WorldWideScience

Sample records for temperature oxidation co-oxidation

  1. Mesoporous Mn promoted Co3O4 oxides as an efficient and stable catalyst for low temperature oxidation of CO

    Science.gov (United States)

    Liu, Changxiang; Gong, Lei; Dai, Runying; Lu, Meijuan; Sun, Tingting; Liu, Qian; Huang, Xigen; Huang, Zhong

    2017-09-01

    Mesoporous Mn-doped Co3O4 catalysts were successfully prepared via a dry soft reactive grinding method based on solid state reaction, and their catalytic performances on CO oxidation were evaluated at a high space velocity of 49,500 mL g-1 h-1. A significant promoted effect was observed once the atomic ratios of Mn/(Co+Mn) were lower than 10%, for instance, the temperature for 50% conversion decreased to about -60 °C, showing superior catalytic performance compared to the single metal oxide. Especially, the Mn-promoted Co3O4 catalyst with a Mn/(Co+Mn) molar ratio of 10% could convert 100% CO after 3000 min of time-on-steam without any deactivation at room temperature. As prepared catalysts were characterized by XRD, N2-adsorption/desorption, TEM, H2-TPR, O2-TPD and CO-titration analysis. The significant enhancement of performance for oxidation of CO over Mn-Co-O mixed oxides was associated with the high active oxygen species concentrations formed during the pretreatment in O2 atmosphere.

  2. High temperature oxidation and electrochemical studies on novel co-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Leonhard

    2013-02-27

    Isothermal oxidation in air was carried out on novel γ'-strengthened Cobalt-base superalloys of the system Co-Al-W-B. After fast initial oxide formation, a multi-layered structure establishes, consisting of an outer cobalt oxide layer, a middle spinel-containing layer, and an inner Al{sub 2}O{sub 3}-rich region. Ion diffusion in outward direction is hindered by the development of Al{sub 2}O{sub 3}, that can be either present as a continuous and protective layer or as a discontinuous Al{sub 2}O{sub 3}-rich area without comparable protective effect. Furthermore, high temperature oxidation leads to phase transformation (from γ/γ' into γ/Co{sub 3}W) at the alloy/oxide layer interface due to aluminium depletion. Pure cobalt and ternary Co-Al-W alloys exhibit parabolic oxide growth due to the lack or insufficient amounts of protective oxides, whereas quaternary Co-Al-W-B alloys possess sub-parabolic oxidation behaviour (at 900 C). At lower temperatures (800 C), even a blockage of further oxidation can be observed. High amounts of B (0.12 at%) significantly improve oxidation resistance mainly due to its beneficial effect on inner Al{sub 2}O{sub 3}-formation at the alloy/oxide interface. Furthermore, B prevents decohesion of high temperature scales due to the formation of B-rich phases (presumably tungsten borides) in the middle oxide layer. Appropriate amounts of chromium (8 at%) as additional alloying element to Co-Al-W-B alloys lead to the formation of an inner duplex layer composed of protective Cr{sub 2}O{sub 3} and Al{sub 2}O{sub 3} phases. In this respect, chromium also benefits selective oxidation of aluminium, which results in higher Al{sub 2}O{sub 3}-contents compared to chromium-free alloys. Major drawbacks of chromium additions are, on the one hand, the formation of volatile chromium-containing species at temperatures exceeding 1000 C and on the other hand, the instability of the γ/γ'-microstructure. Titanium and silicon additions lead to

  3. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nitrous oxide flux under changing temperature and CO2

    Science.gov (United States)

    We are investigating nitrous oxide flux seasonal trends and response to temperature and CO2 increases in a boreal peatland. Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climat...

  5. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 - O2 environment

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-06-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al2O3 and TiO2) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO2, 10% O2 and 75% N2. This research investigates the effects of CO2 and O2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings.

  6. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 – O2 environment

    International Nuclear Information System (INIS)

    Farrokhzad, M A; Khan, T I

    2014-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al 2 O3 and TiO 2 ) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO 2 , 10% O 2 and 75% N 2 . This research investigates the effects of CO 2 and O 2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO 2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO 2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO 2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings

  7. High temperature oxidation behaviour of nanostructured cermet coatings in amixed CO/sub 2/ - O/sub 2/ environment

    International Nuclear Information System (INIS)

    Farrokhzad, M. A.; Khan, T. I.

    2013-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (alpha-Al /sub 2/O/sub 3/ and TiO/sub 2/) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500 degree C, 600 degree C and 700 degree C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15 percentage CO/sub 2/, 10 percentage O/sub 2/ and 75 percentage N/sub 2/. This research investigates the effects of CO/sub 2/ and O/sub 2/ partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO/sub 2/ at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO/sub 2/ in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO/sub 2/ acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO/sub 2/ particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Nu i-Tau i compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings. (author)

  8. Characterization and Catalytic Activity of Mn-Co/TiO2 Catalysts for NO Oxidation to NO2 at Low Temperature

    Directory of Open Access Journals (Sweden)

    Lu Qiu

    2016-01-01

    Full Text Available A series of Mn-Co/TiO2 catalysts were prepared by wet impregnation method and evaluated for the oxidation of NO to NO2. The effects of Co amounts and calcination temperature on NO oxidation were investigated in detail. The catalytic oxidation ability in the temperature range of 403–473 K was obviously improved by doping cobalt into Mn/TiO2. These samples were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscope (TEM and hydrogen temperature programmed reduction (H2-TPR. The results indicated that the formation of dispersed Co3O4·CoMnO3 mixed oxides through synergistic interaction between Mn-O and Co-O was directly responsible for the enhanced activities towards NO oxidation at low temperatures. Doping of Co enhanced Mn4+ formation and increased chemical adsorbed oxygen amounts, which also accelerated NO oxidation.

  9. Nanosized spinel oxide catalysts for CO-oxidation prepared via CoMnMgAl quaternary hydrotalcite route

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtar, M., E-mail: mmoustafa@kau.edu.s [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, P.O. Box 80203 (Saudi Arabia); Basahel, S.N.; Al-Angary, Y.O. [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, P.O. Box 80203 (Saudi Arabia)

    2010-03-18

    Catalytic activity of the Co-Mn-Mg-Al mixed oxide spinel catalysts was examined in CO oxidation by O{sub 2}. The prepared catalysts were characterized by chemical analysis (ICP), infrared spectroscopy (FTIR), thermal analysis (TG, DTG), powder X-ray diffraction (XRD), surface area measurements, and scanning electron microscopy (SEM).The calcined hydrotalcite-like precursor was composed of spinel-like Co-Mn-Mg-Al mixed oxide as the only XRD crystalline phases. The nanosized spinel oxide catalysts produced by calcination of hydrotalcites showed higher S{sub BET} than CoMn-hydrotalcite samples as calcination led to dehydroxylation and carbonate decomposition of anions in interlayer spaces. All the catalysts showed 100% CO conversion at high temperature even those calcined at 800 {sup o}C. A catalyst with Co/Mn = 4 and calcined at 500 {sup o}C showed 100% CO conversion at 160 {sup o}C. Moreover, this catalyst exhibited quite good durability without deactivation in 60 h stability test.

  10. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.

    Science.gov (United States)

    Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P

    2015-02-01

    Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3≫NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem. Copyright © 2014. Published by Elsevier B.V.

  11. A high-throughput study of the redox properties of Nb-Ni oxide catalysts by low temperature CO oxidation: Implications in ethane ODH

    KAUST Repository

    Laveille, Paco

    2013-03-01

    CO oxidation is used as a probe reaction to evaluate the redox properties of catalysts for the low temperature oxidative dehydrogenation (ODH) of ethane. Three series of Nb1-x-NixO nanocomposites with various Nb contents (x = 1, 0.95, 0.90, 0.85, 0.80) are prepared by a sol-gel route based on citrate and tested in a 16 parallel fixed-bed unit. Reductive and oxidative pre-treatments are shown to influence both the activity and the stability of the catalysts in CO oxidation. The extent of this effect depends on the Nb content of the composites, the Nb-rich samples being generally the most affected. However, the order of reactivity in CO oxidation is the same for the three series and is maintained whatever the conditions of the pre-treatment. It is the same as that observed in Nb1-x-NixO-catalyzed ethane ODH. © 2012 Elsevier B.V. All rights reserved.

  12. A high-throughput study of the redox properties of Nb-Ni oxide catalysts by low temperature CO oxidation: Implications in ethane ODH

    KAUST Repository

    Laveille, Paco; Biausque, Gregory; Zhu, Haibo; Basset, Jean-Marie; Caps, Valerie

    2013-01-01

    CO oxidation is used as a probe reaction to evaluate the redox properties of catalysts for the low temperature oxidative dehydrogenation (ODH) of ethane. Three series of Nb1-x-NixO nanocomposites with various Nb contents (x = 1, 0.95, 0.90, 0.85, 0.80) are prepared by a sol-gel route based on citrate and tested in a 16 parallel fixed-bed unit. Reductive and oxidative pre-treatments are shown to influence both the activity and the stability of the catalysts in CO oxidation. The extent of this effect depends on the Nb content of the composites, the Nb-rich samples being generally the most affected. However, the order of reactivity in CO oxidation is the same for the three series and is maintained whatever the conditions of the pre-treatment. It is the same as that observed in Nb1-x-NixO-catalyzed ethane ODH. © 2012 Elsevier B.V. All rights reserved.

  13. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor

    International Nuclear Information System (INIS)

    Dou Binlin; Song Yongchen; Liu Yingguang; Feng Cong

    2010-01-01

    The gas-solid reaction and breakthrough curve of CO 2 capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO 2 gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO 2 level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO 2 capture at 550 deg. C. Calcium oxide sorbent after reaction can be easily regenerated at 900 deg. C by pure N 2 flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO 2 were controlled by a combination of the surface chemical reaction and diffusion of product layer.

  14. Metal Phosphate-Supported Pt Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Qian

    2014-12-01

    Full Text Available Oxides (such as SiO2, TiO2, ZrO2, Al2O3, Fe2O3, CeO2 have often been used to prepare supported Pt catalysts for CO oxidation and other reactions, whereas metal phosphate-supported Pt catalysts for CO oxidation were rarely reported. Metal phosphates are a family of metal salts with high thermal stability and acid-base properties. Hydroxyapatite (Ca10(PO46(OH2, denoted as Ca-P-O here also has rich hydroxyls. Here we report a series of metal phosphate-supported Pt (Pt/M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La catalysts for CO oxidation. Pt/Ca-P-O shows the highest activity. Relevant characterization was conducted using N2 adsorption-desorption, inductively coupled plasma (ICP atomic emission spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, CO2 temperature-programmed desorption (CO2-TPD, X-ray photoelectron spectroscopy (XPS, and H2 temperature-programmed reduction (H2-TPR. This work furnishes a new catalyst system for CO oxidation and other possible reactions.

  15. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    Science.gov (United States)

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  16. TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature

    International Nuclear Information System (INIS)

    Yang, Ya-Chu; Tsau, Chun-Huei; Yeh, Jien-Wei

    2011-01-01

    We show the electrical resistivity of a TiFeCoNi oxide thin film. The electrical resistivity of the TiFeCoNi thin film decreased sharply after a suitable period of oxidation at high temperature. The lowest resistivity of the TiFeCoNi oxide film was 35 ± 3 μΩ-cm. The low electrical resistivity of the TiFeCoNi oxide thin film was attributed to Ti, which is more reactive than the other elements, reacting with oxygen at the initial stage of annealing. The low resistivity is caused by the remaining electrons.

  17. Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    You, Fu-Tian [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China); Yu, Guang-Wei, E-mail: gwyu@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Xing, Zhen-Jiao [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Liu, Xue-Jiao; Li, Jie [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China)

    2017-08-15

    Highlights: • Loading manganese oxides on activated carbon effectively promotes NO oxidation. • NO adsorption-desorption on activated carbon is fundamental to NO oxidation. • A high Mn{sup 4+}/Mn{sup 3+} ratio contributes to NO oxidation by promoting lattice O transfer. - Abstract: Nitric oxide (NO) is an air pollutant that is difficult to remove at low concentration and low temperature. Manganese oxides (MnO{sub x})-loaded activated carbon (MLAC) was prepared by a co-precipitation method and studied as a new catalyst for NO oxidation at low temperature. Characterization of MLAC included X-ray diffraction (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption/desorption and X-ray photoelectron spectroscopy (XPS). Activity tests demonstrated the influence of the amount of MnO{sub x} and the test conditions on the reaction. MLAC with 7.5 wt.% MnO{sub x} (MLAC003) exhibits the highest NO conversion (38.7%) at 1000 ppm NO, 20 vol.% O{sub 2}, room temperature and GHSV ca. 16000 h{sup −1}. The NO conversion of MLAC003 was elevated by 26% compared with that of activated carbon. The results of the MLAC003 activity test under different test conditions demonstrated that NO conversion is also influenced by inlet NO concentration, inlet O{sub 2} concentration, reaction temperature and GHSV. The NO adsorption-desorption process in micropores of activated carbon is fundamental to NO oxidation, which can be controlled by pore structure and reaction temperature. The activity elevation caused by MnO{sub x} loading is assumed to be related to Mn{sup 4+}/Mn{sup 3+} ratio. Finally, a mechanism of NO catalytic oxidation on MLAC based on NO adsorption-desorption and MnO{sub x} lattice O transfer is proposed.

  18. Characterization of Cu/CeO2/Al2O3 catalysts by temperature programmed reduction and activity for CO oxidation

    International Nuclear Information System (INIS)

    Cataluna, Renato; Baibich, Ione M.; Dallago, R.M.; Picinini, C.; Martinez-Arias, A.; Soria, J.

    2001-01-01

    The kinetic parameters for the CO oxidation reaction using copper/alumina-modified ceria as catalysts were determined. The catalysts with different concentrations of the metals were prepared using impregnation methods. In addition, the reduction-oxidation behaviour of the catalysts were investigated by temperature-programmed reduction. The activity results show that the mechanism for CO oxidation is bifunctional: oxygen is activated on the anionic vacancies of ceria surface, while carbon monoxide is adsorbed preferentially on the higher oxidation copper site. Therefore, the reaction occurs on the interfacial active centers. Temperatures-programmed Reduction patterns show a higher dispersion when cerium oxide is present. (author)

  19. Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei; Mei, Donghai; Xiong, Haifeng; Peng, Bo; Ren, Zhibo; Pereira Hernandez, Xavier I.; DelaRiva, Andrew; Wang, Meng; Engelhard, Mark H.; Kovarik, Libor; Datye, Abhaya K.; Wang, Yong

    2017-12-14

    While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sized Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.

  20. Ultra-high temperature oxidation behavior of chemical vapor deposited silicon carbide layers

    International Nuclear Information System (INIS)

    Goto, Takashi

    2003-01-01

    The active oxidation, passive oxidation and bubble formation of CVD SiC were studied in O 2 and CO 2 at temperatures from 1650 to 2000 K. The active oxidation rates in O 2 increased with increasing oxygen partial pressure (P o2 ); however, those in CO 2 showed the maxima at specific P o2 . The passive oxidation kinetics in O 2 were either linear-parabolic or parabolic depending on temperature and P o2 , whereas that in CO 2 was always parabolic. The activation energies for the parabolic oxidation in O 2 and CO 2 were 210 and 150 kJ/mol, respectively, suggesting different rate-determining process between these atmospheres. The bubble formation was controlled by temperature and P o2 being independent of oxidant gas species. (author)

  1. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie

    2009-12-10

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  2. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie; Piccolo, Laurent; Morfin, Franck; Avenier, Priscilla; Diehl, Fabrice; Caps, Valerie; Rousset, Jean Luc

    2009-01-01

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  3. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide

    Directory of Open Access Journals (Sweden)

    Lijie Ai

    2018-04-01

    Full Text Available A novel active Ca-Co dually-doping pyrochlore oxide La2−xCaxSn2−yCoyO7 catalyst was synthesized by the sol-gel method for catalytic oxidation of soot particulates. The microstructure, atomic valence, reduction, and adsorption performance were investigated by X-ray powder diffraction (XRD, scanning electron microscope (SEM, Fourier-transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, H2-TPR (temperature-programmed reduction, and in situ diffuse reflection infrared Fourier transformed (DRIFTS techniques. Temperature programmed oxidation (TPO tests were performed with the mixture of soot-catalyst under tight contact conditions to evaluate the catalytic activity for soot combustion. Synergetic effect between Ca and Co improved the structure and redox properties of the solids, increased the surface oxygen vacancies, and provided a suitable electropositivity for oxide, directly resulting in the decreased ignition temperature for catalyzed soot oxidation as low as 317 °C. The presence of NO in O2 further promoted soot oxidation over the catalysts with the ignition temperature decreased to about 300 °C. The DRIFTS results reveal that decomposition of less stable surface nitrites may account for NO2 formation in the ignition period of soot combustion, which thus participate in the auxiliary combustion process.

  4. Thermogravimetric, Calorimetric, and Structural Studies of the Co3 O4 /CoO Oxidation/Reduction Reaction

    Science.gov (United States)

    Unruh, Karl; Cichocki, Ronald; Kelly, Brian; Poirier, Gerald

    2015-03-01

    To better assess the potential of cobalt oxide for thermal energy storage (TES), the Co3O4/CoO oxidation/reduction reaction has been studied by thermogravimetric (TGA), calorimetric (DSC), and x-ray diffraction (XRD) measurements in N2 and atmospheric air environments. TGA measurements showed an abrupt mass loss of about 6.6% in both N2 and air, consistent with the stoichiometric reduction of Co3O4 to CoO and structural measurements. The onset temperature of the reduction of Co3O4 in air was only weakly dependent on the sample heating rate and occurred at about 910 °C. The onset temperature for the oxidation of CoO varied between about 850 and 875 °C for cooling rates between 1 and 20 °C/min, but complete re-conversion to Co3O4 could only be achieved at the slowest cooling rates. Due to the dependence of the rate constant on the oxygen partial pressure, the oxidation of Co3O4 in a N2 environment occurred at temperatures between about 775 and 825 °C for heating rates between 1 and 20 °C/min and no subsequent re-oxidation of the reduced Co3O4 was observed on cooling to room temperature. In conjunction with a measured transition heat of about 600 J/g of Co3O4, these measurements indicate that cobalt oxide is a viable TES material.

  5. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Plasma electrolytic oxide coatings on silumin for oxidation CO

    Science.gov (United States)

    Borisov, V. A.; Sigaeva, S. S.; Anoshkina, E. A.; Ivanov, A. L.; Litvinov, P. V.; Vedruchenko, V. R.; Temerev, V. L.; Arbuzov, A. B.; Kuznetsov, A. A.; Mukhin, V. A.; Suprunov, G. I.; Chumychko, I. A.; Shlyapin, D. A.; Tsyrul'nikov, P. G.

    2017-08-01

    Some catalysts of CO oxidation on silumin alloy AK12M2, used for the manufacture of pistons for Russian cars were investigated. The catalysts were prepared by the method of plasma electrolytic oxidation of silumin in electrolytes of various compositions with further activation by the salts Ce, Cu, Co, Ni, Mn and Al. The catalytic tests were carried out in a flow reactor in a mixture of 1% CO and 99% air, with the temperature range of 25-500 °C. The most active catalysts in CO oxidation are those activated with Ce and Cu salts on silumin, treated for 3 hours in an electrolyte containing 4 g/l KOH, 40 g/l Na2B4O7 (conversion of CO is 93.7% at a contact time of 0.25 s). However, the catalysts obtained from silumin treated in the electrolyte containing 3 g/l KOH, 30 g/l Na2SiO3 are more suitable for practical usage. Because when the treatment time of those catalysts is 10 - 20 minutes it is possible to achieve comparable CO conversion. The morphology and composition of the catalysts were studied by the methods of a scanning electron microscope with energy-dispersive surface analysis and X-ray phase analysis. The surface of the non-activated sample consists of γ-Al2O3 and SiO2 particles, due to which the active components get attached to the support. CeO2 and CuO are present on the surface of the sample with the active component.

  7. High temperature H2/CO2 separation using cobalt oxide silica membranes

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Diniz da Costa, J.C. [The University of Queensland, FIMLab - Films and Inorganic Membrane Laboratory, School of Chemical Engineering, Brisbane, Qld 4072 (Australia); Vente, J.F. [Energy research Centre of the Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2012-09-15

    In this work high quality cobalt oxide silica membranes were synthesized on alumina supports using a sol-gel, dip coating method. The membranes were subsequently connected into a steel module using a graphite based proprietary sealing method. The sealed membranes were tested for single gas permeance of He, H2, N2 and CO2 at temperatures up to 600C and feed pressures up to 600 kPa. Pressure tests confirmed that the sealing system was effective as no gas leaks were observed during testing. A H2 permeance of 1.9 x 10{sup -7} mol m{sup -2} s{sup -1} Pa-1 was measured in conjunction with a H2/CO2 permselectivity of more than 1500, suggesting that the membranes had a very narrow pore size distribution and an average pore diameter of approximately 3 Angstrom. The high temperature testing demonstrated that the incorporation of cobalt oxide into the silica matrix produced a structure with a higher thermal stability, able to resist thermally induced densification up to at least 600C. Furthermore, the membranes were tested for H2/CO2 binary feed mixtures between 400 and 600C. At these conditions, the reverse of the water gas shift reaction occurred, inadvertently generating CO and water which increased as a function of CO2 feed concentration. The purity of H2 in the permeate stream significantly decreased for CO2 feed concentrations in excess of 50 vol%. However, the gas mixtures (H2, CO2, CO and water) had a more profound effect on the H2 permeate flow rates which significantly decreased, almost exponentially as the CO2 feed concentration increased.

  8. Low temperature oxidation and spontaneous combustion characteristics of upgraded low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.K.; Kim, S.D.; Yoo, J.H.; Chun, D.H.; Rhim, Y.J.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2013-07-01

    The low temperature oxidation and spontaneous combustion characteristics of dried coal produced from low rank coal using the upgraded brown coal (UBC) process were investigated. To this end, proximate properties, crossing-point temperature (CPT), and isothermal oxidation characteristics of the coal were analyzed. The isothermal oxidation characteristics were estimated by considering the formation rates of CO and CO{sub 2} at low temperatures. The upgraded low rank coal had higher heating values than the raw coal. It also had less susceptibility to low temperature oxidation and spontaneous combustion. This seemed to result from the coating of the asphalt on the surface of the coal, which suppressed the active functional groups from reacting with oxygen in the air. The increasing upgrading pressure negatively affected the low temperature oxidation and spontaneous combustion.

  9. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Chen, Wen-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Tien, Yin-Chun [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.t [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan1st Road, Kaohsiung 80708, Taiwan (China)

    2010-04-30

    Cerium oxide nanocrystallites were synthesized by a co-precipitation process at a relatively low temperature, using cerium (III) nitrate as the starting material in a water solution with pH in the range of 8-9. The effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K, by XRD analysis. When calcined at temperatures from 473 to 1273 K, face-centered cubic phase crystallization was observed by XRD. The crystallite size of the cerium oxide increased from 12.0 to 48 nm as the calcining temperature increased from 473 to 1273 K, in the pH range 8-9. The activation energy for the growth of cerium oxide nanoparticles was found to have very low values of 17.5 kJ/mol for pH = 8 and 16.0 kJ/mol for pH = 9.

  10. Chemical engineering design of CO oxidation catalysts

    Science.gov (United States)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  11. Highly Selective Aerobic Oxidation of 5-Hydroxymethyl Furfural into 2,5-Diformylfuran over Mn-Co Binary Oxides

    DEFF Research Database (Denmark)

    Gui, Zhenyou; Shunmugavel, Saravanamurugan; Cao, Wenrong

    2017-01-01

    A series of Mn−Co binary oxides were prepared by a simple thermal decomposition procedure and evaluated for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) into 2,5-diformylfuran (DFF). Investigation of the effects of metal amounts and calcination temperatures of the prepared catalysts rev...

  12. Investigation of Element Effect on High-Temperature Oxidation of HVOF NiCoCrAlX Coatings

    Directory of Open Access Journals (Sweden)

    Pimin Zhang

    2018-04-01

    Full Text Available MCrAlX (M: Ni or Co or both, X: minor elements coatings have been used widely to protect hot components in gas turbines against oxidation and heat corrosion at high temperatures. Understanding the influence of the X-elements on oxidation behavior is important in the design of durable MCrAlX coatings. In this study, NiCoCrAlX coatings doped with Y + Ru and Ce, respectively, were deposited on an Inconel-792 substrate using high velocity oxygen fuel (HVOF. The samples were subjected to isothermal oxidation tests in laboratory air at 900, 1000, and 1100 °C and a cyclic oxidation test between 100 and 1100 °C with a 1-h dwell time at 1100 °C. It was observed that the coating with Ce showed a much higher oxidation rate than the coating with Y + Ru under both isothermal and cyclic oxidation tests. In addition, the Y + Ru-doped coating showed significantly lower β phase depletion due to interdiffusion between the coating and the substrate, resulting from the addition of Ru. Simulation results using a moving phase boundary model and an established oxidation-diffusion model showed that Ru stabilized β grains, which reduced β-depletion of the coating due to substrate interdiffusion. This paper, combining experiment and simulation results, presents a comprehensive study of the influence of Ce and Ru on oxidation behavior, including an investigation of the microstructure evolution in the coating surface and the coating-substrate interface influenced by oxidation time.

  13. Selective carbon monoxide oxidation over Ag-based composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Guldur, C. [Gazi University, Ankara (Turkey). Chemical Engineering Department; Balikci, F. [Gazi University, Ankara (Turkey). Institute of Science and Technology, Environmental Science Department

    2002-02-01

    We report our results of the synthesis of 1 : 1 molar ratio of the silver cobalt and silver manganese composite oxide catalysts to remove carbon monoxide from hydrogen-rich fuels by the catalytic oxidation reaction. Catalysts were synthesized by the co-precipitation method. XRD, BET, TGA, catalytic activity and catalyst deactivation studies were used to identify active catalysts. Both CO oxidation and selective CO oxidation were carried out in a microreactor using a reaction gas mixture of 1 vol% CO in air and another gas mixture was prepared by mixing 1 vol% CO, 2 vol% O{sub 2}, 84 vol% H{sub 2}, the balance being He. 15 vol% CO{sub 2} was added to the reactant gas mixture in order to determine the effect of CO{sub 2}, reaction gases were passed through the humidifier to determine the effect of the water vapor on the oxidation reaction. It was demonstrated that metal oxide base was decomposed to the metallic phase and surface areas of the catalysts were decreased when the calcination temperature increased from 200{sup o}C to 500{sup o}C. Ag/Co composite oxide catalyst calcined at 200{sup o}C gave good activity at low temperatures and 90% of CO conversion at 180{sup o}C was obtained for the selective CO oxidation reaction. The addition of the impurities (CO{sub 2} or H{sub 2}O) decreased the activity of catalyst for selective CO oxidation in order to get highly rich hydrogen fuels. (author)

  14. Oxygen Storage Capacity and Oxygen Mobility of Co-Mn-Mg-Al Mixed Oxides and Their Relation in the VOC Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    María Haidy Castaño

    2015-05-01

    Full Text Available Co-Mn-Mg-Al oxides were synthesized using auto-combustion and co-precipitation techniques. Constant ratios were maintained with (Co + Mn + Mg/Al equal to 3.0, (Co + Mn/Mg equal to 1.0 and Co/Mn equal to 0.5. The chemical and structural composition, redox properties, oxygen storage capacity and oxygen mobility were analyzed using X-ray fluorescence (XRF, X-ray diffraction (XRD, Raman spectroscopy, scanning electron microscopy (SEM, temperature-programmed reduction of hydrogen (H2-TPR, oxygen storage capacity (OSC, oxygen storage complete capacity (OSCC and isotopic exchange, respectively. The catalytic behavior of the oxides was evaluated in the total oxidation of a mixture of 250 ppm toluene and 250 ppm 2-propanol. The synthesis methodology affected the crystallite size, redox properties, OSC and oxide oxygen mobility, which determined the catalytic behavior. The co-precipitation method got the most active oxide in the oxidation of the volatile organic compound (VOC mixture because of the improved mobility of oxygen and ability to favor redox processes in the material structure.

  15. Low temperature ozone oxidation of solid waste surrogates

    Science.gov (United States)

    Nabity, James A.; Lee, Jeffrey M.

    2015-09-01

    Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.

  16. Combined CO/CH4 oxidation tests over Pd/Co3O4 monolithic catalyst. Effects of high reaction temperature and SO2 exposure on the deactivation process

    International Nuclear Information System (INIS)

    Liotta, L.F.; Venezia, A.M.; Di Carlo, G.; Pantaleo, G.; Deganello, G.; Merlone Borla, E.; Pidria, M.

    2007-01-01

    CO and CH 4 combined oxidation tests were performed over a Pd (70 g/ft 3 )/Co 3 O 4 monolithic catalyst in conditions of GHSV = 100,000 h -1 and feed composition close to that of emission from bi-fuel vehicles. The effect of SO 2 (5 ppm) on CO and CH 4 oxidation activity under lean condition (λ 2) was investigated. The presence of sulphur strongly deactivated the catalyst towards methane oxidation, while the poisoning effect was less drastic in the oxidation of CO. Saturation of the Pd/Co 3 O 4 catalytic sites via chemisorbed SO 3 and/or sulphates occurred upon exposure to SO 2 . A treatment of regeneration to remove sulphate species was attempted by performing a heating/cooling cycle up to 900 C in oxidizing atmosphere. Decomposition of PdO and Co 3 O 4 phases at high temperature, above 750 C, was observed. Moreover, sintering of Pd 0 and PdO particles along with of CoO crystallites takes place. (author)

  17. Monolithic Au/CeO2 nanorod framework catalyst prepared by dealloying for low-temperature CO oxidation

    Science.gov (United States)

    Zhang, Xiaolong; Duan, Dong; Li, Guijing; Feng, Wenjie; Yang, Sen; Sun, Zhanbo

    2018-03-01

    Monolithic Au/CeO2 nanorod frameworks (NFs) with porous structure were prepared by dealloying melt-spun Al89.7Ce10Au0.3 ribbons. After calcination in O2, a 3D Au/CeO2 NF catalyst with large surface area was obtained and used for low-temperature CO oxidation. The small Au clusters/nanoparticles (NPs) were in situ supported and highly dispersed on the nanorod surface, creating many nanoscale contact interfaces. XPS results demonstrated that high-concentration oxygen vacancy and Au δ+/Au0 co-existed in the calcined sample. The Au/CeO2 nanorod catalyst calcined at 400 °C exhibited much higher catalytic activity for CO oxidation compared with the dealloyed sample and bare CeO2 nanorods. Moreover, its complete reaction temperature was as low as 91 °C. The designed Au/CeO2 NF catalyst not only possessed extreme sintering resistance but also exhibited high performance owing to the enhanced interaction between the Au clusters/NPs and CeO2 nanorod during calcination.

  18. Preparation of Au/Y2O3 and Au/NiO catalysts by co-precipitation and their oxidation activities

    International Nuclear Information System (INIS)

    Sreethawong, Thammanoon; Sitthiwechvijit, Norsit; Rattanachatchai, Apiwat; Ouraipryvan, Piya; Schwank, Johannes W.; Chavadej, Sumaeth

    2011-01-01

    Research highlights: → The catalytic activity of Au catalysts supported on Y 2 O 3 and NiO prepared by co-precipitation was investigated for CO and methanol oxidation. → The phase transformation of yttrium support greatly affected the CO oxidation activity. → The Au/Y 2 O 3 exhibited the same activity as Au/NiO for the methanol oxidation while the Au/NiO gave higher activity for CO oxidation. - Abstract: The objective of this work was to investigate the catalytic activity of gold catalysts supported on two metal oxides, yttrium oxide and nickel oxide, prepared by co-precipitation for CO and methanol oxidation reactions. The TGA and XRD results confirmed that yttrium hydroxide (Y(OH) 3 ) was formed at calcination temperature below 300 deg. C. When it was calcined at 400 deg. C, the Y(OH) 3 was transformed to yttrium oxide hydroxide (YOOH). Finally, when calcination temperature was raised to 600 deg. C, the YOOH was completely transformed to yttrium oxide (Y 2 O 3 ). Interestingly, the gold loaded on YOOH calcined at 400 deg. C and gold loaded on Y 2 O 3 calcined at 500 deg. C comparatively showed the highest catalytic activity for complete CO oxidation at a reaction temperature of 300 deg. C. The 0.12% Au/Y 2 O 3 catalyst calcined at 500 deg. C was employed for both CO and methanol oxidation studies. For complete CO oxidation, the reaction temperatures of Au/Y 2 O 3 and Au/NiO catalysts were 325 deg. C and 250 deg. C, respectively. The light-off temperatures of Au/Y 2 O 3 and Au/NiO catalysts for methanol oxidation were 210 deg. C and 205 deg. C, respectively. Conclusively, the Au/Y 2 O 3 clearly exhibited the same activity as that of Au/NiO for methanol oxidation while the Au/NiO gave higher activity for CO oxidation.

  19. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  20. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  1. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform

    OpenAIRE

    Lundberg, Pontus; Lee, Bongjae F.; van den Berg, Sebastiaan A.; Pressly, Eric D.; Lee, Annabelle; Hawker, Craig J.; Lynd, Nathaniel A.

    2012-01-01

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxi...

  2. Adsorption of CO, CO2, H2, and H2O on titania surfaces with different oxidation states

    International Nuclear Information System (INIS)

    Raupp, G.B.; Dumesic, J.A.

    1985-01-01

    The adsorptive properties of titania surfaces with different oxidation states were proved by temperature-programmed desorption (TPD) of CO, H 2 , CO 2 , and H 2 O. Auger electron spectroscopy and X-ray photoelectron spectroscopy revealed that vacuum annealing an oxidized titanium foil at temperatures from 300 to 800 K was an effective means of systematically varying the average surface oxidation state from Ti 4+ to Ti 2+ . Carbon monoxide weakly adsorbed (desorption energy of 44-49 kJ x mol -1 ) in a carbonyl fashion on coordinatively unsaturated cation sites. Titania surfaces were inert with respect to H 2 adsorption and dissociation. Carbon dioxide adsorbed in a linear molecular fashion. Water adsorbed both molecularly and dissociatively. Results are discussed in terms of the role of titania oxidation state in CO hydrogenation over titania-supported metal catalysts. 74 references, 7 figures

  3. High temperature oxidation test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    In a feasibility study of ODS steel cladding, its high temperature oxidation resistance was evaluated. Although addition of Cr is effective for preventing high temperature oxidation, excessively higher amount of Cr leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, high temperature oxidation test was conducted for ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) 9Cr-ODS martensitic and 12Cr-ODS ferritic steel have superior high temperature oxidation resistance compared to 11mass%Cr PNC-FMS and even 17mass% SUS430 and equivalent to austenitic PNC316. (2) The superior oxidation resistance of ODS steel was attributed to earlier formation of the protective alpha-Cr 2 O 3 layer at the matrix and inner oxide scale interface. The grain size of ODS steel is finer than that of PNC-FMS, so the superior oxidation resistance of ODS steel can be attributed to the enhanced Cr-supplying rate throughout the accelerated grain boundary diffusion. Finely dispersed Y 2 O 3 oxide particles in the ODS steel matrix may also stabilized the adherence between the protective alpha-Cr 2 O 3 layer and the matrix. (author)

  4. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  5. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, Y.J.; Hon, M.H.

    2010-01-01

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol -1 .

  6. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, Y.J. [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hon, M.H. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-05-15

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol{sup -1}.

  7. Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater-or-equal, slan......Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater...

  8. Promotion effect of palladium on Co{sub 3}O{sub 4} incorporated within mesoporous MCM-41 silica for CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Hassan M.A., E-mail: hassan.hassan@suezuniv.edu.eg [Department of Chemistry, Faculty of Science, Suez University, Suez (Egypt); Institut fur Anorganische Chemie und Strukturchemie, Heinrich-Heine Universitat, Dusseldorf (Germany); Betiha, Mohamed A. [Egyptian Petroleum Research Institute, Cairo 11727, Nasr City, Cairo (Egypt); Elshaarawy, Reda F.M. [Department of Chemistry, Faculty of Science, Suez University, Suez (Egypt); Institut fur Anorganische Chemie und Strukturchemie, Heinrich-Heine Universitat, Dusseldorf (Germany); Samy El-Shall, M. [Department of Chemistry, Virginia Commonwealth University Richmond, VA 23284-2006 (United States)

    2017-04-30

    Highlights: • Co{sub 3}O{sub 4} incorporated MCM-41 materials were successfully synthesized using MWI direct approach. • Co3{sup +} cation is considered as favorable site for CO adsorption resulted in promote the CO oxidation. • The loading of Pd species resulted in enhancement of activity for CO oxidation. - Abstract: Co{sub 3}O{sub 4} incorporated within mesoporous MCM-41 silica have been successfully synthesized and promoted with Pd nanoparticles through a microwave irradiation (MWI) approach. Powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), N{sub 2}-physisorped, X-ray photoelectron spectroscopy (XPS), temperature program reduction of hydrogen (H{sub 2}-TPR), temperature program desorption of oxygen (O{sub 2}-TPD) and high resolution transmission electron microscopy (HRTEM) were adapted to characterize these prepared catalysts. Carbon monoxide oxidation as a model reaction was then used to assess the catalytic performance of these materials. In the light of H{sub 2}-TPR and XPS results, revealed that the coexisting of Co{sup 3+} and Co{sup 2+} species as well as surface Co{sup 3+}/Co{sup 2+} ratio within the hexagonal mesoporous of MCM-41, could create an ideal environment to accomplish most extreme catalytic activity. On the other hand, the enhanced CO oxidation by Pd nanoparticles deposition has been explained in the light of the enhancement of the redox ability and tuning the electronic structure of Co{sub 3}O{sub 4}, which improved the O{sub 2} activation and reduced the adsorption ability of CO simultaneously, which significantly boosted the catalytic performance of CO oxidation. This work provides insights into factors that could lead to improved low temperature CO oxidation performance in Pd-based catalysts.

  9. Synthesis, Characterization and Shape-Dependent Catalytic CO Oxidation Performance of Ruthenium Oxide Nanomaterials: Influence of Polymer Surfactant

    Directory of Open Access Journals (Sweden)

    Antony Ananth

    2015-08-01

    Full Text Available Ruthenium oxide nano-catalysts supported on mesoporous γ-Al2O3 have been prepared by co-precipitation method and tested for CO oxidation. The effect of polyethylene glycol (PEG on the properties of the catalyst was studied. Addition of the PEG surfactant acted as a stabilizer and induced a change in the morphology of ruthenium oxide from spherical nanoparticles to one-dimensional nanorods. Total CO conversion was measured as a function of morphology at 175 °C and 200 °C with 1.0 wt.% loading for PEG-stabilized and un-stabilized catalysts, respectively. Conversion routinely increased with temperature but in each case, the PEG-stabilized catalyst exhibited a notably higher catalytic activity as compared to the un-stabilized equivalent. It can be assumed that the increase in the activity is due to the changes in porosity, shape and dispersion of the catalyst engendered by the use of PEG.

  10. Resource recovery of WC-Co cermet using hydrothermal oxidation technique

    International Nuclear Information System (INIS)

    Gao Ningfeng; Inagaki, F.; Sasai, R.; Itoh, H.; Watari, K.

    2005-01-01

    WC-Co cermet is widely used in industrial applications such as cutting tools, dies, wear parts and so on. It is of great importance to establish the recycling process for the precious metal resources contained in WC-Co cermet, because all these metals used in Japan are imported. In this paper we reported a hydrothermal oxidation technique using nitric acid for the reclamation of WC and Co. The WC-Co cermet specimens with various WC particle sizes and Co contents were hydrothermally treated in HNO 3 aqueous solutions at temperatures of 110-200 C for durations of 6-240 h. The Co was preferentially leached out into the acidic solution, while the WC was oxidized to insoluble WO 3 hydrate which was subsequently separated by filtration. The hydrothermal treatment parameters such as solvent concentrations, treatment temperatures, holding time were optimized in respect to different kinds of WC-Co cermets. A hydrothermal oxidation treatment in 3M HNO 3 aqueous solution at 150 C for 24 h was capable of fully disintegrating the cermet chip composed of coarse WC grains of 1-5 μm in size with 20 wt% of Co as binder. While the more oxidation resistant specimen composed of fine WC grains of 0.5-1.0 μm in size with 13 wt% of Co, was completely disintegrated by a treatment in 7 M HNO 3 aqueous solution at 170 C for 24 h. The filtered solid residues were composed of fine WO 3 .0.33H 2 O powder and a small amount of WO 3 . The recovered WO 3 .0.33H 2 O powder can be easily returned to the industrial process for the synthesis of WC powder so that the overall recycling cost can be possibly lowered. (orig.)

  11. Ruthenium(V) oxides from low-temperature hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hiley, Craig I.; Walton, Richard I. [Department of Chemistry, University of Warwick, Coventry (United Kingdom); Lees, Martin R. [Department of Physics, University of Warwick, Coventry (United Kingdom); Fisher, Janet M.; Thompsett, David [Johnson Matthey Technology Centre, Reading (United Kingdom); Agrestini, Stefano [Max-Planck Institut, CPfS, Dresden (Germany); Smith, Ronald I. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom)

    2014-04-22

    Low-temperature (200 C) hydrothermal synthesis of the ruthenium oxides Ca{sub 1.5}Ru{sub 2}O{sub 7}, SrRu{sub 2}O{sub 6}, and Ba{sub 2}Ru{sub 3}O{sub 9}(OH) is reported. Ca{sub 1.5}Ru{sub 2}O{sub 7} is a defective pyrochlore containing Ru{sup V/VI}; SrRu{sub 2}O{sub 6} is a layered Ru{sup V} oxide with a PbSb{sub 2}O{sub 6} structure, whilst Ba{sub 2}Ru{sub 3}O{sub 9}(OH) has a previously unreported structure type with orthorhombic symmetry solved from synchrotron X-ray and neutron powder diffraction. SrRu{sub 2}O{sub 6} exhibits unusually high-temperature magnetic order, with antiferromagnetism persisting to at least 500 K, and refinement using room temperature neutron powder diffraction data provides the magnetic structure. All three ruthenates are metastable and readily collapse to mixtures of other oxides upon heating in air at temperatures around 300-500 C, suggesting they would be difficult, if not impossible, to isolate under conventional high-temperature solid-state synthesis conditions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    are not easily satisfied by conventional thermoelectric materials. Not only they must possess a sufficient thermoelectric performance, they should also be stable at high temperatures, nontoxic and low-cost comprising elements, and must be also able to be processed and shaped cheaply. Oxides are among...... the strongest candidate materials for this purpose. In this review, the progress in the development of two representative p- and n-type novel oxide materials based on Ca3Co4O9 and doped-ZnO is presented. Thermoelectric modules built up from these oxides were fabricated, tested at high temperatures, and compared...... with other similar oxide modules reported in the literature. A maximum power density of 4.5 kW/m2 was obtained for an oxide module comprising of 8 p-n couples at a temperature difference of 496 K, an encouraging result in the context of the present high temperature oxide modules....

  13. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform.

    Science.gov (United States)

    Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A

    2012-11-20

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.

  14. Thermal deoxygenation of graphite oxide at low temperature

    International Nuclear Information System (INIS)

    Kampars, V; Legzdina, M

    2015-01-01

    Synthesis of graphene via the deoxygenation of the graphite oxide (GO) is a method for the large-scale production of this nanomaterial possessing exceptional mechanical, electrical and translucent properties. Graphite oxide sheet contains at least four different oxygen atoms connected to the Csp 3 and Csp 2 atoms of the sheet in the form of hydroxyl, epoxy, carboxyl or carbonyl groups. Some of these functional groups are located at the surface but others situated at the edges of the platelets. To obtain the graphene nanoplatelets or the few-layer graphene the oxygen functionalities must be removed. Exfoliation and deoxygenation can be accomplished by the use of chemical reductants or heat. Thermal deoxygenation as greener and simpler approach is more preferable over chemical reduction approach. Usually a considerable mass loss of GO observed upon heating at temperatures starting at 200 °C and is attributed to the deoxygenation process. In order to avoid the defects of the obtained graphene sheets it is very important to find the methods for lowering the deoxygenation temperature of GO. Herein, we have investigated the way treatment of the Hummer's synthesis product with acetone and methyl tert-butyl ether under ultrasonication in order to lower the thermal stability of the graphite oxide and its deoxygenation temperature. The obtained results indicate that treatment of the graphite oxide with solvents mentioned above substantially reduces the reduction and exfoliation temperature (130 °C) under ambient atmosphere. The investigation of the composition of evolved gases by hyphenated Pyr/GC/MS method at different experimental conditions under helium atmosphere shows that without the expected H 2 O, CO and CO 2 also sulphur dioxide and acetone has been released

  15. Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shu-en [Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Alonso, Jose Antonio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States)

    2010-01-01

    We have developed a Co-free solid oxide fuel cell (SOFC) based upon Fe mixed oxides that gives an extraordinary performance in test-cells with H{sub 2} as fuel. As cathode material, the perovskite Sr{sub 0.9}K{sub 0.1}FeO{sub 3-{delta}} (SKFO) has been selected since it has an excellent ionic and electronic conductivity and long-term stability under oxidizing conditions; the characterization of this material included X-ray diffraction (XRD), thermal analysis, scanning microscopy and conductivity measurements. The electrodes were supported on a 300-{mu}m thick pellet of the electrolyte La{sub 0.8}Sr{sub 0.2}Ga{sub 0.83}Mg{sub 0.17}O{sub 3-{delta}} (LSGM) with Sr{sub 2}MgMoO{sub 6} as the anode and SKFO as the cathode. The test cells gave a maximum power density of 680 mW cm{sup -2} at 800 C and 850 mW cm{sup -2} at 850 C, with pure H{sub 2} as fuel. The electronic conductivity shows a change of regime at T {approx} 350 C that could correspond to the phase transition from tetragonal to cubic symmetry. The high-temperature regime is characterized by a metallic-like behavior. At 800 C the crystal structure contains 0.20(1) oxygen vacancies per formula unit randomly distributed over the oxygen sites (if a cubic symmetry is assumed). The presence of disordered vacancies could account, by itself, for the oxide-ion conductivity that is required for the mass transport across the cathode. The result is a competitive cathode material containing no cobalt that meets the target for the intermediate-temperature SOFC. (author)

  16. Surface properties and catalytic performance of Pt/LaSrCoO4 catalysts in the oxidation of hexane

    Directory of Open Access Journals (Sweden)

    Hua Zhong

    2007-08-01

    Full Text Available Perovskite-type La2 –xSrxCoO4 mixed oxides have been prepared by calcination at various temperatures of precipitates obtained from aqueous solutions in the presence of citric or ethylenediamintetraacetic (EDTA acids, and have been studied by X-ray diffraction (XRD, surface area (BET measurements, temperature programmed desorption (TPD, temperature programmed reduction (TPR and X-ray photoelectron spectroscopy (XPS. These oxides are catalysts for hexane oxidation, with the greatest activity for LaSrCoO4 calcined at 750 C. This has extensive oxygen vacancies and large internal surface area. Pt-modified LaSrCoO4 catalysts are significantly more active than the Pt-free system. Both surface and bulk phases of the preovskitetype oxides contribute to hexane oxidation.

  17. Synthesis and detection the oxidization of Co cores of Co@SiO2 core-shell nanoparticles by in situ XRD and EXAFS.

    Science.gov (United States)

    Zhang, Kunhao; Zhao, Ziyan; Wu, Zhonghua; Zhou, Ying

    2015-01-01

    In this paper, the Co@SiO2 core-shell nanoparticles were prepared by the sol-gel method. The oxidization of Co core nanoparticles was studied by the synchrotron radiation-based techniques including in situ X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) up to 800°C in air and N2 protection conditions, respectively. It was found that the oxidization of Co cores is undergoing three steps regardless of being in air or in N2 protection condition. In the first step ranging from room temperature to 200°C, the Co cores were dominated by Co(0) state as well as small amount of Co(2+) ions. When temperature was above 300°C, the interface between Co cores and SiO2 shells was gradually oxidized into Co(2+), and the CoO layer was observed. As the temperature increasing to 800°C, the Co cores were oxidized to Co3O4 or Co3O4/CoO. Nevertheless, the oxidization kinetics of Co cores is different for the Co@SiO2 in air and N2 gas conditions. Generally, the O2 in the air could get through the SiO2 shells easily onto the Co core surface and induce the oxidization of the Co cores due to the mesoporous nature of the SiO2 shells. However, in N2 gas condition, the O atoms can only be from the SiO2 shells, so the diffusion effect of O atoms in the interface between Co core and SiO2 shell plays a key role.

