WorldWideScience

Sample records for temperature monitoring system

  1. Energy Doubler cryoloop temperature monitor system

    International Nuclear Information System (INIS)

    Pucci, G.; Howard, D.

    1981-10-01

    The Cryoloop Temperature Monitor System is a fully electronic system designed to monitor temperature at key points in the Energy Doubler cryoloop system. It is used for cryoloop diagnostics, temperature studies, and cooldown valve control

  2. Remote Multi-layer Soil Temperature Monitoring System Based on GPRS

    Directory of Open Access Journals (Sweden)

    Ming Kuo CHEN

    2014-02-01

    Full Text Available There is the temperature difference between the upper and lower layer of the shallow soil in the forest. It is a potential energy that can be harvested by thermoelectric generator for the electronic device in the forest. The temperature distribution at different depths of the soil is the first step for thermoelectric generation. A remote multi-layer soil temperature monitoring system based on GPRS is proposed in this paper. The MSP430F149 MCU is used as the main controller of multi-layer soil temperature monitoring system. A temperature acquisition module is designed with DS18B20 and 4 core shielded twisted-pair cable. The GPRS module sends the measured data to remote server through wireless communication network. From the experiments in the campus of Beijing Forestry University, the maximum error of measured temperature in this system is 0.2°C by comparing with professional equipment in the same condition. The results of the experiments show that the system can accurately realize real-time monitoring of multi-layer soil temperature, and the data transmission is stable and reliable.

  3. Low temperature monitoring system for subsurface barriers

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  4. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  5. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  6. Distributed remote temperature monitoring system for INDUS-2 vacuum chambers

    International Nuclear Information System (INIS)

    Bhange, N.J.; Gothwal, P.; Fatnani, P.; Shukla, S.K.

    2011-01-01

    Indus-2, a 2.5 GeV Synchrotron Radiation Source (SRS) at Indore has a large vacuum system. The vacuum envelope of Indus-2 ring comprises of 16 dipole chambers as vital parts. Each chamber has 4 photon absorbers and three beam line ports blanked with end flanges. Temperature monitoring of critical vacuum components during operation of Indus-2 ring is an important requirement. The paper discusses a distributed, 160 channel remote temperature monitoring system developed and deployed for this purpose using microcontroller based, modular Temperature Monitoring Units (TMU). The cabling has been extensively minimized using RS485 system and keeping trip relay contacts of all units in series. For ensuring proper signal conditioning of thermocouple outputs (K-type) and successful operation over RS485 bus, many precautions were taken considering the close proximity to the storage ring. We also discuss the software for vacuum chamber temperature monitoring and safety system. The software developed using LabVIEW, has important features like modularity, client-server architecture, local and global database logging, alarms and trips, event and error logging, provision of various important configurations, communications handling etc. (author)

  7. Design of temperature monitoring system based on CAN bus

    Science.gov (United States)

    Zhang, Li

    2017-10-01

    The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.

  8. Computer based systems for fast reactor core temperature monitoring and protection

    International Nuclear Information System (INIS)

    Wall, D.N.

    1991-01-01

    Self testing fail safe trip systems and guardlines have been developed using dynamic logic as a basis for temperature monitoring and temperature protection in the UK. The guardline and trip system have been tested in passive operation on a number of reactors and a pulse coded logic guardline is currently in use on the DIDO test reactor. Acoustic boiling noise and ultrasonic systems have been developed in the UK as diverse alternatives to using thermocouples for temperature monitoring and measurement. These systems have the advantage that they make remote monitoring possible but they rely on complex signal processing to achieve their output. The means of incorporating such systems within the self testing trip system architecture are explored and it is apparent that such systems, particularly that based on ultrasonics has great potential for development. There remain a number of problems requiring detailed investigation in particular the verification of the signal processing electronics and trip software. It is considered that these problems while difficult are far from insurmountable and this work should result in the production of protection and monitoring systems suitable for deployment on the fast reactor. 6 figs

  9. The design of multi temperature and humidity monitoring system for incubator

    Science.gov (United States)

    Yu, Junyu; Xu, Peng; Peng, Zitao; Qiang, Haonan; Shen, Xiaoyan

    2017-01-01

    Currently, there is only one monitor of the temperature and humidity in an incubator, which may cause inaccurate or unreliable data, and even endanger the life safety of the baby. In order to solve this problem,we designed a multi-point temperature and humidity monitoring system for incubators. The system uses the STC12C5A60S2 microcontrollers as the sender core chip which is connected to four AM2321 temperature and humidity sensors. We select STM32F103ZET6 core development board as the receiving end,cooperating with Zigbee wireless transmitting and receiving module to realize data acquisition and transmission. This design can realize remote real-time observation data on the computer by communicating with PC via Ethernet. Prototype tests show that the system can effectively collect and display the information of temperature and humidity of multiple incubators at the same time and there are four monitors in each incubator.

  10. Portable system for temperature monitoring in all phases of wine production.

    Science.gov (United States)

    Boquete, Luciano; Cambralla, Rafael; Rodríguez-Ascariz, J M; Miguel-Jiménez, J M; Cantos-Frontela, J J; Dongil, J

    2010-07-01

    This paper presents a low-cost and highly versatile temperature-monitoring system applicable to all phases of wine production, from grape cultivation through to delivery of bottled wine to the end customer. Monitoring is performed by a purpose-built electronic system comprising a digital memory that stores temperature data and a ZigBee communication system that transmits it to a Control Centre for processing and display. The system has been tested under laboratory conditions and in real-world operational applications. One of the system's advantages is that it can be applied to every phase of wine production. Moreover, with minimum modification, other variables of interest (pH, humidity, etc.) could also be monitored and the system could be applied to other similar sectors, such as olive-oil production. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Documentation package for the RFID temperature monitoring system (Model 9977 packages at NTS)

    International Nuclear Information System (INIS)

    Chen, K.; Tsai, H.

    2009-01-01

    The technical basis for extending the Model 9977 shipping package periodic maintenance beyond the one-year interval to a maximum of five years is based on the performance of the O-ring seals and the environmental conditions. The DOE Packaging Certification Program (PCP) has tasked Argonne National Laboratory to develop a Radio-Frequency Identification (RFID) temperature monitoring system for use by the facility personnel at DAF/NTS. The RFID temperature monitoring system, depicted in the figure below, consists of the Mk-1 RFId tags, a reader, and a control computer mounted on a mobile platform that can operate as a stand-alone system, or it can be connected to the local IT network. As part of the Conditions of Approval of the CoC, the user must complete the prescribed training to become qualified and be certified for operation of the RFID temperature monitoring system. The training course will be administered by Argonne National Laboratory on behalf of the Headquarters Certifying Official. This is a complete documentation package for the RFID temperature monitoring system of the Model 9977 packagings at NTS. The documentation package will be used for training and certification. The table of contents are: Acceptance Testing Procedure of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Acceptance Testing Result of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Performance Test of the Single Bolt Seal Sensor for the Model 9977 Packaging; Calibration of Built-in Thermistors in RFID Tags for Nevada Test Site; Results of Calibration of Built-in Thermistors in RFID Tags; Results of Thermal Calibration of Second Batch of MK-I RFID Tags; Procedure for Installing and Removing MK-1 RFID Tag on Model 9977 Drum; User Guide for RFID Reader and Software for Temperature Monitoring of Model 9977 Drums at NTS; Software Quality Assurance Plan (SQAP) for the ARG-US System; Quality Category for the RFID Temperature Monitoring System; The

  12. Design and Evaluation of a Pressure and Temperature Monitoring System for Pressure Ulcer Prevention

    Directory of Open Access Journals (Sweden)

    Farve Daneshvar Fard

    2014-08-01

    Full Text Available Introduction Pressure ulcers are tissue damages resulting from blood flow restriction, which occurs when the tissue is exposed to high pressure for a long period of time. These painful sores are common in patients and elderly, who spend extended periods of time in bed or wheelchair. In this study, a continuous pressure and temperature monitoring system was developed for pressure ulcer prevention. Materials and Methods The monitoring system consists of 64 pressure and 64 temperature sensors on a 40×50 cm2 sheet. Pressure and temperature data and the corresponding maps were displayed on a computer in real-time. Risk assessment could be performed by monitoring and recording absolute pressure and temperature values, as well as deviations over time. Furthermore, a posture detection procedure was proposed for sitting posture identification. Information about the patient’s movement history may help caregivers make informed decisions about the patient’s repositioning and ulcer prevention strategies. Results Steady temporal behaviour of the designed system and repeatability of the measurements were evaluated using several particular tests. The results illustrated that the system could be utilized for continuous monitoring of interface pressure and temperature for pressure ulcer prevention. Furthermore, the proposed method for detecting sitting posture was verified using a statistical analysis. Conclusion A continuous time pressure and temperature monitoring system was presented in this study. This system may be suited for pressure ulcer prevention given its feasibility for simultaneous monitoring of pressure and temperature and alarming options. Furthermore, a method for detecting different sitting postures was proposed and verified. Pressure ulcers in wheelchair-bound patients may be prevented using this sitting posture detection method.

  13. Documentation pckage for the RFID temperature monitoring system (Of Model 9977 packages at NTS).

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.; Tsai, H.; Decision and Information Sciences

    2009-02-20

    The technical basis for extending the Model 9977 shipping package periodic maintenance beyond the one-year interval to a maximum of five years is based on the performance of the O-ring seals and the environmental conditions. The DOE Packaging Certification Program (PCP) has tasked Argonne National Laboratory to develop a Radio-Frequency Identification (RFID) temperature monitoring system for use by the facility personnel at DAF/NTS. The RFID temperature monitoring system, depicted in the figure below, consists of the Mk-1 RFId tags, a reader, and a control computer mounted on a mobile platform that can operate as a stand-alone system, or it can be connected to the local IT network. As part of the Conditions of Approval of the CoC, the user must complete the prescribed training to become qualified and be certified for operation of the RFID temperature monitoring system. The training course will be administered by Argonne National Laboratory on behalf of the Headquarters Certifying Official. This is a complete documentation package for the RFID temperature monitoring system of the Model 9977 packagings at NTS. The documentation package will be used for training and certification. The table of contents are: Acceptance Testing Procedure of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Acceptance Testing Result of MK-1 RFID Tags for DOE/EM Nuclear Materials Management Applications; Performance Test of the Single Bolt Seal Sensor for the Model 9977 Packaging; Calibration of Built-in Thermistors in RFID Tags for Nevada Test Site; Results of Calibration of Built-in Thermistors in RFID Tags; Results of Thermal Calibration of Second Batch of MK-I RFID Tags; Procedure for Installing and Removing MK-1 RFID Tag on Model 9977 Drum; User Guide for RFID Reader and Software for Temperature Monitoring of Model 9977 Drums at NTS; Software Quality Assurance Plan (SQAP) for the ARG-US System; Quality Category for the RFID Temperature Monitoring System; The

  14. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  15. Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems

    Directory of Open Access Journals (Sweden)

    Thomas Hermans

    2014-08-01

    Full Text Available Low enthalpy geothermal systems exploited with ground source heat pumps or groundwater heat pumps present many advantages within the context of sustainable energy use. Designing, monitoring and controlling such systems requires the measurement of spatially distributed temperature fields and the knowledge of the parameters governing groundwater flow (permeability and specific storage and heat transport (thermal conductivity and volumetric thermal capacity. Such data are often scarce or not available. In recent years, the ability of electrical resistivity tomography (ERT, self-potential method (SP and distributed temperature sensing (DTS to monitor spatially and temporally temperature changes in the subsurface has been investigated. We review the recent advances in using these three methods for this type of shallow applications. A special focus is made regarding the petrophysical relationships and on underlying assumptions generally needed for a quantitative interpretation of these geophysical data. We show that those geophysical methods are mature to be used within the context of temperature monitoring and that a combination of them may be the best choice regarding control and validation issues.

  16. Investigation of the Temperature Sensors Accuracy in the Temperature Monitoring System for the Welded Joints of the Industrial Power Supply Main Busways

    Science.gov (United States)

    Grivennaya, N. V.; Bazhenov, A. V.; Bondareva, G. A.; Malygin, S. V.; Knyaginin, A. A.

