States)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  9. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  10. Evaporation studies of liquid oxide fuel at very high temperatures using laser beam heating

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schretzmann, K.

    1976-11-01

    Evaporation experiments with oxide fuel are carried out based laser beam heating of the fuel specimen surface. The measuring quantities are the recoil momentum of the target, the evaporation area, the evaporation time and the mass and momentum of the supersonic vapor jet expanding into vacuum, and the thermal radiation density of the evaporating surface. From the mechanical measuring quantities we derive the vapor pressure of the target material and, in a first approach, also the evaporation temperature by applying a gas dynamic evaluation model. In a second approach, after having measured the spectral emissivity of liquid UO 2 at 633 nm, we determine the evaporation temperature at the liquid surface also from its thermal radiation. For the determination of the vapor pressure from the measured quantities a gas dynamic evaluation model has been developed. An application limit of the measuring technique is given by onset of plasma interaction of the vapor plume with the incident laser beam at temperatures above 4500 K. Experimental values for the saturated vapor pressure of UO 2 are presented, determined from three series of laser evaporation measurements obtained at temperatures around 3500 K, 3950 K, and 4200 K. The average vapor pressures found are 0.6 bar, 3 bar, and 7 bar, respectively. Laser vapor pressure measurements performed by other authors and theoretical extrapolations of the UO 2 vapor pressure curve known from literature show fairly good agreement within their confidence interval with the vapor pressure measurements reported here. (orig./HR) [de

  11. A high-temperature, short-duration method of fabricating surrogate fuel microkernels for carbide-based TRISO nuclear fuels

    International Nuclear Information System (INIS)

    Vasudevamurthy, G.; Radecka, A.; Massey, C.

    2015-01-01

    High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.

  12. A high-temperature, short-duration method of fabricating surrogate fuel microkernels for carbide-based TRISO nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevamurthy, G.; Radecka, A.; Massey, C. [Virginia Commonwealth Univ., Richmond, VA (United States). High Temperature Materials Lab.

    2015-07-01

    High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.

  13. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-12-01

    Full Text Available Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. Coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation

    El uso de interconectores metálicos en pilas de combustible de óxido sólido (SOFC en sustitución de materiales cerámicos ha sido posible gracias a la investigación y desarrollo de nuevos materiales metálicos. Inicialmente, el uso de interconectores metálicos fue limitado, debido a la elevada temperatura de trabajo, ocasionando de forma rápida la degradación del material, lo que impedía que fuesen una alternativa. A medida que la temperatura de trabajo de las SOFC descendió, el uso de interconectores metálicos demostró ser una buena alternativa, dado que son más fáciles de fabricar y más baratos que los interconectores cerámicos. Sin embargo, los interconectores metálicos continúan degradándose a pesar de descender la temperatura a la que operan las SOFC y, asimismo, los productos de corrosión favorecen las pérdidas eléctricas de la pila de combustible. Recubrimientos de níquel, cromo, aluminio, zinc, manganeso, itrio y lantano entre el interconector y los electrodos reduce dichas pérdidas eléctricas.

  14. Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L.R.

    2008-01-01

    Surfactant-assisted infiltration of Gd-doped ceria (CGO) in Nb-doped SrTiO3 (STN) was investigated as a potential fuel electrode for solid oxide fuel cells (SOFC). An electronically conductive backbone structure of STN was first fabricated at high temperatures and then combined with the mixed con...

  15. Thermal radiation modelling in a tubular solid oxide fuel cell

    International Nuclear Information System (INIS)

    Austin, M.E.; Pharoah, J.G.; Vandersteen, J.D.J.

    2004-01-01

    Solid Oxide Fuel Cells (SOFCs) are becoming the fuel cell of choice among companies and research groups interested in small power generation units. Questions still exist, however, about the operating characteristics of these devices; in particular the temperature distribution in the fuel cell. Using computational fluid dynamics (CFD) a model is proposed that incorporates conduction, convection and radiation. Both surface-to-surface and participating media are considered. It is hoped that a more accurate account of the temperature field in the various flow channels and cell components will be made to assist work on design of fuel cell components and reaction mechanisms. The model, when incorporating radiative heat transfer with participating media, predicts substantially lower operating temperatures and smaller temperature gradients than it does without these equations. It also shows the importance of the cathode air channel in cell cooling. (author)

  16. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    Science.gov (United States)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  17. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    Science.gov (United States)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  18. Transmutation of minor actinide using BWR fueled mixed oxide

    International Nuclear Information System (INIS)

    Susilo, Jati

    2000-01-01

    Nuclear spent fuel recycle has a strategic importance in the aspect of nuclear fuel economy and prevention of its spread-out. One among other application of recycle is to produce mixed oxide fuel (Mo) namely mixed Plutonium and uranium oxide. As for decreasing the burden of nuclear high level waste (HLW) treatment, transmutation of minor actinide (MA) that has very long half life will be carried out by conversion technique in nuclear reactor. The purpose of this study was to know influence of transition fuel cell regarding the percent weight of transmutation MA in the BWR fueled MOX. Calculation of cell BWR was used SRAC computer code, with assume that the reactor in equilibrium. The percent weight of transmutation MA to be optimum by increasing the discharge burn-up of nuclear fuel, raising ratio of moderator to fuel volume (Vm/Vf), and loading MA with percent weight about 3%-6% and also reducing amount of percent weight Pu in MOX fuel. For mixed fuel standard reactor, reactivity value were obtained between about -50pcm ∼ -230pcm for void coefficient and -1.8pcm ∼ -2.6pcm for fuel temperature coefficient

  19. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    CERN Document Server

    Saievar-Iranizad, E

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO sub 2). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cel...

  20. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide

    2017-01-01

    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon......-carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... bituminous coal (73 mW/cm2)....

  1. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  2. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-03-01

    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.

  3. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  4. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  5. Fuel rod quenching with oxidation and precursory cooling

    International Nuclear Information System (INIS)

    Davidi, A.; Elias, E.; Olek, S.

    1999-01-01

    During a loss-of-coolant-accident in LWR fuel rods may be temporarily exposed thus reaching high temperature levels. The injection of cold water into the core, while providing the necessary cooling to prevent melting may also generate steam inducing exothermal oxidation of the cladding. A number of high temperature quenching experiments [I] have demonstrated that during the early phase of the quenching process, the rate of hydrogen generation increased markedly and the surface temperatures rose rapidly. These effects are believed to result from thermal stresses breaking up the oxide layer on the zircalloy cladding, thus exposing the inner surface to oxidizing atmosphere. Steam reacts exothermally with the metallic components of the newly formed surface causing temporarily local temperature escalation. The main objective of this study is to develop and assess a one-dimensional time-dependent rewetting model to address the problem of quenching of hot surfaces undergoing exothermic oxidation reactions. Addressing a time-dependent problem is an important aspect of the work since it is believed that the progression of a quench-front along a hot oxidizing surface is an unsteady process. Several studies dealing with time-dependent rewetting problems have been published, e.g. [2]-[5], but none considers oxidation reactions downstream of the quench-front. The main difficulty in solving time-dependent rewetting problems stems from the fact that either the quench-front velocity or the quench-front positions constitute a time-dependent eigenvalue of the problem. The model is applied to describe the interrelated processes of cooling and exothermic steam-metal reactions at the vapor zirconium-cladding interface during quenching of degraded fuel rods. A constant heat transfer coefficient is assumed upstream of the quenching front whereas the combined effect of oxidation and post dry-out cooling is described by prescribing a heat flux distribution of general form downstream. The

  6. Characterization of porous stainless steel 430 for low and intermediate temperature solid oxide fuel cell substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rose, L. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation; British Columbia Univ., Vancouver, BC (Canada). Dept. of Materials Engineering; Deces-Petit, C.; Sobolyeva, T.; Maric, R. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Materials Engineering; Kesler, O. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    In order to lower the cost of solid oxide fuel cells (SOFCs), the operating temperatures could be lowered below 1073 K to allow the use of robust and comparatively inexpensive stainless steels not only for interconnects but also for SOFC support structures. To facilitate gas flow towards the reactive sites in the electrodes, the metal supports must be adequately porous. Gas flow and electrical conductivity must remain adequate during any oxidation that occurs during operation. This paper discussed a series of gas permeation and surface profilometry experiments that were conducted to determine the permeability and surface roughness of porous steels having different pore structures. The purpose of the study was to identify microstructures most suitable for use as SOFC supports. The materials were also characterized by a variety of porosity measurement methods, each yielding complementary information on the three dimensional structures. The paper described the experimental methods as well as the results and discussion of results in terms of surface profilometry, porosity analyses, pore morphology and gas permeability. It was concluded that a material with more than 20 per cent total porosity that does not close during oxidation and with a surface roughness of less than 8 micrometres appears to be a good candidate structure for intermediate temperature SOFCs. 8 refs., 8 figs.

  7. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide

    2015-01-01

    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon......-carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... bituminous coal (73 mW/cm2). © 2015 ECS - The Electrochemical Society...

  8. Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A review

    Science.gov (United States)

    Shri Prakash, B.; Pavitra, R.; Senthil Kumar, S.; Aruna, S. T.

    2018-03-01

    Lowering of operation temperature has become one of the primary goals of solid oxide fuel (SOFC) research as reduced temperature improves the prospects for widespread commercialization of this energy system. Reduced operational temperature also mitigates the issues associated with high temperature SOFCs and paves way not only for the large scale stationary power generation but also makes SOFCs viable for portable and transport applications. However, there are issues with electrolyte and cathode materials at low temperatures, individually as well as in association with other components, which makes the performance of the SOFCs less satisfactory than expected at lowered temperatures. Bi-layering of electrolytes and impregnation of cathodes have emerged as two important strategies to overcome these issues and achieve higher performance at low temperatures. This review article provides the perspective on the strategy of bi-layering of electrolyte to achieve the desired high performance from SOFC at low to intermediate temperatures.

  9. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.

  10. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon; Naser, Nimal; Chung, Suk-Ho; Al-Qurashi, Khalid

    2014-01-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of 'MTBE soot' started began at a lower temperature and had higher reaction rate than 'diesel soot' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  11. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon

    2014-04-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of \\'MTBE soot\\' started began at a lower temperature and had higher reaction rate than \\'diesel soot\\' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  12. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  13. Heating subsurface formations by oxidizing fuel on a fuel carrier

    Science.gov (United States)

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  14. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    Science.gov (United States)

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  15. Thermodynamic and kinetic aspects of UO 2 fuel oxidation in air at 400-2000 K

    Science.gov (United States)

    Taylor, Peter

    2005-09-01

    Most nuclear fuel oxidation research has addressed either low-temperature (1500 K) steam oxidation linked to reactor safety. This paper attempts to unify modelling for air oxidation of UO 2 fuel over a wide range of temperature, and thus to assist future improvement of the ASTEC code, co-developed by IRSN and GRS. Phenomenological correlations for different temperature ranges distinguish between oxidation on the scale of individual grains to U 3O 7 and U 3O 8 below ˜700 K and individual fragments to U 3O 8 via UO 2+ x and/or U 4O 9 above ˜1200 K. Between about 700 and 1200 K, empirical oxidation rates slowly decline as the U 3O 8 product becomes coarser-grained and more coherent, and fragment-scale processes become important. A more mechanistic approach to high-temperature oxidation addresses questions of oxygen supply, surface reaction kinetics, thermodynamic properties, and solid-state oxygen diffusion. Experimental data are scarce, however, especially at low oxygen partial pressures and high temperatures.

  16. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO{sub 3} electrolyte on porous anodic aluminum oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seungbum [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Su, Pei-Chen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Cha, Suk Won, E-mail: swcha@snu.ac.kr [School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of)

    2013-10-01

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm{sup 2} at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C.

  17. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    International Nuclear Information System (INIS)

    Saievar-Iranizad, E.; Malekifar, A.

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO 2 ). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cell, a mathematical model had been considered in this article. This model simulates and illustrates the interaction, diffusion and oxygen ions exchange into fuel cell. The electrical power of fuel cell due to the ion exchange can be obtained using a simulation method. The ion exchange simulation, diffusion of molecules, their interactions and system development through the mathematical model has been discussed in this paper

  18. Investigation of the fuel temperature evaluation method at BOL

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Asaga, Takeo; Nemoto, Junichi

    1999-06-01

    It is one of the major subjects in the improvement of the design method for determining the thermal conditions of the solid type Mixed - Oxide (MOX) fuels in FBR to evaluate the fuel temperature at BOL as precisely as possible. Therefore, we have planned to modify the fuel temperature evaluation method 'FEVER', which was developed by JNC in 1988, as one of the investigation for the establishment of the precise fuel temperature evaluation method. And, we also have planned to use the modified FEVER, named FEVER-M', for estimation of the irradiation conditions of the PTM test in Joyo, called 'B10 test', planning to perform in 2000. In this work, the following results were obtained; 1) As a result of the modification, the uncertainty in the fuel temperature evaluation of 'FEVER-M' is reduced to about ±60 K. 2) Estimating the irradiation conditions of 'B10' test using the method 'FEVER-M', it is found that the appropriate maximum linear heat rate for the test is 620 W/cm. The detail plans of the 'B10' test were also determined based on the results. 3) Based on the results of this work, it is found that one of the effective procedure for the improvement of the accuracy of the fuel temperature evaluation method seems to calculate the fuel temperature taking the pellet relocation phenomena into account. In future, although there are a lot of matters to be discussed in this phenomena, the design method for the thermal conditions of the MOX fuels in FBR should be performed with taking the pellet relocation phenomena into account. (author)

  19. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Rho, Gyu Hong; Park, Joo Hwan

    2009-10-01

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  20. High temperature compression tests performed on doped fuels

    International Nuclear Information System (INIS)

    Duguay, C.; Mocellin, A.; Dehaudt, P.; Fantozzi, G.

    1997-01-01

    The use of additives of corundum structure M 2 O 3 (M=Cr, Al) is an effective way of promoting grain growth of uranium dioxide. The high-temperature compressive deformation of large-grained UO 2 doped with these oxides has been investigated and compared with that of pure UO 2 with a standard microstructure. Such doped fuels are expected to exhibit enhanced plasticity. Their use would therefore reduce the pellet-cladding mechanical interaction and thus improve the performances of the nuclear fuel. (orig.)

  1. Irradiation behavior of uranium oxide - Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Rest, Jeffrey; Snelgrove, James L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products and as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show that, with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 g U/cm 3 ) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼63% 235 U burnup). (author)

  2. Irradiation behavior of uranium oxide-aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products, as well as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show, that with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 gm/cc) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼ 63% 235 U burnup)

  3. Simulations of the Thermodynamic and Diffusion Properties of Actinide Oxide Fuel Materials

    International Nuclear Information System (INIS)

    Becker, Udo

    2013-01-01

    Spent nuclear fuel from commercial reactors is comprised of 95-99 percent UO 2 and 1-5 percent fission products and transuranic elements. Certain actinides and fission products are of particular interest in terms of fuel stability, which affects reprocessing and waste materials. The transuranics found in spent nuclear fuels are Np, Pu, Am, and Cm, some of which have long half- lives (e.g., 2.1 million years for 237 Np). These actinides can be separated and recycled into new fuel matrices, thereby reducing the nuclear waste inventory. Oxides of these actinides are isostructural with UO 2 , and are expected to form solid solutions. This project will use computational techniques to conduct a comprehensive study on thermodynamic properties of actinide-oxide solid solutions. The goals of this project are to: Determine the temperature-dependent mixing properties of actinide-oxide fuels; Validate computational methods by comparing results with experimental results; Expand research scope to complex (ternary and quaternary) mixed actinide oxide fuels. After deriving phase diagrams and the stability of solid solutions as a function of temperature and pressure, the project team will determine whether potential phase separations or ordered phases can actually occur by studying diffusion of cations and the kinetics of potential phase separations or ordered phases. In addition, the team will investigate the diffusion of fission product gases that can also have a significant influence on fuel stability. Once the system has been established for binary solid solutions of Th, U, Np, and Pu oxides, the methodology can be quickly applied to new compositions that apply to ternaries and quaternaries, higher actinides (Am, Cm), burnable poisons (B, Gd, Hf), and fission products (Cs, Sr, Tc) to improve reactivity

  4. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  5. Effects of fuel properties, temperature, and pressure on fuel reactivity, formation and destruction of nitrogen oxides, and release of alkalis

    International Nuclear Information System (INIS)

    Aho, M.

    1998-01-01

    This study assists in the development of advanced combustion technologies (PFBC, IGCC) with high efficiency of electricity production from solid fuels (η = 47 - 50%) and in minimizing emissions of nitrogen oxides in atmospheric and pressurised FB combustion. In addition to the work done within the LIEKKI 2 programme, research work has been carried out inside the Joule 2 programme of EU. The research work may be divided into three parts: (1) Study of N x O y formation and destruction, (2) Study of fuel reactivity at elevated pressures, and (3) Study on alkali release from different coals. Experimental work was carried out utilizing a novel pressurized entrained flow reactor (PEFR) completed in VTT Energy in the autumn 1992. The device was unique in the world between 1992 and 1995. The effects of fuel properties on the formation of N 2 O and NO at conditions typical to FB combustion were studied for a large number of fuels including different coals, coal-derived char, peat, and bark. This work started before 1993 and was completed in 1995. FTIR technology was utilized for on-line gas analysis of N 2 O, NO, and NO 2 . The ratio fuel-O/fuel-N was found to be the most important fuel factor determining the formation of N 2 O and NO from volatile fuel-N. Only a small part of N 2 O is formed from char-N. The effect of pressure (0.2 - 2.0 MPa) on the formation of N 2 O, NO, and NO 2 , and destruction of NO with ammonia (Thermal DeNO x , experiments at 0.2, 0.5, and 1.5 MPa) and urea (NO x Out, experiments at 0.5 MPa) were studied in cooperation with Aabo Akademi University (AaAU). VTT performed the experimental work and AaAU the kinetic modelling. A part of these results are presented in the report by AaAU. Increase of pressure decreases NO formation and increases NO 2 formation. The behaviour of N 2 O is more complex. Both destruction processes for NO seem to operate well at elevated pressure, although clear effects of pressure on the temperature window of Thermal DeNO x

  6. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    International Nuclear Information System (INIS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-01-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO_2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  7. Fuel-cycle cost comparisons with oxide and silicide fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1982-01-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed

  8. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  9. A combined SEM and CV Study of Solid Oxide Fuel Cell Interconnect Steels

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Ofoegbu, Stanley; Mikkelsen, Lars

    2012-01-01

    Scanning electron microscopy and cyclic voltammetry were used to investigate the high temperature oxidation behavior of two solid oxide fuel cell interconnect steels. One alloy had a low content of manganese; the other alloy had a high content of manganese. Four reduction and four oxidation peaks...

  10. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  11. Measurements on high temperature fuel cells with carbon monoxide-containing fuel gases; Messungen an Hochtemperatur-Brennstoffzellen mit kohlenmonoxidhaltigen Brenngasen

    Energy Technology Data Exchange (ETDEWEB)

    Apfel, Holger

    2012-10-10

    In the present work the different power density of anode-supported high-temperature solid oxide fuel cells (ASC-SOFCs) were examined for carbon monoxide-containing fuels. In addition to wet hydrogen / carbon monoxide mixtures the cells were run with synthetic gas mixtures resembling the products of an autothermal reformer, and actual reformate generated by a 2 kW autothermal reformer. It was found that the power-voltage characteristics of an ASC depends primarily on the open circuit voltages of different gas mixtures, but is nearly independent of the hydrogen concentration of the fuel, although the reaction rates of other potential fuels within the gas mixture, namely carbon monoxide and methane, are much lower that the hydrogen reaction rate. The probable reason is that the main fuel for the electrochemical oxidation within the cell is hydrogen, while the nickel in the base layer of the anode acts as a reformer which replenishes the hydrogen by water reduction via carbon monoxide and methane oxidation.

  12. Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas

    International Nuclear Information System (INIS)

    De Lorenzo, G.; Corigliano, O.; Lo Faro, M.; Frontera, P.; Antonucci, P.; Zignani, S.C.; Trocino, S.; Mirandola, F.A.; Aricò, A.S.; Fragiacomo, P.

    2016-01-01

    Highlights: • Numerical Model (NM) of SOFC Cogenerative System (SCS) fed by dry biogas is set up. • NM simulates new Ni-Fe/CGO protective layer for direct CH_4 consumption at the anode. • NM simulates the anode carbonation phenomenon and is experimentally validated. • The performance parameters trends of SCS fed by three types of dry biogas are shown. • SEM images after 40 h of operation show that there is no anode carbon deposition. - Abstract: A properly manufactured intermediate temperature Solid Oxide Fuel Cell (SOFC) can be directly fed by dry biogas, considering also the electrochemical partial and total oxidation reactions of methane in the biogas at the anode. In this way the methane in the biogas is electrochemically consumed directly at the fuel cell without the need to mix the biogas with any reforming gas (steam, oxygen or carbon dioxide). In this article, a numerical model of an SOFC system with Ni-Fe/CGO electrocatalyst anode protective layer directly fed by dry biogas, in cogenerative arrangement and with anode exhaust gas recirculation is formulated. The influences of biogas composition, of fuel cell operating current density and of percentage of recirculated anode exhaust gas on the SOFC system performances were evaluated by calculation code. An SOFC test bench was set up to validate the calculation code results experimentally. Furthermore, the numerical model also considers the anode carbonation and evaluates the amount of carbon that can be formed in the anode at chemical equilibrium and quasi-equilibrium conditions associated with the specific anode protective layer used.

  13. High temperature compression tests performed on doped fuels

    Energy Technology Data Exchange (ETDEWEB)

    Duguay, C.; Mocellin, A.; Dehaudt, P. [Commissariat a l`Energie Atomique, CEA Grenoble (France); Fantozzi, G. [INSA Lyon - GEMPPM, Villeurbanne (France)

    1997-12-31

    The use of additives of corundum structure M{sub 2}O{sub 3} (M=Cr, Al) is an effective way of promoting grain growth of uranium dioxide. The high-temperature compressive deformation of large-grained UO{sub 2} doped with these oxides has been investigated and compared with that of pure UO{sub 2} with a standard microstructure. Such doped fuels are expected to exhibit enhanced plasticity. Their use would therefore reduce the pellet-cladding mechanical interaction and thus improve the performances of the nuclear fuel. (orig.) 5 refs.

  14. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  15. Solid Oxide Fuel Cell Systems PVL Line

    International Nuclear Information System (INIS)

    Shearer, Susan; Rush, Gregory

    2012-01-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  16. Oxide fuel pin transient performance analysis and design with the TEMECH code

    International Nuclear Information System (INIS)

    Bard, F.E.; Dutt, S.P.; Hinman, C.A.; Hunter, C.W.; Pitner, A.L.

    1986-01-01

    The TEMECH code is a fast-running, thermal-mechanical-hydraulic, analytical program used to evaluate the transient performance of LMR oxide fuel pins. The code calculates pin deformation and failure probability due to fuel-cladding differential thermal expansion, expansion of fuel upon melting, and fission gas pressurization. The mechanistic fuel model in the code accounts for fuel cracking, crack closure, porosity decrease, and the temperature dependence of fuel creep through the course of the transient. Modeling emphasis has been placed on results obtained from Fuel Cladding Transient Test (FCTT) testing, Transient Fuel Deformation (TFD) tests and TREAT integral fuel pin experiments

  17. Process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide

    International Nuclear Information System (INIS)

    Heremanns, R.H.; Vandersteene, J.J.

    1983-01-01

    The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more and more. The plants which prepare these mixed fuels have around 5% of the total mass of fuels as fabrication residue, either as waste or scrap. In view of the high cost of plutonium, it has been attempted to recover this plutonium from the fabrication residues by a process having a purchase price lower than the price of plutonium. The problem is essentially to separate the plutonium, the uranium and the impurities. The residues are fluorinated, the UF 6 and PuF 6 obtained are separated by selective absorption of the PuF 6 on NaF at a temperature of at least 400 0 C, the complex obtained by this absorption is dissolved in nitric acid solution, the plutonium is precipitated in the form of plutonium oxalate by adding oxalic acid, and the precipitated plutonium oxalate is calcined

  18. Grain and burnup dependence of spent fuel oxidation: geological repository impact

    International Nuclear Information System (INIS)

    Hanson, B. D.; Kansa, E. J.; Stoot, R.B.

    1998-01-01

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate in addition to an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent fuel samples oxidized in Thermogravimetric Analysis (TGA) or Oven Dry-Bath (ODB) experiments. The comparison between the experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U 4 O 9 (rightwards arrow)U 3 O 4 . Model results predict that U 3 O 8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficient

  19. Solid Oxide Fuel Cell Experimental Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Solid Oxide Fuel Cell Experimental Laboratory in Morgantown, WV, gives researchers access to models and simulations that predict how solid oxide fuel cells...

  20. Uranium dioxide and beryllium oxide enhanced thermal conductivity nuclear fuel development

    International Nuclear Information System (INIS)

    Andrade, Antonio Santos; Ferreira, Ricardo Alberto Neto

    2007-01-01

    The uranium dioxide is the most used substance as nuclear reactor fuel for presenting many advantages such as: high stability even when it is in contact with water in high temperatures, high fusion point, and high capacity to retain fission products. The conventional fuel is made with ceramic sintered pellets of uranium dioxide stacked inside fuel rods, and presents disadvantages because its low thermal conductivity causes large and dangerous temperature gradients. Besides, the thermal conductivity decreases further as the fuel burns, what limits a pellet operational lifetime. This research developed a new kind of fuel pellets fabricated with uranium dioxide kernels and beryllium oxide filling the empty spaces between them. This fuel has a great advantage because of its higher thermal conductivity in relation to the conventional fuel. Pellets of this kind were produced, and had their thermophysical properties measured by the flash laser method, to compare with the thermal conductivity of the conventional uranium dioxide nuclear fuel. (author) (author)

  1. Grain size and burnup dependence of spent fuel oxidation: Geological repository impact

    International Nuclear Information System (INIS)

    Kansa, E.J.; Hanson, B.D.; Stout, R.B.

    1999-01-01

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate and an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent-fuel samples oxidized in thermogravimetric analysis (TGA) or oven dry-bath (ODB) experiments. The experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U 4 O 9 r↓U 3 O 8 . Model results predict that U 3 O 8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficiently low

  2. Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.

    Science.gov (United States)

    Yu, Chen-Chiang; Baek, Jong Dae; Su, Chun-Hao; Fan, Liangdong; Wei, Jun; Liao, Ying-Chih; Su, Pei-Chen

    2016-04-27

    In this work we report a porous silver thin film cathode that was fabricated by a simple inkjet printing process for low-temperature solid oxide fuel cell applications. The electrochemical performance of the inkjet-printed silver cathode was studied at 300-450 °C and was compared with that of silver cathodes that were fabricated by the typical sputtering method. Inkjet-printed silver cathodes showed lower electrochemical impedance due to their porous structure, which facilitated oxygen gaseous diffusion and oxygen surface adsorption-dissociation reactions. A typical sputtered nanoporous silver cathode became essentially dense after the operation and showed high impedance due to a lack of oxygen supply. The results of long-term fuel cell operation show that the cell with an inkjet-printed cathode had a more stable current output for more than 45 h at 400 °C. A porous silver cathode is required for high fuel cell performance, and the simple inkjet printing technique offers an alternative method of fabrication for such a desirable porous structure with the required thermal-morphological stability.

  3. High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bokach, D.; Fuente, J.L.G. de la; Tsypkin, M.; Ochal, P.; Tunold, R.; Sunde, S.; Seland, F. [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Sem Saelands veg 12, N-7491 Trondheim (Norway); Endsjoe, I.C. [Washington Mills AS, NO-7300 Orkanger (Norway)

    2011-12-15

    The electrooxidation of methanol was studied at elevated temperature and pressure by cyclic voltammetry and constant potential experiments at real fuel cell electrocatalysts. Ruthenium core and platinum shell nanoparticles were synthesized by a sequential polyol route, and characterized electrochemically by CO stripping at room temperature to quickly confirm the structure of the synthesized core-shell structure as compared to pure commercial Pt/C and Pt-Ru/C alloy catalysts. A significant promotional effect of Pt decorated Ru cores in the methanol oxidation was found at elevated temperatures and rather high-electrode potentials. A negative potential shift of the methanol oxidation peak is observed for the Ru rate at Pt/C core-shell catalyst at moderate temperatures, while a significant shift to positive potentials of the methanol oxidation peak occurs for Pt/C catalysts. The onset potential for methanol oxidation is lowered some 200 mV from room temperature and up to 120 C for all electrocatalysts, indicating that it is the thermal activity of water adsorption that dictates the onset potential. Direct methanol fuel cell experiments showed only small performance differences between Ru rate at Pt/C and Pt/C anode electrocatalysts, suggesting the necessity of render possible the formation of surface oxygen species at lower electrode potentials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Thermal performance of fresh mixed-oxide fuel in a fast flux LMR [liquid metal reactor

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, R.B.

    1985-01-01

    A test was designed and irradiated to provide power-to-melt (heat generation rate necessary to initiate centerline fuel melting) data for fresh mixed-oxide UO 2 -PuO 2 fuel irradiated in a fast neutron flux under prototypic liquid metal reactor (LMR) conditions. The fuel pin parameters were selected to envelope allowable fabrication ranges and address mass production of LMR fuel using sintered-to-size techniques. The test included fuel pins with variations in fabrication technique, pellet density, fuel-to-cladding gap, Pu concentration, and fuel oxygen-to-metal ratios. The resulting data base has reestablished the expected power-to-melt in mixed-oxide fuels during initial reactor startup when the fuel temperatures are expected to be the highest. Calibration of heat transfer models of fuel pin performance codes with these data are providing more accurate capability for predicting steady-state thermal behavior of current and future mixed-oxide LMR fuels

  5. Oxidation of zircaloy-2 in high temperature steam

    International Nuclear Information System (INIS)

    Ikeda, Seiichi; Ito, Goro; Ohashi, Shigeo

    1975-01-01

    Oxidation tests were conducted for zircaloy-2 in steam at temperature ranging from 900 to 1300 0 C to clarify its oxidation kinetics as a nuclear fuel cladding materials in case of a loss-of-coolant accident. The influence of maximum temperature and heating rate of the specimen on its oxidation rate in steam was investigated. The changes in mechanical properties of the specimens after oxidation tests are also studied. The results obtained were summarized as follows: (1) The weight of the specimen after oxidation in steam increased two times as the time required to reach the maximum temperature increased from 1 to 10 mins. (2) The kinetics of oxidation of zircaloy-2 in steam were not affected by the difference in the surface condition before test such as chemical polishing or pre-oxidation in steam. (3) The dominant growth of oxide film on the surface of zircaloy-2 was observed at the initial stage of oxidation in steam. However, the thickness of oxygen-rich solid solution layer under the film increased gradually with the progress of oxidation and the ratio of oxygen in oxide to that in solid solution has a constant value of 8:2. (4) The breakaway took place only in the specimen subjected to 900 0 C repeated heating. This penomenon was caused by the local growth of the oxide below a crack of the oxide film resulting from the reheating of the specimen. (5) The results of bending tests showed that the deflection until fracture of the specimen was smaller for the one heated at a higher temperature even if the weight increase was of the same order of magnitude for both specimens. (6) It was concluded that the ductility of zircaloy-2 decreased remarkably at a heating temperature in excess of 1100 0 C for more than 5 min. (auth.)