  18. High temperature oxidation and electrochemical investigations on nickel-base alloys

    International Nuclear Information System (INIS)

    Obigodi-Ndjeng, Georgia

    2011-01-01

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy's corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 C in air for different time periods. The superalloy showed the best oxidation behavior at both temperatures, which might be due to the fact that the oxidation growth function is subparabolic for the model alloys and parabolic for the superalloy at 800 C. At higher temperatures, changes in the kinetics are induced, as the oxides grow faster, thus only PWA 1483 growth follows the parabolic law. Different scales in a typical sandwich form were detected, with the inner layer comprised of mostly Cr 2 O 3 , the middle layer was mixture of different oxides and spinels, depending on the alloying elements, and the oxide at the interface oxygen/oxide was found to be NiO. The influence of sample preparation could also be shown, as rougher surfaces change the oxidation kinetics from parabolic and subparabolic for polished samples to linear. The influence of moisture on the oxidation behavior of the 2 nd generation single crystal Ni-base superalloys (PWA 1484, PWA 1487, CMSX 4, Rene N5 and Rene N5+) was studied at 1000 C after 100 h oxidation period. It was found that the moisture increased the oxidation rate and mostly the transient oxides growth rate. The water vapor content in air also influenced the behavior of these alloys, as they showed a higher mass gain in air + 30% water vapor than in air + 10% water vapor. The alloys PWA 1484 and CMSX 4 showed respectively the worst and best behavior in all the studied atmospheres. The addition of reactive elements, such as Yttrium, Hafnium and Lanthanum is likely to enhance the oxidation behavior of PWA

  19. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  20. Modeling and experimental validation of CO heterogeneous chemistry and electrochemistry in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yurkiv, Vitaly

    2010-12-17

    In the present work experimental and numerical modeling studies of the heterogeneously catalyzed and electrochemical oxidation of CO at Nickel/yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) anode systems were performed to evaluate elementary charge-transfer reaction mechanisms taking place at the three-phase boundary of CO/CO{sub 2} gas-phase, Ni electrode, and YSZ electrolyte. Temperature-programmed desorption and reaction experiments along with density functional theory calculations were performed to determine adsorption/desorption and surface diffusion kinetics as well as thermodynamic data for the CO/CO{sub 2}/Ni and CO/CO{sub 2}/YSZ systems. Based on these data elementary reaction based models with four different charge transfer mechanisms for the electrochemical CO oxidation were developed and applied in numerical simulations of literature experimental electrochemical data such as polarization curves and impedance spectra. Comparison between simulation and experiment demonstrated that only one of the four charge transfer mechanisms can consistently reproduce the electrochemical data over a wide range of operating temperatures and CO/CO{sub 2} gas compositions. (orig.) [German] In der vorliegenden Arbeit wurden experimentelle und numerische Untersuchungen zur heterogen katalysierten und elektrochemischen Oxidation von CO an Anodensystemen (bestehend aus Nickel und yttriumdotiertem Zirkoniumdioxid, YSZ) von Festoxidbrennstoffzellen (engl. Solid Oxide Fuel Cells, SOFCs) ausgefuehrt, um den mikroskopischen Mechanismus der an der CO/CO{sub 2}-Gasphase/Ni-Elektrode/YSZ-Elektrolyt- Dreiphasen-Grenzflaeche ablaufenden Ladungsuebertragungsreaktion aufzuklaeren. Temperaturprogrammierte Desorptionsmessungen (TPD) und Temperaturprogrammierte Reaktionsmessungen (TPR) sowie Dichtefunktionaltheorierechnungen wurden ausgefuehrt, um adsorptions-, desorptions- und reaktionskinetische sowie thermodynamische Daten fuer die CO/CO{sub 2}/Ni- und CO/CO{sub 2}/YSZ

  1. Effects of prior surface damage on high-temperature oxidation of Fe-, Ni-, and Co-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Lowe, Tracie M [ORNL; Pint, Bruce A [ORNL

    2009-01-01

    Multi-component metallic alloys have been developed to withstand high-temperature service in corrosive environments. Some of these applications, like exhaust valve seats in internal combustion engines, must also resist sliding, impact, and abrasion. The conjoint effects of temperature, oxidation, and mechanical contact can result in accelerated wear and the formation of complex surface layers whose properties differ from those of the base metal and the oxide scale that forms in the absence of mechanical contact. The authors have investigated the effects of prior surface damage, produced by scratch tests, on the localized reformation of oxide layers. Three high-performance commercial alloys, based on iron, nickel, and cobalt, were used as model materials. Thermogravimetric analysis (TGA) was used to determine their static oxidation rates at elevated temperature (850o C). A micro-abrasion, ball-cratering technique was used to measure oxide layer thickness and to compare it with TGA results. By using taper-sectioning techniques and energy-dispersive elemental mapping, a comparison was made between oxide compositions grown on non-damaged surfaces and oxides that formed on grooves produced by a diamond stylus. Microindentation and scratch hardness data revealed the effects of high temperature exposure on both the substrate hardness and the nature of oxide scale disruption. There were significant differences in elemental distribution between statically-formed oxides and those that formed on scratched regions

  2. Exfoliation Propensity of Oxide Scale in Heat Exchangers Used for Supercritical CO2 Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Shingledecker, John P. [Electric Power Research Institute (EPRI); Kung, Steve [Electric Power Research Institute (EPRI); Wright, Ian G. [WrightHT, Inc.; Nash, Jim [Brayton Energy, LLC, Hampton, NH

    2016-01-01

    Supercritical CO2 (sCO2) Brayton cycle systems offer the possibility of improved efficiency in future fossil energy power generation plants operating at temperatures of 650 C and above. As there are few data on the oxidation/corrosion behavior of structural alloys in sCO2 at these temperatures, modeling to predict the propensity for oxide exfoliation is not well developed, thus hindering materials selection for these novel cycles. The ultimate goal of this effort is to provide needed data on scale exfoliation behavior in sCO2 for confident alloy selection. To date, a model developed by ORNL and EPRI for the exfoliation of oxide scales formed on boiler tubes in high-temperature, high-pressure steam has proven useful for managing exfoliation in conventional steam plants. A major input provided by the model is the ability to predict the likelihood of scale failure and loss based on understanding of the evolution of the oxide morphologies and the conditions that result in susceptibility to exfoliation. This paper describes initial steps taken to extend the existing model for exfoliation of steam-side oxide scales to sCO2 conditions. The main differences between high-temperature, high-pressure steam and sCO2 that impact the model involve (i) significant geometrical differences in the heat exchangers, ranging from standard pressurized tubes seen typically in steam-producing boilers to designs for sCO2 that employ variously-curved thin walls to create shaped flow paths for extended heat transfer area and small channel cross-sections to promote thermal convection and support pressure loads; (ii) changed operating characteristics with sCO2 due to the differences in physical and thermal properties compared to steam; and (iii) possible modification of the scale morphologies, hence properties that influence exfoliation behavior, due to reaction with carbon species from sCO2. The numerical simulations conducted were based on an assumed sCO2 operating schedule and several

  3. Contribution to the study of the oxidation reaction of the carbon oxide in contact with catalysts issued from the decomposition of nickel hydro-aluminates at various temperatures

    International Nuclear Information System (INIS)

    Samaane, Mikhail

    1966-01-01

    Addressing the study of the oxidation reaction of carbon oxide which produces carbon dioxide, this research thesis reports the study of this reaction in presence of catalysts (2NiO + Al 2 O 3 , NiAl 2 O 4 and NiO + NiAl 2 O 4 ) issued from the decomposition of nickel hydro-aluminates at different temperatures. The first part describes experimental techniques and the nature of materials used in this study. The second part reports the study of the catalytic activity of the 2NiO+Al 2 O 3 catalyst during the oxidation of CO. Preliminary studies are also reported: structure and texture of nickel hydro-aluminate which is the raw material used to produce catalysts, activation of this compound to develop the catalytic activity in CO oxidation, chemisorption of CO, O 2 and CO 2 on the 2NiO+Al 2 O 3 solid, interaction of adsorbed gases at the solid surface, and kinetic study of the oxidation reaction. The third part reports the study of the catalytic activity in the oxidation reaction of CO of spinel catalysts (NiAl 2 O 4 and NiO+NiAl 2 O 4 ) obtained by calcination of nickel hydro-aluminates at high temperature. The formation of the spinel phase, the chemisorption of CO, O 2 and CO 2 on NiAl 2 O 4 , and the kinetic of the oxidation reaction are herein studied

  4. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    Science.gov (United States)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  5. Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers

    Science.gov (United States)

    Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.; Sidney, Barry D.; Miller, Irvin M.; Brown, Kenneth G.; Vannorman, John D.; Schryer, Jacqueline; Brown, David R.

    1990-01-01

    Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed.

  6. Kinetics of high-temperature oxidation of (Ti,Ta)(C,N)-based cermets

    International Nuclear Information System (INIS)

    Chicardi, E.; Córdoba, J.M.; Gotor, F.J.

    2016-01-01

    Highlights: • The kinetic of high-temperature oxidation of (Ti,Ta)(C,N)-Co cermets was studied. • A parabolic oxidation kinetic was determined in cermets between 700 °C and 1200 °C. • This parabolic kinetic behaviour is due to the existence of a protective layer. • The protective layer formed was a complex Ti_xTa_1_−_xO_2 oxide with rutile structure. • The oxidation rate is controlled by the Ti and O_2 diffusion through the Ti_xTa_1_−_xO_2. - Abstract: The kinetics of the high-temperature oxidation of titanium–tantalum carbonitride-based cermets with different Ti/Ta ratios was studied. Isothermal oxidation tests were conducted under static air for 48 h at temperatures between 700 °C and 1200 °C. The oxidation satisfied the parabolic kinetics, characteristic of the existence of a protective oxide layer. The apparent activation energy suggests the rate-controlling process during oxidation is the simultaneous inward and outward diffusion of oxygen and titanium, respectively, through the formed protective layer, consisting mainly of a rutile phase. A higher Ta(V) content in the rutile decreased the oxygen diffusivity due to the reduction of oxygen vacancy concentration.

  7. Oxidation Characteristics and Electrical Properties of Doped Mn-Co Spinel Reaction Layer for Solid Oxide Fuel Cell Metal Interconnects

    Directory of Open Access Journals (Sweden)

    Pingyi Guo

    2018-01-01

    Full Text Available To prevent Cr poisoning of the cathode and to retain high conductivity during solid oxide fuel cell (SOFC operation, Cu or La doped Co-Mn coatings on a metallic interconnect is deposited and followed by oxidation at 750 °C. Microstructure and composition of coatings after preparation and oxidation is analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM. High energy micro arc alloying process, a low cost technique, is used to prepare Cu or La doped Co-Mn coatings with the metallurgical bond. When coatings oxidized at 750 °C in air for 20 h and 100 h, Co3O4 is the main oxide on the surface of Co-38Mn-2La and Co-40Mn coatings, and (Co,Mn3O4 spinel continues to grow with extended oxidation time. The outmost scales of Co-33Mn-17Cu are mainly composed of cubic MnCo2O4 spinel with Mn2O3 after oxidation for 20 h and 100 h. The average thickness of oxide coatings is about 60–70 μm after oxidation for 100 h, except that Co-40Mn oxide coatings are a little thicker. Area-specific resistance of Cu/La doped Co-Mn coatings are lower than that of Co-40Mn coating. (Mn,Co3O4/MnCo2O4 spinel layer is efficient at blocking the outward diffusion of chromium and iron.

  8. Effects of CO, O2, NO, H2O, and irradiation temperature on the radiation-induced oxidation of SO2

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Nishimura, Koichi; Suzuki, Nobutake; Washino, Masamitsu

    1977-01-01

    When a SO 2 -H 2 O-O 2 -N 2 gaseous mixture was irradiated by electron beams of 1.5 MeV, SO 2 was easily oxidized to H 2 SO 4 . Effects of CO, O 2 , NO, H 2 O, and irradiation temperature on the radiation-induced oxidation of SO 2 were studied by measuring the SO 2 concentration gas chromatographically. The G(-SO 2 ) increased greatly at the addition of a small amount of O 2 , and then decreased gradually with an increase in the O 2 concentration, i.e., the G(-SO 2 ) values were 0.9, 8.0, and 5.3 for the 0, 0.1, and 20% O 2 concentrations at 100 0 C, respectively (Fig.4). The G(-SO 2 ) was independent of the H 2 O concentration in the range of 0.84 to 8.4% (Fig.5). The G(-SO 2 ) decreased with a rise in the irradiation temperature (Fig.6) and an apparent activation energy of the oxidation reaction of SO 2 obtained was -4.2 kcal.mol -1 . The effects of CO, NO, and O 2 on the G(-SO 2 ) showed that SO 2 was mainly oxidized by OH and O and that the contribution of OH to the oxidation of SO 2 increased with an increase in the O 2 concentration (Table 1). The rate constants for the reactions of SO 2 with OH and O, obtained from competitive reactions of SO 2 with CO and O 2 , were 5.4 x 10 11 cm 3 .mol -1 .sec -1 and 5.0 x 10 11 cm 3 .mol -1 .sec -1 , respectively. (auth.)

  9. High-temperature Thermoelectric and Microstructural Characteristics of Ga Substituted on the Co-site in Cobalt-based Oxides

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Yanagiya, S.; Sonne, Monica

    2011-01-01

    The effects of Ga substitution on the Co-site on the high-temperature thermoelectric properties and microstructure are investigated for the misfitlayered Ca3Co4O9 and the complex perovskite-related Sr3RECo4O10.5 (RE = rare earth) cobalt-based oxides. For both systems, substitution of Ga for Co...... results in a simultaneous increase in the Seebeck coefficient (S) and the electrical conductivity (σ), and the influence is more significant in the high temperature region. The power factor (S 2 σ) is thereby remarkably improved by Ga substitution, particularly at high temperatures. Texture factor......0.05O9 shows the best ZT value of 0.45 at 1200 K, which is about 87.5% higher than the nondoped one, a considerable improvement....

  10. Nanoroses of nickel oxides: Synthesis, electron tomography study, and application in CO oxidation and energy storage

    KAUST Repository

    Fihri, Aziz

    2012-04-11

    Nickel oxide and mixed-metal oxide structures were fabricated by using microwave irradiation in pure water. The nickel oxide self-assembled into unique rose-shaped nanostructures. These nickel oxide roses were studied by performing electron tomography with virtual cross-sections through the particles to understand their morphology from their interior to their surface. These materials exhibited promising performance as nanocatalysts for CO oxidation and in energy storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetic properties of Fe-oxide and (Fe, Co) oxide nanoparticles synthesized in polystyrene resin matrix

    Science.gov (United States)

    Rodak, D.; Kroll, E.; Tsoi, G. M.; Vaishnava, P. P.; Naik, R.; Wenger, L. E.; Suryanarayanan, R.; Naik, V. M.; Boolchand, P.

    2003-03-01

    Magnetic nanoparticles have potential applications ranging from drug delivery and imaging in the medical field to sensing and memory storage in technology. The preparation, structure, and physical properties of iron oxide-based nanoparticles synthesized by ion exchange in a polystyrene resin matrix have been investigated. Employing a synthesis method developed originally by Ziolo, et. al^1, nanoparticles were prepared in a sulfonated divinyl benzene polystyrene resin matrix using various aqueous solutions of (1) FeCl_2, (2) FeCl_3, (3) FeCl2 : 2FeCl3 , (4) 9FeCl2 : CoCl_2, and (5) 4FeCl2 : CoCl_2. Powder x-ray diffraction measurements were used to identify the phases present while transmission electron microscopy was used for particle size distribution determinations. SQUID magnetization measurements (field-cooled and zero-field-cooled) and Fe^57 Mössbauer effect measurements indicate the presence of ferromagnetic iron oxide phases and a superparamagnetic behavior with blocking temperatures (T_B) varying from 50 K to room temperature. Nanoparticles synthesized using a stoichiometric mixture of FeCl2 and FeCl3 exhibit the lowest TB and smallest particle size distribution. The Mössbauer effect measurements have also been used to identify the iron oxides phases present and their relative amounts in the nanoparticles ^1R.F. Ziolo, et al., Science 207, 219 (1992). *Permanent address: Kettering University, Flint, MI 48504

  12. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    Science.gov (United States)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  13. ZIF-67-derived hollow nanocages with layered double oxides shell as high-Efficiency catalysts for CO oxidation

    Science.gov (United States)

    Kong, Wenpeng; Li, Jing; Chen, Yao; Ren, Yuqing; Guo, Yonghua; Niu, Shengli; Yang, Yanzhao

    2018-04-01

    Constructing non-precious hybrid metal oxides with specific morphology as cost-effective and highly efficient catalysts is a promising way for the automotive exhaust purification. In this work, we report a facile strategy for the fabrication of a unique hollow Co-Ni layered double oxides (HLDO) nanocages by using zeolitic imidazole frameworks (ZIFs) as template. The synthesis of intermediate core-shell and hollow Co-Ni layered double hydroxides (HLDH) nanoflakes as well as the corresponding Co-Ni oxides products were successfully controlled, and the formation process was also explained. Among ZIF-67-derived oxides, HLDO exhibits excellent catalytic activities (complete conversion of CO into CO2 at 118 °C) and long-term stability for CO oxidation. The remarkable catalytic activities of HLDO can be attributed to high surface area (258 m2 g-1) inherited from the HLDH, which could provide more active sites for CO oxidation. In addition, active oxygen species indicated by the O 1 s XPS spectrum and improved synergistic effect between NiO and Co3O4 reflected by H2-TPR, further explain the enhanced performance of the HLDO catalysts. The presented strategy for controlled design and synthesis of hollow multicomponent metal oxides will provide prospects in developing highly effective catalysts.

  14. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    International Nuclear Information System (INIS)

    Kosaka, Fumihiko; Oshima, Yoshito; Otomo, Junichiro

    2011-01-01

    Highlights: → High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. → High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. → Low selectivity for CH 4 in ethylene glycol electro-oxidation. → High selectivity for CO 2 according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 o C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH 2 PO 4 , which has high proton conductivity (>10 -2 S cm -1 ) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H 2 , CO 2 , CO and a small amount of CH 4 formation was also observed. On the other hand, the amounts of C 2 products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  15. Oxidation Behavior of Surface-modified Stainless Steel 316LN in Supercritical-CO{sub 2} Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Heo, Jin Woo; Kim, Hyunm Yung; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Compared to other working fluids such as helium or nitrogen, S-CO{sub 2} offers a higher efficiency at operating temperatures of advanced reactors above 550 .deg. C. Moreover, the S-CO{sub 2} cycle is expected to have a significantly smaller footprint compared to other power conversion cycles, resulting in a broader range of applications with lower capital costs. Currently, stainless steel 316 is considered as the candidate structural material for the SFR. In comparison, it is well known that alumina (Al{sub 2}O{sub 3}) have superior oxidation and carburization resistance specifically at higher temperatures where α-Al{sub 2}O{sub 3} may form. Thus, various surface modification techniques have been applied to mostly Ni-base alloys so that a protective and continuous Al-rich oxide layer forms on the surface, conferring superior oxidation and carburization resistance. In this study, SS 316LN was deposited with Al via physical vapor deposition (PVD) method followed by heat treatment processes to develop an Al-rich layer at the surface. The specimens are to be exposed to high temperature S-CO{sub 2} environment to evaluate the oxidation and carburization resistance. Stainless steel 316LN was surface-modified to develop an Al-rich layer for improvement of oxidation behavior in S-CO{sub 2} environment. As the test temperature of 600 .deg. C is not sufficiently high for the formation of protective α-Al{sub 2}O{sub 3} formation, pre-oxidation of surface modified SS 316LN was conducted.

  16. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  17. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  18. Effect of Co deposition on oxidation behavior and electrical properties of ferritic steel for solid oxide fuel cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Kruk, A.; Adamczyk, A.; Gil, A. [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland); Kąc, S. [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Krakow (Poland); Dąbek, J.; Ziąbka, M. [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland); Brylewski, T., E-mail: brylew@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2015-09-01

    In this work, a Co layer deposited on DIN 50049 steel by means of pulsed laser deposition was applied for the protection of solid oxide fuel cell (SOFC) interconnects operating on the cathode side. The coated and uncoated steel samples were oxidized in air at 1073 K for 500 h, and their microstructures as well as electrical resistances were evaluated using X-ray diffraction, atomic force microscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, and the 2-probe 4-point direct current method. It was demonstrated that the Co coating had reduced the oxidation rate of the steel by nearly a half. The area-specific resistance value of the coated steel was 5 × 10{sup −6} Ω·m{sup 2}, which was significantly lower than that of bare steel after 350 h of oxidation at 1073 K. Cr vaporization tests showed that the Co coating was efficient at blocking the outward diffusion of Cr. The obtained results prove that steel coated with a thin film of cobalt was suitable for use as metallic interconnect material in SOFCs operating at intermediate temperatures. - Highlights: • Co layer was deposited on ferritic steel by means of pulsed laser deposition. • Coated and bare ferritic steel samples were exposed to air at 1073 K for 500 h. • Scale growth rate on bare steel is higher than that on coated steel. • Electrical resistance for oxidized coated steel was lower than for bare steel. • Co-coated steel effectively reduced the formation of volatile Cr species.

  19. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    International Nuclear Information System (INIS)

    Gupta, Vinay; Kawaguchi, Toshikazu; Miura, Norio

    2009-01-01

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co 3 O 4 , NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm 2 current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides

  20. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  1. Trends in the Catalytic CO Oxidation Activity of Nanoparticles

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Falsig, Hanne; Larsen, Britt Hvolbæk

    2008-01-01

    Going for gold: Density functional calculations show how gold nanoparticles are more active catalysts for CO oxidation than other metal nanoparticles. The high catalytic activity of nanosized gold clusters at low temperature is found to be related to the ability of low-coordinate metal atoms...

  2. Selective oxidation of naphthalene in CO/H{sub 2} mixtures over Mo/V/W mixed oxides. A contribution to biomass gasification; Selektivoxidation von Naphthalin in CO/H{sub 2}-Mischungen an Mo/V/W-Mischoxiden. Ein Beitrag zur Biomassevergasung

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Sonja

    2007-11-26

    The development of efficient and sustainable technologies for the production of biofuels of the second generation is one of the fundamental challenges of the beginning 21st century. In the first step of the so called Biomass-to-Liquid processes the biomass is transformed to syngas in a gasifier. Prior to fuel generation via Fischer-Tropsch, methanol or dimethyl ether synthesis a purification of the raw gas must take place. A main impurity of the gas is the tar formed during gasification. Besides desactivation of the catalyst in the following synthesis step, the tar condenses during cooling down of the syngas, leading to the formation of scaling in the plant and to a reduced syngas yield. In order to develop a energy efficient technology this work focuses on the development of a method for tar removal that can be performed at temperatures between 400 and 900 C while providing the required syngas purity for the subsequent fuel synthesis. First the potential of a Mo8V2W1Ox mixed oxide catalyst for selective tar oxidation was investigated using a thermo balance. By means of temperature programmed reductions of the oxidised catalyst with CO2, H2 and tar model compound naphthalene no activity regarding the oxidation of CO, only minor activity regarding the oxidation of H2, but high activity for naphthalene oxidation was determined. Based on these studies temperature programmed reactions in the presence of oxygen were performed employing a catalyst bed in a plug flow rector equipped with an online mass spectrometer. The complete conversion of naphthalene was observed at temperatures above 412 C. In the same temperature range no oxidation of CO and only a marginal oxidation of H2 occurred. Apart from the total oxidation products CO, CO2 and H2O partial oxidised products as maleic anhydride and phthalic anhydride were formed, though. Mechanical mixing of the catalyst with sodium carbonate lead to an optimization of the catalytic properties of the mixed oxide catalyst

  3. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Fumihiko; Oshima, Yoshito [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Otomo, Junichiro, E-mail: otomo@k.u-tokyo.ac.jp [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan)

    2011-11-30

    Highlights: > High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. > High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. > Low selectivity for CH{sub 4} in ethylene glycol electro-oxidation. > High selectivity for CO{sub 2} according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 {sup o}C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH{sub 2}PO{sub 4}, which has high proton conductivity (>10{sup -2} S cm{sup -1}) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H{sub 2}, CO{sub 2}, CO and a small amount of CH{sub 4} formation was also observed. On the other hand, the amounts of C{sub 2} products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  4. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  5. Materials for coatings against erosion, fretting, and high-temperature oxidation

    International Nuclear Information System (INIS)

    Feller, H.G.; Wienstroth, U.; Balke, C.

    1990-01-01

    This paper investigates the applicability of Co-Cr-W alloys (CoCr29W29, CoCr29W9Y1, CoCr29W9Fe3Y1, CoCr29W9Y1Al1) as coating materials for the substrates MA 6000 and MA 754. Their properties are compared with those of Amperit 410, which is the alloy NiCo23Cr17Al12.5Y0.5. Their isothermal oxidation behaviour at temperatures up to 1000deg C is found to be better for the most part than that of the commercially available Amperit 410. Furthermore, the oxide shows distinctly better adhesion, so that better results concerning resistance to hot-gas corrosion are expected. The fretting behaviour at room temperature is characterized by very low friction factors and a strong resistance to wear. A comparable behaviour is found for resistance to erosive wear. Specimens tested for 500 hours in the pressurised beam device exhibit only minimal changes of mass in the bond MA 600/coating. Single-particle impact tests reveal that exposure of specimens to high temperatures leads to an increase in mean hardness, which is caused by a solidification of the yttrium-containing phase. (orig./MM) [de

  6. Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Craig M. [Department of Chemistry, University at Albany, Albany, New York 12222, United States; Barry, Matthew C. [Department of Chemistry, University at Albany, Albany, New York 12222, United States; Wei, Zheng [Department of Chemistry, University at Albany, Albany, New York 12222, United States; Rogachev, Andrey Yu. [Department; Wang, Xiaoping [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Liu, Jun-Liang [CNRS, CRPP, UPR 8641, F-33600 Pessac, France; Univ. Bordeaux, UPR 8641, F-33600 Pessac, France; MOE Key Lab of Bioinorganic and Synthetic Chemistry,; Clérac, Rodolphe [CNRS, CRPP, UPR 8641, F-33600 Pessac, France; Univ. Bordeaux, UPR 8641, F-33600 Pessac, France; Chen, Yu-Sheng [ChemMatCARS, Center for Advanced Radiation; Filatov, Alexander S. [Department; Dikarev, Evgeny V. [Department of Chemistry, University at Albany, Albany, New York 12222, United States

    2017-07-31

    A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of MxM'3–xO4 spinel oxide materials is reported. Three iron–cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal–oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [FeIII(acac)3][CoII(hfac)2] (1), [CoII(hfac)2][FeIII(acac)3][CoII(hfac)2] (2), and [FeII(hfac)2][FeIII(acac)3][CoII(hfac)2] (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring FeIII metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1–3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of FeIII- and CoII-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of FeIII, FeII, and CoII species for complex 3. Theoretical investigation of two possible “valent isomers”, [FeIII(acac)3][Co

  7. A TPD-MS study of glassy carbon surfaces oxidized by CO2 and O2

    Directory of Open Access Journals (Sweden)

    MILA D. LAUSEVIC

    2002-11-01

    Full Text Available The temperature-programmed desorption (TPD method combined with mass spectrometric (MS analysis has been applied to investigate the surface properties of carbon materials. The apparatus consisting of a temperature-programmed furnace and a quadrupole mass spectrometer was constructed in order to characterize the surface of differently treated glassy carbon samples. In this work, samples of glassy carbon exposed to air, CO2 and O2 were examined. The desorption of H2O, CO and CO2, as major products, indicated the presence of different oxide groups. The amount of these groups for all samples was calculated. It is concluded that oxidation affects the nature and the amount of the surface oxide groups and contributes to their increased stability.

  8. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    Science.gov (United States)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  9. CO oxidation on PdO surfaces

    DEFF Research Database (Denmark)

    Hirvi, Janne T.; Kinnunen, Toni-Jani J.; Suvanto, Mika

    2010-01-01

    Density functional calculations were performed in order to investigate CO oxidation on two of the most stable bulk PdO surfaces. The most stable PdO(100) surface, with oxygen excess, is inert against CO adsorption, whereas strong adsorption on the stoichiometric PdO(101) surface leads to favorable...... oxidation via the Langmuir–Hinshelwood mechanism. The reaction with a surface oxygen atom has an activation energy of 0.66 eV, which is comparable to the lowest activation energies observed on metallic surfaces. However, the reaction rate may be limited by the coverage of molecular oxygen. Actually...... adsorption, following the Eley–Rideal mechanism and taking advantage of the reaction tunnel provided by the adjacent palladium atom, has an activation energy of only 0.24 eV. The reaction mechanism and activation energy for the palladium activated CO oxidation on the most stable PdO(100)–O surface...

  10. Production of SmCo5 alloy by calciothermic reduction of samarium oxide

    International Nuclear Information System (INIS)

    Krishnan, T.S.; Gupta, C.K.

    1988-01-01

    Among the established permanent magnets, SmCo 5 magnet occupies the foremost position as it offers a unique combination of high energy product, coercivity and curie temperature. The SmCo 5 magnets are thus extensively used for high field applications. These are also best suited for use in environments where high demagnetizing field and high temperature are operative. Also, for applications where high performance and miniaturization are the over-riding considerations, the choice again falls on SmCo 5 magnets. The main deterrent to the widespread use of SmCo 5 magnet is its high cost. Both samarium and cobalt metals are high priced, and the magnets prepared from their directly melted alloy are thus naturally very expensive. An alternate process involving calcium reduction of their oxide intermediates has, therefore, been studied and the alloy prepared by this process has been evaluated and found satisfactory for magnet production. The process essentially involves compaction of the charge mix containing samarium oxide, cobalt oxide (or metal) and calcium metal and reduction of the charge compact at 1000-1300 degrees C in hydrogen atmosphere, followed by water and acid leaching, drying and classification

  11. Oxidation of zircaloy-2 in high temperature steam

    International Nuclear Information System (INIS)

    Ikeda, Seiichi; Ito, Goro; Ohashi, Shigeo

    1975-01-01

    Oxidation tests were conducted for zircaloy-2 in steam at temperature ranging from 900 to 1300 0 C to clarify its oxidation kinetics as a nuclear fuel cladding materials in case of a loss-of-coolant accident. The influence of maximum temperature and heating rate of the specimen on its oxidation rate in steam was investigated. The changes in mechanical properties of the specimens after oxidation tests are also studied. The results obtained were summarized as follows: (1) The weight of the specimen after oxidation in steam increased two times as the time required to reach the maximum temperature increased from 1 to 10 mins. (2) The kinetics of oxidation of zircaloy-2 in steam were not affected by the difference in the surface condition before test such as chemical polishing or pre-oxidation in steam. (3) The dominant growth of oxide film on the surface of zircaloy-2 was observed at the initial stage of oxidation in steam. However, the thickness of oxygen-rich solid solution layer under the film increased gradually with the progress of oxidation and the ratio of oxygen in oxide to that in solid solution has a constant value of 8:2. (4) The breakaway took place only in the specimen subjected to 900 0 C repeated heating. This penomenon was caused by the local growth of the oxide below a crack of the oxide film resulting from the reheating of the specimen. (5) The results of bending tests showed that the deflection until fracture of the specimen was smaller for the one heated at a higher temperature even if the weight increase was of the same order of magnitude for both specimens. (6) It was concluded that the ductility of zircaloy-2 decreased remarkably at a heating temperature in excess of 1100 0 C for more than 5 min. (auth.)

  12. Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems

    International Nuclear Information System (INIS)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; Sohn, Hong Yong

    2017-01-01

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2 -CO-H 2 O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2 O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2 /CO = 40/7). Rate expressions that correlate CO 2 and H 2 O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Rate ((mol)/(m 2 s)) = 406 exp ((−50.2kJ/mol)/(RT)) (pZnpCO 2 − PCO/K eq CO 2 ) ((mol)/(m 2 xs)) Rate (((mol)/(m 2 s))) = 32.9 exp (((−13.7kJ/mol)/(RT))) (pZnPH 2 O − PH 2 /K eq H 2 O) ((mol)/(m 2 xs)). It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2 O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by

  13. Characterization of low-temperature microwave loss of thin aluminum oxide formed by plasma oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chunqing, E-mail: cdeng@uwaterloo.ca; Otto, M.; Lupascu, A., E-mail: alupascu@uwaterloo.ca [Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-01-27

    We report on the characterization of microwave loss of thin aluminum oxide films at low temperatures using superconducting lumped resonators. The oxide films are fabricated using plasma oxidation of aluminum and have a thickness of 5 nm. We measure the dielectric loss versus microwave power for resonators with frequencies in the GHz range at temperatures from 54 to 303 mK. The power and temperature dependence of the loss are consistent with the tunneling two-level system theory. These results are relevant to understanding decoherence in superconducting quantum devices. The obtained oxide films are thin and robust, making them suitable for capacitors in compact microwave resonators.

  14. CO oxidation catalyzed by Pt-embedded graphene: A first-principles investigation

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Duan, Ting; Meng, Changong; Han, Yu

    2014-01-01

    We addressed the potential catalytic role of Pt-embedded graphene in CO oxidation by first-principles-based calculations. We showed that the combination of highly reactive Pt atoms and defects over graphene makes the Pt-embedded graphene a superior mono-dispersed atomic catalyst for CO oxidation. The binding energy of a single Pt atom onto monovacancy defects is up to -7.10 eV, which not only ensures the high stability of the embedded Pt atom, but also vigorously excludes the possibility of diffusion and aggregation of embedded Pt atoms. This strong interfacial interaction also tunes the energy level of Pt-d states for the activation of O2, and promotes the formation and dissociation of the peroxide-like intermediate. The catalytic cycle of CO oxidation is initiated through the Langmuir-Hinshelwood mechanism, with the formation of a peroxide-like intermediate by the coadsorbed CO and O2, by the dissociation of which the CO2 molecule and an adsorbed O atom are formed. Then, another gaseous CO will react with the remnant O atom and make the embedded Pt atom available for the subsequent reaction. The calculated energy barriers for the formation and dissociation of the peroxide-like intermediate are as low as 0.33 and 0.15 eV, respectively, while that for the regeneration of the embedded Pt atom is 0.46 eV, indicating the potential high catalytic performance of Pt-embedded graphene for low temperature CO oxidation.

  15. Systematic evaluation of Co-free LnBaFe2O5+δ (Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chen Dengjie; Wang Fucun; Shi Huangang; Ran Ran; Shao Zongping

    2012-01-01

    Co-free oxides with a nominal composition of LnBaFe 2 O 5+δ , where Ln = La, Pr, Nd, Sm, Gd, and Y, were synthesized and phase structure, oxygen content, electronic conductivity, oxygen desorption, thermal expansion, microstructure and electrochemical performance were systematically investigated. Among the series of materials tested, LaBaFe 2 O 5+δ oxide showed the largest electronic conductivity and YBaFe 2 O 5+δ oxide had the smallest thermal expansion coefficient (TEC) of 14.6 × 10 −6 K −1 within a temperature range of 200–900 °C. All LnBaFe 2 O 5+δ oxides typically possess the TEC values smaller than 20 × 10 −6 K −1 . The oxygen content, electronic conductivity and TEC values are highly dependent on the cation size of the Ln 3+ dopant. The lowest electrode polarization resistance in air under open circuit voltage condition was obtained for SmBaFe 2 O 5+δ electrode and was approximately 0.043, 0.084, 0.196, 0.506 and 1.348 Ω cm 2 at 800, 750, 700, 650 and 600 °C, respectively. The SmBaFe 2 O 5+δ oxide also demonstrated the best performance after a cathodic polarization. A cell with a SmBaFe 2 O 5+δ cathode delivered peak power densities of 1026, 748, 462, 276 and 148 mW cm −2 at 800, 750, 700, 650 and 600 °C, respectively. The results suggest that certain LnBaFe 2 O 5+δ oxides have sufficient electrochemical performance to be promising candidates for cathodes in intermediate-temperature solid oxide fuel cells.

  16. Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Ian [Wright HT Inc., Denver, CO (United States); Kung, Steven [Electric Power Research Inst. (EPRI), Charlotte, NC (United States); Shingledecker, John [Electric Power Research Inst. (EPRI), Charlotte, NC (United States)

    2017-12-22

    This project was the first research to address oxidation of alloys under supercritical CO2 conditions relevant to a semi-open Allam Cycle system. The levels of impurities expected in the CO2 for typical operation were determined by thermodynamic and mass balance calculations, and a test rig was assembled and used to run corrosion tests at temperatures from 650 to 750°C in CO2 at 200 bar for up to 5,000h, with and without impurities. Oxidation rates were measured for seven alloys representing high-strength ferritic steels, standard austenitic steels, and Ni-based alloys with higher-temperature capabilities. The very thin, protective scales formed on the high-temperature alloys provided significant challenges in characterization and thickness measurement. The rates of mass gain and scale thickening were possibly slower when oxidizing impurities were present in the sCO2, and the scale morphologies formed on the ferritic and austenitic steels were consistent with expectations, and similar to those formed in high-pressure steam, with some potential influences of C. Some surface hardening (possibly due to carbon uptake) was identified in ferritic steels Grade 91 and VM12, and appeared more severe in commercially-pure CO2. Hardening was also observed in austenitic steel TP304H, but that in HR3C appeared anomalous, probably the result of work-hardening from specimen preparation. No hardening was found in Ni-base alloys IN617 and IN740H. An existing EPRI Oxide Exfoliation Model was modified for this application and used to evaluate the potential impact of the scales grown in sCO2 on service lifetimes in compact heat exchanger designs. Results suggested that reduction in flow area by simple oxide growth as well as by accumulation of exfoliated scale may have a major effect on the design of small-channel heat exchangers. In addition, the specific oxidation behavior of each alloy strongly influences the

  17. Promoting a-Al2O3 layer growth upon high temperature oxidation of NiCoCrAlY alloys

    NARCIS (Netherlands)

    Nijdam, T.J.

    2005-01-01

    The turbine blades in gas turbine engines need to be protected against high temperature oxidation and corrosion with a coating system. This coating system comprises of a Ni-based superalloy substrate, a NiCoCrAlY bond coating (BC) and an insulating ceramic thermal barrier coating (TBC). Good

  18. Influence of Gold on Ce-Zr-Co Fluorite-Type Mixed Oxide Catalysts for Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Véronique Pitchon

    2012-02-01

    Full Text Available The effect of gold presence on carbon monoxide oxidation and ethanol steam reforming catalytic behavior of two Ce-Zr-Co mixed oxides catalysts with a constant Co charge and different Ce/Zr ratios was investigated. The Ce-Zr-Co mixed oxides were obtained by the pseudo sol-gel like method, based on metallic propionates polymerization and thermal decomposition, whereas the gold-supported Ce-Zr-Co mixed oxides catalysts were prepared using the direct anionic exchange. The catalysts were characterized using XRD, TPR, and EDXS-TEM. The presence of Au in doped Ce-Zr-Co oxide catalyst decreases the temperature necessary to reduce the cobalt and the cerium loaded in the catalyst and favors a different reaction pathway, improving the acetaldehyde route by ethanol dehydrogenation, instead of the ethylene route by ethanol dehydration or methane re-adsorption, thus increasing the catalytic activity and selectivity into hydrogen.

  19. Cyclic oxidation behaviour of different treated CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, G. [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 43, 45877 Gelsenkirchen (Germany); Utu, D., E-mail: dutu@eng.upt.ro [University ' Politehnica' Timisoara, Faculty of Mechanical Engineering, Blv. Mihai Viteazu 1, 300222 Timisoara (Romania)

    2012-08-01

    High velocity oxygen fuel (HVOF) spraying method was used in order to obtain very dense and good adhesive CoNiCrAlY-coatings deposited onto nickel-based alloy. The coatings were differently treated (preoxidized, vacuum treated or electron beam irradiated) before their exposure to cyclic oxidation tests in air at 1000 Degree-Sign C for periods up to 5 h. Changes of the coatings morphology and structure were analysed by scanning electron microscopy (SEM) and X-ray diffraction technique (XRD). The surface temperature of the samples was measured during cooling, between the oxidation cycles, and finally was associated with the thickness of the grown protective oxide scale on the CoNiCrAlY-surface. The experimental results demonstrated that depending on the thickness respectively on the different structures of the grown oxide scale, the cooling rate of the sample surface will be different as well.

  20. Corium Oxidation at Temperatures Above 2000 K

    International Nuclear Information System (INIS)

    Hagrman, Donald L.; Rempe, Joy L.

    2001-01-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ∼4% of the zirconium oxidation heating rate.The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows:(unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T 2 /1.986T)]} 1/2 .As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O 2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation

  1. Corium Oxidation at Temperatures Above 2000 K

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, Donald Lee; Rempe, Joy Lynn

    2001-02-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ~4% of the zirconium oxidation heating rate. The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows: (unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T2/1.986T)]}1/2. As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation.

  2. Application of Nanoparticle Iron Oxide in Cigarette for Simultaneous CO and NO Removal in the Mainstream Smoke

    Directory of Open Access Journals (Sweden)

    Li P

    2014-12-01

    Full Text Available Based on the unique temperature and oxygen profiles in a burning cigarette, a novel approach is proposed in this paper to use a single oxidant/catalyst in the cigarette filler for simultaneous removal of carbon monoxide (CO and nitric oxide (NO in mainstream smoke. A nanoparticle iron oxide is identified as a very active material for this application due to its multiple functions as a CO catalyst, as a CO oxidant, and in its reduced forms as a NO catalyst. The multiple functions of the nanoparticle iron oxide are characterized in a flow tube reactor and the working mechanisms of these multiple functions for CO and NO removal in a burning cigarette are explained. The effect of smoke condensate on the catalyst are examined and discussed. The advantage of in situ generation of the catalyst during the cigarette burning process is illustrated. The test results of nanoparticle iron oxide for CO and NO removal in cigarettes are presented.

  3. Selective Oxidation of Styrene to Benzaldehyde by Co-Ag Codoped ZnO Catalyst and H2O2 as Oxidant

    Directory of Open Access Journals (Sweden)

    Abderrazak Aberkouks

    2018-01-01

    Full Text Available Various ratio of Co-Ag supported on ZnO have been evaluated in the selective catalytic oxidation of styrene to benzaldehyde, using H2O2 as an oxidant. The catalysts were prepared by a sol-gel process and were characterized using XRD, FT-IR, TG-DTG, BET, and SEM/EDX. The performance of the prepared catalyst was investigated under different parameters such as solvent, temperature, substrate/oxidant molar ratios, reaction time, and doping percent. The Zn1−x−yAgxCoyO catalysts exhibit a good activity and a high selectivity towards benzaldehyde (95% with the formation of only 5% of acetophenone.

  4. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    Science.gov (United States)

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  5. Dislocation motion and high temperature plasticity of binary and ternary oxides

    International Nuclear Information System (INIS)

    Bretheau, T.; Castaing, J.; Rabier, J.; Veyssiere, P.

    1979-01-01

    Literature dealing with the plasticity of single crystal oxides deformed at elevated temperatures and the associated mobility of dislocations is reviewed. The experimental approach to the subject is examined critically by selecting oxides and deforming samples and by studying their specific mechanical behaviour, characterizing the deformation substructures and modelling the rate controlling processes. Since oxides with the simple rocksalt structure (Mg0, Ni0, Co0, Fe0,...) are not representative of all oxides, examples of other structures are also examined in detail, including Ti0 2 and Cu 2 0 oxides with fluorite (Zr0 2 , U0 2 ), with corundum (A1 2 0 3 ) and with spinel (MgA1 2 0 4 ternary) structures. Occasionally work on more exotic compounds like Y 2 0 3 or some with the garnet structure is included. (UK)

  6. High temperature oxidation resistance of (Ti,Ta)(C,N)-based cermets

    International Nuclear Information System (INIS)

    Chicardi, E.; Córdoba, J.M.; Gotor, F.J.

    2016-01-01

    Highlights: • Cermets based on (Ti,Ta)(C,N) were oxidized in air between 800 and 1100 °C for 48 h. • The substitution of Ti by Ta resulted in a high resistance to oxidation. • A protective layer of cobalt titanates at the surface of cermets was observed. • A rutile phase in which some Ti"4"+ are replaced by Ta"5"+ was detected. • This replacement decelerated the oxygen diffusion into the cermets. - Abstract: Cermets based on titanium–tantalum carbonitride were oxidized in static air between 800 °C and 1100 °C for 48 h. The thermogravimetric and microstructural study showed an outstanding reduction in the oxidation of more than 90% when the Ta content was increased. In cermets with low Ta content, the formation of a thin CoO/Co_3O_4 outer layer tends to disappear by reacting with the underlying rutile phase, which emerges at the surface. However, in cermets with higher Ta content, the formation of an external titanate layer, observed even at a low temperature, appears to prevent the oxygen diffusion and the oxidation progression.

  7. “Pesting”-like oxidation phenomenon of p-type filled skutterudite Ce{sub 0.9}Fe{sub 3}CoSb{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Pengfei [State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050 (China); Xia, Xugui; Huang, Xiangyang; Gu, Ming [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050 (China); Qiu, Yuting [State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050 (China); Chen, Lidong, E-mail: chenlidong@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050 (China)

    2014-11-05

    Highlights: • Ce{sub 0.9}Fe{sub 3}Co{sub 1}Sb{sub 12} exhibits “pesting”-like oxidation phenomenon at high temperature. • The highest oxidation rate of Ce{sub 0.9}Fe{sub 3}Co{sub 1}Sb{sub 12} appears around 800 K. • Severe periodically oxide layer peeling-off behavior is observed around 800 K. • The co-existence of Fe and Co is responsible for the poor oxidation resistance. - Abstract: Oxidation behavior of p-type filled skutterudite Ce{sub 0.9}Fe{sub 3}CoSb{sub 12} in air was investigated and the oxidation mechanism was discussed in this study. Ce{sub 0.9}Fe{sub 3}CoSb{sub 12} exhibits interesting “pesting”-like oxidation phenomenon around 800 K. The bulk sample completely disintegrates into a crowd of plate-like particles under this temperature range after only 24 h exposure in air. However, this abnormal oxidation phenomenon is not observed at temperature below 750 K or above 850 K. This result is consistent with the thermogravimetry and derivative thermogravimetry measurements which show that the oxidation rate for Ce{sub 0.9}Fe{sub 3}CoSb{sub 12} around 800 K is the highest among 650–900 K. Microstructure observations suggest that this “pesting”-like oxidation is related with the severe periodically oxide layer peeling-off behavior around 800 K, which makes the Ce{sub 0.9}Fe{sub 3}CoSb{sub 12} samples are easy to be oxidized because the fresh substrate surface is always exposed to high concentration oxygen atmosphere. X-ray diffraction and X-ray photoelectron spectroscopy measurements indicated that in the oxide scale the direct contact of Fe{sup 3+}-oxide and CoSb{sub 2}O{sub 4} which possess different formation/growth rate and volume expansion coefficient should be responsible for this peculiar oxide layer peeling-off behavior around 800 K. This work can serve as an important reference for the designation of M{sub y}Fe{sub 4−x}Co{sub x}Sb{sub 12}-based skutterudite thermoelectric device.

  8. High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stacks

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Bentzen, Janet Jonna

    2013-01-01

    atmospheres at 800°C. Four commercially available alloys: Crofer 22 APU, Crofer 22 H, AL29-4, E-Brite were characterized in humidified hydrogen. One alloy, Crofer 22 APU was also characterized in pure oxygen both in the as-prepared state and after application of a protective coating. Best corrosion resistance......Oxidation rates of ferritic steels used as interconnector plates in Solid Oxide Electrolysis Stacks are of concern as they may be determining for the life time of the technology. In this study oxidation experiments were carried out for up to 1000 hours in hydrogen-side and oxygen-side simulated...... in humidified hydrogen atmosphere was observed for Crofer 22 APU and Crofer 22 H alloys. Corrosion rates for Crofer 22 APU measured in humidified hydrogen are similar to the corrosion rates measured in air. Both coatings of plasma sprayed LSM and dual layer coatings (Co3O4/LSM-Co3O4) applied by wet spraying...

  9. The Crucial Role of the K+-Aluminium Oxide Interaction in K+-Promoted Alumina- and Hydrotalcite-Based Materials for CO2 Sorption at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Walspurger, S.; Boels, L.; Cobden, P.D.; Elzinga, G.D.; Haije, W.G.; Van den Brink, R.W. [Energy Research Centre of the Netherlands ECN, Westerduinweg 3, 1755LE, Petten (Netherlands)

    2008-09-15

    CO2-free hydrogen can be produced from coal gasification power plants by pre-combustion decarbonisation and carbon dioxide capture. Potassium carbonate promoted hydrotalcite-based and alumina-based materials are cheap and excellent materials for high-temperature (300-500C) adsorption of CO2, and particularly promising in the sorption-enhanced water gas shift (SEWGS) reaction. Alkaline promotion significantly improves CO2 reversible sorption capacity at 300-500C for both materials. Hydrotalcites and promoted hydrotalcites, promoted magnesium oxide and promoted -alumina were investigated by in situ analytical methods (IR spectroscopy, sorption experiments, X-ray diffraction) to identify structural and surface rearrangements. All experimental results show that potassium ions actually strongly interact with aluminium oxide centres in the aluminium-containing materials. This study unambiguously shows that potassium promotion of aluminium oxide centres in hydrotalcite generates basic sites which reversibly adsorb CO2 at 400C.

  10. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  11. Theoretical evidence of PtSn alloy efficiency for CO oxidation.

    Science.gov (United States)

    Dupont, Céline; Jugnet, Yvette; Loffreda, David

    2006-07-19

    The efficiency of PtSn alloy surfaces toward CO oxidation is demonstrated from first-principles theory. Oxidation kinetics based on atomistic density-functional theory calculations shows that the Pt3Sn surface alloy exhibits a promising catalytic activity for fuel cells. At room temperature, the corresponding rate outstrips the activity of Pt(111) by several orders of magnitude. According to the oxidation pathways, the activation barriers are actually lower on Pt3Sn(111) and Pt3Sn/Pt(111) surfaces than on Pt(111). A generalization of Hammer's model is proposed to elucidate the key role of tin on the lowering of the barriers. Among the energy contributions, a correlation is evidenced between the decrease of the barrier and the strengthening of the attractive interaction energy between CO and O moieties. The presence of tin modifies also the symmetry of the transition states which are composed of a CO adsorbate on a Pt near-top position and an atomic O adsorption on an asymmetric mixed PtSn bridge site. Along the reaction pathways, a CO2 chemisorbed surface intermediate is obtained on all the surfaces. These results are supported by a thorough vibrational analysis including the coupling with the surface phonons which reveals the existence of a stretching frequency between the metal substrate and the CO2 molecule.