    2018-01-01

    The article is devoted to the substantiation of the technical solution of the remote monitoring system for the temperature changes of main and branch busways of power supply to industrial enterprises of increased environmental danger. When monitoring the temperature of trunk buses of AC mains up to 1000 V, heated by an electric current, errors occur due to various factors. Studies have been carried out to evaluate the effect of temperature of surrounding objects (including neighboring busbars) on the accuracy of temperature measurements. Conclusions are made about the possibility of using alternative versions of temperature sensors as the basis of the monitoring system.

  17. Remote monitor system of temperature and humidity based on internet

    International Nuclear Information System (INIS)

    Wu Ting; Fang Fang; Zeng Zhijie

    2006-01-01

    This paper introduces the system architecture and implement details of the remote and realtime monitor system of temperature and humidity. In this design, NiosII soft CPU core and peripheral's IP core are embedded in FPGA, while a MicroC/OS2 real-time operating system and lightweight IP protocol stack are porting thereon, to achieve a open system which hardware and software are all can be reconfigure. (authors)

  18. Home-made temperature monitoring system from four-channel K-type thermocouples via internet of thing technology platform

    Science.gov (United States)

    Detmod, Thitaporn; Özmen, Yiǧiter; Songkaitiwong, Kittiphot; Saenyot, Khanuengchat; Locharoenrat, Kitsakorn; Lekchaum, Sarai

    2018-06-01

    This paper is aimed to design and construct the home-made temperature monitoring system from four-channel K-type thermocouples in order to improve the temperature measurement based on standard evaluation measurements guidance. The temperature monitoring system was capable to record the temperature on SD card and to display the realtime temperature on Internet of Thing Technology platform. The temperature monitoring system was tested in terms of the temperature measurement accuracy and delay response time. It was found that a standard deviation was acceptable as compared to the Instrument Society of America. The response time of the microcontroller to SD card was 2 sec faster than that of the microcontroller to Thingspeak.

  19. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  20. Development of GUI Temperature Monitoring System based on Thin-Film Optical Filter

    Directory of Open Access Journals (Sweden)

    Hilal Adnan Fadhil

    2017-08-01

    Full Text Available Fiber optic sensors have progressed rapidly in recent year as because it has many advantages over other types of sensors in terms of freedom from electromagnetic radiation, wide bandwidth, economy, can withstand high temperature and under harsh environment. Due to those reason a thermo sensor based on fiber optic which utilizes a thin-film optical band-pass filter has been developed. However, the proposed system has advantages over the fiber Bragg grating sensor which can observe the temperature in small area and low transmission loss. The simulation software is used to design a Graphical User Interface (GUI. The GUI system allows the user to monitor the condition and the status of the current temperature. The monitoring system presented in this paper is divided into three basic sub-systems which are retrieve the real-time data system, displaying out the data system, and warning system. This GUI system used to collect the data and process the data for displaying the current data and further checking as a history data has been keep. The values obtained of thermo sensor are measured as 30°C till 330°C and the wavelength values are between 1552.93nm till 1557.25nm

  1. On the use of temperature for online condition monitoring of geared systems - A review

    Science.gov (United States)

    Touret, T.; Changenet, C.; Ville, F.; Lalmi, M.; Becquerelle, S.

    2018-02-01

    Gear unit condition monitoring is a key factor for mechanical system reliability management. When they are subjected to failure, gears and bearings may generate excessive vibration, debris and heat. Vibratory, acoustic or debris analyses are proven approaches to perform condition monitoring. An alternative to those methods is to use temperature as a condition indicator to detect gearbox failure. The review focuses on condition monitoring studies which use this thermal approach. According to the failure type and the measurement method, it exists a distinction whether it is contact (e.g. thermocouple) or non-contact temperature sensor (e.g. thermography). Capabilities and limitations of this approach are discussed. It is shown that the use of temperature for condition monitoring has a clear potential as an alternative to vibratory or acoustic health monitoring.

  2. Comparison of an in-helmet temperature monitor system to rectal temperature during exercise.

    Science.gov (United States)

    Wickwire, P Jason; Buresh, Robert J; Tis, Laurie L; Collins, Mitchell A; Jacobs, Robert D; Bell, Marla M

    2012-01-01

    Body temperature monitoring is crucial in helping to decrease the amount and severity of heat illnesses; however, a practical method of monitoring temperature is lacking. In response to the lack of a practical method of monitoring the temperature of athletes, Hothead Technologies developed a device (HOT), which continuously monitors an athlete's fluctuations in body temperature. HOT measures forehead temperature inside helmets. The purpose of this study was to compare HOT against rectal temperature (Trec). Male volunteers (n = 29, age = 23.5 ± 4.5 years, weight = 83.8 ± 10.4 kg, height = 180.1 ± 5.8 cm, body fat = 12.3 ± 4.5%) exercised on a treadmill at an intensity of 60-75% heart rate reserve (HRR) (wet bulb globe temperature [WBGT] = 28.7° C) until Trec reached 38.7° C. The correlation between Trec and HOT was 0.801 (R = 0.64, standard error of the estimate (SEE) = 0.25, p = 0.00). One reason for this relatively high correlation is the microclimate that HOT is monitoring. HOT is not affected by the external climate greatly because of its location in the helmet. Therefore, factors such as evaporation do not alter HOT temperature to a great degree. HOT was compared with Trec in a controlled setting, and the exercise used in this study was moderate aerobic exercise, very unlike that used in football. In a controlled laboratory setting, the relationship between HOT and Trec showed favorable correlations. However, in applied settings, helmets are repeatedly removed and replaced forcing HOT to equilibrate to forehead temperature every time the helmet is replaced. Therefore, future studies are needed to mimic how HOT will be used in field situations.

  3. In-Situ Real-Time Temperature Monitoring of Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for interfacial and in-depth temperature monitoring of thermal protection systems (TPS). Novel, linear drive, eddy current methods...

  4. Temperature monitoring of vehicle engine exhaust gases under vibration condition using optical fibre temperature sensor systems

    International Nuclear Information System (INIS)

    Zhao, W Z; Suna, T; Grattana, K T V; Shen, Y H; Wei, C L; Al-Shamma'a, A I

    2006-01-01

    Two optical approaches, comprising and contracting both the fluorescence decay lifetime and the fibre Bragg grating (FBG) methods, were developed and evaluated for temperature monitoring of exhaust gases for use on a vehicle engine. The FBGs used in the system were written into specially designed Bi-Ge co-doped photosensitive fibres, to enable them to sustain high temperatures to over 800 0 C, which is far beyond that of FBGs written into most commercial photosensitive fibres. The sensors were subjected to a range of vibration tests, as a part of an optical exhaust monitoring network under development, and results from the test carried out are reported

  5. Sensor programming and concept implementation of a temperature monitoring system, using Arduino as prototyping platform

    DEFF Research Database (Denmark)

    Sbîrnă, Sebastian; Søberg, Peder Veng; Sbîrnă, Liana Simona

    2016-01-01

    The present work reports the programming paradigms that have been developed for a temperature monitoring system able to provide accurate data regarding food temperatures inside refrigerated vehicles and alert the driver accordingly, in relation to which temperature states are encountered. The men...

  6. Monitoring system for accuracy and reliability characteristics of standard temperature measurements in WWER-440 reactors

    International Nuclear Information System (INIS)

    Stanc, S.; Repa, M.

    2001-01-01

    Description of a monitoring system for accuracy and reliability characteristics of standard temperature measurements in WWER-440 reactors and benefits obtained from its use are shown in the presentation. As standard reactor temperature measurement, coolant temperature measurement at fuel assembly outlets and in loops, entered into the In-Reactor Control System , are considered. Such systems have been implemented at two V-230 reactors and are under implementation at other four V-213 reactors. (Authors)

  7. The detection of wind turbine shaft misalignment using temperature monitoring

    OpenAIRE

    Tonks, Oliver; Wang, Qing

    2016-01-01

    Temperature is a parameter increasingly monitored in wind turbine systems. This paper details a potential temperature monitoring technique for use on shaft couplings. Such condition monitoring methods aid fault detection in other areas of wind turbines. However, application to shaft couplings has not previously been widely researched. A novel temperature measurement technique is outlined, using an infra-red thermometer which can be applied to online condition monitoring. The method was va...

  8. [The development of a respiration and temperature monitor].

    Science.gov (United States)

    Du, X; Wu, B; Liu, Y; He, Q; Xiao, J

    2001-12-01

    This paper introduces the design of a monitoring system to measure the respiration and temperature of a body with an 8Xc196 single-chip microcomputer. This system can measure and display the respiration wave, respiration frequency and the body temperature in real-time with a liquid crystal display (LCD) and give an alarm when the parameters are beyond the normal scope. In addition, this device can provide a 24 hours trend graph of the respiration frequency and the body temperature parameters measured. Data can also be exchanged through serial communication interfaces (RS232) between the PC and the monitor.

  9. Full integrated system of real-time monitoring based on distributed architecture for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Subekti, Muhammad; Ohno, Tomio; Kudo, Kazuhiko; Takamatsu, Kuniyoshi; Nabeshima, Kunihiko

    2005-01-01

    A new monitoring system scheme based on distributed architecture for the High Temperature Engineering Test Reactor (HTTR) is proposed to assure consistency of the real-time process of expanded system. A distributed monitoring task on client PCs as an alternative architecture maximizes the throughput and capabilities of the system even if the monitoring tasks suffer a shortage of bandwidth. The prototype of the on-line monitoring system has been developed successfully and will be tested at the actual HTTR site. (author)

  10. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  11. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation.

    Directory of Open Access Journals (Sweden)

    Yi-Da Liu

    Full Text Available Radiofrequency ablation (RFA has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15 were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.

  12. Precision temperature monitoring (PTM) and Humidity monitoring (HM) sensors of the CMS electromagnetic calorimeter

    CERN Multimedia

    2006-01-01

    A major aspect for the ECAL detector control is the monitoring of the system temperature and the verification that the required temperature stability of the crystal volume and the APDs, expected to be (18 ± 0.05)C, is achieved. The PTM is designed to read out thermistors, placed on both the front and back of the crystals, with a relative precision better than 0.01 C. In total there are ten sensors per supermodule. The humidity level in the electronics compartment is monitored by the HM system and consists of one humidity sensor per module.

  13. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chen

    2011-10-01

    Full Text Available Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA, notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS process for monitoring temperature in situ.

  14. Hardware/Software Data Acquisition System for Real Time Cell Temperature Monitoring in Air-Cooled Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Segura, Francisca; Bartolucci, Veronica; Andújar, José Manuel

    2017-07-09

    This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC). These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC), the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ) system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts). The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system.

  15. Hardware/Software Data Acquisition System for Real Time Cell Temperature Monitoring in Air-Cooled Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2017-07-01

    Full Text Available This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC. These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC, the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts. The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system.

  16. Design of safety monitor system for operation sintering furnace ME-06

    International Nuclear Information System (INIS)

    Sugeng Rianto; Triarjo; Djoko Kisworo; Agus Sartono

    2013-01-01

    Design of safety monitoring system for safety operation of sinter furnace ME-06 has been done. Parameters monitored during this operation include: temperature, gas pressure, flow rate of gas, voltage and current furnace. For sintering furnace temperature system that monitored were the temperature of the furnace temperature, the temperature of the cooling water system inlet and outlet, temperature of flow hydrogen gas inlet and outlet. For pressure system and flow rate gas sinter furnace which monitored the pressure and flow rate of hydrogen gas inlet and outlet. The system also monitors current and voltage applied to the sinter furnace heating system. Monitor system hardware consists of: the system temperature sensor, pressure, rate and data acquisition systems. While software systems using the labview driver interface that connects the hard and software systems. Function test results during sintering operation for setting the temperature 1700 °C sintering temperature increases the ramp function by 250 °C/hour average measurements obtained when the sintering time 1707.016 °C with a standard deviation of 0.38 °C. The maximum temperature of the hydrogen gas temperature 35.4 °C. The maximum temperature of the cooling water system 27.4 °C. The maximum pressure of 1,911 bar Gas Inlet and outlet of 0,051 bar. Maximum inlet gas flow 12.996 L / min and outlet 14.086 L / min. (author)

  17. Design of online monitoring and forecasting system for electrical equipment temperature of prefabricated substation based on WSN

    Science.gov (United States)

    Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo

    2016-10-01

    In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.