  6. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  7. Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data

    Science.gov (United States)

    Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari

    2015-03-01

    Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.

  8. Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling

    International Nuclear Information System (INIS)

    Higgs, J.

    2005-01-01

    The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)

  9. A Prediction Study of Aluminum Alloy Oxidation of the Fuel Cladding in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y. W.; Oh, J. Y.; Lee, B. H.; Seo, C. G.; Chae, H. T.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    U{sub 3}Si{sub 2}-Al dispersion fuel with Al cladding will be used for Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding experiences the oxidation layer growth on the surface during the reactor operation. The formation of oxides on the cladding affects fuel performance by increasing fuel temperature. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, a fresh fuel is discharged after 900 effective full power days (EFPD) with 18 cycles of 50 days loading. For the proper prediction of the aluminum oxide thickness of fuel cladding during the long residence time, a reliable model is needed. In this work, several oxide thickness prediction models are compared with the measured data from in-pile test by RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model are performed for JRTR fuel

  10. Thermal analysis of thermo-gravimetric measurements of spent nuclear fuel oxidation rates

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1997-01-01

    A detailed thermal analysis was completed of the sample temperatures in the Thermo-Gravimetric Analysis (TGA) system used to measure irradiated N Reactor fuel oxidation rates. Sample temperatures during the oxidation process did not show the increase which was postulated as a result of the exothermic reactions. The analysis shows the axial conduction of heat in the sample holder effectively removes the added heat and only a very small, i.e., <10 C, increase in temperature is calculated. A room temperature evaporation test with water showed the sample thermocouple sensitivity to be more than adequate to account for a temperature change of approximately 5 C. Therefore, measured temperatures in the TGA are within approximately 10 C of the actual sample temperatures and no adjustments to reported data to account for the heat input from the oxidation process are necessary

  11. A review of the oxidation of uranium dioxide at temperatures below 400oC

    International Nuclear Information System (INIS)

    McEachern, R.J.; Taylor, P.

    1997-01-01

    A critical review of the extensive literature on the air oxidation Of U0 2 at temperatures below 400 o C is presented. The key parameters that affect the rate Of U0 2 oxidation are examined systematically, and their importance to the reaction rate is evaluated. The formation of U 30 7/U 4 0 9 on unirradiated U0 2 powders follows the discrete-layer mechanism and displays diffusion-controlled kinetics. In contrast, U 3 0 8 formation on unirradiated U0 2 displays sigmoidal 'nucleation-and-growth' kinetics. Low-temperature oxidation of used fuel tends to proceed by rapid grain-boundary oxidation followed by simultaneous intragranular oxidation throughout the sample. The activation energy for the formation Of U 3 0 7 /U 4 0 9 is 96 kJ mol -1 for U0 2 powders, 99 kJ mol -1 for sintered pellets and 106 kJ mol -1 for used fuel. The activation energy for the formation Of U 3 0 8 is temperature dependent. The best estimate of the activation energy below ∼325 o C is 154 kJ mol -1 , but all the kinetic data incorporate substantial approximations so that further study is required to properly predict the behaviour of used fuel under low-temperature ( o C) dry-air storage conditions, based on high-temperature (200 to 350 o C) laboratory data. (author). 204 refs., 5 tabs., 4 figs

  12. Emission of nitrous oxide during combustion of organic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Gol' dberg, A.S.

    1990-11-01

    Analyzes formation of nitrogen oxides during combustion of coal, natural gas and mazout: chemical reactions that lead to formation of nitrous oxide during coal combustion, reaction kinetics and reaction yields, factors that influence emission of nitrogen oxides from a furnace, factors that influence formation of nitrous oxide (temperature effects, air excess ratio, coal burnout degree, etc.), effects of fuel type and its chemical composition, effects of flue gas desulfurization and denitrification methods on nitrous oxide yield. Analyses show that yield of nitrous oxide is low and does not exceed 5 cm{sup 3}/m{sup 3} flue gas (0.0005%). However chemical reactions of nitrogen oxides, sulfur dioxide and water vapor in the atmosphere are said to form additional quantities of nitrous oxide which negatively influence the ozone layer. 4 refs.

  13. Low temperature oxidation, co-oxidation and auto-ignition of olefinic and aromatic blending compounds: Experimental study of interactions during the oxidation of a surrogate fuel; Oxydation, co-oxydation et auto-inflammation a basses temperatures d'alcenes et aromatiques types: etude experimentale des interactions au sein d'un carburant-modele

    Energy Technology Data Exchange (ETDEWEB)

    Vanhove, G.

    2004-12-15

    The low-temperature (600-900 K) and high-pressure (5-25 bar) oxidation and auto-ignition of the three position isomers of hexene, of binary mixtures of 1-hexene, toluene and iso-octane, and of a surrogate fuel composed of these three compounds were studied in motor conditions using a rapid compression machine. Auto-ignition delay times were measured as long as intermediate products concentrations during the delay. The results show that the oxidation chemistry of the hexenes is very dependent on the position of the double bond inside the molecule, and that strong interactions between the oxidation mechanisms of hydrocarbons in mixtures can occur. The data obtained concerning the surrogate fuel give a good insight into the behaviour of a practical gasoline after an homogeneous charge compression. (author)

  14. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation

    International Nuclear Information System (INIS)

    Lima, D.B.P.L. de; Florio, D.Z. de; Bezerra, M.E.O.

    2016-01-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  15. Calculation of oxygen distribution in uranium-plutonium oxide fuels during irradiation (programme CODIF)

    International Nuclear Information System (INIS)

    Moreno, A.; Sari, C.

    1978-01-01

    Radial gradients of oxygen to metal ratio, O/M, in uranium-plutonium oxide fuel pins, during irradiation and at the end of life, have been calculated on the basis of solid-state thermal diffusion using measured values of the heat of transport. A detailed computer model which includes the calculation of temperature profiles and the variation of the average O/M ratio as a function of burn-up is given. Calculations show that oxygen profiles are affected by the isotopic composition of the fuel, by the temperature profiles and by fuel-cladding interactions

  16. The miscibility and oxidation study of the simulated metallic spent fuel for the development of an advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. J.; You, G. S.; Ju, J. S.; Lee, E. P.; Seo, H. S.; Ahn, S. B. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    1999-03-01

    The simulated metallic spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the immiscibility of the some elements with metal uranium. 2 refs., 45 figs. (Author)

  17. Thermal imaging of solid oxide fuel cell anode processes

    Energy Technology Data Exchange (ETDEWEB)

    Pomfret, Michael B.; Kidwell, David A.; Owrutsky, Jeffrey C. [Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Steinhurst, Daniel A. [Nova Research Inc., Alexandria, VA 22308 (United States)

    2010-01-01

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H{sub 2} and carbon deposition lead to the fragment cooling by 5 {+-} 2 C and 16 {+-} 1 C, respectively. When air is flowed over the fragments, the temperature rises 24 {+-} 1 C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 {+-} 0.1 C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a {delta}T of +2.2 {+-} 0.2 C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial ({proportional_to}0.1 mm) and temperature ({proportional_to}0.1 C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. (author)

  18. Thermal imaging of solid oxide fuel cell anode processes

    Science.gov (United States)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  19. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    Science.gov (United States)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  20. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  1. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allan J. Jacobson

    2006-09-30

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. The initial choices for study were perovskite oxides based on substituted LaFeO{sub 3} (P1 compositions), where significant data in single cell tests exist at PNNL for example, for La{sub 0.8}Sr{sub 0.2}FeO{sub 3} cathodes on both YSZ and CSO/YSZ. The materials selection was then extended to La{sub 2}NiO{sub 4} compositions (K1 compositions), and then in a longer range task we evaluated the possibility of completely unexplored group of materials that are also perovskite related, the ABM{sub 2}O{sub 5+{delta}}. A key component of the research strategy was to evaluate for each cathode material composition, the key performance parameters, including ionic and electronic conductivity, surface exchange rates, stability with respect to the specific electrolyte choice, and thermal expansion coefficients. In the initial phase, we did this in parallel with

  2. Transient survivability of LMR oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, E.T.; Pitner, A.L.; Bard, F.E.; Culley, G.E.; Hunter, C.W.

    1986-01-01

    Fuel pin integrity during transient events must be assessed for both the core design and safety analysis phases of a reactor project. A significant increase in the experience related to limits of integrity for oxide fuel pins in transient overpower events has been realized from testing of fuel pins irradiated in FFTF and PFR. Fourteen FFTF irradiated fuel pins were tested in TREAT, representing a range of burnups, overpower ramp rates and maximum overpower conditions. Results of these tests along with similar testing in the PFR/TREAT program, provide a demonstration of significant safety margins for oxide fuel pins. Useful information applied in analytical extrapolation of fuel pin test data have been developed from laboratory transient tests on irradiated fuel cladding (FCTT) and on unirradiated fuel pellet deformation. These refinements in oxide fuel transient performance are being applied in assessment of transient capabilities of long lifetime fuel designs using ferritic cladding

  3. Predicting spent fuel oxidation states in a tuff repository

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1987-01-01

    Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the tuffaceous rocks at Yucca Mountain as a waste repository for spent fuel disposal. The oxidation state of the LWR spent fuel in the moist air environment of a tuff repository could be a significant factor in determining its leaching and dissolution characteristics. Predictions as to which oxidation states would be present are important in analyzing such a repository and thus the present study was undertaken. A set of TGA (thermogravimetric analysis) tests were conducted on well-controlled samples of irradiated PWR fuel with time and temperature as the only variables. The tests were conducted between 140 and 225 0 C for a duration up to 2200 hours. The weight gain curves were analyzed in terms of diffusion through a layer of U 3 O 7 , diffusion into the grains to form a solid solution, a simplified empirical representation of a combination of grain boundary diffusion and bulk grain oxidation. Reaction rate constants were determined in each case, but analysis of these data could not establish a definitive mechanism. 21 refs., 10 figs., 3 tabs

  4. Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells.

    Science.gov (United States)

    García, Gonzalo; Koper, Marc T M

    2011-08-01

    Herein the general concepts of fuel cells are discussed, with special attention to low temperature fuel cells working in alkaline media. Alkaline low temperature fuel cells could well be one of the energy sources in the next future. This technology has the potential to provide power to portable devices, transportation and stationary sectors. With the aim to solve the principal catalytic problems at the anode of low temperature fuel cells, a fundamental study of the mechanism and kinetics of carbon monoxide as well as water dissociation on stepped platinum surfaces in alkaline medium is discussed and compared with those in acidic media. Furthermore, cations involved as promoters for catalytic surface reactions are also considered. Therefore, the aim of the present work is not only to provide the new fundamental advances in the electrocatalysis field, but also to understand the reactions occurring at fuel cell catalysts, which may help to improve the fabrication of novel electrodes in order to enhance the performance and to decrease the cost of low temperature fuel cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    Science.gov (United States)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a

  6. Irradiation of mixed UO2-PuO2 oxide samples for fast neutron reactor fuel elements

    International Nuclear Information System (INIS)

    Mikailoff, H.; Mustelier, J.; Bloch, J.; Conte, M.; Hayet, L.; Lauthier, J.C.; Leclere, J.

    1968-01-01

    Thermal flux irradiation testings of small mixed oxide pellets UPuO 2 fuel elements were performed in support of the fuel reference design for the Phenix fast reactor. The effects of different parameters (stoichiometry, pellet density, pellet clad gap). on the behaviour of the oxide (temperature distribution, microstructural changes, fission gas release) were investigated in various irradiation conditions. In particular, the effect of fuel density decrease and power rate increase on thermal performances were determined on short term irradiations of porous fuels. (authors) [fr

  7. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available High temperature proton conductor (HTPC oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs operating at intermediate temperatures (400–700 °C. The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  8. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    International Nuclear Information System (INIS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 0 C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. (topical review)

  9. Temperature estimates from the zircaloy oxidation kinetics in the α plus β phase region

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near thermocouple locations

  10. Temperature estimates from the Zircaloy oxidation kinetics in the α plus β phase region

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of Zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of Zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near the thermocouple locations

  11. Fuel cycle cost comparisons with oxide and silicide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [RERTR Program, Argonne National Laboratory (United States)

    1983-09-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. The status of the development and demonstration of the oxide and silicide fuels are presented in several papers in these proceedings. Routine utilization of these fuels with the uranium densities considered here requires that they are successfully demonstrated and licensed. Thermal-hydraulic safety margins, shutdown margins, mixed cores, and transient analyses are not addressed here, but analyses of these safety issues are in progress for a limited number of the most promising design options. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data is presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed. All safety criteria for the reactor with these fuel element designs need to be satisfied as well. With LEU oxide fuel, 31 g U/cm{sup 3} 1 and 0.76 mm--thick fuel meat, elements with 18-22 plates 320-391 g {sup 235}U) result in the same or lower total costs than with the HEU element 23 plates, 280 g {sup 235}U). Higher LEU loadings (more plates per element) are needed for larger excess reactivity requirements. However, there is little cost advantage to using more than 20 of these plates per element. Increasing the fuel meat thickness from 0.76 mm to 1.0 mm with 3.1 g U/cm{sup 3} in the design with 20 plates per element could result in significant cost reductions if the

  12. AlliedSignal solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K. [AlliedSignal Aerospace Equipment Systems, Torrance, CA (United States)

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  13. Advances in medium and high temperature solid oxide fuel cell technology

    CERN Document Server

    Salvatore, Aricò

    2017-01-01

    In this book well-known experts highlight cutting-edge research priorities and discuss the state of the art in the field of solid oxide fuel cells giving an update on specific subjects such as protonic conductors, interconnects, electrocatalytic and catalytic processes and modelling approaches. Fundamentals and advances in this field are illustrated to help young researchers address issues in the characterization of materials and in the analysis of processes, not often tackled in scholarly books.

  14. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-01-01

    This paper focuses on the use and potential of oxide fuel systems for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Examples are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  15. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-04-01

    This paper focuses on the use and potential of oxide fuel system for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Exampled are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  16. Internal fuel pin oxidizer

    International Nuclear Information System (INIS)

    Andrews, M.G.

    1978-01-01

    A nuclear fuel pin has positioned within it material which will decompose to release an oxidizing agent which will react with the cladding of the pin and form a protective oxide film on the internal surface of the cladding

  17. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  18. Evaluation of the Optimum Composition of Low-Temperature Fuel Cell Electrocatalysts for Methanol Oxidation by Combinatorial Screening.

    Science.gov (United States)

    Antolini, Ermete

    2017-02-13

    Combinatorial chemistry and high-throughput screening represent an innovative and rapid tool to prepare and evaluate a large number of new materials, saving time and expense for research and development. Considering that the activity and selectivity of catalysts depend on complex kinetic phenomena, making their development largely empirical in practice, they are prime candidates for combinatorial discovery and optimization. This review presents an overview of recent results of combinatorial screening of low-temperature fuel cell electrocatalysts for methanol oxidation. Optimum catalyst compositions obtained by combinatorial screening were compared with those of bulk catalysts, and the effect of the library geometry on the screening of catalyst composition is highlighted.

  19. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  20. UK experience on fuel and cladding interaction in oxide fuels

    International Nuclear Information System (INIS)

    Batey, W.; Findlay, J.R.

    1977-01-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed

  1. A novel H2S/H2O2 fuel cell operating at the room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, Ayse Elif [Gazi University (Turkey)], email: aecsanli@gmail.com; Aytac, Aylin [Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar (Turkey)], email: aytaca@gazi.edu.tr

    2011-07-01

    This study concerns the oxidation mechanism of hydrogen sulfide and a fuel cell; acidic peroxide is used as the oxidant and basic hydrogen sulfide is the fuel. A solid state H2S/H2O2 stable fuel cell was produced at room temperature. A cell potential of 0.85 V was reached; this is quite remarkable in comparison to the H2S/O2 fuel cell potential of 0.85 V obtained at 850-1000 degree celsius. The hydrogen sulfide goes through an oxidation reaction in the alkaline fuel cell (H2S/H2O2 fuel cell) which opens up the possibility of using the cheaper nickel as a catalyst. As a result, the fuel cell becomes a potentially low cost technology. A further benefit from using H2S as the alkaline liquid H2S/H2O2 fuel cell, is that sulfide ions are oxidized at the anode, releasing electrons. Sulfur produced reacts with the other sulfide ions and forms disulfide and polysulfide ions in basic electrolytes (such as Black Sea water).

  2. Fast reactors with axial arrangement of oxide and metal fuels in the core

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Ilyunin, V.G.; Matveev, V.I.; Murogov, V.M.; Proshkin, A.A.; Rudneva, V.Ya.; Shmelev, A.N.

    1980-01-01

    Problems of using metal fuel in fast reactor (FR) core are discussed Results are given of the calculation of two-dimentional (R-Z) FR version having a composed core with the combined usage of oxide and metal fuels having parameters close to optimal from the point of view of fuel breeding rate, an oxide subzone having increased enrichment and a decreased proper conversion ratio. A reactor is considered where metallic fuel elements are placed from the side of ''cold'' coolant inlet (400-480 deg C), and oxide fuel elements - in the region where the coolant has a higher temperature (500-560 deg C). It is shown that the new fuel breeding rate in such a reactor can be increased by 20-30% as compared with an oxide fuel reactor. Growth of the total conversion ratio is mainly stipulated with the increase of the inner conversion ratio of the core (CRC) which is important not only from the point of view of nuclear fuel breeding rate but also the optimization of the mode of powerful fast reactor operation with provision for the change in reactivity in the process of its continuous operation. The fact, that the core version under investigation has a CRC value slightly exceeding unit, stipulates considerably less reactivity change as compared with the oxide version in the process of the reactor operation and permits at a constant reactor control system power to significantly increase the time between reloadings and, therefore, to increase the NPP load factor which is of great importance both from the point of view of economy and the improvement of operation conditions as well as of reactor operation reliability. It is concluded on the base of the analysis of the results obtained that FRs with the combined usage of oxide and metal fuels having an increased specific load and increased conversion ratio as compared with the oxide fuel FRs provide a higher rate of development of the whole nuclear power balanced with respect to the fuel [ru

  3. An initial applications study of ceria-gadolinia solid oxide fuel cells: V. 1

    Energy Technology Data Exchange (ETDEWEB)

    Bauen, A.; Hart, D.; Mould, B.

    1998-11-01

    Fuel cells are categorised by their electrolytes, and the solid oxide fuel cell is so called because its electrolyte consists of a solid ceramic oxide. Commonly this has been a form of zirconia, though other materials are now being considered for their different electrical properties. One of these, ceria doped with gadolinia, shows promise for use in lower temperature regimes than zirconia, and may open up different areas of a future market for consideration. This report considers the opportunities for ceria-gadolinia solid oxide fuel cell systems by comparing them with the application requirements in markets where fuel cells may have potential. The advantages and disadvantages of the technology are analysed, together with the state of the art in research and development. The direction in which research effort needs to move to address some of the issues is assessed. The report then draws conclusions regarding the potential of ceria-gadolinia in solid oxide fuel cell systems and in the energy markets as a whole. It should be noted that while this report is an applications study, some technology assessment has been included. Much of this is found in Volume 2. (author)

  4. Stability of solid oxide fuel cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Bates, J.L.; Coffey, G.W.; Pederson, L.R. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1996-08-01

    Chromite interconnection materials in an SOFC are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. Because such conditions could lead to component failure, the authors have evaluated thermal, electrical, chemical, and structural stabilities of these materials as a function of temperature and oxygen partial pressure. The crystal lattice of the chromites was shown to expand for oxygen partial pressures smaller than 10{sup {minus}10} atm, which could lead to cracking and debonding in an SOFC. Highly substituted lanthanum chromite compositions were the most susceptible to lattice expansion; yttrium chromites showed better dimensional stability by more than a factor of two. New chromite compositions were developed that showed little tendency for lattice expansion under strongly reducing conditions, yet provided a good thermal expansion match to other fuel cell components. Use of these new chromite interconnect compositions should improve long-term SOFC performance, particularly for planar cell configurations. Thermodynamic properties of substituted lanthanum manganite cathode compositions have been determined through measurement of electromotive force as a function of temperature. Critical oxygen decomposition pressures for Sr and Ca-substituted lanthanum manganites were established using cells based on a zirconia electrolyte. Strontium oxide and calcium oxide activities in a lanthanum manganite matrix were determined using cells based on strontium fluoride and calcium fluoride electrolytes, respectively. The compositional range of single-phase behavior of these ABO{sub 3}-type perovskites was established as a function of A/B cation ratios and the extent of acceptor doping. Before this work, very little thermodynamic information was in existence for substituted manganite compositions. Such information is needed to predict the long-term stability of solid oxide fuel cell assemblies.

  5. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  6. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  7. Simulating Dynamic Fracture in Oxide Fuel Pellets Using Cohesive Zone Models

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Williamson

    2009-08-01

    It is well known that oxide fuels crack during the first rise to power, with continued fracture occurring during steady operation and especially during power ramps or accidental transients. Fractures have a very strong influence on the stress state in the fuel which, in turn, drives critical phenomena such as fission gas release, fuel creep, and eventual fuel/clad mechanical interaction. Recently, interest has been expressed in discrete fracture methods, such as the cohesive zone approach. Such models are attractive from a mechanistic and physical standpoint, since they reflect the localized nature of cracking. The precise locations where fractures initiate, as well as the crack evolution characteristics, are determined as part of the solution. This paper explores the use of finite element cohesive zone concepts to predict dynamic crack behavior in oxide fuel pellets during power-up, steady operation, and power ramping. The aim of this work is first to provide an assessment of cohesive zone models for application to fuel cracking and explore important numerical issues associated with this fracture approach. A further objective is to provide basic insight into where and when cracks form, how they interact, and how cracking effects the stress field in a fuel pellet. The ABAQUS commercial finite element code, which includes powerful cohesive zone capabilities, was used for this study. Fully-coupled thermo-mechanical behavior is employed, including the effects of thermal expansion, swelling due to solid and gaseous fission products, and thermal creep. Crack initiation is determined by a temperature-dependent maximum stress criterion, based on measured fracture strengths for UO2. Damage evolution is governed by a traction-separation relation, calibrated to data from temperature and burn-up dependent fracture toughness measurements. Numerical models are first developed in 2D based on both axisymmetric (to explore axial cracking) and plane strain (to explore radial

  8. Inflight fuel tank temperature survey data

    Science.gov (United States)

    Pasion, A. J.

    1979-01-01

    Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.

  9. Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Jin-Mok Hur; Min Ku Jeon; University of Science and Technology, Yuseong-gu, Daejeon

    2017-01-01

    We report that residual salt removal by high-temperature distillation causes partial reoxidation of uranium metal to uranium oxide in electrolytically reduced simulated oxide fuel. Specifically, the content of uranium metal in the above product decreases with increasing distillation temperatures, which can be attributed to reoxidation by Li 2 O contained in residual salt (LiCl). Additionally, we estimate the fractions of Li 2 O reacted with uranium metal under these conditions, showing that they decrease with decreasing temperature, and calculate some thermodynamic parameters of the above reoxidation. (author)

  10. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  11. Fuel Cell Power Plant Initiative. Volume 1; Solid Oxide Fuel Cell/Logistics Fuel Processor 27 kWe Power System Demonstration for ARPA

    Science.gov (United States)

    Veyo, S.E.

    1997-01-01

    This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.

  12. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  13. Out-of-pile bundle temperature escalation under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Hagen, S.; Peck, S.O.

    1983-08-01

    This report provides an overview of the test conduct, results, and posttest appearance of bundle test ESBU-1. The purpose of the test was to investigate fuel rod temperature escalation due to the exothermal zircaloy/steam reaction in a bundle geometry. The 3x3 bundle was surrounded by a zircaloy shroud and 6 mm of fiber ceramic insulation. The center rod escalated to a maximum of 2,250 0 C. Runoff of the melt apparently limited the escalation. Posttest visual examination of the bundle showed that cladding from every rod had melted, liquefied some fuel, flowed down the rod, and frozen in a solid mass that substantially blocked all flow channels. A large amount of powdery rubble, probably fuel that fractured during cooldown, was found on top of the blockage. Metallographic, EMP, and SEM examinations showed that the melt had dissolved both fuel and oxidized cladding, and had itself been oxidized by steam. (orig.) [de

  14. Influence of fuel composition on the non-oxidizing heating of steel in a waste gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Minkler, W [LOI Industrieofenanlagen G.m.b.H., Essen (Germany, F.R.)

    1979-04-01

    On the basis of a number of graphs and data on theoretical combustion temperatures and the difference between the heating value of the fuel and the waste gas in respect of 1 m/sup 3/ of waste gas, the author demonstrates the influence of fuel composition on the non-oxidizing heating of steel in a waste gas atmosphere derived from five different fuels. A rotary-hearth furnace is described for the non-oxidizing heating of pressings from plain carbon and alloy steel.

  15. High temperature mechanisms and kinetics of SiC oxidation under low partial pressures of oxygen: application to the fuel cladding of gas fast reactors

    International Nuclear Information System (INIS)

    Hun, N.

    2011-01-01

    Gas Fast Reactor (GFR) is one of the different Generation IV concepts under investigation for energy production. SiC/SiC composites are candidates of primary interest for a GFR fuel cladding use, thanks to good corrosion resistance among other properties. The mechanisms and kinetics of SiC oxidation under operating conditions have to be identified and quantified as the corrosion can decrease the mechanical properties of the composite. An experimental device has been developed to study the oxidation of silicon carbide under high temperature and low oxygen partial pressure. The results pointed out that not only parabolic oxidation, but also interfacial reactions and volatilization occur under such conditions. After determining the kinetics of each mechanism, as functions of oxygen partial pressure and temperature, the data are used for the modeling of the composites oxidation. The model will be used to predict the lifetime of the composite in operating conditions. (author) [fr

  16. The Effect of Annealing Temperature on Nickel on Reduced Graphene Oxide Catalysts on Urea Electrooxidation

    International Nuclear Information System (INIS)

    Glass, Dean E.; Galvan, Vicente; Prakash, G.K. Surya

    2017-01-01

    Highlights: •Nickel was reduced on graphene oxide and annealed under argon from 300 to 700 °C. •Nickel was oxidized from the removal of oxygen groups on the graphene oxide. •Higher annealed catalysts displayed decreased urea electrooxidation currents. •Micro direct urea/hydrogen peroxide fuel cells were employed for the first time. •Ni/rGO catalysts displayed enhanced fuel cell performance than the bare nickel. -- Abstract: The annealing temperature effects on nickel on reduced graphene oxide (Ni/rGO) catalysts for urea electrooxidation were investigated. Nickel chloride was directly reduced in an aqueous solution of graphene oxide (GO) followed by annealing under argon at 300, 400, 500, 600, and 700 °C, respectively. X-ray Diffraction (XRD) patterns revealed an increase in the crystallite size of the nickel nanoparticles while the Raman spectra displayed an increase in the graphitic disorder of the reduced graphene oxide at higher annealing temperatures due to the removal of oxygen functional groups. The Ni/rGO catalysts annealed at higher temperatures displayed oxidized nickel surface characteristics from the Ni 2p X-ray Photoelectron Spectra (XPS) due to the oxidation of the nickel from the oxygen functional groups in the graphitic lattice. In the half-cell testing, the onset potential of urea electrooxidation decreased while the urea electrooxidation currents decreased as the annealing temperature was increased. The nickel catalyst annealed at 700 °C displayed a 31% decrease in peak power density while the catalyst annealed at 300 °C displayed a 13% increase compared with the unannealed Ni/rGO catalyst in the micro direct urea/hydrogen peroxide fuel cells tests.