  12. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  13. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  14. Microstructural characteristics of high-temperature oxidation in nickel-base superalloy

    International Nuclear Information System (INIS)

    Khalid, F.A.

    1997-01-01

    Superalloys are used for aerospace and nuclear applications where they can withstand high-temperature and severe oxidizing conditions. High-temperature oxidation behavior of a nickel-base superalloy is examined using optical and scanning electron microscopical techniques. The morphology of the oxide layers developed is examined, and EDX microanalysis reveals diffusion of the elements across the oxide-metal interface. Evidence of internal oxidation is presented, and the role of structural defects is considered. The morphology of the oxide-metal interface formed in the specimens exposed in steam and air is examined to elucidate the mechanism of high-temperature oxidation

  15. Determination of 60 Co by means of Neutron Activation Analysis in the sorption of Co in synthesized porous oxides by the combustion method

    International Nuclear Information System (INIS)

    Lugo, V.; Bulbulian, S.; Urena, F.

    2005-01-01

    Recently inorganic materials are investigating as sorbent of radioactive pollutants present in water. The inorganic oxides belong to this group of materials. A quick method exists for the obtaining of inorganic oxides, denominated combustion method that could be used to produce porous oxides successfully with good properties for the sorption of radioactive ions. In this investigation, iron oxides, magnesium and zinc were synthesized obtained by the combustion method, comparing them with those synthesized by the calcination method, using two different synthesis temperatures. The obtained solids were characterized by scanning electron microscopy (Sem), by X-ray diffraction (XRD) and by semiquantitative elemental analysis (EDS). After the characterization, the crystalline oxides synthesized by both methods, to temperature of 800 C, were evaluated as sorbents in the removal of Co 2+ ions, through experiments in batch, and using neutron activation analysis, determining the sorption percentage, with this it was concluded that the magnesium oxide produced by combustion it is more effective in the removal of Co 2+ ions than that synthesized by calcination. It was determined the surface area of the magnesium oxides, obtaining a surface area greater for the synthesized oxide by combustion method. (Author)

  16. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  17. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels

    Science.gov (United States)

    Story, Mary E.; Webler, Bryan A.

    2018-05-01

    In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.

  18. Catalytic incineration of CO and VOC emissions over supported metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Per-Olof

    1999-05-01

    Catalytic incineration is one of the methods to reduce the emissions of CO and VOCs. Low operation temperature and low catalyst cost are essential parameters for catalytic incinerators. Pt/Al{sub 2}O{sub 3} catalysts are frequently used today, but the cheaper metal oxide catalysts can be very competitive if comparable overall activity is obtained. This thesis concerns how it is possible to decrease the operation temperature for supported metal oxide catalysts by using different supports, active metal oxides and additives. In the thesis it is demonstrated that different copper oxide based catalysts have the best activity and durability for complete oxidation among several tested metal oxide catalysts. CuO{sub x} supported on TiO{sub 2} and Al{sub 2}O{sub 3} showed increased activity with the CuO{sub x} loading up to the threshold coverage for formation of crystalline CuO particles, which is 12 {mu}mol/m{sup 2} on TiO{sub 2} and 6 {mu}mol/m{sup 2} on Al{sub 2}O{sub 3}. Up to the threshold coverage for CuO formation, well dispersed copper oxide species were formed on TiO{sub 2}, and a dispersed copper aluminate surface phase was formed on Al{sub 2}O{sub 3}. Durability tests showed accelerated sintering of TiO{sub 2} by copper, but stabilisation was possible by modification of the TiO{sub 2} with CeO{sub x} before the deposition of CuO{sub x}. The stabilisation was obtained by formation of a Ce-O-Ti surface phase. Addition of CeO{sub x} also enhanced the activity of the copper oxide species thanks to favourable interaction between the active copper oxide species and the CeO{sub x} on the support, which could be seen as increased reducibility in TPR experiments. The increased activity and reducibility was also observed for CuO{sub x} supported on ceria modified Al{sub 2}O{sub 3}. In this regard it was shown that CuO{sub x} deposited on CeO{sub 2}(001) surfaces was substantially more active for CO oxidation than copper oxide deposited on CeO{sub 2}(111) Surfaces. This

  19. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  20. CO oxidation on Alsbnd Au nano-composite systems

    Science.gov (United States)

    Rajesh, C.; Majumder, C.

    2018-03-01

    Using first principles method we report the CO oxidation behaviour of Alsbnd Au nano-composites in three different size ranges: Al6Au8, Al13Au42 and a periodic slab of Alsbnd Au(1 1 1) surface. The clusters prefer enclosed structures with alternating arrangement of Al and Au atoms, maximising Auδ-sbnd Alδ+ bonds. Charge distribution analysis suggests the charge transfer from Al to Au atoms, corroborated by the red shift in the density of states spectrum. Further, CO oxidation on these nano-composite systems was investigated through both Eley - Rideal and Langmuir Hinshelwood mechanism. While, these clusters interact with O2 non-dissociatively with an elongation of the Osbnd O bond, further interaction with CO led to formation of CO2 spontaneously. On contrary, the CO2 evolution by co-adsorption of O2 and CO molecules has a transition state barrier. On the basis of the results it is inferred that nano-composite material of Alsbnd Au shows significant promise toward effective oxidative catalysis.

  1. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    International Nuclear Information System (INIS)

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-01-01

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  2. Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism.

    Science.gov (United States)

    Mei, Jian; Huang, Wenjun; Qu, Zan; Hu, Xiaofang; Yan, Naiqiang

    2017-11-01

    Ti-modified Co 3 O 4 catalysts with various Co/Ti ratios were synthesized using the co-precipitation method and were used in catalytic oxidation of dibromomethane (CH 2 Br 2 ), which was selected as the model molecule for brominated volatile organic compounds (BVOCs). Addition of Ti distorted the crystal structure and led to the formation of a Co-O-Ti solid solution. Co 4 Ti 1 (Co/Ti molar ratio was 4) achieved higher catalytic activity with a T 90 (the temperature needed for 90% conversion) of approximately 245°C for CH 2 Br 2 oxidation and higher selectivity to CO 2 at a low temperature than the other investigated catalysts. In addition, Co 4 Ti 1 was stable for at least 30h at 500ppm CH 2 Br 2 , 0 or 2vol% H 2 O, 0 or 500ppm p-xylene (PX), and 10% O 2 at a gas hourly space velocity of 60,000h -1 . The final products were CO x , Br 2 , and HBr, without the formation of other Br-containing organic byproducts. The high catalytic activity was attributed to the high Co 3+ /Co 2+ ratio and high surface acidity. Additionally, the synergistic effect of Co and Ti made it superior for CH 2 Br 2 oxidation. Furthermore, based on the analysis of products and in situ DRIFTs studies, a receivable reaction mechanism for CH 2 Br 2 oxidation over Ti-modified Co 3 O 4 catalysts was proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Oxidation limited lifetime of Ni-Base metal foams in the temperature range 700-900 C

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton; Singheiser, Lorenz; Quadakkers, Willem Joseph [Forschungszentrum Juelich GmbH, IEF-2, Juelich (Germany); Schulze, Sebastian Leif; Bleck, Wolfgang [Department of Ferrous Metallurgy, RWTH Aachen University, Aachen (Germany); Piron-Abellan, Javier [Vallourec Mannesmann Tubes, Duesseldorf (Germany)

    2010-09-15

    INCONEL 625 metal foams produced from alloy powder by the slip-reaction-foam-sinter-process are tested in respect to cyclic oxidation behavior in air in the temperature range 700-900 C. The structure of the oxide scales formed on the foam particles is characterized using optical microscopy and SEM/EDX analysis. Main emphasis is put on studying the oxidation limited lifetimes of the foams as function of temperature and foam microstructure. It is shown that mechanical disintegration during long term oxidation at the highest test temperatures is caused by a critical depletion of the Cr content in the alloy as a result of the growth of the initially formed surface chromia layer. This results in chemical breakaway due to accelerated oxide growth of voluminous Ni-rich oxide on chromium exhausted alloy particles. Lifetime modeling based on calculation of Cr-depletion in the alloy at the oxide/metal interface of each individual foam particle using the DICTRA software is in good agreement with the experimentally determined values of the time to breakaway. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Low temperature incineration of mixed wastes using bulk metal oxide catalysts

    International Nuclear Information System (INIS)

    Gordon, M.J.; Gaur, S.; Kelkar, S.; Baldwin, R.M.

    1996-01-01

    Volume reduction of low-level mixed wastes from former nuclear weapons facilities is a significant environmental problem. Processing of these materials presents unique scientific and engineering problems due to the presence of minute quantities of radionuclides which must be contained and concentrated for later safe disposal. Low-temperature catalytic incineration is one option that has been utilized at the Rocky Flats facility for this purpose. This paper presents results of research regarding evaluation of bulk metal oxides as catalysts for low-temperature incineration of carbonaceous residues which are typical by-products of fluidized bed combustion of mixed wastes under oxygen-lean conditions. A series of 14 metal oxides were screened in a thermogravimetric analyzer, using on-line mass spectrometry for speciation of reaction product gases. Catalyst evaluation criteria focused on the thermal-redox activity of the metals using both carbon black and PVC char as surrogate waste materials. Results indicated that metal oxides which were P-type semiconductor materials were suitable as catalysts for this application. Oxides of cobalt, molybdenum, vanadium, and manganese were found to be particularly stable and active catalysts under conditions specific to this process (T<650C, low oxygen partial pressures). Bench-scale evaluation of these metal oxides with respect to stability to chlorine (HCl) attack was carried out at 550C using a TG/MS system. Cobalt oxide was found to be resistant to metal loss in a HCl/He gaseous environment while metal loss from Mo, Mn, and V-based catalysts was moderate to severe. XRD and SEM/EDX analysis of spent Co catalysts indicated the formation of non-stoichiometric cobalt chlorides. Regeneration of chlorinated cobalt was found to successfully restore the low-temperature combustion activity to that of the fresh metal oxide

  5. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    Science.gov (United States)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  6. Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO 2 Capture

    KAUST Repository

    Bollini, Praveen

    2011-05-19

    Coal-fired power plant flue gas exhaust typically contains 3-10% oxygen. While it is known that the monoethanolamine (MEA) oxidative degradation rate is a critical parameter affecting liquid amine absorption processes, the effect of oxygen on the stability of solid amine adsorbents remains unexplored. Here, oxidative degradation of aminosilica materials is studied under accelerated oxidizing conditions to assess the stability of different supported amine structures to oxidizing conditions. Adsorbents constructed using four different silane coupling agents are evaluated, three with a single primary, secondary, or tertiary amine at the end of a propyl surface linker, with the fourth having one secondary propylamine separated from a primary amine by an ethyl linker. Under the experimental conditions used in this study, it was found that both amine type and proximity had a significant effect on oxidative degradation rates. In particular, the supported primary and tertiary amines proved to be stable to the oxidizing conditions used, whereas the secondary amines degraded at elevated treatment temperatures. Because secondary amines are important components of many supported amine adsorbents, it is suggested that the oxidative stability of such species needs to be carefully considered in assessments of postcombustion CO2 capture processes based on supported amines. © 2011 American Chemical Society.

  7. Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO 2 Capture

    KAUST Repository

    Bollini, Praveen; Choi, Sunho; Drese, Jeffrey H.; Jones, Christopher W.

    2011-01-01

    Coal-fired power plant flue gas exhaust typically contains 3-10% oxygen. While it is known that the monoethanolamine (MEA) oxidative degradation rate is a critical parameter affecting liquid amine absorption processes, the effect of oxygen on the stability of solid amine adsorbents remains unexplored. Here, oxidative degradation of aminosilica materials is studied under accelerated oxidizing conditions to assess the stability of different supported amine structures to oxidizing conditions. Adsorbents constructed using four different silane coupling agents are evaluated, three with a single primary, secondary, or tertiary amine at the end of a propyl surface linker, with the fourth having one secondary propylamine separated from a primary amine by an ethyl linker. Under the experimental conditions used in this study, it was found that both amine type and proximity had a significant effect on oxidative degradation rates. In particular, the supported primary and tertiary amines proved to be stable to the oxidizing conditions used, whereas the secondary amines degraded at elevated treatment temperatures. Because secondary amines are important components of many supported amine adsorbents, it is suggested that the oxidative stability of such species needs to be carefully considered in assessments of postcombustion CO2 capture processes based on supported amines. © 2011 American Chemical Society.

  8. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  9. Co-Mn-Al Mixed Oxides as Catalysts for Ammonia Oxidation to N2O.

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jablońska, M.; Jirátová, Květa; Chmielarz, L.; Balabánová, Jana; Kovanda, F.; Obalová, L.

    2016-01-01

    Roč. 42, č. 3 (2016), s. 2669-2690 ISSN 0922-6168 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxide s * catalytic ammonia oxidation * N2O production * mechanochemical production Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.369, year: 2016

  10. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    Science.gov (United States)

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes.

    Science.gov (United States)

    Huang, Yonghai; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Gao, Fengyu; Wang, Jiangen; Yang, Zhongyu

    2018-05-21

    Cooking emission is an important reason for the air quality deterioration in the metropolitan area in China. Transition metal oxide and different loading of manganese oxide supported on cordierite were prepared by incipient wetness impregnation method and were used for non-methane hydrocarbon (NMHC) oxidation in cooking oil fumes (COFs). The effects of different calcination temperature and different Mn content were also studied. The SEM photographs and CO 2 temperature-programmed desorption revealed 5 wt% Mn/cordierite had the best pore structure and the largest number of the weak and moderate basic sites so it showed the best performance for NMHC oxidation. XRD analysis exhibited 5 wt% Mn/cordierite had the best dispersion of active phase and the active phase was MnO 2 when the calcination temperature was 400℃ which were good for the catalytic oxidation of NMHC.

  12. Flow-Tube Reactor Experiments on the High Temperature Oxidation of Carbon Weaves

    Science.gov (United States)

    Panerai, Francesco; White, Jason D.; Robertson, Robert; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.

    2017-01-01

    Under entry conditions carbon weaves used in thermal protection systems (TPS) decompose via oxidation. Modeling this phenomenon is challenging due to the different regimes encountered along a flight trajectory. Approaches using equilibrium chemistry may lead to over-estimated mass loss and recession at certain conditions. Concurrently, there is a shortcoming of experimental data on carbon weaves to enable development of improved models. In this work, a flow-tube test facility was used to measure the oxidation of carbon weaves at temperatures up to 1500 K. The material tested was the 3D carbon weave used for the heat shield of the NASA Adaptive Deployable Entry and Placement Technology, ADEPT. Oxidation was characterized by quantifying decomposition gases (CO and CO2), by mass measurements, and by microscale surface analysis. The current set of measurements contributes to the development of finite rate chemistry models for carbon fabrics used in woven TPS materials.

  13. Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo; Rosenfeld, Devon C.; Anjum, Dalaver H.; Sangaru, Shiv; Saih, Youssef; Ould-Chikh, Samy; Basset, Jean-Marie

    2015-01-01

    The "wet" sol-gel and "dry" solid-state methods were used to prepare Ni-Ta-O mixed oxide catalysts. The resulting Ni-Ta oxides exhibit high activity and selectivity for the low temperature oxidative dehydrogenation of ethane to ethylene. The Ta

  14. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  15. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach

    Science.gov (United States)

    Du, Jinpeng; Qu, Zhenping; Dong, Cui; Song, Lixin; Qin, Yuan; Huang, Na

    2018-03-01

    Mn-Ce oxides catalysts were synthesized by a novel method combining redox-precipitation and hydrothermal approach. The results indicate that the ratio between manganese and cerium plays a crucial role in the formation of catalysts, and the textual properties as well as catalytic activity are remarked affected. Mn0.6Ce0.4O2 possesses a predominant catalytic activity in the oxidation of toluene, over 70% of toluene is converted at 200 °C, and the complete conversion temperature is 210 °C. The formation of Mn-Ce solid solution markedly improves the surface area as well as pore volume of Mn-Ce oxide catalyst, and Mn0.6Ce0.4O2 possesses the largest surface area of 298.5 m2/g. The abundant Ce3+ and Mn3+ on Mn0.6Ce0.4O2 catalyst facilitate the formation of oxygen vacancies, and improve the transfer of oxygen in the catalysts. Meanwhile, it is found that cerium in Mn-Ce oxide plays a key role in the adsorption of toluene, while manganese is proved to be crucial in the oxidation of toluene, the cooperation between manganese and cerium improves the catalytic reaction process. In addition, the reaction process is investigated by in situ DRIFT measurement, and it is found that the adsorbed toluene could be oxidized to benzyl alcohol as temperature rises around 80-120 °C that can be further be oxidized to benzoic acid. Then benzoic acid could be decomposed to formate and/or carbonate species as temperature rises to form CO2 and H2O. In addition, the formed by-product phenol could be further oxidized into CO2 and H2O when the temperature is high enough.

  16. Electrical behavior of amide functionalized graphene oxide and graphene oxide films annealed at different temperatures

    International Nuclear Information System (INIS)

    Rani, Sumita; Kumar, Mukesh; Kumar, Dinesh; Sharma, Sumit

    2015-01-01

    Films of graphene oxide (GO) and amide functionalized graphene oxides (AGOs) were deposited on SiO 2 /Si(100) by spin coating and were thermally annealed at different temperatures. Sheet resistance of GO and AGOs films was measured using four probe resistivity method. GO an insulator at room temperature, exhibits decrease in sheet resistance with increase in annealing temperature. However, AGOs' low sheet resistance (250.43 Ω) at room temperature further decreases to 39.26 Ω after annealing at 800 °C. It was observed that the sheet resistance of GO was more than AGOs up to 700 °C, but effect was reversed after annealing at higher temperature. At higher annealing temperatures the oxygen functionality reduces in GO and sheet resistance decreases. Sheet resistance was found to be annealing time dependent. Longer duration of annealing at a particular temperature results in decrease of sheet resistance. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized at room temperature (RT). • AGO films have low sheet resistance at RT as compared to graphene oxide (GO). • Fast decrease in the sheet resistance of GO with annealing as compared to AGOs • AGOs were found to be highly dispersible in polar solvents

  17. Low temperature self-assembled growth of rutile TiO2/manganese oxide nanocrystalline films

    Science.gov (United States)

    Sun, Zhenya; Zhou, Daokun; Du, Jianhua; Xie, Yuxing

    2017-10-01

    We report formation of rutile TiO2 nanocrystal at low temperature range in the presence of α-MnO2 which self-assembled onto sulfanyl radical activated silicon oxide substrate. SEM, HRTEM, XPS and Raman spectroscopy were used to study the morphology and oxidation state of synthesised crystals. The results showed that when the α-MnO2 was reduced to Mn3O4, it induced the formation of rutile instead of anatase phase in the TiCl4-HCl aqueous system. The finding will promote the understanding of phase transformation mechanism when manganese oxide and titanium oxide co-exist in soil and water environment.

  18. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    OpenAIRE

    Lili Zhang; Xinxin Yu; Hongrui Hu; Yang Li; Mingzai Wu; Zhongzhu Wang; Guang Li; Zhaoqi Sun; Changle Chen

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4?7H2O. By adjusting reaction temperature, ?-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from ?-Fe2O3 to Fe3O4 via ?-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide ...

  19. Capture of atmospheric CO2 into (BiO)2CO3/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Zhang, Wendong; Dong, Fan; Zhang, Wei

    2015-01-01

    Graphical abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO 2 . • (BiO) 2 CO 3 -graphene and (BiO) 2 CO 3 -graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO) 2 CO 3 nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO 2 at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO) 2 CO 3 , (BiO) 2 CO 3 /Ge and (BiO) 2 CO 3 /GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO 2 in green synthetic strategy.

  20. Oxidation-induced spin reorientation in Co adatoms and CoPd dimers on Ni/Cu(100)

    Science.gov (United States)

    Chen, K.; Beeck, T.; Fiedler, S.; Baev, I.; Wurth, W.; Martins, M.

    2016-04-01

    Ultrasmall magnetic clusters and adatoms are of strong current interest because of their possible use in future technological applications. Here, we demonstrate that the magnetic coupling between the adsorbates and the substrate can be significantly changed through oxidation. The magnetic properties of Co adatoms and CoPd dimers deposited on a remanently magnetized Ni/Cu(100) substrate have been investigated by x-ray absorption and x-ray magnetic circular dichroism spectroscopy at the Co L2 ,3 edges. Using spectral differences, pure and oxidized components are distinguished, and their respective magnetic moments are determined. The Co adatoms and the CoPd dimers are coupled ferromagnetically to the substrate, while their oxides, Co-O and CoPd-O, are coupled antiferromagnetically to the substrate. Along with the spin reorientation from the pure to the oxidized state, the magnetic moment of the adatom is highly reduced from Co to Co-O. In contrast, the magnetic moment of the dimer is of similar order for CoPd and CoPd-O.

  1. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Viktor A Utsal

    2007-03-01

    Full Text Available Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10 at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic and 2,4,6-trihydroxybenzoic (phloroglucinic acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol. In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxybenzoic acid (depside. However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol, but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin, or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.

  2. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  3. Plasma-assisted partial oxidation of methane at low temperatures: numerical analysis of gas-phase chemical mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, Valentin; Nozaki, Tomohiro; Yuzawa, Shuhei; Okazaki, Ken [Department of Mechanical and Control Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, 1528552, Tokyo (Japan); Agiral, Anil, E-mail: tnozaki@mech.titech.ac.jp [Mesoscale Chemical Systems, MESA Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede (Netherlands)

    2011-07-13

    Methane partial oxidation was investigated using a plasma microreactor. The experiments were performed at 5 and 300 deg. C. Microreactor configuration allows an efficient evacuation of the heat generated by methane partial oxidation and dielectric barrier discharges, allowing at the same time a better temperature control. At 5 deg. C, liquid condensation of low vapour pressure compounds, such as formaldehyde and methanol, occurs. {sup 1}H-NMR analysis allowed us to demonstrate significant CH{sub 3}OOH formation during plasma-assisted partial oxidation of methane. Conversion and product selectivity were discussed for both temperatures. In the second part of this work, a numerical simulation was performed and a gas-phase chemical mechanism was proposed and discussed. From the comparison between the experimental results and the simulation it was found that CH{sub 3}OO{center_dot} formation has a determinant role in oxygenated compound production, since its fast formation disfavoured radical recombination. At 5 deg. C the oxidation leads mainly towards oxygenated compound formation, and plasma dissociation was the major phenomenon responsible for CH{sub 4} conversion. At 300 deg. C, higher CH{sub 4} conversion resulted from oxidative reactions induced by {center_dot}OH radicals with a chemistry predominantly oxidative, producing CO, H{sub 2}, CO{sub 2} and H{sub 2}O.

  4. Influence of temperature on oxidation behaviour of ZE41 magnesium alloy

    International Nuclear Information System (INIS)

    Lopez, M.D.; Munez, C.J.; Carboneras, M.; Rodrigo, P.; Escalera, M.D.; Otero, E.

    2010-01-01

    The influence of temperature on the oxidation behaviour of commercial ZE41 magnesium alloy has been studied. Thermogravimetric tests were carried out to determine the oxidation kinetics in the 350-500 o C range. Morphology and growth of the oxidation films were analysed by Scanning Electronic Microscopy (SEM), Energy Dispersive X-Ray Spectrometry (EDS) and X-Ray Diffraction (XRD). It was found that the oxidation kinetics initially follow a parabolic law, following a linear law for higher exposure times. Results also showed that the protective nature of the oxide layer depends on the oxidation temperature. At temperatures in the range of 350-450 o C the ZE41 alloy is covered by a protective oxide layer, very thin and compact, whereas the oxide layer formed at 500 o C exhibits a non-protective nature, showing an 'oxide sponges' morphology.

  5. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    Science.gov (United States)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  6. Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM

    International Nuclear Information System (INIS)

    Sun Ximing; Dong Yujie; Zhou Yangping; Shi Lei; Sun Yuliang; Zhang Zuoyi; Li Zhengcao

    2017-01-01

    The oxidation behavior of a selected nuclear graphite (IG-110) used in Pebble-bed Module High Temperature gas-cooled Reactor was investigated under the condition of air ingress accident. The oblate rectangular specimen was oxidized by oxidant gas with oxygen mole fraction of 20% and flow rates of 125–500 ml/min at temperature of 400–1200°C. Experiment results indicate that the oxidation behavior can also be classified into three regimes according to temperature. The regime I at 400–550°C has lower apparent activation energies of 75.57–138.59 kJ/mol when the gas flow rate is 125–500 ml/min. In the regime II at 600–900°C, the oxidation rate restricted by the oxygen supply to graphite is almost stable with the increase of temperature. In the regime III above 900°C, the oxidation rate increases obviously with the increase of temperature.With the increase of inlet gas flow from 125 to 500 ml/min, the apparent activation energy in regime I is increased and the stableness of oxidation rate in regime II is reduced. (author)

  7. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-04

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    Science.gov (United States)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  9. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.

    Science.gov (United States)

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-09-29

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.

  10. The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garner, A., E-mail: alistair.garner@manchester.ac.uk [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Frankel, P. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Partezana, J. [Westinghouse Electric Company, 1332 Beulah Road, Pittsburgh, PA 15235 (United States); Preuss, M. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom)

    2017-02-15

    During corrosion of zirconium alloys a highly textured oxide is formed, the degree of this preferred orientation has previously been shown to be an important factor in determining the corrosion behaviour of these alloys. Two distinct experiments were designed in order to investigate the origin of this oxide texture development on two commercial alloys. Firstly, sheet samples of Zircaloy-4 were oxidised between 500 and 800 °C in air. The resulting monoclinic oxide texture strength was observed to decrease with increasing oxidation temperature. In a second experiment, orthogonal faces of Low Tin ZIRLO{sub ™} were oxidised in 360 °C water, providing different substrate textures but identical microstructures. The substrate texture was observed to have a negligible effect on the corrosion performance whilst the major orientation of both oxide phases was found to be independent of substrate orientation. It is concluded that the main driving force for oxide texture development in single-phase zirconium alloys is the compressive stress caused by the Zr−ZrO{sub 2} transformation. - Highlights: • Substrate orientation does not significantly affect oxide texture development. • Corrosion performance is independent of substrate texture. • Monoclinic oxide texture strength decreases with increasing oxidation temperature. • The main driving force for texture development is the oxidation-induced stress.

  11. Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4

    Science.gov (United States)

    Yang, Heng; Lv, Kangle; Zhu, Junjiang; Li, Qin; Tang, Dingguo; Ho, Wingkei; Li, Mei; Carabineiro, Sónia A. C.

    2017-04-01

    Mesoporous graphitic carbon nitride (mpg-CN) was synthesized using Triton X-100, a surfactant containing a hydrophilic polyethylene oxide group and a tert-octyl-phenyl hydrophobic moiety, as a soft template. The obtained mpg-CN was used as a support for Co3O4, and this supported catalyst was used for CO oxidation. The effects of the amount of Triton X-100, weight ratio of Co3O4 to mpg-CN and calcination temperature on the catalytic performances for CO oxidation of Co3O4/mpg-CN composites were systematically studied. It was found that the presence of Triton X-100 not only retarded the polymerization of dicyandiamide, but also affected the microstructure of Co3O4. Bubbles formed because of the hydrophobic group of the surfactant Triton X-100 can be act as a soft template for the synthesis of mesoporous g-C3N4. The enhanced catalytic activity of Co3O4/mpg-CN was attributed to a synergistic effect, enlarged BET surface areas, increased Co3+ and lattice oxygen contents, and the porous structure of mpg-CN support. The high stability of 12.5% Co3O4/mpg-CN(1.0) makes it a promising catalyst for practical applications.

  12. Activity of carbon supported Pt3Ru2 nanocatalyst in CO oxidation

    Directory of Open Access Journals (Sweden)

    KSENIJA DJ. POPOVIĆ

    2009-08-01

    Full Text Available The electrocatalytic activity of Pt3Ru2/C nanocatalyst toward the electro-oxidation of bulk CO was examined in acid and alkaline solution at ambient temperature using the thin-film, rotating disk electrode (RDE method. The catalyst was characterized by XRD analysis. The XRD pattern revealed that the Pt3Ru2/C catalyst consisted of two structures, i.e., Pt–Ru-fcc and Ru-hcp (a solid solution of Ru in Pt and a small amount of Ru or a solid solution of Pt in Ru. Electrocatalytic activities were measured by applying potentiodynamic and steady state techniques. The oxidation of CO on the Pt3Ru2/C catalyst was influenced by pH and anions from the supporting electrolytes. The Pt3Ru2/C was more active in alkaline than in acid solution, as well as in perchloric than in sulfuric acid. Comparison of CO oxidation on Pt3Ru2/C and Pt/C revealed that the Pt3Ru2/C was more active than Pt/C in acid solution, while both catalysts had a similar activity in alkaline solution.

  13. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    International Nuclear Information System (INIS)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-01-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In 2 O 3 (90 wt %) : SnO 2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature

  14. High-temperature oxidation of ion-implanted tantalum

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Musket, R.G.; Truhan, J.J.; Grabowski, K.S.; Singer, I.L.; Gossett, C.R.

    1982-01-01

    The oxidation of ion-implanted Ta in two different high temperature regimes has been studied. Oxidations were carried out at 500 0 C in Ar/O 2 mixtures, where oxide growth is known to follow a parabolic rate law in initial stages, and at 1000 0 C in pure O 2 , where a linear-rate behavior obtains. Implanted species include Al, Ce, Cr, Li, Si and Zr at fluences of the order of 10 17 /cm 2 . Oxidized samples were studied using Rutherford backscattering, nuclear reaction analysis, Auger spectroscopy, secondary-ion mass spectroscopy, x-ray diffraction and optical microscopy. Significant differences among the specimens were noted after the milder 500 0 C treatment, specifically, in the amount of oxide formed, the degree of oxygen dissolution in the metal beneath the oxide, and in the redistribution behavior of the implanted solutes. Under the severe 1000 0 C treatment, indications of different solute distributions and of different optical features were found, whereas overall oxidation rate appeared to be unaffected by the presence of the solute. 7 figures

  15. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  16. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    Science.gov (United States)

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  17. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing

    2013-10-02

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.

  18. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    Science.gov (United States)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  19. Amorphous gallium oxide grown by low-temperature PECVD

    KAUST Repository

    Kobayashi, Eiji

    2018-03-02

    Owing to the wide application of metal oxides in energy conversion devices, the fabrication of these oxides using conventional, damage-free, and upscalable techniques is of critical importance in the optoelectronics community. Here, the authors demonstrate the growth of hydrogenated amorphous gallium oxide (a-GaO:H) thin-films by plasma-enhanced chemical vapor deposition (PECVD) at temperatures below 200 °C. In this way, conformal films are deposited at high deposition rates, achieving high broadband transparency, wide band gap (3.5-4 eV), and low refractive index (1.6 at 500 nm). The authors link this low refractive index to the presence of nanoscale voids enclosing H, as indicated by electron energy-loss spectroscopy. This work opens the path for further metal-oxide developments by low-temperature, scalable and damage-free PECVD processes.

  20. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Hongmei Qin

    2015-04-01

    Full Text Available Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2 interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3, where M = Al, Fe, Co, Cu, Zn, Ba, La for CO oxidation. Among them, Pt/CoOx/SiO2, Pt/CoOx/TiO2, and Pt/CoOx/Al2O3 showed the highest catalytic activities. Relevant samples were characterized by N2 adsorption-desorption, X-ray diffraction (XRD, transmission electron microscopy (TEM, H2 temperature-programmed reduction (H2-TPR, X-ray photoelectron spectroscopy (XPS, CO temperature-programmed desorption (CO-TPD, O2 temperature-programmed desorption (O2-TPD, and CO2 temperature-programmed desorption (CO2-TPD.

  1. Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species

    Science.gov (United States)

    Iwahama; Yoshino; Keitoku; Sakaguchi; Ishii

    2000-10-06

    Highly efficient catalytic oxidation of alcohols with molecular oxygen by N-hydroxyphthalimide (NHPI) combined with a Co species was developed. The oxidation of 2-octanol in the presence of catalytic amounts of NHPI and Co(OAc)2 under atmospheric dioxygen in AcOEt at 70 degrees C gave 2-octanone in 93% yield. The oxidation was significantly enhanced by adding a small amount of benzoic acid to proceed smoothly even at room temperature. Primary alcohols were oxidized by NHPI in the absence of any metal catalyst to form the corresponding carboxylic acids in good yields. In the oxidation of terminal vic-diols such as 1,2-butanediol, carbon-carbon bond cleavage was induced to give one carbon less carboxylic acids such as propionic acid, while internal vic-diols were selectively oxidized to 1,2-diketones.

  2. Preparation and characterization of aminated graphite oxide for CO2 capture

    International Nuclear Information System (INIS)

    Zhao Yunxia; Ding Huiling; Zhong Qin

    2012-01-01

    Adsorption with solid sorbents is one of the most promising options for postcombustion carbon dioxide (CO 2 ) capture. In this study, aminated graphite oxide used for CO 2 adsorption was synthesized, based on the intercalation reaction of graphite oxide (GO) with amines, including ethylenediamine (EDA), diethylenetriamine (DETA) and triethylene tetramine (TETA). The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), transmission electron microscope (TEM), elemental analysis, particle size analysis, nitrogen adsorption as well as differential thermal and thermogravimetric analysis (DSC-TGA). CO 2 capture was investigated by dynamic adsorption experiments with N 2 -CO 2 mixed gases at 30 °C. The three kinds of graphite oxide samples modified by excess EDA, DETA and TETA showed similar adsorption behaviors seen from their breakthrough curves. Among them, the sample aminated by EDA exhibited the highest adsorption capacity with the longest breakthrough time of CO 2 . Before saturation, its adsorption capacity was up to 53.62 mg CO 2 /g sample. In addition, graphite oxide samples modified by different amount of EDA (EDA/GO raw ratio 10 wt%, 50 wt% and 100 wt%) were prepared in the ethanol. Their CO 2 adsorption performance was investigated. The experimental results demonstrated that graphite oxide with 50 wt% EDA had the largest adsorption capacity 46.55 mg CO 2 /g sample.

  3. The use of CeO2-Co3O4 oxides as a catalyst for the reduction of N2O emission

    Directory of Open Access Journals (Sweden)

    Rajska Maria

    2016-01-01

    Full Text Available The morphological characterization of a series of cobalt-cerium oxide composites prepared by the deposition of CeO2 onto Co3O4 powder with a molar ratio of cerium oxide to Co3O4 in the range of 0 to 1 was performed. The powders were also impregnated with a solution of K2CO3 to obtain the theoretical content of potassium atoms 2at·nm−2. To investigate the effect of adding specific amount of CeO2 on the catalytic activity, the X-ray diffraction, SEM-EDX, laser particle size distribution and BET surface area measurements were used. The catalysts were tested through the low-temperature decomposition of nitrous oxide in the temperature range of 50°C to 700°C. The addition of CeO2 and K always moved the temperature of a complete N2O conversion towards lower temperatures (480°C-540°C to 340°C-420°C. The best catalytic properties were shown by the samples in which the ratio of cerium oxide to cobalt oxide ranged from 0.4 to 0.7.

  4. Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id [Research Center for Nuclear Materials and Radiometry, Jl. Tamansari 71, Bandung 40132 (Indonesia); Soepriyanto, Syoni; Basuki, Eddy Agus [Metallurgy Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Wiryolukito, Slameto [Materials Engineering, Institute Technology Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase α and β phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.

  5. Effect of H2O and Y(O on Oxidation Behavior of NiCoCrAl Coating Within Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    WANG Yi-qun

    2017-04-01

    Full Text Available NiCoCrAl coatings containing Y and Y oxide were made using vacuum plasma deposition and high-velocity oxygen fuel respectively, high temperature oxidation dynamics and cross-section microstructures of NiCoCrAl+Y and NiCoCrAl+Y(O coatings in Ar-16.7%O2, Ar-3.3%H2O and Ar-0.2%H2-0.9%H2O at 1100℃ were investigated by differential thermal analysis (DTA and optical and electron microscope. The influencing mechanism of Y oxide on the oxidation of coatings at different atmosphere was compared by computation using First-Principles. The results show that Al2O3 layer on NiCoCrAl+Y coatings has more holes for internal oxidation on account of the element Y diffusion and enrichment on the interface. In addition, steam can promote the internal oxidation. While a thinner and uniform alumina form on NiCoCrAl+Y(O coatings because element Y is pinned by oxygen atoms during the preparation of coatings. Water vapor has less influence on protective alumina formation on the NiCoCrAl+Y(O coating. Therefore, oxidation behavior of NiCoCrAl coatings vary in composition and structure in different oxidizing atmosphere. Besides, Y and Y-enrichment oxides have key influences on the microstructure and the growth rate.

  6. Reduction of graphene oxide by aniline with its concomitant oxidative polymerization.

    Science.gov (United States)

    Xu, Li Qun; Liu, Yi Liang; Neoh, Koon-Gee; Kang, En-Tang; Fu, Guo Dong

    2011-04-19

    Graphene oxide (GO) nanosheets are readily reduced by aniline above room temperature in an aqueous acid medium, with the aniline simultaneously undergoing oxidative polymerization to produce the reduced graphene oxide-polyaniline nanofiber (RGO-PANi) composites. The resulting RGO-PANi composites and RGO (after dissolution of PANi) were characterized by XPS, XRD analysis, TGA, UV-visible absorption spectroscopy, and TEM. It was also found that the RGO-PANi composites exhibit good specific capacitance during galvanostatic charging-discharging when used as capacitor electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf

    2015-01-01

    and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  8. Evaluation of biochars by temperature programmed oxidation/mass spectrometry

    Science.gov (United States)

    Michael Jackson; Thomas Eberhardt; Akwasi Boateng; Charles Mullen; Les Groom

    2013-01-01

    Biochars produced from thermochemical conversions of biomass were evaluated by temperature programmed oxidation (TPO). This technique, used to characterize carbon deposits on petroleum cracking catalysts, provides information on the oxidative stability of carbonaceous solids, where higher temperature reactivity indicates greater structural order, an important property...

  9. Climate change (elevated CO{sub 2}, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Parra, C.; Aguirreolea, J.; Sanchez-Diaz, M.; Irigoyen, J.J.; Morales, F. (Departamento de Biologia Vegetal, Seccion Biologia Vegetal (Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logrono), Facultades de Ciencias y Farmacia, Universidad de Navarra, Pamplona (Spain))

    2012-07-01

    Photosynthetic carbon fixation (A{sub N}) and photosynthetic electron transport rate (ETR) are affected by different environmental stress factors, such as those associated with climate change. Under stress conditions, it can be generated an electron excess that cannot be consumed, which can react with O{sub 2}, producing reactive oxygen species. This work was aimed to evaluate the influence of climate change (elevated CO{sub 2}, elevated temperature and moderate drought) on the antioxidant status of grapevine (Vitis vinifera) cv. Tempranillo leaves, from veraison to ripeness. The lowest ratios between electrons generated (ETR) and consumed (A{sub N} + respiration + photorespiration) were observed in plants treated with elevated CO{sub 2} and elevated temperature. In partially irrigated plants under current ambient conditions, electrons not consumed seemed to be diverted to alternative ways. Oxidative damage to chlorophylls and carotenoids was not observed. However, these plants had increases in thiobarbituric acid reacting substances, an indication of lipid peroxidation. These increases matched well with an early rise of H{sub 2}O{sub 2} and antioxidant enzyme activities, superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6). Enzymatic activities were maintained high until ripeness. In conclusion, plants grown under current ambient conditions and moderate drought were less efficient to cope with oxidative damage than well-irrigated plants, and more interestingly, plants grown under moderate drought but treated with elevated CO{sub 2} and elevated temperature were not affected by oxidative damage, mainly because of higher rates of electrons consumed in photosynthetic carbon fixation. (Author)

  10. Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage

    Science.gov (United States)

    Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling

    2017-12-01

    Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.

  11. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters

    KAUST Repository

    Allian, Ayman Daoud

    2011-03-30

    Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis at conditions typical of its industrial practice. CO oxidation turnover rates and the dynamics and thermodynamics of adsorption-desorption processes on cluster surfaces saturated with chemisorbed CO were measured on 1-20 nm Pt clusters under conditions of strict kinetic control. Turnover rates are proportional to O2 pressure and inversely proportional to CO pressure, consistent with kinetically relevant irreversible O2 activation steps on vacant sites present within saturated CO monolayers. These conclusions are consistent with the lack of isotopic scrambling in C16O-18O2-16O 2 reactions, and with infrared bands for chemisorbed CO that did not change within a CO pressure range that strongly influenced CO oxidation turnover rates. Density functional theory estimates of rate and equilibrium constants show that the kinetically relevant O2 activation steps involve direct O2* (or O2) reactions with CO* to form reactive O*-O-C*=O intermediates that decompose to form CO 2 and chemisorbed O*, instead of unassisted activation steps involving molecular adsorption and subsequent dissociation of O2. These CO-assisted O2 dissociation pathways avoid the higher barriers imposed by the spin-forbidden transitions required for unassisted O2 dissociation on surfaces saturated with chemisorbed CO. Measured rate parameters for CO oxidation were independent of Pt cluster size; these parameters depend on the ratio of rate constants for O2 reactions with CO* and CO adsorption equilibrium constants, which reflect the respective activation barriers and reaction enthalpies for these two steps. Infrared spectra during isotopic displacement and thermal desorption with 12CO- 13CO mixtures showed that the binding, dynamics, and thermodynamics of CO

  12. High temperature oxidation kinetics of dysprosium particles

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-09-25

    Highlights: • The oxidation behavior of dysprosium particles was studied from 500 to 1000 °C. • Activation energy in initial region found as 8–25 kJ/mol, depending on atmosphere. • Activation energy in intermediate region found as 80–95 kJ/mol. • The oxide grows at the metal–oxide interface. • Generally, the formed oxide behaved as a p-type semiconductor. - Abstract: Rare earth elements have been recognized as critical materials for the advancement of many strategic and green technologies. Recently, the United States Department of Energy has invested many millions of dollars to enhance, protect, and forecast their production and management. The work presented here attempts to clarify the limited and contradictory literature on the oxidation behavior of the rare earth metal, dysprosium. Dysprosium particles were isothermally oxidized from 500 to 1000 °C in N{sub 2}–(2%, 20%, and 50%) O{sub 2} and Ar–20% O{sub 2} using simultaneous thermal analysis techniques. Two distinct oxidation regions were identified at each isothermal temperature in each oxidizing atmosphere. Initially, the oxidation kinetics are very fast until the reaction enters a slower, intermediate region of oxidation. The two regions are defined and the kinetics of each are assessed to show an apparent activation energy of 8–25 kJ/mol in the initial region and 80–95 kJ/mol in the intermediate oxidation reaction region. The effects of varying the oxygen partial pressure on the reaction rate constant are used to show that dysprosium oxide (Dy{sub 2}O{sub 3}) generally acts as a p-type semiconductor in both regions of oxidation (with an exception above 750 °C in the intermediate region)

  13. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.

    2015-06-23

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  14. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.; Rodrigues, J. N B; Su, Chenliang; Milletari, M.; Loh, Kian Ping; Wu, Tao; Chen, Wei; Neto, A. H Castro; Adam, Shaffique; Wee, Andrew T S

    2015-01-01

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  15. High temperature oxidation of slurry coated interconnect alloys

    DEFF Research Database (Denmark)

    Persson, Åsa Helen

    with this interaction mechanism mainly give a geometrical protection against oxidation by blocking oxygen access at the surface of the oxide scale. The protecting effect is gradually reduced as the oxide scale grows thicker than the diameter of the coating particles. Interaction mechanism B entails a chemical reaction...... scale. The incorporated coating particles create a geometrical protection against oxidation that should not loose their effect after the oxide scale has grown thicker than the diameter of the coating particles. The two single layer coatings consisting of (La0.85Sr0.15)MnO3 + 10% excess Mn, LSM, and (La0......In this project, high temperature oxidation experiments of slurry coated ferritic alloys in atmospheres similar to the atmosphere found at the cathode in an SOFC were conducted. From the observations possible interaction mechanisms between the slurry coatings and the growing oxide scale...

  16. High temperature oxidation of β-NbTi alloys

    International Nuclear Information System (INIS)

    Parida, S.C.; Gupta, N.K.; Rama Rao, G.A.; Sen, B.K.; Krishnan, K.

    2008-01-01

    The isothermal oxidation kinetics of pure Ti metal and two different β-NbTi alloys with compositions of 85 and 75 at.% Ti were studied using thermogravimetric technique in the temperature range of 1073-1323 K at an interval of 50 K. The value of the power exponent n of the rate equation was found to be close to one suggesting that each reaction follows first order kinetic rate law. X-ray diffraction analysis of oxidation products at each temperature revealed the simultaneous formation of TiO 2 and TiNb 2 O 7 . The rate constants and the activation energies of oxidation reactions for each alloy compositions were evaluated. (author)

  17. A ternary nanocatalyst of Ni/Cr/Co oxides with high activity and stability for alkaline glucose electrooxidation

    International Nuclear Information System (INIS)

    Gu, Yingying; Yang, Haihong; Li, Benqiang; An, Yarui

    2016-01-01

    Highlights: • Ni-Cr-Co nanomaterial was synthesized by thermal decomposition method. • Ni 4 -Cr 1 -Co 1.5 has the highest GOR activity among the prepared catalysts. • A catalytic current density of 23.8 mA × cm −2 is attained for alkaline GOR. - Abstract: A novel ternary nanocatalyst of Ni-Cr-Co oxides is synthesized as anode electro-catalysts for glucose oxidation. The nanostructure is characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), which indicates that the catalyst particles are well dispersed with average size of 30 nm when the calcination temperature is 500 °C. The electrochemical performance is evaluated via cyclic voltammetry (CV). Compared with the bimetallic Ni-Cr and Ni-Co nanocatalysts, Ni-Cr-Co electrocatalysts exhibites more negative onset potential (0.4 V) and high oxidation peak current density (23.8 mA cm −2 ) in alkaline media towards glucose oxidation. Meanwhile, the results also show that the Ni-Cr-Co nanomaterial possesses good performance of anti-poisoning capability, reproducibility and long-time stability, which make it an excellent candidate for fuel cell electrocatalyst.

  18. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2015-01-01

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  19. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  20. Oxidation characteristics of the electron beam surface-treated Alloy 617 in high temperature helium environments

    International Nuclear Information System (INIS)

    Lee, Ho Jung; Sah, Injin; Kim, Donghoon; Kim, Hyunmyung; Jang, Changheui

    2015-01-01

    The oxidation characteristics of the electron beam surface-treated Alloy 617, which has an Al-rich surface layer, were evaluated in high temperature helium environments. Isothermal oxidation tests were performed in helium (99.999% purity) and VHTR-helium (helium of prototypical VHTR chemistry containing impurities like CO, CO 2 , CH 4 , and H 2 ) environments at 900 °C for up to 1000 h. The surface-treated Alloy 617 showed an initial transient oxidation stage followed by the steady-state oxidation in all test environments. In addition, the steady-state oxidation kinetics of the surface-treated Alloy 617 was 2-order of magnitude lower than that of the as-received Alloy 617 in both helium environments as well as in air. The improvement in oxidation resistance was primarily due to the formation of the protective Al 2 O 3 layer on the surface. The weight gain was larger in the order of air, helium, and VHTR-helium, while the parabolic rate constants (k p ) at steady-state were similar for all test environments. In both helium environments, the oxide structure consisted of the outer transition Al 2 O 3 with a small amount of Cr 2 O 3 and inner columnar structured Al 2 O 3 without an internal oxide. In the VHTR-helium environment, where the impurities were added to helium, the initial transient oxidation increased but the steady state kinetics was not affected

  1. High Temperature Oxidation Behavior of Zirconium Alloy with Nano structured Oxide Layer in Air Environment

    International Nuclear Information System (INIS)

    Park, Y. J.; Kim, J. W.; Park, J. W.; Cho, S. O.

    2016-01-01

    If the temperature of the cladding materials increases above 1000 .deg. C, which can be caused by a loss of coolant accident (LOCA), Zr becomes an auto-oxidation catalyst and hence produces a huge amount of hydrogen gas from water. Therefore, many investigations are being carried out to prevent (or reduce) the hydrogen production from Zr-based cladding materials in the nuclear reactors. Our team has developed an anodization technique by which nanostructured oxide can be formed on various flat metallic elements such as Al, Ti, and Zr-based alloy. Anodization is a simple electrochemical technique and requires only a power supply and an electrolyte. In this study, Zr-based alloys with nanostructured oxide layers were oxidized by using Thermogravimetry analysis (TGA) and compared with the pristine one. It reveals that the nanostructured oxide layer can prevent oxidation of substrate metal in air. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA). In comparison with the pristine Zr-Nb-Sn alloy, weight gain of the Zr-Nb-Sn alloy with nanostructured oxide layer is lower than 10% even for 12 hours oxidation in air.