  18. VME system monitor board

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Much of the machinery throughout the APS will be controlled by VME based computers. In order to increase the reliability of the system, it is necessary to be able to monitor the status of each VME crate. In order to do this, a VME System Monitor was created. In addition to being able to monitor and report the status (watchdog timer, temperature, CPU (Motorola MVME 167) state (status, run, fail), and the power supply), it includes provisions to remotely reset the CPU and VME crate, digital I/O, and parts of the transition module (serial port and ethernet connector) so that the Motorla MVME 712 is not needed. The standard VME interface was modified on the System Monitor so that in conjunction with the Motorola MVME 167 a message based VXI interrupt handler could is implemented. The System Monitor is a single VME card (6U). It utilizes both the front panel and the P2 connector for I/O. The front panel contains a temperature monitor, watchdog status LED, 4 general status LEDs, input for a TTL interrupt, 8 binary inputs (24 volt, 5 volt, and dry contact sense), 4 binary outputs (dry contact, TTL, and 100 mA), serial port (electrical RS-232 or fiber optic), ethernet transceiver (10 BASE-FO or AUI), and a status link to neighbor crates. The P2 connector is used to provide the serial port and ethernet to the processor. In order to abort and read the status of the CPU, a jumper cable must be connected between the CPU and the System Monitor.

  19. The software design of multi-branch, multi-point remote monitoring system for temperature measurement based on MSP430 and DS18B20

    International Nuclear Information System (INIS)

    Yu Jun; Yan Yu

    2009-01-01

    This paper present that the system can acquire the remote temperature measurement data of 40 monitoring points, through the RS-232 serial port and the Intranet. System's hardware is consist of TI's MSP430F149 mixed-signal processor and UA7000A network module. Using digital temperature sensor DS18B20, the structure is simple and easy to expand, the sensors directly send out the temperature data, MSP430F149 has the advantage of ultra-low-power and high degree of integration. Using msp430F149, the multi-branch multi-point temperature measurement system is powerful, simple structure, high reliability, strong anti-interference capability. The client software is user-friendly and easy to use, it is designed in Microsoft Visual C+ +6.0 environment. The monitoring system is able to complete a total of 4 branches of the 40-point temperature measurements in real-time remote monitoring. (authors)

  20. A Realization of Temperature Monitoring System Based on Real-Time Kernel μC/OS and 1-wire Bus

    Directory of Open Access Journals (Sweden)

    Yanmei Qi

    2013-06-01

    Full Text Available The traditional temperature monitoring system generally adopt some analog sensors for collecting data and a microcontroller for processing data for the purpose of temperature monitoring. However, this back-fore ground system has the disadvantages that the system has poor real-time property and single function, the amount of sensors is not easy to expand, and the software system has a difficulty in upgrading. Aiming at these disadvantages, the system designed in this paper adopts brand-new hardware and software structures: a digitaltemperature sensor array is connected to 1-wire bus and communicated with a control core through 1-wire bus protocol, thus a great convenience is provided for the expansion of the sensor; a real-time operating system is introduced into the software, an application program capable of realizing various functions runs on the real-time kernel μC/OS-II platform. The application of the real-time kernel also provides a good lower layer interface for the late-stage software upgrading.

  1. Maine River Temperature Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We collect seasonal and annual temperature measurements on an hourly or quarter hourly basis to monitor habitat suitability for ATS and other species. Temperature...

  2. Determination of irradiation temperature using SiC temperature monitors

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    This paper describes a method for detecting the change in length of SiC temperature monitors and a discussion is made on the relationship between irradiation temperature and the recovery in length of SiC temperature monitors. The SiC specimens were irradiated in the experimental fast reactor JOYO' at the irradiation temperatures around 417 to 645degC (design temperature). The change in length of irradiated specimens was detected using a dilatometer with SiO 2 glass push rod in an infrared image furnace. The temperature at which recovery in macroscopic length begins was obtained from the annealing intersection temperature. The results of measurements indicated that a difference between annealing intersection temperature and the design temperature sometimes reached well over ±100degC. A calibration method to obtain accurate irradiation temperature was presented and compared with the design temperature. (author)

  3. New cryogenic temperature monitor: PLT-HPT-32

    Science.gov (United States)

    Viera Curbelo, Teodora Aleida; Martín-Fernández, Sergio Gonzáles; Hoyland, R.; Vega-Moreno, A.; Cozar Castellano, Juan; Gómez Reñasco, M. F.; Aguiar-González, M.; Pérez de Taoro, Angeles; Sánchez-de la Rosa, V.; Rubiño-Martín, J. A.; Génova-Santos, R.

    2016-07-01

    The PLT-HPT-32, a new cryogenic temperature monitor, has been developed by the Institute of Astrophysics of the Canary Islands (IAC) and an external engineering company (Sergio González Martín-Fernandez). The PLT-HPT-32 temperature monitor offers precision measurement in a wide range of cryogenic and higher-temperature applications with the ability to easily monitor up to 32 sensor channels. It provides better measurement performance in applications where researchers need to ensure accuracy and precision in their low cryogenic temperature monitoring. The PLT-HPT-32 supports PTC RTDs such as platinum sensors, and diodes such as the Lake Shore DT-670 Series. Used with silicon diodes, it provides accurate measurements in cryo-cooler applications from 16 K to above room temperature. The resolution of the measurement is less than 0.1K. Measurements can be displayed in voltage units or Kelvin units. For it, two different tables can be used. One can be programmed by the user, and the other one corresponds to Lake Shore DT670 sensor that comes standard. There are two modes of measuring, the instantaneous mode and averaged mode. In this moment, all channels must work in the same mode but in the near future it expected to be used in blocks of eight channels. The instantaneous mode takes three seconds to read all channels. The averaged mode takes one minute to average twenty samples in all channels. Alarm thresholds can be configured independently for each input. The alarm events, come from the first eight channels, can activate the unit's relay outputs for hard-wired triggering of other systems or audible annunciators. Activate relays on high, low, or both alarms for any input. For local monitoring, "Stand-Alone Mode", the front panel of the PLT-HPT-32 features a bright liquid crystal display with an LED backlight that shows up to 32 readings simultaneously. Plus, monitoring can be done over a network "Remote Control Mode". Using the Ethernet port on the PLT-HPT-32, you

  4. Purex canyon exhaust fan bearing temperature monitoring system doric 245 datalogger programming

    International Nuclear Information System (INIS)

    Blackaby, W.B.

    1994-01-01

    A micro-processor based datalogger is used to monitor, display, and log seventeen RTD temperature channels. Five bearings are monitored for each of the three electric motor-fan assemblies and two bearings are monitored on the steam turbine unit. Several alarms per data channel (a High alarm at 236 degrees and a High High alarm at 246 degrees F) will alert the operation's staff to increasing abnormal bearing temperatures. This procedure is cross-referenced to the manufacturers manual. All programming steps will have the following footnote: Mpg x-xx. The Mpg refers to the Manual page, with x as the section number and xx as the page number in that section. When more information is needed, such as pictures or details, then the manual section and page number is provided

  5. Development of in-situ monitoring system

    International Nuclear Information System (INIS)

    Lee, Bong Soo; Cho, Dong Hyun; Yoo, Wook Jae; Heo, Ji Yeon

    2010-03-01

    Development of in-situ monitoring system using an optical fiber to measure the real time temperature variation of subsurface water for the evaluation of flow characteristics. We describe the feasibility of developing a fiber-optic temperature sensor using a thermochromic material. A sensor-tip is fabricated by mixing of a thermochromic material powder. The relationships between the temperatures and the output voltages of detectors are determined to measure the temperature of water. It is expected that the fiber-optic temperature monitoring sensor using thermochromic material can be used to measure the real time temperature variation of subsurface water

  6. Utilization of local area network technology and decentralized structure for nuclear reactor core temperature monitoring

    International Nuclear Information System (INIS)

    Casella, M.; Peirano, F.

    1986-01-01

    The present system concerns Superphenix type reactors. It is a new version of system for monitoring the reactor core temperatures. It has been designed to minimize the cost and the wiring complexity because of the large number of channels (800). For this, equipments are arranged on the roof slab of the reactor with a single link to the control room; from which the name Integrated Treatment of Core Temperatures: TITC 1500 and the natural choice of a distributed system. This system monitors permanently the thermal state of the core a Superphenix type reactor. This monitoring system aims at detecting anomalies of core temperature rise, releasing automatic shutdown (safety), and providing to the monitoring systems not concerned safety the information concerning the core [fr

  7. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  8. Real-time optoacoustic monitoring of temperature in tissues

    International Nuclear Information System (INIS)

    Larina, Irina V; Larin, Kirill V; Esenaliev, Rinat O

    2005-01-01

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser (λ = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1 0 C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy

  9. Wireless Intelligent Monitoring and Control System of Greenhouse Temperature Based on Fuzzy-PID

    Directory of Open Access Journals (Sweden)

    Mei ZHAN

    2014-03-01

    Full Text Available Control effect is not ideal for traditional control method and wired control system, since greenhouse temperature has such characteristics as nonlinear and longtime lag. Therefore, Fuzzy- PID control method was introduced and radio frequency chip CC1110 was applied to design greenhouse wireless intelligent monitoring and control system. The design of the system, the component of nodes and the developed intelligent management software system were explained in this paper. Then describe the design of the control algorithm Fuzzy-PID. By simulating the new method in Matlab software, the results showed that Fuzzy-PID method small overshoot and better dynamic performance compared with general PID control. It has shorter settling time and no steady-state error compared with fuzzy control. It can meet requirements in greenhouse production.

  10. Test plan for core sampling drill bit temperature monitor

    International Nuclear Information System (INIS)

    Francis, P.M.

    1994-01-01

    At WHC, one of the functions of the Tank Waste Remediation System division is sampling waste tanks to characterize their contents. The push-mode core sampling truck is currently used to take samples of liquid and sludge. Sampling of tanks containing hard salt cake is to be performed with the rotary-mode core sampling system, consisting of the core sample truck, mobile exhauster unit, and ancillary subsystems. When drilling through the salt cake material, friction and heat can be generated in the drill bit. Based upon tank safety reviews, it has been determined that the drill bit temperature must not exceed 180 C, due to the potential reactivity of tank contents at this temperature. Consequently, a drill bit temperature limit of 150 C was established for operation of the core sample truck to have an adequate margin of safety. Unpredictable factors, such as localized heating, cause this buffer to be so great. The most desirable safeguard against exceeding this threshold is bit temperature monitoring . This document describes the recommended plan for testing the prototype of a drill bit temperature monitor developed for core sampling by Sandia National Labs. The device will be tested at their facilities. This test plan documents the tests that Westinghouse Hanford Company considers necessary for effective testing of the system

  11. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    Science.gov (United States)

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  12. Radiation control monitoring system on the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Minowa, Y.; Nakazawa, T.; Sato, K.; Kikuchi, H.; Nomura, T.

    1999-01-01

    Radiation control monitoring system of the HTTR is divided into three subsystems; exhaust monitoring equipment, room air monitoring equipment, dose equivalent rate monitoring equipment. The exhaust monitoring equipment consists of exhaust gas monitors, exhaust dust monitors, and a tritium and carbon sampling device at normal operation of the reactor. Accident gas monitors are also provided for the emergency. The tritium and carbon sampling device uses cupper oxide as a oxidizer, and ethanol amine as a sampling materials which collects continuously tritium and carbon in dust during about one month and is measured by a liquid scintillation counter. The accident gas monitors consist of two channels, for a low and a high range. The high range-gas monitor consists of two ionization chambers: one encloses argon gas and the other encloses xenon gas. Average energy of various gamma-rays, hence, accident exposure dose of the public can be estimated with the comparison of the sensitivity of two kinds of ionization chambers. The dose equivalent rate monitoring equipment consists of silicon semiconductor detectors for gamma-ray, a ionization chamber for gamma-ray, a BF 3 counter for neutron, and accident area monitors which are located in the reactor container. The message of 'check dose !' or 'temporary evacuation !' can be send to the workers in the reactor with a light and a sound. A computer system collects the radiation monitoring data every 10 sec cycle and accumulates them in a server computer. The leakage and the dispersion of helium gas must be taken into account on the radiation control monitoring system of the HTTR. (Suetake, M.)