  17. Assessment of uranium dioxide fuel performance with the addition of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Rafael O.R.; Abe, Alfredo; Gomes, Daniel S.; Silva, Antonio T., E-mail: romuniz@usp.br, E-mail: ayabe@ipen.br, E-mail: danieldesouza@gmail.com, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco; Aguiar, Amanda A., E-mail: amanda.abati.aguiar@gmail.com [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The Fukushima Daiichi accident in 2011 pointed the problem related to the hydrogen generation under accident scenarios due to the oxidation of zirconium-based alloys widely used as fuel rod cladding in water-cooled reactors. This problem promoted research programs aiming the development of accident tolerant fuels (ATF) which are fuels that under accident conditions could keep longer its integrity enabling the mitigation of the accident effects. In the framework of the ATF program, different materials have been studied to be applied as cladding to replace zirconium-based alloy; also efforts have been made to improve the uranium dioxide thermal conductivity doping the fuel pellet. This paper evaluates the addition of beryllium oxide (BeO) to the uranium dioxide in order to enhance the thermal conductivity of the fuel pellet. Investigations performed in this area considering the addition of 10% in volume of BeO, resulting in the UO{sub 2}-BeO fuel, have shown good results with the improvement of the fuel thermal conductivity and the consequent reduction of the fuel temperatures under irradiation. In this paper, two models obtained from open literature for the thermal conductivity of UO{sub 2}- BeO fuel were implemented in the FRAPCON 3.5 code and the results obtained using the modified code versions were compared. The simulations were carried out using a case available in the code documentation related to a typical pressurized water reactor (PWR) fuel rod irradiated under steady state condition. The results show that the fuel centerline temperatures decrease with the addition of BeO, when compared to the conventional UO{sub 2} pellet, independent of the model applied. (author)

  18. Multi-metallic anodes for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    Restivo, T.A. Guisard; Mello-Castanho, S.R.H.; Leite, D. Will

    2009-01-01

    A new method for direct preparation of materials for solid oxide fuel cell anode - Ni- YSZ cermets - based on mechanical alloying (MA) of the original powders is developed, allowing to admix homogeneously any component. Additive metals are selected from thermodynamic criteria, leading to compacts consolidation through sintering by activated surface (SAS). The combined process MA-SSA can reduce the sintering temperature by 300 deg C, yielding porous anodes. Densification mechanisms are discussed from quasi-isothermal sintering kinetics results. Doping with Ag, W, Cu, Mo, Nb, Ta, in descending order, promotes the densification of pellets through liquid phase sintering and evaporation of metals and oxides, which allow reducing the sintering temperature. Powders and pellets characterization by electronic microscopy and X-ray diffraction completes the result analyses. (author)

  19. High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Kim, Il-Hyun; Jung, Yang-Il; Kim, Hyun-Gil; Park, Dong-Jun; Choi, Byung-Kwon

    2013-01-01

    We investigated the feasibility to apply Al 3 Ti-based alloys as the surface layer for improving the oxidation resistance of Zr fuel claddings under accident conditions. Two types of Al 3 Ti-based alloys with the compositions of Al–25Ti–10Cr and Al–21Ti–23Cr in atomic percent were prepared by arc-melting followed by homogenization annealing at 1423 K for 48 h. Al–25Ti–10Cr alloy showed an L1 2 quasi-single phase microstructure with a lot of needle-shaped minor phase and pores. Al–21Ti–23Cr alloy consisted of an L1 2 matrix and Cr 2 Al as the second phase. Al 3 Ti-based alloys showed an extremely low oxidation rate in a 1473 K steam for up to 7200 s when compared to Zircaloy-4. Both alloys exhibited almost the same oxidation rate in the early stage of oxidation, but Al–25Ti–10Cr showed a little lower oxidation rate after 4000 s than Al–21Ti–23Cr. The difference in the oxidation rate between two types of Al 3 Ti-based alloys was too marginal to distinguish the oxidation behavior of each alloy. The resultant oxide exhibited almost the same characteristics in both alloys even though the microstructure was explicitly distinguished from each other. The crystal structure of the oxide formed up to 2000 s was identified as Al 2 O 3 in both alloys. The oxide morphology consisted of columnar grains whose length was almost identical to the average oxide thickness. On the basis of the results obtained, it is considered that Al 3 Ti-based alloy is one of the promising candidates for the oxidation-resistant surface layer on Zr fuel claddings

  20. High dose stainless steel swelling data on interior and peripheral oxide fuel pins

    International Nuclear Information System (INIS)

    Boltax, A.; Foster, J.P.; Nayak, U.P.

    1983-01-01

    High dose (2 x 10 23 n/cm 2 , E > 0.1 Mev) swelling data obtained on 20% cold-worked AISI 316 stainless steel (N-lot) cladding from mixed-oxide fuel pins show large differences in swelling incubation dose due to pre-incubation dose temperature changes. Circumferential swelling variations of 1.5 to 4 times were found in peripheral fuel pin cladding which experienced 30 to 60 deg C temperature changes due to movement in a temperature gradient. Consideration is given to the implications of these results to low swelling materials development and core design. (author)

  1. Electrometallurgical treatment of oxide spent fuels

    International Nuclear Information System (INIS)

    Karell, E. J.

    1999-01-01

    The Department of Energy (DOE) inventory of spent nuclear fuel contains a wide variety of oxide fuel types that may be unsuitable for direct repository disposal in their current form. The molten-salt electrometallurgical treatment technique developed by Argonne National Laboratory (ANL) has the potential to simplify preparing and qualifying these fuels for disposal by converting them into three uniform product streams: uranium metal, a metal waste form, and a ceramic waste form. This paper describes the major steps in the electrometallurgical treatment process for oxide fuels and provides the results of recent experiments performed to develop and scale up the process

  2. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  3. Considerations in modelling the melting of fuel containing fission products and solute oxides

    International Nuclear Information System (INIS)

    Akbari, F.; Welland, M.J.; Lewis, B.J.; Thompson, W.T.

    2005-01-01

    It is well known that the oxidation of a defected fuel element by steam gives rise to an increase in O/U ratio with a consequent lowering of the incipient melting temperature. Concurrently, the hyperstoichiometry reduces the thermal conductivity thereby raising the centerline fuel pellet temperature for a fixed linear power. The development of fission products soluble in the UO 2 phase or, more important, the deliberate introduction of additive oxides in advanced CANDU fuel bundle designs further affects and generally lowers the incipient melting temperature. For these reasons, the modeling of the molten (hyperstoichiometric) UO 2 phase containing several solute oxides (ZrO 2 , Ln 2 O 3 and AnO 2 ) is advancing in the expectation of developing a moving boundary heat and mass transfer model aimed at better defining the limits of safe operating practice as burnup advances. The paper describes how the molten phase stability model is constructed. The redistribution of components across the solid-liquid interface that attends the onset of melting of a non-stoichiometric UO 2 containing several solutes will be discussed. The issues of how to introduce boundary conditions into heat transfer calculations consistent with the requirements of the Phase Rule will be addressed. The Stefan problem of a moving boundary associated with the solid/liquid interface sets this treatment apart from conventional heat and mass transfer problems. (author)

  4. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...

  5. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.

    Science.gov (United States)

    Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-06-01

    Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The importance of fuel properties in the formation of nitrogen oxides and in combustion

    International Nuclear Information System (INIS)

    Huotari, J.; Aho, M.; Haemaelaeinen, J.; Huotari, J.; Saastamoinen, J.; Rantanen, J.

    1995-01-01

    The goal of this work is to find new information about the effects of pressure, temperature and fuel properties (Fuel-O/Fuel-N) on the formation of nitrogen oxides through the most important intermediates (NH 3 and HCN). In addition, a single particle model for the simultaneous pyrolysis and char combustion will be improved to be used for calculating combustion under pressure. Experimental work is done with an electrically heated pressurized entrained flow reactor (PEFR) which is equipped with modern analytics (as FT-IR for the analysis of N 2 O, NO and NO 2 and FT-IR pyrometry for the measurement of particle temperatures). The experimental work is carried out in several stages: (a) Study of the formation of HCN and NH 3 during pressurized pyrolysis (b) Oxidation of HCN and NH 3 to nitrogen oxides in pressurized combustion (c) Reduction of NO by NH 3 under pressure (thermax denox) Task a is performed with fuels of various O/N ratio. Task b is performed with pure HCN and NH 3 and with more complicated gas mixtures including HCN and NH 3 . A large part of these results are utilized in kinetic modelling in Aabo Akademi University, Finland in project LIEKKI 2-201. Two kinds of modelling work is performed in VTT in this project (a) Simultaneous modelling of the composition of solid and gaseous phases in the pyrolysis and combustion of a small fuel particle (multiphase modelling) (b) Modelling of pyrolysis and combustion of a single fuel particle under pressurized conditions (single particle modelling). The results can be used in planning of pressurized combustors and in minimizing the emissions of nitrogen oxides. (author)

  7. Cobalt-free cathode material SrFe{sub 0.9}Nb{sub 0.1}O{sub 3-{delta}} for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingjun [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); College of Science, Civil Aviation University of China, Tianjin 300300 (China); Zhang, Leilei; He, Tianmin [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China)

    2010-02-15

    A cobalt-free cubic perovskite oxide, SrFe{sub 0.9}Nb{sub 0.1}O{sub 3-{delta}} (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) for temperatures up to 1050 C. The electrical conductivity of SFN sample reached 34-70 S cm{sup -1} in the commonly operated temperatures of IT-SOFCs (600-800 C). The area specific resistance was 0.138 {omega} cm{sup 2} for SFN cathode on SDC electrolyte at 750 C. A maximum power density of 407 mW cm{sup -2} was obtained at 800 C for single-cell with 300 {mu}m thick SDC electrolyte and SFN cathode. (author)

  8. Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas

    2017-07-15

    The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.

  9. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO 2 -PuO 2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  10. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States)

    2010-01-31

    An engineering code to model the irradiation behavior of UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  11. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, Marina F. S.; P. R. Moraes, Leticia; Monteiro, Natalia K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte or in composite electrodes. The Ni/GDC cermet can be tuned as a catalytic layer, added to the conventional Ni/yttria-stabilized zirconia (YSZ), for the internal steam...... sintering temperature needed to obtain a fully dense ceramic body, which can result in undesired reactions with YSZ. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. Such a low temperature synthesis provides control over particle size and sinterability...

  12. Results of the irradiation of mixed UO2 - PuO2 oxide fuel elements

    International Nuclear Information System (INIS)

    Mikailoff, H.; Mustelier, J.P.; Bloch, J.; Ezran, L.; Hayet, L.

    1966-01-01

    In order to study the behaviour of fuel elements used for the first charge of the reactor Rapsodie, a first batch of eleven needles was irradiated in the reactor EL3 and then examined. These needles (having a shape very similar lo that of the actual needles to be used) were made up of a stack of sintered mixed-oxide pellets: UO 2 containing about 10 per cent of PuO 2 . The density was 85 to 97 per cent of the theoretical, value. The diametral gap between the oxide and the stainless steel can was between 0,06 and 0,27 mm. The specific powers varied from 1230 to 2700 W/cm 3 and the can temperature was between 450 and 630 C. The maximum burn-up attained was 22000 MW days/tonne. Examination of the needles (metrology, radiography and γ-spectrography) revealed certain macroscopic changes, and the evolution of the fuel was shown by micrographic studies. These observations were used, together with flux measurements results, to calculate the temperature distribution inside the fuel. The volume of the fission gas produced was measured in some of the samples; the results are interpreted taking into account the temperature distribution in the oxide and the burn-up attained. Finally a study was made both of the behaviour of a fuel element whose central part was molten during irradiation, and of the effect of sodium which had penetrated into some of the samples following can rupture. (author) [fr

  13. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shuhei, E-mail: miwa.shuhei@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan); Osaka, Masahiko [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan); Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya [Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 (Japan)

    2015-10-15

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO{sub 2−x} were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO{sub 2−x} below the oxygen potential of Mo/MoO{sub 2} oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO{sub 2−x} with those of pure PuO{sub 2−x} were discussed in terms of the microstructure. - Highlights: • Oxygen potential of Mo-cermet fuel was investigated by thermogravimetric analysis. • It was the same as that of pure PuO{sub 2−x} below the oxygen potential for Mo/MoO{sub 2}. • Gradual oxidation of Mo matrix occurred only above the oxygen potential for Mo/MoO{sub 2}. • Mo matrix and PuO{sub 2−x} in Mo-cermet fuel can thus be thermochemically individual.

  14. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    International Nuclear Information System (INIS)

    Miwa, Shuhei; Osaka, Masahiko; Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya

    2015-01-01

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO_2_−_x were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO_2_−_x below the oxygen potential of Mo/MoO_2 oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO_2_−_x with those of pure PuO_2_−_x were discussed in terms of the microstructure. - Highlights: • Oxygen potential of Mo-cermet fuel was investigated by thermogravimetric analysis. • It was the same as that of pure PuO_2_−_x below the oxygen potential for Mo/MoO_2. • Gradual oxidation of Mo matrix occurred only above the oxygen potential for Mo/MoO_2. • Mo matrix and PuO_2_−_x in Mo-cermet fuel can thus be thermochemically individual.

  15. KMRR fuel design

    International Nuclear Information System (INIS)

    Son, D.S.; Sim, B.S.; Kim, T.R.; Hwang, W.; Kim, B.G.; Ku, Y.H.; Lee, C.B.; Lim, I.C.

    1992-06-01

    KMRR fuel rod design criteria on fuel swelling, blistering and oxide spallation have been reexamined. Fuel centerline temperature limit of 250deg C in normal operation condition and fuel swelling limit of 12 % at the end of life have been proposed to prevent fuel failure due to excessive fuel swelling. Fuel temperature limit of 485deg C has been proposed to exclude the possibility of fuel failures during transients or under accident condition. Further analyses are needed to decide the fuel cladding temperature limit to preclude the oxide spallation. Design changes in fuel assembly structure and their effects on related systems have been reviewed from a structural integrity viewpoint. The remained works in fuel mechanical design area have been identified and further efforts of fuel design group will be focused on these aspects. (Author)

  16. Fission gas release from oxide fuels at high burnups (AWBA development program)

    International Nuclear Information System (INIS)

    Dollins, C.C.

    1981-02-01

    The steady state gas release, swelling and densification model previously developed for oxide fuels has been modified to accommodate the slow transients in temperature, temperature gradient, fission rate and pressure that are encountered in normal reactor operation. The gas release predictions made by the model were then compared to gas release data on LMFBR-EBRII fuels obtained by Dutt and Baker and reported by Meyer, Beyer, and Voglewede. Good agreement between the model and the data was found. A comparison between the model and three other sets of gas release data is also shown, again with good agreement

  17. Tubular solid oxide fuel cell development program

    Energy Technology Data Exchange (ETDEWEB)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  18. High temperature oxidation behavior of SiC coating in TRISO coated particles

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Bing; Zhang, Kaihong; Liu, Malin; Shao, Youlin; Tang, Chunhe

    2014-01-01

    Highlights: • High temperature oxidation tests of SiC coating in TRISO particles were carried out. • The dynamic oxidation process was established. • Oxidation mechanisms were proposed. • The existence of silicon oxycarbides at the SiO 2 /SiC interface was demonstrated. • Carbon was detected at the interface at high temperatures and long oxidation time. - Abstract: High temperature oxidation behavior of SiC coatings in tristructural-isotropic (TRISO) coated particles is crucial to the in-pile safety of fuel particles for a high temperature gas cooled reactor (HTGR). The postulated accident condition of air ingress was taken into account in evaluating the reliability of the SiC layer. Oxidation tests of SiC coatings were carried out in the ranges of temperature between 800 and 1600 °C and time between 1 and 48 h in air atmosphere. Based on the microstructure evolution of the oxide layer, the mechanisms and kinetics of the oxidation process were proposed. The existence of silicon oxycarbides (SiO x C y ) at the SiO 2 /SiC interface was demonstrated by X-ray photospectroscopy (XPS) analysis. Carbon was detected by Raman spectroscopy at the interface under conditions of very high temperatures and long oxidation time. From oxidation kinetics calculation, activation energies were 145 kJ/mol and 352 kJ/mol for the temperature ranges of 1200–1500 °C and 1550–1600 °C, respectively

  19. Oxidation of Alkane Rich Gasoline Fuels and their Surrogates in a Motored Engine

    KAUST Repository

    Shankar, Vijai S B

    2015-03-30

    The validation of surrogates formulated using a computational framework by Ahmed et al.[1]for two purely paraffinic gasoline fuels labelled FACE A and FACE C was undertaken in this study. The ability of these surrogate mixtures to be used in modelling LTC engines was accessed by comparison of their low temperature oxidation chemistry with that of the respective parent fuel as well as a PRF based on RON. This was done by testing the surrogate mixtures in a modified Cooperative Fuels Research (CFR) engine running in Controlled Autoignition Mode (CAI) mode. The engine was run at a constant speed of 600 rpm at an equivalence ratio of 0.5 with the intake temperature at 150 °C and a pressure of 98 kPa. The low temperature reactivity of the fuels were studied by varying the compression ratio of the engine from the point were very only small low temperature heat release was observed to a point beyond which auto-ignition of the fuel/air mixture occurred. The apparent heat release rates of different fuels was calculated from the pressure histories using first law analysis and the CA 50 times of the low temperature heat release (LTHR) were compared. The surrogates reproduced the cool flame behavior of the parent fuels better than the PRF across all compression ratios.

  20. Oxidation of Alkane Rich Gasoline Fuels and their Surrogates in a Motored Engine

    KAUST Repository

    Shankar, Vijai S B; Al-Qurashi, Khalid; Ahmed, Ahfaz; Atef, Nour; Chung, Suk-Ho; Roberts, William L.; Sarathy, Mani

    2015-01-01

    The validation of surrogates formulated using a computational framework by Ahmed et al.[1]for two purely paraffinic gasoline fuels labelled FACE A and FACE C was undertaken in this study. The ability of these surrogate mixtures to be used in modelling LTC engines was accessed by comparison of their low temperature oxidation chemistry with that of the respective parent fuel as well as a PRF based on RON. This was done by testing the surrogate mixtures in a modified Cooperative Fuels Research (CFR) engine running in Controlled Autoignition Mode (CAI) mode. The engine was run at a constant speed of 600 rpm at an equivalence ratio of 0.5 with the intake temperature at 150 °C and a pressure of 98 kPa. The low temperature reactivity of the fuels were studied by varying the compression ratio of the engine from the point were very only small low temperature heat release was observed to a point beyond which auto-ignition of the fuel/air mixture occurred. The apparent heat release rates of different fuels was calculated from the pressure histories using first law analysis and the CA 50 times of the low temperature heat release (LTHR) were compared. The surrogates reproduced the cool flame behavior of the parent fuels better than the PRF across all compression ratios.

  1. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    Science.gov (United States)

    Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  2. Fabrication of cathode supported tubular solid oxide electrolysis cell for high temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Le; Wang, Shaorong; Qian, Jiqin; Xue, Yanjie; Liu, Renzhu

    2011-01-15

    In recent years, hydrogen has been identified as a potential alternative fuel and energy carrier for the future energy supply. Water electrolysis is one of the important hydrogen production technologies which do not emit carbon dioxide. High temperature steam electrolysis (HTSE) consumes even less electrical energy than low temperature water electrolysis. Theoretically, HTSE using solid oxide electrolysis cells (SOEC) can efficiently utilize renewable energy to produce hydrogen, and it is also possible to operate the SOEC in reverse mode as the solid oxide fuel cell (SOFC) to produce electricity. Tubular SOFC have been widely investigated. In this study, tubular solid oxide cells were fabricated by dip-coating and cosintering techniques. In SOEC mode, results suggested that steam ratio had a strong impact on the performance of the tubular cell; the tubular SOEC preferred to be operated at high steam ratio in order to avoid concentration polarization. The microstructure of the tubular SOEC should therefore be optimized for high temperature steam electrolysis.

  3. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1983-08-01

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 2000 0 C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW) [de

  4. Thermal gradient effects on the oxidation of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.

    1990-01-01

    A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs

  5. On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels

    Science.gov (United States)

    Scheele, Randall; McNamara, Bruce; Casella, Andrew M.; Kozelisky, Anne

    2012-05-01

    This paper presents results of our investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. Our thermodynamic calculations show that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from oxides and metals that can form volatile fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of lanthanum, cerium, rhodium, and plutonium are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550 °C. However, depending on temperature, volatile fluorides or oxyfluorides can form from nitrogen trifluoride treatment of the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. Thermoanalytical studies demonstrate near-quantitative separation of uranium from plutonium in a mixed 80% uranium and 20% plutonium oxide. Our studies of neat oxides and metals suggest that the reactivity of nitrogen trifluoride may be adjusted by temperature to selectively separate the major volatile fuel constituent uranium from minor volatile constituents, such as Mo, Tc, Ru and from the non-volatile fuel constituents based on differences in their reaction temperatures and kinetic behaviors. This reactivity is novel with respect to that reported for other fluorinating reagents F2, BrF5, ClF3.

  6. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Li Shuai; Li Zhicheng; Bergman, Bill

    2010-01-01

    The composite of doped lanthanum gallate (La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 , LSGM) and doped ceria (Ce 0.8 Sm 0.2 O 1.9 , CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO 2 phase and a minority impurity phase, Sm 3 Ga 5 O 12 . The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 o C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  7. Fabrication and characterization of a cathode-supported tubular solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunhua; Liu, Renzhu; Wang, Shaorong; Wang, Zhenrong; Qian, Jiqin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2009-07-15

    A cathode-supported tubular solid oxide fuel cell (CTSOFC) with the length of 6.0 cm and outside diameter of 1.0 cm has been successfully fabricated via dip-coating and co-sintering techniques. A crack-free electrolyte film with a thickness of {proportional_to}14 {mu}m was obtained by co-firing of cathode/cathode active layer/electrolyte/anode at 1250 C. The relative low densifying temperature for electrolyte was attributed to the large shrinkage of the green tubular which assisted the densification of electrolyte. The assembled cell was electrochemically characterized with humidified H{sub 2} as fuel and O{sub 2} as oxidant. The open circuit voltages (OCV) were 1.1, 1.08 and 1.06 V at 750, 800 and 850 C, respectively, with the maximum power densities of 157, 272 and 358 mW cm{sup -2} at corresponding temperatures. (author)

  8. Evolution of the thickness of the aluminum oxide film due to the pH of the cooling water and surface temperature of the fuel elements clad of a nuclear reactor

    International Nuclear Information System (INIS)

    Babiche, Ivan

    2013-01-01

    This paper describes the mechanism of growth of a film of aluminum oxide on an alloy of the same material, which serves as a protective surface being the constituent material of the RP-10 nuclear reactor fuel elements clads. The most influential parameters on the growth of this film are: the pH of the cooling water and the clad surface temperature of the fuel element. For this study, a mathematical model relating the evolution of the aluminum oxide layer thickness over the time, according to the same oxide film using a power law is used. It is concluded that the time of irradiation, the heat flux at the surface of the aluminum material, the speed of the coolant, the thermal conductivity of the oxide, the initial thickness of the oxide layer and the solubility of the protective oxide are parameters affecting in the rate and film formation. (author).

  9. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  10. Temperature feedback of TRIGA MARK-II fuel

    Science.gov (United States)

    Usang, M. D.; Minhat, M. S.; Rabir, M. H.; M. Rawi M., Z.

    2016-01-01

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.

  11. Thermodynamic analysis of carbon formation in solid oxide fuel cells with a direct internal reformer fueled by ethanol, methanol, and methane

    International Nuclear Information System (INIS)

    Laosiripojana, N.; Assabumrungrat, S.; Pavarajarn, V.; Sangtongkitcharoen, W.; Tangjitmatee, A.; Praserthdam, P.

    2004-01-01

    'Full text:' This paper concerns a detailed thermodynamic analysis of carbon formation for a Direct Internal Reformer (DIR) Solid Oxide Fuel Cells (SOFC). The modeling of DIR-SOFC fueled by ethanol, methanol, and methane were compared. Two types of fuel cell electrolytes, i.e. oxygen-conducting and hydrogen-conducting, are considered. Equilibrium calculations were performed to find the ranges of inlet steam/fuel ratio where carbon formation is thermodynamically unfavorable in the temperature range of 500-1200 K. It was found that the key parameters determining the boundary of carbon formation are temperature, type of solid electrolyte and extent of the electrochemical reaction of hydrogen. The minimum requirements of H2O/fuel ratio for each type of fuel in which the carbon formation is thermodynamically unfavored were compared. At the same operating conditions, DIR-SOFC fueled by ethanol required the lowest inlet H2O/fuel ratio in which the carbon formation is thermodynamically unfavored. The requirement decreased with increasing temperature for all three fuels. Comparison between two types of the electrolytes reveals that the hydrogen-conducting electrolyte is impractical for use, regarding to the tendency of carbon formation. This is due mainly to the water formed by the electrochemical reaction at the electrodes. (author)

  12. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  13. On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes

    Science.gov (United States)

    Serra, José M.; Buchkremer, Hans-Peter

    Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.

  14. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  15. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Cascos

    2016-07-01

    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  16. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    International Nuclear Information System (INIS)

    Roake, W.E.; Adamson, M.G.; Hilbert, R.F.; Langer, S.

    1977-01-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to ∼60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  17. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States); Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States); Hilbert, R F; Langer, S

    1977-04-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to {approx}60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  18. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Obara, Hiroshi.

    1981-01-01

    Purpose: To suppress iodine release thereby prevent stress corrosion cracks in fuel cans by dispersing ferrous oxide at the outer periphery of sintered uranium dioxide pellets filled and sealed within zirconium alloy fuel cans of fuel elements. Constitution: Sintered uranium dioxide pellets to be filled and sealed within a zirconium alloy fuel can are prepared either by mixing ferric oxide powder in uranium dioxide powder, sintering and then reducing at low temperature or by mixing iron powder in uranium dioxide powder, sintering and then oxidizing at low temperature. In this way, ferrous oxide is dispersed on the outer periphery of the sintered uranium dioxide pellets to convert corrosive fission products iodine into iron iodide, whereby the iodine release is suppressed and the stress corrosion cracks can be prevented in the fuel can. (Moriyama, K.)

  19. A high performance cathode for proton conducting solid oxide fuel cells

    KAUST Repository

    Wang, Zhiquan

    2015-01-01

    Intermediate temperature solid-oxide fuel cells (IT-SOFCs)), as one of the energy conversion devices, have attracted worldwide interest for their great fuel efficiency, low air pollution, much reduced cost and excellent longtime stability. In the intermediate temperature range (500-700°C), SOFCs based on proton conducting electrolytes (PSOFCs) display unique advantages over those based on oxygen ion conducting electrolytes. A key obstacle to the practical operation of past P-SOFCs is the poor stability of the traditionally used composite cathode materials in the steam-containing atmosphere and their low contribution to proton conduction. Here we report the identification of a new Ruddlesden-Popper-type oxide Sr3Fe2O7-δ that meets the requirements for much improved long-term stability and shows a superior single-cell performance. With a Sr3Fe2O7-δ-5 wt% BaZr0.3Ce0.5Y0.2O3-δ cathode, the P-SOFC exhibits high power densities (683 and 583 mW cm-2 at 700°C and 650°C, respectively) when operated with humidified hydrogen as the fuel and air as the cathode gas. More importantly, no decay in discharging was observed within a 100 hour test. © The Royal Society of Chemistry 2015.

  20. Behaviour of rock-like oxide fuels under reactivity-initiated accident conditions

    International Nuclear Information System (INIS)

    Kazuyuki, Kusagaya; Takehiko, Nakamura; Makio, Yoshinaga; Hiroshi, Akie; Toshiyuki, Yamashita; Hiroshi, Uetsuka

    2002-01-01

    Pulse irradiation tests of three types of un-irradiated rock-like oxide (ROX) fuel - yttria-stabilised zirconia (YSZ) single phase, YSZ and spinel (MgAl 2 O 4 ) homogeneous mixture and particle-dispersed YSZ/spinel - were conducted in the Nuclear Safety Research Reactor to investigate the fuel behaviour under reactivity-initiated accident conditions. The ROX fuels failed at fuel volumetric enthalpies above 10 GJ/m 3 , which was comparable to that of un-irradiated UO 2 fuel. The failure mode of the ROX fuels, however, was quite different from that of the UO 2 fuel. The ROX fuels failed with fuel pellet melting and a part of the molten fuel was released out to the surrounding coolant water. In spite of the release, no significant mechanical energy generation due to fuel/coolant thermal interaction was observed in the tested enthalpy range below∼12 GJ/m 3 . The YSZ type and homogenous YSZ/spinel type ROX fuels failed by cladding burst when their temperatures peaked, while the particle-dispersed YSZ/spinel type ROX fuel seemed to have failed by cladding local melting. (author)

  1. Mixed oxide fuel pellet and manufacturing method thereof

    International Nuclear Information System (INIS)

    Yuda, Ryoichi; Ito, Ken-ichi; Masuda, Hiroshi.

    1993-01-01

    In a method of manufacturing nuclear fuel pellets which comprises compression molding a mixed oxide powder containing UO 2 and PuO 2 followed by sintering, a sintering agent having a composition comprising about 40 to 80 wt% of SiO 2 and the balance of Al 2 O 3 is mixed to a mixed oxide at a ratio of about 40ppm to about 0.5 wt% based on the total amount of the mixed oxide and the sintering agent, to prepare a mixture. The mixture is molded into a compression product and then sintered at a weakly acidic atmosphere at a temperature of about 1500degC to 1800degC. With such procedures, the sintering agent forms an eutectic product of a single liquid phase, PuO 2 is dispersed over the entire region of the pellet by way of the liquid phase, formation of a solid solution phase is promoted to annihilate a free PuO 2 phase. Further, growth of crystal grains is promoted. Accordingly, since the MOX fuel pellets prepared according to the present invention have a uniform solid solution state, and no free PuO 2 phase remains, increase of FP gas emission due to local nuclear fission of Pu can be avoided. (T.M.)

  2. Simulation of the chemical state of irradiated oxide fuel; influence of the internal corrosion on the mechanical properties of Zry-4 tubing

    International Nuclear Information System (INIS)

    Hofmann, P.

    1979-03-01

    Zircaloy is not compatible with oxide fuel nor with some fission product elements. Therefore, chemical interaction between the irradiated oxide fuel and the Zry cladding material take place, especially at temperatures that can be reached during reactor incidents (ATWS, LOCA). In order to find out which influence the chemical interaction between the fission products and the Zry cladding material have on the mechanical properties of Zry-4 tubing out-of-pile burst experiments and creep rupture tests have been performed at temperatures >=600 0 C with short tube specimens containing simulated fission products. First of all, assessments of the chemical state of irradiated oxide fuel were performed and a method is described for introducing simulated fission product species into fresh oxide fuel for irradiation tests. As the test results of the out-of-pile studies show, only iodine can lead to a low ductility failure of the Zry-tubing at temperatures >=600 0 C. However, the influence of iodine on the deformation behavior of Zry-tubing can be neglected above 850 0 C. (orig.) [de

  3. Development of planar solid oxide fuel cells for power generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.Q. [AlliedSignal Aerospce Equipment Systems, Torrance, CA (United States)

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress, improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.