  2. High temperature oxidation behavior of SiC coating in TRISO coated particles

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Bing; Zhang, Kaihong; Liu, Malin; Shao, Youlin; Tang, Chunhe

    2014-01-01

    Highlights: • High temperature oxidation tests of SiC coating in TRISO particles were carried out. • The dynamic oxidation process was established. • Oxidation mechanisms were proposed. • The existence of silicon oxycarbides at the SiO 2 /SiC interface was demonstrated. • Carbon was detected at the interface at high temperatures and long oxidation time. - Abstract: High temperature oxidation behavior of SiC coatings in tristructural-isotropic (TRISO) coated particles is crucial to the in-pile safety of fuel particles for a high temperature gas cooled reactor (HTGR). The postulated accident condition of air ingress was taken into account in evaluating the reliability of the SiC layer. Oxidation tests of SiC coatings were carried out in the ranges of temperature between 800 and 1600 °C and time between 1 and 48 h in air atmosphere. Based on the microstructure evolution of the oxide layer, the mechanisms and kinetics of the oxidation process were proposed. The existence of silicon oxycarbides (SiO x C y ) at the SiO 2 /SiC interface was demonstrated by X-ray photospectroscopy (XPS) analysis. Carbon was detected by Raman spectroscopy at the interface under conditions of very high temperatures and long oxidation time. From oxidation kinetics calculation, activation energies were 145 kJ/mol and 352 kJ/mol for the temperature ranges of 1200–1500 °C and 1550–1600 °C, respectively

  3. Insights into the dominant factors of porous gold for CO oxidation

    International Nuclear Information System (INIS)

    Kameoka, Satoshi; Miyamoto, Kanji; Tanabe, Toyokazu; Tsai, An Pang

    2016-01-01

    Three different porous Au catalysts that exhibit high catalytic activity for CO oxidation were prepared by the leaching of Al from an intermetallic compound, Al 2 Au, with 10 wt. %-NaOH, HNO 3 , or HCl aqueous solutions. The catalysts were investigated using Brunauer-Emmett-Teller measurements, synchrotron X-ray powder diffraction, hard X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy (TEM). Broad diffraction peaks generated during the leaching process correlated with high activity for all the porous Au catalysts. CO oxidation catalyzed by porous Au leached with NaOH and HNO 3 is considered to be dominated by different mechanisms at low (< 320 K) and high (> 370 K) temperatures. Activity in the low-temperature region is mainly attributed to the perimeter interface between residual Al species (AlO x ) and porous Au, whereas activity in the high-temperature region results from a high density of lattice defects such as twins and dislocations, which were evident from diffraction peak broadening and were observed with high-resolution TEM in the porous Au leached with NaOH. It is proposed that atoms located at lattice defects on the surfaces of porous Au are the active sites for catalytic reactions

  4. Insights into the dominant factors of porous gold for CO oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kameoka, Satoshi, E-mail: kameoka@tagen.tohoku.ac.jp; Miyamoto, Kanji [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tanabe, Toyokazu [Kanagawa University, Yokohama 221-8686 (Japan); Tsai, An Pang [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); National Institute of Materials Science (NIMS), Tsukuba 305-0047 (Japan)

    2016-01-21

    Three different porous Au catalysts that exhibit high catalytic activity for CO oxidation were prepared by the leaching of Al from an intermetallic compound, Al{sub 2}Au, with 10 wt. %-NaOH, HNO{sub 3}, or HCl aqueous solutions. The catalysts were investigated using Brunauer-Emmett-Teller measurements, synchrotron X-ray powder diffraction, hard X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy (TEM). Broad diffraction peaks generated during the leaching process correlated with high activity for all the porous Au catalysts. CO oxidation catalyzed by porous Au leached with NaOH and HNO{sub 3} is considered to be dominated by different mechanisms at low (< 320 K) and high (> 370 K) temperatures. Activity in the low-temperature region is mainly attributed to the perimeter interface between residual Al species (AlO{sub x}) and porous Au, whereas activity in the high-temperature region results from a high density of lattice defects such as twins and dislocations, which were evident from diffraction peak broadening and were observed with high-resolution TEM in the porous Au leached with NaOH. It is proposed that atoms located at lattice defects on the surfaces of porous Au are the active sites for catalytic reactions.

  5. Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo

    2015-09-01

    The "wet" sol-gel and "dry" solid-state methods were used to prepare Ni-Ta-O mixed oxide catalysts. The resulting Ni-Ta oxides exhibit high activity and selectivity for the low temperature oxidative dehydrogenation of ethane to ethylene. The Ta/(Ni + Ta) atomic ratios (varying from 0 to 0.11 in "wet" sol-gel method, and from 0 to 0.20 in "dry" solid-state method) as well as the preparation methods used in the synthesis, play important roles in controlling catalyst structure, activity, selectivity and stability in the oxidative dehydrogenation of ethane. Electron microscopy characterizations (TEM, EELS mapping, and HAADF-STEM) clearly demonstrate that the Ta atoms are inserted into NiO crystal lattice, resulting in the formation of a new Ni-Ta oxide solid solution. More Ta atoms are found to be located at the lattice sites of crystal surface in sol-gel catalyst. While, a small amount of thin layer of Ta2O5 clusters are detected in solid-state catalyst. Further characterization by XRD, N2 adsorption, SEM, H2-TPR, XPS, and Raman techniques reveal different properties of these two Ni-Ta oxides. Due to the different properties of the Ni-Ta oxide catalysts prepared by two distinct approaches, they exhibit different catalytic behaviors in the ethane oxidative dehydrogenation reaction at low temperature. Thus, the catalytic performance of Ni-Ta-O mixed oxide catalysts can be systematically modified and tuned by selecting a suitable synthesis method, and then varying the Ta content. ©2015 Elsevier Inc. All rights reserved.

  6. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Lu Fugong; Xu Yong; Zhang Jing; Yang Xuefeng

    2006-01-01

    Formaldehyde (HCHO) is a typical air pollutant capable of causing serious health disorders in human beings. This work reports plasma-catalytic oxidation of formaldehyde in gas streams via dielectric barrier discharges over Ag/CeO 2 pellets at atmospheric pressure and 70 0 C. With a feed gas mixture of 276 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼99% of formaldehyde can be effectively destructed with an 86% oxidative conversion into CO 2 at GHSV of 16500 h -1 and input discharge energy density of 108 J l -1 . At the same experimental conditions, the conversion percentages of HCHO to CO 2 from pure plasma-induced oxidation (discharges over fused silica pellets) and from pure catalytic oxidation over Ag/CeO 2 (without discharges) are 6% and 33% only. The above results and the CO plasma-catalytic oxidation experiments imply that the plasma-generated short-lived gas phase radicals, such as O and HO 2 , play important roles in the catalytic redox circles of Ag/CeO 2 to oxidize HCHO and CO to CO 2

  7. CO_2 capture in Mg oxides doped with Fe and Ni

    International Nuclear Information System (INIS)

    Sanchez S, I. F.

    2016-01-01

    In this work the CO_2 capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe_2O_3 phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO_2 in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO_2 capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO_2 capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO_2 capture. The different stages of mass loss and thermal

  8. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties

    International Nuclear Information System (INIS)

    Kovanda, Frantisek; Rojka, Tomas; Dobesova, Jana; Machovic, Vladimir; Bezdicka, Petr; Obalova, Lucie; Jiratova, Kveta; Grygar, Tomas

    2006-01-01

    Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 deg. C in Co-Al sample to 120 deg. C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 deg. C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N 2 O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N 2 O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1

  9. Facile Synthesis of Co3O4/Mildly Oxidized Multiwalled Carbon Nanotubes/Reduced Mildly Oxidized Graphene Oxide Ternary Composite as the Material for Supercapacitors

    International Nuclear Information System (INIS)

    Lv, Meiyu; Liu, Kaiyu; Li, Yan; Wei, Lai; Zhong, Jianjian; Su, Geng

    2014-01-01

    A three-dimensional (3D) Co 3 O 4 /mildly oxidized multiwalled carbon nanotubes (moCNTs)/reduced mildly oxidized graphene oxide (rmGO) ternary composite was prepared via a simple and green hydrolysis-hydrothermal approach by mixing Co(Ac) 2 ·4H 2 O with moCNTs and mGO suspension in mixed ethanol/H 2 O. As characterized by scanning electron microscopy and transmission electron microscopy, Co 3 O 4 nanoparticles with size of 20-100 nm and moCNTs are effectively anchored in mGO. Cyclic voltammetry and galvanostatic charge-discharge measurements were adopted to investigate the electrochemical properties of Co 3 O 4 /moCNTs/rmGO ternary composite in 6 M KOH solution. In a potential window of 0-0.6 V vs. Hg/HgO, the composite delivers an initial specific capacitance of 492 F g -1 at 0.5 A g -1 and the capacitance remains 592 F g -1 after 2000 cycles, while the pure Co 3 O 4 shows obviously capacitance fading, indicating that rmGO and moCNTs greatly enhance the electrochemical performance of Co 3 O 4

  10. Gold nanoparticles supported on magnesium oxide for CO oxidation

    Science.gov (United States)

    Carabineiro, Sónia Ac; Bogdanchikova, Nina; Pestryakov, Alexey; Tavares, Pedro B.; Fernandes, Lisete Sg; Figueiredo, José L.

    2011-06-01

    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  11. Gold nanoparticles supported on magnesium oxide for CO oxidation

    Directory of Open Access Journals (Sweden)

    Bogdanchikova Nina

    2011-01-01

    Full Text Available Abstract Au was loaded (1 wt% on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved. The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  12. High-temperature oxidation of Zircaloy in hydrogen-steam mixtures

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1982-09-01

    Oxidation rates of Zircaloy-4 cladding tubes have been measured in hydrogen-steam mixtures at 1200 to 1700 0 C. For a given isothermal oxidation temperature, the oxide layer thicknesses have been measured as a function of time, steam supply rate, and hydrogen overpressure. The oxidation rates in the mixtures were compared with similar data obtained in pure steam and helium-steam environments under otherwise identical conditions. The rates in pure steam and helium-steam mixtures were equivalent and comparable to the parabolic rates obtained under steam-saturated conditions and reported in the literature. However, when the helium was replaced with hydrogen of equivalent partial pressure, a significantly smaller oxidation rate was observed. For high steam-supply rates, the oxidation kinetics in a hydrogen-steam mixture were parabolic, but the rate was smaller than for pure steam or helium-steam mixtures. Under otherwise identical conditions, the ratio of the parabolic rate for hydrogen-steam to that for pure steam decreased with increasing temperature and decreasing steam-supply rate

  13. Low temperature spent fuel oxidation under tuff repository conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project is studying the suitability of tuffaceous rocks at Yucca Mountain, Nye County, Nevada, for high level waste disposal. The oxidation state of LWR spent fuel in a tuff repository may be a significant factor in determining its ability to inhibit radionuclide migration. Long term exposure at low temperatures to the moist air expected in a tuff repository is expected to increase the oxidation state of the fuel. A program is underway to determine the spent fuel oxidation mechanisms which might be active in a tuff repository. Initial work involves a series of TGA experiments to determine the effectiveness of the technique and to obtain preliminary oxidation data. Tests were run at 200 0 C and 225 0 C for as long as 720 hours. Grain boundary diffusion appears to open up a greater surface area for oxidation prior to onset of bulk diffusion. Temperature strongly influences the oxidation rates. The effect of moisture is small but readily measurable. 25 refs., 7 figs., 4 tabs

  14. Model for low temperature oxidation during long term interim storage

    Energy Technology Data Exchange (ETDEWEB)

    Desgranges, Clara; Bertrand, Nathalie; Gauvain, Danielle; Terlain, Anne [Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, CEA/Saclay - 91191 Gif-sur-Yvette Cedex (France); Poquillon, Dominique; Monceau, Daniel [CIRIMAT UMR 5085, ENSIACET-INPT, 31077 Toulouse Cedex 4 (France)

    2004-07-01

    For high-level nuclear waste containers in long-term interim storage, dry oxidation will be the first and the main degradation mode during about one century. The metal lost by dry oxidation over such a long period must be evaluated with a good reliability. To achieve this goal, modelling of the oxide scale growth is necessary and this is the aim of the dry oxidation studies performed in the frame of the COCON program. An advanced model based on the description of elementary mechanisms involved in scale growth at low temperatures, like partial interfacial control of the oxidation kinetics and/or grain boundary diffusion, is developed in order to increase the reliability of the long term extrapolations deduced from basic models developed from short time experiments. Since only few experimental data on dry oxidation are available in the temperature range of interest, experiments have also been performed to evaluate the relevant input parameters for models like grain size of oxide scale, considering iron as simplified material. (authors)

  15. Model for low temperature oxidation during long term interim storage

    International Nuclear Information System (INIS)

    Desgranges, Clara; Bertrand, Nathalie; Gauvain, Danielle; Terlain, Anne; Poquillon, Dominique; Monceau, Daniel

    2004-01-01

    For high-level nuclear waste containers in long-term interim storage, dry oxidation will be the first and the main degradation mode during about one century. The metal lost by dry oxidation over such a long period must be evaluated with a good reliability. To achieve this goal, modelling of the oxide scale growth is necessary and this is the aim of the dry oxidation studies performed in the frame of the COCON program. An advanced model based on the description of elementary mechanisms involved in scale growth at low temperatures, like partial interfacial control of the oxidation kinetics and/or grain boundary diffusion, is developed in order to increase the reliability of the long term extrapolations deduced from basic models developed from short time experiments. Since only few experimental data on dry oxidation are available in the temperature range of interest, experiments have also been performed to evaluate the relevant input parameters for models like grain size of oxide scale, considering iron as simplified material. (authors)

  16. Self-propagating high-temperature synthesis of LaMO{sub 3} perovskite-type oxide using heteronuclearcyano metal complex precursors

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Rodríguez, Daniel, E-mail: daniel.sanchez@udg.edu [GRMT, Department of Physics, University of Girona, Campus Montilivi, Edif.PII, E17071 Girona, Catalonia (Spain); Wada, Hiroki; Yamaguchi, Syuhei [Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Farjas, Jordi [GRMT, Department of Physics, University of Girona, Campus Montilivi, Edif.PII, E17071 Girona, Catalonia (Spain); Yahiro, Hidenori, E-mail: yahiro.hidenori.me@ehime-u.ac.jp [Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan)

    2015-11-15

    The decomposition of La[Fe(CN){sub 6}]·5H{sub 2}O and La[Co(CN){sub 6}]·5H{sub 2}O under different atmospheres has been analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). In addition, the decomposition temperature at different sample locations was monitored for sample masses around 2 g of La[Fe(CN){sub 6}]·5H{sub 2}O and La[Co(CN){sub 6}]·5H{sub 2}O, when they were calcined for 1 h at temperatures ranging from 200 to 400 °C in a controlled gas-flow system. Results showed that, the large enough of the cyano complex precursors undergo combustion when they are decomposed under oxygen atmosphere. X-ray diffraction results revealed that perovskite-type oxides crystallize due to the overheating of the process. As a result, it has been possible to produce LaFeO{sub 3} and LaCoO{sub 3} perovskite-type oxide powders by SHS under oxygen atmosphere using La[Fe(CN){sub 6}]·5H{sub 2}O and La[Co(CN){sub 6}]·5H{sub 2}O as a precursor. The effect of the ignition temperature has been investigated. The specific surface area of the perovskite-type oxides produced via SHS using heteronuclearcyano metal complex as a precursor is significantly higher than that of other LaMO{sub 3} produced using the same technique but obtained from other type of precursors. - Highlights: • The decomposition of La[Fe(CN){sub 6}] and La[Co(CN){sub 6}] precursors was analyzed. • The combustion process proceeded under oxygen when sample was large enough. • Perovskite oxides via SHS from the cyano complex precursors were synthesized. • LaMO{sub 3} perovskite oxides via SHS was obtained with high specific surface area.

  17. Metal release behavior of surface oxidized stainless steels into flowing high temperature pure water

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Tomari, Haruo; Nakayama, Takenori; Shimogori, Kazutoshi; Ishigure, Kenkichi; Matsuura, Chihiro; Fujita, Norihiko; Ono, Shoichi.

    1987-01-01

    In order to clarify the effect of oxidation treatment of Type 304 SS on the inhibition of metal release into high temperature pure water, metal release rate of individual alloying element into flowing deionized water containing 50 ppb dissolved oxygen was measured as the function of exposure time on representative specimens oxidized in air and steam. The behavior of metal release was also discussed in relation to the structure of surface films. Among the alloying elements the amount of Fe ion, Cr ion and Fe crud in high temperature pure water tended to saturate with the exposure time and that of Ni ion and Co ion tended to increase monotonously with the exposure time for all specimens tested. And the treatment of steam-oxidation was the most effective to decrease the metal release of alloying elements and the treatment by air-oxidation also decreased the metal release. These tendencies were confirmed to correlate well with the structure of the surface films as it was in the results in the static autoclave test. (author)

  18. Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca3Co4O9

    DEFF Research Database (Denmark)

    Holgate, Tim; Han, Li; Wu, NingYu

    2014-01-01

    A customized Fe–Cr alloy that has been optimized for high temperature applications in oxidizing atmospheres has been interfaced via spark plasma sintering (SPS) with a p-type thermoelectric oxide material: calcium cobaltate (Ca3Co4O9). The properties of the alloy have been analyzed for its...... calcium and chromium in the interface that is highly resistive at room temperature, but conducting at the intended thermoelectric device hot-side operating temperature of 800 °C. As the alloy is well matched in terms of its thermal expansion and highly conducting compared to the Ca3Co4O9, it may...... be further considered as an interconnect material candidate at least with application on the hot-side of an oxide thermoelectric power generation module....

  19. Segregation across the metal/oxide interface occurring during oxidation at high temperatures of diluted iron based alloys

    International Nuclear Information System (INIS)

    Geneve, D.; Rouxel, D.; Weber, B.; Confente, M.

    2006-01-01

    Industrial steels being elaborated in air at high temperature oxidize and cover with a complex oxide layer. The oxidation reaction drastically alters the surface composition. Such modifications have been investigated, in this work, by Auger Electron Spectroscopy (AES) using an original method to characterize the composition of the metal/oxide interfaces. Analysis of the concentration gradients across the interfaces allows to better understand how the alloy elements contribute to the oxidation process. The development of new alloy phases, the interdependencies between elements and the diffusion of different species are discussed considering thermodynamic properties of each element

  20. Kinetic and reaction pathways of methanol oxidation on platinum

    International Nuclear Information System (INIS)

    McCabe, R.W.; McCready, D.F.

    1986-01-01

    Methanol oxidation kinetics were measured on Pt wires in a flow reactor at pressures between 30 and 130 Pa. The kinetics were measured as a function of oxygen-to-methanol equivalence ratio phi and wire temperature. In methanol-lean feeds (phi 2 CO, CO 2 , and H 2 O were the only products; in methanol-rich feeds (phi > 1), CO, H 2 , H 2 CO, CO 2 , and H 2 O were observed. Experiments with 18 O 2 showed that the principal methanol oxidation pathway does not involve C-O bond dissociation. However, the 18 O 2 experiments, together with other features of the methanol oxidation data, also provided evidence for a minor oxidation pathway (accounting for less than 1% of the product CO 2 ) which proceeds through a carbon intermediate. A mathematical model is presented which describes the principal CH 3 OH oxidation pathway as a series reaction involving adsorbed H 2 CO and CO intermediates. Consistent with experimental results, the model predicts that inhibition by adsorbed CO should be weaker for CH 3 OH and H 2 CO oxidation than for CO oxidation. 34 references, 10 figures, 2 tables

  1. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  2. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  3. Study on the Low-Temperature Oxidation Law in the Co-Mining Face of Coal and Oil Shale in a Goaf—A Case Study in the Liangjia Coal Mine, China

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2018-01-01

    Full Text Available The low-temperature oxidation law of coal and rock mass is the basis to study spontaneous combustion in goafs. In this paper, the low-temperature oxidation laws of coal, oil shale, and mixtures of coal and oil shale were studied by using laboratory programmed heating experiments combined with a field beam tube monitoring system. The results from the programmed heating experiments showed that the heat released from oil shale was less than that from coal. Coal had a lower carbon monoxide (CO-producing temperature than oil shale, and the mixture showed obvious inhibiting effects on CO production with an average CO concentration of about 38% of that for coal. Index gases were selected in different stages to determine the critical turning point temperature for each stage. The field beam tube monitoring system showed that the temperature field of the 1105 co-mining face of coal and oil shale in the goaf of the Liangjia Coal Mine presented a ladder-like distribution, and CO concentration was the highest for coal and lower for the mixture of coal and oil shale, indicating that the mixture of coal with oil shale had an inhibiting effect on CO production, consistent with the results from the programmed heating experiments.

  4. High-temperature oxidation kinetics of sponge-based E110 cladding alloy

    Science.gov (United States)

    Yan, Yong; Garrison, Benton E.; Howell, Mike; Bell, Gary L.

    2018-02-01

    Two-sided oxidation experiments were recently conducted at 900°C-1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. At or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100-150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.

  5. Diesel soot oxidation under controlled conditions

    OpenAIRE

    Song, Haiwen

    2003-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 11/12/2003. In order to improve understanding of diesel soot oxidation, an experimental rig was designed and set up, in which the soot oxidation conditions, such as temperature, oxygen partial pressure, and CO2 partial pressure, could be varied independently of each other. The oxidizing gas flow in the oxidizer was under laminar condition. This test rig comprised a naturally-aspirated single ...

  6. Combinatorial selection of a two-dimensional 3d-TM-tetracyanoquinodimethane (TM-TCNQ) monolayer as a high-activity nanocatalyst for CO oxidation

    DEFF Research Database (Denmark)

    Deng, Qingming; Wu, Tiantian; Chen, Guibin

    2018-01-01

    catalyzed by Sc-TCNQ (CO + O2* → OOCO*) can follow the LH mechanism with free energy barriers as low as 0.73 eV at 300 K. The second step of CO + O* → CO2 can occur with rather small energy barriers via either LH or ER mechanisms. The high activity of Sc-TCNQ can be attributed to its unique structural...... and thermodynamics of all the ten candidates (Sc-Zn), Sc-TCNQ is found to display the lowest activation energies and yield the highest catalytic activity for room temperature CO oxidation. Exploring the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms, we find that the rate-limiting step of CO oxidation...... and electronic features by possessing high stability, optimum adsorption energies with adsorbates, and fast reaction kinetics. These results have significant implications for the synthesis of two-dimensional single atom catalysis for CO oxidation with low-cost and high activity at low temperature....

  7. Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands

    DEFF Research Database (Denmark)

    Fester, Jakob; Walton, Alexander; Li, Zheshen

    2017-01-01

    In the present study, we investigate the facile conversion of Co-O bilayer islands on a Au(111) surface into preferentially O-Co-O trilayers in an oxygen atmosphere and O-Co-O-Co-O multilayers at elevated temperature. We characterize and compare the island morphologies with scanning tunneling...... microscopy, X-ray photoemission spectroscopy (XPS) and valence band spectroscopy, and show that the cobalt oxidation state changes from Co2+ in bilayers to purely Co3+ in trilayers and a mixture of Co2+ and Co3+ in the multilayer morphology. In contrast to bilayers and multilayers, the trilayer structure...

  8. High temperature oxidation in boiler environment of chromized steel

    Science.gov (United States)

    Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.

    2017-10-01

    The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.

  9. Support Effects in the Gold-Catalyzed Preferential Oxidation of CO

    KAUST Repository

    Ivanova, S.

    2010-04-08

    The study of support effects on the gold-catalyzed preferential oxidation of carbon monoxide in the presence of hydrogen (PROX reaction) is possible only with careful control of the gold particle size, which is facilitated by the application of the direct anionic exchange method. Catalytic evaluation of thermally stable gold nanoparticles, with an average size of around 3 nm on a variety of supports (alumina, titania, zirconia, or ceria), clearly shows that the influence of the support on the CO oxidation rate is of primary importance under CO+O 2 conditions and that this influence becomes secondary in the presence of hydrogen. The impact of the support surface structure on the oxidation rates, catalyst selectivity, and catalyst activation/deactivation is investigated in terms of oxygen vacancies, oxygen mobility, OH groups, and surface area on the oxidation rates, catalyst selectivity and catalyst activation/deactivation. It allows the identification of key morphological and structural features of the support to ensure high activity and selectivity in the gold-catalyzed PROX reaction. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  11. High Temperature Oxidation of Superalloys and Intermetallic Compounds

    Science.gov (United States)

    2010-02-28

    Oxid. Met. Vol.14, pp. 217-234. 1980. 20. T.A. Rannanarayanan, M. Raghavan and R. Petrovic-Luton. Metallic Yttrium Additions to High Temperatura ... Temperatura Alloys: Influence of AI2O3 Scale Properties. Oxid. Met. Vol.22, pp. 83-100. 1984. 21. High-temperature characterization of reactively

  12. First approach for thermodynamic modelling of the high temperature oxidation behaviour of ternary γ′-strengthened Co–Al–W superalloys

    International Nuclear Information System (INIS)

    Klein, L.; Zendegani, A.; Palumbo, M.; Fries, S.G.; Virtanen, S.

    2014-01-01

    Highlights: • Thermodynamic modelling of the oxidation behaviour of a novel Co-base superalloy. • Calculated oxide layer sequence is in good agreement with formed oxide scales. • Prediction of an optimised alloy composition with increased phase stability. • Prediction of the influence of oxygen partial pressure on Al 2 O 3 formation. - Abstract: In the present work, thermodynamic modelling of the high temperature oxidation behaviour of a γ′-strengthened Co-base superalloy is presented. The ternary Co–9Al–9W alloy (values in at%) was isothermally oxidised for 500 h at 800 and 900 °C in air. Results reveal that the calculated oxide layer sequence (Thermo-Calc, TCNI6) is in good agreement with the formed oxide scales on the alloy surface. Furthermore, prediction of the influence of oxygen partial pressure on Al 2 O 3 formation is presented. The modelling results indicate pathways for alloy development or possible pre-oxidation surface treatments for improved oxidation resistance of the material

  13. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-01-01

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO x /MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO x addition. • Bi-functional mechanism is facilitated in presence of CoO x . - Abstract: The electro-catalytic behavior of Pt-CoO x /MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH 4  as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO x , Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO ads on Pt active sites by the participation of CoO x . Compared to Pt/MWCNTs, Pt-CoO x /MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO x /MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups

  14. Influence of Mn-Co Spinel Coating on Oxidation Behavior of Ferritic SS Alloys for SOFC Interconnect Applications

    DEFF Research Database (Denmark)

    Venkatachalam, Vinothini; Molin, Sebastian; Kiebach, Wolff-Ragnar

    2014-01-01

    Chromia forming ferritic stainless steels (SS) are being considered for intermediate temperature solid oxide fuel cell interconnect applications. However, protective coatings are in general needed to avoid chromium volatilization and poisoning of cathodes from chromium species. Mn-Co spinel is one...... of the promising candidates to prevent chromium outward diffusion, improve oxidation resistance and ensure high electrical conductivity over the lifetime of interconnects. In the present study, uniform and well adherent Mn-Co spinel coatings were produced on Crofer 22APU using electrophoretic deposition (EPD...

  15. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    Science.gov (United States)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  16. Tin-antimony oxide oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J. [Open University, Department of Chemistry (United Kingdom)

    1998-12-15

    Tin-antimony oxide catalysts for the selective oxidation of hydrocarbons have been made by precipitation techniques. The dehydration of the amorphous dried precipitate by calcination at increasingly higher temperatures induces the crystallisation of a rutile-related tin dioxide-type phase and the segregation of antimony oxides which volatilise at elevated temperatures. The rutile-related tin dioxide-type phase contains antimony(V) in the bulk and antimony(III) in the surface. Specific catalytic activity for the oxidative dehydrogenation of butene to butadiene is associated with materials with large concentrations of antimony(III) in the surface.

  17. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    Science.gov (United States)

    Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew

    2018-02-01

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  18. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.

    2017-01-18

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  19. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.; Duanmu, J. J.; Zhu, Yihan; Yuan, Y. F.; Guo, S. Y.; Yang, J. L.; Ren, Z. H.; Han, G. R.

    2017-01-01

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  20. Interaction of terbium group metal oxides with carbon

    International Nuclear Information System (INIS)

    Vodop'yanov, A.G.; Baranov, S.V.; Kozhevnikov, G.N.

    1990-01-01

    Mechanism of carbothermal reduction of terbium group metals from oxides is investigated using thermodynamic and kinetic analyses. Interaction of metal oxides with carbon covers dissociation of metal oxides and reduction by carbon monoxide, which contribution into general reduction depends on CO pressure. Temperatures of reaction beginning for batch initial components at P=1.3x10 -4 and P CO =0.1 MPa and of formation of oxycarbide melts are determined

  1. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    Science.gov (United States)

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  2. Co2+ adsorption in porous oxides Mg O, Al2O3 and Zn O

    International Nuclear Information System (INIS)

    Moreno M, J. E.; Granados C, F.; Bulbulian, S.

    2009-01-01

    The porous oxides Mg O, Al 2 O 3 and Zn O were synthesized by the chemical combustion in solution method and characterized be means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The adsorption behavior of Co 2+ ions present in aqueous solution were studied on the synthesized materials by means of experiments lots type to ambient temperature. It was found that the cobalt ions removal was of 90% in Mg O, 65% in Zn O and 72% in Al 2 O 3 respectively, indicating that the magnesium oxide is the best material to remove Co 2+ presents in aqueous solution. (Author)

  3. Evaluation of oxides formed at high temperatures in Zr-2.5Nb pressure tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kumar, N.A.P.; Szpunar, J.A., E-mail: kiraniitkgp@yahoo.com [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2012-07-01

    The oxidation behavior of Zr-2.5Nb pressure tube samples has been studied at four different temperatures, i.e., 400°, 600°, 800°, and 1000°C. The amount of tetragonal phase is found to decrease with increase of temperature. The oxide texture of (002){sub m} and (111){sub m} type increased with the temperature from 400°C to 600°C, however at temperatures above 600°C the texture strength seems to diminish and the oxide layer becomes structurally unstable. Further, the impedance response is found to be dependent on the microstructure of the oxide film. For the sample oxidized at 400°C, Electrochemical Impedance Spectroscopy (EIS) spectra exhibited a two-time constant behavior, showing the formation of two-layer oxide film on the Zr-2.5Nb alloy, which correspond to a porous outer oxide and a barrier inner oxide, respectively. In addition, the samples were oxidized at constant temperature of 600°C with varying oxidation time. The observation shows that the oxide is more protective in the early stage of oxide growth. However, further growth of oxide film has resulted in degeneration of its protective character. (author)

  4. New Oxide Materials for an Ultra High Temperature Environment

    Energy Technology Data Exchange (ETDEWEB)

    Perepezko, John H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering

    2017-11-13

    In this project, a new oxide material, Hf6Ta2O17 has been successfully synthesized by the controlled oxidization of Hf-Ta alloys. This oxide exhibits good oxidation resistance, high temperature phase stability up to more than 2000°C, low thermal conductivity and thus could serve as a component or a coating material in an ultrahigh temperature environment. We have examined the microstructure evolution and phase formation sequence during the oxidation exposure of Hf-Ta alloys at 1500°C and identified that the oxidation of a Hf-26.7atomic %Ta alloy leads to the formation of a single phase adherent Hf6Ta2O17 with a complex atomic structure i.e. superstructure. The overall reactive diffusion pathway is consistent with the calculated Hf-Ta-O ternary phase diagram. Besides the synthesis of Hf6Ta2O17 superstructure by oxidizing Hf-Ta alloys, we have also developed a synthesis method based upon the reactive sintering of the correct ratios of mixed powders of HfO2 and Ta2O5 and verified the low thermal conductivity of Hf6Ta2O17 superstructure on these samples. We have completed a preliminary analysis of the oxidation kinetics for Hf6Ta2O17, which shows an initial parabolic oxidation kinetics.

  5. High-temperature steam oxidation kinetics of the E110G cladding alloy

    International Nuclear Information System (INIS)

    Király, Márton; Kulacsy, Katalin; Hózer, Zoltán; Perez-Feró, Erzsébet; Novotny, Tamás

    2016-01-01

    In the course of recent years, several experiments were performed at MTA EK (Centre for Energy Research, Hungarian Academy of Sciences) on the isothermal high-temperature oxidation of the improved Russian cladding alloy E110G in steam/argon atmosphere. Using these data and designing additional supporting experiments, the oxidation kinetics of the E110G alloy was investigated in a wide temperature range, between 600 °C and 1200 °C. For short durations (below 500 s) or high temperatures (above 1065 °C) the oxidation kinetics was found to follow a square-root-of-time dependence, while for longer durations and in the intermediate temperature range (800–1000 °C) it was found to approach a cube-root-of-time dependence rather than a square-root one. Based on the results a new best-estimate and a conservative oxidation kinetics model were created. - Highlights: • Steam oxidation kinetics of E110G was studied at MTA EK based on old and new data. • New best-estimate and conservative steam oxidation kinetics were proposed for E110G. • The exponent of oxidation time changed depending on oxidation temperature. • A simple exponential curve was used instead of Arrhenius-type curve for the factor.

  6. Effects of p-substituents on electrochemical CO oxidation by Rh porphyrin-based catalysts.

    Science.gov (United States)

    Yamazaki, Shin-ichi; Yamada, Yusuke; Takeda, Sahori; Goto, Midori; Ioroi, Tsutomu; Siroma, Zyun; Yasuda, Kazuaki

    2010-08-21

    Electrochemical CO oxidation by several carbon-supported rhodium tetraphenylporphyrins with systematically varied meso-substituents was investigated. A quantitative analysis revealed that the p-substituents on the meso-phenyl groups significantly affected CO oxidation activity. The electrocatalytic reaction was characterized in detail based on the spectroscopic and X-ray structural results as well as electrochemical analyses. The difference in the activity among Rh porphyrins is discussed in terms of the properties of p-substituents along with a proposed reaction mechanism. Rhodium tetrakis(4-carboxyphenyl)porphyrin (Rh(TCPP)), which exhibited the highest activity among the porphyrins tested, oxidized CO at a high rate at much lower potentials (means that CO is electrochemically oxidized by this catalyst when a slight overpotential is applied during the operation of a proton exchange membrane fuel cell. This catalyst exhibited little H(2) oxidation activity, in contrast to Pt-based catalysts.

  7. CO oxidation catalyzed by ag nanoparticles supported on SnO/CeO2

    KAUST Repository

    Khan, Inayatali

    2015-01-01

    Ag-Sn/CeO2 catalysts were synthesized by the co-precipitation method with different Ag-Sn wt.% loadings and were tested for the oxidation of CO. The catalysts were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) techniques. UV-Vis measurements were carried out to elucidate the ionic states of the silver particles, and the temperature-programmed reduction (TPR) technique was employed to check the reduction temperature of the catalyst supported on CeO2. There are peaks for silver crystallites in the X-ray diffraction patterns and the presence of SnO was not well evidenced by the XRD technique due to sintering inside the 3D array channels of CeO2 during the calcination process. The Ag-Sn/CeO2 (4%) catalyst was the most efficient and exhibited 100% CO oxidation at 100 °C due to small particle size and strong electronic interaction with the SnO/CeO2 support. © 2015 Sociedade Brasileira de Química.

  8. Oxidative Stress Markers in Tuberculosis and HIV/TB Co-Infection.

    Science.gov (United States)

    Rajopadhye, Shreewardhan Haribhau; Mukherjee, Sandeepan R; Chowdhary, Abhay S; Dandekar, Sucheta P

    2017-08-01

    Dysfunction of redox homeostasis has been implicated in many pathological conditions. An imbalance of pro- and anti-oxidants have been observed in Tuberculosis (TB) and its co-morbidities especially HIV/AIDS. The pro inflammatory milieu in either condition aggravates the physiological balance of the redox mechanisms. The present study therefore focuses on assessing the redox status of patients suffering from TB and HIV-TB co-infection. To assess the oxidative stress markers in the HIV-TB and TB study cohort. The current prospective study was conducted in Haffkine Institute, Parel, Maharashtra, India, during January 2013 to December 2015. Blood samples from 50 patients each suffering from active TB and HIV-TB co-infection were collected from Seth G.S.Medical College and KEM Hospital Mumbai and Group of Tuberculosis Hospital, Sewree Mumbai. Samples were processed and the experiments were carried out at the Department of Biochemistry, Haffkine Institute. Samples from 50 healthy volunteers were used as controls. Serum was assessed for pro-oxidant markers such as Nitric Oxide (NO), Thiobarbituric Acid Reactive Species (TBARS), C-Reactive Protein (CRP), superoxide anion. Antioxidant markers such as catalase and Superoxide Dismutase (SOD) were assessed. Total serum protein, was also assessed. Among the pro-oxidants, serum NO levels were decreased in TB group while no change was seen in HIV-TB group. TBARS and CRP levels showed significant increase in both groups; superoxide anion increased significantly in HIV-TB group. Catalase levels showed decreased activities in TB group. SOD activity significantly increased in HIV-TB but not in TB group. The total serum proteins were significantly increased in HIV-TB and TB groups. The values of Control cohort were with the normal reference ranges. In the present study, we found the presence of oxidative stress to be profound in the TB and HIV-TB co-infection population.

  9. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  10. Change of properties after oxidation of IG-11 graphite by air and CO2 gas

    International Nuclear Information System (INIS)

    Lim, Yun-Soo; Chi, Se-Hwan; Cho, Kwang-Yun

    2008-01-01

    Artificial graphite is typically manufactured by carbonization of a shaped body of a kneaded mixture using granular cokes as a filler and pitch as a binder. It undergoes a pitch impregnation process if necessary and finally applying graphitization heat treatment. The effect of thermal oxidation in air or a CO 2 atmosphere on IG-11 graphite samples is investigated in this study. The results show a localized oxidation process that progressively reveals the large coke particles with increasing level of overall weight loss in air. The surface of the graphite was peeled off and no change was found in the specific gravity after air oxidation. However, the specific gravity of graphite was continuously decreased by CO 2 oxidation. The decrease in the specific gravity by CO 2 oxidation was due to CO 2 gas that progressed from the surface to the interior. The pore shape after CO 2 oxidation differed from that under air oxidation

  11. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    International Nuclear Information System (INIS)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong

    2016-01-01

    Highlights: • A series of Li-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2 (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g"−"1 at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  12. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong, E-mail: changsd@hit.edu.cn

    2016-11-15

    Highlights: • A series of Li-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2}) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2} (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g{sup −1} at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  13. Thermodynamic Studies at Higher Temperatures of the Phase Relationships of Substoichiometric Plutonium and Uranium/Plutonium Oxides

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in non-stoichiometric Pu and U/Pu oxides were determined by thermogravimetric measurements in CO/CO2 mixtures in the temperature range 900-1450°C. A detailed analysis of the thermodynamic data obtained, as well as data previously published...

  14. Electrochemical characterization of oxide film formed at high temperature on Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Geogy J., E-mail: gja@barc.gov.in [Materials Science Division, BARC, Mumbai 400 085 (India); Bhambroo, Rajan [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India); Kain, V. [Materials Science Division, BARC, Mumbai 400 085 (India); Shekhar, R. [CCCM, BARC, Hyderabad 500 062 (India); Dey, G.K. [Materials Science Division, BARC, Mumbai 400 085 (India); Raja, V.S. [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer GD-QMS studies of high temperature oxide film formed on Alloy 690. Black-Right-Pointing-Pointer Defect density reduced with increase in temperature. Black-Right-Pointing-Pointer Electrochemical behaviour of oxide film correlated to the Cr-content in oxide. - Abstract: High temperature passivation studies on Alloy 690 were carried out in lithiated water at 250 Degree-Sign C, 275 Degree-Sign C and 300 Degree-Sign C for 72 h. The passive films were characterized by glow discharge-quadrupole mass spectroscopy (GD-QMS) for compositional variation across the depth and micro laser Raman spectroscopy for oxide composition on the surface. The defect density in the oxide films was established from the Mott-Schottky analysis using electrochemical impedance spectroscopy. Electrochemical experiments at room temperature in chloride medium revealed best passivity behaviour by the oxide film formed at 300 Degree-Sign C for 72 h. The electrochemical studies were correlated to the chromium (and oxygen) content of the oxide films. Autoclaving at 300 Degree-Sign C resulted in the best passive film formation on Alloy 690 in lithiated water.

  15. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  16. High-temperature oxidation behavior of dense SiBCN monoliths: Carbon-content dependent oxidation structure, kinetics and mechanisms

    International Nuclear Information System (INIS)

    Li, Daxin; Yang, Zhihua; Jia, Dechang; Wang, Shengjin; Duan, Xiaoming; Zhu, Qishuai; Miao, Yang; Rao, Jiancun; Zhou, Yu

    2017-01-01

    Highlights: •The scale growth for all investigated monoliths at 1500 °C cannot be depicted by a linear or parabolic rate law. •The carbon-rich monoliths oxidize at 1500 °C according to a approximately linear weight loss equation. •The excessive carbon in SiBCN monoliths deteriorates the oxidation resistance. •The oxidation resistance stems from the characteristic oxide structures and increased oxidation resistance of BN(C). -- Abstract: The high temperature oxidation behavior of three SiBCN monoliths: carbon-lean SiBCN with substantial Si metal, carbon-moderate SiBCN and carbon-rich SiBCN with excessive carbon, was investigated at 1500 °C for times up to15 h. Scale growth for carbon-lean and −moderate monoliths at 1500 °C cannot be described by a linear or parabolic rate law, while the carbon-rich monoliths oxidize according to a approximately linear weight loss equation. The microstructures of the oxide scale compose of three distinct layers. The passivating layer of carbon and boron containing amorphous SiO 2 and increased oxidation resistance of BN(C) both benefit the oxidation resistance.

  17. Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B

    Science.gov (United States)

    Xaba, Morena S.; Noh, Ji-Hyang; Mokgadi, Keabetswe; Meijboom, Reinout

    2018-05-01

    In this study, we demonstrate the synthesis and catalytic activity of different mesoporous transition metal oxides, silica (SiO2), copper oxide (CuO), chromium oxide (Cr2O3), iron oxide (Fe2O3) cobalt oxide (Co3O4), cerium oxide (CeO2) and nickel oxide (NiO), on the oxidation of a pollutant dye, Rhodamine B (RhB). These metal oxides were synthesized by inverse micelle formation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), adsorption-desorption isotherms (BET) and H2-temperature programmed reduction (TPR). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of RhB at λmax = 554 nm. Mesoporous copper oxide was calcined at different final heating temperatures of 250, 350, 450 and 550 °C, and each mesoporous copper oxide catalyst showed unique physical properties and catalytic behavior. Mesoporous CuO-550 with the smallest characteristic path length δ, proved to be the catalyst of choice for the oxidation of RhB in aqueous media. We observed that the oxidation of RhB in aqueous media is dependent on the crystallite size and characteristic path length of the mesoporous metal oxide. The Langmuir-Hinshelwood model was used to fit the experimental data and to prove that the reaction occurs on the surface of the mesoporous CuO. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability were demonstrated.

  18. The high temperature oxidation behaviour of austenitic stainless steels

    International Nuclear Information System (INIS)

    Hales, R.

    1977-04-01

    High temperature annealing in a dynamic vacuum has been utilised to induce the growth of duplex oxide over the whole surface of stainless steel specimens. It is found that duplex oxide grows at a rate which does not obey a simple power law. The oxidation kinetics and oxide morphology have also been studied for a series of ternary austenitic alloys which cover a range of composition between 5 and 20% chromium. A model has been developed to describe the formation of duplex oxide and the subsequent formation of a 'healing layer' which virtually causes the oxidation process to stop. This phase tends to form at grain boundaries and a relationship has been derived for the reaction kinetics which relates the reaction rate with grain size of the substrate. (author)

  19. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    Science.gov (United States)

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  20. Oxidation Behavior of Some Cr Ferritic Steels for High Temperature Fuel Cells

    International Nuclear Information System (INIS)

    Mohamed, H.E.

    2012-01-01

    The oxidation behavior of three high Cr ferritic steels designated 1Al, RA and 5Al with different levels of Al, Si, Mn and Hf has been investigated in the present work. These steels have been developed as candidates for Solid Oxide Fuel Cell (SOFC) interconnect. Specimens of these alloys have been subjected to isothermal as well as cyclic oxidation in air. Isothermal oxidation tests are conducted in the temperature range 800 - 1000 degree C for time periods up to 1000 h. cyclic oxidation tests were carried out at 800 and 1000 degree C for twenty 25 - h cycles giving a total cyclic exposure time of 500 h. The growth rate of the oxide scales was found to follow a parabolic law over a certain oxidation period which changed with alloy composition and oxidation temperature. The value of the parabolic rate constant increased with increasing oxidation temperature. At 800 and 900 degree C alloy 1Al exhibited higher oxidation resistance compared to the other two alloys. Alloy RA showed spalling behavior when oxidized at 900 degree C and the extent of spalling increased with increasing the oxidation temperature to 1000 degree C. Alloy 5Al oxidized at 1000 degree C showed the highest oxidation resistance among the investigated alloys. Alloy 1Al and RA showed similar scale morphology and composition. X- ray diffraction analysis revealed that the scales developed on these alloys consist of Cr 2 O 3 with an outer layer of MnCr 2 O 4 and a minor amount of FeCr 2 O 4 spinels. Alloy 5Al developed scale consisting of γ- Al 2 O 3 at 800 degree C and γ and α- Al 2 O 3 at 900 degree C. Oxidation of alloy 5Al at 1000 degree C led to formation of a scale consisting mainly of the protective phase α Al 2 O 3 . The presence of 0.84 wt% Al and 0.95 wt % Si in alloy 1Al enhanced its oxidation resistance compared to alloy RA which contains only 0.29 wt% Si and is Al - free. This enhancement was attributed to formation of internal oxidation zone in alloy 1Al just beneath the oxide / alloy

  1. Facile synthesis of PbTiO3 truncated octahedra via solid-state reaction and their application in low-temperature CO oxidation by loading Pt nanoparticles

    KAUST Repository

    Yin, Simin; Zhu, Yihan; Ren, Zhaohui; Chao, Chunying; Li, Xiang; Wei, Xiao; Shen, Ge; Han, Yu; Han, Gaorong

    2014-01-01

    Perovskite PbTiO3 (PTO) nanocrystals with a truncated octahedral morphology have been prepared by a facile solid-state reaction. Pt nanoparticles preferentially nucleated on the {111} facet of PTO nanocrystals exhibit a remarkable low-temperature catalytic activity towards CO oxidation from a temperature as low as 30 °C and achieve 100% conversion at ∼50 °C. © 2014 the Partner Organisations.

  2. Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation

    KAUST Repository

    Qian, Kun

    2016-03-30

    © 2016. Various Au-Pd/SiO2 catalysts with a fixed Au loading but different Au:Pd molar ratios were prepared via deposition-precipitation method followed by H2 reduction. The structures were characterized and the catalytic activities in CO oxidation were evaluated. The formation of Au-Pd alloy particles was identified. The Au-Pd alloy particles exhibit enhanced dispersions on SiO2 than Au particles. Charge transfer from Pd to Au within Au-Pd alloy particles. Isolated Pd atoms dominate the surface of Au-Pd alloy particles with large Au:Pd molar ratios while contiguous Pd atoms dominate the surface of Au-Pd alloy particles with small Au:Pd molar ratios. Few synergetic effect of Au-Pd alloy occurs on catalyzing CO oxidation under employed reaction conditions. Alloying Au with Pd reduces the intrinsic activity in catalyzing CO oxidation, and contiguous Pd atoms on the Au-Pd alloy particles are capable of catalyzing CO oxidation while isolated Pd atoms are not. These results advance the fundamental understandings of Au-Pd alloy surfaces in catalyzing CO oxidation.

  3. Oxidation of 304 stainless steel in high-temperature steam

    Science.gov (United States)

    Ishida, Toshihisa; Harayama, Yasuo; Yaguchi, Sinnosuke

    1986-08-01

    An experiment on oxidation of 304 stainless steel was performed in steam between 900°C and 1350°C, using the spare cladding of the reactor of the nuclear-powered ship Mutsu. The temperature range was appropriate for a postulated loss of coolant accident (LOCA) analysis of a LWR. The oxidation kinetics were found to obey the parabolic law during the first period of 8 min. After the first period, the parabolic reaction rate constant decreased in the case of heating temperatures between 1100°C and 1250°C. At 1250°C, especially, a marked decrease was observed in the oxide scale-forming kinetics when the surface treated initially by mechanical polishing and given a residual stress. This enhanced oxidation resistance was attributed to the presence of a chromium-enriched layer which was detected by use of an X-ray microanalyzer. The oxidation kinetics equation obtained for the first 8 min is applicable to the model calculation of a hypothetical LOCA in a LWR, employing 304 stainless steel cladding.

  4. Time resolved FTIR study of the catalytic CO oxidation under periodic variation of the reactant concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kritzenberger, J; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Oxidation of CO over palladium/zirconia catalyst obtained from an amorphous Pd{sub 25}Zr{sub 75} precursor was investigated by time resolved FTIR spectroscopy. Sine wave shaped modulation of the reactant concentration, i.e. variation of CO or O{sub 2} partial pressure, was used to induce variations of the IR signals of product (CO{sub 2}) and unconverted reactant (CO), which were detected in a multi-pass absorption cell. The phase shift {phi} between external perturbation and variation of the CO{sub 2} signal was examined in dependence on temperature (100{sup o}C{<=}T{<=}350{sup o}C) and modulation frequency (1.39x10{sup -4}Hz{<=}{omega}{<=}6.67x10{sup -2}Hz). From the phase shift values, a simple Eley-Rideal mechanism is excluded, and the rate limiting step of the Langmuir-Hinshelwood mechanism for the CO oxidation may be identified. Adsorption and possible surface movement of CO to the actual reaction site determine the rate of the CO oxidation on the palladium/zirconia catalyst used in our study. The introduction of an external perturbation is a first step towards the application of two-dimensional infrared spectroscopy to heterogeneous catalyzed reactions. (author) 3 figs., 4 refs.