  13. In-situ thermoelectric temperature monitoring and "Closed-loop integrated control" system for concentrator photovoltaic-thermoelectric hybrid receivers

    Science.gov (United States)

    Rolley, Matthew H.; Sweet, Tracy K. N.; Min, Gao

    2017-09-01

    This work demonstrates a new technique that capitalizes on the inherent flexibility of the thermoelectric module to provide a multifunctional platform, and exhibits a unique advantage only available within CPV-TE hybrid architectures. This system is the first to use the thermoelectric itself for hot-side temperature feedback to a PID control system, needing no additional thermocouple or thermistor to be attached to the cell - eliminating shading, and complex mechanical designs for mounting. Temperature measurement accuracy and thermoelectric active cooling functionality is preserved. Dynamic "per-cell" condition monitoring and protection is feasible using this technique, with direct cell-specific temperature measurement accurate to 1°C demonstrated over the entire experimental range. The extrapolation accuracy potential of the technique was also evaluated.

  14. High Temperature Transducers for Online Monitoring of Microstructure Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Tittmann, Bernhard [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-03-30

    A critical technology gap exists relative to online condition monitoring (CM) of advanced nuclear plant components for damage accumulation; there are not capable sensors and infrastructure available for the high temperature environment. The sensory system, monitoring methodology, data acquisition, and damage characterization algorithm that comprise a CM system are investigated here. Thus this work supports the DOE mission to develop a fundamental understanding of advanced sensors to improve physical measurement accuracy and reduce uncertainty. The research involves a concept viability assessment, a detailed technology gap analysis, and a technology development roadmap.

  15. Temperature measurement systems in wearable electronics

    Science.gov (United States)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  16. Body temperature and motion: Evaluation of an online monitoring system in pigs challenged with Porcine Reproductive & Respiratory Syndrome Virus.

    Science.gov (United States)

    Süli, Tamás; Halas, Máté; Benyeda, Zsófia; Boda, Réka; Belák, Sándor; Martínez-Avilés, Marta; Fernández-Carrión, Eduardo; Sánchez-Vizcaíno, José Manuel

    2017-10-01

    Highly contagious and emerging diseases cause significant losses in the pig producing industry worldwide. Rapid and exact acquisition of real-time data, like body temperature and animal movement from the production facilities would enable early disease detection and facilitate adequate response. In this study, carried out within the European Union research project RAPIDIA FIELD, we tested an online monitoring system on pigs experimentally infected with the East European subtype 3 Porcine Reproductive & Respiratory Syndrome Virus (PRRSV) strain Lena. We linked data from different body temperature measurement methods and the real-time movement of the pigs. The results showed a negative correlation between body temperature and movement of the animals. The correlation was similar with both body temperature obtaining methods, rectal and thermal sensing microchip, suggesting some advantages of body temperature measurement with transponders compared with invasive and laborious rectal measuring. We also found a significant difference between motion values before and after the challenge with a virulent PRRSV strain. The decrease in motion values was noticeable before any clinical sign was recorded. Based on our results the online monitoring system could represent a practical tool in registering early warning signs of health status alterations, both in experimental and commercial production settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Design of PID temperature control system based on STM32

    Science.gov (United States)

    Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru

    2018-03-01

    A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.

  18. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    Science.gov (United States)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  19. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Maile, K; Jovanovic, A [MPA Stuttgart (Germany)

    1999-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  20. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  1. Raspberry Pi in-situ network monitoring system of groundwater flow and temperature integrated with OpenGeoSys

    Science.gov (United States)

    Park, Chan-Hee; Lee, Cholwoo

    2016-04-01

    Raspberry Pi series is a low cost, smaller than credit-card sized computers that various operating systems such as linux and recently even Windows 10 are ported to run on. Thanks to massive production and rapid technology development, the price of various sensors that can be attached to Raspberry Pi has been dropping at an increasing speed. Therefore, the device can be an economic choice as a small portable computer to monitor temporal hydrogeological data in fields. In this study, we present a Raspberry Pi system that measures a flow rate, and temperature of groundwater at sites, stores them into mysql database, and produces interactive figures and tables such as google charts online or bokeh offline for further monitoring and analysis. Since all the data are to be monitored on internet, any computers or mobile devices can be good monitoring tools at convenience. The measured data are further integrated with OpenGeoSys, one of the hydrogeological models that is also ported to the Raspberry Pi series. This leads onsite hydrogeological modeling fed by temporal sensor data to meet various needs.

  2. ERMS - Environmental Radiation Monitoring System

    International Nuclear Information System (INIS)

    Vax, Eran; Sarusi, Benny; Sheinfeld, Mati; Levinson, Shmuel; Brandys, Irad; Sattinger, Danny; Wengrowicz, Udi; Tshuva, Avi; Tirosh, Dan

    2008-01-01

    A new Environmental Radiation Monitoring System (ERMS) has been developed in the NRCN as an extensive tool to be applied in case of nuclear malfunction or Nuclear Disposal Device (NDD) incident, as well as for routine radiation monitoring of the reactor's vicinity. The system collects real-time environmental data such as: gamma radiation, wind speed, wind direction, and temperature for monitoring purposes. The ERMS consists of a main Control Center and an array of monitoring stations. Fixed, environmental, gamma radiation monitoring stations are installed at the reactor's surroundings while portable stations can be posted rapidly along the wind direction, enhancing the spatial sampling of the radiation measurements and providing better hazard assessment at an emergency event. The presented ERMS, based on industrial standards for hardware and network protocols, is a reliable standalone system which upgrades the readiness to face a nuclear emergency event by supplying real-time, integrated meteorological and radiation data. (author)

  3. Temperature monitoring of gas-cooled reactors

    International Nuclear Information System (INIS)

    Kaiser, G.E.

    1977-01-01

    The present paper deals with questions like : a) Why temperature monitoring in high-temperature reactors at all. b) How are the measuring positions arranged and how are the measurements designed. c) What technique of temperature measurement is applied. (RW) [de

  4. A New Environmental Monitoring System For Silkworm Incubators

    OpenAIRE

    Alejandra Duque-Torres; Juan Ruiz-Rosero; Gesille Zambrano-Gonzalez; Martha Almanza-Pinzon; Oscar Mauricio Caicedo Rendon; Gustavo Ramirez-Gonzalez

    2018-01-01

    A newly Monitoring Environmental Conditions System is proposed based on Raspberry-Pi. This proposal monitors the temperature, humidity, and luminosity in a silkworm incubator. The monitoring data are collected and save in the cloud for the subsequent analysis. The monitoring environmental system is based on Raspberry Pi due to capabilities, features, and low cost. The preliminary tests were realized in a real scenery and the results demonstrating its reliability.

  5. Design and Development of a Relative Humidity and Room Temperature Measurement System with On Line Data Logging Feature for Monitoring the Fermentation Room of Tea Factory

    Directory of Open Access Journals (Sweden)

    Utpal SARMA

    2011-12-01

    Full Text Available The design and development of a Relative Humidity (RH and Room Temperature (RT monitoring system with on line data logging feature for monitoring fermentation room of a tea factory is presented in this paper. A capacitive RH sensor with on chip signal conditioner is taken as RH sensor and a temperature to digital converter (TDC is used for ambient temperature monitoring. An 8051 core microcontroller is the heart of the whole system which reads the digital equivalent of RH data with the help of a 12-bit Analog to Digital (A/D converter and synchronize TDC to get the ambient temperature. The online data logging is achieved with the help of RS-232C communication. Field performance is also studied by installing it in the fermentation room of a tea factory.

  6. Monitoring temperatures in coal conversion and combustion processes via ultrasound

    Science.gov (United States)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    The state of the art of instrumentation for monitoring temperatures in coal conversion and combustion systems is examined. The instrumentation types studied include thermocouples, radiation pyrometers, and acoustical thermometers. The capabilities and limitations of each type are reviewed. A feasibility study of the ultrasonic thermometry is described. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible.

  7. Microcontroller based multi-channel ultrasonic level monitoring system

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Singh, Inder Jeet; Chadda, V.K.

    2004-01-01

    Microcontroller based Multi-channel Ultrasonic Level Monitoring System developed by Computer Division is based on echo ranging techniques to monitor level. The transmitter directs an ultrasonic burst towards the liquid, which gets reflected from the top of the liquid surface. The time taken for ultrasound to travel from the transmitter to the top of liquid surface is measured and used to calculate the liquid level. The system provides for temperature compensation for accurate measurement as the ultrasound velocity depends on the ambient temperature. It can measure liquid level up to 5 meters. A single monitor can be used to measure level in 6 tanks. PC connectivity has been provided via RS 232 and RS 485 for remote operation and data logging of level. A GUI program developed using LABVIEW package displays level on PC monitor. The program provides for pictorial as well as numerical display for level and temperature in the front panel on the PC monitor. A user can monitor level for any or all tanks from the PC. One unit is installed at CIRUS for measuring level in Acid/ Alkali tanks and one is installed at APSARA for measuring water level in the reactor pool. (author)

  8. Design of smart neonatal health monitoring system using SMCC.

    Science.gov (United States)

    De, Debashis; Mukherjee, Anwesha; Sau, Arkaprabha; Bhakta, Ishita

    2017-02-01

    Automated health monitoring and alert system development is a demanding research area today. Most of the currently available monitoring and controlling medical devices are wired which limits freeness of working environment. Wireless sensor network (WSN) is a better alternative in such an environment. Neonatal intensive care unit is used to take care of sick and premature neonates. Hypothermia is an independent risk factor for neonatal mortality and morbidity. To prevent it an automated monitoring system is required. In this Letter, an automated neonatal health monitoring system is designed using sensor mobile cloud computing (SMCC). SMCC is based on WSN and MCC. In the authors' system temperature sensor, acceleration sensor and heart rate measurement sensor are used to monitor body temperature, acceleration due to body movement and heart rate of neonates. The sensor data are stored inside the cloud. The health person continuously monitors and accesses these data through the mobile device using an Android Application for neonatal monitoring. When an abnormal situation arises, an alert is generated in the mobile device of the health person. By alerting health professional using such an automated system, early care is provided to the affected babies and the probability of recovery is increased.

  9. Automated Cryocooler Monitor and Control System

    Science.gov (United States)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and

  10. Low-cost automatic station for compost temperature monitoring

    Directory of Open Access Journals (Sweden)

    Marcelo D. L. Jordão

    Full Text Available ABSTRACT Temperature monitoring is an important procedure to control the composting process. Due to cost limitation, temperature monitoring is manual and with daily sampling resolution. The objective of this study was to develop an automatic station with US$ 150 dollars, able to monitor air temperature at two different points in a compost pile, with a 5-min time resolution. In the calibration test, the sensors showed an estimated uncertainty from ± 1 to ± 1.9 ºC. In the field validation test, the station guaranteed secure autonomy for seven days and endured high humidity and extreme temperature (> 70 °C.

  11. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage

    Science.gov (United States)

    Huynh, Thanh-Canh; Kim, Jeong-Tae

    2017-12-01

    In this study, the quantification of temperature effect on impedance monitoring via a PZT interface for prestressed tendon-anchorage is presented. Firstly, a PZT interface-based impedance monitoring technique is selected to monitor impedance signatures by predetermining sensitive frequency bands. An analytical model is designed to represent coupled dynamic responses of the PZT interface-tendon anchorage system. Secondly, experiments on a lab-scaled tendon anchorage are described. Impedance signatures are measured via the PZT interface for a series of temperature and prestress-force changes. Thirdly, temperature effects on measured impedance responses of the tendon anchorage are estimated by quantifying relative changes in impedance features (such as RMSD and CCD indices) induced by temperature variation and prestress-force change. Finally, finite element analyses are conducted to investigate the mechanism of temperature variation and prestress-loss effects on the impedance responses of prestressed tendon anchorage. Temperature effects on impedance monitoring are filtered by effective frequency shift-based algorithm for distinguishing prestress-loss effects on impedance signatures.