  4. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  5. Analytical investigation of high temperature 1 kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation

    International Nuclear Information System (INIS)

    Azizi, Mohammad Ali; Brouwer, Jacob; Dunn-Rankin, Derek

    2016-01-01

    Highlights: • A dynamic Solid Oxide Fuel Cell (SOFC) model was developed. • Hydrate bed methane dissociation model was integrated with the SOFC model. • SOFC operated steadily for 120 days at high pressure deep ocean environment. • Burning some of the dissociated gas for SMR heat leads to more net methane produced. • Higher SOFC fuel utilization produces higher integrated system efficiency. - Abstract: Methane hydrates are potential valuable energy resources. However, finding an efficient method for methane gas recovery from hydrate sediments is still a challenge. New challenges arise from increasing environmental protection. This is due in part to the technical difficulties involved in the efficient dissociation of methane hydrates at high pressures. In this study, a new approach is proposed to produce valuable products of: 1. Net methane gas recovery from the methane hydrate sediment, and 2. Deep ocean power generation. We have taken the first steps toward utilization of a fuel cell system in methane gas recovery from deep ocean hydrate sediments. An integrated high pressure and high temperature solid oxide fuel cell (SOFC) and steam methane reformer (SMR) system is analyzed for this application and the recoverable amount of methane from deep ocean sediments is measured. System analysis is accomplished for two major cases regarding system performance: 1. Energy for SMR is provided by the burning part of the methane gas dissociated from the hydrate sediment. 2. Energy for SMR is provided through heat exchange with fuel cell effluent gases. We found that the total production of methane gas is higher in the first case compared to the second case. The net power generated by the fuel cell system is estimated for all cases. The primary goal of this study is to evaluate the feasibility of integrated electrochemical devices to accomplish energy efficient dissociation of methane hydrate gases in deep ocean sediments. Concepts for use of electrochemical devices

  6. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Shuai, E-mail: shuail@kth.s [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden); Li Zhicheng [School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan (China); Bergman, Bill [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden)

    2010-03-04

    The composite of doped lanthanum gallate (La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85}, LSGM) and doped ceria (Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}, CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO{sub 2} phase and a minority impurity phase, Sm{sub 3}Ga{sub 5}O{sub 12}. The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 {sup o}C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  7. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review.

    Science.gov (United States)

    Ja'fari, Mahsa; Ebrahimi, Seyedeh Leila; Khosravi-Nikou, Mohammad Reza

    2018-01-01

    Nowadays, a continuously worldwide concern for development of process to produce ultra-low sulfur and nitrogen fuels have been emerged. Typical hydrodesulfurization and hydrodenitrogenation technology deals with important difficulties such as high pressure and temperature operating condition, failure to treat some recalcitrant compounds and limitations to meet the stringent environmental regulations. In contrary an advanced oxidation process that is ultrasound assisted oxidative desulfurization and denitrogenation satisfies latest environmental regulations in much milder conditions with more efficiency. The present work deals with a comprehensive review on findings and development in the ultrasound assisted oxidative desulfurization and denitrogenation (UAOD) during the last decades. The role of individual parameters namely temperature, residence time, ultrasound power and frequency, pH, initial concentration and types of sulfur and nitrogen compounds on the efficiency are described. What's more another treatment properties that is role of phase transfer agent (PTA) and solvents of extraction step, reaction kinetics, mechanism of the ultrasound, fuel properties and recovery in UAOD are reviewed. Finally, the required future works to mature this technology are suggested. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Solid oxide fuel cell performance comparison fueled by methane, MeOH, EtOH and gasoline surrogate C_8H_1_8

    International Nuclear Information System (INIS)

    Liso, Vincenzo; Cinti, Giovanni; Nielsen, Mads P.; Desideri, Umberto

    2016-01-01

    Carbon deposition is a major cause of degradation in solid oxide fuel cell systems. The ability to predict carbon formation in reforming processes is thus absolutely necessary for stable operation of solid oxide fuel cell systems. In the open literature it is found that the steam input is always considered in large excess compared to what required by the reforming process with the purpose of reducing carbon formation and avoiding rapid degradation of the cell performance. This makes it difficult to consistently compare system performance with different fuels. In this work, the molar compositions at equilibrium are calculated for a minimum steam to carbon ratio for each fuel type. We carry out a thermodynamic analysis of fuel/steam system using Gibbs Free Energy minimization method. A mathematical relationship between Lagrange's multipliers and carbon activity in the gas phase was deduced. Minimum steam required for the reforming process for each fuel was related to the heat required for the reforming process and fuel cell open circuit voltage. Furthermore, in an experimental test, steam reforming product compositions were used to evaluate and compare SOFC performance with different hydrocarbons. Comparing the model to the experimental activity, it is revealed that at temperatures exceeding 800 °C the gas composition is dominated by hydrogen and carbon monoxide for any of the fuels considered leading to similar cell polarization curves performance for different fuels. The main effect on the performance is related to OCV values which are dependent on different steam content for each fuel. It was concluded that the magnitude of the heat requested for the fuel reforming process is the major difference in system performance when comparing different fuels. However, reforming kinetic effects can become predominant rather than thermodynamics, especially at lower temperatures.

  9. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Lue Shiquan; Long, Guohui; Ji Yuan; Meng Xiangwei; Zhao Hongyuan; Sun Cuicui

    2011-01-01

    Research highlights: → We synthesize a new kind of layered perovskite SmBaCoCuO 5+x (SBCCO) as a cathode material of a solid oxide fuel cell. → There are some reports on the performance of cathodes in proton-conducting SOFCs based on BaCe 0.8 Sm 0.2 O 3-δ electrolyte. → However, to the best of our knowledge, the performance of SBCCO cathodes in oxygen-ion conducting SOFCs has not been reported to date. → In this work, the ceramic powder SBCCO is examined as a cathode for IT-SOFCs based on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte. - Abstract: The performance of SmBaCoCuO 5+x (SBCCO) cathode has been investigated for their potential utilization in intermediate-temperature solid oxide fuel cells (IT-SOFCs). The powder X-ray diffraction (XRD), thermal expansion and electrochemical performance on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte are evaluated. XRD results show that there is no chemical reaction between SBCCO cathode and GDC electrolyte when the temperature is below 950 o C. The thermal expansion coefficient (TEC) value of SBCCO is 15.53 x 10 -6 K -1 , which is ∼23% lower than the TEC of the SmBaCo 2 O 5+x (SBCO) sample. The electrochemical impedance spectra reveals that SBCCO symmetrical half-cells by sintering at 950 deg. C has the best electrochemical performance and the area specific resistance (ASR) of SBCCO cathode is as low as 0.086 Ω cm 2 at 800 o C. An electrolyte-supported fuel cell generates good performance with the maximum power density of 517 mW cm -2 at 800 deg. C in H 2 . Preliminary results indicate that SBCCO is promising as a cathode for IT-SOFCs.

  10. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    International Nuclear Information System (INIS)

    Kosaka, Fumihiko; Oshima, Yoshito; Otomo, Junichiro

    2011-01-01

    Highlights: → High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. → High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. → Low selectivity for CH 4 in ethylene glycol electro-oxidation. → High selectivity for CO 2 according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 o C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH 2 PO 4 , which has high proton conductivity (>10 -2 S cm -1 ) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H 2 , CO 2 , CO and a small amount of CH 4 formation was also observed. On the other hand, the amounts of C 2 products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  11. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  12. Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST Plant

    Directory of Open Access Journals (Sweden)

    Juanjo Ugartemendia

    2013-09-01

    Full Text Available This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC based on a steam turbine (ST. In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.

  13. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Test ESBU-1

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Peck, S.O.; Wallenfels, K.P.

    1983-12-01

    This report describes the test conduct and results of the bundle test ESBU-1. The test objective was the investigation of temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of a program of out-of-pile experiments, performed within the framework of the PNS Several Fuel Damage Program. The bundle was composed of a 3x3 array of fuel rod simulators surrounded by a zircaloy shroud which was insulated with a ZrO 2 fiber ceramic wrap. The fuel rod simulators comprised a tungsten heater, UO 2 annular pellets, and zircaloy cladding over a 0.4 m heated length. A steam flow of 1 g/s was inlet to the bundle. The most pronounced temperature escalation was found on the central rod. The initial heatup rate of 2 0 C/s at 1100 0 C increased to approximately 6 0 C/s. The maximum temperature reached was 2250 0 C. The following fast temperature decrease was caused by runoff of molten zircaloy. Molten zircaloy swept down the thin cladding oxide layer formed during heatup. The melt dissolved the surface of the UO 2 pellets and refroze as a coherent lump in the lower part of the bundle. The remaining pellets fragmented during cooldown and formed a powdery layer on the refrozen lump. The lump was sectioned posttest at several elevations: Dissolution of UO 2 by the molten zircaloy, interaction between the melt and previously oxidized zircaloy, and oxidation of the melt had occurred. (orig.) [de

  14. Dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Sanyoshi, H.; Nishina, H.; Toyota, O.; Yamamoto, R.; Nemoto, S.; Okamoto, F.; Togashi, A.; Kawata, T.; Hayashi, S.

    1991-01-01

    At the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the Chemical Processing Facility (CPF) has been continuing operation since 1982 for laboratory scale hot experiments on reprocessing of FBR mixed oxide fuel. As a part of these experiments, dissolution experiments have been performed to define the key parameters affecting dissolution rates such as concentration of nitric acid, temperature and burnup and also to confirm the amount of insoluble residue. The dissolution rate of the irradiated fuel was determined to be in proportion to the 1.7 power of the nitric acid concentration. The activation energy determined from the experiments varied from 6 to 11 kcal/mol depending on the method of dissolution. The dissolution rate decreased as the fuel burnup increased in low nitric acid media below 5 mol/l. However, it was found that the effect of the burnup became negligible in a high concentration of nitric acid media. The amount of insoluble residue and its constituents were evaluated by changing the dissolution condition. (author)

  15. Contribution to the determination of total hydrogen in oxide nuclear fuels

    International Nuclear Information System (INIS)

    Bartscher, W.; Kutter, H.

    1979-01-01

    Normally the total hydrogen content of a fast breeder mixed oxide fuel is calculated from the results of the determinations of free hydrogen and water. Thermodynamic considerations, coupled with kinetic results for room temperature and 1000 0 C and taken from the literature indicate, that the normal method for the determination of water by heating in a carrier gas stream and subsequent coulometric determination of the expelled water must give low results. A modification of this method involving the introduction of a copper oxide furnace into the system for the oxidation of hydrogen has been studied. The resulting method for the determination of total hydrogen gives about ten times higher values than those calculated from the normal water determination. These total hydrogen values and the oxygen to metal ratios which are obtained by gravimetric methods and not corrected for the water content, reflect more realistically the in-pile conditions in the fuel pin. (Auth.)

  16. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  17. Spectroelectrochemical cell for in situ studies of solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Traulsen, Marie Lund; Kiebach, Wolff-Ragnar

    2012-01-01

    to control before the technology can achieve breakthrough. They have been widely studied, predominately by electrochemical testing with subsequent micro-structural analysis. In order to be able to develop better SOFCs, it is important to understand how the measured electrochemical performance depends......Solid oxide fuel cells (SOFCs) are able to produce electricity and heat from hydrogen- or carbon-containing fuels with high efficiencies and are considered important cornerstones for future sustainable energy systems. Performance, activation and degradation processes are crucial parameters...... on materials and structural properties, preferably at the atomic level. A characterization of these properties under operation is desired. As SOFCs operate at temperatures around 1073 K, this is a challenge. A spectroelectrochemical cell was designed that is able to study SOFCs at operating temperatures...

  18. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  19. A Status of Art-Report on the Fission Products Behavior Released from Spent Fuel at High Temperature Conditions

    International Nuclear Information System (INIS)

    Park, Geun Il; Kim, J. H.; Lee, J. W.

    2003-04-01

    The experiments on the fission products release behavior from spent fuel at high temperature assuming reactor accident conditions have been carried out at Oak Ridge Nation Laboratory of USA in HI/VI tests, CEA of France in HEVA/VERCOS tests, AEA of England and CRNL of Canada in HOX test. The VEGA program to study the fission product release behavior from LWR irradiated fuel was recently initiated at JAERI. The key parameter affecting the fission product(FP) release behavior is temperature. In addition, other parameters such as fuel oxidation, burnup, pre-transient conditions are found to affect the FP releases considerably in the earlier tests. The atmosphere conditions such as oxidizing atmosphere (steam or air) or reducing atmosphere (hydrogen) can cause significant change of FPs release and transport behavior due to chemical forms of the reactive FPs which is dependent on the oxidation potential. The effect of fuel burnup on the Kr-85 or Cs-137 release showed that the release rates of these radionuclides increased with the increase of burnup, meaning that release rates are dominated by the atomic diffusions in the grains and they are primarily a function of temperature. However, the data on FPs release behavior using higher burnups above 50,000 MWD/MTU are not so many reported up to now. This report summarizes the test results of FPs release behavior in reactor accident conditions produced from other countries mentioned above. This review and analysis on earlier studies would be useful for predicting the release characteristics of FPs from domestic spent fuel. The release rates of fission gas or FPs from spent fuel at high temperature conditions during fabrication process of dry recycling fuel were also analyzed using many data obtained from earlier tests

  20. High temperature fuel cell with ceria-based solid electrolyte

    International Nuclear Information System (INIS)

    Arai, H.; Eguchi, K.; Yahiro, H.; Baba, Y.

    1987-01-01

    Cation-doped ceria is investigated as an electrolyte for the solid oxide fuel cell. As for application to the fuel cells, the electrolyte are desired to have high ionic conductivity in deriving a large electrical power. A series of cation-doped ceria has higher ionic conductivity than zirconia-based oxides. In the present study, the basic electrochemical properties of cation-doped ceria were studied in relation to the application of fuel cells. The performance of fuel cell with yttria-doped ceria electrolyte was evaluated. Ceria-based oxides were prepared by calcination of oxide mixtures of the components or calcination of co-precipitated hydroxide mixtures from the metal nitrate solution. The oxide mixtures thus obtained were sintered at 1650 0 C for 15 hr in air into disks. Ionic transference number, t/sub i/, was estimated from emf of oxygen concentration cell. Electrical conductivities were measured by dc-4 probe method by varying the oxygen partial pressure. The fuel cell was operated by oxygen and hydrogen

  1. Final Technical Report: Affordable, High-Performance, Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Bryan M. [Redox Power Systems, LLC, College Park, MD (United States); Bishop, Sean [Redox Power Systems, LLC, College Park, MD (United States); Gore, Colin [Redox Power Systems, LLC, College Park, MD (United States); Wang, Lei [Redox Power Systems, LLC, College Park, MD (United States); Correa, Luis [Redox Power Systems, LLC, College Park, MD (United States); Langdo, Thomas [Redox Power Systems, LLC, College Park, MD (United States); Deaconu, Stelu [Redox Power Systems, LLC, College Park, MD (United States); Pan, Keji [Redox Power Systems, LLC, College Park, MD (United States)

    2018-02-15

    In this project, we improved the power output and voltage efficiency of our intermediate temperature solid oxide fuel cells (IT-SOFCs) with a focus on ~600 °C operation. At these temperatures and with the increased power density (i.e., fewer cells for same power output), the stack cost should be greatly reduced while extending durability. Most SOFC stacks operate at temperatures greater than 800 °C. This can greatly increase the cost of the system (stacks and BOP) as well as maintenance costs since the most common degradation mechanisms are thermally driven. Our approach uses no platinum group metal (PGM) materials and the lower operating temperature allows use of simple stainless steel interconnects and commercial off-the-shelf gaskets in the stack. Furthermore, for combined heating and power (CHP) applications the stack exhaust still provides “high quality” waste heat that can be recovered and used in a chiller or boiler. The anticipated performance, durability, and resulting cost improvements (< $700/kWe) will also move us closer to reaching the full potential of this technology for distributed generation (DG) and residential/commercial CHP. This includes eventual extension to cleaner, more efficient portable generators, auxiliary power units (APUs), and range extenders for transportation. The research added to the understanding of the area investigated by exploring various methods for increasing power density (Watts/square centimeter of active area in each cell) and increasing cell efficiency (increasing the open circuit voltage, or cell voltage with zero external electrical current). The results from this work demonstrated an optimized cell that had greater than 1 W/cm2 at 600 °C and greater than 1.6 W/cm2 at 650 °C. This was demonstrated in large format sizes using both 5 cm by 5 cm and 10 cm by 10 cm cells. Furthermore, this work demonstrated that high stability (no degradation over > 500 hours) can be achieved together with high performance in large

  2. Effective improvement of interface modified strontium titanate based solid oxide fuel cell anodes by infiltration with nano-sized palladium and gadolinium-doped cerium oxide

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2013-01-01

    The development of low temperature solid oxide fuel cell (SOFC) anodes by infiltration of Pd/Gd-doped cerium oxide (CGO) electrocatalysts in Nb-doped SrTiO3 (STN) backbones has been investigated. Modification of the electrode/electrolyte interface by thin layer of spin-coated CGO (400-500 nm) con...

  3. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Teague, Melissa C; Gorman, Brian P.; Miller, Brandon D; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel

  4. Thermochemical Analysis of Gas-Cooled Reactor Fuels Containing Am and Pu Oxides

    International Nuclear Information System (INIS)

    Lindemer, T.B.

    2002-01-01

    Literature values and estimated data for the thermodynamics of the actinide oxides and fission products are applied to explain the chemical behavior in gas-cooled-reactor fuels. Emphasis is placed on the Am-O-C and Pu-O-C systems and the data are used to plot the oxygen chemical potential versus temperature of solid-solid and solid-gas equilibria. These results help explain observations of vaporization in Am oxides, nitrides, and carbides and provide guidance for the ceramic processing of the fuels. The thermodynamic analysis is then extended to the fission product systems and the Si-C-O system. Existing data on oxygen release (primarily as CO) as a function of burnup in the thoria-urania fuel system is reviewed and compared to values calculated from thermodynamic data. The calculations of oxygen release are then extended to the plutonia and americia fuels. Use of ZrC not only as a particle coating that may be more resistant to corrosion by Pd and other noble-metal fission products, but also as a means to getter oxygen released by fission is discussed

  5. Pyrolysis of biomass in a semi-industrial scale reactor: Study of the fuel-nitrogen oxidation during combustion of volatiles

    International Nuclear Information System (INIS)

    Mura, E.; Debono, O.; Villot, A.; Paviet, F.

    2013-01-01

    In this work, an experimental study of the NOx-fuel formation, carried out on a semi-industrial scale reactor during combustion of volatiles of the pyrolysis, is performed. Two different biomasses with different nitrogen contents such as a mixture of organic sludge and wood were tested. Results show that the temperature of pyrolysis does not obviously affect the production of NOx-fuel because of the most active precursors (NH 3 and HCN) are already released at low temperatures (400 °C). In the case of sludge mixture, the combustion conditions play the discriminating role in the production of NOx-fuel: the higher the excess air ratio the larger the production of nitrogen oxides from N-fuel. -- Highlights: • An experimental study of the pyrolysis of biomass from waste has been carried out. • The study consists in the analysis of NOx-fuel production during combustion. • The temperature of pyrolysis does not affect the production of NOx. • Only a small part of the N-fuel released in the volatile fraction is oxidized. • In the case of sewage sludge the excess air ratio affects the NOx production

  6. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    Science.gov (United States)

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  7. Development of examination technique for oxide layer thickness measurement of irradiated fuel rods

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, S. W.; Kim, J. H.; Seo, H. S.; Min, D. K.; Kim, E. K.; Chun, Y. B.; Bang, K. S.

    1999-06-01

    Technique for oxide layer thickness measurement of irradiated fuel rods was developed to measure oxide layer thickness and study characteristic of fuel rods. Oxide layer thickness of irradiated fuels were measured, analyzed. Outer oxide layer thickness of 3 cycle-irradiated fuel rods were 20 - 30 μm, inner oxide layer thickness 0 - 10 μm and inner oxide layer thickness on cracked cladding about 30 μm. Oxide layer thickness of 4 cycle-irradiated fuel rods were about 2 times as thick as those of 1 cycle-irradiated fuel rods. Oxide layer on lower region of irradiated fuel rods was thin and oxide layer from lower region to upper region indicated gradual increase in thickness. Oxide layer thickness from 2500 to 3000 mm showed maximum and oxide layer thickness from 3000 to top region of irradiated fuel rods showed decreasing trend. Inner oxide layer thicknesses of 4 cycle-irradiated fuel rod were about 8 μm at 750 - 3500 mm from the bottom end of fuel rod. Outer oxide layer thickness were about 8 μm at 750 - 1000 mm from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel. Oxide layer thickness technique will apply safety evaluation and study of reactor fuels. (author). 6 refs., 14 figs

  8. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Fumihiko; Oshima, Yoshito [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Otomo, Junichiro, E-mail: otomo@k.u-tokyo.ac.jp [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan)

    2011-11-30

    Highlights: > High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. > High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. > Low selectivity for CH{sub 4} in ethylene glycol electro-oxidation. > High selectivity for CO{sub 2} according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 {sup o}C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH{sub 2}PO{sub 4}, which has high proton conductivity (>10{sup -2} S cm{sup -1}) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H{sub 2}, CO{sub 2}, CO and a small amount of CH{sub 4} formation was also observed. On the other hand, the amounts of C{sub 2} products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  9. Feasibility of solid oxide fuel cell dynamic hydrogen coproduction to meet building demand

    Science.gov (United States)

    Shaffer, Brendan; Brouwer, Jacob

    2014-02-01

    A dynamic internal reforming-solid oxide fuel cell system model is developed and used to simulate the coproduction of electricity and hydrogen while meeting the measured dynamic load of a typical southern California commercial building. The simulated direct internal reforming-solid oxide fuel cell (DIR-SOFC) system is controlled to become an electrical load following device that well follows the measured building load data (3-s resolution). The feasibility of the DIR-SOFC system to meet the dynamic building demand while co-producing hydrogen is demonstrated. The resulting thermal responses of the system to the electrical load dynamics as well as those dynamics associated with the filling of a hydrogen collection tank are investigated. The DIR-SOFC system model also allows for resolution of the fuel cell species and temperature distributions during these dynamics since thermal gradients are a concern for DIR-SOFC.

  10. Alternative anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  11. Studies on the dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Nemoto, Shin-ichi; Shibata, Atsuhiro; Shioura, Takao; Okamoto, Fumitoshi; Tanaka, Yasumasa

    1995-01-01

    At the Chemical Processing Facility(CPF) in the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation(PNC), since 1982 Laboratory scale hot experiments have been carried out on the development of reprocessing technology for FBR mixed oxide fuel. The spent fuel pins which have been used in out experiments were irradiated in Experimental Fast Reactor 'Joyo' Phenix (France) and DFR(UK). Burn-up of the fuel pins were 4,400-100,000 MWd/t. This paper Summarizes a dissolution study that have been performed to define the Key parameters affecting dissolution rate such as concentration of nitric acid, burn-up, and temperature. And this paper also discusses about the character of releasing 85 Kr in chopping and dissolution process, and about the amount of insoluble residue. (author)

  12. Composite cathode La0.15Bi0.85O1.5-Ag for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Gao Zhan; Mao Zongqiang; Huang Jianbing; Gao Ruifeng; Wang Cheng; Liu Zhixiang

    2008-01-01

    Composites consisting of silver and lanthanum stabilized bismuth oxide (La 0.15 Bi 0.85 O 1.5 ) were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria as electrolyte. No stable phases were formed via reaction between La 0.15 Bi 0.85 O 1.5 and Ag. The microstructure of the interfaces between composite cathodes and Ce 0.8 Sm 0.2 O 1.5 electrolytes was studied by scanning electron microscopy after sintering at various temperatures. Impedance spectroscopy measurements revealed that the performance of cathode fired at 700 deg. C was the best. When the optimum fraction of Ag was 50 vol.%, polarization resistance values for the LSB-Ag50 cathode were as low as 0.14 Ω cm 2 at 700 deg. C and 0.18 Ω cm 2 at 650 deg. C. The steady-state polarization investigations on LSB and LSB-Ag50 cathodes were performed using typical three-electrode test cells in air. The results showed that the LSB-Ag50 composite cathode exhibited a lower overpotential and higher exchange current density than LSB, which indicated the electrochemical performance of LSB-Ag50 for the oxygen reduction reaction was superior to the LSB

  13. Aluminum cladding oxidation of prefilmed in-pile fueled experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, School of Nuclear Science and Engineering, 116 Radiation Center, Corvallis, OR 97331 (United States); Wachs, D.M.; Robinson, A.B.; Lillo, M.A. [Idaho National Laboratory, Nuclear Fuels & Materials Department, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2016-04-01

    A series of fueled irradiation experiments were recently completed within the Advanced Test Reactor Full size plate In center flux trap Position (AFIP) and Gas Test Loop (GTL) campaigns. The conduct of the AFIP experiments supports ongoing efforts within the global threat reduction initiative (GTRI) to qualify a new ultra-high loading density low enriched uranium-molybdenum fuel. This study details the characterization of oxide growth on the fueled AFIP experiments and cross-correlates the empirically measured oxide thickness values to existing oxide growth correlations and convective heat transfer correlations that have traditionally been utilized for such an application. This study adds new and valuable empirical data to the scientific community with respect to oxide growth measurements of highly irradiated experiments, of which there is presently very limited data. Additionally, the predicted oxide thickness values are reconstructed to produce an oxide thickness distribution across the length of each fueled experiment (a new application and presentation of information that has not previously been obtainable in open literature); the predicted distributions are compared against experimental data and in general agree well with the exception of select outliers. - Highlights: • New experimental data is presented on oxide layer thickness of irradiated aluminum fuel. • Five oxide growth correlations and four convective heat transfer correlations are used to compute the oxide layer thickness. • The oxide layer thickness distribution is predicted via correlation for each respective experiment. • The measured experiment and predicted distributions correlate well, with few outliers.

  14. Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Jensen, Søren Højgaard

    2012-01-01

    A promising way to store wind and solar electricity is by electrolysis of H2O and CO2 using solid oxide electrolysis cells (SOECs) to produce synthetic hydrocarbon fuels that can be used in existing fuel infrastructure. Pressurized operation decreases the cell internal resistance and enables...... improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired......, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher...

  15. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    Science.gov (United States)

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  16. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  17. Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Michael [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-03-24

    This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and

  18. Systematic evaluation of Co-free LnBaFe2O5+δ (Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chen Dengjie; Wang Fucun; Shi Huangang; Ran Ran; Shao Zongping

    2012-01-01

    Co-free oxides with a nominal composition of LnBaFe 2 O 5+δ , where Ln = La, Pr, Nd, Sm, Gd, and Y, were synthesized and phase structure, oxygen content, electronic conductivity, oxygen desorption, thermal expansion, microstructure and electrochemical performance were systematically investigated. Among the series of materials tested, LaBaFe 2 O 5+δ oxide showed the largest electronic conductivity and YBaFe 2 O 5+δ oxide had the smallest thermal expansion coefficient (TEC) of 14.6 × 10 −6 K −1 within a temperature range of 200–900 °C. All LnBaFe 2 O 5+δ oxides typically possess the TEC values smaller than 20 × 10 −6 K −1 . The oxygen content, electronic conductivity and TEC values are highly dependent on the cation size of the Ln 3+ dopant. The lowest electrode polarization resistance in air under open circuit voltage condition was obtained for SmBaFe 2 O 5+δ electrode and was approximately 0.043, 0.084, 0.196, 0.506 and 1.348 Ω cm 2 at 800, 750, 700, 650 and 600 °C, respectively. The SmBaFe 2 O 5+δ oxide also demonstrated the best performance after a cathodic polarization. A cell with a SmBaFe 2 O 5+δ cathode delivered peak power densities of 1026, 748, 462, 276 and 148 mW cm −2 at 800, 750, 700, 650 and 600 °C, respectively. The results suggest that certain LnBaFe 2 O 5+δ oxides have sufficient electrochemical performance to be promising candidates for cathodes in intermediate-temperature solid oxide fuel cells.

  19. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Zeng, Fanrong; Wang, Shaorong; Wen, Tinglian; Wen, Zhaoyin [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Inorganic Energy Materials and Power Source Engineering Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    A direct carbon fuel cell based on a conventional anode-supported tubular solid oxide fuel cell, which consisted of a NiO-YSZ anode support tube, a NiO-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode, has been successfully achieved. It used the carbon black as fuel and oxygen as the oxidant, and a preliminary examination of the DCFC has been carried out. The cell generated an acceptable performance with the maximum power densities of 104, 75, and 47 mW cm{sup -2} at 850, 800, and 750 C, respectively. These results demonstrate the feasibility for carbon directly converting to electricity in tubular solid oxide fuel cells. (author)

  20. Uranium plutonium oxide fuels

    International Nuclear Information System (INIS)

    Cox, C.M.; Leggett, R.D.; Weber, E.T.

    1981-01-01

    Uranium plutonium oxide is the principal fuel material for liquid metal fast breeder reactors (LMFBR's) throughout the world. Development of this material has been a reasonably straightforward evolution from the UO 2 used routinely in the light water reactor (LWR's); but, because of the lower neutron capture cross sections and much lower coolant pressures in the sodium cooled LMFBR's, the fuel is operated to much higher discharge exposures than that of a LWR. A typical LMFBR fuel assembly is shown. Depending on the required power output and the configuration of the reactor, some 70 to 400 such fuel assemblies are clustered to form the core. There is a wide variation in cross section and length of the assemblies where the increasing size reflects a chronological increase in plant size and power output as well as considerations of decreasing the net fuel cycle cost. Design and performance characteristics are described

  1. Analysis of the effect of transverse power distribution in an involute fuel plate with and without oxide film formation

    International Nuclear Information System (INIS)

    Smith, R. S.

    1998-01-01

    Existing thermal hydraulics computer codes can account for variations in power and temperature in the axial and thickness directions but variations across the width of the plate cannot be accounted for. In the case of fuel plates in an annular core this can lead to significant errors which are accentuated by the presence of an oxide layer that builds up on the aluminum cladding with burnup. This paper uses a three dimensional SINDA model to account for the transverse variations in power. The effect of oxide thickness on these differences is studied in detail. Power distribution and fuel conductivity are also considered. The lower temperatures predicted with the SINDA model result in a greater margin to clad and fuel damage

  2. Electrochemical characterization of infiltrated Bi2V0.9Cu0.1O5.35 cathodes for use in low temperature solid oxide fuel cells

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Bonanos, Nikolaos

    2012-01-01

    the dense CGO electrolyte and a possible reaction layer between the LSC infiltrate material and the BICUVOX backbone. The poor chemical compatibility of BICUVOX with LSC even by using a low temperature processing for the LSC using the infiltration method greatly undermines the motivation to continue...... the exploration of the combination of these materials for use in solid oxide fuel cells. © 2012 Elsevier B.V. All rights reserved...