  5. Absorption of nitric oxide from simulated flue gas using different absorbents at room temperature and atmospheric pressure

    International Nuclear Information System (INIS)

    Yu, Hesheng; Zhu, Qunyi; Tan, Zhongchao

    2012-01-01

    Effective removal of nitrogen oxides (NO x ) from flue gas allows more fossil fuels to be produced and utilized with less negative impact on the environment. It would be more cost-effective, however, if nitric oxide (NO) is oxidized to soluble nitrate and nitrite and then removed from the air by existing desulfurization wet scrubbers. This paper compares the effectiveness of three different oxidants for this purpose, namely, ethylenediaminetetraacetic acid; iron (2+) (Fe(II)–EDTA), hexamminecobalt(II) chloride ([Co(NH 3 ) 6 ]Cl 2 ), and hydrogen peroxide (H 2 O 2 ). Experimental results using column reactors showed that [Co(NH 3 ) 6 ]Cl 2 was more effective over the same period of time. The best initial NO removal efficiency of about 96.45% was measured at the inlet flow rate of 500 ml/min; the temperature of approximately 19 °C; the pH value of around 10.5; and the concentrations of [Co(NH 3 ) 6 ]Cl 2 , NO and O 2 of 0.06 mol/L, 500 ppm and 5.0%, respectively.

  6. Study of the oxidation of Fe-Cr alloys at high temperatures

    International Nuclear Information System (INIS)

    Carneiro, J.F.; Sabioni, A.C.S.

    2010-01-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1μg. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10 -9 g 2 .cm -4 .s -1 , for the alloy Fe-1.5% Cr, to 1.18 x 10-14g 2 .cm -4 .s -1 for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  7. Capture of atmospheric CO{sub 2} into (BiO){sub 2}CO{sub 3}/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing, 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 (China); Zhang, Wei, E-mail: andyzhangwei@163.com [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

    2015-12-15

    Graphical abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO{sub 2}. • (BiO){sub 2}CO{sub 3}-graphene and (BiO){sub 2}CO{sub 3}-graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO){sub 2}CO{sub 3}, (BiO){sub 2}CO{sub 3}/Ge and (BiO){sub 2}CO{sub 3}/GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO{sub 2} in green synthetic strategy.

  8. Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region

    International Nuclear Information System (INIS)

    Das, Sukanta; Chandra Nayak, Ganesh; Sahu, S.K.; Oraon, Ramesh

    2015-01-01

    This work explored the microwave absorption capability of Graphene Oxide and Graphene Oxide coated with FeCoB for stealth technology. Epoxy based microwave absorbing materials were prepared with 30% loading of Graphene Oxide, FeCoB alloy and Graphene Oxide coated with FeCoB. Graphene Oxide and FeCoB were synthesized by Hummer's and Co-precipitation methods, respectively. The filler particles were characterized by FESEM, XRD and Vibrating Sample Magnetometer techniques. Permittivity, permeability and reflection loss values of the composite absorbers were measured with vector network analyzer which showed a reflection loss value of −7.86 dB, at 10.72 GHz, for single layered Graphene Oxide/Epoxy based microwave absorbers which can be correlated to the absorption of about 83.97% of the incident microwave energy. Reflection loss value of FeCoB/Epoxy based microwave absorber showed −13.30 dB at 11.67 GHz, which corresponded to maximum absorption of 93.8%. However, reflection loss values of Graphene Oxide coated with FeCoB/Epoxy based single-layer absorber increased to −22.24 dB at 12.4 GHz which corresponds to an absorption of 99% of the incident microwave energy. - Highlights: • FeCoB coated Graphene Oxide (GO) was synthesized by co-precipitation method. • GO, FeCoB and GO@FeCoB based microwave absorbers were developed with Epoxy matrix. • GO and FeCoB/Epoxy absorbers showed −7.86 & −13.30 dB reflection loss, respectively. • Maximum Reflection loss of −22.24 dB was achieved with GO@FeCoB/Epoxy absorber

  9. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  10. Reirradiation of mixed-oxide fuel pins at increased temperatures

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, E.T.

    1976-05-01

    Mixed-oxide fuel pins from EBR-II irradiations were reirradiated in the General Electric Test Reactor (GETR) at higher temperatures than experienced in EBR-II to study effects of the increased operating temperatures on thermal/mechanical and chemical behavior. The response of a mixed-oxide fuel pin to a power increase after having operated at a lower power for a significant portion of its life-time is an area of performance evaluation where little information currently exists. Results show that the cladding diameter changes resulting from the reirradiation are strongly dependent upon both prior burnup level and the magnitude of the temperature increase. Results provide the initial rough outlines of boundaries within which mixed-oxide fuel pins can or cannot tolerate power increases after substantial prior burnup at lower powers

  11. Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Knibbe, Ruth; Mogensen, Mogens Bjerg

    2012-01-01

    Reduction of H2O and CO2 as well as oxidation of H2 and CO was studied in a Ni/YSZ electrode supported Solid Oxide Cell (SOC) produced at DTU Energy conversion (former Risø DTU). Even though these Ni/YSZ based SOCs were developed and optimized for fuel cell use, they can work as reversible SOCs i...

  12. Nitrous oxide emissions at low temperatures

    International Nuclear Information System (INIS)

    Martikainen, P.J.

    2002-01-01

    Microbial processes in soil are generally stimulated by temperature, but at low temperatures there are anomalies in the response of microbial activities. Soil physical-chemical characteristics allow existence of unfrozen water in soil also at temperatures below zero. Therefore, some microbial activities, including those responsible for nitrous oxide (N 2 0) production, can take place even in 'frozen' soil. Nitrous oxide emissions during winter are important even in boreal regions where they can account for more than 50% of the annual emissions. Snow pack therefore has great importance for N 2 0 emissions, as it insulates soil from the air allowing higher temperatures in soil than in air, and possible changes in snoav cover as a result of global warming would thus affect the N 2 0 emission from northern soils. Freezing-thawing cycles highly enhance N 2 0 emissions from soil, probably because microbial nutrients, released from disturbed soil aggregates and lysed microbial cells, support microbial N 2 0 production. However, the overall interactions between soil physics, chemistry, microbiology and N 2 0 production at low temperatures, including effects of freezing-thawing cycles, are still poorly known. (au)

  13. Down-conversion luminescence from (Ce, Yb) co-doped oxygen-rich silicon oxides

    International Nuclear Information System (INIS)

    Heng, C. L.; Wang, T.; Su, W. Y.; Wu, H. C.; Yin, P. G.; Finstad, T. G.

    2016-01-01

    We have studied down-conversion photoluminescence (PL) from (Ce, Yb) co-doped “oxygen rich” silicon oxide films prepared by sputtering and annealing. The Ce"3"+ ∼510 nm PL is sensitive to the Ce concentration of the films and is much stronger for 3 at. % Ce than for 2 at. % Ce after annealing at 1200 °C. The PL emission and excitation spectroscopy results indicate that the excitation of Yb"3"+ is mainly through an energy transfer from Ce"3"+ to Yb"3"+, oxide defects also play a role in the excitation of Yb"3"+ after lower temperature (∼800 °C) annealing. The Ce"3"+ 510 nm photon excites mostly only one Yb"3"+ 980 nm photon. Temperature-dependent PL measurements suggest that the energy transfer from Ce"3"+ to Yb"3"+ is partly thermally activated.

  14. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    . High performance cathodes were obtained from strontium-doped lanthanum cobaltite (LSC) infiltrated - Ce0.9Gd0.1O1.95 (CGO) ionic conducting backbone. Systematic tuning of the CGO and LSC firing temperatures and LSC loading resulted in a cathode with low polarization resistance, Rp = 0.044 cm2 at 600......This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones...... with increasing LSC firing temperature, highlighting the importance of materials compability over higher ionic conductivity. The potential of Ca3Co4O9+delta as an electrocatalyst for SOFCs has also been explored and encouraging results were found i.e., Rp = 0.64 cm2 for a Ca3Co4O9+delta/CGO 50 vol % composite...

  15. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  16. Ag modified LaCoO3 perovskite oxide for photocatalytic application

    Science.gov (United States)

    Jayapandi, S.; Prakasini, V. Anitha; Anitha, K.

    2018-04-01

    The present investigation has been carried out to develop a novel photocatalytic material based on lanthanum cobaltite (LaCoO3) and silver (Ag) doped LaCoO3 perovskite oxide. Pure LaCoO3 and 5 Mol% Ag doped LaCoO3 (Ag-LaCoO3) have been synthesized by simple co-precipitation method and characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and photoluminescence (PL) techniques and its photocatalytic activity was evaluated by photodegradation of methylene blue under sunlight irradiation. The observed XRD, UV and PL results indicate that Ag influences on the crystallite size and absorption coefficient of LaCoO3 perovskite oxide. The percentage of dye degradations was calculated as 60% and 99 % for LaCoO3 and 5 Mol% Ag-LaCoO3 pervoskite oxides respectively for 10 minutes (10 min) exposure to sunlight, which indicates that 5 mol% of Ag-LaCoO3, has better photodegradation activity. Hence, the present investigation confirms that Ag influences the photocatalytic activity of a material and the observations will be helpful for further developing new photocatalytic materials.

  17. Oxidation behaviour of titanium in high temperature steam

    International Nuclear Information System (INIS)

    Moroishi, Taishi; Shida, Yoshiaki

    1978-01-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550 0 C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500 0 C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550 0 C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450 0 C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO 2 . Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO 2 scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal. (auth.)

  18. Oxidative stress pattern in hepatitis C patients co-infected with ...

    African Journals Online (AJOL)

    Oxidative stress pattern in hepatitis C patients co-infected with schistosomiasis. ... Supporting the view that oxidative damage plays a role in chronic HCV infection, also TNF-α establishes a positive auto regulatory loop that can amplify the inflammatory response and lead to chronic inflammation. More evidence indicates that ...

  19. Valence control of cobalt oxide thin films by annealing atmosphere

    International Nuclear Information System (INIS)

    Wang Shijing; Zhang Boping; Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping

    2011-01-01

    The cobalt oxide (CoO and Co 3 O 4 ) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH 3 OCH 2 CH 2 OH and Co(NO 3 ) 2 .6H 2 O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co 3 O 4 thin film was obtained by annealing in air at 300-600, and N 2 at 300, and transferred to CoO thin film by raising annealing temperature in N 2 . The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  20. High Temperature Oxidation Behavior of T91 Steel in Dry and Humid Condition

    Directory of Open Access Journals (Sweden)

    Yonghao Leong

    2016-09-01

    Full Text Available High temperature oxidation behavior of T91 ferritic/martensitic steel was examined over the temperature range of 500 to 700°C in dry and humid environments.  The weight gain result revealed that oxidation occurs at all range of temperatures and its rate is accelerated by increasing the temperature. The weight gain of the oxidized steel at 700°C in steam condition was six times bigger than the dry oxidation.. SEM/EDX of the cross-sectional image showed that under dry condition, a protective and steady growth of the chromium oxide (Cr2O3 layer was formed on the steel with the thickness of 2.39±0.34 µm. Meanwhile for the humid environment, it is found that the iron oxide layer, which consists of the hematite (Fe2O3 and magnetite (Fe3O4 was formed as the outer scale, and spinnel as inner scale. This result indicated that the oxidation behavior of T91 steel was affected by its oxidation environment. The existence of water vapor in steam condition may prevent the formation of chromium oxide as protective layer.

  1. Catalytic combustion of methane over mixed oxides derived from Co-Mg/Al ternary hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zheng [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Jesus College, University of Oxford, OX1 3DW (United Kingdom); Yu, Junjie; Cheng, Jie; Hao, Zhengping [Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Xiao, Tiancun; Edwards, Peter P. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Jones, Martin O. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2010-01-15

    Co{sub x}Mg{sub 3-x} /Al composite oxides (xCoMAO-800) were prepared by calcination of Co{sub x}Mg{sub 3-x}/Al hydrotalcites (x=0.0,0.5,1.0,1.5,2.0,2.5,3.0, respectively) at 800 C. The materials were characterized using XRD, TG-DSC, N{sub 2} adsorption-desorption and TPR. The methane catalytic combustion over the xCoMAO-800 was assessed in a fixed bed micro-reactor. The results revealed that cobalt can be homogenously dispersed into the matrices of the hydrotalcites and determines the structure, specific surface areas and porosity of the derived xCoMAO-800 oxide catalysts. The thermal stability and homogeneity of the hydrotalcites markedly depends on the cobalt concentration in the hydrotalcites. The Co-based hydrotalcite-derived oxides exhibit good activity in the catalytic combustion of methane. The catalytic activity over the xCoMAO-800 oxides enhances with increasing x up to 1.5, but subsequently decreases dramatically as cobalt loadings are further increased. The 1.5CoMAO-800 catalyst shows the best methane combustion activity, igniting methane at 450 C and completing methane combustion around 600 C. The catalytic combustion activity over the xCoMAO-800 oxides are closely related to the strong Co-Mg/Al interaction within the mixed oxides according to the TG-DSC, TPR and activity characteristics. (author)

  2. Formic Acid Modified Co3O4-CeO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ruishu Shang

    2016-03-01

    Full Text Available A formic acid modified catalyst, Co3O4-CeO2, was prepared via facile urea-hydrothermal method and applied in CO oxidation. The Co3O4-CeO2-0.5 catalyst, treated by formic acid at 0.5 mol/L, performed better in CO oxidation with T50 obtained at 69.5 °C and T100 obtained at 150 °C, respectively. The characterization results indicate that after treating with formic acid, there is a more porous structure within the Co3O4-CeO2 catalyst; meanwhile, despite of the slightly decreased content of Co, there are more adsorption sites exposed by acid treatment, as suggested by CO-TPD and H2-TPD, which explains the improvement of catalytic performance.

  3. Effect of low-temperature oxidation on the pyrolysis and combustion of whole oil

    International Nuclear Information System (INIS)

    Murugan, Pulikesi; Mahinpey, Nader; Mani, Thilakavathi; Asghari, Koorosh

    2010-01-01

    Low-temperature oxidation (LTO) of the Fosterton crude oil mixed with its reservoir sand has been investigated in a tubular reactor. Reservoir sand saturated with 15 wt% of crude oil (20.5 o API gravity) was subjected to air injection at low-temperature (220 o C) for a period of time (17 h and 30 min), resulting in the formation of an oxygenated hydrocarbon fuel. The vent gases were analyzed for the content of CO, CO 2 , and oxygen and the residue was analyzed to determine the elemental composition and calorific value. The presence of LTO region was verified from the values of apparent H/C ratio. In addition, thermal behavior and combustion kinetics of the residue was investigated using thermogravimetric analysis (TGA). TG involves both non-isothermal and isothermal analysis and kinetic data was derived from isothermal studies. The general model for nth order reaction was used to obtain the kinetic parameters of the coke oxidation reaction. The activation energy, frequency factor and order of the reactions were determined using the model.

  4. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, M. F. S.; Moraes, L. P. R.; Monteiro, N. K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte and in composite electrodes operating at low and intermediate temperatures. GDC exhibits high oxygen ion conductivity at a wide range of temperatures and displays a high...... resistance to carbon deposition when hydrocarbons are used as fuels. However, an inconvenience of ceria-based oxides is the high sintering temperature needed to obtain a fully dense ceramic body. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. The aqueous...

  5. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    Science.gov (United States)

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-07-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices.

  6. Growth study and photocatalytic properties of Co-doped tungsten oxide mesocrystals

    International Nuclear Information System (INIS)

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2012-01-01

    Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmet–Teller analysis of nitrogen sorptometer, and UV–vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-doped tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: ► Co-doped W 18 O 49 mesocrystals were synthesized using a solvothermal method. ► The Co doping has obvious effect on the morphology of the final mesocrystals. ► The Co-doped W 18 O 49 exhibited superior photocatalytic activity to the undoped W 18 O 49 .

  7. Influence of Gold on Hydrotalcite-like Compound Catalysts for Toluene and CO Total Oxidation

    Directory of Open Access Journals (Sweden)

    Eric Genty

    2013-12-01

    Full Text Available X6Al2HT500 hydrotalcites, where X represents Mg, Fe, Cu or Zn were synthetized and investigated before and after gold deposition for toluene and CO total oxidation reactions. The samples have been characterized by specific areas, XRD measurements and Temperature Programmed Reduction. Concerning the toluene total oxidation, the best activity was obtained with Au/Cu6Al2HT500 catalyst with T50 at 260 °C. However, catalytic behavior of Au/X6Al2HT500 sample in both reactions depends mainly on the nature of the support.

  8. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-01-01

    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  9. Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Y. Wu

    2011-07-01

    Full Text Available The heterogeneous oxidation of sulfur dioxide by ozone on CaCO3 was studied as a function of temperature (230 to 298 K at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS to obtain kinetic and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidation and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition region was observed at temperatures ranging from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298 K were acquired for the first time, which can be used directly in atmospheric chemistry modeling studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidation at temperatures from 245 K to 230 K was determined to be 14.63 ± 0.20 kJ mol−1. A mechanism for the temperature dependence was proposed and the atmospheric implications were discussed.

  10. Fabrication of CuO-doped catalytic material containing zeolite synthesized from red mud and rice husk ash for CO oxidation

    Science.gov (United States)

    Hieu Do Thi, Minh; Thinh Tran, Quoc; Nguyen, Tri; Van Nguyen Thi, Thuy; Huynh, Ky Phuong Ha

    2018-06-01

    In this study a series of the CuO-doped materials containing zeolite with varying CuO contents were synthesized from red mud (RM) and rice husk ash (RHA). The rice husk ash/red mud with the molar ratio of , and being 1.8, 2.5 and 60, respectively, were maintained during the synthetic process of materials. The characteristic structure samples were analyzed by x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area and H2 temperature program reduction (H2-TPR). The catalytic activity of samples was evaluated in CO oxidation reaction in a microflow reactor at temperature range 200 °C–350 °C. The obtained results showed that all synthetic samples there exist the A-type zeolites with the average crystal size of 15–20 nm, the specific surface area of , and pore volume of . The material synthesized from RM and RHA with the zeolite structure (ZRM, undoped CuO) could also oxidize CO completely at 350 °C, and its activity was increase significantly when doped with CuO. CuO-doped materials with the zeolite structure exhibited excellent catalytic activity in CO oxidation. The ZRM sample loading 5 wt% CuO with particle nanosize about 10–30 nm was the best one for CO oxidation with complete conversion temperature at 275 °C.

  11. Electrochemical Reduction of Oxygen and Nitric Oxide at Low Temperature on La1−xSrxCoO3−delta Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    Six La1-xSrxCoO3- (x= 0, 0.05, 0.15, 0.25, 0.35, 0.50) perovskites were synthesised and characterised by powder XRD and cyclic voltammetry on cone-shaped electrodes in either air or nitric oxide in argon at 200, 300 and 400oC. At 200oC the current densities in air was highest for the strontium.......50Sr0.50CoO3-, in both air and the nitric oxide containing atmosphere. This was attributed to a rate limiting chemical step (i.e. dissociation of oxygen or nitric oxide) in the reaction sequence....

  12. High-temperature oxidation of Zircaloy-2 and Zircaloy-4 in steam

    International Nuclear Information System (INIS)

    Urbanic, V.F.; Heidrick, T.R.

    1978-01-01

    At temperatures above the (α + β)/β transformation temperature for zirconium alloys, steam reacts with β-Zr to form a superficial layer of zirconium oxide (ZrO 2 ) and an intermediate layer of oxygen-stabilized α-Zr. Reaction kinetics and the rate of growth of the combined (ZrO 2 + α-Zr) layer for Zircaloy-2 and Zircaloy-4 oxidation in steam were measured over the temperature range 1050-1850 o C. The reaction rates for both alloys were similar, obeyed parabolic kinetics and were not limited by gas phase diffusion. The parabolic rate constants were consistently less than those given by the Baker and Just correlation for zirconium oxidation in steam. A discontinuity was found in the temperature dependence of both the reaction rate and the rate of growth of the combined (ZrO 2 + α-Zr) layer. The discontinuity is attributed to a change in the oxide microstructure at the discontinuity temperature, an observation which is consistent with the zirconium-oxygen phase diagram. (author)

  13. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  14. Flare pits wastes remediation by low temperature oxidation

    International Nuclear Information System (INIS)

    Catalan, L. J. L.; Jamaluddin, A. K. M.; Mehta, R.; Moore, R. G.; Okazawa, N.; Ursenbach, M.

    1997-01-01

    The remediation of contaminated soil in oilfield sites, flare pits in particular, is subject to strict environmental regulations. Most current remediation techniques such as biological or thermal treatment are not particularly effective in highly contaminated sites, or effective only at costs that are considered prohibitive. This contribution describes a cost-effective method for the treatment of contaminated soil in-situ. The proposed treatment involves low temperature oxidation which converts the hydrocarbons in the contaminated soil to inert coke. In laboratory studies contaminated soil was oxidized with air at temperatures between 150 degrees C and 170 degrees C for three weeks. After the three week treatment extractable hydrocarbon levels were reduced to less than 0.1 per cent. Bioassays also demonstrated that toxicity associated with hydrocarbons was eliminated. Salts and metals remaining in the soil after treatment were removed by leaching with water. Low temperature oxidation requires no special equipment; it can occur under conditions and with equipment that are readily available in an oilfield setting. 5 refs., 8 tabs., 7 figs

  15. Influence of oxidation temperature on photoluminescence and electrical properties of amorphous thin film SiC:H:O+Tb

    Energy Technology Data Exchange (ETDEWEB)

    Gordienko, S.O.; Nazarov, A.N.; Rusavsky, A.V.; Vasin, A.V.; Gomeniuk, Yu.V.; Lysenko, V.S.; Strelchuk, V.V.; Nikolaenko, A.S. [Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospekt Nauki 41, 03028 Kyiv (Ukraine); Ashok, S. [The Pennsylvania State University, Department of Engineering Science, 212 Earth and Engineering Science Bldg., University Park, PA 16802 (United States)

    2011-09-15

    The influence of low-temperature oxidation on chemical composition, luminescent and electrical properties of a-Si{sub 1-x}C{sub x}:H thin films fabricated by reactive RF magnetron sputtering has been studied. A strong dependence on RF sputtering power is seen on the electrical and chemical properties. The a-Si{sub 1-x}C{sub x}:H films fabricated by low RF power levels followed by low-temperature oxidation (at 450 C-500 C) display high intensity of PL, good MOSCV characteristic and low leakage current through the dielectric. Increase of oxidation temperature increases precipitation of carbon nano-inclusions in the materials, that result in reduction of PL intensity and increase of dielectric leakage. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Oxidation characteristics of MgF2 in air at high temperature

    Science.gov (United States)

    Chen, H. K.; Jie, Y. Y.; Chang, L.

    2017-02-01

    High temperature oxidation properties of MgF2 in air were studied. The changes of phase composition, macro surface morphology, weight and elemental composition of MgF2 samples with temperature were investigated by using XRD, EDS and gravimetric analyses. The results show that the oxidation reaction of MgF2 converted to MgO occurred at high temperature, and the reaction was accelerated by the increase of temperature and the presence of impurities. This result clarifies the understanding of the high temperature oxidation behavior of MgF2 in air, and provides a theoretical basis for the reasonable application of MgF2 in optical coating materials, electronic ceramic materials and magnesium melt protection.

  17. Improvement of sulfur resistance of Pd/Ce-Zr-Al-O catalysts for CO oxidation

    Science.gov (United States)

    Shin, Haebin; Baek, Minsung; Ro, Youngsoo; Song, Changyeol; Lee, Kwan-Young; Song, In Kyu

    2018-01-01

    Two kinds of mesoporous ceria-zirconia-alumina supports were prepared by a single-step epoxide-driven sol-gel method (SGCZA) and by a co-precipitation method (PCZA). Palladium catalysts supported on these materials were then prepared by a wet impregnation method (Pd/SGCZA and Pd/PCZA). The prepared catalysts were applied to the CO oxidation reaction before and after sulfur aging. XRD and N2 adsorption-desorption analyses revealed that these two catalysts retained different physicochemical properties. Pd/SGCZA had higher surface area and larger pore volume than Pd/PCZA before and after sulfur aging. TPR (Temperature-programmed reduction), CO chemisorption, FT-IR, and XPS analyses showed that the catalysts were differently influenced by sulfur species. Pd/SGCZA formed less sulfate and retained higher palladium dispersion than Pd/PCZA after sulfur aging. In the CO oxidation, Pd/PCZA showed better activity than Pd/SGCZA before sulfur aging. However, Pd/SGCZA showed higher CO conversion than Pd/PCZA after sulfur aging. We concluded that Pd/SGCZA was less poisoned by sulfur species than Pd/PCZA.

  18. Oxide layer stability in lead-bismuth at high temperature

    Science.gov (United States)

    Martín, F. J.; Soler, L.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    Materials protection by 'in situ' oxidation has been studied in stagnant lead-bismuth, with different oxygen levels (H 2/H 2O ratios of 0.3 and 0.03), at temperatures from 535 °C to 600 °C and times from 100 to 3000 h. The materials tested were the martensitic steels F82Hmod, EM10 and T91 and the austenitic stainless steels, AISI 316L and AISI 304L. The results obtained point to the existence of an apparent threshold temperature above which corrosion occurs and the formation of a protective and stable oxide layer is not possible. This threshold temperature depends on material composition, oxygen concentration in the liquid lead-bismuth and time. The threshold temperature is higher for the austenitic steels, especially for the AISI 304L, and it increases with the oxygen concentration in the lead-bismuth. The oxide layer formed disappear with time and, after 3000 h all the materials, except AISI 304L, suffer corrosion, more severe for the martensitic steels and at the highest temperature tested.

  19. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  20. EFFECT OF IMPREGNATION PROCEDURE OF Pt/γ-Al2O3 CATALYSTS UPON CATALYTIC OXIDATION OF CO

    Directory of Open Access Journals (Sweden)

    Triyono Triyono

    2010-06-01

    Full Text Available The oxidation of carbon monoxide by oxygen using two catalysts prepared by two different methods has been investigated. In the first method, catalyst prepared by immersing γ-Al2O3 into the hexa-chloroplatinic acid solution at 80oC for 4 h, resulted Pt/γ-Al2O3 catalyst having platinum highly dispersed on the support. While that of immersing γ-Al2O3 in the hexa-chloroplatinic acid solution at room temperature for 12 h, produced Pt/ γ-Al2O3 catalyst where platinum dispersion was much lower. Catalytic activity test showed that platinum well dispersed on the support enhanced the activity of oxidation of carbon monoxide. The platinum impregnated at room temperature resulted in the poor activity.   Keyword: Catalyst, CO Oxidation, Platinum.

  1. Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts

    Science.gov (United States)

    Herz, Richard K.

    1989-01-01

    The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  2. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  3. High temperature cyclic oxidation and hot corrosion behaviours of ...

    Indian Academy of Sciences (India)

    Administrator

    eutectic reaction below 600°C. When the temperature ... blades, consequently corrosion rate rapidly increases due ... the corrosion run. ... Figure 1. Surface macrographs of superalloys subjected to hot corrosion and oxidation .... show the oxide scales of three different chemical compo- .... Li J and Wahi R P 1995 Acta Metall.

  4. Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization

    Science.gov (United States)

    Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu

    2017-06-01

    The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.

  5. Potential for iron oxides to control metal releases in CO2 sequestration scenarios

    Science.gov (United States)

    Berger, P.M.; Roy, W.R.

    2011-01-01

    The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction

  6. Cobalt hydroxide film on Pt as co-catalyst for oxidation of polyhydric alcohols in alkaline medium

    International Nuclear Information System (INIS)

    Das, Debasmita; Das, Kaushik

    2010-01-01

    Electrochemical behavior of chemically prepared Co(OH) 2 film on Pt has been studied in alkaline medium using cyclic voltammetry and chronoamperometry. Amount of Co(OH) 2 deposited increases linearly with the number of times of deposition. The deposit is of fibrous structure, as shown by scanning electron microphotograph. There is evidence of Co II /Co III and Co III /Co IV redox transitions during the cyclic potential scan. The former oxidation proceeds under diffusion control. The Co(OH) 2 deposit acts as an efficient co-catalyst for anodic oxidation of ethanediol, propanediol and glycerol on Pt in alkaline medium. This is demonstrated by appreciable enhancement of the alcohol oxidation currents upon deposition of Co(OH) 2 on Pt. Among the alcohols studied, the highest oxidation currents are obtained for ethanediol, both on Co(OH) 2 /Pt and bare Pt. Co(OH) 2 alone also acts as a redox mediator for alcohol oxidation at more positive potentials.

  7. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  8. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2.

    Science.gov (United States)

    Kowal, A; Li, M; Shao, M; Sasaki, K; Vukmirovic, M B; Zhang, J; Marinkovic, N S; Liu, P; Frenkel, A I; Adzic, R R

    2009-04-01

    Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol's slow, inefficient oxidation even at the best electrocatalysts. We synthesized a ternary PtRhSnO(2)/C electrocatalyst by depositing platinum and rhodium atoms on carbon-supported tin dioxide nanoparticles that is capable of oxidizing ethanol with high efficiency and holds great promise for resolving the impediments to developing practical direct ethanol fuel cells. This electrocatalyst effectively splits the C-C bond in ethanol at room temperature in acid solutions, facilitating its oxidation at low potentials to CO(2), which has not been achieved with existing catalysts. Our experiments and density functional theory calculations indicate that the electrocatalyst's activity is due to the specific property of each of its constituents, induced by their interactions. These findings help explain the high activity of Pt-Ru for methanol oxidation and the lack of it for ethanol oxidation, and point to the way to accomplishing the C-C bond splitting in other catalytic processes.

  9. Facile Synthesis of Co{sub 3}O{sub 4}/Mildly Oxidized Multiwalled Carbon Nanotubes/Reduced Mildly Oxidized Graphene Oxide Ternary Composite as the Material for Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Meiyu; Liu, Kaiyu; Li, Yan; Wei, Lai; Zhong, Jianjian; Su, Geng [Central South Univ., Changsha (China)

    2014-05-15

    A three-dimensional (3D) Co{sub 3}O{sub 4}/mildly oxidized multiwalled carbon nanotubes (moCNTs)/reduced mildly oxidized graphene oxide (rmGO) ternary composite was prepared via a simple and green hydrolysis-hydrothermal approach by mixing Co(Ac){sub 2}·4H{sub 2}O with moCNTs and mGO suspension in mixed ethanol/H{sub 2}O. As characterized by scanning electron microscopy and transmission electron microscopy, Co{sub 3}O{sub 4} nanoparticles with size of 20-100 nm and moCNTs are effectively anchored in mGO. Cyclic voltammetry and galvanostatic charge-discharge measurements were adopted to investigate the electrochemical properties of Co{sub 3}O{sub 4}/moCNTs/rmGO ternary composite in 6 M KOH solution. In a potential window of 0-0.6 V vs. Hg/HgO, the composite delivers an initial specific capacitance of 492 F g{sup -1} at 0.5 A g{sup -1} and the capacitance remains 592 F g{sup -1} after 2000 cycles, while the pure Co{sub 3}O{sub 4} shows obviously capacitance fading, indicating that rmGO and moCNTs greatly enhance the electrochemical performance of Co{sub 3}O{sub 4}.

  10. Oxidation of ethanol on NaX zeolite modified with transition metals

    Science.gov (United States)

    Mirzai, J. I.; Nadirov, P. A.; Velieva, A. D.; Muradkhanli, V. G.

    2017-06-01

    NaLaX, NaX + Co, and NaPdX catalysts are synthesized by modification of NaX zeolite with transition metals (La, Co, Pd). The activity of the prepared materials in catalytic ethanol oxidation is studied in the temperature range of 423-723 K. It is shown that NaPdX and NaX + Co accelerate the reactions of partial and complete oxidation of ethanol as the temperature rises. NaLaX accelerates both intramolecular and intermolecular dehydration of alcohol. It is shown that the NaPdX (1.0% Pd) sample has the highest activity in the complete oxidation of alcohol with the formation of CO2.

  11. Oxidation Behavior of AlN/h-BN Nano Composites at High Temperature

    International Nuclear Information System (INIS)

    Jin Haiyun; Huang Yinmao; Feng Dawei; He Bo; Yang Jianfeng

    2011-01-01

    Both AlN/ nano h-BN composites and AlN/ micro h-BN composites were fabricated. The high temperature oxidation behaviors were investigated at 1000deg. C and 1300deg. C using a cycle-oxidation method. The results showed that there were little changes of both nano composites and monolithic AlN ceramic at temperature of 1000deg. C. And at 1300deg. C, the oxidation dynamics curve of composites could be divided into two courses: a slowly weight increase and a rapid weight decrease, but the oxidation behavior of nano composites was better than micro composites. It was due to that the uniform distribution of oxidation production (Al 18 B 4 O 33 ) surround the AlN grains in nano composites and the oxidation proceeding was retarded. The XRD analysis and SEM observations showed that there was no BN remained in the composites surface after 1300deg. C oxidation and the micropores remain due to the vaporizing of B 2 O 3 oxidized by BN.

  12. Improved thermal stability of methylsilicone resins by compositing with N-doped graphene oxide/Co3O4 nanoparticles

    International Nuclear Information System (INIS)

    Jiang, Bo; Zhao, Liwei; Guo, Jiang; Yan, Xingru; Ding, Daowei; Zhu, Changcheng; Huang, Yudong; Guo, Zhanhu

    2016-01-01

    Nanoparticles play important roles in enhancing the thermal-resistance of hosting polymer resins. Despite tremendous efforts, developing thermally stable methylsilicone resin at high temperatures is still a challenge. Herein, we report a strategy to increase the activation energy to slow down the decomposition/degradation of methylsilicone resin using synergistic effects between the Co 3 O 4 nanoparticles and the nitrogen doped graphene oxide. The N-doped graphene oxides composited with Co 3 O 4 nanoparticles were prepared by hydrolysis of cobalt nitrate hexahydrate in the presence of graphene oxide and were incorporated into the methylsilicone resin. Two-stage decompositions were observed, i.e., 200–300 and 400–500 °C. The activation energy for the low temperature region was enhanced by 47.117 kJ/mol (vs. 57.76 kJ/mol for pure resin). The enhanced thermal stability was due to the fact that the nanofillers prevented the silicone hydroxyl chain ends ‘‘biting’’ to delay the degradation. The activation energy for high-temperature region was enhanced by 11.585 kJ/mol (vs. 171.95 kJ/mol for pure resin). The nanofillers formed a protective layer to isolate oxygen from the hosting resin. The mechanism for the enhanced thermal stability through prohibited degradation with synergism of these nitrogen-doped graphene oxide nanocomposites was proposed as well.Graphical Abstract

  13. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Mohamed E. Assal

    2017-01-01

    Full Text Available Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7 were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxygen as a green oxidizing agent without using any additives or bases. The prepared catalysts were characterized by different techniques such as SEM, EDX, XRD, TEM, TGA, BET, and FTIR spectroscopy. The 1% ZnOx–MnCO3 calcined at 300°C exhibited the best catalytic performance and possessed highest surface area, suggesting that the calcination temperature and surface area play a significant role in the alcohol oxidation. The 1% ZnOx–MnCO3 catalyst exhibited superior catalytic performance and selectivity in the aerial oxidation of 1-phenylethanol, where 100% alcohol conversion and more than 99% product selectivity were obtained in only 5 min with superior specific activity (48 mmol·g−1·h−1 and 390.6 turnover frequency (TOF. The specific activity obtained is the highest so far (to the best of our knowledge compared to the catalysts already reported in the literatures used for the oxidation of 1-phenylethanol. It was found that ZnOx nanoparticles play an essential role in enhancing the catalytic efficiency for the selective oxidation of alcohols. The scope of the oxidation process is extended to different types of alcohols. A variety of primary, benzylic, aliphatic, allylic, and heteroaromatic alcohols were selectively oxidized into their corresponding carbonyls with 100% convertibility without overoxidation to the carboxylic acids under base-free conditions.

  14. High temperature transient deformation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1986-01-01

    The purpose of this paper is to present recent experimental results on fuel creep under transient conditions at high temperatures. The effect of temperature, stress, heating rate, density and grain size were considered. An empirical formulation is derived for the relationship between strain, stress, temperature and heating rate. This relationship provides a means for incorporating stress relief into the analysis of fuel-cladding interaction during an overpower transient. The effect of sample density and initial grain size is considered by varying the sample parameters. Previously derived steady-state creep relationships for the high temperature creep of mixed oxide fuel were combined with the time dependency of creep found for UO 2 to calculate a transient creep relationship for mixed oxide fuel. These calculated results were found to be in good agreement with the measured high temperature transient creep results

  15. Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides.

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio

    2017-06-01

    Waste polytetrafluoroethylene (PTFE) could be easily decomposed by co-grinding with inorganic additive such as strontium oxide (SrO), strontium peroxide (SrO 2 ) and calcium oxide (CaO) by using a planetary ball mill, in which the fluorine was transformed into nontoxic inorganic fluoride salts such as strontium fluoride (SrF 2 ) or calcium fluoride (CaF 2 ). Depending on the kind of additive as well as the added molar ratio, however, the reaction mechanism of the decomposition was found to change, with different compositions of carbon compounds formed. CO gas, the mixture of strontium carbonate (SrCO 3 ) and carbon, only SrCO 3 were obtained as reaction products respectively with equimolar SrO, excess SrO and excess SrO 2 to the monomer unit CF 2 of PTFE were used. Excess amount of CaO was needed to effectively decompose PTFE because of its lower reactivity compared with strontium oxide, but it promised practical applications due to its low cost.

  16. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  17. Facile Synthesis of Gold Nanorice Enclosed by High- Index Facets and Its Application for CO Oxidation

    International Nuclear Information System (INIS)

    Zheng, Y.; Tao, J.; Liu, H.; Zeng, J.; Yu, T.; Ma, Y.; Moran, C.; Wu, L.; Zhu, Y.; Liu, J.; Xia, Y.

    2011-01-01

    A facile method for generating Au nanorice enclosed by high-index facets in high purity. The nanorice shows much higher catalytic activity for CO oxidation than multiply twinned particles of Au enclosed by {111} facets at temperatures below 300 C.

  18. Oxidation behaviour of metallic glass foams

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, B.R. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States)], E-mail: bbarnard@utk.edu; Liaw, P.K. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States); Demetriou, M.D.; Johnson, W.L. [Department of Materials Science, Keck Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-08-15

    In this study, the effects of porosity on the oxidation behaviour of bulk-metallic glasses were investigated. Porous Pd- and Fe-based bulk-metallic glass (BMG) foams and Metglas ribbons were studied. Oxidizing experiments were conducted at 70 deg. C, and around 80 deg. C below glass-transition temperatures, (T{sub g}s). Scanning-electron microscopy/energy-dispersive spectroscopy (SEM/EDS) studies revealed little evidence of oxidation at 70 deg. C. Specimens exhibited greater oxidation at T{sub g} - 80 deg. C. Oxides were copper-based for Pd-based foams, Fe-, Cr-, and Mo-based for Fe-based foams, and Co-based with borosilicates likely for the Metglas. Pd-based foams demonstrated the best oxidation resistance, followed by Metglas ribbons, followed by Fe-based foams.

  19. Oxidation behaviour of titanium in high temperature steam

    Energy Technology Data Exchange (ETDEWEB)

    Moroishi, T; Shida, Y [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Central Research Labs.

    1978-03-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550/sup 0/C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500/sup 0/C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550/sup 0/C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450/sup 0/C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO/sub 2/. Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO/sub 2/ scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal.

  20. Study of the first stages of oxidation of a ferritic-martensitic steel Fe-12Cr in CO2

    International Nuclear Information System (INIS)

    Bouhieda, S.

    2012-01-01

    In the framework of the development of Sodium Fast Reactors in France, supercritical carbon dioxide integrated in the Brayton cycle is proposed as new cycle energy conversion system to replace current steam generators. Ferritic-Martensitic steels with 9-12 wt% Cr are good candidates for heat exchanger application because they have good mechanical properties up to a temperature of 600 C, a high thermal conductivity, a low coefficient of thermal expansion and a lower cost than that of austenitic steels. However, it has been found that these steels present a high parabolic oxide growth rate and a strong carburization in the temperature and pressure conditions of the SC-CO 2 cycle (550 C, 250 bar). This study aims to investigate the influence of different parameters (impurities present in CO 2 , thermal ramp rate and surface state) on the oxidation mechanism of a Fe-12 Cr steel in CO 2 at 550 C. It has been shown that depending on these parameters, a thin protective oxide scale without any strong carburization can be obtained. A model is proposed to explain the experimental results. (author) [fr

  1. Intermediate Co/Ni-base model superalloys — Thermophysical properties, creep and oxidation

    International Nuclear Information System (INIS)

    Zenk, Christopher H.; Neumeier, Steffen; Engl, Nicole M.; Fries, Suzana G.; Dolotko, Oleksandr; Weiser, Martin; Virtanen, Sannakaisa; Göken, Mathias

    2016-01-01

    The mechanical properties of γ′-strengthened Co–Ni–Al–W–Cr model superalloys extending from pure Ni-base to pure Co-base superalloys have been assessed. Differential scanning calorimetry measurements and thermodynamic calculations match well and show that the γ′ solvus temperature decreases with increasing Co-content. The γ/γ′ lattice misfit is negative on the Ni- and positive on the Co-rich side. High Ni-contents decelerate the oxidation kinetics up to a factor of 15. The creep strength of the Ni-base alloy increases by an order of magnitude with additions of Co before it deteriorates strongly upon higher additions despite an increasing γ′ volume fraction.

  2. Intrinsic Activity of MnOx-CeO2 Catalysts in Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Dimitrios Delimaris

    2017-11-01

    Full Text Available MnOx-CeO2 mixed oxides are considered efficient oxidation catalysts superior to the corresponding single oxides. Although these oxides have been the subject of numerous studies, their fundamental performance indicators, such as turnover frequency (TOF or specific activity, are scarcely reported. The purpose of the present work is to investigate the effect of catalyst composition on the concentration of active sites and intrinsic activity in ethanol oxidation by the employment of temperature-programmed desorption and oxidation of isotopically-labelled ethanol, 12CH313CH2OH. The transformation pathways of preadsorbed ethanol in the absence of gaseous oxygen refer to dehydrogenation to acetaldehyde followed by its dissociation combined with oxidation by lattice oxygen. In the presence of gaseous oxygen, lattice oxygen is rapidly restored and the main products are acetaldehyde, CO2, and water. CO2 forms less easily on mixed oxides than on pure MnOx. The TOF of ethanol oxidation has been calculated assuming that the amount of adsorbed ethanol and CO2 produced during temperature-programmed oxidation (TPO is a reliable indicator of the concentration of the active sites.

  3. La0.6Sr0.4Co0.2Fe0.8O3-δ nanofiber cathode for intermediate-temperature solid oxide fuel cells by water-based sol-gel electrospinning: Synthesis and electrochemical behaviour

    DEFF Research Database (Denmark)

    Enrico, Anna; Zhang, Wenjing (Angela); Traulsen, Marie Lund

    2018-01-01

    Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only...

  4. A study on the improvement of oxidation resistance of OAE-added stainless steels for high temperature applications

    International Nuclear Information System (INIS)

    Kim, Dae Hwan; Kim, Gil Moo

    1996-01-01

    Since the manufacturing temperature of stainless steels is relatively high, oxidation at the elevated temperature becomes important. The chemical and physical properties of the protective oxide film which was formed on the stainless steels at high temperature for the oxidation resistance are important in determining the rate of oxidation and the life of equipment exposed to high temperature oxidizing environments. In this study, the oxidation behavior of STS 309S and STS 409L added by a small amount of oxygen active element(each + 0.5wt% Hf and Y) was studied to improve oxidation resistance. In the cyclic oxidation, while OAE-free specimens showed relatively poor oxidation resistance due to spallations and cracks of Cr-rich oxide layer, OAE-added specimens improved cyclic oxidation resistance assumably due to constant oxidation rate with stable oxide layers at high temperature. Especially Hf improved cyclic oxidation resistance by forming Cr-rich oxide layer preventing internal oxidation in STS 309S. (author)

  5. Growth study and photocatalytic properties of Co-doped tungsten oxide mesocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shibin [College of Logistics Engineering, Shanghai Maritime University, Shanghai 200135 (China); College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China); Chang, Xueting, E-mail: xuetingchang@yahoo.cn [College of Logistics Engineering, Shanghai Maritime University, Shanghai 200135 (China); Li, Zhenjiang [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2012-11-15

    Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller analysis of nitrogen sorptometer, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-doped tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: Black-Right-Pointing-Pointer Co-doped W{sub 18}O{sub 49} mesocrystals were synthesized using a solvothermal method. Black-Right-Pointing-Pointer The Co doping has obvious effect on the morphology of the final mesocrystals. Black-Right-Pointing-Pointer The Co-doped W{sub 18}O{sub 49} exhibited superior photocatalytic activity to the undoped W{sub 18}O{sub 49}.

  6. Effect of temperature on the oxidation of soybean biodiesel

    Directory of Open Access Journals (Sweden)

    Pereira, G. G.

    2015-06-01

    Full Text Available This paper proposes to examine the effect of temperature on the oxidation behavior of biodiesel. Soybean biodiesel was oxidized at different temperatures (room temperature, 60, and 110 °C, and the increase in primary and secondary oxidation products was determined based on the peroxide and anisidine values, respectively, during the induction period (IP. The results indicated that the evolution of hydroperoxides followed zero-order reaction kinetics during the IP at all temperatures, and their rate of formation was exponentially affected by temperature. It was also deduced that temperature influenced the ratio between primary and secondary oxidation products formation, which decreased as the temperature increased. Additionally, it was possible to predict the oxidation behavior of the soybean biodiesel at room temperature by an exponential model fitted to the IP values at different temperatures (70, 80, 90, 100, and 110 °C using the Rancimat apparatus.El propósito de este trabajo es evaluar el efecto de la temperatura en el comportamiento oxidativo del biodiesel. Biodiesel derivado de aceite de soja fue oxidado a diferentes temperaturas (temperatura ambiente, 60 y 110 °C y se evaluaron el contenido de compuestos primarios y secundarios de oxidación mediante el índice de peróxidos y de anisidina, respectivamente, a lo largo del periodo de inducción. Los resultados indicaron que el contenido de hidroperóxidos evolucionó siguiendo una cinética de orden cero a lo largo del periodo de inducción a todas las temperaturas y que su velocidad de formación cambió exponencialmente con la temperatura. También se dedujo que la temperatura influyó en la relación entre la formación de los productos de oxidación primarios y secundarios, disminuyendo a medida que aumentaba la temperatura. Además, fue posible predecir el comportamiento oxidativo del biodiesel de soja a temperatura ambiente ajustando a un modelo exponencial los valores de periodo

  7. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst.

    Science.gov (United States)

    Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi

    2018-05-01

    A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    , which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin

  9. Application of Ni-Oxide@TiO₂ Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors.

    Science.gov (United States)

    Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku

    2016-12-20

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO₂ overlayer coating.

  10. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity of both a single Pt atom and a boron vacancy defect (PtBV), the Pt-N interaction is -4.40 eV and is already strong enough to prohibit the diffusion and aggregation of the stabilized Pt atom. Facilitated by the upshifted Pt-d states originated from the Pt-N interaction, the barriers for CO oxidation through the Langmuir-Hinshelwood mechanism for formation and dissociation of peroxide-like intermediate and the regeneration are as low as 0.38, 0.10 and 0.04 eV, respectively, suggesting the superiority of PtBV as a catalyst for low temperature CO oxidation.

  11. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  12. Fundamental insight in soot oxidation over a Ag/Co3O4 catalyst by means of Environmental TEM

    DEFF Research Database (Denmark)

    Gardini, Diego; Christiansen, J. M.; Jensen, Anker Degn

    A novel Ag/Co3O4 catalyst for low-temperature soot oxidation has been studied by means of environmental TEM in order to get fundamental insight in the oxidation mechanism. Soot particles generated in diesel engines are responsible for respiratory diseases, lung cancer and affect the climate both...... on preparation method, degree of contact with the soot and temperature range. In order to fully understand the role of the single constituents and the influence of different operating conditions in the overall catalytic activity, flow reactor experiments have been coupled with in situ soot oxidation...

  13. Hydrogen poisoning of the CO oxidation reaction on Pt and Pd under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Strozier, J.A.