  12. A pressurized ion chamber monitoring system for environmental radiation measurements utilizing a wide-range temperature-compensated electrometer

    International Nuclear Information System (INIS)

    Stevenick, W. Van

    1994-01-01

    The performance of a complete pressurized ion chamber (PIC) radiation monitoring system is described. The design incorporates an improved temperature-compensated electrometer which is stable to ±3 · 10 -16 A over the environmental range of temperature (-40 to +40 C). Using a single 10 11 Ω feed-back resistor, the electrometer accurately measures currents over a range from 3 · 10 -15 A to 3 · 10 -11 A. While retaining the sensitivity of the original PIC system (the instrument responds readily to small background fluctuations on the order of 0.1 μR h -1 ), the new system measures radiation levels up to the point where the collection efficiency of the ion chamber begins to drop off, typically ∼27 pA at 1 mR h -1 . A data recorder and system controller was designed using the Tattletale trademark Model 4A computer. Digital data is stored on removable solid-state, credit-card style memory cards

  13. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Boston Univ., MA; California Univ., Santa Barbara, CA; California Univ., Santa Cruz, CA; Cincinnati Univ., OH; Rutgers--the State Univ., Piscataway, NJ; Tohoku Univ., Sendai

    1989-10-01

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs

  14. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    Science.gov (United States)

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  15. Nutrient Film Technique (NFT Hydroponic Monitoring System

    Directory of Open Access Journals (Sweden)

    Helmy Helmy

    2016-10-01

    Full Text Available Plant cultivation using hydroponic is very popular today. Nutrient Film Technique (NFT hydroponic system is commonly used by people. It can be applied indoor or outdoor. Plants in this systemneed nutrient solution to grow well. pH, TDS and temperature of the nutrient solution must be check to ensure plant gets sufficient nutrients. This research aims todevelop monitoring system of NFT hydroponic. Farmer will be able to monitor pH, TDS and temperature online. It will ease farmer to decide which plant is suitable to be cultivated and time to boost growth.Delay of the system will be measured to know system performance. Result shows that pH is directly proportional with TDS. Temperature value has no correlation with pH and TDS. System has highest delay during daylight and afternoon but it will decline in the night and morning. Average of delay in the morning is 11 s, 28.5 s in daylight, 32 s in the afternoon and 17.5 s in the night.

  16. Temperature control system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  17. Real-time Monitoring on the Tunnel Wall Movement and Temperature Variation of KURT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Bae, Dae Seok; Koh, Young Kwon; Choi, Jong Won

    2010-04-15

    The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1 m interval in minimum. In temperature, the cable measures the range of -160{approx}600 .deg. C with 0.01 .deg. C resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc

  18. Fiber Bragg Grating Measuring System for Simultaneous Monitoring of Temperature and Humidity in Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Carlo Massaroni

    2017-04-01

    Full Text Available During mechanical ventilation, the humidification of the dry air delivered by the mechanical ventilator is recommended. Among several solutions, heated wire humidifiers (HWHs have gained large acceptance to be used in this field. The aim of this work is to fabricate a measuring system based on fiber Bragg grating (FBG for the simultaneous monitoring of gas relative humidity (RH and temperature, intended to be used for providing feedback to the HWHs’ control. This solution can be implemented using an array of two FBGs having a different center wavelength. Regarding RH monitoring, three sensors have been fabricated by coating an FBG with two different moisture-sensitive and biocompatible materials: the first two sensors were fabricated by coating the grating with a 3 mm × 3 mm layer of agar and agarose; to investigate the influence of the coating thickness to the sensor response, a third sensor was developed with a 5 mm × 5 mm layer of agar. The sensors have been assessed in a wide range of RH (up to 95% during both an ascending and a subsequent descending phase. Only the response of the 3 mm × 3 mm-coated sensors were fast enough to follow the RH changes, showing a mean sensitivity of about 0.14 nm/% (agar-coated and 0.12 nm/% (agarose-coated. The hysteresis error was about <10% in the two sensors. The contribution of temperature changes on these RH sensors was negligible. The temperature measurement was performed by a commercial FBG insensitive to RH changes. The small size of these FBG-based sensors, the use of biocompatible polymers, and the possibility to measure both temperature and RH by using the same fiber optic embedding an array of two FBGs make intriguing the use of this solution for application in the control of HWHs.

  19. The LED monitoring system of the PHOENICS experiment

    International Nuclear Information System (INIS)

    Urban, D.

    1991-07-01

    The PHOENICS experiment at ELSA uses a LED monitoring system to control pulse height and time measurement with scintillation counters. A green LED is mounted at the light guide of each of the 304 involved photomultiplier tubes. The LEDs are driven by fast voltage pulses of 5 ns FWHM width and about 20 V amplitude. Simulation of single events is possible by computer controlled switching of individual LEDs. In order to correct for the temperature dependence of the LED intensity an automatic temperature recording system was coupled to the computer. This monitor system allows to control the pulse height and time measurement with an accuracy of about 2% and 100 ps respectively. (orig.) [de

  20. BABY MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Rajesh

    2014-09-01

    Full Text Available Sudden Infant Death Syndrome (SIDS is marked by the sudden death of an infant during sleep that is not predicted by the medical history and remains unexplained even after thorough forensic autopsy and detailed death investigation. In this we developed a system that provides solutions for the above problems by making the crib smart using the wireless sensor networks (WSN and smart phones. The system provides visual monitoring service through live video, alert services by crib fencing and awakens alert, monitoring services by temperature reading and light intensity reading, vaccine reminder and weight monitoring.

  1. Remote monitoring of VRLA batteries for telecommunications systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Tomonobu; Matsushima, Toshio [NTT Facilities Inc., G.H.Y. Building, 2-13-1 Kita-Otsuka, Toshima-ku, Tokyo 170-0004 (Japan)

    2007-05-25

    This paper describes a remote monitoring system that can be set up in an operating center to monitor the state of valve regulated lead acid batteries (VRLA) used as a backup power supply for telecommunications. This system has a battery voltage monitoring function, a lifetime prediction function based on ambient temperature, and a discharge circuit diagnosis function. In addition, the system can be equipped with an internal resistance measurement function and an electrolyte leakage detection function to further insure power-supply reliability. Various states of batteries observed with the system are transmitted to the remote operating center by a remote monitoring function. This function enables obtaining immediate information about the condition of batteries and helps to avoid unexpected failures. (author)

  2. Automated Cryocooler Monitor and Control System Software

    Science.gov (United States)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  3. Tank Monitor and Control System sensor acceptance test procedure. Revision 5

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    The purpose of this acceptance test procedure (ATP) is to verify the correct reading of sensor elements connected to the Tank Monitor and Control System (TMACS). This ATP is intended to be used for testing of the connection of existing temperature sensors, new temperature sensors, pressure sensing equipment, new Engraf level gauges, sensors that generate a current output, and discrete (on/off) inputs. It is intended that this ATP will be used each time sensors are added to the system. As a result, the data sheets have been designed to be generic. The TMACS has been designed in response to recommendations from the Defense Nuclear Facilities Safety Board primarily for improved monitoring of waste tank temperatures. The system has been designed with the capability to monitor other types of sensor input as well

  4. Energy Monitoring System Berbasis Web

    Directory of Open Access Journals (Sweden)

    Novan Zulkarnain

    2013-12-01

    Full Text Available Government through the Ministry of Energy and Mineral Resources (ESDM encourages the energy savings at whole buildings in Indonesia. Energy Monitoring System (EMS is a web-based solution to monitor energy usage in a building. The research methods used are the analysis, prototype design and testing. EMSconsists of hardware which consists of electrical sensors, temperature-humidity sensor, and a computer. Data on EMS are designed using Modbus protocol, stored in MySQL database application, and displayed on charts through Dashboard on LED TV using PHP programming.

  5. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  6. A VME based health monitoring system

    International Nuclear Information System (INIS)

    Huang Yiming; Wang Chunhong

    2011-01-01

    It introduces a VME based health system for monitoring the working status of VME crates in the BEPCⅡ. It consists of a PC and a VME crate where a CMM (Classic Monitor System) is installed. The CMM module is responsible for collecting data from the power supply and temperature as well as fan speed inside the VME crate and send these data to the PC via the serial port. The author developed EPICS asynchronous driver by using a character-based device protocol StreamDevice. The data is saved into EPICS IOC database in character. Man-machine interface which is designed by BOY displays the running status of the VME crate including the power supply and temperature as well as fan speed. If the value of records display unusual, the color of the value will be changed into red. This can facilitate the maintenance of the VME crates. (authors)

  7. Data monitoring system for PV solar generators

    International Nuclear Information System (INIS)

    Stoev, M.; Katerski, A.; Williams, A.

    2000-01-01

    The two 1.5 kWp photovoltaic (PV) solar generators are installed and the new PC data monitoring system is developed by applying EC standards for European Solar Test Installation (ESTI). The schematic system diagram of PV generator is presented. The recording parameters for analytical and global monitoring are discussed. The meteorological data from ESTI sensors, temperature sensor and electrical data from inverter and calibrated shunt are stored via analog digital converters (ADC) on a hard disk of data storage PC. Data Logger and Monitor software for automatic data acquisition, treatment and visual distance control of all output PV data from PV solar generator has been created

  8. A Shear Horizontal Waveguide Technique for Monitoring of High Temperature Pipe Thinning

    International Nuclear Information System (INIS)

    Cheong, Yongmoo; Kim, Hongpyo; Lee, Duckhyun

    2014-01-01

    An ultrasonic thickness measurement method is a well-known and most commonly used non-destructive testing technique for wall thickness monitoring of a piping or plate. However, current commonly available ultrasonic transducers cannot withstand high temperatures of, above 200 .deg. C. Currently, the variation of wall thickness of the pipes is determined by a portable ultrasonic gauge during plant shutdowns. This manual ultrasonic method reveals several disadvantages: inspections have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for intervention. In addition, differences of the measurement conditions such as examiner, temperature, and couplant could result in measurement errors. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. In order to solve those fundamental problems occurring during the propagation of ultrasound at high temperature, a shear horizontal waveguide technique for wall thickness monitoring at high temperatures is developed. A dry clamping device without a couplant for the acoustic contact between waveguide and pipe surface was designed and fabricated. The shear horizontal waveguides and clamping device result in an excellent S/N ratio and high accuracy of measurement with long exposure in an elevated temperature condition. A computer program for on-line monitoring of the pipe thickness at high temperature for a long period of time was developed. The system can be applied to monitor the FAC in carbon steel piping in a nuclear power plant after a verification test for a long period of time

  9. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  10. Monitoring and Modeling Temperature Variations Inside Silage Stack Using Novel Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Green, Ole; Shahrak Nadimi, Esmaeil; Blanes-Vidal, Victoria

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol and 10 mW transmission power). The designed sensor housings were capable......Abstract: By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor; and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...

  11. Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks

    DEFF Research Database (Denmark)

    Green, O.; Nadimi, E.S.; Blanes-Vidal, V.

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol, and 10 mW transmission power). The designed sensor housings were capable......By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor: and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...

  12. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: A case study

    OpenAIRE

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-01-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal andbest functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitor...

  13. Electronic Monitoring Of Storage And Transport Temperatures Of ...

    African Journals Online (AJOL)

    Electronic Monitoring Of Storage And Transport Temperatures Of Thermostable Newcastle ... 22) were monitored during storage and transport from vaccine production laboratory in Temeke, Dar es ... EMAIL FULL TEXT EMAIL FULL TEXT

  14. Software development of the KSTAR Tokamak Monitoring System

    International Nuclear Information System (INIS)

    Kim, K.H.; Lee, T.G.; Baek, S.; Lee, S.I.; Chu, Y.; Kim, Y.O.; Kim, J.S.; Park, M.K.; Oh, Y.K.