  3. A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield

    International Nuclear Information System (INIS)

    Wang, Hsueh-Sheng; Huang, Kuo-Yang; Huang, Yuh-Jeen; Su, Yu-Chuan; Tseng, Fan-Gang

    2015-01-01

    Highlights: • A low-operating temperature of the POM-mode micro methanol reformer is obtained. • The effect of channel design on the performance is studied. • The effect of solid content and binder’ ratio on the performance is studied. • The centrifugal process is benefit for the modification of performance. • 98% of methanol conversion rate of the micro reformer can be obtained at 180 °C. - Abstract: A partial oxidation methanol micro reformer (POM-μReformer) with finger-shaped channels for low operating temperature and high conversing efficiency is proposed in this study. The micro reformer employs POM reaction for low temperature operation (less than 200 °C), exothermic reaction, and quick start-up, as well as air feeding capability; and the finger type reaction chambers for increasing catalyst loading as well as reaction area for performance enhancement. In this study, centrifugal technique was introduced to assist on the catalyst loading with high amount and uniform distribution. The solid content (S), binder’s ratio (B), and channel design (the ratio between channel’s length and width, R) were investigated in detail to optimize the design parameters. Scanning electron microscopy (SEM), gas chromatography (GC), and inductively coupled plasma-mass spectrometer (ICP-MS) were employed to analyze the performance of the POM-μReformer. The result depicted that the catalyst content and reactive area could be much improved at the optimized condition, and the conversion rate and hydrogen selectivity approached 97.9% and 97.4%, respectively, at a very low operating temperature of 180 °C with scarce or no binder in catalyst. The POM-μReformer can supply hydrogen to fuel cells by generating 2.23 J/min for 80% H 2 utilization and 60% fuel cell efficiency at 2 ml/min of supplied reactant gas, including methanol, oxygen and argon at a mixing ratio of 12.2%, 6.1% and 81.7%, respectively

  4. Electrochemical performance of Nd1.8Ce0.2CuO4+δ:Ce0.9Gd0.1O2 composite cathode for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Khandale, A.P.; Bhoga, S.S.

    2012-01-01

    Intermediate temperature solid oxide fuel cells (IT-SOFCs) are viewed as a promising power generation systems with high efficiency and low pollution. Recently, mixed ionic-electronic conductors (MIECs), with K 2 NiF 4 - type structure, attracted much attention as cathode for IT-SOFC

  5. The effect of steam oxidation on the strain of fuel sheathing at high temperature

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Foote, D.E.; Grant, D.

    1976-08-01

    The current work extends previous data to include the effects of a steam atmosphere on the strain behaviour of fuel sheathing. At a heating rate of 25 deg C s -1 steam had little effect on the results at hoop stresses of 12 MPa because the time available for oxidation was too short. At 6 MPa hoop stress there was a marked difference between steam and vacuum results. The evidence suggests that, provided no cracks develop, the growing oxide and/or the oxygen stabilized α-phase zirconium layers rapidly take up the load as their combined thickness increases from 6 to about 30 μm. (author)

  6. Comparison of Different Fuel Temperature Models

    Energy Technology Data Exchange (ETDEWEB)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  7. Comparison of Different Fuel Temperature Models

    International Nuclear Information System (INIS)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  8. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  9. Subchannel analysis of sodium-cooled reactor fuel assemblies with annular fuel pins

    International Nuclear Information System (INIS)

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2009-01-01

    Using a RELAP5-3D subchannel analysis model, the thermal-hydraulic behavior of sodium-cooled fuel assemblies with internally and externally cooled annular fuel rods was investigated, in an effort to enhance the economic performance of sodium-fast reactors by increasing the core power density, decreasing the core pressure drop, and extending the fuel discharge burnup. Both metal and oxide fuels at high and low conversion ratios (CR=0.25 and CR=1.00) were investigated. The externally and internally cooled annular fuel design is most beneficial when applied to the low CR core, as clad temperatures are reduced by up to 62.3degC for the oxide fuel, and up to 18.5degC for the metal fuel. This could result in a power uprates of up to ∼44% for the oxide fuel, and up to ∼43% for the metal fuel. The use of duct ribs was explored to flatten the temperature distribution at the core outlet. Subchannel analyses revealed that no fuel melting would occur in the case of complete blockage of the hot interior-annular channel for both metal and oxide fuels. Also, clad damage would not occur for the metal fuel if the power uprate is 38% or less, but would indeed occur for the oxide fuel. (author)

  10. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  11. EFFECT SIGNIFICANCE ASSESSMENT OF THE THERMODYNAMICAL FACTORS ON THE SOLID OXIDE FUEL CELL OPERATION

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2015-01-01

    Full Text Available Technologies of direct conversion of the fuel energy into electrical power are an upcoming trend in power economy. Over the last decades a number of countries have created industrial prototypes of power plants on fuel elements (cells, while fuel cells themselves became a commercial product on the world energy market. High electrical efficiency of the fuel cells allows predictting their further spread as part of hybrid installations jointly with gas and steam turbines which specifically enables achieving the electrical efficiency greater than 70 %. Nevertheless, investigations in the area of increasing efficiency and reliability of the fuel cells continue. Inter alia, research into the effects of oxidizing reaction thermodynamic parameters, fuel composition and oxidation reaction products on effectiveness of the solid oxide fuel cells (SOFC is of specific scientific interest. The article presents a concise analysis of the fuel type effects on the SOFC efficiency. Based on the open publications experimental data and the data of numerical model studies, the authors adduce results of the statistical analysis of the SOFC thermodynamic parameters effect on the effectiveness of its functioning as well as of the reciprocative factors of these parameters and gas composition at the inlet and at the outlet of the cell. The presented diagrams reflect dimension of the indicated parameters on the SOFC operation effectiveness. The significance levels of the above listed factors are ascertained. Statistical analysis of the effects of the SOFC functionning process thermodynamical, consumption and concentration parameters demonstrates quintessential influence of the reciprocative factors (temperature – flow-rate and pressure – flow-rate and the nitrogen N2 and oxygen O2 concentrations on the operation efficiency in the researched range of its functioning. These are the parameters to be considered on a first-priority basis while developing mathematical models

  12. Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel

    International Nuclear Information System (INIS)

    Lewis, B.J.; Thompson, W.T.; Akbari, F.; Thompson, D.M.; Thurgood, C.; Higgs, J.

    2004-01-01

    A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor

  13. La0.6Sr0.4Co0.2Fe0.8O3-δ nanofiber cathode for intermediate-temperature solid oxide fuel cells by water-based sol-gel electrospinning: Synthesis and electrochemical behaviour

    DEFF Research Database (Denmark)

    Enrico, Anna; Zhang, Wenjing (Angela); Traulsen, Marie Lund

    2018-01-01

    Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only...

  14. The TMI regenerable solid oxide fuel cell

    Science.gov (United States)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  15. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    aspects of structure and composition. The thesis is composed of the five papers: (A) Calculation of conductivity and polarization resistance of composite SOFC-electrodes from random resistor networks, (B) Monte Carlo Simulations of Conductivity of Composite Electrodes for Solid Oxide Fuel Cells, (C) Monte Carlo Simulations of the Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells (D) Calculations of Impedance of Composite Modes for Solid Oxide Fuel Cells (E) Simulations of Composite Electrodes in Fuel Cells. The major results are: (1) A Monte Carlo method is constructed for electrochemical applications, (2) The Monte Carlo simulations of conductivity with respect to its dependence on composition and temperature are validated quantitatively with respect to experimental results (papers A, B and E), (3) The Monte Carlo method is validated qualitatively with respect polarisation resistance and its thickness dependence (papers A, C, and E), (Considerable scatter in the experimental results prevents a more strict quantitative evaluation of the model.), (4) A dependence of the percolation threshold on particle size in the composite is suggested as a major reason for electrode deactivation in fuel cells employing composite electrodes in which particle aggregation occur (paper B), (5) The range of compositions within which there will be a thickness dependence of the polarisation resistance is calculated as a function of relative ratio of particle radii (paper C), (6) The shapes of impedance-plane plots for composite electrodes will usually differ significantly from their point-contact counterparts exclusively for reasons related structure (paper D), (7) The macroscopic porous-electrode theory is adapted for composite electrodes (papers C and E), (8) A model for internal reforming of methane at a composite fuel-cell anode is formulated, based on the macroscopic porous-electrode theory (paper E). The model includes a description of gas-phase transport and non

  16. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Cahalan, J.; Wigeland, R.; Friedel, G.; Kussmaul, G.; Royl, P.; Moreau, J.; Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs

  17. Solid Oxide Fuel Cells coupled with a biomass gasification unit

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available A possibility of fuelling a solid oxide fuel cell stack (SOFC with biomass fuels can be realized by coupling a SOFC system with a self-standing gasification unit. Such a solution enables multi-fuel operation, elasticity of the system as well as the increase of the efficiency of small-scale biomass-to-electricity conversion units. A system of this type, consisting of biomass gasification unit, gas purification unit, SOFC stack, anode off-gas afterburner and peripherals was constructed and operated successfully. During the process, biomass fuel (wood chips was gasified with air as gasification agent. The gasifier was capable of converting up to 30 kW of fuel to syngas with efficiencies up to 75%. Syngas leaving the gasification unit is delivered to a medium temperature adsorber for sulphur compounds removal. Steam is added to the purified fuel to maintain steam to carbon ratio higher than 2. The syngas then is passed to a SOFC stack through a fuel preheater. In such a configuration it was possible to operate a commercial 1.3 kW stack within its working regime. Conducted tests confirmed successful operation of a SOFC stack fuelled by biomass-sourced syngas.

  18. Role of thermal analysis in uranium oxide fuel fabrication process

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Yadav, R.B.

    2006-01-01

    The present paper discusses the application of thermal analysis, particularly, differential thermal analysis (Dta) at various stages of fuel fabrication process. The useful role of Dta in knowing the decomposition pattern and calcination temperature of Adu along with de-nitration temperature is explained. The decomposition pattern depends upon the type of drying process adopted for wet ADU cake (ADU C). Also, the paper highlights the utility of DTA in determining the APS and SSA of UO 2+x and U 3 O 8 powders as an alternate technique. Further, the temperature difference (ΔT max ) between the two exothermic peaks obtained in UO 2+x powder oxidation is related to sintered density of UO 2 pellets. (author)

  19. Fundamental research in the area of high temperature fuel cells in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Dyomin, A.K.

    1996-04-01

    Research in the area of molten carbonate and solid oxide fuel cells has been conducted in Russia since the late 60`s. Institute of High Temperature Electrochemistry is the lead organisation in this area. Research in the area of materials used in fuel cells has allowed us to identify compositions of electrolytes, electrodes, current paths and transmitting, sealing and structural materials appropriate for long-term fuel cell applications. Studies of electrode processes resulted in better understanding of basic patterns of electrode reactions and in the development of a foundation for electrode structure optimization. We have developed methods to increase electrode activity levels that allowed us to reach current density levels of up to 1 amper/cm{sup 2}. Development of mathematical models of processes in high temperature fuel cells has allowed us to optimize their structure. The results of fundamental studies have been tested on laboratory mockups. MCFC mockups with up to 100 W capacity and SOFC mockups with up to 1 kW capacity have been manufactured and tested at IHTE. There are three SOFC structural options: tube, plate and modular.

  20. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon [KAERI, Daejeon (Korea, Republic of)

    2016-09-15

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr{sub 2}O{sub 3}, and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged.

  1. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    International Nuclear Information System (INIS)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon

    2016-01-01

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr 2 O 3 , and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged

  2. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    Science.gov (United States)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Reviews on Solid Oxide Fuel Cell Technology

    Directory of Open Access Journals (Sweden)

    Apinan Soottitantawat

    2009-02-01

    Full Text Available Solid Oxide Fuel Cell (SOFC is one type of high temperature fuel cell that appears to be one of the most promising technology to provide the efficient and clean energy production for wide range of applications (from small units to large scale power plants. This paper reviews the current status and related researches on SOFC technologies. In details, the research trend for the development of SOFC components(i.e. anode, electrolyte, cathode, and interconnect are presented. Later, the current important designs of SOFC (i.e. Seal-less Tubular Design, Segmented Cell in Series Design, Monolithic Design and Flat Plate Design are exampled. In addition, the possible operations of SOFC (i.e. external reforming, indirect internal reforming, and direct internal reforming are discussed. Lastly, the research studies on applications of SOFCs with co-generation (i.e. SOFC with Combined Heat and Power (SOFC-CHP, SOFC with Gas Turbine (SOFC-GT and SOFC with chemical production are given.

  4. Analysis of irradiation temperature in fuel rods of OGL-1 fuel assembly

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Minato, Kazuo; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-10-01

    Irradiation temperature in the fuel rods of 5th OGL-1 fuel assembly was analysed by the system composed by STPDSP2 and TRUMP codes. As the measured input-data, following parameters were allowed for; circumferential heating distribution around the fuel rod, which was measured in the JMTR critical assembly, axial heating distribution through the fuel rod, ratio of peak heatings of three fuel rods, and pre- and post-irradiation outer radii of the fuel compacts and inner radii of the graphite sleeves, which had been measured in PIE of the 5th OGL-1 fuel assembly. In computation the axial distributions of helium coolant temperature through the fuel rod and the heating value of each fuel rod were, firstly, calculated as input data for TRUMP. The TRUMP calculation yielded the temperatures which were fitted in those measured by all of the thermo-couples installed in the fuel rods, by adjusting only the value of the surface heat transfer coefficient, and consequently, the temperatures in all portions of the fuel rod were obtained. The apparent heat transfer coefficient changed to 60% of the initial values in the middle period of irradiation. For this reduction it was deduced that shoot had covered the surface of the fuel rod during irradiation, which was confirmed in PIE. Beside it, several things were found in this analysis. (author)

  5. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    Stress corrosion cracking (SCC)can cause failures of CANDU Zircaloy-4 fuel sheathing. The process occurs when a corrosive element (i.e.,iodine) interacts with a susceptible material that is under sufficient strain at a high temperature. Currently, there is an ongoing effort to improve SCC mitigation strategies for future iterations of CANDU reactors. A potential mechanism for SCC mitigation involves utilizing alkali metal oxides and alkaline earth metal oxides that will sequester corrosive iodine while actively repairing a protective oxide layer on the sheath. SCC tests performed with sodium oxide (Na{sub 2}O) and calcium oxide (CaO) have shown to decrease significantly the sheath degradation. (author)

  6. Burnup performance of rock-like oxide (ROX) fuel in small pebble bed reactor with accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2017-01-01

    Highlights: • Burnup performance using ROX fuel in PBR with accumulative fuel loading scheme was analyzed. • Initial excess reactivity was suppressed by reducing 235 U enrichment in the startup condition. • Negative temperature coefficient was achieved in all condition of PBR with accumulative fuel loading scheme using ROX fuel. • Core lifetime of PBR with accumulative fuel loading scheme using ROX fuel was shorter than with UO 2 fuel. • In PBR with accumulative fuel loading scheme using ROX fuel, achieved discharged burnup can be as high as that for UO 2 fuel. - Abstract: The Japan Atomic Energy Agency (JAEA) has proposed rock-like oxide (ROX) fuel as a new, once-through type fuel concept. Here, burnup performance using ROX fuel was simulated in a pebble bed reactor with an accumulative fuel loading scheme. The MVP-BURN code was used to simulate the burnup calculation. Fuel of 5 g-HM/pebble with 20% 235 U enrichment was selected as the optimum composition. Discharged burnup could reach up to 218 GWd/t, with a core lifetime of about 8.4 years. However, high excess reactivity occurred in the initial condition. Initial fuel enrichment was therefore reduced from 20% to 4.65% to counter the initial excess reactivity. The operation period was reduced by the decrease of initial fuel enrichment, but the maximum discharged burnup was 198 GWd/t. Burnup performance of ROX fuel in this reactor concept was compared with that of UO 2 fuel obtained previously. Discharged burnup for ROX fuel in the PBR with an accumulative fuel loading scheme was as high as UO 2 fuel. Maximum power density could be lowered by introducing ROX fuel compared to UO 2 fuel. However, PBR core lifetime was shorter with ROX fuel than with UO 2 fuel. A negative temperature coefficient was achieved for both UO 2 and ROX fuels throughout the operation period.

  7. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  8. HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Veyo

    1998-09-01

    During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

  9. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  10. Effects of Transverse Power Distribution on Fuel Temperature

    International Nuclear Information System (INIS)

    Jo, Daeseong; Park, Jonghark; Seo, Chul Gyo; Chae, Heetaek

    2014-01-01

    In the present study, transverse power distributions with segments of 4 and 18 are evaluated. Based on the power distribution, the fuel temperatures are evaluated with a consideration of lateral heat conduction. In the present study, the effect of the transverse power distribution on the fuel temperature is investigated. The transverse power distributions with variation of fuel segment number are evaluated. The maximum power peaking with 12 segments is higher than that with 4 segments. Based on the calculation, 6-order polynomial is generated to express the transverse power distributions. The maximum power peaking factor increases with segments. The averaged power peaking is 2.10, and the maximum power peaking with 18 segments is 2.80. With the uniform power distribution, the maximum fuel temperature is found in the middle of the fuel. As the power near the side ends of the fuel increases, the maximum fuel temperature is found near the side ends. However, the maximum fuel temperature is not found where the maximum transverse power is. This is because the high power locally released from the edge of the fuel is laterally conducted to the cladding. As a result of the present study, it can be concluded that the effect of the high power peaking at the edge of the fuel on the fuel outer wall temperature is not significant

  11. Nuclear design for high temperature gas cooled reactor (GTHTR300C) using MOX fuel

    International Nuclear Information System (INIS)

    Mouri, Tomoaki; Kunitomi, Kazuhiko

    2008-01-01

    A design study of the hydrogen cogeneration high temperature gas cooled reactor (GTHTR300C) that can produce both electricity and hydrogen has been carried out in Japan Atomic Energy Agency. The GTHTR300C is the system with thermal power of 600MW and reactor outlet temperature of 950degC, which is expected to supply the hydrogen to fuel cell vehicles after 2020s. In future, the full deployment of fast reactor cycle without natural uranium will demand the use of Mixed-Oxide (MOX) fuels in the GTHTR300C. Therefore, a nuclear design was performed to confirm the feasibility of the reactor core using MOX fuels. The designed reactor core has high performance and meets safety requirements. In this paper, the outline of the GTHTR300C and the nuclear design of the reactor core using MOX fuels are described. (author)

  12. Temperature behavior of 12 wt.% U TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Levine, S H; Geisler, G C; Totenbier, R E [Pennsylvania State University (United States)

    1974-07-01

    Stainless steel clad 12 wt % U TRIGA fuel elements have been used to refuel the Penn State University's Breazeale Reactor (PSBR). When 12 wt % U fuel containing nominally 55 gms of {sup 235}U per fuel element is substituted for the 8.5 wt % U fuel containing nominally 38 gms {sup 235}U, higher fuel temperatures were produced in the 12 wt % U fuel than in the 8.5 wt % U fuel at the same reactor powers. The higher fuel temperature can be related to the higher power densities in the 12 wt % U fuel. The power density is calculated to be 35% higher in the 12 wt % U fuel when 6 of these fuel elements are substituted for 8.5 wt % U fuel in the innermost ring, the B ring. Temperatures have been calculated for the 12 wt % U fuel in the above configuration for both steady state and pulse conditions, assuming a 35% higher fuel density in the 12 wt % U fuel and the results compare favorably with the experimental measurements. This is particularly true when the comparison is made with temperature data taken after exposing the new fuel elements to a series of pulses. These calculations and data will be presented at the meeting. (author)

  13. Micro-Solid Oxide Fuel Cell: A multi-fuel approach for portable applications

    International Nuclear Information System (INIS)

    Patil, Tarkeshwar C.; Duttagupta, Siddhartha P.

    2016-01-01

    Highlights: • We report the oxygen ion transport properties at the electrode–electrolyte interface (EEI) of the SOFC for the first time. • This ion transport plays a key role in the overall performance of SOFCs with different fuels. • The GIIB mechanism is also studied for the first time. • GIIB is assumed to be the prime reason for low power density and ion conductivity at the EEI when using hydrocarbon fuels. • Due to its scalability, a fuel cell can serve as a power source for on-chip applications and all portable equipment. - Abstract: The impact of oxygen ion transport at the electrolyte–electrode interface of a micro-solid oxide fuel cell using different fuels is investigated. Model validation is performed to verify the results versus the reported values. Furthermore, as the hydrogen-to-carbon ratio decreases, the diffusivity of the oxygen ion increases. This increase in diffusivity is observed because the number of hydrogen atoms available as the reacting species increases in fuels with lower hydrogen-to-carbon ratios. The oxygen ion conductivity and output power density decrease as the hydrogen-to-carbon ratio of the fuels decreases. The reason behind this impact is the formation of a gas-induced ion barrier at the electrode–electrolyte interface by the CO_2 molecules formed during the reaction at the interface, thus blocking the flow of oxygen ions. As the oxygen ions become blocked, the output current contribution from the reaction also decreases and thereby affects the overall performance of the micro-solid oxide fuel cell. The experimental verification confirms this because of a significant decrease in the output power density. Furthermore, as per the application in portable devices, the appropriate choice of fuel can be chosen so that the micro-solid oxide fuel cell operates at the maximum power density.

  14. Physical and chemical analysis of interaction between oxide fuel and pyrocarbon coating of coated particles

    International Nuclear Information System (INIS)

    Lyutikov, R.A.; Kromov, Yu.F.; Chernikov, A.S.

    1991-01-01

    In terms of the model proposed the equilibrium pressure of gases (CO, Kr, Xe) in pyrocarbon-coated uranium dioxide fuel particles has been calculated, as function of the initial composition of the fuel (O/U), the design features of the coated particles, the fuel temperature, and the burnup. The possibility of reducing gas pressure in the particles by alloying the kernels with uranium carbide, and increasing the kernel capacity for retention of solid fission products by alloying the uranium oxide with aluminum-silicates, has been investigated. (author)

  15. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    Science.gov (United States)

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  16. Thulium oxide fuel characterization study (thulium-170 fueled capsule parametric design)

    Energy Technology Data Exchange (ETDEWEB)

    DesChamps, N.H.

    1968-10-01

    A doubly encapsulated thulia wafer, i.e., individually lined wafers stacked one upon another inside a fuel capsule was studied. The temperature profiles were determined for thulia power densities ranging from 8 to 24 W/cc and fuel capsule surface temperatures ranging from 1000/sup 0/F (538/sup 0/C) to 2000/sup 0/F (1093/sup 0/C). Parametric studies were also carried out on a singly encapsulated configuration in which the thulia wafers were stacked face to face in an infinitely long, lined cylinder. The doubly encapsulated wafer configuration yielded a lower centerline temperature than the singly encapsulated capsule. Only in extreme cases of a large wafer diameter in combination with a high thulia power density did the fuel capsule centerline temperature exceed the thulia melt temperature of 4172/sup 0/F (2300/sup 0/C). Results are also given for the maximum radius attainable without having centerline melting when using a thulia microsphere fuel form.

  17. Quality Assurance of Solid Oxide Fuel Cell (SOFC) and Electrolyser (SOEC) Stacks

    DEFF Research Database (Denmark)

    Lang, Michael; Auer, Corinna; Couturier, Karine

    2017-01-01

    In the EU-funded project “Solid oxide cell and stack testing and quality assurance” (SOCTESQA) standardized and industry wide test modules and programs for high temperature solid oxide cells and stacks are being developed. These test procedures can be applied for the fuel cell (SOFC......), the electrolysis (SOEC) and in the combined SOFC/SOEC mode. In order to optimize the test modules the project partners have tested identical SOC stacks with the same test programs in several testing campaigns. Altogether 10 pre-normative test modules were developed: Start-up, current-voltage characteristics...

  18. Literature review of thermal and radiation performance parameters for high-temperature, uranium dioxide fueled cermet materials

    International Nuclear Information System (INIS)

    Haertling, C.; Hanrahan, R.J.

    2007-01-01

    High-temperature fissile-fueled cermet literature was reviewed. Data are presented primarily for the W-UO 2 as this was the system most frequently studied; other reviewed systems include cermets with Mo, Re, or alloys as a matrix. Failure mechanisms for the cermets are typically degradation of mechanical integrity and loss of fuel. Mechanical failure can occur through stresses produced from dissimilar expansion coefficients, voids created from diffusion of dissimilar materials or formation of metal hydride and subsequent volume expansion. Fuel loss failure can occur by high temperature surface vaporization or by vaporization after loss of mechanical integrity. Techniques found to aid in retaining fuel include the use of coatings around UO 2 fuel particles, use of oxide stabilizers in the UO 2 , minimizing grain sizes in the metal matrix, minimizing impurities, controlling the cermet sintering atmosphere, and cladding around the cermet

  19. Kinetic Studies on State of the Art Solid Oxide Cells – A Comparison between Hydrogen/Steam and Reformate Fuels

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen/steam and refor......Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen....../steam fuel split into two processes with opposing temperature behavior in the reformate fuels. An 87.5% reduction in active electrode area diminishes the gas conversion impedance in the hydrogen/steam fuel at high fuel flow rates. In both reformates, the second and third lowest frequency processes merged...

  20. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Post test investigations of bundle test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Buescher, B.

    1986-11-01

    This KfK report describes the post test investigation of bundle experiment ESBU-2a. ESBU-2a was the second of two bundle tests on the temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of the program of out-of-pile experiments performed within the frame work of the PNS-Severe Fuel Damage program. The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators (central tungsten heater, UO 2 -ring pellet and zircaloy cladding). The length was 0.4 meter. The bundle was heated to a maximum temperature of 2175 0 C. Molten cladding which dissolved part of the UO 2 pellets and slumped away from the already oxidized cladding formed a lump in the lower part of the bundle. After the test the bundle was embedded in epoxy and sectioned with a diamand saw, in the region of the refrozen melt. The cross sections were investigated by metallographic examination. The refrozen (U,Zr,O) melt consists variously of three phases with increasing oxygen content (metallic α-Zry, metallic (U,Zr) alloy and a (U,Zr)O 2 mixed oxide), two phases (α-Zry, (U,Zr)O 2 mixed oxide), or one phase ((U,Zr)O 2 mixed oxide). The cross sections show the increasing oxidation of the cladding with increasing elevation (temperature). A strong azimuthal dependency of the oxidation is found. In regions where the initial oxidized cladding is contacted by the melt one can recognize the interaction between the metallic melt and ZrO 2 of the cladding. Oxygen is taken away from the ZrO 2 . If the melt is in direct contact with steam a relatively well defined oxide layer is formed. (orig.) [de

  1. Diesel engine performance as influenced by fuel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, H.R.; Best, W.D.; Monroe, G.E.

    1986-11-01

    The effects of diesel fuel temperature on the efficiency of a 4.4-L diesel engine were studied. Fuel temperatures of 41, 67, and 81 C were used with engine loads of 0 to 100% of full load at three engine frequencies. Regression equations were developed that predicted fuel economy as a function of PTO power at three engine frequencies. An increase in engine fuel temperature did not improve fuel economy, but did result in reduced fuel mass flow through the injector pump and reduced maximum PTO power. Reducing engine frequency improved fuel economy and supported the 'throttle back shift up' technique for saving fuel. 4 figs., 1 tab., 11 refs.

  2. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  3. Hydrogen sulfide-powered solid oxide fuel cells

    Science.gov (United States)

    Liu, Man

    2004-12-01

    The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts

  4. CFD Analysis of the Fuel Temperature in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Chun, T. H.; Lee, W. J.; Chang, J. H.

    2005-01-01

    High temperature gas-cooled reactors (HTGR) have received a renewed interest as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor (PBR) and a prismatic modular reactor (PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both PBR and PMR. The objective of this study is to predict the fuel temperature distributions in PBR and PMR using a computational fluid dynamics(CFD) code, CFX-5. The reference reactor designs used in this analysis are PBMR400 and GT-MHR600

  5. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  6. Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights September 2010

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Besmann, Theodore M.; Collins, Emory D.; Bell, Gary L.

    2010-01-01

    The DB Program monthly highlights report for August 2010, ORNL/TM-2010/184, was distributed to program participants by email on September 17. This report discusses: (1) Core and Fuel Analysis - (a) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Prismatic Design (Logos), (b) Core Design Optimization in the HTR Pebble Bed Design (INL), (c) Microfuel analysis for the DB HTR (INL, GA, Logos); (2) Spent Fuel Management - (a) TRISO (tri-structural isotropic) repository behavior (UNLV), (b) Repository performance of TRISO fuel (UCB); (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor) - Synergy with other reactor fuel cycles (GA, Logos); (4) TRU (transuranic elements) HTR Fuel Qualification - (a) Thermochemical Modeling, (b) Actinide and Fission Product Transport, (c) Radiation Damage and Properties; (5) HTR Spent Fuel Recycle - (a) TRU Kernel Development (ORNL), (b) Coating Development (ORNL), (c) Characterization Development and Support, (d) ZrC Properties and Handbook; and (6) HTR Fuel Recycle - (a) Graphite Recycle (ORNL), (b) Aqueous Reprocessing, (c) Pyrochemical Reprocessing METROX (metal recovery from oxide fuel) Process Development (ANL).