    1977-01-01

    The poisoning by hydrogen of the catalyzed oxidation of CO on Pt and Pd under ultrahigh vacuum conditions was investigated. ac pulsing techniques are used in which the pressure of the reactant CO in the reaction chamber is modulated periodically by means of a fast piezoelectric ultrahigh vacuum valve, and the ac component of the product CO 2 is recorded mass spectroscopically by phase-sensitive techniques. The ac CO 2 production rate is measured as a function of hydrogen pressure (1 - 10 x 10 -9 toor) at constant CO and O 2 pressures (approximately equal to 5 x 10 -8 torr), and constant temperature (approximately equal to 700 K). Exact theoretical calculations of CO 2 production rates were carried out employing several models, i.e., oxygen burn-off by hydrogen, incorporating both the Eley-Rideal and Langmuir-Hinshelwood mechanisms. From a comparison with the experimental results, the probable reaction is of the Langmuir-Hinshelwood type and the relevant rate constant is also determined. These results are compared with other results in the literature on hydrogen oxidation on the surface of Pt

  14. Induction of enhanced methane oxidation in compost: Temperature and moisture response

    International Nuclear Information System (INIS)

    Mor, Suman; Visscher, Alex de; Ravindra, Khaiwal; Dahiya, R.P.; Chandra, A.; Cleemput, Oswald van

    2006-01-01

    Landfilling is one of the most common ways of municipal solid waste disposal. Degradation of organic waste produces CH 4 and other landfill gases that significantly contribute to global warming. However, before entering the atmosphere, part of the produced CH 4 can be oxidised while passing through the landfill cover. In the present study, the oxidation rate of CH 4 was studied with various types of compost as possible landfill cover. The influence of incubation time, moisture content and temperature on the CH 4 oxidation capacity of different types of compost was examined. It was observed that the influence of moisture content and temperature on methane oxidation is time-dependent. Maximum oxidation rates were observed at moisture contents ranging from 45% to 110% (dry weight basis), while the optimum temperature ranged from 15 to 30 deg. C

  15. Study of the high temperature oxidation of nickel; Contribution a l'etude de l'oxydation du nickel aux temperatures elevees

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-11-01

    The parabolic oxidation of nickel by oxygen and by air at atmospheric pressure has been studied in the temperature range 600 to 1400 C, in particular by thermogravimetric and micrographic techniques. The mechanism of the reaction has been determined; it has been shown in particular that the break in the Arrhenius plot of the kinetics, occurring at about 950 C, is the result of a stimulation of the diffusion across the nickel prot-oxide film above this temperature; this is the result of the presence of excess nickel vacancies in the film. A systematic study has also been made of the influence of the oxygen pressure P{sub O{sub 2}} (10{sup -2} torr {<=} P{sub O{sub 2}} {<=} 760 torr) on the parabolic oxidation of nickel between 800 and 1400 C. In the range 1000 to 1400 C, the activation energy of the process decreases monotonously from 57 to 34 kcal/mole as P{sub O{sub 2}} decreases from 760 to 1 torr. Furthermore, it has been shown that the parabolic oxidation constant is proportional to P{sub O{sub 2}}{sup 1/n} the value of n is not invariant however in the temperature range examined, but decreases from 6 to about 3 when the temperature increases from 900 to 1400 C. Finally, a study has been made of the oxidation of nickel in carbon dioxide at atmospheric pressure between 750 and 1400 C. The main reaction is Ni + CO{sub 2} {yields} NiO + CO, and corresponds, with a good approximation, to the reaction of the metal with the oxygen produced by the thermal dissociation of the CO{sub 2}. (author) [French] L'oxydation parabolique du nickel avec l'oxygene et l'air a la pression atmospherique a ete etudiee dans l'intervalle de temperatures 600-1400 C, surtout par voies thermogravimetrique et micrographique. Le mecanisme de la reaction a ete precise; en particulier, il a ete montre que la brisure de la courbe d'Arrhenius traduisant sa cinetique, qui se produit a 950 C environ, resulte d'une stimulation de la diffusion dans la pellicule de protoxyde de nickel au dessous de

  16. Syngas (CO-H2) production using high temperature micro-tubular solid oxide electrolysers

    International Nuclear Information System (INIS)

    Kleiminger, L.; Li, T.; Li, K.; Kelsall, G.H.

    2015-01-01

    Highlights: • CO 2 and/or H 2 O reduced to CO/H 2 in micro-tubular solid oxide electrolyser (MT-SOE). • MT-SOE: CO 2 , H 2 O | Ni-(ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 (YSZ) | YSZ | YSZ- La 0.8 Sr 0.2 MnO 3-δ |O 2. • −0.76 A cm −2 achieved at 1.5V and ca. 820°C for H 2 O electrolysis. • Ni wire cathode current collector gave better performance than (Ag wire+Ag paste). • C 18 O 2 in co-electrolysis could not distinguish cathodic and chemical reduction. - Abstract: CO 2 and/or H 2 O were reduced to CO/H 2 in micro-tubular solid oxide electrolysers with yttria-stabilized zirconia (YSZ) electrolyte, Ni-YSZ cermet cathode and strontium(II)-doped lanthanum manganite (LSM) oxygen-evolving anode. At 822 °C, the kinetics of CO 2 reduction were slower (ca. −0.49 A cm −2 at 1.8 V) than H 2 O reduction or co-reduction of CO 2 and H 2 O, which were comparable (ca. −0.83 to −0.77 A cm −2 at 1.8 V). Performances were improved (−0.85 and −1.1 A cm −2 for CO 2 and H 2 O electrolysis, respectively) by substituting the silver current collector with nickel and avoiding blockage of entrances to pores on the inner lumen of micro-tubes induced by silver paste applied previously to decrease contact losses. The change in current collector materials increased ohmic potential losses due to substituting the lower resistance Ag with Ni wire, but decreased electrode polarization losses by 80–93%. For co-electrolysis of CO 2 and H 2 O, isotopically-labelled C 18 O 2 was used to try to distinguish between direct cathodic reduction of CO 2 and its Ni-catalysed chemical reaction with hydrogen from reduction of steam. Unfortunately, oxygen was exchanged between C 18 O 2 and H 2 16 O, enriching oxygen-18 in the steam and substituting oxygen-16 in the carbon dioxide, so the anode off-gas isotopic fractions were meaningless. This occurred even in alumina and YSZ tubes without the micro-tubular reactor, i.e. in the absence of Ni catalyst, though not in quartz tubes

  17. Valence control of cobalt oxide thin films by annealing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shijing [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhang Boping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China)

    2011-02-01

    The cobalt oxide (CoO and Co{sub 3}O{sub 4}) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH{sub 3}OCH{sub 2}CH{sub 2}OH and Co(NO{sub 3}){sub 2}.6H{sub 2}O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co{sub 3}O{sub 4} thin film was obtained by annealing in air at 300-600, and N{sub 2} at 300, and transferred to CoO thin film by raising annealing temperature in N{sub 2}. The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  18. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  19. An unknown oxidative metabolism substantially contributes to soil CO2 emissions

    Directory of Open Access Journals (Sweden)

    T. Shahzad

    2013-02-01

    Full Text Available The respiratory release of CO2 from soils is a major determinant of the global carbon cycle. It is traditionally considered that this respiration is an intracellular metabolism consisting of complex biochemical reactions carried out by numerous enzymes and co-factors. Here we show that the endoenzymes released from dead organisms are stabilised in soils and have access to suitable substrates and co-factors to permit function. These enzymes reconstitute an extracellular oxidative metabolism (EXOMET that may substantially contribute to soil respiration (16 to 48% of CO2 released from soils in the present study. EXOMET and respiration from living organisms should be considered separately when studying effects of environmental factors on the C cycle because EXOMET shows specific properties such as resistance to high temperature and toxic compounds.

  20. Contribution to the study of the oxidation reaction of the carbon oxide in contact with catalysts issued from the decomposition of nickel hydro-aluminates at various temperatures; Contribution a l'etude de la reaction d'oxydation de l'oxyde de carbone au contact des catalyseurs issus de la decomposition a diverses temperatures des hydroaluminates de nickel

    Energy Technology Data Exchange (ETDEWEB)

    Samaane, Mikhail

    1966-09-26

    Addressing the study of the oxidation reaction of carbon oxide which produces carbon dioxide, this research thesis reports the study of this reaction in presence of catalysts (2NiO + Al{sub 2}O{sub 3}, NiAl{sub 2}O{sub 4} and NiO + NiAl{sub 2}O{sub 4}) issued from the decomposition of nickel hydro-aluminates at different temperatures. The first part describes experimental techniques and the nature of materials used in this study. The second part reports the study of the catalytic activity of the 2NiO+Al{sub 2}O{sub 3} catalyst during the oxidation of CO. Preliminary studies are also reported: structure and texture of nickel hydro-aluminate which is the raw material used to produce catalysts, activation of this compound to develop the catalytic activity in CO oxidation, chemisorption of CO, O{sub 2} and CO{sub 2} on the 2NiO+Al{sub 2}O{sub 3} solid, interaction of adsorbed gases at the solid surface, and kinetic study of the oxidation reaction. The third part reports the study of the catalytic activity in the oxidation reaction of CO of spinel catalysts (NiAl{sub 2}O{sub 4} and NiO+NiAl{sub 2}O{sub 4}) obtained by calcination of nickel hydro-aluminates at high temperature. The formation of the spinel phase, the chemisorption of CO, O{sub 2} and CO{sub 2} on NiAl{sub 2}O{sub 4}, and the kinetic of the oxidation reaction are herein studied.

  1. Effects of porosity and temperature on oxidation behavior in air of selected nuclear graphites

    International Nuclear Information System (INIS)

    Chen Dongyue; Li Zhengcao; Miao Wei; Zhang Zhengjun

    2012-01-01

    Nuclear graphite endures gas oxidation in High Temperature Gas-cooled Reactor (HTGR), which may threaten the safety of reactor. To study the oxidation behavior of nuclear graphite, weight loss curve is usually measured through Thermo Gravimetric Analysis (TGA) method. In this work, three brands of nuclear graphite for HTGR (i.e., HSM-SC, IG-11, and NBG-18) are oxidized under 873 and 1073 K in open air, and their weight loss curves are obtained. The acceleration of oxidizing rate is observed for both HSM-SC and IG-11, and is attributed to the large porosity increase during oxidation process. For HSM-SC, the porosity increase comes from preferential binder oxidation, and thus its binder quality shall be improved to obtain better oxidation resistance. Temperature effects on oxidation for HSM-SC are also studied, which shows that oxidizing gas tends to be exhausted at graphite surface at high temperature instead of penetrate into the interior of bulk. (author)

  2. Electrochemical performance of 3D porous Ni-Co oxide with electrochemically exfoliated graphene for asymmetric supercapacitor applications

    International Nuclear Information System (INIS)

    Kim, Dae Kyom; Hwang, Minsik; Ko, Dongjin; Kang, Jeongmin; Seong, Kwang-dong; Piao, Yuanzhe

    2017-01-01

    Graphical abstract: The paper reported the Ni-Co oxide/electrochemically exfoliated graphene nanocomposites with 3D porous nano-architectures (NC-EEG) using a simple low temperature solution method combined with a thermal annealing treatment. 3D porous architectures provide large surface areas and shorten electron diffusion pathways for high performance asymmetric supercapacitors. Display Omitted -- Highlights: •A simple low temperature solution method was used for preparing NC-EEG. •Graphene sheets were obtained by electrochemically exfoliation process. •A high capacity of NC-EEG in a three-electrode system, as high as 649 C g −1 , was recorded. •Asymmetric supercapacitor based on NC-EEG exhibited excellent energy density and power density. -- Abstract: Ni-Co oxide, one of the binary metal oxides, has many advantages for use in high-performance supercapacitor electrode materials due to its relatively high electronic conductivity and improved electrochemical performance. In this work, Ni-Co oxide/electrochemically exfoliated graphene nanocomposites (NC-EEG) are successfully synthesized using a simple low temperature solution method combined with a thermal annealing treatment. Graphene sheets are directly obtained by an electrochemical exfoliation process with graphite foil, which is very simple, environmentally friendly, and has a relatively short reaction time. This electrochemically exfoliated graphene (EEG) can improve the electrical conductivity of the Ni-Co oxide nanostructures. The as-prepared NC-EEG nanocomposites have 3D porous architectures that can provide large surface areas and shorten electron diffusion pathways. Electrochemical properties were performed by cyclic voltammetry and galvanostatic charge/discharge in a 6 M KOH electrolyte. The NC-EEG nanocomposites exhibited a high capacity value of 649 C g −1 at a current density of 1.0 A g −1 . The asymmetric supercapacitors, manufactured on the basis of NC-EEG nanocomposites as a positive

  3. Enhanced low-temperature oxidation of zirconium alloys under irradiation

    International Nuclear Information System (INIS)

    Cox, B.; Fidleris, V.

    1989-01-01

    The linear growth of relatively thick (>300 nm) interference-colored oxide films on zirconium alloy specimens exposed in the Advanced Test Reactor (ATR) coolant at ≤55 o C was unexpected. Initial ideas were that this was a photoconduction effect. Experiments to study photoconduction in thin anodic zirconium oxide (ZrO 2 ) films in the laboratory were initiated to provide background data. It was found that, in the laboratory, provided a high electric field was maintained across the oxide during ultraviolet (UV) irradiation, enhanced growth of oxide occurred in the irradiated area. Similarly enhanced growth could be obtained on thin thermally formed oxide films that were immersed in an electrolyte with a high electric field superimposed. This enhanced growth was found to be caused by the development of porosity in the barrier oxide layer by an enhanced local dissolution and reprecipitation process during UV irradiation. Similar porosity was observed in the oxide films on the ATR specimens. Since it is not thought that a high electric field could have been present in this instance, localized dissolution of fast-neutron primary recoil tracks may be the operative mechanism. In all instances, the specimens attempt to maintain the normal barrier-layer oxide thickness, which causes the additional oxide growth. Similar mechanisms may have operated during the formation of thick loosely adherent, porous oxides in homogeneous reactor solutions under irradiation, and may be the cause of enhanced oxidation of zirconium alloys in high-temperature water-cooled reactors in some water chemistries. (author)

  4. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi, E-mail: mousumimitrabesu@gmail.com; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Howrah-711103 (India); Kargupta, Kajari, E-mail: karguptakajari2010@gmail.com [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal, E-mail: gangulysaibal2011@gmail.com [Chemical Engineering department, Universiti Teknologi Petronas, Perak, Tronoh (Malaysia)

    2016-05-06

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the whole temperature range.

  5. The electronic structure of co-sputtered zinc indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Bertomeu, Joan [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, 08028 Barcelona (Spain); Gutmann, Sebastian [Department of Chemistry, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2011-10-01

    Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses {approx}50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO{sub 2} films.

  6. Effect of temperature on the electro-oxidation of ethanol on platinum

    Directory of Open Access Journals (Sweden)

    Ana Paula M. Camargo

    2010-01-01

    Full Text Available We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.

  7. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  8. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  9. Enhanced methanol electro-oxidation reaction on Pt-CoO{sub x}/MWCNTs hybrid electro-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nouralishahi, Amideddin, E-mail: Nouralishahi@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Caspian Faculty of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr (Iran, Islamic Republic of); Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rashidi, Ali Morad, E-mail: Rashidiam@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: Mortazav@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali, E-mail: Khodadad@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Choolaei, Mohammadmehdi, E-mail: Choolaeimm@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2015-04-30

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO{sub x}/MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO{sub x} addition. • Bi-functional mechanism is facilitated in presence of CoO{sub x}. - Abstract: The electro-catalytic behavior of Pt-CoO{sub x}/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH{sub 4} as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO{sub x}, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO{sub ads} on Pt active sites by the participation of CoO{sub x}. Compared to Pt/MWCNTs, Pt-CoO{sub x}/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO{sub x}/MWCNTs, at small overpotentials. However, at higher overpotentials, the

  10. Fluxing template-assisted synthesis of sponge-like Fe2O3 microspheres toward efficient catalysis for CO oxidation

    Science.gov (United States)

    Li, Wenge; Hu, Yanjie; Jiang, Hao; Jiang, Yi; Wang, Yang; Huang, Su; Biswas, Pratim; Li, Chunzhong

    2018-06-01

    Constructing a porous architecture is a considerable strategy to enhance the catalytic activity of metal oxides catalysts for CO oxidation. In this work, we have developed porous sponge-like Fe2O3 microspheres by employing a facile aerosol spray pyrolysis. The NaNO3 salt in the spray solution plays a crucial role as a fluxing sacrifice template in the formation of the sponge-like structure, in which a high surface area of 216.2 m2 g-1 and an average pore size of 4 nm are obtained. This novel Fe2O3 catalyst exhibits an improved catalytic activity compared to usual iron oxides catalysts. Nearly 50% CO conversion at a relatively low temperature of 200 °C and 100% CO conversion at 300 °C at a space velocity of 60 000 ml h-1 g-1 are achieved. Furthermore, it displays an outstanding catalytic stability without distinct decay for 1000 min in a continuous stream at 300 °C. In addition to the effect of plentiful adsorption sites for the gas reactant, the promoted catalytic performance is also attributed to the function of abundant OH groups rooted in the large surface of the sponge-like structure, which induces faster reaction rate of CO oxidation via a bicarbonate route.

  11. Reactivity in the removal of SO{sub 2} and NO{sub x} on Co/Mg/Al mixed oxides derived from hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, A.E. [Department of Chemical and Nuclear Engineering, Universidad Politecnica Valencia, Avda. de los Naranjos s/n, 46022 Valencia (Spain); Lopez-Nieto, J.M.; Corma, A. [Instituto de Tecnologia Quimica, UPV-CSIC, Universidad Politecnica de Valencia, Avenida de los Naranjos s/n., 46022 Valencia (Spain); Lazaro, F.J.; Lopez, A. [Instituto Ciencia de Materiales de Aragon (CSIC- Universidad de Zaragoza), 50015 Zaragoza (Spain)

    1999-04-05

    Metal containing hydrotalcites, where metal oxides present redox properties and hydrotalcite shows a basic character, appear to be new important environmental catalysts for the removal of SO{sub x} and NO{sub x}. Redox and basic properties of a mixed Co/Mg/Al oxide derived from hydrotalcites are tuned in order to achieve the optimal catalytic behavior required. This sample has been characterized showing that cobalt is present in two forms, as isolated and well dispersed paramagnetic ions, and as very small Co-containing particles (in the nanometric range), with an internal antiferromagnetic ordering at low temperature. The redox properties of cobalt allow the reduction of NO with propane at high temperatures and in presence of oxygen. The reduced cobalt species are proposed as the active sites. Nevertheless, for the removal of SO{sub 2} and contrary to the case of Cu/Mg/Al samples, the addition of an oxidant as cerium oxide on Co/Mg/Al is necessary in order to oxidize SO{sub 2} to SO{sub 3}. In this case, similar results than those obtained with previously reported catalyst, i.e. cerium or copper-cerium hydrotalcite, are obtained. These results indicate that this catalyst could be an adequate material for the simultaneous removal of SO{sub 2} and NO{sub x} in a FCC unit

  12. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.

    Science.gov (United States)

    de Weert, J P A; Keijzer, T J S; van Gaans, P F M

    2014-12-01

    In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Reaction mechanism of CO oxidation on Cu2O(111): A density functional study

    Science.gov (United States)

    Sun, Bao-Zhen; Chen, Wen-Kai; Xu, Yi-Jun

    2010-10-01

    The possible reaction mechanisms for CO oxidation on the perfect Cu2O(111) surface have been investigated by performing periodic density functional theoretical calculations. We find that Cu2O(111) is able to facilitate the CO oxidation with different mechanisms. Four possible mechanisms are explored (denoted as MER1, MER2, MLH1, and MLH2, respectively): MER1 is CO(gas)+O2(ads)-->CO2(gas) MER2 is CO(gas)+O2(ads)-->CO3(ads)-->O(ads)+CO2(gas) MLH1 refers to CO(ads)+O2(ads)-->O(ads)+CO2(ads) and MLH2 refers to CO(ads)+O2(ads)-->OOCO(ads)-->O(ads)+CO2(ads). Our transition state calculations clearly reveal that MER1 and MLH2 are both viable; but MER1 mechanism preferentially operates, in which only a moderate energy barrier (60.22 kJ/mol) needs to be overcome. When CO oxidation takes place along MER2 path, it is facile for CO3 formation, but is difficult for its decomposition, thereby CO3 species can stably exist on Cu2O(111). Of course, the reaction of CO with lattice O of Cu2O(111) is also considered. However, the calculated barrier is 600.00 kJ/mol, which is too large to make the path feasible. So, we believe that on Cu2O(111), CO reacts with adsorbed O, rather than lattice O, to form CO2. This is different from the usual Mars-van Krevene mechanism. The present results enrich our understanding of the catalytic oxidation of CO by copper-based and metal-oxide catalysts.

  14. CATALYTIC WET PEROXIDE OXIDATION OF HYDROQUINONE WITH Co(II)/ACTIVE CARBON CATALYST LOADED IN STATIC BED

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃ , pH 5 and reaction time 2.5h.

  15. Gallium Oxide Nanostructures for High Temperature Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chintalapalle, Ramana V. [Univ. of Texas, El Paso, TX (United States)

    2015-04-30

    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  16. Zircaloy-4 and M5 high temperature oxidation and nitriding in air

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C. [Institut de Radioprotection et Surete Nucleaire, Direction de Prevention des Accidents Majeurs, Centre de Cadarache, 13115 St Paul Lez Durance (France)], E-mail: christian.duriez@irsn.fr; Dupont, T.; Schmet, B.; Enoch, F. [Universite Technologique de Troyes, BP 2060, 10010 Troyes (France)

    2008-10-15

    For the purpose of nuclear power plant severe accident analysis, degradation of Zircaloy-4 and M5 cladding tubes in air at high temperature was investigated by thermo-gravimetric analysis, in isothermal conditions, in a 600-1200 deg. C temperature range. Alloys were investigated either in a 'as received' bare state, or after steam pre-oxidation at 500 {sup o}C to simulate in-reactor corrosion. At the beginning of air exposure, the oxidation rate obeys a parabolic law, characteristic of solid-state diffusion limited regime. Parabolic rate constants compare, for Zircaloy-4 as well as for M5, with recently assessed correlations for high temperature Zircaloy-4 steam-oxidation. A thick layer of dense protective zirconia having a columnar structure forms during this diffusion-limited regime. Then, a kinetic transition (breakaway type) occurs, due to radial cracking along the columnar grain boundaries of this protective dense oxide scale. The breakaway is observed for a scale thickness that strongly increases with temperature. At the lowest temperatures, the M5 alloy appears to be breakaway-resistant, showing a delayed transition compared to Zircaloy-4. However, for both alloys, a pre-existing corrosion scale favours the transition, which occurs much earlier. The post transition kinetic regime is linear only for the lowest temperatures investigated. From 800 deg. C, a continuously accelerated regime is observed and is associated with formation of a strongly porous non-protective oxide. A mechanism of nitrogen-assisted oxide growth, involving formation and re-oxidation of ZrN particles, as well as nitrogen associated zirconia phase transformations, is proposed to be responsible for this accelerated degradation.

  17. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects on h-BN, which act as strong trapping sites for Cu atoms and inhibit their clustering. The strong binding of Cu atoms at boron vacancy also up-shifts the energy level of Cu-d states to the Fermi level and promotes the formation of peroxide-like intermediate. CO oxidation over Cu atoms embedded in h-BN would proceed through the Langmuir-Hinshelwood mechanism with the formation of a peroxide-like complex by reaction of coadsorbed CO and O2, with the dissociation of which the a CO2 molecule and an adsorbed O atom are formed. Then, the embedded Cu atom is regenerated by the reaction of another gaseous CO with the remnant O atom. The calculated energy barriers for the formation and dissociation of peroxide complex and regeneration of embedded Cu atoms are as low as 0.26, 0.11 and 0.03 eV, respectively, indicating the potential high catalytic performance of Cu atoms embedded in h-BN for low temperature CO oxidation. © the Partner Organisations 2014.

  18. Thermogravimetric study of oxidation of a PdCr alloy used for high-temperature sensors

    Science.gov (United States)

    Boyd, Darwin L.; Zeller, Mary V.

    1994-01-01

    In this study, the oxidation of Pd-13 weight percent Cr, a candidate alloy for high-temperature strain gages, was investigated by thermogravimetry. Although the bulk alloy exhibits linear electrical resistivity versus temperature and stable resistivity at elevated temperatures, problems attributed to oxidation occur when this material is fabricated into strain gages. In this work, isothermal thermogravimetry (TG) was used to study the oxidation kinetics. Results indicate that the oxidation of Pd-13 weight percent Cr was approximately parabolic in time at 600 C but exhibited greater passivation from 700 to 900 C. At 1100 C, the oxidation rate again increased.

  19. Pulsed laser deposited MnCo{sub 2}O{sub 4} protective layer on SS430 for solid oxide fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Anshu, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com; Mohiddon, Md. Ahamad, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com [National Institute of Technology Andhra Pradesh, Tadepalliguem 534101 (India); Prasad, Muvva D. [UGC Networking Centre, School of Chemistry, University of Hyderabad, Hyderabad 500046, India. Phone:+91-40-23134382, Fax:+91-40-23010227 (India)

    2016-05-23

    The growth and oxidation study of pulsed laser deposited MnCo{sub 2}O{sub 4} protective layer on SS430 substrate for solid oxide fuel cell application is demonstrated. MnCo{sub 2}O{sub 4} has been achieved in three different ways including, deposition at higher substrate temperature (700°C), and deposition at room temperature on pre-oxidized and untreated SS430 substrate followed by annealing at 700°C for 2 hrs. X-ray diffraction and Raman spectroscopy has been applied to demonstrate the kind of phases developed in each case. These three samples were subjected to heat treatment at 750°C for 5 hr. The extent of undesired Fe{sub 2}O{sub 3} phase formation in the post deposition heat treated samples is discussed based on Raman spectroscopic results.

  20. Determination of {sup 60} Co by means of Neutron Activation Analysis in the sorption of Co in synthesized porous oxides by the combustion method; Determinacion de {sup 60} Co por medio de AAN en la sorcion de Co en oxidos porosos sintetizados por metodo de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, V.; Bulbulian, S.; Urena, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: violelugo@yahoo.es

    2005-07-01

    Recently inorganic materials are investigating as sorbent of radioactive pollutants present in water. The inorganic oxides belong to this group of materials. A quick method exists for the obtaining of inorganic oxides, denominated combustion method that could be used to produce porous oxides successfully with good properties for the sorption of radioactive ions. In this investigation, iron oxides, magnesium and zinc were synthesized obtained by the combustion method, comparing them with those synthesized by the calcination method, using two different synthesis temperatures. The obtained solids were characterized by scanning electron microscopy (Sem), by X-ray diffraction (XRD) and by semiquantitative elemental analysis (EDS). After the characterization, the crystalline oxides synthesized by both methods, to temperature of 800 C, were evaluated as sorbents in the removal of Co{sup 2+} ions, through experiments in batch, and using neutron activation analysis, determining the sorption percentage, with this it was concluded that the magnesium oxide produced by combustion it is more effective in the removal of Co{sup 2+} ions than that synthesized by calcination. It was determined the surface area of the magnesium oxides, obtaining a surface area greater for the synthesized oxide by combustion method. (Author)

  1. The oxidation behaviour of sprayed MCrAlY coatings

    International Nuclear Information System (INIS)

    Brandl, W.; Toma, D.; Krueger, J.

    1996-01-01

    Turbine blades are protected against high temperature oxidation by thermal barrier coating (TBC) systems, which consist of a ceramic top coating (ZrO 2 /Y 2 O 3 ) and a metal bond coating (MCrAlY, M = Ni, Co). At high temperatures and under oxidative conditions, between the MCrAlY and the ceramic top coating an oxide scale is formed, which protects the metal against further oxidation. The oxidation behaviour of the thermally sprayed MCrAlY is influenced by the coating process and the composition of the metal alloys. This work is concerned with the isothermal oxidation behaviour of vacuum plasma sprayed (VPS) MCrAlY coatings. The MCrAlY powders used have different aluminium contents: 8 and 12 wt.%. The MCrAlY specimens are oxidized at 1050 C in air as well as in helium with 1% O 2 and the oxidation kinetics are determined thermogravimetrically. The microstructure, morphology and thickness of the oxide scales formed are characterized by metallography, SEM, TEM and XRD. After short time oxidation (6 h) θ-Al 2 O 3 is the main constituent of the oxide scale. Exposure times of 500 h and more lead to oxide scales consisting of α-Al 2 O 3 . Moreover, after a long time oxidation, Cr 2 O 3 and CoO (CoO on the coatings with 8 wt.% Al) are formed. The oxidation rates of both MCrAlY coatings are the same. Beneath the oxide scale an Al-depleted zone is formed and this zone is considerably thicker within the coating with 8 wt.% Al, because the amount of β-NiAl phase in this coating is lower than that in the coating with 12 wt.% Al. The oxide scale formed in He-1% O 2 consists of α-Al 2 O 3 and Cr 2 O 3 on both MCrAlY coatings. (orig.)

  2. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  3. Ytterbia doped nickel–manganese mixed oxide catalysts for liquid phase oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    S.S.P. Sultana

    2017-11-01

    Full Text Available Nickel–manganese mixed oxides doped with 1, 3, 5 mol% ytterbia have been prepared by co-precipitation method and used in the catalytic oxidation of benzyl alcohol. Catalytic activity of these oxides calcined at 400 °C and 500 °C was studied for selective oxidation of benzyl alcohol to the corresponding aldehyde using molecular oxygen as an oxidizing agent. The results showed that thermally stable 5 mol% ytterbia doped nickel–manganese oxide [Yb2O3-(5%-Ni6MnO8] exhibited highest catalytic performance when it was calcined at 400 °C. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a reaction period of 5 h at 100 °C. The mixed oxide prepared has been characterized by scanning election microscopy (SEM and energy dispersive X-ray analysis (EDXA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET and temperature programed reduction (H2-TPR.

  4. The oxidation behavior of classical thermal barrier coatings exposed to extreme temperature

    Directory of Open Access Journals (Sweden)

    Alina DRAGOMIRESCU

    2017-03-01

    Full Text Available Thermal barrier coatings (TBC are designed to protect metal surfaces from extreme temperatures and improve their resistance to oxidation during service. Currently, the most commonly used systems are those that have the TBC structure bond coat (BC / top coat (TC layers. The top coat layer is a ceramic layer. Oxidation tests are designed to identify the dynamics of the thermally oxide layer (TGO growth at the interface of bond coat / top coat layers, delamination mechanism and the TBC structural changes induced by thermal conditions. This paper is a short study on the evolution of aluminum oxide protective layer along with prolonged exposure to the testing temperature. There have been tested rectangular specimens of metal super alloy with four surfaces coated with a duplex thermal barrier coating system. The specimens were microscopically and EDAX analyzed before and after the tests. In order to determine the oxide type, the samples were analyzed using X-ray diffraction. The results of the investigation are encouraging for future studies. The results show a direct relationship between the development of the oxide layer and long exposure to the test temperature. Future research will focus on changing the testing temperature to compare the results.

  5. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2015-03-05

    The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400°C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH) of ethane to ethylene at a relatively low temperature (T<300°C). These catalysts appear to be much more stable than the corresponding composites prepared by other chemical methods; more than 90% of their original intrinsic activity was retained after 50h with time on-stream. Furthermore, the stability was much less affected by the Nb content than in composites prepared by classical "wet" syntheses. These materials, obtained in a solvent-free way, are thus promising green and sustainable alternatives to the current Ni-Nb candidates for the low-temperature ODH of ethane.

  6. Oxides gets environmentally-friendly

    DEFF Research Database (Denmark)

    Pryds, Nini

    for high temperature oxide thermoelectric (TE) modules to become a viable route for power generation, the overall efficiency of these devices must be improved. While most research currently focuses on the enhancement of the thermoelectric properties of the p- and n-type elements of the module, it is also...... necessary to demonstrate a working oxide module and develop stable interconnects with low contact resistance as well as mechanical and the chemical stability. In this presentation I will also show our latest results on the performance of oxide module made of ZnO doped Al (n-type) and CaCoO 349 (p-type) [1...... in realizing cooling devices with high efficiency and low global warming potentials, which are highly desirable for a broad range of applications. The technology relies on the magnetocaloric effect in a solid refrigerant rather than the temperature change that occurs when a gas is compressed. This talk...

  7. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures.

    Science.gov (United States)

    Zhao, Hai-Qian; Wang, Zhong-Hua; Gao, Xing-Cun; Liu, Cheng-Hao; Qi, Han-Bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100-500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300-500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption.

  8. Obtention of superconductivity by room temperature electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Casan-Pastor, N.; Fuertes, A.; Gomez-Romero, P.

    1993-01-01

    The undoped oxide La2CuO4 has required traditionally synthesis under high pressure of oxygen (and high temperatures) to incorporate excess oxygen into its structure and become a superconductor. The electrochemical oxidation of this same oxide at room temperature and pressure constitutes a striking example of the use of an alternative driving force for the oxidation of oxides to become superconductors. Electrochemical treatment of oxides has been frequently applied to their reduction with cationic intercalation. Oxidations of these solid with the concomitant intercalation of anions into their lattice shows also great promises. The paper reports recent results in the electrochemical oxidation of La2CuO4 and other cuprates, showing also the important role of post-oxidation thermal treatments on the properties of the resulting solids

  9. Study on the surface oxidation of uranium in different gaseous atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou

    1996-03-01

    The studying for the surface oxidation of uranium and oxide by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and the surface oxidation of uranium in different gaseous atmospheres such as O 2 , H 2 , CO, CO 2 , H 2 O(v) and air were reviewed. The surface oxidation of uranium is greatly influenced by a number of parameters including atmospheric temperature, pressure, diffusion of adsorbed gas atoms through the oxide layer, surface and interface chemical component, and defect structure and electron nature of the oxide layer. The initial oxidation mechanism and kinetics have been discussed. Suggestions for future work have also been presented. (32 refs., 7 figs., 5 tabs.)

  10. High temperature oxidation characteristics of developed Ni-Cr-W superalloys in air

    International Nuclear Information System (INIS)

    Suzuki, Tomio; Shindo, Masami

    1996-11-01

    For expanding utilization of the Ni-Cr-W superalloy, which has been developed as one of new high temperature structural materials used in the advanced High Temperature Gas-cooled Reactors (HTGRs), in various engineering fields including the structural material for heat utilization system, the oxidation behavior of this alloy in air as one of high oxidizing environments becomes one of key factors. The oxidation tests for the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition and five kinds of experimental Ni-Cr-W alloys with different Cr/W ratio were carried out at high temperatures in the air compared with Hastelloy XR. The conclusions were obtained as follows. (1) The oxidation resistance of the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition was superior to that of Hastelloy XR. (2) The most excellent oxidation resistance was obtained in an alloy with 19% Cr of the industrial scale heat of Ni-Cr-W superalloy. (author)

  11. Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xun [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-07-15

    Biomass is carbon-neutral and utilization of biomass as hydrogen resource shows no impact on atmospheric CO{sub 2} level. Nevertheless, a significant amount of CO{sub 2} is always produced in biomass gasification processes. If the CO{sub 2} produced can further react with biomass, then the biomass gasification coupled with CO{sub 2} reforming of biomass will result in a net decrease of CO{sub 2} level in atmosphere and produce the chemical raw material, syngas. To achieve this concept, a ''Y'' type reactor is developed and applied in bio-oil steam reforming, partial oxidation, or oxidative steam reforming coupled with CO{sub 2} reforming of bio-oil to eliminate the emission of CO{sub 2}. The experimental results show that the reaction systems can efficiently suppress the emission of CO{sub 2} from various reforming processes. The different coupled reaction systems generate the syngas with different molar ratio of CO/H{sub 2}. In addition, coke deposition is encountered in the different reforming processes. Both catalysts and experimental parameters significantly affect the coke deposition. Ni/La{sub 2}O{sub 3} catalyst shows much higher resistivity toward coke deposition than Ni/Al{sub 2}O{sub 3} catalyst, while employing high reaction temperature is vital for elimination of coke deposition. Although the different coupled reaction systems show different characteristic in terms of product distribution and coke deposition, which all can serve as methods for storage of the carbon from fossil fuels or air. (author)

  12. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters

    KAUST Repository

    Allian, Ayman Daoud; Takanabe, Kazuhiro; Fujdala, Kyle L.; Hao, Xianghong; Truex., Timothy J.; Cai, Juan; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-01-01

    Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis

  13. Effect of oxidation and annealing temperature on optical and ...

    Indian Academy of Sciences (India)

    Administrator

    Tin oxide thin films were deposited on glass substrate with 100 nm thickness of Sn, which was coated by magnetron sputtering followed by thermal oxidation at different temperatures. ... Annealing of the samples at 500–650 °C caused the transmittance and optical ..... (αhν)1/2 and (αhν)1/3 to determine the Eg. (b) They used.

  14. Interspecific competition changes photosynthetic and oxidative stress response of barley and barnyard grass to elevated CO2 and temperature

    Directory of Open Access Journals (Sweden)

    Irena Januskaitiene

    2018-03-01

    Full Text Available This work focuses on the investigation of competition interaction between C3 crop barley (Hordeum vulgare L. and C4 weed barnyard grass (Echinochloa crus-galli L. at 2 times higher than ambient [CO2] and +4 0C higher ambient temperature climate conditions. It was hypothesized that interspecific competition will change the response of the investigated plants to increased [CO2] and temperature. The obtained results showed that in the current climate conditions, a higher biomass and photosynthetic rate and a lower antioxidant activity were detected for barley grown under interspecific competition effect. While in the warmed climate and under competition conditions opposite results were detected: a higher water use efficiency, a higher photosynthetic performance, a lower dissipated energy flux and a lower antioxidant enzymes activity were detected for barnyard grass plants. This study highlights that in the future climate conditions, barnyard grass will become more efficient in performance of the photosynthetic apparatus and it will suffer from lower oxidative stress caused by interspecific competition as compared to barley.

  15. Simultaneous oxidation of cyanide and thiocyanate at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario, E-mail: mariodiaz@uniovi.es

    2014-09-15

    Graphical abstract: - Highlights: • The oxidation rate of SCN{sup −} was greatly enhanced by the presence of CN{sup −}. • The degradation of mixtures was significantly affected by temperature and pressure. • A free-radical pathway was proposed, CN{sup −} and CNO{sup −} being the reaction intermediates. • The principal reaction products were found to be HCOO{sup −}, NH{sub 3} and SO{sub 4}{sup 2−}. • One of the parallel routes gives the found products and the other N{sub 2}, CO{sub 2} and H{sub 2}. - Abstract: Thiocyanate and cyanide are important contaminants that frequently appear mixed in industrial effluents. In this work the wet oxidation of mixtures of both compounds, simulating real compositions, was carried out in a semi-batch reactor at temperature between 393 K and 483 K and pressure in the range of 2.0–8.0 MPa. The presence of cyanide (3.85 mM) increased the kinetic constant of thiocyanate degradation by a factor of 1.6, in comparison to the value obtained for the individual degradation of thiocyanate, (5.95 ± 0.05) × 10{sup −5} s{sup −1}. On the other hand, the addition of thiocyanate (0.98 mM) decreased the degradation rate of cyanide by 16%. This revealed the existence of synergistic and inhibitory phenomena between these two species. Additionally, cyanide was identified as an intermediate in the oxidation of thiocyanate, and formate, ammonia and sulfate were found to be the main reaction products. Taking into account the experimental data, a reaction pathway for the simultaneous wet oxidation of both pollutants was proposed. Two parallel reactions beginning from cyanate as intermediate were considered, one yielding ammonia and formate and the other giving carbon dioxide and nitrogen as final products.

  16. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  17. Sensitization of Nanocrystalline Metal Oxides with a Phosphonate-Functionalized Perylene Diimide for Photoelectrochemical Water Oxidation with a CoOx Catalyst.

    Science.gov (United States)

    Kirner, Joel T; Finke, Richard G

    2017-08-23

    A planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoO x ) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MO x ) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO 2 > SnO 2 ≫ WO 3 . Despite highest initial dye loading on TiO 2 films, photocurrent with hydroquinone (H 2 Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO 2 films, likely due to a higher driving force for charge injection into the more positive conduction band energy of SnO 2 . Dyeing conditions and SnO 2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λ max of the dye, and absorbed photon-to-current efficiency of 13% with H 2 Q, a 2-fold improvement over the previous thin-film architecture. A CoO x water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoO x always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO 2 , as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.

  18. Effect of alloying element on mechanical and oxidation properties of Ni-Cr-Mo-Co alloys at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Jin, E-mail: djink@kaeri.re.kr; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo; Kim, Woo Gon; Hwang, Seong Sik; Kim, Hong Pyo

    2016-12-01

    Graphical abstract: Mo rich carbide was developed leading to significant increase of elongation to rupture and creep rupture time of Ni-Cr-Co-Mo alloy at 950 °C. Al addition improved corrosion resistance caused by enhancement of oxide/matrix interface stability. Abstract: The very-high-temperature reactor (VHTR) is a promising Generation-IV reactor design given its clear advantage regarding the production of massive amounts of hydrogen and in generating highly efficient electricity despite the fact that a material challenge remains at a high temperature of around 950 °C, where hydrogen production is possible under high pressure. In particular, among the many components composing a VHTR, the temperature of the intermediate heat exchanger (IHX) is expected to be the highest, with a coolant environment of up to 950 °C. Therefore, this work focuses on the mechanical and oxidation properties at 950 °C as a function of the alloying elements of Cr, Co, Mo, Al, and Ti constituting nickel-based alloys fabricated in a laboratory. The tensile, creep, and oxidation properties of the alloying elements were analyzed with SEM, TEM-EDS, and by assessing the weight change.

  19. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    Science.gov (United States)

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    Science.gov (United States)

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  1. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  2. Controlled synthesis of multi-arm star polyether-polycarbonate polyols based on propylene oxide and CO2.

    Science.gov (United States)

    Hilf, Jeannette; Schulze, Patricia; Seiwert, Jan; Frey, Holger

    2014-01-01

    Multi-arm star copolymers based on a hyperbranched poly(propylene oxide) polyether-polyol (hbPPO) as a core and poly(propylene carbonate) (PPC) arms are synthesized in two steps from propylene oxide (PO), a small amount of glycidol and CO2 . The PPC arms are prepared via carbon dioxide (CO2 )/PO copolymerization, using hbPPO as a multifunctional macroinitiator and the (R,R)-(salcy)CoOBzF5 catalyst. Star copolymers with 14 and 28 PPC arms, respectively, and controlled molecular weights in the range of 2700-8800 g mol(-1) are prepared (Mw /Mn = 1.23-1.61). Thermal analysis reveals lowered glass transition temperatures in the range of -8 to 10 °C for the PPC star polymers compared with linear PPC, which is due to the influence of the flexible polyether core. Successful conversion of the terminal hydroxyl groups with phenylisocyanate demonstrates the potential of the polycarbonate polyols for polyurethane synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structural characterization of oxidized allotaxially grown CoSi2 layers by x-ray scattering

    International Nuclear Information System (INIS)

    Kaendler, I. D.; Seeck, O. H.; Schlomka, J.-P.; Tolan, M.; Press, W.; Stettner, J.; Kappius, L.; Dieker, C.; Mantl, S.

    2000-01-01

    A series of buried CoSi 2 layers prepared by a modified molecular beam epitaxy process (allotaxy) and a subsequent wet-oxidation process was investigated by x-ray scattering. The oxidation time which determines the depth in which the CoSi 2 layers are located within the Si substrates has been varied during the preparation. The electron density profiles and the structure of the interfaces were extracted from specular reflectivity and diffuse scattering measurements. Crystal truncation rod investigations yielded the structure on an atomic level (crystalline quality). It turns out that the roughness of the CoSi 2 layers increases drastically with increasing oxidation time, i.e., with increasing depth of the buried layers. Furthermore, the x-ray data reveal that the oxidation growth process is diffusion limited. (c) 2000 American Institute of Physics

  4. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    International Nuclear Information System (INIS)

    Chavez G, L.; Hinojosa R, M.; Medina L, B.; Ringuede, A.; Cassir, M.; Vannier, R. N.

    2017-01-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi_xCo_1_-_xO_3 (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi_0_._7Co_0_._3O_3, LaNi_0_._5Co_0_._5O_3 and LaNi_0_._3Co_0_._7O_3 structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi_xCo_1_-_xO_3/YSZ (Yttria-stabilized zirconia)/LaNi_xCo_1_-_xO_3 showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi_0_._5Co_0_._5O_3, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  5. Test plan for long-term, low-temperature oxidation of spent fuel, Series 1

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1986-06-01

    Preliminary studies indicated the need for more spent fuel oxidation data in order to determine the probable behavior of spent fuel in a tuff repository. Long-term, low-temperature testing was recommended in a comprehensive technical approach to: (1) confirm the findings of the short-term thermogravimetric analyses scoping experiments; (2) evaluate the effects of variables such as burnup, atmospheric moisture and fuel type on the oxidation rate; and (3) extend the oxidation data base ot representative repository temperatures and better define the temperature dependence of the operative oxidation mechanisms. This document presents the Series 1 test plan to study, on a large number of samples, the effects of atmospheric moisture and temperature on oxidation rate and phase formation. Tests will run for up to two years, use characterized fragmented, and pulverized fuel samples, cover a temperature range of 110 0 C to 175 0 C and be conducted with an atmospheric moisture content rangeing from 0 C to approx. 80 0 C dew point. After testing, the samples will be examined and made available for leaching testing

  6. Low temperature oxidation, co-oxidation and auto-ignition of olefinic and aromatic blending compounds: Experimental study of interactions during the oxidation of a surrogate fuel; Oxydation, co-oxydation et auto-inflammation a basses temperatures d'alcenes et aromatiques types: etude experimentale des interactions au sein d'un carburant-modele

    Energy Technology Data Exchange (ETDEWEB)

    Vanhove, G.

    2004-12-15

    The low-temperature (600-900 K) and high-pressure (5-25 bar) oxidation and auto-ignition of the three position isomers of hexene, of binary mixtures of 1-hexene, toluene and iso-octane, and of a surrogate fuel composed of these three compounds were studied in motor conditions using a rapid compression machine. Auto-ignition delay times were measured as long as intermediate products concentrations during the delay. The results show that the oxidation chemistry of the hexenes is very dependent on the position of the double bond inside the molecule, and that strong interactions between the oxidation mechanisms of hydrocarbons in mixtures can occur. The data obtained concerning the surrogate fuel give a good insight into the behaviour of a practical gasoline after an homogeneous charge compression. (author)

  7. Elementary steps of the catalytic oxidation of CO in a gas phase in the presence of rhenium cations with carbonyl and oxygen ligands: a comparison with heterogeneous catalysis

    International Nuclear Information System (INIS)

    Goncharov, V.B.; Fialko, E.F.; Shejnin, D.Eh.; Kikhtenko, A.V.

    1997-01-01

    Reactivity in a gaseous phase o rhenium (Re + ) and rhenium monocarbonyl (ReCO + ) in the reaction of CO oxidation in oxygen-containing reagents (NO, O 2 , H 2 O) is studied through the method of the ionic cyclotron resonance. It is shown that presence of carbonyl ligand essentially influences the ion reactivity. The effective channel of the metal monocarbonyl ions oxidation through molecular oxygen is found. Accounting for this stage makes of possible to explain the low-temperature activity of a number of oxide catalyzer Mo, W in the reaction of CO oxidation by molecular oxygen

  8. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Science.gov (United States)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  9. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    International Nuclear Information System (INIS)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-01-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H 2 S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H 2 S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H 2 S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H 2 and CO 2 on H 2 S adsorption was also investigated. The presence of hydrogen in the H 2 S stream had a positive effect on the removal of H 2 S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn 2+ ) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO 2 ) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H 2 S and CO 2 .

  10. Low-temperature carbon monoxide oxidation over zirconia-supported CuO–CeO{sub 2} catalysts: Effect of zirconia support properties

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Elisa, E-mail: elisa.moretti@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre Venezia (Italy); Molina, Antonia Infantes [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga (Spain); Sponchia, Gabriele; Talon, Aldo; Frattini, Romana [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre Venezia (Italy); Rodriguez-Castellon, Enrique [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga (Spain); Storaro, Loretta [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre Venezia (Italy)

    2017-05-01

    Highlights: • CuO-CeO{sub 2}/ZrO{sub 2} materials were investigated in the low temperature CO oxidation. • High surface area ZrO{sub 2} synthetized by sol-gel method. • Low ZrO{sub 2} surface area synthetized by fast precipitation. • Sol-gel samples showed, after impregnation, a severe decrease of surface area. • CuO-CeO{sub 2}/ZrO{sub 2} with precipitated ZrO{sub 2} led to a very active catalyst. - Abstract: A study was conducted to investigate the effect of the preparation route of ZrO{sub 2} in CuO–CeO{sub 2}/ZrO{sub 2} catalysts for the oxidation of carbon monoxide at low temperature (COX). Four ZrO{sub 2} supports were synthetized via either type sol-gel methodology or precipitation. The final Cu-Ce-Zr oxide catalysts were prepared by incipient wetness co-impregnation with copper and cerium solutions (with a loading of 6 wt% of CuO and 20 wt% of CeO{sub 2}). The catalyst crystalline phases, texture and active species reducibility were determined by XRD, N{sub 2} physisorption at −196 °C and H{sub 2}-TPR, respectively; meanwhile the surface composition and copper-cerium electronic states were studied by XPS. The catalytic activity was evaluated in the oxidation of CO to CO{sub 2}, in the 40–215 °C temperature range. Catalytic results evidenced that the samples prepared by a sol-gel methodology showed, after the impregnation, a severe decrease of specific surface area and pore volume attributable to a wide degree of pore blockage caused by the presence of metal oxide particles and a collapse of the structure partially burying the active sites. A simple co-impregnation of a zirconia support, obtained through facile and fast precipitation, provided instead a catalyst with very good redox properties and high dispersion of the active phases, which completely oxidizes CO in the range 115–215 °C with T{sub 50} of 65 °C. This higher observed activity was ascribed to the formation of a larger fraction of highly dispersed and easily reducible Cu

  11. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    International Nuclear Information System (INIS)

    Hsieh, Chien-Te; Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan; Chen, Po-Yen; Jang, Bi-Sheng

    2015-01-01

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe 3 ) and oxygen (O 2 ) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H 2 within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO 2 . The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O ads and Pt–(OH) ads ) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed

  12. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    This study examines the initial performance and durability of a solid oxide cell applied for co-electrolysis of CO2 and H2O. Such a cell, when powered by renewable/nuclear energy, could be used to recycle CO2 into sustainable hydrocarbon fuels. Polarization curves and electrochemical impedance...... systematically varied test conditions enabled clear visual identification of five electrode processes that contribute to the cell resistance. The processes could be assigned to each electrode and to gas concentration effects by examining their dependence on gas composition changes and temperature. This study...

  13. Oxide ion diffusion mechanism related to Co and Fe ions in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ using in-situ X-ray absorption spectroscopy

    Science.gov (United States)

    Itoh, Takanori; Imai, Hideto

    2018-03-01

    The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.