    2008-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) project, which is constructing a superconducting Tokamak, was launched in 1996. Much progress in instrumentation and control has been made since then and the construction phase will be finished in August 2007. The Tokamak Monitoring System (TMS) measures the temperatures of the superconducting magnets, bus-lines, and structures and hence monitors the superconducting conditions during the operation of the KSTAR Tokamak. The TMS also measures the strains and displacements on the structures in order to monitor the mechanical safety. There are around 400 temperature sensors, more than 240 strain gauges, 10 displacement gauges and 10 Hall sensors. The TMS utilizes Cernox sensors for low temperature measurement and each sensor has its own characteristic curve. In addition, the TMS needs to perform complex arithmetic operations to convert the measurements into temperatures for each Cernox sensor for this large number of monitoring channels. A special software development effort was required to reduce the temperature conversion time and multi-threading to achieve the higher performance needed to handle the large number of channels. We have developed the TMS with PXI hardware and with EPICS software. We will describe the details of the implementations in this paper

  15. Direct Monitoring and Control of Transformer Temperature in Order to Avoid its Breakdown Using FOS

    Directory of Open Access Journals (Sweden)

    Deepika YADAV

    2008-09-01

    Full Text Available This manuscript focuses on Direct Monitoring & Control of Transformer Temperature in order to avoid its Breakdown Using FOS (fiber optic sensor. Although there are various reasons for failure of transformer operation but mainly it is due to conductor loss and hysteresis losses which causes temperature rise in the internal structures of the transformer leading to burning of windings. A system for monitoring the temperature of transformers is required. Existing sensors cannot be used for monitoring the temperature of transformers because they are sensitive to electrical signals and can cause sparking which can trigger fire since there is oil in transformers cooling coils. Distributed FOS based on microbend is simulated on MATLAB7.5 in order to check the effectiveness of this sensor. Results in the form of graphs i.e., intensity modulation vs. the temperature has been shown in the manuscript.

  16. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels

    Science.gov (United States)

    Zhang, Wenqi; Skouroumounis, George K.; Monro, Tanya M.; Taylor, Dennis K.

    2015-01-01

    This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine’s properties or storage conditions allows for a more precise control of the final wine quality. PMID:26266410

  17. On-Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Bourham, Mohamed A.

    2010-01-01

    Very High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (∼ 1-mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4%-10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  18. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    Science.gov (United States)

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  19. Design of a geothermal monitoring network in a coastal area and the evaluation system

    Science.gov (United States)

    Ohan Shim, Byoung; Lee, Chulwoo; Park, Chanhee

    2016-04-01

    In Seockmodo Island (area of 48.2 km2) located at the northwest of South Korea, a renewable energy development project to install photovoltaic 136 kW and geothermal 516.3 kW is initiated. Since the 1990s, more than 20 deep geothermal wells for hot springs, greenhouse and aquaculture have been developed along coastal areas. The outflow water of each site has the pumping capacity between 300 and 4,800 m3/day with the salinity higher than 20,000 mg/l, and the maximum temperature shows 70 ?C. Because of the required additional well drillings, the increased discharge rate can cause serious seawater intrusion into freshwater aquifers, which supply groundwater for drinking and living purposes from 210 wells. In order to manage the situation, advanced management skills are required to maintain the balance between geothermal energy development and water resources protection. We designed real-time monitoring networks with monitoring stations for the sustainable monitoring of the temperature and salinity. Construction of borehole temperature monitoring for deep and shallow aquifer consists with the installation of automated temperature logging system and cellular telemetry for real-time data acquisition. The DTS (distributed temperature sensing) system and fiber optic cables will be installed for the logging system, which has enough temperature resolution and accuracy. The spatial distribution and the monitoring points can be determined by geological and hydrological situations associated with the locations of current use and planned facilities. The evaluation of the temperature and salinity variation will be conducted by the web-based monitoring system. The evaluation system will be helpful to manage the balance between the hot water development and the fresh water resources conservation.

  20. Fiber‐optic distributed temperature sensing: A new tool for assessment and monitoring of hydrologic processes

    Science.gov (United States)

    Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.

    2008-01-01

    Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.

  1. Human action pattern monitor for telecare system utilizing magnetic thin film infrared sensor

    International Nuclear Information System (INIS)

    Osada, H.; Chiba, S.; Oka, H.; Seki, K.

    2002-01-01

    The magnetic thin film infrared sensor (MFI) is an infrared sensing device utilizing a temperature-sensitive magnetic thin film with marked temperature dependence in the room temperature range. We propose a human action pattern monitor (HPM) constructed with the MFI, without a monitor camera to save the clients' privacy, as a telecare system

  2. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  3. Global Monitoring RSEM System for Crop Production by Incorporating Satellite-based Photosynthesis Rates and Anomaly Data of Sea Surface Temperature

    Science.gov (United States)

    Kaneko, D.; Sakuma, H.

    2014-12-01

    The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because

  4. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  5. Development of a cloud-based system for remote monitoring of a PVT panel

    Science.gov (United States)

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques

    2016-10-01

    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  6. Design and implementation of a Bluetooth-based infant monitoring/saver (BIMS) system

    Science.gov (United States)

    Sonmez, Ahmet E.; Nalcaci, Murat T.; Pazarbasi, Mehmet A.; Toker, Onur; Fidanboylu, Kemal

    2007-04-01

    In this work, we discuss the design and implementation of a Bluetooth technology based infant monitoring system, which will enable the mother to monitor her baby's health condition remotely in real-time. The system will measure the heart rate, and temperature of the infant, and stream this data to the mother's Bluetooth based mobile unit, e.g. cell phone, PDA, etc. Existing infant monitors either require so many cables, or transmit only voice and/or video information, which is not enough for monitoring the health condition of an infant. With the proposed system, the mother will be warned against any abnormalities, which may be an indication of a disease, which in turn may result a sudden infant death. High temperature is a common symptom for several diseases, and heart rate is an essential sign of life, low or high heart rates are also essentials symptoms. Because of these reasons, the proposed system continously measures these two critical values. A 12 bits digital temperature sensor is used to measure infant's body temperature, and a piezo film sensor is used measure infant's heartbeat rate. These sensors, some simple analog circuitry, and a ToothPick unit are the main components of our embedded system. ToothPick unit is basically a Microchip 18LF6720 microcontroller, plus an RF circuitry with Bluetooth stack.

  7. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    International Nuclear Information System (INIS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H 2 O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H 2 O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm −1 (1343.3 nm) and 7185.6 cm −1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H 2 O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H 2 O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis

  8. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    International Nuclear Information System (INIS)

    Watkins, A. D.; Musick, C. A.; Cannon, C.; Carlson, N. M.; Mullenix, P.D.; Tillotson, R. D.

    1999-01-01

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment

  9. Monitoring operating temperature and supply voltage in achieving high system dependability

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    System dependability being a set of number of attributes, of which the important reliability, heavily depends on operating temperature and supply voltage. Any change beyond the designed specifications may change the system performance and could result in system reliability and hence dependability

  10. Cycle-by-cycle exhaust temperature monitoring for detection of misfiring and combustion instability in reciprocating natural gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D.P. [Nexum Research Corp., Kingston, ON (Canada); Bardon, M.F. [Royal Military Coll. of Canada, Kingston, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    The effectiveness of a cycle-by-cycle exhaust temperature monitoring system on engines operating at or near their fully rate load capacity was examined. Tests were conducted on stationary industrial natural gas engines. The study evaluated the monitoring system's ability to detect isolated single misfires, as well as combustion instability during misfire-free operations when the air/fuel ratio of the engine was adjusted to progressively lower settings. The combustion instability level of the engines was quantified by determining the relative variability of the groups of consecutive cycles. The coefficient of variation of indicated mean effective pressure (COV of IMEP) was used to examine cyclic variability. A combustion instability index was used to quantify cyclic variability with cycle-by-cycle exhaust temperature monitoring. Two engines were tested, notably a Cummins QSK 19G turbocharged natural gas engine; and a Waukesha VHP L5790G industrial natural gas engine. The tests demonstrated that cycle-by-cycle exhaust temperature monitoring system was capable of detecting misfiring and combustion instabilities in natural gas engines. 6 refs., 9 figs.

  11. Monitoring of low level environmental gamma exposure by the centralized radiation monitoring system

    International Nuclear Information System (INIS)

    Katagiri, Hiroshi; Kobayashi, Hideo; Obata, Kazuichi; Kokubu, Morinobu; Itoh, Naoji

    1981-07-01

    In the Japan Atomic Energy Research Institute (JAERI), a centralized automatic radiation monitoring system developed 20 years ago has recently been improved to monitor low level gamma radiation more accurately in normal operation of the nuclear facilities and to detect abnormal radioactive releases more effectively. The present state of the system is described. This system puts together environmental monitoring data such as gamma exposure rate (20 points), radioactive concentration in the air (4 points) and in water (2 drains), and meteorological items (14 including wind directions, wind speeds, solar radiation and air temperatures at a observation tower of 40 m height). Environmental monitoring around the JAERI site is carried out effectively using the system. Data processing system consists of a central processing unit, a magnetic disk, a magnetic tape, a line printer and a console typewriter. The data at respective monitoring points are transmitted to the central monitoring room by wireless or telephone line. All data are printed out and field in magnetic disk and magnetic tape every 10 minutes. When the emergency levels are exceeded, however, the data are automatically output on a line printer every 2 minute. This system can distinguish very low gamma exposure due to gaseous effluents, about 1 mR/y, from the background. Even in monthly exposures, calculated values based on the data of release amount and meteorology are in good agreement with the measured ones. (author)

  12. Microcomputer-based monitoring and control system

    International Nuclear Information System (INIS)

    Talaska, D.

    1979-03-01

    This report describes a microcomputer-based monitoring and control system devised within, and used by, the Cryogenic Operations group at SLAC. Presently, a version of it is operating at the one meter liquid hydrogen bubble chamber augmenting the conventional pneumatic and human feedback system. Its use has greatly improved the controlled tolerances of temperature and pulse shape, and it has nearly eliminated the need for operating personnel to adjust the conventional pneumatic control system. The latter is most important since the rapid cycling machine can demand attentions beyond the operator's skill. Similar microcomputer systems are being prepared to monitor and control cryogenic devices situated in regions of radiation which preclude human entry and at diverse locations which defy the dexterity of the few operators assigned to maintain them. An IMSAI 8080 microcomputer is basic to the system. The key to the use of the IMSAI 8080 in this system was in the development of unique interface circuitry, and the report is mostly concerned with this

  13. Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program

    International Nuclear Information System (INIS)

    McGuire, L.L.

    1991-01-01

    The Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program serves two purposes. The first is to track temperature trends during normal plant operation in areas where suspected deviations from established environmental profiles exist. This includes the use of Resistance Temperature Detectors, Recorders, and Temperature Dots for evaluation of equipment qualified life for comparison with tested parameters and the established Environmental Design Profile. It also may be used to determine the location and duration of steam leaks for effect on equipment qualified life. The second purpose of this program is to aid HVAC design engineers in determining the source of heat outside anticipated design parameters. Resistance Temperature Detectors, Recorders, and Temperature Dots are also used for this application but the results may include design changes to eliminate the excess heat or provide qualified equipment (cable) to withstand the elevated temperature, splitting of environmental zones to capture accurate temperature parameters, or continued environmental monitoring for evaluation of equipment located in hot spots

  14. Development of a low-cost temperature data monitoring. An upgrade for hot box apparatus

    Science.gov (United States)

    de Rubeis, T.; Nardi, I.; Muttillo, M.