  7. An oxidative desulfurization method using ultrasound/Fenton's reagent for obtaining low and/or ultra-low sulfur diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yongchuan; Qi, Yutai [Department of Applied Chemistry, School of Science, Harbin Institute of Technology, Harbin 115001 (China); Zhao, Dezhi [Department of Petroleum Chemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Zhang, Huicheng [Fushun Research Institute of Petroleum and Petrochemicals of SINOPEC Corp., Fushun 113001 (China)

    2008-10-15

    The total development trend in the world is towards continuously lower of sulfur content as a quality standard of diesel fuels. Integrating of an oxidative desulfurization unit with a conventional hydrotreating unit can bring benefits to producing low and/or ultra-low sulfur diesel fuels. Using the hydrotreated Middle East diesel fuel as a feedstock, four processes of the oxidative desulfurization have been studied: a hydrogen peroxide-acetic acid system and a Fenton's reagent system both without/with ultrasound. Results showed that the oxidative desulfurization reaction mechanics fitted apparent first-order kinetics. The addition of Fenton's reagent could enhance the oxidative desulfurization efficiency for diesel fuels and sono-oxidation treatment in combination with Fenton's reagent shows a good synergistic effect. Under our best operating condition for the oxidative desulfurization: temperature 313 K, ultrasonic power 200 W, ultrasonic frequency 28 kHz, Fe{sup 2+}/H{sub 2}O{sub 2} 0.05 mol/mol, pH 2.10 in aqueous phase and reaction time 15 min, the sulfur content in the diesel fuels was decreased from 568.75 {mu}g/g to 9.50 {mu}g/g. (author)

  8. Irradiation of inert matrix and mixed oxide fuel in the Halden test reactor

    International Nuclear Information System (INIS)

    Hellwig, Ch.; Kasemeyer, U.

    2001-01-01

    In a new type of fuel, called Inert Matrix Fuel (IMF), plutonium is embedded in a U-free matrix. This offers advantages for more efficient plutonium consumption, higher proliferation resistance, and for inert behaviour later in a waste repository. In the fuel type investigated at PSI, plutonium is dissolved in yttrium-stabilized zirconium oxide (YSZ), a highly radiation-resistant cubic phase, with addition of erbium as burnable poison for reactivity control. A first irradiation experiment of YSZ-based IMF is ongoing in the OECD Material Test Reactor in Halden (HBWR), together with MOX fuel (Rig IFA-651.1). The experiment is described herein and results are presented of the first 120 days of irradiation with an average assembly burnup of 47 kWd/cm 3 . The results are compared with neutronic calculations performed before the experiment, and are used to model the fuel behaviour with the PSI-modified TRANSURANUS code. The measured fuel temperatures are within the expected range. An unexpectedly strong densification of the IMF during the first irradiation cycle does not alter the fuel temperatures. An explanation for this behaviour is proposed. The irradiation at higher linear heat rates during forthcoming cycles will deliver information about the fission gas release behaviour of the IMF. (author)

  9. Irradiation of inert matrix and mixed oxide fuel in the Halden test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hellwig, Ch.; Kasemeyer, U

    2001-03-01

    In a new type of fuel, called Inert Matrix Fuel (IMF), plutonium is embedded in a U-free matrix. This offers advantages for more efficient plutonium consumption, higher proliferation resistance, and for inert behaviour later in a waste repository. In the fuel type investigated at PSI, plutonium is dissolved in yttrium-stabilized zirconium oxide (YSZ), a highly radiation-resistant cubic phase, with addition of erbium as burnable poison for reactivity control. A first irradiation experiment of YSZ-based IMF is ongoing in the OECD Material Test Reactor in Halden (HBWR), together with MOX fuel (Rig IFA-651.1). The experiment is described herein and results are presented of the first 120 days of irradiation with an average assembly burnup of 47 kWd/cm{sup 3}. The results are compared with neutronic calculations performed before the experiment, and are used to model the fuel behaviour with the PSI-modified TRANSURANUS code. The measured fuel temperatures are within the expected range. An unexpectedly strong densification of the IMF during the first irradiation cycle does not alter the fuel temperatures. An explanation for this behaviour is proposed. The irradiation at higher linear heat rates during forthcoming cycles will deliver information about the fission gas release behaviour of the IMF. (author)

  10. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  11. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  12. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  13. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-01-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium. (author)

  14. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium

  15. Determination of melting point of mixed-oxide fuel irradiated in a fast breeder reactor

    International Nuclear Information System (INIS)

    Tachibana, Toshimichi

    1985-01-01

    The melting point of fuel is important to set its in-reactor maximum temperature in fuel design. The fuel melting point measuring methods are broadly the filament method and the capsule sealing method. The only instance of measuring the melting point of irradiated mixed oxide (U, Pu)O 2 fuel by the filament method is by GE in the United States. The capsule sealing method, while the excellent means, is difficult in weld sealing the irradiated fuel in a capsule within the cell. In the fast reactor development program, the remotely operated melting point measuring apparatus in capsule sealing the mixed (U, Pu)O 2 fuel irradiated in the experimental FBR Joyo was set in the cell and the melting point was measured, for the first time in the world. (Mori, K.)

  16. Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Cai, Yixiao; Wang, Baoyuan; Wang, Yi; Xia, Chen; Qiao, Jinli; van Aken, Peter A.; Zhu, Bin; Lund, Peter

    2018-04-01

    YSZ as the electrolyte of choice has dominated the progressive development of solid oxide fuel cell (SOFC) technologies for many years. To enable SOFCs operating at intermediate temperatures of 600 °C or below, major technical advances were built on a foundation of a thin-film YSZ electrolyte, NiO anode, and perovskite cathode, e.g. La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF). Inspired by functionalities in engineered heterostructure interfaces, the present work uses the components from state-of-the-art SOFCs, i.e, the anode NiO-YSZ and the cathode LSCF-YSZ, or the convergence of all three components, i.e., NiO-YSZ-LSCF, to fabricate semiconductor-ionic membranes (SIMs) and devices. A series of proof-of-concept fuel cell devices are designed by using each of the above SIMs sandwiched between two semiconducting Ni0.8Co0.15Al0.05LiO2-δ (NCAL) layers. We systematically compare these novel designs at 600 °C with two reference fuel cells: a commercial product of anode-supported YSZ electrolyte thin-film cell, and a lab-assembled fuel cell with a conventional configuration of NiO-YSZ (anode)/YSZ (electrolyte)/LSCF-YSZ (cathode). In comparison to the reference cells, the SIM device in a configuration of NCAL/NiO-YSZ-LSCF/NCAL reaches more than 3-fold enhancement of the maximum power output. By using spherical aberration-corrected transmission electron microscopy and spectroscopy approaches, this work offers insight into the mechanisms underlying SIM-associated SOFC performance enhancement.

  17. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  18. Results of the post-irradiation examination of a highly-rated mixed oxide fuel rod from the Mol 7B experiment

    International Nuclear Information System (INIS)

    Coquerelle, M.; Walker, C.T.; Whitlow, W.H.

    1980-01-01

    The experiment MOL 7B was carried out in a epithermal flux in the Belgian reactor BR2. The pin examined contained fuel of initial composition (Usub(0.7)Pusub(0.3))Osub(1.98). It had been irradiated to a maximum burn-up of 13.2 at% at a maximum linear power of 568Wcm -1 . The fuel was clad with coldworked stainless steel. Electron microprobe analysis indicated that a Cr 2 O 3 type oxide was the main constituent of the grey phases in the gap. A metallic phase on the fuel surface had apparently resulted from the mechanical compaction of fragments of cladding that had been depleted in chromium by oxidation. Thus the main components of the phase were iron and nickel. Chromium loss from the inner cladding surface was significant only in the upper regions of the pin. In pin sections that were metallographically examined sigma phase and carbides of the type M 23 C 6 were present at the grain boundaries of the cladding. Cladding corrosion was not an Arrhenius function of the cladding temperature: the amount of metal lost from the inner cladding surface decreased with rise in cladding temperature above 910 K. A contributor to metal loss was the mechanical detachment of fragments of cladding which reformed as a metallic layer on the surface of the fuel. Chromium depletion and sigma phase formation at grain boundaries lowered the cohesive forces between grains which were then mechanically detached. Chromium loss from grain boundaries is mainly the results of oxidation of the cladding by the mixed oxide fuel. Data are presented to support the view that the local average O/M of the fuel determined the rate of oxidation and consequently the extent of chromium depletion. Fuel-cladding mechanical interactions were weak in the upper regions of the pin where metal loss was small

  19. Fuel-sodium reaction product formation in breached mixed-oxide fuel

    International Nuclear Information System (INIS)

    Bottcher, J.H.; Lambert, J.D.B.; Strain, R.V.; Ukai, S.; Shibahara, S.

    1988-01-01

    The run-beyond-cladding-breach (RBCB) operation of mixed-oxide LMR fuel pins has been studied for six years in the Experimental Breeder Reactor-II (EBR-II) as part of a joint program between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan. The formation of fuel-sodium reaction product (FSRP), Na 3 MO 4 , where M = U/sub 1-y/Pu/sub y/, in the outer fuel regions is the major phenomenon governing RBCB behavior. It increases fuel volume, decreases fuel stoichiometry, modifies fission-product distributions, and alters thermal performance of a pin. This paper describes the morphology of Na 3 MO 4 observed in 5.84-mm diameter pins covering a variety of conditions and RBCB times up to 150 EFPD's. 8 refs., 1 fig

  20. Spectroelectrochemical cell for in situ studies of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Hagen, Anke; Lund Traulsen, Marie; Kiebach, Wolff-Ragnar; Johansen, Bjoern Sejr

    2012-01-01

    Solid oxide fuel cells (SOFCs) are able to produce electricity and heat from hydrogen- or carbon-containing fuels with high efficiencies and are considered important cornerstones for future sustainable energy systems. Performance, activation and degradation processes are crucial parameters to control before the technology can achieve breakthrough. They have been widely studied, predominately by electrochemical testing with subsequent micro-structural analysis. In order to be able to develop better SOFCs, it is important to understand how the measured electrochemical performance depends on materials and structural properties, preferably at the atomic level. A characterization of these properties under operation is desired. As SOFCs operate at temperatures around 1073 K, this is a challenge. A spectroelectrochemical cell was designed that is able to study SOFCs at operating temperatures and in the presence of relevant gases. Simultaneous spectroscopic and electrochemical evaluation by using X-ray absorption spectroscopy and electrochemical impedance spectroscopy is possible. (orig.)

  1. A novel approach to model the transient behavior of solid-oxide fuel cell stacks

    Science.gov (United States)

    Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf

    2012-09-01

    This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.

  2. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  3. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  4. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  5. Mechanistic modelling of a cathode-supported tubular solid oxide fuel cell

    Science.gov (United States)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M. D.; Fowler, M. W.; Douglas, P. L.; Entchev, E.

    A two-dimensional mechanistic model of a tubular solid oxide fuel cell (SOFC) considering momentum, energy, mass and charge transport is developed. The model geometry of a single cell comprises an air-preheating tube, air channel, fuel channel, anode, cathode and electrolyte layers. The heat radiation between cell and air-preheating tube is also incorporated into the model. This allows the model to predict heat transfer between the cell and air-preheating tube accurately. The model is validated and shows good agreement with literature data. It is anticipated that this model can be used to help develop efficient fuel cell designs and set operating variables under practical conditions. The transport phenomena inside the cell, including gas flow behaviour, temperature, overpotential, current density and species concentration, are analysed and discussed in detail. Fuel and air velocities are found to vary along flow passages depending on the local temperature and species concentrations. This model demonstrates the importance of incorporating heat radiation into a tubular SOFC model. Furthermore, the model shows that the overall cell performance is limited by O 2 diffusion through the thick porous cathode and points to the development of new cathode materials and designs being important avenues to enhance cell performance.

  6. New Approach to Study the Ignition Processes of Organic Coal-Water Fuels in an Oxidizer Flow

    Directory of Open Access Journals (Sweden)

    Valiullin T.R.

    2016-01-01

    Full Text Available To converge the conditions of organic water-coal fuel composition combustion in the typical power equipment we developed a new approach and installed an experimental setup, eliminating the traditional fixing the fuel droplets on the thermocouples or rods. Specialized cone-shaped chamber was used to implement the process of lingering of organic water-coal fuel droplets. Necessary and sufficient conditions for the lingering of organic water-coal fuel droplets were established. We determined the parameters of the system (droplet size of 0.4-0.6 mm, temperatures 823-903 K and the velocity of the oxidizer flow 1.5-6 m/s at which the droplets were consistently ignited in the process of lingering. Minimum temperatures and ignition delay times of organic water-coal fuel droplets based on brown coal, used motor, turbine, transformer oils, kerosene, gasoline and water were defined.

  7. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  8. Durability of solid oxide fuel cells using sulfur containing fuels

    DEFF Research Database (Denmark)

    Hagen, Anke; Rasmussen, Jens Foldager Bregnballe; Thydén, Karl Tor Sune

    2011-01-01

    The usability of hydrogen and also carbon containing fuels is one of the important advantages of solid oxide fuel cells (SOFCs), which opens the possibility to use fuels derived from conventional sources such as natural gas and from renewable sources such as biogas. Impurities like sulfur compounds...... are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24h and for a few hundred hours. In a fuel...

  9. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming

    International Nuclear Information System (INIS)

    Ni, Meng

    2013-01-01

    Highlights: ► A 2D model is developed for solid oxide fuel cells (SOFCs). ► CH 4 reforming by CO 2 (MCDR) is included. ► SOFC with MCDR shows comparable performance with methane steam reforming SOFC. ► Increasing CO electrochemical oxidation greatly enhances the SOFC performance. ► Effects of potential and temperature on SOFC performance are also discussed. - Abstract: A two-dimensional model is developed to simulate the performance of solid oxide fuel cells (SOFCs) fed with CO 2 and CH 4 mixture. The electrochemical oxidations of both CO and H 2 are included. Important chemical reactions are considered in the model, including methane carbon dioxide reforming (MCDR), reversible water gas shift reaction (WGSR), and methane steam reforming (MSR). It’s found that at a CH 4 /CO 2 molar ratio of 50/50, MCDR and reversible WGSR significantly influence the cell performance while MSR is negligibly small. The performance of SOFC fed with CO 2 /CH 4 mixture is comparable to SOFC running on CH 4 /H 2 O mixtures. The electric output of SOFC can be enhanced by operating the cell at a low operating potential or at a high temperature. In addition, the development of anode catalyst with high activity towards CO electrochemical oxidation is important for SOFC performance enhancement. The model can serve as a useful tool for optimization of the SOFC system running on CH 4 /CO 2 mixtures

  10. Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2017-01-01

    An innovative study on anode recirculation in solid oxide fuel cell systems with alternative fuels is carried out and investigated. Alternative fuels under study are ammonia, pure hydrogen, methanol, ethanol, DME and biogas from biomass gasification. It is shown that the amount of anode off......%. Furthermore, it is founded that for the case with methanol, ethanol and DME then at high utilization factors, low anode recirculation is recommended while at low utilization factors, high anode recirculation is recommended. If the plant is fed by biogas from biomass gasification then for each utilization...

  11. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.

    Science.gov (United States)

    Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C

    2013-04-18

    Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

  12. Out-of-pile experiments on the high-temperature behavior of Zircaloy-4 clad fuel rods

    International Nuclear Information System (INIS)

    Hagen, S.

    1984-01-01

    Out-of-pile experiments have been performed to investigate the escalation in temperature of Zircaloy-clad fuel rods during heatup in steam due to the exothermal Zircaloy steam reaction. In these tests single Zircaloy/uranium dioxide (UO 2 ) fuel rod simulators surrounded with a Zircaloy shroud--simulating the Zircaloy of neighboring rods--were heated inside a fiber ceramic insulation. The initial heating rates were varied from 0.3 to 2.5 K/s. In every test an escalation of the temperature rise rate was observed. The maximum measured surface temperature was about 2200 0 C. The temperature decreased after the maximum had been reached without decreasing the input electric power. The temperature decreases were due to inherent processes including the runoff of molten Zircaloy. The escalation process was influenced by the temperature behavior of the shroud, which was itself affected by the insulation and steam cooling. Damage to the fuel rods increased with increasing heatup rate. Fro slow heatup rates nearly no interaction between the oxidized cladding and UO 2 was observed, while for fast heatup rates the entire annular pellet was dissolved by molten Zircaloy

  13. Thermal stress analysis of sulfur deactivated solid oxide fuel cells

    Science.gov (United States)

    Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.

  14. Thermal aspects of mixed oxide fuel in application to supercritical water-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grande, L.; Peiman, W.; Rodriguez-Prado, A.; Villamere, B.; Mikhael, S.; Allison, L.; Pioro, I., E-mail: lisa.grande@mycampus.uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada)

    2010-07-01

    SuperCritical Water-cooled nuclear Reactors (SCWRs) are a renewed technology being developed as one of the Generation IV reactor concepts. This reactor type uses a light water coolant at temperatures and pressures above its critical point. These elevated operating conditions will improve Nuclear Power Plant (NPP) thermal efficiencies by 10 - 15% compared to those of current NPPs. Also, SCWRs will have the ability to utilize a direct cycle, thus decreasing NPP capital and operational costs. The SCWR core has 2 configurations: 1) Pressure Vessel (PV) -type enclosing a fuel assembly and 2) Pressure Tube (PT) -type consisting of individual pressurized channels containing fuel bundles. Canada and Russia are developing PT-type SCWRs. In particular, the Canadian SCWR reactor has an output of 1200 MW{sub el} and will operate at a pressure of 25 MPa with inlet and outlet fuel-channel temperatures of 350 and 625°C, respectively. These extreme operating conditions require alternative fuels and materials to be investigated. Current CANadian Deuterium Uranium (CANDU) nuclear reactor fuel-channel design is based on the use of uranium dioxide (UO{sub 2}) fuel; zirconium alloy sheath (clad) bundle, pressure and calandria tubes. Alternative fuels should be considered to supplement depleting world uranium reserves. This paper studies general thermal aspects of using Mixed OXide (MOX) fuel in an Inconel-600 sheath in a generic PT-type SCWR. The bulk fluid, sheath and fuel centerline temperatures along with the Heat Transfer Coefficient (HTC) profiles were calculated at uniform and non-uniform Axial Heat Flux Profiles (AHFPs). (author)

  15. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  16. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Ha; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O{sub 2} and (U,TRU)O{sub 2} which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O{sub 2}, (Th,Pu)O{sub 2} and (Th,TRU)O{sub 2}, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  17. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Jin Ha; Kim, Myung Hyun

    2016-01-01

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O_2 and (U,TRU)O_2 which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O_2, (Th,Pu)O_2 and (Th,TRU)O_2, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  18. The neutronic and fuel cycle performance of interchangeable 3500 MWth metal and oxide fueled LMRs

    International Nuclear Information System (INIS)

    Fujita, E.K.; Wade, D.C.

    1990-01-01

    This study summarizes the neutronic and fuel cycle analysis performed at Argonne National Laboratory for an oxide and a metal fueled 3500 MWth LMR. These reactor designs formed the basis for a joint US/European study of LMR ATWS events. The oxide and metal core designs were developed to meet reactor performance specifications that are constrained by requirements for core loading interchangeability and for a small burnup reactivity swing. Differences in the computed performance parameters of the oxide and metal cores, arising from basic differences in their neutronic characteristics, are identified and discussed. It is shown that metal and oxide cores designed to the same ground rules exhibit many similar performance characteristics; however, they differ substantially in reactivity coefficients, control strategies, and fuel cycle options. 12 refs., 2 figs., 12 tabs

  19. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  20. Temperature Calculation of Annular Fuel Pellet by Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.

  1. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun, E-mail: pdj@kaeri.re.kr; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-15

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility. - Highlights: • Cr and FeCrAl were coated onto Zr fuel cladding for light water nuclear reactors. • Mo layer between FeCrAl and Zr prevented inter-diffusion at high temperatures. • Coated claddings were tested under loss-of-cooling accident conditions. • Coating improved high-temperature oxidation resistance and mechanical properties.

  2. Oxide thickness measurement for monitoring fuel performance at high burnup

    International Nuclear Information System (INIS)

    Jaeger, M.A.; Van Swam, L.F.P.; Brueck-Neufeld, K.

    1991-01-01

    For on-site monitoring of the fuel performance at high burnup, Advanced Nuclear Fuels uses the linear scan eddy current method to determine the oxide thickness of irradiated Zircaloy fuel cans. Direct digital data acquisition methods are employed to collect the data on magnetic storage media. This field-proven methodology allows oxide thickness measurements and rapid interpretation of the data during the reactor outages and makes it possible to immediately reinsert the assemblies for the next operating cycle. The accuracy of the poolside measurements and data acquisition/interpretation techniques have been verified through hot cell metallographic measurements of rods previously measured in the fuel pool. The accumulated data provide a valuable database against which oxide growth models have been benchmarked and allow for effective monitoring of fuel performance. (orig.) [de

  3. Critical experiments with mixed oxide fuel

    International Nuclear Information System (INIS)

    Harris, D.R.

    1997-01-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er 2 O 3 at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs

  4. Production of membrane-electrode assemblies to be used in high temperature solid oxide fuel cells; Producao de conjugados eletrolito-eletrodos para pilhas a combustivel de oxido solido de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos, Pedro R.; Silva, Gilmar Clemente; Miranda, Paulo Emilio V. de [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais. Lab. de Hidrogenio], e-mail: vlobos@labh2.coppe.ufrj.br

    2004-07-01

    This article describes the production and characterization of membrane-electrode assemblies to be used in high temperature solid oxide fuel cells. The single cells produced were characterized using scanning electron microscopy and X ray diffractometry, seeking the morphological characterization of the complete device and to verify the stability of the materials used with respect to the processing conditions. (author)

  5. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts

    Science.gov (United States)

    Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.

    Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.

  6. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well.

  7. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Directory of Open Access Journals (Sweden)

    Yi-Man Lo

    2011-02-01

    Full Text Available Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM, with the relevant parameters optimized as well.

  8. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    Science.gov (United States)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  9. The Assessment Of High Temperature Reactor Fuel (Characteristics Of HTTR Fuel)

    International Nuclear Information System (INIS)

    Dewita, Erlan; Tuka, Veronica; Gunandjar

    1996-01-01

    HTTR is one of the reactor type with Helium coolant and outlet coolant temperature of 950 o C. One possibility of HTTR application is the coo generation of steam in high temperature and electric power for supply energy to industry in the future. Considering to the high operating temperature of HTTR, therefore it is needed the reactor fuel which have good mechanical, chemical and physical stability to the high temperature, and stable to the influence of fission fragment and neutron during irradiation. This assessment of the HTTR fuel characteristic based on the experiment data to find information of HTTR operation feasibility. Result of the assessment indicated that fission gas release at burn-up of 3.6 % FIMA which was the same as the maximum burn up in the HTTR design was fairly lower than the maximum release estimated in the design (5 x 10 - 4), which is R/B from the fuel fabricated by the prismatic block fuel method would be low (between 10 - 9 dan 10 - 8)

  10. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    Science.gov (United States)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  11. Oxidative dissolution of ADOPT compared to standard UO2 fuel

    International Nuclear Information System (INIS)

    Nilsson, Kristina; Roth, Olivia; Jonsson, Mats

    2017-01-01

    In this work we have studied oxidative dissolution of pure UO 2 and ADOPT (UO 2 doped with Al and Cr) pellets using H 2 O 2 and gammaradiolysis to induce the process. There is a small but significant difference in the oxidative dissolution rate of UO 2 and ADOPT pellets, respectively. However, the difference in oxidative dissolution yield is insignificant. Leaching experiments were also performed on in-reactor irradiated ADOPT and UO 2 pellets under oxidizing conditions. The results indicate that the U(VI) release is slightly slower from the ADOPT pellet compared to the UO 2. This could be attributed to differences in exposed surface area. However, fission products with low UO 2 solubility display a higher relative release from ADOPT fuel compared to standard UO 2 -fuel. This is attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel. The release of Cs is higher from UO 2 which is attributed to the larger grain size of ADOPT. - Highlights: •Oxidative dissolution of ADOPT fuel is compared to standard UO 2 fuel. •Only marginal differences are observed. •The main difference observed is in the relative release rate of fission products. •Differences are claimed to be attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel.

  12. Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach

    DEFF Research Database (Denmark)

    Esposito, L.; Boccaccini, D. N.; Pucillo, G. P.

    2017-01-01

    The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled...... as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram...... in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere....

  13. The interpretation of fuel centre temperature measurements on a suspected leaking fuel pin

    International Nuclear Information System (INIS)

    Ainscough, J.B.; Lang, C.; Clough, D.J.

    1983-01-01

    In order to study fuel densification a series of single instrumented pin irradiations has been carried out in the High Pressure Water Loop of DIDO at Harwell. The behaviour of two of these pins was different from that expected. In the fifth test, where the fuel was 95% dense pellet UO 2 and expected to densify readily in-reactor, the fuel centre temperature increased from its starting value of approx. 1300 deg. C at a rate somewhat higher than expected on the basis of predicted densification rates. After about six days, the temperature increased rapidly and unexpectedly to 2100-2200 deg. C and remained steady at this level for a further eight days until a reactor trip occurred and the pin was unloaded. Predictions made using the HOTROD code imply a maximum fuel temperature of less than 1500 deg. C after densification. Post-irradiation examination confirmed that fission gas release had occurred, that the measured temperatures were consistent with the fuel microstructure and that the pin had a high internal gas pressure. The fourth pin in the series contained 97% dense UO 2 which was also expected to be dimensionally unstable. Qualitatively its behaviour was similar to that of the fifth pin though the temperatures throughout were lower. This pin experienced a number of major power cycles and failed after about 30 days in-reactor. It is probable that coolant ingress occurred in both pins via the thermocouple Hoke seal, degrading the filling gas conductivity and allowing the fuel to densify rapidly with consequent increase in the fuel/clad gap and hence in fuel temperature. These irradiations show that, for a short time at least, an apparently unfailed pin could operate undetected with temperatures significantly higher than those predicted for normal operation. (author)

  14. A Prediction Study on Oxidation of Aluminum Alloy Cladding of U{sub 3}Si{sub 2}-Al Fuel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y.W.; Lee, B.H.; Oh, J.Y.; Park, J.H.; Yim, J.S. [Research Reactor Design and Engineering Div., Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-07-01

    U{sub 3}Si{sub 2}-Al dispersion fuel with aluminum alloy cladding will be used for the Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding undergoes corrosion at slow rates under operational status. This causes thinning of the cladding walls and impairs heat transfer to the coolant. Predictions of the aluminum oxide thickness of the fuel cladding and the maximum temperature difference across the oxide film are needed for reliability evaluation based on the design criteria and limits which prohibit spallation of oxide film. In this work, several oxide thickness prediction models were compared with the measured data of in-pile test results from RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model were performed for JRTR fuel. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, fresh fuel is discharged after 900 effective full power days (EFPD), which is too long a span to predict oxidation properly without an elaborate model. The latest model developed by Kim et al. is in good agreement with the recent in-pile test data as well as with the out-of-pile test data available in the literature, and is one of the best predictors for the oxidation of aluminum alloy cladding in various operating condition. Accordingly, this model was chosen for estimating the oxide film thickness. Through the preliminarily evaluation, water pH level is to be controlled lower than 6.2 for the conservativeness in the case of including the effect of anticipated operational occurrences and the spent fuel residence time in the storage rack after discharging. (author)

  15. Considerations in Execution of High Temperature Steam Oxidation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Andrew T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-01

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at development and qualification of so-called ‘accident tolerant’ nuclear fuel forms. Numerous criteria have been developed by which proposed systems will be investigated; foremost among these will be their resistance to oxidation at high temperatures by steamdominated atmospheres. Experimental characterization of the various proposed systems is currently ongoing at numerous national laboratories as well as at industrial and university partners using a wide range of different laboratory equipment and techniques. This requires consideration of differences that may develop among test protocols due to both intrinsic (e.g. differences between experimental capabilities) and extrinsic (e.g. methodology of test execution) factors. These are essential to understand to provide confidence across institutions in the data collected if it is used to justify resources for further investigation. The focus of this document is to provide an initial discussion of factors that may play a role in governing the observed oxidation of a test sample. It will remain up to the principle investigator to judge whether a specific factor discussed is directly applicable to the system under investigation. The purpose of the specific experiment must also guide determination of whether a given factor requires careful consideration or not.

  16. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O3-δ for electrolyte of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ishikawa, Hiroyuki; Enoki, Makiko; Ishihara, Tatsumi; Akiyama, Tomohiro

    2007-01-01

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3-δ (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm -1 and its maximum power density was a value of 245 mW cm -2 in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm 0.5 Sr 0.5 CoO 3 . The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application

  17. Spent-fuel special-studies progress report: probable mechanisms for oxidation and dissolution of single-crystal UO2 surfaces

    International Nuclear Information System (INIS)

    Wang, R.

    1981-03-01

    Due to the complexity of the structural, microstructural and compositional characteristics of spent fuel, basic leaching and dissolution mechanisms were studied with UO 2 matrix material, specifically with single-crystal UO 2 , to isolate individual contributory factors. The effects of oxidation and oxidation-dissolution were investigated in different oxidation conditions, such as in air, oxygenated solutions and deionized water containing H 2 O 2 . In addition, the effects of temperature on dissolution of UO 2 were studied in autoclaves at 75 and 150 0 C. Also, oxidation and dissolution measurements were investigated via electrochemical methods to determine if those techniques could be applied to the characterization of leaching and dissolution of spent fuel in a hot cell. Finally, the effects of radiation were explored since the radiolysis of water may create a localized oxidizing condition at or near the spent fuel-solution interface, even in neutral or reducing conditions as commonly found in deep geological environments. The oxidation and oxidation-dissolution mechanisms for UO 2 are proposed as follows: The UO 2 surface is first oxidized in solution to form a UO/sub 2+x/ surface layer several angstroms thick. This oxidized surface has a high dissolution rate since the UO/sub 2+x/ reacts with the dissolved O 2 , or H 2 O 2 , to form uranyl complex ions in a U(VI) state. As the uranyl ions exceed the solubility limits in solution, they become hydrolyzed to form solid deposits and suspended particles of UO 3 hydrates. The thickness and porosity of the deposited UO 3 hydrate surface-film is dependent on temperature, pH and deposition time. A long-term dissolution rate is then determined by the nature of the surface film, such as porosity, solubility and mechanical properties

  18. Air Oxidation Behaviors of Zircaloy-4 Cladding During a LOCA In Spent Fuel Pool

    International Nuclear Information System (INIS)

    Bang, Je Geon; Chun, Tae Hyun; Kim, Sun Ki; Koo, Yang Hyun

    2014-01-01

    It is well known that air oxidation induces a serious degradation of the Zircaloy cladding material, compared with steam oxidation. From the oxidant point of view, in comparison with steam, chemical heat release during oxidation in air is higher by 80%, which may lead to a more rapid degradation of the Zircaloy cladding, and further evolution of the accident.. Additionally, the oxidation kinetics in air is much faster than in steam due to the formation of non-protective oxide layer. From the safety point of view, the barrier effect of the cladding against release of fission products is lost much earlier in air compared to steam. The objective of this study is to investigate the oxidation behaviors of fuel cladding in two different conditions such as isothermal and transient condition and to generate its kinetic data under an accident condition in the spent fuel pool. In this study, the oxidation behaviors and its kinetics of the Zircaloy-4 were investigated in air environment for various air ingress scenarios in the temperature range 600 .deg. C-1,400 .deg. C by thermo-gravimetric analysis. In this study, the oxidation behaviors of the Zircaloy-4 for both isothermal condition and transient condition were investigated in air environment. In comparison with isothermal condition, the retardation of oxidation rate in transient condition was observed at both 1,200 .deg. C and 1,400 .deg. C. This seems to be ascribed to the effect of thin oxide formed during a heating

  19. A Graphite Oxide Paper Polymer Electrolyte for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2011-01-01

    Full Text Available A flow directed assembly of graphite oxide solution was used in the formation of free-standing graphene oxide paper of approximate thickness of 100 μm. The GO papers were characterised by XRD and SEM. Electrochemical characterization of the GO paper membrane electrode assembly revealed proton conductivities of 4.1 × 10−2 S cm−1 to 8.2 × 10−2 S cm−1 at temperatures of 25–90°C. A direct methanol fuel cell, at 60°C, gave a peak power density of 8 mW cm−2 at a current density of 35 mA cm−2.