  14. Residual stresses in high temperature corrosion of pure zirconium using elasto-viscoplastic model: Application to the deflection test in monofacial oxidation

    Science.gov (United States)

    Fettré, D.; Bouvier, S.; Favergeon, J.; Kurpaska, L.

    2015-12-01

    The paper is devoted to modeling residual stresses and strains in an oxide film formed during high temperature oxidation. It describes the deflection test in isothermal high-temperature monofacial oxidation (DTMO) of pure zirconium. The model incorporates kinetics and mechanism of oxidation and takes into account elastic, viscoplastic, growth and chemical strains. Different growth strains models are considered, namely, isotropic growth strains given by Pilling-Bedworth ratio, anisotropic growth strains defined by Parise and co-authors and physically based model for growth strain proposed by Clarke. Creep mechanisms based on dislocation slip and core diffusion, are used. A mechanism responsible for through thickness normal stress gradient in the oxide film is proposed. The material parameters are identified using deflection tests under 400 °C, 500 °C and 600 °C. The effect of temperature on creep and stress relaxation is analyzed. Numerical sensitivity study of the DTMO experiment is proposed in order to investigate the effects of the initial foil thickness and platinum coating on the deflection curves.

  15. Influence of Structure and Charge State on the Mechanism of CO Oxidation on Gold Clusters

    Science.gov (United States)

    Johnson, Grant; Burgel, Christian; Reilly, Nelly; Mitric, Roland; Kimble, Michele; Tyo, Eric; Castleman, A. W.; Bonacic-Koutecky, Vlasta

    2008-05-01

    Gas-phase reactivity experiments and high level theoretical calculations have been employed to study the interaction of both positively and negatively charged gold oxide clusters with carbon monoxide (CO). We demonstrate that for negatively charged clusters CO is oxidized to CO2 by an Eley-Ridel-like (ER-) mechanism involving the attack of CO on oxygen rather than gold. In contrast, for positively charged clusters, the oxidation reaction may also occur by a Langmuir-Hinshelwood-like (LH-) mechanism involving the initial binding of CO to a gold atom followed by subsequent migration to an oxygen site. The LH mechanism is made possible through the large energy gain associated with the adsorption of two CO molecules onto cationic gold clusters. Structure-reactivity relationships are also established which demonstrate that terminally bound oxygen atoms are the most active sites for CO oxidation. Bridge bonded oxygen atoms and molecularly bound O2 units are shown to be inert. We also establish an inverse relationship between the binding energy of CO to gold clusters and the energy of the clusters lowest unoccupied molecular orbital (LUMO).

  16. Aluminum Wire Meshes Coated with Co-Mn-Al and Co Oxides as Catalysts for Deep Ethanol Oxidation.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Kovanda, F.; Balabánová, Jana; Kšírová, P.

    2018-01-01

    Roč. 304, SI (2018), s. 165-171 ISSN 0920-5861. [Czech-Italian-Spanish Symposium in Catalysis /7./. Třešť, 13.06.2017-17.06.2017] R&D Projects: GA ČR GA17-08389S Institutional support: RVO:67985858 Keywords : GA17-08389S * Co-Mn-Al mixed oxides * aluminum mesh Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 4.636, year: 2016

  17. Comparative study of high temperature oxidation behaviour in AISI 304 and AISI 439 stainless steels

    Directory of Open Access Journals (Sweden)

    Antônio Claret Soares Sabioni

    2003-06-01

    Full Text Available This work deals with a comparison of high temperature oxidation behaviour in AISI 304 austenitic and AISI 439 ferritic stainless steels. The oxidation experiments were performed between 850 and 950 °C, in oxygen and Ar (100 vpm H2. In most cases, it was formed a Cr2O3 protective scale, whose growth kinetics follows a parabolic law. The exception was for the the AISI 304 steel, at 950 °C, in oxygen atmosphere, which forms an iron oxide external layer. The oxidation resistance of the AISI 439 does not depend on the atmosphere. The AISI 304 has the same oxidation resistance in both atmospheres, at 850 °C, but at higher temperatures, its oxidation rate strongly increases in oxygen atmosphere. Concerning the performance of these steels under oxidation, our results show that the AISI 439 steel has higher oxidation resistance in oxidizing atmosphere, above 850 °C, while, in low pO2 atmosphere, the AISI 304 steel has higher oxidation resistance than the AISI 439, in all the temperature range investigated.

  18. Electrosynthesis of Biomimetic Manganese-Calcium Oxides for Water Oxidation Catalysis--Atomic Structure and Functionality.

    Science.gov (United States)

    González-Flores, Diego; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Martínez-Moreno, Elías; Pasquini, Chiara; Mohammadi, Mohammad Reza; Klingan, Katharina; Gernet, Ulrich; Fischer, Anna; Dau, Holger

    2016-02-19

    Water-oxidizing calcium-manganese oxides, which mimic the inorganic core of the biological catalyst, were synthesized and structurally characterized by X-ray absorption spectroscopy at the manganese and calcium K edges. The amorphous, birnesite-type oxides are obtained through a simple protocol that involves electrodeposition followed by active-site creation through annealing at moderate temperatures. Calcium ions are inessential, but tune the electrocatalytic properties. For increasing calcium/manganese molar ratios, both Tafel slopes and exchange current densities decrease gradually, resulting in optimal catalytic performance at calcium/manganese molar ratios of close to 10 %. Tracking UV/Vis absorption changes during electrochemical operation suggests that inactive oxides reach their highest, all-Mn(IV) oxidation state at comparably low electrode potentials. The ability to undergo redox transitions and the presence of a minor fraction of Mn(III) ions at catalytic potentials is identified as a prerequisite for catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improvement of low temperature oxidation resistance in MoSi{sub 2}-oxides composites; Sankabutsu no fukugoka ni yoru MoSi{sub 2} zairyo no teion sanka tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, W.; Uchiyama, T. [Riken Corp., Saitama (Japan)

    1999-11-15

    MoSi{sub 2}-oxides composites using fine aluminosilicate powder (< 0.2{mu}m) have demonstrated excellent low temperature oxidation resistance and thermal shock resistance. These properties strongly depend on microstructural morphology and are obtained in composites that network-structures of both phases of MoSi{sub 2} and oxides are developed, i.e., in composites with oxides of 20 {approx} 40 vol. %. When one phase is independently dispersed in the other phase, on the other hand, problems of low temperature oxidation and thermal shock occur. The low temperature oxidation problem occurs in the composites with oxides less than 15 vol. % and the thermal shock problem occurs in the composites with oxides more than 50 vol. %. These results will contribute to material design approaches for high temperature structural applications of MoSi{sub 2}. (author)

  20. Processing, Structure and High Temperature Oxidation Properties of Polymer-Derived and Hafnium Oxide Based Ceramic Systems

    Science.gov (United States)

    Terauds, Kalvis

    Demands for hypersonic aircraft are driving the development of ultra-high temperature structural materials. These aircraft, envisioned to sustain Mach 5+, are expected to experience continuous temperatures of 1200--1800°C on the aircraft surface and temperatures as high as 2800°C in combustion zones. Breakthroughs in the development of fiber based ceramic matrix composites (CMCs) are opening the door to a new class of high-tech UHT structures for aerospace applications. One limitation with current carbon fiber or silicon carbide fiber based CMC technology is the inherent problem of material oxidation, requiring new approaches for protective environmental barrier coatings (EBC) in extreme environments. This thesis focuses on the development and characterization of SiCN-HfO2 based ceramic composite EBC systems to be used as a protective layer for silicon carbide fiber based CMCs. The presented work covers three main architectures for protection (i) multilayer films, (ii) polymer-derived HfSiCNO, and (iii) composite SiCN-HfO 2 infiltration. The scope of this thesis covers processing development, material characterization, and high temperature oxidation behavior of these three SiCN-HfO2 based systems. This work shows that the SiCN-HfO 2 composite materials react upon oxidation to form HfSiO4, offering a stable EBC in streaming air and water vapor at 1600°C.

  1. Effect of temperature on the electro-oxidation of ethanol on platinum

    OpenAIRE

    Camargo, Ana Paula M.; Previdello, Bruno A. F.; Varela, Hamilton; Gonzalez, Ernesto R.

    2010-01-01

    We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, an...

  2. High temperature oxidation behaviour of mullite coated C/C composites in air

    International Nuclear Information System (INIS)

    Fritze, H.; Borchardt, G.; Weber, S.; Scherrer, S.; Weiss, R.

    1997-01-01

    Based on thermogravimetric measurements on Si-SiC-mullite coated C/C material the temperature dependence of the overall rate constant is interpreted in the temperature range 400 C 1400 C), however, the oxidation behaviour of SiC limits long term application. In this temperature range, additional outer mullite coatings produced by pulsed laser deposition improve the oxidation behaviour. (orig.)

  3. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  4. New transport phenomena probed by dielectric spectroscopy of oxidized and non-oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, B.; Axelrod, E.; Sa' ar, A. [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2007-05-15

    Dielectric spectroscopy accompanied by infrared (IR) and photoluminescence (PL) spectroscopy have been utilized to reveal the correlation between transport, optical and structural properties of oxidized porous silicon (PS). Three relaxation processes at low-, mid- and high-temperatures were observed, including dc-conductivity at high-temperatures. Both the low-T relaxation and the dc conductivity were found to be thermally activated processes that involve tunneling and hopping in between the nanocrystals in oxidized PS. We have found that the dc-conductivity is limited by geometrical constrictions along the transport channels, which are not effected by the oxidation process and are characterized by activation energies of about {proportional_to}0.85 eV. The low-T relaxation process involves thermal activation followed by tunneling in between neighbor nanocrystals, with somewhat lower activation energies. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    Directory of Open Access Journals (Sweden)

    Seungwon Lee

    2016-12-01

    Full Text Available Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue degradation under ultraviolet (UV and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating.

  6. The Influence of Plasma-Based Nitriding and Oxidizing Treatments on the Mechanical and Corrosion Properties of CoCrMo Biomedical Alloy

    Science.gov (United States)

    Noli, Fotini; Pichon, Luc; Öztürk, Orhan

    2018-04-01

    Plasma-based nitriding and/or oxidizing treatments were applied to CoCrMo alloy to improve its surface mechanical properties and corrosion resistance for biomedical applications. Three treatments were performed. A set of CoCrMo samples has been subjected to nitriding at moderate temperatures ( 400 °C). A second set of CoCrMo samples was oxidized at 395 °C in pure O2. The last set of CoCrMo samples was nitrided and subsequently oxidized under the experimental conditions of previous sets (double treatment). The microstructure and morphology of the layers formed on the CoCrMo alloy were investigated by X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. In addition, nitrogen and oxygen profiles were determined by Glow Discharge Optical Emission Spectroscopy, Rutherford Backscattering Spectroscopy, Energy-Dispersive X-ray, and Nuclear Reaction Analysis. Significant improvement of the Vickers hardness of the CoCrMo samples after plasma nitriding was observed due to the supersaturated nitrogen solution and the formation of an expanded FCC γ N phase and CrN precipitates. In the case of the oxidized samples, Vickers hardness improvement was minimal. The corrosion behavior of the samples was investigated in simulated body fluid (0.9 pct NaCl solution at 37 °C) using electrochemical techniques (potentiodynamic polarization and cyclic voltammetry). The concentration of metal ions released from the CoCrMo surfaces was determined by Instrumental Neutron Activation Analysis. The experimental results clearly indicate that the CoCrMo surface subjected to the double surface treatment consisting in plasma nitriding and plasma oxidizing exhibited lower deterioration and better resistance to corrosion compared to the nitrided, oxidized, and untreated samples. This enhancement is believed to be due to the formation of a thicker and more stable layer.

  7. Isothermal Oxidation of Magnetite to Hematite in Air and Cyclic Reduction/Oxidation Under Carbon Looping Combustion Conditions

    Science.gov (United States)

    Simmonds, Tegan; Hayes, Peter C.

    2017-12-01

    In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 °C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place.

  8. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Lue Shiquan; Long, Guohui; Ji Yuan; Meng Xiangwei; Zhao Hongyuan; Sun Cuicui

    2011-01-01

    Research highlights: → We synthesize a new kind of layered perovskite SmBaCoCuO 5+x (SBCCO) as a cathode material of a solid oxide fuel cell. → There are some reports on the performance of cathodes in proton-conducting SOFCs based on BaCe 0.8 Sm 0.2 O 3-δ electrolyte. → However, to the best of our knowledge, the performance of SBCCO cathodes in oxygen-ion conducting SOFCs has not been reported to date. → In this work, the ceramic powder SBCCO is examined as a cathode for IT-SOFCs based on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte. - Abstract: The performance of SmBaCoCuO 5+x (SBCCO) cathode has been investigated for their potential utilization in intermediate-temperature solid oxide fuel cells (IT-SOFCs). The powder X-ray diffraction (XRD), thermal expansion and electrochemical performance on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte are evaluated. XRD results show that there is no chemical reaction between SBCCO cathode and GDC electrolyte when the temperature is below 950 o C. The thermal expansion coefficient (TEC) value of SBCCO is 15.53 x 10 -6 K -1 , which is ∼23% lower than the TEC of the SmBaCo 2 O 5+x (SBCO) sample. The electrochemical impedance spectra reveals that SBCCO symmetrical half-cells by sintering at 950 deg. C has the best electrochemical performance and the area specific resistance (ASR) of SBCCO cathode is as low as 0.086 Ω cm 2 at 800 o C. An electrolyte-supported fuel cell generates good performance with the maximum power density of 517 mW cm -2 at 800 deg. C in H 2 . Preliminary results indicate that SBCCO is promising as a cathode for IT-SOFCs.

  9. Gas phase analysis of CO interactions with solid surfaces at high temperatures

    International Nuclear Information System (INIS)

    Anghel, Clara; Hoernlund, Erik; Hultquist, Gunnar; Limbaeck, Magnus

    2004-01-01

    An in situ method including mass spectrometry and labeled gases is presented and used to gain information on adsorption of molecules at high temperatures (>300 deg. C). Isotopic exchange rate in H 2 upon exposure to an oxidized zicaloy-2 sample and exchange rate in CO upon exposure to various materials have been measured. From these measurements, molecular dissociation rates in respective system have been calculated. The influence of CO and N 2 on the uptake rate of H 2 in zirconium and oxidized zicaloy-2 is discussed in terms of tendency for adsorption at high temperatures. In the case of oxidized Cr exposed to CO gas with 12 C, 13 C, 16 O and 18 O, the influence of H 2 O is investigated with respect to dissociation of CO molecules. The presented data supports a view of different tendencies for molecular adsorption of H 2 O, CO, N 2 , and H 2 molecules on surfaces at high temperatures

  10. Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca{sub 3}Co{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Holgate, Tim C., E-mail: timholgate@hotmail.com [Dept. of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, Building 779, 4000 Roskilde (Denmark); Han, Li; Wu, NingYu [Dept. of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, Building 779, 4000 Roskilde (Denmark); Bøjesen, Espen D.; Christensen, Mogens; Iversen, Bo B. [Centre for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, 8000 Aarhus C (Denmark); Nong, Ngo Van; Pryds, Nini [Dept. of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, Building 779, 4000 Roskilde (Denmark)

    2014-01-05

    Highlights: • The competitive thermoelectric oxide Ca{sub 3}Co{sub 4}O{sub 9} and a custom Fe–Cr alloy were interfaced using spark plasma sintering. • Compared to similarly contacted Ni/Ca{sub 3}Co{sub 4}O{sub 9} interfaces, the high-temperature stability and electrical contact resistance were improved. • The successes and issues associated with this interfacing technique and the materials involved are discussed. -- Abstract: A customized Fe–Cr alloy that has been optimized for high temperature applications in oxidizing atmospheres has been interfaced via spark plasma sintering (SPS) with a p-type thermoelectric oxide material: calcium cobaltate (Ca{sub 3}Co{sub 4}O{sub 9}). The properties of the alloy have been analyzed for its compatibility with the Ca{sub 3}Co{sub 4}O{sub 9} in terms of its thermal expansion and transport properties. The thermal and electrical contact resistances have been measured as a function of temperature, and the long term electronic integrity of the interface analyzed by measuring the resistance vs. time at an elevated temperature. The kinetics of the interface have been analyzed through imaging with scanning electron microscopy (SEM), elemental analysis using energy dispersive spectroscopy (EDS), and phase identification with X-ray diffraction (XRD). The results reveal the formation of an intermediate phase containing calcium and chromium in the interface that is highly resistive at room temperature, but conducting at the intended thermoelectric device hot-side operating temperature of 800 °C. As the alloy is well matched in terms of its thermal expansion and highly conducting compared to the Ca{sub 3}Co{sub 4}O{sub 9}, it may be further considered as an interconnect material candidate at least with application on the hot-side of an oxide thermoelectric power generation module.

  11. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  12. Modelling of elementary kinetics of H2 and CO oxidation on ceria pattern cells

    International Nuclear Information System (INIS)

    Patel, HC; Tabish, AN; Aravind, PV

    2015-01-01

    Elementary kinetic mechanisms of fuel oxidation on ceria have not been dealt with in detail in literature. An elementary kinetic model is developed considering charge transfer and adsorption steps for electrochemical H 2 and CO oxidation on ceria. The reaction chemistry is solved by fitting previously obtained impedance spectra for H 2 and CO oxidation on ceria. The rate determining step is found to be the charge transfer rather than the adsorption for both H 2 and CO. A method is presented to extend the kinetics obtained from pattern anodes to macroscopic simulations in which the activation overvoltage can be calculated on the basis of elementary kinetics.

  13. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    International Nuclear Information System (INIS)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-01-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au 3 + and Ag 3 + clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au 3 + the cluster itself acts as reactive species that facilitates the formation of CO 2 from N 2 O and CO, for silver the oxidized clusters Ag 3 O x + (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N 2 O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  14. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    Science.gov (United States)

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-03-01

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au3+ and Ag3+ clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au3+ the cluster itself acts as reactive species that facilitates the formation of CO2 from N2O and CO, for silver the oxidized clusters Ag3Ox+ (n = 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N2O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  15. Evaluation of the structure and microstructure of NixMg1-xO oxides obtained by co-precipitation

    International Nuclear Information System (INIS)

    Martinez L, G.; Kryshtab, T.; Hesiquio G, M.; Kryvko, A.

    2013-01-01

    Ni x Mg 1-x O oxides were prepared by thermal treatment at temperatures of 400, 600 and 800 C from a hydrotalcite-like precursor obtained by co-precipitation at constant ph. The oxides obtained were characterized by X-ray diffraction methods. From the obtained results we concluded that the oxides calcined at temperatures of 400, and 600 C are unstable that means that there exists the effect of memory and with a time they return to the precursor. Presence of Ni in Mg oxide provides stability of the compounds thermally treated at 800 C. In order to analyze the structure and microstructure, the reflections 111, 200 and 220 were used. The positions of the maxima of the diffraction peaks are shifted with respect to the simulated ones for Mg O and Ni O. This result reveals that in solid solutions studied compressive strains or vacation are present. The parameters of the microstructure (coherent domain size and micro deformations) were evaluated. The coherent domain size was found to be in the range of 8 - 10 nm and the presence of residual strains of micro deformation can be associated with the existence of extended defects. (Author)

  16. Influence of oxidation temperature on the interfacial properties of n-type 4H-SiC MOS capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yifan; Lv, Hongliang [School of Microelectronics, Xidian University, Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Song, Qingwen, E-mail: qwsong@xidian.edu.cn [School of Microelectronics, Xidian University, Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xi’an 710071 (China); School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071 (China); Tang, Xiaoyan, E-mail: xytang@xidian.edu.cn [School of Microelectronics, Xidian University, Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Xiao, Li; Wang, Liangyong; Tang, Guangming [Zhongxing Telecommunication Equipment Corporation, Shenzhen 518057 (China); Zhang, Yimen; Zhang, Yuming [School of Microelectronics, Xidian University, Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xi’an 710071 (China)

    2017-03-01

    Highlights: • Effect of oxidation temperature on interfacial properties of SiO{sub 2}/SiC is investigated. • Raising the oxidation temperature effectively decreases the density of NITs and N{sub eff}. • The higher oxidation temperature reduces the surface RMS roughness of the grow SiO{sub 2}. • SIMS and XPS results reveal the improvement mechanism of high temperature oxidation. - Abstract: The effect of oxidation temperature on interfacial properties of n-type 4H-SiC metal-oxide-semiconductor capacitors has been systematically investigated. Thermal dry oxidation process with three different oxidation temperatures 1200 °C, 1300 °C and 1350 °C were employed to grow SiO{sub 2} dielectric, following by the standard post-oxidation annealing (POA) in NO ambience at 1175 °C for 2 h. The root mean square (RMS) roughness measured by Atomic Force Microscopy for the thermally grown SiO{sub 2} before POA process is reduced with increasing the oxidation temperature, obtaining an atomically flat surface with a RMS of 0.157 nm from the sample oxidized at 1350 °C. Several kinds of electrical measurements were used to evaluate the densities of near interface traps and effective fixed dielectric charge for the samples, exhibiting a trend reduced with increasing the oxidation temperature. The interface state density of 3 × 10{sup 11} cm{sup −2}eV{sup −1} at 0.2 eV from the conduction band edge was achieved from conductance method measurement for the sample oxidized at 1350 °C. The results from Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy demonstrate that high oxidation temperature can reduce the width of transition layer, the excess Si and silicon suboxide compositions near the interface, leading to effective improvement of the interfacial properties.

  17. Materials identification and surveillance project item evaluation: Items, impure plutonium oxide (ATL27960) and pure plutonium oxide (PEOR3258)

    International Nuclear Information System (INIS)

    Allen, T.; Appert, Q.; Davis, C.

    1997-03-01

    In this report, Los Alamos scientists characterize properties relevant to storage of an impure plutonium oxide (74 mass % plutonium) in accordance with the Department of Energy (DOE) standard DOE-STD-3013-96. This oxide is of interest because it is the first impure plutonium oxide sample to be evaluated and it is similar to other materials that must be stored. Methods used to characterize the oxide at certain points during calcination include surface-area analyses, mass loss-on-ignition (LOI) measurements, elemental analysis, moisture-adsorption measurements, and quantitative supercritical-CO 2 extraction of adsorbed water. Significant decreases in the LOI and surface area occurred as the oxide was calcined at progressively increasing temperatures. Studies indicate that supercritical-CO 2 extraction is an effective method for removing adsorbed water from oxides. We extracted the water from powdered oxides (high-purity ZrO 2 , pure PuO 2 , and impure plutonium oxide) using CO 2 at 3000 psi pressure and 75 degrees C, and we quantitatively determined it by using gravimetric and dew-point procedures. The effectiveness of the extraction method is demonstrated by good agreement between the amounts of water extracted from pure zirconium and plutonium dioxides and the mass changes obtained from LOI analyses. However, the amount of moisture (0.025 mass %) extracted from the impure plutonium oxide after it had been calcined at 950 degrees C and stored for a period of months is much less than the LOI value (0.97 mass %). These results imply that the impure plutonium oxide is free of adsorbed water after calcination at 950 degrees C, even though the sample does not satisfy the LOI requirement of <0.50 mass % for storage

  18. Surface coating of ceria nanostructures for high-temperature oxidation protection

    Science.gov (United States)

    Aadhavan, R.; Bhanuchandar, S.; Babu, K. Suresh

    2018-04-01

    Stainless steels are used in high-temperature structural applications but suffer from degradation at an elevated temperature of operation due to thermal stress which leads to spallation. Ceria coating over chromium containing alloys induces protective chromia layer formation at alloy/ceria interface thereby preventing oxidative degradation. In the present work, three metals of differing elemental composition, namely, AISI 304, AISI 410, and Inconel 600 were tested for high-temperature stability in the presence and absence of ceria coating. Nanoceria was used as the target to deposit the coating through electron beam physical vapor deposition method. After isothermal oxidation at 1243 K for 24 h, Ceria coated AISI 304 and Inconel 600 exhibited a reduced rate of oxidation by 4 and 1 orders, respectively, in comparison with the base alloy. The formation of spinel structure was found to be lowered in the presence of ceria due to the reduced migration of cations from the alloy.

  19. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    Science.gov (United States)

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  20. O2-enhanced methanol oxidation reaction at novel Pt-Ru-C co-sputtered electrodes

    International Nuclear Information System (INIS)

    Umeda, Minoru; Matsumoto, Yosuke; Inoue, Mitsuhiro; Shironita, Sayoko

    2013-01-01

    Highlights: ► Novel Pt-Ru-C electrodes were prepared by a co-sputtering technique. ► Co-sputtered electrodes with C result in highly efficient O 2 -enhanced methanol oxidation. ► Pt–Ru-alloy-based co-sputtered electrode induces a negative onset potential of methanol oxidation. ► The Pt-Ru-C electrodes allow a negative onset potential of O 2 -enhanced methanol oxidation. ► The optimum atomic ratios of Pt-Ru-C are Pt: 0.24–0.80, Ru: 0.14–0.61, C: 0.06–0.37. -- Abstract: A Pt-Ru-C electrode has been developed using a co-sputtering technique for use as the anode catalyst of a mixed-reactant fuel cell. The physical and electrochemical characteristics of the electrodes demonstrate that co-sputtered Pt and Ru form a Pt–Ru alloy. The crystallite sizes of the catalysts investigated in this study are reduced by the addition of C to the Pt–Ru alloy. Cu stripping voltammograms suggest that the sputtering of C and the formation of the Pt–Ru alloy synergically increase the electrochemical surface area of the electrodes. The methanol oxidation performances of the prepared electrodes were evaluated in N 2 and O 2 atmospheres; the Pt-Ru-C electrodes achieve an O 2 -induced negative shift in the onset potential of the methanol oxidation (E onset ) and enhance the methanol oxidation current density in the O 2 atmosphere. The mechanism of O 2 -enhanced methanol oxidation with a negative E onset at the Pt-Ru-C electrodes is attributed to a change in the electronic structure of Pt due to the formation of Pt–Ru alloy and the generation of O-based adsorption species by the reduction of O 2 . Finally, the composition of the Pt-Ru-C electrode for the O 2 -enhanced methanol oxidation with a negative E onset was found to be optimal at an atomic ratio of Pt: 0.24–0.80, Ru: 0.14–0.61, and C: 0.06–0.37

  1. High-temperature, Knudsen cell-mass spectroscopic studies on lanthanum oxide/uranium dioxide solid solutions

    International Nuclear Information System (INIS)

    Sunder, S.; McEachern, R.; LeBlanc, J.C.

    2001-01-01

    Knudsen cell-mass spectroscopic experiments were carried out with lanthanum oxide/uranium oxide solid solutions (1%, 2% and 5% (metal at.% basis)) to assess the volatilization characteristics of rare earths present in irradiated nuclear fuel. The oxidation state of each sample used was conditioned to the 'uranium dioxide stage' by heating in the Knudsen cell under an atmosphere of 10% CO 2 in CO. The mass spectra were analyzed to obtain the vapour pressures of the lanthanum and uranium species. It was found that the vapour pressure of lanthanum oxide follows Henry's law, i.e., its value is directly proportional to its concentration in the solid phase. Also, the vapour pressure of lanthanum oxide over the solid solution, after correction for its concentration in the solid phase, is similar to that of uranium dioxide. (authors)

  2. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning; Wang, Yuxin; Cui, Lifeng

    2017-07-01

    In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn2O3 cubes through calcination with air at different temperature. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn2O3 catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn2O3 catalyst. Mn2O3 catalyst obtained by calcined at 700 °C (Mn2O3-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T98) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn2O3-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  3. Nanostructured LnBaCo2O6− (Ln = Sm, Gd with layered structure for intermediate temperature solid oxide fuel cell cathodes

    Directory of Open Access Journals (Sweden)

    Augusto E. Mejía Gómez

    2017-04-01

    Full Text Available In this work, we present the combination of two characteristics that are beneficial for solid oxide fuel cell (SOFC cathodic performance in one material. We developed and evaluated for the first time nanostructured layered perovskites of formulae LnBaCo2O6-d with Ln = Sm and Gd (SBCO and GBCO, respectively as SOFC cathodes, finding promising electrochemical properties in the intermediate temperature range. We obtained those nanostructures by using porous templates to confine the chemical reagents in regions of 200-800 nm. The performance of nanostructured SBCO and GBCO cathodes was analyzed by electrochemical impedance spectroscopy technique under different operating conditions using Gd2O3-doped CeO2 as electrolyte. We found that SBCO cathodes displayed lower area-specific resistance than GBCO ones, because bulk diffusion of oxide ions is enhanced in the former. We also found that cathodes synthesized using smaller template pores exhibited better performance.

  4. The surface oxide as a source of oxygen on Rh(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, E. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden)]. E-mail: edvin.lundgren@sljus.lu.se; Gustafson, J. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Resta, A. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Weissenrieder, J. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Mikkelsen, A. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Andersen, J.N. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Koehler, L. [Institut fuer Materialphysik and Centre for Computational Materials Science, Universitaet Wien, A-1090 Vienna (Austria); Kresse, G. [Institut fuer Materialphysik and Centre for Computational Materials Science, Universitaet Wien, A-1090 Vienna (Austria); Klikovits, J. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Biederman, A. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Schmid, M. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Varga, P. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria)

    2005-06-15

    The reduction of a thin surface oxide on the Rh(1 1 1) surface by CO is studied in situ by photoemission spectroscopy, scanning tunneling microscopy, and density functional theory. CO molecules are found not to adsorb on the surface oxide at a sample temperature of 100 K, in contrast to on the clean and chemisorbed oxygen covered surface. Despite this behavior, the surface oxide may still be reduced by CO, albeit in a significantly different fashion as compared to the reduction of a phase containing only chemisorbed on surface oxygen. The experimental observations combined with theoretical considerations concerning the stability of the surface oxide, result in a model of the reduction process at these pressures suggesting that the surface oxide behaves as a source of oxygen for the CO-oxidation reaction.

  5. An investigation on high-temperature electrical transport properties of graphene-oxide nano-thinfilms

    International Nuclear Information System (INIS)

    Venugopal, Gunasekaran; Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-01-01

    High-temperature electrical transport properties are investigated for graphene-oxide nano thinfilms. The graphene-oxide nanoparticles are synthesized by modified Hummers method and characterized by UV–vis, Raman and X-ray diffraction techniques. The surface morphology of graphene-oxide film is analyzed using scanning electron and atomic force microscopy. The experimental results on high-temperature electrical studies of thinfilms exhibit metallic behavior followed by three-dimensional variable range hopping mechanism. The current–voltage characteristics at various temperatures (from 293 K to 573 K) were investigated. The effect of high-temperature on the functional groups of graphene-oxide film is evidently examined using X-ray photoelectron, thermal gravimetric analysis and Fourier transform infra-red spectroscopy. Transistor characteristics were performed after heat treatment resulting ambipolar behavior with holes and electron mobility of 127 and 66.9 cm 2 V −1 s −1 respectively. Our results are comparable to reduced graphene-oxide, indicating the advantage of our approach requires no further reduction to develop graphene-based transparent and conductive electrodes for dye-sensitized solar cells and ultra-capacitor applications.

  6. Self-propagating high-temperature synthesis of Sr-doped LaMnO3 perovskite as oxidation catalyst

    International Nuclear Information System (INIS)

    Hirano, T.; Purwanto, H.; Watanabe, T.; Akiyama, T.

    2007-01-01

    Sr-doped LaMnO 3 perovskite oxide has been focused on as one of the alternative catalysts to precious metals such as platinum that are used for cleaning automotive emission gas. The conventional Solid-state reaction method is a popular productive process for perovskite oxide, however, it is time and energy consuming process because it requires repeated prolonged heat treatment at high temperatures. Therefore, the purposes of this work are to produce Sr-doped LaMnO 3 perovskite by using Self-propagating high-temperature synthesis (SHS) and experimentally examine the oxidation catalytic activity of the product for cleaning automotive emission gas. In the SHS, powders of La 2 O 3 , SrCO 3 , Mn and NaClO 4 were well mixed at the desired ratio and poured in a graphite crucible, where at one end it was ignited by using an electrically heated carbon foil. The wave of exothermic reaction due to oxidation of manganese propagated to the other end in a short time. The obtained products were characterized by means of XRD, FE-SEM, BET and particle size distribution analysis and then evaluated via catalytic oxidation tests by using propane in a fixed bed reactor at several temperatures. From the XRD analysis, the products had the desired composition of La 1-x Sr x MnO 3 (x = 0, 0.1, 0.2 and 0.4) perovskite, in which the replacing ratio x of La and Sr in the products was easily controlled by changing the mixing ratio of raw materials. The catalytic activity test showed that the samples exhibited good catalytic activity for propane oxidation over 200 deg. C , although the products had a relatively small surface area. SHS showed the potential for the production of a relatively inexpensive catalytic converter

  7. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  8. High temperature oxidation interfacial growth kinetics in YSZ thermal barrier coatings with bond coatings of NiCoCrAlY with 0.25% Hf

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Mensah, P., E-mail: mensah@engr.subr.edu [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Diwan, R. [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Crowe, J. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Akwaboa, S. [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States)

    2011-03-15

    Research highlights: {yields} Isothermal oxidation of standard (STD) and vertically cracked (VC) TBCs has been investigated. {yields} The temporal TGO growth kinetics is parabolic in the temperature range between 900 and 1100 deg. C. {yields} Activation energies correspond to growth kinetics controlled by the diffusion of O{sub 2} in Al{sub 2}O{sub 3}. {yields} Variation in oxidation of TBCs is attributed to its microstructure and in-situ oxygen ingression. {yields} Doping TBC bond coat with Hf appears to have potential for enhancing the development of robust TBCs. - Abstract: The results of an experimental study of the high-temperature isothermal oxidation behavior and microstructural evolution in two variations of air plasma sprayed ceramic thermal barrier coatings (TBCs) are discussed in the paper. Two types of TBC specimens were produced for testing. These include a standard and vertically cracked APS. High temperature oxidation was carried out at 900, 1000, 1100 and 1200 deg. C. The experiments were performed in air under isothermal conditions. At each temperature, the specimens were exposed for 25, 50, 75 and 100 h. The corresponding microstructures and microchemistries of the TBC layers were examined using scanning electron microscopy and energy dispersive X-ray spectroscopy. Changes in the dimensions of the thermally grown oxide layer were determined as functions of time and temperature. The evolution of bond coat microstructures/interdiffusion zones and thermally grown oxide layers were compared in the TBC specimens with standard and vertically cracked microstructures.

  9. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon Sub [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Park, Moon Gyu [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Croiset, Eric, E-mail: ecroiset@uwaterloo.ca [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Chen, Zhongwei [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Nam, Sung Chan; Ryu, Ho-Jung [Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of)

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H{sub 2}S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H{sub 2}S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H{sub 2}S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H{sub 2} and CO{sub 2} on H{sub 2}S adsorption was also investigated. The presence of hydrogen in the H{sub 2}S stream had a positive effect on the removal of H{sub 2}S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn{sup 2+}) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO{sub 2}) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H{sub 2}S and CO{sub 2}.

  10. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  11. Oxidation kinetics and mechanisms of four-direction carbon/carbon composites and their components in carbon dioxide at high temperature

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang

    2013-01-01

    Highlights: •Four-direction C/C composite was fabricated using carbon fibres and coal tar pitches. •Large-sized bulk matrix was prepared using same process as matrix of C/C composites. •A and E a of C/C, bulk matrix and fibres in CO 2 were determined, respectively. •Pressure exponent n was 0.62 in C/C–CO 2 . -- Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrix) in a CO 2 atmosphere at high temperature. The ablation processes were restricted to reaction-limited oxidation. The mass loss rate was estimated for the four-direction carbon/carbon composites and their components within the temperature of range of 600–1400 °C. The pressure exponent for the reaction of carbon/carbon composites and CO 2 was 0.62, and the pre-exponential factor and activation energy for the reactions of CO 2 and the carbon/carbon composites, carbon fibres and matrix were determined, respectively

  12. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  13. Synthesis, nanostructure and magnetic properties of FeCo-reduced graphene oxide composite films by one-step electrodeposition

    International Nuclear Information System (INIS)

    Cao, Derang; Li, Hao; Wang, Zhenkun; Wei, Jinwu; Wang, Jianbo; Liu, Qingfang

    2015-01-01

    FeCo-reduced graphene oxide (FeCo-RGO) composite film was fabricated on indium tin oxide substrate using one-step electrodeposition method. Raman spectroscopy and field emission scanning electron microscope results show that the reduced graphene oxide is coprecipitated with the FeCo film. The energy-dispersive spectrometer results demonstrate that the atomic ratio of Fe/Co in FeCo-RGO composite film is larger than that of the FeCo film under the same fabrication condition. As a result, the FeCo-RGO composite film exhibits good soft magnetic properties and high-frequency properties as well as the FeCo film. The magnetic anisotropy field and saturation magnetization of FeCo-RGO composite film are increased when compared with FeCo film. Furthermore, the ferromagnetic resonance frequency is improved from 2.15 GHz for the FeCo film to 3.9 GHz for the FeCo-RGO composite film. - Highlights: • FeCo-reduced graphene oxide composite film was fabricated on indium tin oxide substrate. • One step electrodeposition method was used. • Good soft magnetic properties were exhibited by the composite films. • Increase of resonance frequency from 2.15 GHz for FeCo film to 3.9 GHz for composite film

  14. Oxidation of CO and Methanol on Pd-Ni Catalysts Supported on Different Chemically-Treated Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    Juan Carlos Calderón

    2016-10-01

    Full Text Available In this work, palladium-nickel nanoparticles supported on carbon nanofibers were synthesized, with metal contents close to 25 wt % and Pd:Ni atomic ratios near to 1:2. These catalysts were previously studied in order to determine their activity toward the oxygen reduction reaction. Before the deposition of metals, the carbon nanofibers were chemically treated in order to generate oxygen and nitrogen groups on their surface. Transmission electron microscopy analysis (TEM images revealed particle diameters between 3 and 4 nm, overcoming the sizes observed for the nanoparticles supported on carbon black (catalyst Pd-Ni CB 1:2. From the CO oxidation at different temperatures, the activation energy Eact for this reaction was determined. These values indicated a high tolerance of the catalysts toward the CO poisoning, especially in the case of the catalysts supported on the non-chemically treated carbon nanofibers. On the other hand, apparent activation energy Eap for the methanol oxidation was also determined finding—as a rate determining step—the COads diffusion to the OHads for the catalysts supported on carbon nanofibers. The results here presented showed that the surface functional groups only play a role in the obtaining of lower particle sizes, which is an important factor in the obtaining of low CO oxidation activation energies.

  15. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Chavez G, L.; Hinojosa R, M. [Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, San Nicolas de los Garza, 66450 Nuevo Leon (Mexico); Medina L, B.; Ringuede, A.; Cassir, M. [Institut de Recherche de Chimie Paris, CNRS-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France); Vannier, R. N., E-mail: leonardo.chavezgr@uanl.edu.mx [Unite de Catalyse et de Chimie du Solide, UMR 8181 CNRS, 59655, Villeneuve d Ascq Cedex (France)

    2017-11-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi{sub x}Co{sub 1-x}O{sub 3} (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi{sub 0.7}Co{sub 0.3}O{sub 3}, LaNi{sub 0.5}Co{sub 0.5}O{sub 3} and LaNi{sub 0.3}Co{sub 0.7}O{sub 3} structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi{sub x}Co{sub 1-x}O{sub 3}/YSZ (Yttria-stabilized zirconia)/LaNi{sub x}Co{sub 1-x}O{sub 3} showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi{sub 0.5}Co{sub 0.5}O{sub 3}, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  16. New insights in the low-temperature oxidation of acetylene

    DEFF Research Database (Denmark)

    Wang, Bing-Yin; Liu, Yue-Xi; Weng, Jun-Jie

    2017-01-01

    This work presents new experimental data of C2H2 low-temperature oxidation for equivalence ratios Φ= 0.5–3.0 in a newly designed jet-stirred reactor over a temperature range of 600–1100K at atmospheric pressure with residence time corresponding from 1.94 to 1.06s. Mole fraction profiles of 17...... intermediates including aromatic compounds such as toluene, styrene and ethylbenzene were quantified. A detailed kinetic mechanism involving 295 species and 1830 reactions was established to predict the oxidation of C2H2 and formation of PAH. In developing the mechanism, particular attention was paid...

  17. Review Of Plutonium Oxidation Literature

    International Nuclear Information System (INIS)

    Korinko, P.

    2009-01-01

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles ( 250 (micro)m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

  18. Oxidation behavior of 304 stainless steel exposed to steam at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.; Ryu, J. R.; Park, G. H. [Kyunghee Univ., Yongin (Korea, Republic of); Yoo, T. G. [FNC Technology, Seoul (Korea, Republic of)

    2003-10-01

    An experiment was conducted on 304 stainless steel(SUS304L) at the LOCA(Lost of Coolant Accident) requirement temperature, 800 .deg. C to 1100 deg. C. SUS304L was used as clothing material and structural frame of LWR. Oxidation behavior of SUS304L by temperature and time was examined after the mechanical and chemical polishing of SUS304L plate. After oxidation, change in weight showed a linear pattern for the first 20 minutes and a parabolic pattern afterwards. Then, fine structure and oxidation layer of SUS304L plate were observed through OM photographing and oxidation characteristics of SUS304L were found through hardness measurement by depth of each plate and XRD(X-Ray Diffraction) photographing.

  19. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-01-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples...

  20. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  1. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2012-01-01

    A method for the preparation of NiO and Nb-NiO nanocomposites is developed, based on the slow oxidation of a nickel-rich Nb-Ni gel obtained in citric acid. The resulting materials have higher surface areas than those obtained by the classical evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar to that of NiNb 2O 6. Unlike bulk nickel oxides, the activity of these nanooxides for low-temperature ethane oxidative dehydrogenation (ODH) has been related to their redox properties. In addition to limiting the size of NiO crystallites, the presence of the Nb-rich phase also inhibits NiO reducibility. At Nb content >5 at.%, Nb-NiO composites are thus less active for ethane ODH but more selective, indicating that the Nb-rich phase probably covers part of the unselective, non-stoichiometric, active oxygen species of NiO. This geometric effect is supported by high-resolution transmission electron microscopy observations. The close interaction between NiO and the thin Nb-rich mixed oxide layer, combined with possible restructuration of the nanocomposite under ODH conditions, leads to significant catalyst deactivation at high Nb loadings. Hence, the most efficient ODH catalysts obtained by this method are those containing 3-4 at.% Nb, which combine high activity, selectivity, and stability. The impact of the preparation method on the structural and catalytic properties of Nb-NiO nanocomposites suggests that further improvement in NiO-catalyzed ethane ODH can be expected upon optimization of the catalyst. © 2011 Elsevier Inc. All rights reserved.

  2. Catalytic activity trends of CO oxidation – A DFT study

    DEFF Research Database (Denmark)

    Jiang, Tao

    theoretical study of CO oxidation with experimental studies. The latter shows promoted catalytic activity when gold particle size decreases to 5 nm. Oxidizing CO by N2O was found to involve a CO␣O transition state, with atomic O adsorbed on the gold B5 sites and CO on the corners. On the other hand, CO...... and experiment were found to be the same. The experiment findings are in good agreement with our theoretical calculations. The second part of the thesis focuses on improving the convergence property of Quasi-Newton algorithm. The eigenvalues of the Hessian matrix of 54 atoms bulk Cu model are calculated......, and the sizes of eigenvalues follow power-law distribution. It is found that the anharmonicity of the weak modes lead to poor Newton step and poor Hessian update in BFGS type Quasi-Newton algorithm, which slow down the geometry optimization. Line search that fulfills Wolff conditions is then applied to improve...

  3. Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization

    International Nuclear Information System (INIS)

    Neri, G.; Visco, A.M.; Galvagno, S.; Donato, A.; Panzalorto, M.

    1999-01-01

    Gold on iron oxides catalysts have been characterized by temperature programmed reduction (TPR) and X-ray diffraction spectroscopy (XRD). The influence of preparation method, gold loading and pretreatment conditions on the reducibility of iron oxides have been investigated. On the impregnated Au/iron oxide catalysts as well as on the support alone the partial reduction of Fe(III) oxy(hydroxides) to Fe 3 O 4 starts in the 550 and 700 K temperature range. On the coprecipitated samples, the temperature of formation of Fe 3 O 4 is strongly dependent on the presence of gold. The reduction temperature is lowered as the gold loading is increased. The reduction of Fe 3 O 4 to FeO occurs at about 900 K and is not dependent on the presence of gold and the preparation method. It is suggested that the effect of gold on the reducibility of the iron oxides is related to an increase of the structural defects and/or of the surface hydroxyl groups. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  5. Partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2015-01-01

    We studied the relative importance of the reduced field intensity and the background reaction temperature in the partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor. We obtained important mechanistic insight from studying high-temperature and low-pressure conditions with similar reduced field intensities. In the tested range of background temperatures (297 < T < 773 K), we found that the conversion of methane and oxygen depended on both the electron-induced chemistry and the thermo-chemistry, whereas the chemical pathways to the products were overall controlled by the thermo-chemistry at a given temperature. We also found that the thermo-chemistry enhanced the plasma-assisted partial oxidation process. Our findings expand our understanding of the plasma-assisted partial oxidation process and may be helpful in the design of cost-effective plasma reformers. © 2014 The Combustion Institute.

  6. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Chen, Po-Yen; Jang, Bi-Sheng [Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan (China)

    2015-01-15

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe{sub 3}) and oxygen (O{sub 2}) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H{sub 2} within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO{sub 2}. The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O{sub ads} and Pt–(OH){sub ads}) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed.

  7. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...... by the competition between chain‐branching and ‐propagating steps; modeling predictions are particularly sensitive to the branching fraction for the OCS + O reaction to form CO + SO or CO2 + S....

  8. Oxidation of mine tailings from Rankin Inlet, Nunavut, at subzero temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, J. L.; Jamieson, H. E.; Dyke, L. D.

    2001-10-01

    An experiment was undertaken to determine if encapsulation in permafrost of acid-generating sulphidic tailings from a Ni-Cu mine on the shores of Hudson Bay in Nunavut will maintain the tailings and their saline pore water in a chemically inert state. The experiment involved collection of tailings material and pore water samples three years after burial, followed by long-term thermal monitoring. Tailings were studied at temperatures between +30 degrees C and -10 degrees C. Oxygen consumption was measured directly to determine the effect of low temperatures on oxidation rate. Significant oxidation was observed at +30 degrees C, which was substantially reduced at lower temperatures. At -10 degrees C oxygen consumption was below the detection limit. The highest measured oxygen flux correlated with a temperature increase of one degree C, which is consistent with exothermic sulphide oxidation reactions. The experiment showed that freezing in Rankin Inlet is progressing and tailings will be ice-bonded approximately 15 years after burial. 30 refs., 3 tabs. 6 figs.

  9. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  10. Impact of SO2 and NO on CO Oxidation under Post-Flame Conditions

    DEFF Research Database (Denmark)

    Glarborg, Peter; Kubel, Dorte; Dam-Johansen, Kim

    1996-01-01

    An experimental and theoretical study of the effect of SO2 on moist CO oxidation with and without NO present was carried out under plug-flow conditions. The H/S/O thermochemistry and reaction subset was revised and a chemical kinetic model established that provide a good description of the effect...... of SO2 and NO on CO oxidation as well as the SO2/SO3 ratio in the products....

  11. Porous oxides synthesized by the combustion method

    International Nuclear Information System (INIS)

    Lugo L, V.

    2005-01-01

    The result of this work, seeks to be a contribution for the treatment of radioactive wastes, with base to the sorption properties that present those porous oxides, synthesized by a method that allows to increase the sorption capacity. The main objective of the present investigation has been the modification of the structural characteristics of the oxides of Fe, Mg and Zn to increase its capacity of sorption of 60 Co in particular. It was studied the effect of the synthesis method by combustion in the inorganic oxides; the obtained solids were characterized using the following techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), semiquantitative elementary analysis by Dispersive energy spectroscopy (EDS) and determination of surface area by the Brunauner-Emmett-Teller method (BET). Also was carried out batch type experiments for the sorption of Co 2+ , with the purpose of studying the sorption capacity of each one of the prepared oxides. In accordance with that previously exposed, the working plan that was carried out in this investigation is summarized in the following stages: 1. Preparation of inorganic oxides by two different methods, studying the effect of the temperature in the synthesis process. 2. Characterization of the inorganic oxides by XRD, by means of which those were chosen the solids with better properties. 3. Characterization of the inorganic oxides by SEM and EDS where it was studied the morphology of the synthesized materials and the semiquantitative elemental composition. 4. Realization of a sorption experiment type Batch with non radioactive Co 2+ to simulate the sorption of 60 Co and determination of the sorption capacity by means of neutron activation of the non radioactive cobalt. 5. Determination of the surface area by the (BET) technique of the inorganic oxides with better sorption properties. (Author)

  12. High temperature cyclic oxidation of Ti-Al based intermetallic in static laboratory air

    International Nuclear Information System (INIS)

    Astuty Amrin; Esah Hamzah; Nurfashahidayu Mohd Badri; Hafida Hamzah

    2007-01-01

    The objective of this study is to investigate the oxidation behaviour of binary γ-Ti Al based intermetallics with composition (at%) of 45A, 48Al and 50 Al, and ternary alloys of Ti-48Al containing 2Cr and 4Cr. Thermal cyclic oxidation was conducted discontinuously at temperatures of 700 degree Celsius and 900 degree Celsius in static laboratory air. Optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and X-ray diffraction (XRD) techniques were employed for the analysis. SEM examination of cross-sectional samples using secondary electron and line-scan analysis after exposure at 700 degree Celsius showed that non-adherent oxides scales formed due to the spallation caused by cyclic condition. For exposure to 900 degree Celsius, only binary alloys exhibited breakaway oxidation whereas the oxide scales formed on the ternary alloys were well-adhered on the substrate alloy. Overall, exposure at 900 degree Celsius resulted in thicker and harder oxide scales and addition of Cr seems to improve oxidation resistance of Ti-Al based intermetallics at higher temperature. (author)

  13. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  14. Regeneration of CO poisoned PEM fuel cells by periodic pulsed oxidation

    International Nuclear Information System (INIS)

    Adams, W.A.; Blair, J.; Bullock, K.R.; Gardner, C.L.