    2017-11-01

    The monitoring phase has gained a fundamental role in the energy efficiency evaluation of a system. Number and typology of the probes depend on the physical quantity to be monitored, and on the size and complexity of the system. Moreover, a measurement equipment should be designed to allow the employment of probes different for number and measured physical quantities. For this reason, a scalable equipment represents a good way for easily carrying out a system monitoring. Proprietary software and high costs characterize instruments of current use, thus limiting the possibilities to realize customized monitoring. In this paper, a temperature measuring instrument, conceived, designed, and realized for real time applications, is presented. The proposed system is based on digital thermometers and on open-source code. A remarkable feature of the instrument is the possibility of acquiring data from a high and variable number of probes (order of hundred), assuring flexibility of the software, since it can be programmed, and low-cost of the hardware components. The contemporary use of multiple temperature probes suggested to apply this instrument for a hot box apparatus, although the software can be set for recording different physical quantities. A hot box compliant with standard EN ISO 8990 should be equipped with several temperature probes to investigate heat exchanges of a specimen wall and thermal field of the chambers. In this work, preliminary tests have been carried out focusing only on the evaluation of the prototypal system’s performance. The tests were realized by comparing different sensors, such as thermocouples and resistance thermometers, traditionally employed in hot box experiments. A preliminary test was realized imposing a dynamic condition with a thermoelectric Peltier cell. Data obtained by digital thermometers DS18B20, compared with the ones of Pt100 probes, show a good correlation. Based on these encouraging results, a further test was carried out

  15. Research of management information system of radiation protection for low temperature nuclear heating reactor

    International Nuclear Information System (INIS)

    Bai Hongtao; Wang Jiaying; Wu Manxue

    2001-01-01

    Management information system of radiation protection for low temperature reactor uses computer to manage the data of the low temperature nuclear heating reactor radiation monitoring, it saves the data from the front real-time radiation monitoring system, comparing these data with historical data to give the consequence. Also, the system provides some picture in order to show space information at need. The system, based on Microsoft Access 97, consists of nine parts, including radiation dose, environmental data, meteorological data and so on. The system will have value in safely operation of the low temperature nuclear heating reactor

  16. Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator

    Science.gov (United States)

    Shafiudin, S.; Kholis, N.

    2018-04-01

    Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).

  17. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    Science.gov (United States)

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  18. Channel Islands, Kelp Forest Monitoring, Sea Temperature, 1993-2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset from the Channel Islands National Park's Kelp Forest Monitoring Program has subtidal temperature data taken at permanent monitoring sites. Since 1993,...

  19. Auditory brainstem evoked responses and temperature monitoring during pediatric cardiopulmonary bypass.

    Science.gov (United States)

    Rodriguez, R A; Edmonds, H L; Auden, S M; Austin, E H

    1999-09-01

    To examine the effects of temperature on auditory brainstem responses (ABRs) in infants during hypothermic cardiopulmonary bypass for total circulatory arrest (TCA). The relationship between ABRs (as a surrogate measure of core-brain temperature) and body temperature as measured at several temperature monitoring sites was determined. In a prospective, observational study, ABRs were recorded non-invasively at normothermia and at every 1 or 2 degrees C change in ear-canal temperature during cooling and rewarming in 15 infants (ages: 2 days to 14 months) that required TCA. The ABR latencies and amplitudes and the lowest temperatures at which an ABR was identified (the threshold) were measured during both cooling and rewarming. Temperatures from four standard temperature monitoring sites were simultaneously recorded. The latencies of ABRs increased and amplitudes decreased with cooling (P < 0.01), but rewarming reversed these effects. The ABR threshold temperature as related to each monitoring site (ear-canal, nasopharynx, esophagus and bladder) was respectively determined as 23 +/- 2.2 degrees C, 20.8 +/- 1.7 degrees C, 14.6 +/- 3.4 degrees C, and 21.5 +/- 3.8 degrees C during cooling and 21.8 +/- 1.6 degrees C, 22.4 +/- 2.0 degrees C, 27.6 +/- 3.6 degrees C, and 23.0 +/- 2.4 degrees C during rewarming. The rewarming latencies were shorter and Q10 latencies smaller than the corresponding cooling values (P < 0.01). Esophageal and bladder sites were more susceptible to temperature variations as compared with the ear-canal and nasopharynx. No temperature site reliably predicted an electrophysiological threshold. A faster latency recovery during rewarming suggests that body temperature monitoring underestimates the effects of rewarming in the core-brain. ABRs may be helpful to monitor the effects of cooling and rewarming on the core-brain during pediatric cardiopulmonary bypass.

  20. Continuous monitoring system for environmental {gamma} radiation near nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jin; Qingyu, Yue; Wenhai, Wang [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency {gamma} radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy{center_dot}h{sup -1} to 10 mGy{center_dot}h{sup -1} because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.).

  1. Continuous monitoring system for environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency γ radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy·h -1 to 10 mGy·h -1 because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.)

  2. Integrated monitoring of wind plant systems

    Science.gov (United States)

    Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong

    2008-03-01

    Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.

  3. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography

    International Nuclear Information System (INIS)

    Zhang, Shiping; Shen, Guoqing; An, Liansuo; Niu, Yuguang

    2015-01-01

    Online monitoring of the temperature field is crucial to optimally adjust combustion within a boiler. In this paper, acoustic computed tomography (CT) technology was used to obtain the temperature profile of a furnace cross-section. The physical principles behind acoustic CT, acoustic signals and time delay estimation were studied. Then, the technique was applied to a domestic 600-MW coal-fired boiler. Acoustic CT technology was used to monitor the temperature field of the cross-section in the boiler furnace, and the temperature profile was reconstructed through ART iteration. The linear sweeping frequency signal was adopted as the sound source signal, whose sweeping frequency ranged from 500 to 3000 Hz with a sweeping cycle of 0.1 s. The generalized cross-correlation techniques with PHAT and ML were used as the time delay estimation method when the boiler was in different states. Its actual operation indicated that the monitored images accurately represented the combustion state of the boiler, and the acoustic CT system was determined to be accurate and reliable. - Highlights: • An online monitoring approach to monitor temperature field in a boiler furnace. • The paper provides acoustic CT technology to obtain the temperature profile of a furnace cross-section. • The temperature profile was reconstructed through ART iteration. • The technique is applied to a domestic 600-MW coal-fired boiler. • The monitored images accurately represent the combustion state of the boiler

  4. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H{sub 2}O mole fraction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang; Cao, Zhang [School of Instrument Science and Opto-Electronic Engineering, Beihang University, Beijing 100191 (China); Ministry of Education’s Key Laboratory of Precision Opto-Mechatronics Technology, Beijing 100191 (China); Xue, Xin; Lin, Yuzhen [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2016-01-15

    To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  5. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  6. Instrument failure monitoring in nuclear power systems

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1982-01-01

    Methods of monitoring dynamic systems for instrument failures were developed and evaluated. In particular, application of these methods to nuclear power plant components is addressed. For a linear system, statistical tests on the innovations sequence of a Kalman filter driven by all system measurements provides a failure detection decision and identifies any failed sensor. This sequence (in an unfailed system) is zero-mean with calculable covariance; hence, any major deviation from these properties is assumed to be due to an instrument failure. Once a failure is identified, the failed instrument is replaced with an optimal estimate of the measured parameter. This failure accommodation is accomplished using optimally combined data from a bank of accommodation Kalman filters (one for each sensor), each driven by a single measurement. Using such a sensor replacement allows continued system operation under failed conditions and provides a system operator with information otherwise unavailable. To demonstrate monitor performance, a liner failure monitor was developed for the pressurizer in the Loss-of-Fluid Test (LOFT) reactor plant. LOFT is a small-scale pressurized water reactor (PWR) research facility located at the Idaho National Engineering Laboratory. A linear, third-order model of the pressurizer dynamics was developed from first principles and validated. Using data from the LOFT L6 test series, numerous actual and simulated water level, pressure, and temperature sensor failures were employed to illustrate monitor capabilities. Failure monitor design was applied to nonlinear dynamic systems by replacing all monitor linear Kalman filters with extended Kalman filters. A nonlinear failure monitor was derived for LOFT reactor instrumentation. A sixth-order reactor model, including descriptions of reactor kinetics, fuel rod heat transfer, and core coolant dynamics, was obtained and verified with test data

  7. Temperature monitoring device and thermocouple assembly therefor

    Science.gov (United States)

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  8. Northern Mariana Islands Marine Monitoring Team Sea Temperature Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site specific monitoring of sea temperature is conducted using submersible temperature dataloggers at selected sites and depths around the islands of Saipan and Rota.

  9. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    Science.gov (United States)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  10. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study

    Science.gov (United States)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-03-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

  11. The design of tea garden environmental monitoring system based on WSN

    Science.gov (United States)

    Chen, Huajun; Yuan, Lina

    2018-01-01

    Through the application of wireless sensor network (WSN) in tea garden, it can realize the change of traditional tea garden to the modern ones, and effectively improves the comprehensive productive capacity of tea garden. According to the requirement of real-time remote in agricultural information collection and monitoring and the power supply affected by environmental limitations, based on WSN, this paper designs a set of tea garden environmental monitoring system, which achieves the monitoring nodes with ad-hoc network as well as automatic acquisition and transmission to the tea plantations of air temperature, light intensity, soil temperature and humidity.

  12. TEMPERATURE MONITORING OPTIONS AVAILABLE AT THE IDAHO NATIONAL LABORATORY ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Daw; J.L. Rempe; D.L. Knudson; T. Unruh; B.M. Chase; K.L Davis

    2012-03-01

    As part of the Advanced Test Reactor National Scientific User Facility (ATR NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced sensors for irradiation testing. To meet recent customer requests, an array of temperature monitoring options is now available to ATR users. The method selected is determined by test requirements and budget. Melt wires are the simplest and least expensive option for monitoring temperature. INL has recently verified the melting temperature of a collection of materials with melt temperatures ranging from 100 to 1000 C with a differential scanning calorimeter installed at INL’s High Temperature Test Laboratory (HTTL). INL encapsulates these melt wires in quartz or metal tubes. In the case of quartz tubes, multiple wires can be encapsulated in a single 1.6 mm diameter tube. The second option available to ATR users is a silicon carbide temperature monitor. The benefit of this option is that a single small monitor (typically 1 mm x 1 mm x 10 mm or 1 mm diameter x 10 mm length) can be used to detect peak irradiation temperatures ranging from 200 to 800 C. Equipment has been installed at INL’s HTTL to complete post-irradiation resistivity measurements on SiC monitors, a technique that has been found to yield the most accurate temperatures from these monitors. For instrumented tests, thermocouples may be used. In addition to Type-K and Type-N thermocouples, a High Temperature Irradiation Resistant ThermoCouple (HTIR-TC) was developed at the HTTL that contains commercially-available doped molybdenum paired with a niobium alloy thermoelements. Long duration high temperature tests, in furnaces and in the ATR and other MTRs, demonstrate that the HTIR-TC is accurate up to 1800 C and insensitive to thermal neutron interactions. Thus, degradation observed at temperatures above 1100 C with Type K and N thermocouples and decalibration due to transmutation with tungsten

  13. Coaxial monitoring of temperature field in selective pulsed laser melting

    Science.gov (United States)

    Liu, Che; Chen, Zhongyun; Cao, Hongzhong; Zhou, Jianhong

    2017-10-01

    Selective Laser Melting is a rapid manufacturing technology which produces complex parts layer by layer. The presence of thermal stress and thermal strain in the forming process often leads to defects in the formed parts. In order to detect fabricate errors and avoid failure which caused by thermal gradient in time. An infrared thermal imager and a high speed CCD camera were applied to build a coaxial optical system for real-time monitoring the temperature distribution and changing trend of laser affected zone in SLM forming process. Molten tracks were fabricated by SLM under different laser parameters such as frequency, pulse width. And the relationship between the laser parameters and the temperature distribution were all obtained and analyzed.