  20. New Catalysts for Direct Methanol Oxidation Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav

    1998-08-01

    A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.

  1. The growth of necks in fuel sheaths during high temperature transients in steam

    International Nuclear Information System (INIS)

    Hunt, C.E.L.

    1980-02-01

    In fuel sheaths oxidizing under stress during a high temperature transient, diametral strain is localized in regions where the oxide film cracks. As a result, the total strain in a tube depends on the number of cracks formed. The opening of a crack and the formation of the associated neck observed on the inner surface can be described by a sequence of slip steps. The initial width of the neck is equal to twice the tube wall thickness. If oxide cracks form at a spacing less than twice the wall thickness their associated necks interact. If the cracks are close together the combined neck will have a fairly smooth profile but as the crack spacing increases the combined neck profile will roughen. For a fuel sheath of the dimensions typically used in the Pickering Nuclear Generating Station (15.24 mm OD x 0.43 mm wall) any single crack and its associated neck can contribute up to about 5% diametral strain before penetration of the wall occurs. (auth)

  2. High Temperature PEM Fuel Cells and Organic Fuels

    DEFF Research Database (Denmark)

    Vassiliev, Anton

    of the products. The observation of internal reforming was indirectly confirmed by electrochemical impedance spectroscopy, where the best fits were obtained when a Gerischer element describing preceding chemical reaction and diffusion was included in the equivalent circuit of a methanol/air operated cell...... evaporated liquid stream supply to either of the electrodes. A large number of MEAs with different component compositions have been prepared and tested in different conditions using the constructed setups to obtain a basic understanding of the nature of direct DME HT-PEM FC, to map the processes occurring...... inside the cells and to determine the lifetime. Additionally, comparison was made with methanol as fuel, which is the main competitor to DME in direct oxidation of organic fuels in fuel cells. For the reference, measurements have also been done with conventional hydrogen/air operation. All...

  3. Robust adaptive control for a hybrid solid oxide fuel cell system

    Science.gov (United States)

    Snyder, Steven

    2011-12-01

    Solid oxide fuel cells (SOFCs) are electrochemical energy conversion devices. They offer a number of advantages beyond those of most other fuel cells due to their high operating temperature (800-1000°C), such as internal reforming, heat as a byproduct, and faster reaction kinetics without precious metal catalysts. Mitigating fuel starvation and improving load-following capabilities of SOFC systems are conflicting control objectives. However, this can be resolved by the hybridization of the system with an energy storage device, such as an ultra-capacitor. In this thesis, a steady-state property of the SOFC is combined with an input-shaping method in order to address the issue of fuel starvation. Simultaneously, an overall adaptive system control strategy is employed to manage the energy sharing between the elements as well as to maintain the state-of-charge of the energy storage device. The adaptive control method is robust to errors in the fuel cell's fuel supply system and guarantees that the fuel cell current and ultra-capacitor state-of-charge approach their target values and remain uniformly, ultimately bounded about these target values. Parameter saturation is employed to guarantee boundedness of the parameters. The controller is validated through hardware-in-the-loop experiments as well as computer simulations.

  4. Nanostructured LnBaCo2O6− (Ln = Sm, Gd with layered structure for intermediate temperature solid oxide fuel cell cathodes

    Directory of Open Access Journals (Sweden)

    Augusto E. Mejía Gómez

    2017-04-01

    Full Text Available In this work, we present the combination of two characteristics that are beneficial for solid oxide fuel cell (SOFC cathodic performance in one material. We developed and evaluated for the first time nanostructured layered perovskites of formulae LnBaCo2O6-d with Ln = Sm and Gd (SBCO and GBCO, respectively as SOFC cathodes, finding promising electrochemical properties in the intermediate temperature range. We obtained those nanostructures by using porous templates to confine the chemical reagents in regions of 200-800 nm. The performance of nanostructured SBCO and GBCO cathodes was analyzed by electrochemical impedance spectroscopy technique under different operating conditions using Gd2O3-doped CeO2 as electrolyte. We found that SBCO cathodes displayed lower area-specific resistance than GBCO ones, because bulk diffusion of oxide ions is enhanced in the former. We also found that cathodes synthesized using smaller template pores exhibited better performance.

  5. Creep behaviour of porous metal supports for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Sudireddy, Bhaskar Reddy

    2014-01-01

    The creep behaviour of porous ironechromium alloy used as solid oxide fuel cell support was investigated, and the creep parameters are compared with those of dense strips of similar composition under different testing conditions. The creep parameters were determined using a thermo......-mechanical analyser with applied stresses in the range from 1 to 15 MPa and temperatures between 650 and 800 _C. The GibsoneAshby and Mueller models developed for uniaxial creep of open-cell foams were used to analyse the results. The influence of scale formation on creep behaviour was assessed by comparing the creep...... data for the samples tested in reducing and oxidising atmospheres. The influence of preoxidation on creep behaviour was also investigated. In-situ oxidation during creep experiments increases the strain rate while pre-oxidation of samples reduces it. Debonding of scales at high stress regime plays...

  6. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells

    Science.gov (United States)

    Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.

    2012-11-01

    Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.

  7. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  8. Performance Analysis and Development Strategies for Solid Oxide Fuel Cells

    International Nuclear Information System (INIS)

    Ivers-Tiffee, E; Leonide, A; Weber, A

    2011-01-01

    Solid oxide fuel cells (SOFC) are of great interest for a diverse range of applications. Within the past 10 years, an increase in power density by one order of magnitude, a lowering of the operating temperature by 200 K, and degradation rates lowered by a factor of 10 have been achieved on the cell and stack level. However, there is still room for further enhancement of the overall performance by suitably tailoring the cell components on a micro- and nanostructural level. The efficiency of the electrochemically active single cell is characterized by the linear ohmic losses within the electrolyte and by nonlinear polarization losses at the electrode-electrolyte interfaces. Both depend on material composition and operation conditions (temperature and time, fuel utilisation and gas composition). The area-specific resistance (ASR) is considered as the figure of merit for overall performance. ASR values of anode supported cells (ASC) were determined by means of impedance spectroscopy and subsequently separated into ohmic losses (mainly electrolyte) and nonlinear polarisation losses resulting from gas diffusion and activation polarization in the cathode and anode. The efficiencies of ASCs will be discussed for various material combinations in the temperature range of technological interest (between 550 deg. C and 850 deg. C).

  9. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant.

  10. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical University of Denmark, Dept. of Mechanical Engineering, Thermal Energy System, Building 402, 2800 Kgs, Lyngby (Denmark)

    2010-12-15

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant. (author)

  11. Vacuum-arc chromium coatings for Zr-1%Nb alloy protection against high-temperature oxidation in air

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Bryk, V.V.; Vasilenko, R.L.; Voevodin, V.N.; Ovcharenko, V.D.; Tolmacheva, G.N.; Kolodij, I.V.; Lunev, V.M.; Klimenko, I.O.

    2015-01-01

    The effect of vacuum-arc Cr coatings on the alloy E110 resistance to the oxidation in air at temperatures 1020 and 1100 deg C for 3600 s has been investigated. The methods of scanning electron microscope, X-ray analysis and nanoindentation were used to determine the thickness, phase, mechanical properties of coatings and oxide layers. The results show that the chromium coating can effectively protect fuel tubes against high-temperature oxidation in air for one hour. In the coating during oxidation at T = 1100 deg C a Cr 2 O 3 oxide layer of 5 μm thickness is formed preventing further oxygen penetration into the coating, and thus the tube shape is conserved. Under similar test conditions the oxidation of uncoated tubes with formation of a porous monocline oxide of ZrO 2 of a thickness more than ≥ 250 μm is observed, then the deformation and cracking of samples occur and the oxide layer breaks away

  12. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boltax, A [Westinghouse Electric Corporation, Advanced Reactor Division, Madison, PA (United States); Biancheria, A

    1977-04-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  13. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  14. Pilot-scale equipment development for pyrochemical treatment of spent oxide fuel

    International Nuclear Information System (INIS)

    Herrmann, S. D.

    1999-01-01

    Fundamental objectives regarding spent nuclear fuel treatment technologies include, first, the effective distribution of spent fuel constituents among product and stable waste forms and, second, the minimization and standardization of waste form types and volumes. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical treatment of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in an uranium product and two stable waste forms, i.e. ceramic and metallic. Engineering efforts are underway at ANL to develop pilot-scale equipment which would precondition irradiated oxide fuel via pyrochemical processing and subsequently allow for electrometallurgical treatment of such non-metallic fuels into standard product and waste forms. This paper highlights the integration of proposed spent oxide fuel treatment with existing electrometallurgical processes. System designs and technical bases for development of pilot-scale oxide reduction equipment are also described

  15. Measurement of the fuel temperature and the fuel-to-coolant heat transfer coefficient of Super Phenix 1 fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1995-12-01

    A new measurement method for measuring the mean fuel temperature as well as the fuel-to-coolant heat transfer coefficient of fast breeder reactor subassemblies (SA) is reported. The method is based on the individual heat balance of fuel SA's after fast reactor shut-downs and uses only the plants normal SA outlet temperature and neutron power signals. The method was used successfully at the french breeder prototype Super Phenix 1. The mean SA fuel temperature as well as the heat transfer coefficient of all SPX SA's have been determined at power levels between 15 and 90% of nominal power and increasing fuel burn-up from 3 to 83 EFPD (Equivalent of Full Power-Days). The measurements also provided fuel and whole SA time constants. The estimated accuracy of measured fuel parameters is in the order of 10%. Fuel temperatures and SA outlet temperature transients were also calculated with the SPX1 systems code DYN2 for exactly the same fuel and reactor operating parameters as in the experiments. Measured fuel temperatures were higher than calculated ones in all cases. The difference between measured and calculated core mean values increases from 50 K at low power to 180 K at 90% n.p. This is about the double of the experimental error margins. Measured SA heat transfer coefficients are by nearly 20% lower than corresponding heat transfer parameters used in the calculations. Discrepancies found between measured and calculated results also indicate that either the transient heat transfer in the gap between fuel and cladding (gap conductance) might not be exactly reproduced in the computer code or that the gap in the fresh fuel was larger than assumed in the calculations. (orig.) [de

  16. Methodology for determining criteria for storing spent fuel in air

    International Nuclear Information System (INIS)

    Reid, C.R.; Gilbert, E.R.

    1986-11-01

    Dry storage in an air atmosphere is a method being considered for spent light water reactor (LWR) fuel as an alternative to storage in an inert gas environment. However, methods to predict fuel integrity based on oxidation behavior of the fuel first must be evaluated. The linear cumulative damage method has been proposed as a technique for defining storage criteria. Analysis of limited nonconstant temperature data on nonirradiated fuel samples indicates that this approach yields conservative results for a strictly decreasing-temperature history. On the other hand, the description of damage accumulation in terms of remaining life concepts provides a more general framework for making predictions of failure. Accordingly, a methodology for adapting remaining life concepts to UO 2 oxidation has been developed at Pacific Northwest Laboratory. Both the linear cumulative damage and the remaining life methods were used to predict oxidation results for spent fuel in which the temperature was decreased with time to simulate the temperature history in a dry storage cask. The numerical input to the methods was based on oxidation data generated with nonirradiated UO 2 pellets. The calculated maximum allowable storage temperatures are strongly dependent on the temperature-time profile and emphasize the conservatism inherent in the linear cumulative damage model. Additional nonconstant temperature data for spent fuel are needed to both validate the proposed methods and to predict temperatures applicable to actual spent fuel storage

  17. Advanced control approach for hybrid systems based on solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ferrari, Mario L.

    2015-01-01

    Highlights: • Advanced new control system for SOFC based hybrid plants. • Proportional–Integral approach with feed-forward technology. • Good control of fuel cell temperature. • All critical properties maintained inside safe conditions. - Abstract: This paper shows a new advanced control approach for operations in hybrid systems equipped with solid oxide fuel cell technology. This new tool, which combines feed-forward and standard proportional–integral techniques, controls the system during load changes avoiding failures and stress conditions detrimental to component life. This approach was selected to combine simplicity and good control performance. Moreover, the new approach presented in this paper eliminates the need for mass flow rate meters and other expensive probes, as usually required for a commercial plant. Compared to previous works, better performance is achieved in controlling fuel cell temperature (maximum gradient significantly lower than 3 K/min), reducing the pressure gap between cathode and anode sides (at least a 30% decrease during transient operations), and generating a higher safe margin (at least a 10% increase) for the Steam-to-Carbon Ratio. This new control system was developed and optimized using a hybrid system transient model implemented, validated and tested within previous works. The plant, comprising the coupling of a tubular solid oxide fuel cell stack with a microturbine, is equipped with a bypass valve able to connect the compressor outlet with the turbine inlet duct for rotational speed control. Following model development and tuning activities, several operative conditions were considered to show the new control system increased performance compared to previous tools (the same hybrid system model was used with the new control approach). Special attention was devoted to electrical load steps and ramps considering significant changes in ambient conditions

  18. Exergy analysis of the biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kasemanand, Sarunyou; Im-orb, Karittha; Tippawan, Phanicha; Wiyaratn, Wisitsree; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • A biogas reforming and fuel cell integrated process is considered. • Energy and exergy analyses of the integrated process are performed. • Increasing the nickel oxide-to-biogas ratio decreases the exergy efficiency. • The exergy destruction of the fuel cell increases with increasing cell temperature. • The exergy efficiency of the process is improved when heat integration is applied. - Abstract: A biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell is analyzed. Modeling of such an integrated process is performed by using a flowsheet simulator (Aspen plus). The exergy analysis is performed to evaluate the energy utilization efficiency of each unit and that of the integrated process. The effect of steam and nickel oxide to biogas ratios on the exergetic performance of the stand-alone biogas sorption-enhanced chemical looping reforming process is investigated. The total exergy destruction increases as the steam or nickel oxide to biogas ratio increases. The main exergy destruction is found at the air reactor. For the high-temperature proton exchange membrane fuel cell, the main exergy destruction is found at the cathode. The total exergy destruction increases when cell temperature increases, whereas the inverse effect is found when the current density is considered as a key parameter. Regarding the exergy efficiency, the results show opposite trend to the exergy destruction. The heat integration analysis is performed to improve the exergetic performance. It is found that the integrated process including the heat integration system can improve the exergy destruction and exergy efficiency of 48% and 60%, respectively.

  19. Trends for Methane Oxidation at Solid Oxide Fuel Cell Conditions

    DEFF Research Database (Denmark)

    Kleis, Jesper; Jones, Glenn; Abild-Pedersen, Frank

    2009-01-01

    First-principles calculations are used to predict a plausible reaction pathway for the methane oxidation reaction. In turn, this pathway is used to obtain trends in methane oxidation activity at solid oxide fuel cell (SOFC) anode materials. Reaction energetics and barriers for the elementary...... the Ni surfaces to other metals of interest. This allows the reactivity over the different metals to be understood in terms of two reactivity descriptors, namely, the carbon and oxygen adsorption energies. By combining a simple free-energy analysis with microkinetic modeling, activity landscapes of anode...

  20. Long-time corrosion and high-temperature oxidation of zirconium alloys applied on NPP like fuel elements cover

    International Nuclear Information System (INIS)

    Vrtilkova, V.; Novotny, L.; Lingart, S.; Doukha, R.; Yarosh, Ya.; Kolenchik, Ya.

    2007-01-01

    Zirconium is applying in nuclear energy since 50-th of last century in capacity of material for cover production for fuel elements, reactor fuel and structural parts, and mainly due to both corrosion stability and low effective cross section for thermal neutrons capture. Impurities in doping elements form and alloy production technology has influence on mechanical and corrosion properties of finite alloy. Long-time corrosion tests for several zirconium alloys in forcing autoclave under different reaction conditions were carried out. After that process kinetics was studied, mass increase, hydrogen formation, zirconium hydride forming morphology, zirconium oxide layer thickness have been determined as well

  1. Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant with a Kalina Cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud

    2015-01-01

    % is achieved; plant size and nominal power are selected based on the required cultivation area. SOFC heat recovery with SKC is compared to a Steam Cycle (SC). Although ammonia-water more accurately fits the temperature profile of the off-gases, the presence of a Hybrid Recuperator enhances the available work......-treated fuel then enters the anode side of the SOFC. Complete fuel oxidation is ensured in a burner by off-gases exiting the SOFC stacks. Off-gases are utilized as heat source for a SKC where a mixture of ammonia and water is expanded in a turbine to produce additional electric power. Thus, a triple novel......A hybrid plant that consists of a gasification system, Solid Oxide Fuel Cells (SOFC) and a Simple Kalina Cycle (SKC) is investigated. Woodchips are introduced into a fixed bed gasification plant to produce syngas, which is then fed into an integrated SOFC-SKC plant to produce electricity. The pre...

  2. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  3. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  4. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Shropshire, D.E.; Herring, J.S.

    2004-01-01

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  5. Evaluation of a Ductility after High Temperature Oxidation with the Three-Point Bend Test in Zirconium Alloys

    International Nuclear Information System (INIS)

    Jung, Yang Il; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan

    2010-01-01

    In a light water reactor, the fuel cladding play an important role of preventing leakage of radioactive materials into the coolant, and thus the mechanical integrity of the cladding should be guaranteed under the conditions of normal and transient operation. In the case of a loss of coolant accident (LOCA), the cladding is subjected to a high temperature oxidation which is finally quenched because of an emergency coolant reflooding into the core. In this situation, the current LOCA criteria consist of five separate requirements: i) peak cladding temperature, ii) maximum cladding oxidation, iii) maximum hydrogen generation, iv) coolable geometry, and v) long-term cooling. The claddings lose their ductility due to the microstructural phase transformation from beta to martensite alpha-prime. and hydrogen up-take after LOCA. Since the reduction in ductility can induce embrittlement of claddings, post-quench ductility is one of the major concerns in transient operation circumstances. For the analysis, usually ring compression test are performed on ring samples cut from the tube to examine the oxidized cladding ductility. However, the test would not be applicable to the platelet samples which are general form of a specimen for developing alloys. As a high burn-up fuel cladding materials, Zircaloys are being replaced by modern zirconium alloys such as ZIRLO, and M5. Korea has also developed a new fuel cladding material HANA (high performance alloy for nuclear application) by the Korea Atomic Energy Research Institute. Because of the different composition of the newer claddings in comparison with the conventional Zircaloy-4, the high temperature oxidation behavior and the ductility after the oxidation would be different, and the properties should be evaluated how much the newer claddings were improved

  6. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    Science.gov (United States)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  7. Stoichiometric effects on performance of high-temperature gas-cooled reactor fuels from the U--C--O system

    International Nuclear Information System (INIS)

    Homan, F.J.; Lindemer, T.B.; Long, E.L. Jr.; Tiegs, T.N.; Beatty, R.L.

    1977-01-01

    Two fuel failure mechanisms were identified for coated particle fuels that are directly related to fuel kernel stoichiometry. These mechanisms are thermal migration of the kernel through the coating layers and chemical interaction between rare-earth fission products and the silicon carbide (SiC) layer leading to failure of the SiC layer. Thermal migration appears to be most severe for oxide fuels, while chemical interaction is most severe with carbide systems. Thermodynamic calculations indicated that oxide-carbide fuel kernels may permit a stoichiometry that reduces both problems to manageable levels for currently planned high-temperature gas-cooled reactors. Such stoichiometry adjustment is possible over the complete spectrum from UO 2 to UC 2 for the present recycle fuel, a weak acid resin (WAR)-derived fissile kernel. Thermodynamic calculations indicate that WAR kernels containing less than 15 percent UC 2 (greater than 85 percent UO 2 ) will develop excessive CO overpressures within the particle during irradiation. In 100 percent UO 2 particles, thermal migration and oxidation of the SiC layer were observed after irradiation. The calculations also indicate that WAR kernels containing greater than 70 percent UC 2 (less than 30 percent UC 2 ) contain insufficient oxygen to oxidize the rare-earth fission products formed in fuel operated to the maximum burnup levels of 75 percent fissions per initial metal atom (75 percent FIMA). Instead, the rare earths are present in part or completely as dicarbides. As such, they were observed to segregate from the kernel and collect at the SiC interface on the cold side of the particle, react with the SiC, and eventually fail this coating

  8. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  9. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit of deliver......In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit...... of delivering hot water for the household and returning the coldest fluid back to SOFC heat recovery heat-exchanger. A model of the SOFC system is developed to determine the energy required to meet the hourly average electric load of the residence. The model evaluates the amount of heat generated and the amount...... of heat used for thermal loads of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation is used to size the SOFC system and storage heat tank to provide energy for a small...

  10. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Gueneau, C.; Piron, J.P.; Dumas, J.C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J.

    2015-01-01

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO 2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  11. Performance of commercially produced mixed-oxide fuels in EBR-II

    International Nuclear Information System (INIS)

    Hales, J.W.; Lawrence, L.A.

    1980-11-01

    Commercially produced fuels for the Fast Flux Test Facility (FFTF) were irradiated in EBR-II under conditions of high cladding temperature (approx. 700 0 C) and low power (approx. 200 W/cm) to verify that manufacturing processes did not introduce variables which significantly affect general fuel performance. Four interim examinations and a terminal examination were completed to a peak burnup of 5.2 at. % to provide irradiation data pertaining to fuel restructuring and dimensional stability at low fuel temperature, fuel-cladding reactions at high cladding temperature and general fuel behavior. The examinations indicate completely satisfactory irradiation performance for low heat rates and high cladding temperatures to 5.2 at. % burnup

  12. Fuel temperature prediction during high burnup HTGR fuel irradiation test. US-JAERI irradiation test for HTGR fuel

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Fukuda, Kousaku; Acharya, R.

    1995-01-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for an irradiation test in a removable beryllium position of the High Flux Isotope Reactor(HFIR) at Oak Ridge National Laboratory. This test is being carried out under Annex 2 of the Arrangement between the U.S. Department of Energy and the Japan Atomic Energy Research Institute on Cooperation in Research and Development regarding High-Temperature Gas-cooled Reactors. The fuel used in the test is an advanced type. The advanced fuel was designed aiming at burnup of about 10%FIMA(% fissions per initial metallic atom) which was higher than that of the first charge fuel for the High Temperature Engineering Test Reactor(HTTR) and was produced in Japan. CACA-2, a heavy isotope and fission product concentration calculational code for experimental irradiation capsules, was used to determine time-dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries(HEATING) code was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body, which contains the fuel compacts, and of the primary pressure vessel were determined such that the requirements of running the fuel compacts at an average temperature less than 1250degC and of not exceeding a maximum fuel temperature of 1350degC were met throughout the four cycles of irradiation. The detail design of the capsule was carried out based on this analysis. (author)

  13. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  14. Innovative Seals for Solid Oxide Fuel Cells (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raj

    2008-06-30

    A functioning SOFC requires different type of seals such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600--900{sup o}C and in oxidizing and reducing environments of the fuels and air. Among the different type of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, the metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses require a significant attention and technology development for reliable SOFC operation. This final report is prepared to describe the progress made in the program on the needs, approaches, and performance of high temperature seals for SOFC. In particular, a new concept of self-healing glass seals is pursued for making seals between metal-ceramic material combinations, including some with a significant expansion mismatch.

  15. Steam oxidation of Zr 1% Nb clads of VVER fuels in high temperature

    International Nuclear Information System (INIS)

    Solyanyj, V.I.; Bibilashvili, Yu.K.; Dranenko, V.V.; Levin, A.Ya.; Izrajlevskij, L.B.; Morozov, A.M.

    1984-01-01

    In a wide range of accident conditions processes of clad corrosion effected by steam are rather intensive and in many respects influence the safety of NPP and the after-accident dismantling of a reactor core. This paper discusses the results of comprehensive studies into corrosion behaviour of Zr 1%Nb clads of VVER-type fuels at high temperatures. These studies are a continuation of previous work and the base for the design modelling of corrosion processes

  16. Measurement of the oxidation of spent fuel between 140/degree/ and 225/degree/C by thermogravimetric analysis

    International Nuclear Information System (INIS)

    Woodley, R.E.; Einziger, R.E.; Buchanan, H.C.

    1988-09-01

    A series of PWR spent fuel samples from Turkey Point Unit 3 have been oxidized at temperatures between 140/degree/ and 225/degree/C in air atmospheres with dew points between 14.5/degree/ and /minus/70/degree/C, using a thermogravimetric analysis system (TGA). Tests lasted between 400 and 2100 hours. At the conclusion of a test, the atmosphere was sampled to determine the release of fission gas during testing, and the fuel samples were analyzed for microstructural changes. It appears that the mechanism for oxidation of spent fuel to U/sub 3/O/sub 7/ takes place in two steps that occur somewhat simultaneously. Oxygen migrates along the grain boundaries, which are oxidized and enlarged. The grains oxidize by the inward progression of a layer of U/sub 4/O/sub 9/ saturated with oxygen. A simplified model of the mechanism, which considers oxygen diffusion through the product layer as the rate-controlling step, yields an activation energy of 27 /plus minus/ 4 kcal/mol. Moisture, between dew points of /minus/70/degree/ to +14.5/degree/C, i.e., water vapor partial pressures varying over four orders of magnitude, had no significant effect on the oxidation rate. 34 refs., 12 figs., 6 tabs

  17. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  18. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O{sub 3-{delta}} for electrolyte of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Hiroyuki [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan); Enoki, Makiko [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Ishihara, Tatsumi [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Akiyama, Tomohiro [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: takiyama@eng.hokudai.ac.jp

    2007-03-14

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm{sup -1} and its maximum power density was a value of 245 mW cm{sup -2} in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3}. The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application.

  19. Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel production

    KAUST Repository

    Garcia Esparza, Angel T.; Limkrailassiri, Kevin; Leroy, Fré dé ric; Rasul, Shahid; Yu, Weili; Lin, Liwei; Takanabe, Kazuhiro

    2014-01-01

    We report the use of a facile and highly scalable synthesis process to control growth products of earth-abundant Cu-based oxides and their application in relevant photoelectrochemical and electrochemical solar fuel generation systems. Characterization of the synthesized Cu(I)/Cu(II) oxides indicates that their surface morphology and chemical composition can be simply tuned by varying two synthesis parameters (time and temperature). UV-Vis spectroscopy and impedance spectroscopy studies are performed to estimate the band structures and electronic properties of these p-type semiconductor materials. Photoelectrodes made of Cu oxides possess favorable energy band structures for production of hydrogen from water; the position of their conduction band is ≈1 V more negative than the water-reduction potential. High acceptor concentrations on the order of 1018-1019 cm-3 are obtained, producing large electric fields at the semiconductor-electrolyte interface and thereby enhancing charge separation. The highly crystalline pristine samples used as photocathodes in photoelectrochemical cells exhibit high photocurrents under AM 1.5G simulated illumination. When the samples are electrochemically reduced under galvanostatic conditions, the co-existence of the oxide with metallic Cu on the surface seems to function as an effective catalyst for the selective electrochemical reduction of CO2. © the Partner Organisations 2014.

  20. Effect of cladding defect size on the oxidation of irradiated spent LWR [light-water reactor] fuel below 3690C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Strain, R.V.

    1984-01-01

    Tests on spent fuel fragments and rod segments were conducted between 250 and 360 0 C to relate temperature, defect size, and fuel oxidation rate with time-to-cladding-splitting. Defect sizes from 760 μm diameter down to 8 μm, the size of an SCC type breach, were used. Above 283 0 C, the time-to-cladding-splitting was longer for the smaller defects. The enhancement of the incubation time by smaller defects steadily decreased with temperature and was not detected at 250 0 C. 18 refs., 10 figs., 4 tabs

  1. Oxidative dissolution of ADOPT compared to standard UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kristina [School of Chemical Science and Engineering, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Roth, Olivia [Studsvik Nuclear AB, SE-611 82 Nyköping (Sweden); Jonsson, Mats, E-mail: matsj@kth.se [School of Chemical Science and Engineering, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2017-05-15

    In this work we have studied oxidative dissolution of pure UO{sub 2} and ADOPT (UO{sub 2} doped with Al and Cr) pellets using H{sub 2}O{sub 2} and gammaradiolysis to induce the process. There is a small but significant difference in the oxidative dissolution rate of UO{sub 2} and ADOPT pellets, respectively. However, the difference in oxidative dissolution yield is insignificant. Leaching experiments were also performed on in-reactor irradiated ADOPT and UO{sub 2} pellets under oxidizing conditions. The results indicate that the U(VI) release is slightly slower from the ADOPT pellet compared to the UO{sub 2.} This could be attributed to differences in exposed surface area. However, fission products with low UO{sub 2} solubility display a higher relative release from ADOPT fuel compared to standard UO{sub 2}-fuel. This is attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel. The release of Cs is higher from UO{sub 2} which is attributed to the larger grain size of ADOPT. - Highlights: •Oxidative dissolution of ADOPT fuel is compared to standard UO{sub 2} fuel. •Only marginal differences are observed. •The main difference observed is in the relative release rate of fission products. •Differences are claimed to be attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel.