    2004-01-01

    CO poisoning is a major issue when reformate is used as a fuel in PEM fuel cells. Normally it is necessary to reduce the CO to very low levels (∼5 ppm) and CO tolerant catalysts, such as Pt-Ru, are often employed. As an alternative approach, we have studied the use of pulsed oxidation for the regeneration of CO poisoned cells. Results are presented for the regeneration of Pt and Pt-Ru anodes in a PEM fuel cell fed with CO concentrations as high as 10,000 ppm. The results show periodic removal of CO from the catalyst surface by pulsed oxidation can increase the average cell potential and increase overall efficiency. A method for enhancing the performance of a fuel cell stack using a microprocessor-based Fuel Cell Health Manager (FCHM) has been developed. The results of a cost/benefit analysis for the use of a FCHM on a 4 kW residential fuel cell system are presented. (author)

  15. Low-temperature atmospheric oxidation of mixtures of titanium and carbon black or brown

    International Nuclear Information System (INIS)

    Elizarova, V.A.; Babaitsev, I.V.; Barzykin, V.V.; Gerusova, V.P.; Rozenband, V.I.

    1984-01-01

    This article reports on the thermogravimetric investigation of mixtures of titanium no. 2 and carbon black with various mass carbon contents. Adding carbon black (as opposed to boron) to titanium leads to an increase in the rate of heat release of the oxidation reaction. An attempt is made to clarify the low-temperature oxidation mechanism of titanium mixtures in air. An x-ray phase and chemical (for bound carbon) analysis of specimens of a stoichiometric Ti + C mixture after heating in air to a temperature of 650 0 C at the rate of 10 0 /min was conducted. The results indicate that the oxidation of the titanium-carbon mixture probably proceeds according to a more complex mechanism associated with the transport of the gaseous carbon oxidation products and their participation in the titanium oxidation

  16. Corrosion Behaviors of Structural Materials in High Temperature S-CO{sub 2} Environments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung; Kim, Hyunmyung; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2014-04-15

    The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and 650 .deg. C in SFR S-CO{sub 2} environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and 650 .deg. C. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at 650 .deg. C, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at 550 .deg. C, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-CO{sub 2} environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

  17. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    Science.gov (United States)

    Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis–Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l−1 was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used 15NH4+ dilution technique. PMID:23657360

  18. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems

    International Nuclear Information System (INIS)

    Christoskova, St.; Stoyanova, M.

    2009-01-01

    The possibility for purification of wastewaters containing free cyanides by applying of a new method based on cyanides catalytic oxidation with air to CO 2 and N 2 at low temperature and atmospheric pressure was investigated. On this purpose, individual and modified with manganese Co-oxide systems as active phase of environmental catalysts were synthesized. The applied method of synthesis favours the preparation of oxide catalytic systems with high active oxygen content (total-O* and surface-O* s ) possessing high mobility, and the metal ions being in a high oxidation state and in an octahedral coordination-factors determining high activity in reactions of complete oxidation. The catalysts employed were characterized by powder X-ray diffraction, Infrared spectroscopy, and chemical analysis. The effect of pH of the medium and catalyst loading on the effectiveness of the cyanide oxidation process, expressed by the degree of conversion (α, %), by the rate constant (k, min -1 ), and COD was studied. The results obtained reveal that using catalysts investigated a high cyanide removal efficiency could be achieved even in strong alkaline medium. The higher activity of the manganese promoted catalytic sample could be explained on the basis of higher total active oxygen content and its higher mobility both depending on the conditions, under which the synthesis of catalyst is being carried out.

  19. Properties of ion implanted epitaxial CoSi2/Si(1 0 0) after rapid thermal oxidation

    International Nuclear Information System (INIS)

    Zhao, Q.T.; Kluth, P.; Xu, J.; Kappius, L.; Zastrow, U.; Wang, Z.L.; Mantl, S.

    2000-01-01

    Epitaxial CoSi 2 layers were grown on Si(1 0 0) using molecular beam allotaxy. Boron ion implantations and rapid thermal oxidation (RTO) were performed. During oxidation, SiO 2 formed on the surface of the CoSi 2 layers, and the silicides was pushed into the substrate. The diffusion of boron was slightly retarded during oxidation for the specimen with a 20 nm epitaxial CoSi 2 capping layer as compared to the specimen without CoSi 2 capping layer. The electrical measurements showed that the silicide has good Schottky contacts with the boron doped silicon layer after RTO. A nanometer silicide patterning process, based on local oxidation of silicide (LOCOSI) layer, was also investigated. It shows two back-to-back Schottky diodes between the two separated parts of the silicide

  20. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    Science.gov (United States)

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  1. Platinum redispersion on metal oxides in low temperature fuel cells.

    Science.gov (United States)

    Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan

    2013-03-07

    We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.

  2. Room temperature plasma oxidation: A new process for preparation of ultrathin layers of silicon oxide, and high dielectric constant materials

    International Nuclear Information System (INIS)

    Tinoco, J.C.; Estrada, M.; Baez, H.; Cerdeira, A.

    2006-01-01

    In this paper we present basic features and oxidation law of the room temperature plasma oxidation (RTPO), as a new process for preparation of less than 2 nm thick layers of SiO 2 , and high-k layers of TiO 2 . We show that oxidation rate follows a potential law dependence on oxidation time. The proportionality constant is function of pressure, plasma power, reagent gas and plasma density, while the exponent depends only on the reactive gas. These parameters are related to the physical phenomena occurring inside the plasma, during oxidation. Metal-Oxide-Semiconductor (MOS) capacitors fabricated with these layers are characterized by capacitance-voltage, current-voltage and current-voltage-temperature measurements. Less than 2.5 nm SiO 2 layers with surface roughness similar to thermal oxide films, surface state density below 3 x 10 11 cm -2 and current density in the expected range for each corresponding thickness, were obtained by RTPO in a parallel-plate reactor, at 180 mW/cm 2 and pressure range between 9.33 and 66.5 Pa (0.07 and 0.5 Torr) using O 2 and N 2 O as reactive gases. MOS capacitors with TiO 2 layers formed by RTPO of sputtered Ti layers are also characterized. Finally, MOS capacitors with stacked layers of TiO 2 over SiO 2 , both layers obtained by RTPO, were prepared and evaluated to determine the feasibility of the use of TiO 2 as a candidate for next technology nodes

  3. New insights into the low-temperature oxidation of 2-methylhexane

    KAUST Repository

    Wang, Zhandong

    2016-09-24

    In this work, we studied the low-temperature oxidation of a stoichiometric 2-methylhexane/O2/Ar mixture in a jet-stirred reactor coupled with synchrotron vacuum ultraviolet photoionization molecular-beam mass spectrometry. The initial gas mixture was composed of 2% 2-methyhexane, 22% O2 and 76% Ar and the pressure of the reactor was kept at 780Torr. Low-temperature oxidation intermediates with two to five oxygen atoms were observed. The detection of C7H14O5 and C7H12O4 species suggests that a third O2 addition process occurs in 2-methylhexane low-temperature oxidation. A detailed kinetic model was developed that describes the third O2 addition and subsequent reactions leading to C7H14O5 (keto-dihydroperoxide and dihydroperoxy cyclic ether) and C7H12O4 (diketo-hydroperoxide and keto-hydroperoxy cyclic ether) species. The kinetics of the third O2 addition reactions are discussed and model calculations were performed that reveal that third O2 addition reactions promote 2-methylhexane auto-ignition at low temperatures. © 2016 The Combustion Institute.

  4. Effect of Sintering Temperature on the Properties of Aluminium-Aluminium Oxide Composite Materials

    Directory of Open Access Journals (Sweden)

    Dewan Muhammad Nuruzzaman

    2016-12-01

    Full Text Available In this study, aluminium-aluminium oxide (Al-Al2O3 metal matrix composites of different weight percentage reinforcements of aluminium oxide were processed at different sintering temperatures. In order to prepare these composite specimens, conventional powder metallurgy (PM method was used. Three types specimens of different compositions such as 95%Al+5%Al2O3, 90%Al+10%Al2O3 and 85%Al+15%Al2O3 were prepared under 20 Ton compaction load. Then, all the specimens were sintered in a furnace at two different temperatures 550oC and 580oC. In each sintering process, two different heating cycles were used. After the sintering process, it was observed that undistorted flat specimens were successfully prepared for all the compositions. The effects of sintering temperature and weight fraction of aluminium oxide particulates on the density, hardness and microstructure of Al-Al2O3 composites were observed. It was found that density and hardness of the composite specimens were significantly influenced by sintering temperature and percentage aluminium oxide reinforcement. Furthermore, optical microscopy revealed that almost uniform distribution of aluminium oxide reinforcement within the aluminium matrix was achieved.

  5. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    Science.gov (United States)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  6. Aluminum-Oxide Temperatures on the Mark VB, VE, VR, 15, and Mark 25 Assemblies

    International Nuclear Information System (INIS)

    Aleman, S.E.

    2001-01-01

    The task was to compute the maximum aluminum-oxide and oxide-coolant temperatures of assemblies cladded in 99+ percent aluminum. The assemblies considered were the Mark VB, VE, V5, 15 and 25. These assemblies consist of nested slug columns with individual uranium slugs cladded in aluminum cans. The CREDIT code was modified to calculate the oxide film thickness and the aluminum-oxide temperature at each axial increment. This information in this report will be used to evaluate the potential for cladding corrosion of the Mark 25 assembly

  7. The Complete Oxidation of Ethanol at Low Temperature over a Novel Pd-Ce/γ-Al2O3-TiO2 Catalyst

    International Nuclear Information System (INIS)

    Wang, Yanping; Zhao, Jinshuang; Wang, Xiaoli; Li, Zhe; Liu, Pengfei

    2013-01-01

    Pd-Ce/γ-Al 2 O 3 -TiO 2 catalysts were prepared by combined sol.gel and impregnation methods. Transmission electron microscopy, X-ray diffraction, H 2 -temperature-programmed reduction, O 2 -temperature-programmed desorption, and ethanol oxidation experiments were conducted to determine the properties of the catalysts. Addition of an optimal amount of Ce improved the performance of the Pd/γ-Al 2 O 3 -TiO 2 catalyst in promoting the complete oxidation of ethanol. The catalyst with 1% Ce exhibited the highest activity, and catalyzed complete oxidation of ethanol at 175 .deg. C; its selectivity to CO 2 reached 87%. Characterization results show that addition of appropriate amount of Ce could enrich the PdO species, and weaken the Pd-O bonds, thus enhancing oxidation ability of the catalyst. Meanwhile, the introduction of CeO 2 could make PdO better dispersed on γ-Al 2 O 3 -TiO 2 , which is beneficial for the improvement of the catalytic oxidation activity

  8. Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties

    Science.gov (United States)

    Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.

    2014-02-01

    Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.

  9. High Temperature Oxidation of Nickel-based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-09-01

    New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time

  10. Oxidation kinetics of zircaloy-4 in the temperature range correspondent to alpha phase

    International Nuclear Information System (INIS)

    Medeiros, L.F.

    1975-12-01

    Oxidation kinetics of Zry-4 in the alpha phase is isothermally studied in the temperature range from 600 0 C to 800 0 C, by continuous and discontinuous gravimetric methods. The total mass gain during the oxidation takes place by two distinct ways: oxide formation and solid solution formation. The first one has been studied by microscopy: the latter by microhardness. The oxygen diffusion coefficients in the zirconium are experimentally determined by microhardness measurements and are compared with those obtained by the oxide layer thickness and by oxygen mass in the oxide. The oxygen diffusion coefficients in the oxide are obtained too by oxide layer thickness and by oxygen diffusivities in the alpha phase and compared with literature. (author)

  11. Temperature-dependent electrical property transition of graphene oxide paper

    International Nuclear Information System (INIS)

    Huang Xingyi; Jiang Pingkai; Zhi Chunyi; Golberg, Dmitri; Bando, Yoshio; Tanaka, Toshikatsu

    2012-01-01

    Reduction of graphene oxide is primarily important because different reduction methods may result in graphene with totally different properties. For systematically exploring the reduction of graphene oxide, studies of the temperature-dependent electrical properties of graphene oxide (GO) are urgently required. In this work, for the first time, broadband dielectric spectroscopy was used to carry out an in situ investigation on the transition of the electrical properties of GO paper from −40 to 150 °C. The results clearly reveal a very interesting four-stage transition of electrical properties of GO paper with increasing temperature: insulator below 10 °C (stage 1), semiconductor at between 10 and 90 °C (stage 2), insulator at between 90 and 100 °C (stage 3), and semiconductor again at above 100 °C (stage 4). Subsequently, the transition mechanism was discussed in combination with detailed dielectric properties, microstructure and thermogravimetric analyses. It is suggested that the temperature-dependent transition of electronic properties of GO is closely associated with the ion mobility, water molecules removal and the reduction of GO in the GO paper. Most importantly, the present work clearly demonstrates the reduction of GO paper starts at above 100 °C. (paper)

  12. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.; Krier, James M.; Alayoglu, Selim; Shin, Jae-Yoon; An, Kwangjin; Komvopoulos, Kyriakos; Liu, Zhi; Somorjai, Gabor A.

    2014-01-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn

  13. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  14. Monodisperse Pt atoms anchored on N-doped graphene as efficient catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Duan, Ting; Meng, Changgong; Han, Yu

    2015-01-01

    We performed first-principles based calculations to investigate the electronic structure and the potential catalytic performance of Pt atoms monodispersed on N-doped graphene in CO oxidation. We showed that N-doping can introduce localized defect states in the vicinity of the Fermi level of graphene which will effectively stabilize the deposited Pt atoms. The binding energy of a single Pt atom onto a stable cluster of 3 pyridinic N (PtN3) is up to -4.47 eV, making the diffusion and aggregation of anchored Pt atoms difficult. Both the reaction thermodynamics and kinetics suggest that CO oxidation over PtN3 would proceed through the Langmuir-Hinshelwood mechanism. The reaction barriers for the formation and dissociation of the peroxide-like intermediate are determined to be as low as 0.01 and 0.08 eV, respectively, while that for the regeneration is only 0.15 eV, proving the potential high catalytic performance of PtN3 in CO oxidation, especially at low temperatures. The Pt-d states that are up-shifted by the Pt-N interaction account for the enhanced activation of O2 and the efficient formation and dissociation of the peroxide-like intermediate.

  15. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  16. Effect of charge state and stoichiometry on the structure and reactivity of nickel oxide clusters with CO

    Science.gov (United States)

    Johnson, Grant E.; Reilly, Nelly M.; Castleman, A. W., Jr.

    2009-02-01

    The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2-, Ni2O3-, Ni3O4- and Ni4O5-) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3- and Ni4O5- were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.

  17. Amorphous gallium oxide grown by low-temperature PECVD

    KAUST Repository

    Kobayashi, Eiji; Boccard, Mathieu; Jeangros, Quentin; Rodkey, Nathan; Vresilovic, Daniel; Hessler-Wyser, Aï cha; Dö beli, Max; Franta, Daniel; De Wolf, Stefaan; Morales-Masis, Monica; Ballif, Christophe

    2018-01-01

    demonstrate the growth of hydrogenated amorphous gallium oxide (a-GaO:H) thin-films by plasma-enhanced chemical vapor deposition (PECVD) at temperatures below 200 °C. In this way, conformal films are deposited at high deposition rates, achieving high broadband

  18. Kinetics and mechanism of the oxidation of cerium in air at ambient temperature

    International Nuclear Information System (INIS)

    Wheeler, D.W.

    2016-01-01

    Highlights: • XRD and transverse sections suggest Ce_2O_3 forms on Ce before being overlaid by CeO_2. • XRD and oxide thickness measurements both indicate linear oxidation. • Extensive cracking on oxide surface which sustains continuing oxidation. • Electron microscopy has shown features indicative of nodular oxidation. • Oxide growth rate determined to be 0.1 μm day"−"1 under the conditions in this study. - Abstract: This paper describes a study of the oxidation of cerium in air at ambient temperature. Specimens were exposed for up to 60 days, during which they were analysed by X-ray diffraction (XRD) at regular intervals. Both XRD and oxide thickness measurements indicate linear oxidation over the duration of this study. Under the conditions employed in this study, the rate of oxide growth has been determined to be 0.1 μm day"−"1. The oxidation process appears to be assisted by extensive cracking in the oxide layer which acts as a non-protective film for the underlying metal.

  19. Characterization of electro-oxidation catalysts using scanning electrochemical and mass spectral methods

    Science.gov (United States)

    Jambunathan, Krishnakumar

    Low temperature fuel cells have many potential benefits, including high efficiency, high energy density and environmental friendliness. However, logistically appealing fuels for this system, such as reformed hydrocarbons or alcohols, exhibit poor performance because of catalyst poisoning that occurs during oxidation at the anode. This research focuses on the analysis of several model fuels and catalyst materials to understand the impact of catalyst poisoning on reactivity. Two novel experimental tools were developed based upon the local measurement of catalyst performance using scanning, reactivity mapping probes. The Scanning Electrochemical Microscope (SECM) was used to directly measure the rate constant for hydrogen oxidation in the presence and absence of dissolved CO. The Scanning Differential Electrochemical Mass Spectrometer (SDEMS) was exploited to measure the partial and complete oxidation products of methanol and ethanol oxidation. The reactivity of Pt and Pt/Ru catalysts towards the hydrogen oxidation reaction in the absence and presence of adsorbed CO was elucidated using the SECM. Steady state rate constant measurements in the absence of CO showed that the rate of hydrogen oxidation reaction exceeded 1 cms-1 . Steady state rate constant measurements in the presence of CO indicated that the platinum surface is completely inactive due to adsorbed CO. Addition of as little as 6% Ru to the Pt electrode was found to significantly improve the activity of the electrode towards CO removal. SDEMS was used to study the electro-oxidation of methanol on Pt xRuy electrodes at different electrode potentials and temperatures. Screening measurements performed with the SDEMS showed that PtxRu y electrodes containing 6--40% Ru had the highest activity for methanol oxidation. Current efficiencies for CO2 were also calculated under different conditions. SDEMS was also used to study the electro-oxidation of ethanol on Pt xRuy electrodes. The reaction was found to occur

  20. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    Science.gov (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  1. Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel production

    KAUST Repository

    Garcia Esparza, Angel T.; Limkrailassiri, Kevin; Leroy, Fré dé ric; Rasul, Shahid; Yu, Weili; Lin, Liwei; Takanabe, Kazuhiro

    2014-01-01

    We report the use of a facile and highly scalable synthesis process to control growth products of earth-abundant Cu-based oxides and their application in relevant photoelectrochemical and electrochemical solar fuel generation systems. Characterization of the synthesized Cu(I)/Cu(II) oxides indicates that their surface morphology and chemical composition can be simply tuned by varying two synthesis parameters (time and temperature). UV-Vis spectroscopy and impedance spectroscopy studies are performed to estimate the band structures and electronic properties of these p-type semiconductor materials. Photoelectrodes made of Cu oxides possess favorable energy band structures for production of hydrogen from water; the position of their conduction band is ≈1 V more negative than the water-reduction potential. High acceptor concentrations on the order of 1018-1019 cm-3 are obtained, producing large electric fields at the semiconductor-electrolyte interface and thereby enhancing charge separation. The highly crystalline pristine samples used as photocathodes in photoelectrochemical cells exhibit high photocurrents under AM 1.5G simulated illumination. When the samples are electrochemically reduced under galvanostatic conditions, the co-existence of the oxide with metallic Cu on the surface seems to function as an effective catalyst for the selective electrochemical reduction of CO2. © the Partner Organisations 2014.

  2. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + COCO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + COCO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  3. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  4. Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.

    Science.gov (United States)

    Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick

    2014-03-26

    The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.

  5. A study of the relationship between microstructure and oxidation effects in nuclear graphite at very high temperatures

    Science.gov (United States)

    Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang

    2018-04-01

    Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.

  6. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bingtao [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  7. High-Performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-Doped Reduced Graphene Oxide Aerogel.

    Science.gov (United States)

    Pettong, Tanut; Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Sukha, Phansiri; Sirisinudomkit, Pichamon; Seubsai, Anusorn; Chareonpanich, Metta; Kongkachuichay, Paisan; Limtrakul, Jumras; Sawangphruk, Montree

    2016-12-14

    The working potential of symmetric supercapacitors is not so wide because one type of material used for the supercapacitor electrodes prefers either positive or negative charge to both charges. To address this problem, a novel asymmetrical supercapacitor (ASC) of battery-type MnCo 2 O 4 nanofibers (NFs)//N-doped reduced graphene oxide aerogel (N-rGO AE ) was fabricated in this work. The MnCo 2 O 4 NFs at the positive electrode store the negative charges, i.e., solvated OH - , while the N-rGO AE at the negative electrode stores the positive charges, i.e., solvated K + . An as-fabricated aqueous-based MnCo 2 O 4 //N-rGO AE ASC device can provide a wide operating potential of 1.8 V and high energy density and power density at 54 W h kg -1 and 9851 W kg -1 , respectively, with 85.2% capacity retention over 3000 cycles. To understand the charge storage reaction mechanism of the MnCo 2 O 4 , the synchrotron-based X-ray absorption spectroscopy (XAS) technique was also used to determine the oxidation states of Co and Mn at the MnCo 2 O 4 electrode after being electrochemically tested. The oxidation number of Co is oxidized from +2.76 to +2.85 after charging and reduced back to +2.75 after discharging. On the other hand, the oxidation state of Mn is reduced from +3.62 to +3.44 after charging and oxidized to +3.58 after discharging. Understanding in the oxidation states of Co and Mn at the MnCo 2 O 4 electrode here leads to the awareness of the uncertain charge storage mechanism of the spinel-type oxide materials. High-performance ASC here in this work may be practically used in high-power applications.

  8. A computational study of catalysis by gold in applications of CO oxidation

    NARCIS (Netherlands)

    Hussain, A.

    2010-01-01

    Au based catalysts have been extensively studied since Masatake Haruta in Japan discovered that small Au nanoparticles supported on transition metal oxides are exceptionally active catalysts for oxidation reactions at low temperature. However, what makes gold, being inert in the bulk form, active is

  9. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    Science.gov (United States)

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fluorine-enhanced low-temperature wafer bonding of native-oxide covered Si wafers

    Science.gov (United States)

    Tong, Q.-Y.; Gan, Q.; Fountain, G.; Enquist, P.; Scholz, R.; Gösele, U.

    2004-10-01

    The bonding energy of bonded native-oxide-covered silicon wafers treated in the HNO3/H2O/HF or the HNO3/HF solution prior to room-temperature contact is significantly higher than bonded standard RCA1 cleaned wafer pairs after low-temperature annealing. The bonding energy reaches over 2000mJ/m2 after annealing at 100 °C. The very slight etching and fluorine in the chemically grown oxide are believed to be the main contributors to the enhanced bonding energy. Transmission-electron-microscopic images have shown that the chemically formed native oxide at bonding interface is embedded with many flake-like cavities. The cavities can absorb the by-products of the interfacial reactions that result in covalent bond formation at low temperatures allowing the strong bond to be retained.

  11. A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube

    Science.gov (United States)

    Nematollahi, Parisa; Neyts, Erik C.

    2018-05-01

    In this study, we performed density functional theory (DFT) calculations to investigate different reaction mechanisms of CO oxidation catalyzed by the Si atom embedded defective BC2N nanostructures as well as the analysis of the structural and electronic properties. The structures of all the complexes are optimized and characterized by frequency calculations at the M062X/6-31G∗ computational level. Also, The electronic structures and thermodynamic parameters of adsorbed CO and O2 molecules over Si-doped BC2N nanostructures are examined in detail. Moreover, to investigate the curvature effect on the CO oxidation reaction, all the adsorption and CO oxidation reactions on a finite-sized armchair (6,6) Si-BC2NNT are also studied. Our results indicate that there can be two possible pathways for the CO oxidation with O2 molecule: O2(g) + CO(g) → O2(ads) + CO(ads) → CO2(g) + O(ads) and O(ads) + CO(g) → CO2(g). The first reaction proceeds via the Langmuir-Hinshelwood (LH) mechanism while the second goes through the Eley-Rideal (ER) mechanism. On the other hand, by increasing the tube diameter, the energy barrier increases due to the strong adsorption energy of the O2 molecule which is related to its dissociation over the tube surface. Our calculations indicate that the two step energy barrier of the oxidation reaction over Si-BC2NNS is less than that over the Si-BC2NNT. Hence, Si-BC2NNS may serve as an efficient and highly activated substrate to CO oxidation rather than (4,4) Si-BC2NNT.

  12. Co-sputtered ZnO:Si thin films as transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Faure, C. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Clatot, J. [LRCS, 33 Rue St Leu, F-80039 Amiens (France); Teule-Gay, L.; Campet, G. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Labrugere, C. [CeCaMA, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac, F-33608 (France); Nistor, M. [National Institute for Lasers, Plasmas and Radiation Physics, L22, PO Box MG-36, 77125 Bucharest-Magurele (Romania); Rougier, A., E-mail: rougier@icmcb-bordeaux.cnrs.fr [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France)

    2012-12-01

    Silicon doped Zinc Oxide thin films, so-called SZO, were deposited at room temperature on glass and plastic substrates by co-sputtering of ZnO and SiO{sub 2} targets. The influence of the SiO{sub 2} target power supply (from 30 to 75 W) on the SZO thin film composition and crystallinity is discussed. Si/Zn atomic ratio, determined by X-ray microprobe, increases from 1.2 to 8.2 at.%. For Si/Zn ratio equal and lower than 3.9%, SZO (S{sub 3.9}ZO) thin films exhibit the Wurzite structure with the (0 0 2) preferred orientation. Larger Si content leads to a decrease in crystallinity. With Si addition, the resistivity decreases down to 3.5 Multiplication-Sign 10{sup -3} Ohm-Sign {center_dot}cm for SZO thin film containing 3.9 at.% of Si prior to an increase. The mean transmittance of S{sub 3.9}ZO thin film on glass substrate approaches 80% (it is about 90% for the film itself) in the visible range (from 400 to 750 nm). Co-sputtered SZO thin films are suitable candidates for large area transparent conductive oxides. - Highlights: Black-Right-Pointing-Pointer Si doped ZnO thin films by co-sputtering of ZnO and SiO{sub 2} targets. Black-Right-Pointing-Pointer Minimum of resistivity for Si doped ZnO thin films containing 3.9% of Si. Black-Right-Pointing-Pointer Si and O environments by X-ray Photoelectron Spectroscopy.

  13. Synthesis and characterization of nickel oxide particulate annealed at different temperatures

    Science.gov (United States)

    Sharma, Khem Raj; Thakur, Shilpa; Negi, N. S.

    2018-04-01

    Nickel oxide has been synthesized by solution combustion technique. The nickel oxide ceramic was annealed at 600°C and 1000°C for 2 hours. Structural, electrical, dielectric and magnetic properties were analyzed which are strongly dependent upon the synthesis method. Structural properties were examined by X-ray diffractometer (XRD), which confirmed the purity and cubic phase of nickel oxide. XRD data reveals the increase in crystallite size and decrease in full width half maximum (FWHM) as the annealing temperature increases. Electrical conductivity is found to increase from 10-6 to 10-5 (Ω-1cm-1) after annealing. Dielectric constant is observed to increase from 26 to 175 when the annealing temperature is increased from 600°C to 1000°C. Low value of coercive field is found which shows weak ferromagnetic behavior of NiO. It is observed that all the properties of NiO particulate improve with increasing annealing temperature.

  14. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  15. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    gas (CO/CO2/H2) and an excellent thermal stability. Addition of alumina as a structural promoter is necessary in order to obtain a high activity for methanol formation. The binary systems, i.e., CuO/ZnO, ZnO/Al2O3 and CuO/Al2O3 are investigated as a prelude to the preparation of the ternary catalyst...... the flame temperature, the high temperature residence time and the precursor concentration. The Cu/ZnO/Al2O3 methanol catalyst is used as a model system for the preparation of catalytic materials. The flame synthesized catalyst exhibits a high and reproducible activity for methanol formation from synthesis...... crystallites is oxidized. A number of complications may arise using the N2O-titration. It may be difficult to obtain full oxidation of the copper surface without having some oxidation of the bulk. Secondly, some sintering of the nano-sized copper crystallites may occur due to the exothermic nature...

  16. Oxidation of carbon monoxide by perferrylmyoglobin

    DEFF Research Database (Denmark)

    Libardi, Silvia H; Skibsted, Leif Horsfelt; Cardoso, Daniel R

    2014-01-01

    Perferrylmyoglobin is found to oxidize CO in aerobic aqueous solution to CO2. Tryptophan hydroperoxide in the presence of tetra(4-sulfonatophenyl)-porphyrinate-iron(III) or simple iron(II)/(III) salts shows similar reactivity against CO. The oxidation of CO is for tryptophan hydroperoxide concluded...... to depend on the formation of alkoxyl radicals by reductive cleavage by iron(II) or on the formation of peroxyl radicals by oxidative cleavage by iron(III). During oxidation of CO, the tryptophan peroxyl radical was depleted with a rate constant of 0.26 ± 0.01 s(-1) for CO-saturated aqueous solution of pH 7...

  17. Densification of Highly Defective Ceria by High Temperature Controlled Re-Oxidation

    DEFF Research Database (Denmark)

    Ni, De Wei; Glasscock, Julie; Pons, Aénor

    2014-01-01

    Highly enhanced densification and grain growth of Ce0.9Gd0.1O1.95-δ (CGO, gadolinium-doped ceria, with 10 mol% Gd) is achieved in low oxygen activity atmospheres. However, the material can suffer mechanical failures during cooling when the re-oxidation process is not controlled due to the large...... volume changes. In this work, the redox process of CGO is investigated using dilatometry, microscopy, electrochemical impedance spectroscopy and thermodynamic analysis. In addition, the conditions allowing controlled re-oxidation and cooling in order to preserve the mechanical integrity of the CGO...... component are defined: this can be achieved over a wide temperature range (800−1200◦C) by gradually increasing the oxygen content of the atmosphere. It is found that the electrical conductivity of the CGO, particularly at low temperature (oxidation...

  18. Defect states and room temperature ferromagnetism in cerium oxide nanopowders prepared by decomposition of Ce-propionate

    DEFF Research Database (Denmark)

    Mihalache, V.; Grivel, J. C.; Secu, M.

    2018-01-01

    . An improvement of ferromagnetism and intensity of defect-related PL emission was observed when annealing the products in which nanocrystalline cerium oxide coexists with Ce - oxicarbonate traces, Ce2O2CO3. The experimental results were explained based on the following considerations: room temperature......Four batches of cerium oxide powders (with nanocrystallite size of 6.9 nm–572 nm) were prepared from four precursor nanopowders by thermal decomposition of Ce-propionate and annealing in air between 250 °C–1200 °C for 10 min–240 min. Ceria formation reactions, structure, vibrational, luminescence...... and magnetic properties were investigated by differential scanning calorimetry, x-ray diffraction, electron microscopy, infrared spectroscopy, photoluminescence and SQUID. All the samples exhibit room temperature ferromagnetism, RTFM, (with coercivity, Hc, of 8 Oe - 121 Oe and saturation magnetization, Ms...

  19. Acid-permanganate oxidation of potassium tetraphenylboron

    International Nuclear Information System (INIS)

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO 2 , highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO 4 /2.5M H 3 PO 4 solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO 2 (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation

  20. Perchlorate-Coupled Carbon Monoxide (CO Oxidation: Evidence for a Plausible Microbe-Mediated Reaction in Martian Brines

    Directory of Open Access Journals (Sweden)

    Marisa R. Myers

    2017-12-01

    Full Text Available The presence of hydrated salts on Mars indicates that some regions of its surface might be habitable if suitable metabolizable substrates are available. However, several lines of evidence have shown that Mars’ regolith contains only trace levels of the organic matter needed to support heterotrophic microbes. Due to the scarcity of organic carbon, carbon monoxide (CO at a concentration of about 700 parts per million (about 0.4 Pa might be the single most abundant readily available substrate that could support near-surface bacterial activity. Although a variety of electron acceptors can be coupled to CO oxidation, perchlorate is likely the most abundant potential oxidant in Mars’ brines. Whether perchlorate, a potent chaotrope, can support microbial CO oxidation has not been previously documented. We report here the first evidence for perchlorate-coupled CO oxidation based on assays with two distinct euryarchaeal extreme halophiles. CO oxidation occurred readily in 3.8 M NaCl brines with perchlorate concentrations from 0.01 to 1 M. Both isolates were able to couple CO with perchlorate or chlorate under anaerobic conditions with or without nitrate as an inducer for nitrate reductase, which serves as a perchlorate reductase in extreme halophiles. In the presence of perchlorate, CO concentrations were reduced to levels well below those found in Mars’ atmosphere. This indicates that CO could contribute to the survival of microbial populations in hydrated salt formations or brines if water activities are suitably permissive.

  1. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  2. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Woodley, John

    2009-01-01

    The aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, is examined in water with a titania-supported gold-nanoparticle catalyst at ambient temperature (30 degrees C). The selectivity of the reaction towords 2,5-furandicarboxylic acid and the intermediate oxidation...

  3. Limits and dynamics of methane oxidation in landfill cover soils

    Science.gov (United States)

    In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a signi...

  4. The effects of re-firing process under oxidizing atmosphere and temperatures on the properties of strontium aluminate phosphors

    International Nuclear Information System (INIS)

    Karacaoglu, Erkul; Karasu, Bekir

    2013-01-01

    Graphical abstract: The comparative emission spectra of standard and re-fired Phosphor A under oxidizing atmosphere at various temperatures. The colour of Phosphor A re-fired at higher temperatures above 900 °C shifted from yellowish-green to bluish-green in the dark. But, the bluish-green emission could only be seen when it was exposed to UV and disappeared as soon as the light source was removed. Moreover, the emission intensities decreased as the re-firing temperatures increased. This could be attributed to the oxidation of Eu 2+ during the re-firing process. It is well known fact from the literature that the reduction of Eu 3+ to Eu 2+ in appropriate host materials needs an annealing process in a reducing atmosphere such as H 2 , H 2 /N 2 mixture or CO. Up to now, the reduction phenomena of Eu 3+ → Eu 2+ in air have been found in phosphates (Ba 3 (PO 4 ) 2 :Eu), sulphates (BaSO 4 :Eu), borates (SrB 4 O 7 :Eu, SrB 6 O 10 :Eu and BaB 8 O 13 :Eu) and aluminates (Sr 4 Al 14 O 25 :Eu). Interestingly, an apparent blue shift in the phosphorescence spectrum was observed in the samples re-fired at 1000 °C and above, indicating a minimal effect on the oxidation state or the electronic energy levels of the co-doped Dy 3+ ions, which were thought to act as long-lived hole traps resulting in long afterglow. - Highlights: • This study examines the effects re-firing at oxidizing atmosphere of photoluminescence of three different commercial SrAl 2 O 4 :Eu 2+ ,Dy 3+ -phosphors. • All the commercial SrAl 2 O 4 :Eu 2+ ,Dy 3+ -phosphors completely lost their phosphorescence after being re-fired at 1300 °C. • Oxidizing environment and re-firing temperature naturally affecting the valance of Eu 2+ may cause the basic lattice structure to be modified and also limit their applications at higher temperatures, such as third firing vetrosa décor or glaze applications in ceramic industry. • It was thought that this kind of study may be promising to provide many outcome

  5. Corrosion of steel in carbonated media: The oxidation processes of chukanovite (Fe2(OH)2CO3)

    International Nuclear Information System (INIS)

    Azoulay, I.; Rémazeilles, C.; Refait, Ph.

    2014-01-01

    Highlights: • Oxidation of chukanovite does not lead to carbonated green rust. • Both lepidocrocite and goethite can result from the oxidation of chukanovite. • Violent oxidation of chukanovite by hydrogen peroxide leads to a Fe(III) oxycarbonate. • Chukanovite crystal structure withstands a partial oxidation of Fe(II) to Fe(III). - Abstract: The oxidation of aqueous suspensions of chukanovite (Fe 2 (OH) 2 CO 3 ) obtained by mixing NaOH, FeCl 2 and Na 2 CO 3 solutions was studied. The reaction was monitored by recording the pH and the redox potential of a platinum electrode immersed in the suspension. The precipitate was analyzed at various oxidation stages by infrared spectroscopy. The end products were also characterized by X-ray diffraction. The oxidation by air of the suspensions leads to lepidocrocite and goethite without formation of an intermediate green rust compound. Violent oxidation of chukanovite by hydrogen peroxide leads to a Fe(III) oxycarbonate with a crystal structure closely related to that of chukanovite

  6. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C-H bond activation

    Science.gov (United States)

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R.

    2013-11-01

    Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4• can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other CexAlyOz NBONCs do not show reactivities toward CO and C4H10. The structures, as well as the reactivities, of CexAlyOz NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO4• NBONC possesses a kite-shaped structure with an OtCeObObAlOt configuration (Ot, terminal oxygen; Ob, bridging oxygen). An unpaired electron is localized on the Ot atom of the AlOt moiety rather than the CeOt moiety: this Ot centered radical moiety plays a very important role for the reactivity of the CeAlO4• NBONC. The reactivities of Ce2O4, CeAlO4•, and Al2O4 toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO4• with C4H10 to form the CeAlO4H•C4H9• encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of AlxOy/MmOn or MmOn/AlxOy materials are proposed consistent with the presented experimental and theoretical results.

  7. Multi-metal oxide ceramic nanomaterial

    Science.gov (United States)

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  8. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaohui [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Chen, Changlong, E-mail: chem.chencl@hotmail.com [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Han, Liuyuan [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Shao, Baiqi [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wei, Yuling [Instrumental Analysis Center, Qilu University of Technology, Jinan 250353, Shandong (China); Liu, Qinglong; Zhu, Peihua [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-15

    Highlights: • In{sub 2}O{sub 3} octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In{sub 2}O{sub 3} octahedrons could significantly enhance room temperature NO{sub 2} gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO{sub 2} gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on.

  9. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    International Nuclear Information System (INIS)

    Mu, Xiaohui; Chen, Changlong; Han, Liuyuan; Shao, Baiqi; Wei, Yuling; Liu, Qinglong; Zhu, Peihua

    2015-01-01

    Highlights: • In 2 O 3 octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In 2 O 3 octahedrons could significantly enhance room temperature NO 2 gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO 2 gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on

  10. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation

    Science.gov (United States)

    Wang, Wei; Yang, Yan; Liu, Yanqin; Zhang, Zhe; Dong, Wenkui; Lei, Ziqiang

    2015-01-01

    To improve the electrocatalytic activity of Pd for ethanol oxidation, hybrid NiCoOx adjacent to Pd catalyst (Pd-NiCoOx/C) is successfully synthesized. Physical characterization shows NiCoOx is closely adjacent to Pd nanoparticles in Pd-NiCoOx/C catalyst, which leads to Strong Metal-Support Interactions (SMSI) between the NiCoOx and Pd nanoparticles, in favor of the electrocatalytic properties. The Pd-NiCoOx/C catalyst is estimated to own larger electrochemically active surface area than Pd/C and Pd-NiO/C catalysts. Moreover, compared to Pd/C catalyst, the onset potential of Pd-NiCoOx/C catalyst is negative 40 mV for ethanol oxidation. Noticeably, the current density of Pd-NiCoOx/C catalyst is 2.05 and 1.43 times higher contrasted to Pd/C and Pd-NiO/C catalysts accordingly. Importantly, the Pd-NiCoOx/C catalyst exhibits better stability during ethanol oxidation, which is a promising electrocatalyst for application in direct alkaline alcohol fuel cells.

  11. Altering CO2 during reperfusion of ischemic cardiomyocytes modifies mitochondrial oxidant injury.

    Science.gov (United States)

    Lavani, Romeen; Chang, Wei-Tien; Anderson, Travis; Shao, Zuo-Hui; Wojcik, Kimberly R; Li, Chang-Qing; Pietrowski, Robert; Beiser, David G; Idris, Ahamed H; Hamann, Kimm J; Becker, Lance B; Vanden Hoek, Terry L

    2007-07-01

    Acute changes in tissue CO2 and pH during reperfusion of the ischemic heart may affect ischemia/reperfusion injury. We tested whether gradual vs. acute decreases in CO2 after cardiomyocyte ischemia affect reperfusion oxidants and injury. Comparative laboratory investigation. Institutional laboratory. Embryonic chick cardiomyocytes. Microscope fields of approximately 500 chick cardiomyocytes were monitored throughout 1 hr of simulated ischemia (PO2 of 3-5 torr, PCO2 of 144 torr, pH 6.8), followed by 3 hrs of reperfusion (PO2 of 149 torr, PCO2 of 36 torr, pH 7.4), and compared with cells reperfused with relative hypercarbia (PCO2 of 71 torr, pH 6.8) or hypocarbia (PCO2 of 7 torr, pH 7.9). The measured outcomes included cell viability (via propidium iodide) and oxidant generation (reactive oxygen species via 2',7'-dichlorofluorescin oxidation and nitric oxide [NO] via 4,5-diaminofluorescein diacetate oxidation). Compared with normocarbic reperfusion, hypercarbia significantly reduced cell death from 54.8% +/- 4.0% to 26.3% +/- 2.8% (p < .001), significantly decreased reperfusion reactive oxygen species (p < .05), and increased NO at a later phase of reperfusion (p < .01). The NO synthase inhibitor N-nitro-L-arginine methyl ester (200 microM) reversed this oxidant attenuation (p < .05), NO increase (p < .05), and the cardioprotection conferred by hypercarbic reperfusion (increasing death to 54.3% +/- 6.0% [p < .05]). Conversely, hypocarbic reperfusion increased cell death to 80.4% +/- 4.5% (p < .01). It also increased reactive oxygen species by almost two-fold (p = .052), without affecting the NO level thereafter. Increased reactive oxygen species was attenuated by the mitochondrial complex III inhibitor stigmatellin (20 nM) when given at reperfusion (p < .05). Cell death also decreased from 85.9% +/- 4.5% to 52.2% +/- 6.5% (p < .01). The nicotinamide adenine dinucleotide phosphate oxidase inhibitor apocynin (300 microM) had no effect on reperfusion reactive oxygen

  12. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Directory of Open Access Journals (Sweden)

    Tricia Fraser

    2017-05-01

    Full Text Available Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere and ligB and mce (for Jules were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and

  13. A method of eliminating the surface defect in low-temperature oxidation powder added UO2 pellet

    International Nuclear Information System (INIS)

    Yoo, H. S.; Lee, S. J.; Kim, J. I.; Jeon, K. R.; Kim, J. W.

    2002-01-01

    A study on methods to eliminate surface defect shown in low-temperature oxidation powder added UO 2 pellet has been performed. Powders oxidized at 350 .deg. C for 4 hrs were prepared and mixed with UO 2 powder after crushing them. After being sintered, surfaces of the pellet were inspected both visually and optically. A large number of defects were observed on the surface of the specimens in which low-temperature oxidation powders were directly mixed or master mixed with UO 2 powder while both specimens produced from mixed powders including milled oxidation powders and powders that were milled totally after mixing had clean surfaces. However, optical examination showed considerably large defected pores in the milled oxidation powder added pellet and it was confirmed that the inner defects can be eliminated completely only when milling the entire mixture on UO 2 and low-temperature oxidation powder, but not by crushing only oxidation powder

  14. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    Science.gov (United States)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  15. NiO-YSZ cermets supported low temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Yick, Sing; Styles, Edward; Roller, Justin; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 3250 East Mall, Vancouver, BC (Canada V6T 1W5)

    2006-10-20

    Solid oxide fuel cells with thin electrolyte of two types, Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) (15{mu}m) single-layer and 8mol% Yttria stabilized zirconia (YSZ) (5{mu}m)+SDC (15{mu}m) bi-layer on NiO-YSZ cermet substrates were fabricated by screen printing and co-firing. A Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} cathode was printed, and in situ sintered during a cell performance test. The SDC single-layer electrolyte cell showed high electrochemical performance at low temperature, with a 1180mWcm{sup -2} peak power density at 650{sup o}C. The YSZ+SDC bi-layer electrolyte cell generated 340mWcm{sup -2} peak power density at 650{sup o}C, and showed good performance at 700-800{sup o}C, with an open circuit voltage close to theoretical value. Many high Zr-content micro-islands were found on the SDC electrolyte surface prior to the cathode preparation. The influence of co-firing temperature and thin film preparation methods on the Zr-islands' appearance was investigated. (author)

  16. Environmental Effects on Non-oxide Ceramics

    Science.gov (United States)

    Jacobson, Nathan S.; Opila, Elizabeth J.

    1997-01-01

    Non-oxide ceramics such as silicon carbide (SiC) and silicon nitride (Si3N4) are promising materials for a wide range of high temperature applications. These include such diverse applications as components for heat engines, high temperature electronics, and re-entry shields for space vehicles. Table I lists a number of selected applications. Most of the emphasis here will be on SiC and Si3N4. Where appropriate, other non-oxide materials such as aluminum nitride (AlN) and boron nitride (BN) will be discussed. Proposed materials include both monolithic ceramics and composites. Composites are treated in more detail elsewhere in this volume, however, many of the oxidation/corrosion reactions discussed here can be extended to composites. In application these materials will be exposed to a wide variety of environments. Table I also lists reactive components of these environments.It is well-known that SiC and Si3N4 retain their strength to high temperatures. Thus these materials have been proposed for a variety of hot-gas-path components in combustion applications. These include heat exchanger tubes, combustor liners, and porous filters for coal combustion products. All combustion gases contain CO2, CO, H2, H2O, O2, and N2. The exact gas composition is dependent on the fuel to air ratio or equivalence ratio. (Equivalence ratio (EQ) is a fuel-to-air ratio, with total hydrocarbon content normalized to the amount of O2 and defined by EQ=1 for complete combustion to CO2 and H2O). Figure 1 is a plot of equilibrium gas composition vs. equivalence ratio. Note that as a general rule, all combustion atmospheres are about 10% water vapor and 10% CO2. The amounts of CO, H2, and O2 are highly dependent on equivalence ratio.

  17. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  18. Ni And Co Segregations On Selective Surface Facets And Rational Design Of Layered Lithium Transition-metal Oxide Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zheng, Jiaxin; Wang, Zhiguo; Teng, Gaofeng; Kuppan, Saravanan; Xiao, Jie; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.; Pan, Feng

    2016-05-05

    The chemical processes occurring on the surface of cathode materials during battery cycling play a crucial role in determining battery’s performance. However, our understanding on such surface chemistry is far from clear due to the complexity of redox chemistry during battery charge/discharge. In this work, through intensive aberration corrected STEM investigation on eight layered oxide cathode materials, we report two important findings on the pristine oxides. First, Ni and Co show strong plane selectivity when building up their respective surface segregation layers (SSL). Specifically, Ni-SSL is exclusively developed on (200)m facet in Li-Mn-rich oxides (monoclinic C2/m symmetry) and (012)h facet in Mn-Ni equally rich oxides (hexagonal R-3m symmetry), while Co-SSL has a strong preference to (20-2)m plane with minimal Co-SSL also developed on some other planes in LMR cathodes. Structurally, Ni-SSLs tend to form spinel-like lattice while Co-SSLs are in a rock-salt-like structure. Secondly, by increasing Ni concentration in these layered oxides, Ni and Co SSLs can be suppressed and even eliminated. Our findings indicate that Ni and Co SSLs are tunable through controlling particle morphology and oxide composition, which opens up a new way for future rational design and synthesis of cathode materials.

  19. Spectroscopic and luminescent properties of Co2+ doped tin oxide thin films by spray pyrolysis

    Directory of Open Access Journals (Sweden)

    K. Durga Venkata Prasad

    2016-07-01

    Full Text Available The wide variety of electronic and chemical properties of metal oxides makes them exciting materials for basic research and for technological applications alike. Oxides span a wide range of electrical properties from wide band-gap insulators to metallic and superconducting. Tin oxide belongs to a class of materials called Transparent Conducting Oxides (TCO which constitutes an important component for optoelectronic applications. Co2+ doped tin oxide thin films were prepared by chemical spray pyrolysis synthesis and characterized by powder X-ray diffraction, SEM, TEM, FT-IR, optical, EPR and PL techniques to collect the information about the crystal structure, coordination/local site symmetry of doped Co2+ ions in the host lattice and the luminescent properties of the prepared sample. Powder XRD data revealed that the crystal structure belongs to tetragonal rutile phase and its lattice cell parameters are evaluated. The average crystallite size was estimated to be 26 nm. The morphology of prepared sample was analyzed by using SEM and TEM studies. Functional groups of the prepared sample were observed in the FT-IR spectrum. Optical absorption and EPR studies have shown that on doping, Co2+ ions enter in the host lattice as octahedral site symmetry. PL studies of Co2+ doped SnO2 thin films exhibit blue and yellow emission bands. CIE chromaticity coordinates were also calculated from emission spectrum of Co2+ doped SnO2 thin films.

  20. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier [Dpto. de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, San Sebastian (Spain)

    2011-11-15

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.2}Ru{sub 0.2} composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)