  2. Fuel and core design study of the sodium-cooled fast reactors. Studies on metallic fuel cores in the JFY2002

    International Nuclear Information System (INIS)

    Sugino, Kazuteru; Mizuno, Tomoyasu

    2003-06-01

    Based on the results obtained in the former feasibility study, the metallic fueled core of ordinary-type, that is, 2-region homogeneous core, has been established aiming at the improvement in the core performance, and subsequent comparison has been performed with the mixed oxide fueled core. Further, the attractive concept of the metallic fueled core of high outlet temperature has been constructed which has good nuclear features as a metallic fueled core and has identical outlet temperature to mixed oxide fuelled core. Following items have been found as a result of the investigation on the ordinary-type core. The metallic fueled core whose maximum fast neutron fluence (En>0.1MeV) is set identical (5x10 23 n/cm 2 ) to the mixed oxide fueled cores with core discharge burnup 150GWd/t has sufficient core performances as a metallic fueled core, e.g. higher breeding ratio and longer operation period compared with mixed oxide fueled cores, but the core discharge burnup is limited up to 100GWd/t. However effective discharge burnup including the contribution of the blanket region is comparative to mixed oxide cores under the same breeding ratio condition. In order to enlarge the core discharge burnup to 150GWd/t keeping the core performance identical to above mentioned core's, the irradiation deformation of structural material should be reduced to that of mixed oxide fueled cores. Further the maximum fast neutron fluence reaches to 7-8x10 23 n/cm 2 (En>0.1MeV). The investigations on the core of high outlet temperature have clarified following items. Even in the change of core regions by pin-diameter form 3-region to 2-region and in the limited maximum fuel pin diameter 8.5 mm, realization of the identical outlet/inlet temperatures to the mixed oxide cores (550/395degC) is feasible under the criteria of the maximum temperature 650degC at the inner surface of the cladding. The constructed core accommodates the targets of breeding ratio from about 1.0 to 1.2 only by adjusting

  3. Air oxidation of Zircaloy-4, M5 (registered) and ZIRLOTM cladding alloys at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Boettcher, M.

    2011-01-01

    The paper presents the results of isothermal and transient oxidation experiments of the advanced cladding alloys M5 (registered) and ZIRLO TM in comparison to Zircaloy-4 in air at temperatures from 973 to 1853 K. Generally, oxidation in air leads to a strong degradation of the cladding material. The main mechanism of this process is the formation of zirconium nitride and its re-oxidation. From the point of view of safety, the barrier effect of the fuel cladding is lost much earlier than during accident transients with a steam atmosphere only. Comparison of the three alloys investigated reveals a qualitatively similar, but quantitatively varying oxidation behavior in air. The mainly parabolic oxidation kinetics, where applicable, is comparable for the three alloys. Strong differences of up to 500% in oxidation rates were observed after transition to linear kinetics at temperatures below 1300 K. The paper presents kinetic rate constants as well as critical times and oxide scale thicknesses at the point of transition from parabolic to linear kinetics.

  4. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  5. Combining Raman Microprobe and XPS to Study High Temperature Oxidation of Metals

    International Nuclear Information System (INIS)

    Windisch, Charles F.; Henager, Charles H.; Engelhard, Mark H.; Bennett, Wendy D.

    2011-01-01

    Raman microprobe spectroscopy was applied in studies of high-temperature air oxidation of a ferritic alloy (HT-9) in the absence and presence of zirconia coatings with the objective of evaluating the technique as a way to quickly screen candidate cladding materials and actinide-based mixed oxide fuel mixtures for advanced nuclear reactors. When oxidation was relatively uniform, Raman spectra collected using microscope optics with low spatial resolution were found to be similar to those collected with conventional Raman spectroscopy. These spectra could be used to identify major oxide corrosion products and follow changes in the composition of the oxides due to heating. However, when the oxidation films were comprised of multiple layers of varying composition, or with layers containing metallic phases, techniques with higher depth resolution and sensitivity to zero-valence metals were necessary. The requirements were met by combining Raman microprobe using different optical configurations and x-ray photoelectron spectroscopy.

  6. Pilot-scale equipment development for lithium-based reduction of spent oxide fuel

    International Nuclear Information System (INIS)

    Herrmann, S. D.

    1998-01-01

    An integral function of the electrometallurgical conditioning of DOE spent nuclear fuel is the standardization of waste forms. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical conditioning of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in uranium, ceramic waste, and metal waste forms. Engineering studies are underway at ANL in support of pilot-scale equipment development, which would precondition irradiated oxide fuel and likewise demonstrate the application of electrometallurgical conditioning to such non-metallic fuels. This paper highlights the integration of proposed spent oxide fuel conditioning with existing electrometallurgical processes. Additionally, technical bases for engineering activities to support a scale up of an oxide reduction process are described

  7. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    Science.gov (United States)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  8. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  9. Dry air oxidation kinetics of K-Basin spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Buchanan, H.C.; Gerry, W.M.; Gray, W.J.; Marschman, S.C.

    1998-06-01

    The safety and process analyses of the proposed Integrated Process Strategy (IPS) to move the N-Reactor spent nuclear fuel (SNF) stored at K-Basin to an interim storage facility require information about the oxidation behavior of the metallic uranium. Limited experiments have been performed on the oxidation reaction of SNF samples taken from an N-Reactor outer fuel element in various atmospheres. This report discusses studies on the oxidation behavior of SNF using two independent experimental systems: (1) a tube furnace with a flowing gas mixture of 2% oxygen/98% argon; and (2) a thermogravimetric system for dry air oxidation

  10. Oxidation and low temperature properties of biofuels obtained from pyrolysis and alcoholysis of soybean oil and their blends with petroleum diesel

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Brajendra K. [Food and Industrial Oil Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, 1815N. University St., Peoria, IL 61604 (United States); Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Suarez, Paulo A.Z. [Food and Industrial Oil Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, 1815N. University St., Peoria, IL 61604 (United States); LMC-IQ, Universidade de Brasilia, CP 4478, CEP 70919-970, Brasilia-DF (Brazil); Perez, Joseph M. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Erhan, Sevim Z. [Food and Industrial Oil Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, 1815N. University St., Peoria, IL 61604 (United States)

    2009-10-15

    Diesel-like fuels were synthesized by a pyrolysis method using soybean oil (pyrodiesel, PD) and soybean soapstock (SPD), respectively, as starting material. These pyrodiesel samples were compared with soy biodiesel (BD) samples. All these three biofuels (PD, SPD and BD) and their blends with high sulfur (HSD) and low sulfur (LSD) diesel fuels were evaluated by measuring a number of fuel properties, such as oxidative stability, low-temperature performance, acid value and corrosion properties. Compared to BD blends, PD and SPD and their blends were found to have better oxidative stability, though inferior acid values. SPD and its blends have better flow performance at low-temperature compared to BD and PD blends. All the biofuels and their blends met the copper corrosion requirement prescribed by US and European standard. Based on the results reported here, pyrodiesels from these two-different feedstocks have potential and will require some upgrading or change in pyrolysis conditions, if they are to be used as fuel blending component. (author)

  11. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    Science.gov (United States)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  12. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  13. La{sub 0.84}Sr{sub 0.16}MnO{sub 3-{delta}} cathodes impregnated with Bi{sub 1.4}Er{sub 0.6}O{sub 3} for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junliang; Wang, Shaorong; Wang, Zhenrong; Liu, Renzhu; Wen, Tinglian; Wen, Zhaoyin [The Key Laboratory of Energy Conversion Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-12-01

    La{sub 0.84}Sr{sub 0.16}MnO{sub 3-{delta}}-Bi{sub 1.4}Er{sub 0.6}O{sub 3} (LSM-ESB) composite cathodes are fabricated by impregnating LSM electronic conducting matrix with the ion-conducting ESB for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The performance of LSM-ESB cathodes is investigated at temperatures below 750 C by AC impedance spectroscopy. The ion-impregnation of ESB significantly enhances the electrocatalytic activity of the LSM electrodes for the oxygen reduction reactions, and the ion-impregnated LSM-ESB composite cathodes show excellent performance. At 750 C, the value of the cathode polarization resistance (R{sub p}) is only 0.11 {omega} cm{sup 2} for an ion-impregnated LSM-ESB cathode, which also shows high stability during a period of 200 h. For the performance testing of single cells, the maximum power density is 0.74 W cm{sup -2} at 700 C for a cell with the LSM-ESB cathode. The results demonstrate the ion-impregnated LSM-ESB is one of the promising cathode materials for intermediate-temperature solid oxide fuel cells. (author)

  14. Fabrication of mixed oxide fuel using plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Blair, H.T.; Chidester, K.; Ramsey, K.B.

    1996-01-01

    A very brief summary is presented of experimental studies performed to support the use of plutonium from dismantled weapons in fabricating mixed oxide (MOX) fuel for commercial power reactors. Thermal treatment tests were performed on plutonium dioxide powder to determine if an effective dry gallium removal process could be devised. Fabrication tests were performed to determine the effects of various processing parameters on pellet quality. Thermal tests results showed that the final gallium content is highly dependent on the treatment temperature. Fabrication tests showed that the milling process, sintering parameters, and uranium feed did effect pellet properties. 1 ref., 1 tab

  15. The fuel to clad heat transfer coefficient in advanced MX-type fuel pins

    International Nuclear Information System (INIS)

    Caligara, F.; Campana, M.; Mandler, R.; Blank, H.

    1979-01-01

    Advanced fuels (mixed carbides, nitrides and carbonitrides) are characterised by a high thermal conductivity compared to that of oxide fuels (5 times greater) and their behaviour under irradiation (amount of swelling, fracture behaviour, restructuring) is far more sensitive to the design parameters and to the operating temperature than that of oxide fuels. The use of advanced fuels is therefore conditioned by the possibility of mastering the above phenomena, and the full exploitation of their favorable neutron characteristics depends upon a good understanding of the mutual relationships of the various parameters, which eventually affect the mechanical stability of the pin. By far the most important parameter is the radial temperature profile which controls the swelling of the fuel and the build-up of stress fields within the pin. Since the rate of fission gas swelling of these fuels is relatively large, a sufficient amount of free space has to be provided within the pin. This space originally appears as fabrication porosity and as fuel-to-clad clearance. Due to the large initial gap width and to the high fuel thermal conductivity, the range of the fuel operating temperatures is mainly determined by the fuel-to-clad heat transfer coefficient h, whose correct determination becomes one of the central points in modelling. During the many years of modelling activity in the field of oxide fuels, several theoretical models have been developed to calculate h, and a large amount of experimental data has been produced for the empirical adjustment of the parameters involved, so that the situation may be regarded as rather satisfactory. The analysis lead to the following conclusions. A quantitative comparison of experimental h-values with existing models for h requires rather sophisticated instrumented irradiation capsules, which permit the measurement of mechanical data (concerning fuel and clad) together with heat rating and temperatures. More and better well

  16. Oxidation Study of an Ultra High Temperature Ceramic Coatings Based on HfSiCN

    Science.gov (United States)

    Sacksteder, Dagny; Waters, Deborah L.; Zhu, Dongming

    2018-01-01

    High temperature fiber-reinforced ceramic matrix composites (CMCs) are important for aerospace applications because of their low density, high strength, and significantly higher-temperature capabilities compared to conventional metallic systems. The use of the SiCf/SiC and Cf/SiC CMCs allows the design of lighter-weight, more fuel efficient aircraft engines and also more advanced spacecraft airframe thermal protection systems. However, CMCs have to be protected with advanced environmental barrier coatings when they are incorporated into components for the harsh environments such as in aircraft engine or spacecraft applications. In this study, high temperature oxidation kinetics of an advanced HfSiCN coating on Cf/SiC CMC substrates were investigated at 1300 C, 1400 C, and 1500 C by using thermogravimetric analysis (TGA). The coating oxidation reaction parabolic rate constant and activation energy were estimated from the experimental results. The oxidation reaction studies showed that the coatings formed the most stable, predominant HfSiO4-HfO2 scales at 1400 C. A peroxidation test at 1400 C then followed by subsequent oxidation tests at various temperatures also showed more adherent scales and slower scale growth because of reduced the initial transient oxidation stage and increased HfSiO4-HfO2 content in the scales formed on the HfSiCN coatings.

  17. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.

    Science.gov (United States)

    Löschau, Margit

    2018-04-01

    This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .

  18. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.

  19. Enhanced performance of a novel anodic PdAu/VGCNF catalyst for electro-oxidation in a glycerol fuel cell.

    Science.gov (United States)

    Yahya, N; Kamarudin, S K; Karim, N A; Masdar, M S; Loh, K S

    2017-11-25

    This study presents a novel anodic PdAu/VGCNF catalyst for electro-oxidation in a glycerol fuel cell. The reaction conditions are critical issues affecting the glycerol electro-oxidation performance. This study presents the effects of catalyst loading, temperature, and electrolyte concentration. The glycerol oxidation performance of the PdAu/VGCNF catalyst on the anode side is tested via cyclic voltammetry with a 3 mm 2 active area. The morphology and physical properties of the catalyst are examined using X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Then, optimization is carried out using the response surface method with central composite experimental design. The current density is experimentally obtained as a response variable from a set of experimental laboratory tests. The catalyst loading, temperature, and NaOH concentration are taken as independent parameters, which were evaluated previously in the screening experiments. The highest current density of 158.34 mAcm -2 is obtained under the optimal conditions of 3.0 M NaOH concentration, 60 °C temperature and 12 wt.% catalyst loading. These results prove that PdAu-VGCNF is a potential anodic catalyst for glycerol fuel cells.

  20. Reducing the fuel temperature for pressure-tube supercritical-water-cooled reactors and the effect of fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: eleodor.nichita@uoit.ca; Kovaltchouk, V., E-mail: vitali.kovaltchouk@uoit.ca

    2015-12-15

    Highlights: • Typical PT-SCWR fuel uses single-region pins consisting of a homogeneous mixture of ThO{sub 2} and PuO{sub 2}. • Using two regions (central for the ThO{sub 2} and peripheral for the PuO{sub 2}) reduces the fuel temperature. • Single-region-pin melting-to-average power ratio is 2.5 at 0.0 MW d/kg and 2.3 at 40 MW d/kg. • Two-region-pin melting-to-average power ratio is 36 at 0.0 MW d/kg and 10.5 at 40 MW d/kg. • Two-region-pin performance drops with burnup due to fissile-element buildup in the ThO{sub 2} region. - Abstract: The Pressure-Tube Supercritical-Water-Cooled Reactor (PT-SCWR) is one of the concepts under investigation by the Generation IV International Forum for its promise to deliver higher thermal efficiency than nuclear reactors currently in operation. The high coolant temperature (>625 K) and high linear power density employed by the PT-SCWR cause the fuel temperature to be fairly high, leading to a reduced margin to fuel melting, thus increasing the risk of actual melting during accident scenarios. It is therefore desirable to come up with a fuel design that lowers the fuel temperature while preserving the high linear power ratio and high coolant temperature. One possible solution is to separate the fertile (ThO{sub 2}) and fissile (PuO{sub 2}) fuel materials into different radial regions in each fuel pin. Previously-reported work found that by locating the fertile material at the centre and the fissile material at the periphery of the fuel pin, the fuel centreline temperature can be reduced by ∼650 K for fresh fuel compared to the case of a homogeneous (Th–Pu)O{sub 2} mixture for the same coolant temperature and linear power density. This work provides a justification for the observed reduction in fuel centreline temperature and suggests a systematic approach to lower the fuel temperature. It also extends the analysis to the dependence of the radial temperature profile on fuel burnup. The radial temperature profile is

  1. Performance Evaluation of Solid Oxide Fuel Cell by Computer ...

    African Journals Online (AJOL)

    The search for sustainable energy source that can compete with the existing one led to the discovery and acceptance of fuel cell technologies as a perfect replacement for fossil fuel. The ability of Solid Oxide Fuel Cells (SOFC) to capture the heat generation during the process of energy generation from electrochemical ...

  2. Modeling and experimental validation of CO heterogeneous chemistry and electrochemistry in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yurkiv, Vitaly

    2010-12-17

    In the present work experimental and numerical modeling studies of the heterogeneously catalyzed and electrochemical oxidation of CO at Nickel/yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) anode systems were performed to evaluate elementary charge-transfer reaction mechanisms taking place at the three-phase boundary of CO/CO{sub 2} gas-phase, Ni electrode, and YSZ electrolyte. Temperature-programmed desorption and reaction experiments along with density functional theory calculations were performed to determine adsorption/desorption and surface diffusion kinetics as well as thermodynamic data for the CO/CO{sub 2}/Ni and CO/CO{sub 2}/YSZ systems. Based on these data elementary reaction based models with four different charge transfer mechanisms for the electrochemical CO oxidation were developed and applied in numerical simulations of literature experimental electrochemical data such as polarization curves and impedance spectra. Comparison between simulation and experiment demonstrated that only one of the four charge transfer mechanisms can consistently reproduce the electrochemical data over a wide range of operating temperatures and CO/CO{sub 2} gas compositions. (orig.) [German] In der vorliegenden Arbeit wurden experimentelle und numerische Untersuchungen zur heterogen katalysierten und elektrochemischen Oxidation von CO an Anodensystemen (bestehend aus Nickel und yttriumdotiertem Zirkoniumdioxid, YSZ) von Festoxidbrennstoffzellen (engl. Solid Oxide Fuel Cells, SOFCs) ausgefuehrt, um den mikroskopischen Mechanismus der an der CO/CO{sub 2}-Gasphase/Ni-Elektrode/YSZ-Elektrolyt- Dreiphasen-Grenzflaeche ablaufenden Ladungsuebertragungsreaktion aufzuklaeren. Temperaturprogrammierte Desorptionsmessungen (TPD) und Temperaturprogrammierte Reaktionsmessungen (TPR) sowie Dichtefunktionaltheorierechnungen wurden ausgefuehrt, um adsorptions-, desorptions- und reaktionskinetische sowie thermodynamische Daten fuer die CO/CO{sub 2}/Ni- und CO/CO{sub 2}/YSZ

  3. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  4. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types......-programmed oxidation and time-of-flight secondary ion mass spectrometry. Results showed thatNi/ScYSZ/Pd-CGO was more active for catalytic dissociation of CH4 at 750°C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750°C. The presence...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming...

  5. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  6. Mechanistic modelling of a cathode-supported solid oxide fuel cell. Paper no. IGEC-1-103

    International Nuclear Information System (INIS)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M.D.; Fowler, M.W.; Douglas, P.L.; Entchev, E.

    2005-01-01

    A model for a cathode-supported tubular solid oxide fuel cell operating with humidified H 2 has been developed. Momentum-, mass-, energy- and charge-transport equations coupled with electrochemical reactions (H 2 oxidation and O 2 reduction) are considered in the model. The model also takes into account the radiative heat transfer between the cell and air-preheating tube. The model is validated against published experimental data ands shows a good agreement. The distributions of temperature, current density, reversible cell voltage, overpotential and species mole fractions within the cell are discussed in detail. (author)

  7. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and laminat......Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting...... and lamination will be described. Flexural strength of the reduced cermets measured using three-point bending configuration is 468±37MPa. The graded anode supports are characterized by scanning electron microscope observations, mercury porosimetry intrusion, and resistivity measurements, showing an adequate...... of tapes at room temperature without using plasticizers. This is made by the combination of two different binders with varying Tg (glass transition temperature) which resulted in plastic deformation at room temperature. Those results indicate that the proposed process is a cost-effective method...

  8. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    Science.gov (United States)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  9. Evaluation of the oxide and silicide fuels reactivity in the RSG-GAS core

    International Nuclear Information System (INIS)

    S, Tukiran; M S, Tagor; S, Lily; Pinem, S.

    2000-01-01

    Fuel exchange of The RSG-GAS reactor core from uranium oxide to uranium silicide in the same loading, density, and enrichment, that is, 250 gr, 2.98 gr/cm 3 , and 19.75 % respectively, will be performed in-step wise. In every cycle of exchange with 5/l mode, it is needed to evaluate the parameter of reactor core operation. One of the important operation parameters is fuel reactivity that gives effect to the core reactivity. The experiment was performed at core no. 36, BOC, low power which exist 2 silicide fuels. The evaluation was done based on the RSG-GAS control rod calibration consisting of 40 fuels and 8 control rod.s. From 40 fuels in the core, there are 2 silicide fuels, RI-225/A-9 and RI-224/C-3. For inserting 2 silicide fuels, the reactivity effect to the core must be know. To know this effect , it was performed fuels reactivity experiment, which based on control rod calibration. But in this case the RSG-GAS has no other fresh oxide fuel so that configuration of the RSG-GAS core was rearranged by taking out the both silicide fuels and this configuration is used as reference core. Then silicide fuel RI-224 was inserted to position F-3 replacing the fresh oxide fuel RI-260 so the different reactivity of the fuels is obtained. The experiment result showed that the fuel reactivity change is in amount of 12.85 cent (0.098 % ) The experiment result was compared to the calculation result, using IAFUEL code which amount to 13.49 cent (0.103 %) The result showed that the reactivity change of oxide to silicide fuel is small so that the fuel exchange from uranium oxide to uranium silicide in the first step can be done without any significant change of the operation parameter

  10. Chemical interactions between as-received and pre-oxidized Zircaloy-4 and Inconel-718 at high temperatures

    International Nuclear Information System (INIS)

    Hofmann, P.; Markiewicz, M.

    1994-06-01

    Isothermal reaction experiments were performed in the temperature range of 1000 - 1300 C in order to determine the chemical interactions between Zircaloy-4 fuel rod cladding and Inconel-718 spacer grids of Pressurized Water Reactors (PWR) under severe accident conditions. It was not possible to apply even higher temperatures since fast and complete liquefaction of the components occurred as a result of eutectic interactions during heatup. The liquid reaction products formed enhance and accelerate the degradation of the material couples and the fuel elements, respectively. Only small amounts of Inconel are necessary to liquefy large amounts of Zircaloy. Thin oxide layers on the Zircaloy surface delay the beginning of the chemical interactions with Inconel but cannot prevent them. In this work the reaction kinetics have been determined for the system: as-received and pre-oxidized Zircaloy-4/Inconel 718. The interactions can be described by parabolic rate laws; the Arrhenius equations for the various interactions are given. (orig.) [de

  11. Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals.

    Science.gov (United States)

    Shi, Chengxiang; Wang, Wenxuan; Liu, Ni; Xu, Xueyan; Wang, Danhong; Zhang, Minghui; Sun, Pingchuan; Chen, Tiehong

    2015-07-21

    Hierarchically porous Ti-SBA-2 with high framework Ti content (up to 5 wt%) was firstly synthesized by employing organic mesomorphous complexes of a cationic surfactant (CTAB) and an anionic polyelectrolyte (PAA) as templates. The material exhibited excellent performance in oxidative desulfurization of diesel fuel at low temperature (40 °C or 25 °C) due to the unique hierarchically porous structure and high framework Ti content.

  12. Introduction of mixed oxide fuel elements in the belgian cores

    International Nuclear Information System (INIS)

    Charlier, A.F.; Hollasky, N.A.

    1994-01-01

    The important amount of plutonium recovered from the reprocessing of spent fuel on the one hand, the national and international experience of the use of mixed oxide UO 2 -PuO 2 fuel in power reactors on the other hand, have led Belgian utilities to decide the introduction of Mixed-Oxide fuel in Doel unit 3 and Tihange unit 2 cores. The 'MOX' project has shown that it was possible without reducing safety or requiring modifications of the plant equipment. It has been approved by the Belgian 'Nuclear Safety Commission'. (authors). 1 tab., 2 figs

  13. Operation Strategies Based on Carbon Corrosion and Lifetime Investigations for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Kannan, A.; Kaczerowski, J.; Kabza, A.

    2018-01-01

    This paper is aimed to develop operation strategies or high temperature polymer electrolyte fuel cells (HT-PEMFCs) stacks in order to enhance the endurance by mitigating carbon oxidation reaction. The testing protocols are carefully designed to suit the operating cycle for the realistic application...

  14. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    of the different operating conditions reveals an optimum for the chosen pressure ratio with respect to the resulting electrical efficiency. Furthermore, the SOFC operating temperature and fuel utilization should be maintained at a high level and the cathode temperature gradient maximized. Based on 1st and 2nd law...... based on biomass will improve the competitiveness of decentralized CHP production from biomass as well as move the development towards a more sustainable CHP production. The aim of this research is to contribute to enhanced electrical efficiencies and sustainability in future decentralized CHP plants....... The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...

  15. First Principles Studies of Perovskites for Intermediate Temperature Solid Oxide Fuel Cell Cathodes

    KAUST Repository

    Salawu, Omotayo Akande

    2017-05-15

    Fundamental advances in cathode materials are key to lowering the operating temperature of solid oxide fuel cells (SOFCs). Detailed understanding of the structural, electronic and defect formation characteristics are essential for rational design of cathode materials. In this thesis we employ first principles methods to study La(Mn/Co)O3 and LnBaCo2O5+δ (Ln = Pr, Gd; δ = 0.5, 1) as cathode for SOFCs. Specifically, factors affecting the O vacancy formation and migration are investigated. We demonstrate that for LaMnO3 the anisotropy effects often neglected at high operating temperatures become relevant when the temperature is lowered. We show that this fact has consequences for the material properties and can be further enhanced by strain and Sr doping. Tensile strain promotes both the O vacancy formation and migration in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation but not the migration. The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in LaCoO3 are studied. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure, but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state. For LnBaCo2O5+δ we compare the O vacancy formation in GdBaCo2O5.5 (Pmmm symmetry) and GdBaCo2O6 (P4/mmm symmetry), and the influence of Sr doping. The O vacancy formation energy is demonstrated to be smaller in the already O deficient compound. This relation is maintained under Sr doping. It turns out that Sr doping can be utilized to significantly enhance the O vacancy formation in both compounds. The observed trends are

  16. Thermomechanical analysis of porous solid oxide fuel cell by using peridynamics

    Directory of Open Access Journals (Sweden)

    Hanlin Wang

    2017-06-01

    Full Text Available Solid oxide fuel cell (SOFC is widely used in hybrid marine propulsion systems due to its high power output, excellent emission control and wide fuel suitability. However, the operating temperature in SOFC will rise up to 800–1000 ℃ due to redox reaction among hydrogen and oxygen ions. This provides a suitable environment for ions transporting through ceramic materials. Under such operation temperatures, degradation may occur in the electrodes and electrolyte. As a result, unstable voltage, low capacity and cell failure may eventually occur. This study presents thermomechanical analysis of a porous SOFC cell plate which contains electrodes, electrolytes and pores. A microscale specimen in the shape of a plate is considered in order to maintain uniform temperature loading and increase the accuracy of estimation. A new computational technique, peridynamics, is utilized to calculate the deformations and stresses of the cell plate. Moreover, the crack formation and propagation are also obtained by using peridynamics. According to the numerical results, damage evolution depends on the electrolyte/electrode interface strength during the charging process. For weak interface strength case, damage emerges at the electrode/electrolyte interface. On the other hand, for stronger interface cases, damage emerges on pore boundaries especially with sharp corner.

  17. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Liu, Zhi; Grass, Michael E.; Biegalski, Michael D.; Lee, Yueh-Lin; Morgan, Dane; Christen, Hans M.; Bluhm, Hendrik; Shao-Horn, Yang

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  18. Analytical solutions for the temperature field in a 2D incompressible inviscid flow through a channel with walls of solid fuel

    Directory of Open Access Journals (Sweden)

    Sorin BERBENTE

    2011-12-01

    Full Text Available A gas (oxidizer flows between two parallel walls of solid fuel. A combustion is initiated: the solid fuel is vaporized and a diffusive flame occurs. The hot combustion products are submitted both to thermal diffusion and convection. Analytical solutions can be obtained both for the velocity and temperature distributions by considering an equivalent mean temperature where the density and the thermal conductivity are evaluated. The main effects of heat transfer are due to heat convection at the flame. Because the detailed mechanism of the diffusion flame is not introduced the reference chemical reaction is the combustion of premixed fuel with oxidizer in excess. In exchange the analytical solution is used to define an ideal quasi-uniform combustion that could be realized by an n adequate control. The given analytical closed solutions prove themselves flexible enough to adjust the main data of some existing experiments and to suggest new approaches to the problem.

  19. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    Science.gov (United States)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which

  20. Development of solid oxide fuel cells; Desenvolvimento de celulas a combustivel do tipo oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, Jaime S.; Alencar, Marcelo Goncalves F. de; Amaral, Alexandre Alves do; Benedicto, Joao Paulo Santos; Silva, Marcos A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica. Dept. de Fisico-Quimica

    2006-07-01

    Fuel cells allow the energy production without the thermodynamic restriction of the conversion of heat into work. Among their various types, the solid oxide fuel cells (SOFC), operating at high temperatures, allow the methane conversion into electricity directly on the anode. The main element of the SOFC is the structure A/E/C: anode/electrolyte/cathode, all sintered at high temperature as resistant ceramic materials. Dense electrolyte (YSZ: zirconia stabilized for Yttria) separates the anode (Ni+Co/YSZ: cobalt promoted nickel, supported on YSZ) and cathode (LSM: strontium-doped lanthanum manganite), both with porosity obtained by graphite addition. To obtain suitable A/E/C pellets, the layer sintering with appropriate mechanical and textural characteristics is essential, requiring excellent electric junctions between them. The cell performance has been evaluated between 850 and 950 degree C, using hydrogen or methane fuel; the tension and current for different resistance values in the electrical circuit have been measured. The cobalt addition to the cell anode significantly increased its activity for the reform reaction. The beneficial effect was probably due to the easier nickel reduction in cobalt presence. This work had the objectives of developing and evaluating electro-catalysts, as well as the solid oxide fuel cells using these catalysts as anode. Five SOFC models (SOFC 1 to SOFC 5) are described; all of them were developed aiming at improving the preparation of the anode/electrolyte/cathode structure (A/E/C). (author)