  14. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  15. Hanford coring bit temperature monitor development testing results report

    International Nuclear Information System (INIS)

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks

  16. Monitoring system specifications: retrieval of surf from a salt repository

    International Nuclear Information System (INIS)

    1980-01-01

    The task of developing specifications for a reference monitoring system determined by repository environmental conditions, retrieval operations, and federal regulatory criteria is discussed. The monitoring system specified in this report is capable of measuring (1) package position and orientation, (2) vault deformation, (3) brine accumulation, (4) spent fuel dissolution, (5) temperature, (6) nuclear radiation, and (7) package condition with sufficient accuracy to provide data input to a general risk assessment model. In order to define a monitoring system which can provide probabilistic data on radiological risk to operating personnel and the general public for a salt mine repository, the following information is required: (1) a complete design of the salt SURF repository including inventory, density and waste package design details; (2) probalistic failure rate data on containment integrity of the SURF waste package; (3) probabilistic failure rate data on the monitoring system components

  17. Artificial Neural Network-Based Monitoring of the Fuel Assembly Temperature Sensor and FPGA Implementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Numerous methods have been developed around the world to model the dynamic behavior and detect a faulty operating mode of a temperature sensor. In this context, we present in this study a new method based on the dependence between the fuel assembly temperature profile on control rods positions, and the coolant flow rate in a nuclear reactor. This seems to be possible since the insertion of control rods at different axial positions and variations in flow rate of the reactor coolant results in different produced thermal power in the reactor. This is closely linked to the instant fuel rod temperature profile. In a first step, we selected parameters to be used and confirmed the adequate correlation between the chosen parameters and those to be estimated by the proposed monitoring system. In the next step, we acquired and de-noised the data of corresponding parameters, the qualified data is then used to design and train the artificial neural network. The effective data denoising was done by using the wavelet transform to remove a various kind of artifacts such as inherent noise. With the suitable choice of wavelet level and smoothing method, it was possible for us to remove all the non-required artifacts with a view to verify and analyze the considered signal. In our work, several potential mother wavelet functions (Haar, Daubechies, Bi-orthogonal, Reverse Bi-orthogonal, Discrete Meyer and Symlets) were investigated to find the most similar function with the being processed signals. To implement the proposed monitoring system for the fuel rod temperature sensor (03 wire RTD sensor), we used the Bayesian artificial neural network 'BNN' technique to model the dynamic behavior of the considered sensor, the system correlate the estimated values with the measured for the concretization of the proposed system we propose an FPGA (field programmable gate array) implementation. The monitoring system use the correlation. (authors)

  18. Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy for Volcano Monitoring

    Directory of Open Access Journals (Sweden)

    Stefano Carlino

    2016-08-01

    Full Text Available A temperature profile 2400 m along the off-shore active caldera of Campi Flegrei (Gulf of Pozzuoli was obtained by the installation of a permanent fiber-optic monitoring system within the framework of the Innovative Monitoring for Coastal and Marine Environment (MON.I.C.A project. The system consists of a submerged, reinforced, multi-fiber cable containing six single-mode telecom grade optical fibers that, exploiting the stimulated Brillouin scattering, provide distributed temperature sensing (DTS with 1 m of spatial resolution. The obtained data show that the offshore caldera, at least along the monitored profile, has many points of heat discharge associated with fluid emission. A loose association between the temperature profile and the main structural features of the offshore caldera was also evidenced by comparing DTS data with a high-resolution reflection seismic survey. This represents an important advancement in the monitoring of this high-risk volcanic area, since temperature variations are among the precursors of magma migration towards the surface and are also crucial data in the study of caldera dynamics. The adopted system can also be applied to many other calderas which are often partially or largely submerged and hence difficult to monitor.

  19. Control system and environmental parameters monitoring of the Tandetron Accelerator clean room

    International Nuclear Information System (INIS)

    Mejia V, M.E.; Garcia H, J.M.; Flores M, J.

    2007-01-01

    A control system and monitoring of humidity and temperature implemented by means of a system based on a microcontroller, an intelligent sensor and a stage of power for the actuators handling is described. The change of the levels of reference of the control system and the monitoring of the physical controlled variables can be carried out from any connected computer to a local net or Internet. (Author)

  20. Experimental investigation of leak detection using mobile distributed monitoring system

    Science.gov (United States)

    Chen, Jiang; Zheng, Junli; Xiong, Feng; Ge, Qi; Yan, Qixiang; Cheng, Fei

    2018-01-01

    The leak detection of rockfill dams is currently hindered by spatial and temporal randomness and wide monitoring range. The spatial resolution of fiber Bragg grating (FBG) temperature sensing technology is related to the distance between measuring points. As a result, the number of measuring points should be increased to ensure that the precise location of the leak is detected. However, this leads to a higher monitoring cost. Consequently, it is difficult to promote and apply this technology to effectively monitor rockfill dam leakage. In this paper, a practical mobile distributed monitoring system with dual-tubes is used by combining the FBG sensing system and hydrothermal cycling system. This dual-tube structure is composed of an outer polyethylene of raised temperature resistance heating pipe, an inner polytetrafluoroethylene tube, and a FBG sensor string, among which, the FBG sensor string can be dragged freely in the internal tube to change the position of the measuring points and improve the spatial resolution. In order to test the effectiveness of the system, the large-scale model test of concentrated leakage in 13 working conditions is carried out by identifying the location, quantity, and leakage rate of leakage passage. Based on Newton’s law of cooling, the leakage state is identified using the seepage identification index ζ v that was confirmed according to the cooling curve. Results suggested that the monitoring system shows high sensitivity and can improve the spatial resolution with limited measuring points, and thus better locate the leakage area. In addition, the seepage identification index ζ v correlated well with the leakage rate qualitatively.

  1. Web based remote monitoring and controlling system for vulnerable environments

    Science.gov (United States)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  2. Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers

    Science.gov (United States)

    Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.

    2013-09-01

    Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.

  3. Continuous monitoring system of environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-01-01

    The continuous monitoring system for the environmental γ radiation and accident emergency near nuclear facility is described. The continuous monitoring system consists of high pressurized ionization chamber, integrated weak current amplifier, V-F converter and intelligent data recorder. PC 486 microcomputer with standard RS-232C interface is used for data handling and graph plotting. This intelligent data recorder has the functions of alarm over threshold and records the output signal of detector and temperature. The measuring range is from 10 nGy h -1 to 10 mGy h -1 because a high insulation switch automatical changing the measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability

  4. Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage

    International Nuclear Information System (INIS)

    Wang, Yi-Cheng; Lu, Lin; Gunasekaran, Sundaram

    2015-01-01

    We describe a gold nanoparticle (AuNP)-based thermal history indicator (THI) for monitoring low-temperature storage. The THI was prepared from tetrachloroaurate using gelatin as a reducing reagent. Gelatin also acts as a stabilizer to control the growth of the AuNPs. The size and shape of the AuNPs were characterized by UV–vis spectrophotometry and transmission electron microscopy and are initially found to be spherical with an average particle size of ∼19 nm. Initially, the color of the THIs is slightly pink, but after a 90-day storage in the freezer, as both the size and shape of the AuNPs change, the color of the THIs turns to red. After 90 days the absorbance peaks of THIs held at room temperature are red-shifted from 538 to 572 nm and possessed larger amplitude compared to those stored in the freezer. The color change is a function of both storage time and temperature. The observed increase in size is mainly due to storage temperature while the change in shape is mainly due to storage time. The THIs experiencing higher temperature treatments exhibit a more intense color change which is attributed to a localized surface plasmon resonance effect. Thus, the observed visual color changes can provide information regarding the thermal history the material has experienced. Accordingly, when used in conjunction with time-temperature sensitive products, the THI may serve as a proactive system for monitoring and controlling product quality and/or safety. For example, the THI is useful in safeguarding high-value biological products such as enzymes, antibodies, plasma, stem cells and other perishables that have to be stored at low temperatures. (author)

  5. Variable-temperature sample system for ion implantation at -192 to +5000C

    International Nuclear Information System (INIS)

    Fuller, C.T.

    1978-04-01

    A variable-temperature sample system based on exchange-gas coupling was developed for ion-implantation use. The sample temperature can be controlled from -192 0 C to +500 0 C with rapid cooling. The system also has provisions for focusing and alignment of the ion beam, electron suppression, temperature monitoring, sample current measuring, and cryo-shielding. Design considerations and operating characteristics are discussed. 5 figures

  6. Design of indoor temperature and humidity detection system based on single chip microcomputer

    Science.gov (United States)

    Fu, Xiuwei; Fu, Li; Ma, Tianhui

    2018-03-01

    The indoor temperature and humidity detection system based on STC15F2K60S2 is designed in this paper. The temperature and humidity sensor DHT22 to monitor the indoor temperature and humidity are used, and the temperature and humidity data to the user's handheld device are wirelessly transmitted, when the temperature reaches or exceeds the user set the temperature alarm value, and the system sound and light alarm, to remind the user.

  7. Innovative solutions in monitoring systems in flood protection

    Science.gov (United States)

    Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra

    2018-02-01

    The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.

  8. Mobile Messaging Services-Based Personal Electrocardiogram Monitoring System

    Directory of Open Access Journals (Sweden)

    Ashraf A. Tahat

    2009-01-01

    Full Text Available A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.

  9. Mobile messaging services-based personal electrocardiogram monitoring system.

    Science.gov (United States)

    Tahat, Ashraf A

    2009-01-01

    A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.

  10. Fiber Bragg Grating Based System for Temperature Measurements

    Science.gov (United States)

    Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly

    In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.

  11. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  12. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  13. Safety system status monitoring

    International Nuclear Information System (INIS)

    Lewis, J.R.; Morgenstern, M.H.; Rideout, T.H.; Cowley, P.J.

    1984-03-01

    The Pacific Northwest Laboratory has studied the safety aspects of monitoring the preoperational status of safety systems in nuclear power plants. The goals of the study were to assess for the NRC the effectiveness of current monitoring systems and procedures, to develop near-term guidelines for reducing human errors associated with monitoring safety system status, and to recommend a regulatory position on this issue. A review of safety system status monitoring practices indicated that current systems and procedures do not adequately aid control room operators in monitoring safety system status. This is true even of some systems and procedures installed to meet existing regulatory guidelines (Regulatory Guide 1.47). In consequence, this report suggests acceptance criteria for meeting the functional requirements of an adequate system for monitoring safety system status. Also suggested are near-term guidelines that could reduce the likelihood of human errors in specific, high-priority status monitoring tasks. It is recommended that (1) Regulatory Guide 1.47 be revised to address these acceptance criteria, and (2) the revised Regulatory Guide 1.47 be applied to all plants, including those built since the issuance of the original Regulatory Guide

  14. Safety system status monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.R.; Morgenstern, M.H.; Rideout, T.H.; Cowley, P.J.

    1984-03-01

    The Pacific Northwest Laboratory has studied the safety aspects of monitoring the preoperational status of safety systems in nuclear power plants. The goals of the study were to assess for the NRC the effectiveness of current monitoring systems and procedures, to develop near-term guidelines for reducing human errors associated with monitoring safety system status, and to recommend a regulatory position on this issue. A review of safety system status monitoring practices indicated that current systems and procedures do not adequately aid control room operators in monitoring safety system status. This is true even of some systems and procedures installed to meet existing regulatory guidelines (Regulatory Guide 1.47). In consequence, this report suggests acceptance criteria for meeting the functional requirements of an adequate system for monitoring safety system status. Also suggested are near-term guidelines that could reduce the likelihood of human errors in specific, high-priority status monitoring tasks. It is recommended that (1) Regulatory Guide 1.47 be revised to address these acceptance criteria, and (2) the revised Regulatory Guide 1.47 be applied to all plants, including those built since the issuance of the original Regulatory Guide.

  15. Monitoring actual temperatures in Susquehanna SES reactor buildings

    International Nuclear Information System (INIS)

    Derkacs, A.P.

    1991-01-01

    PP and L has been monitoring temperatures in the Susquehanna SES reactor building with digital temperature recorders since 1986. In early 1990, data from four representative areas was analyzed to determine the temperature in each area which would produce the same rate of degradation as the distribution of actual temperatures recorded over about 40 months. From these effective average temperatures, qualified life multipliers were determined for activation energies in the range of 0.5 to 1.5 and those multipliers were used to estimate new qualified lives and the number of replacements which might be saved during the life of the plant. The results indicate that pursuing a program of determining EQ qualified lives from actual temperatures, rather than maximum design basis temperatures, will provide a substantial payback in reduced EQ driven maintenance

  16. Rapid response sensor to monitor the temperature and flow of liquid metals

    International Nuclear Information System (INIS)

    McCann, J.D.

    1980-01-01

    Two forms of a sensor capable of simultaneously monitoring the temperature and flow of liquid metal coolants within a reactor are described. They operate by measuring the coupling impedances between the sensor and the surrounding electrically conductive coolant. Since the system utilises electrical rather than thermal properties, the response to perturbations is rapid, typically displaying the changed conditions within a few milliseconds. The first form of the sensor was designed to operate whilst protected by a thick walled service tube positioned in the reactor coolant. Providing bends in the tube had a radius greater than 70 cm, the sensor could be removed for inspection and maintenance if necessary. The second sensor was fitted inside a streamlined NaK proof capsule. This was inserted directly into the coolant outlet stream of a fuel pin assembly in the Dounreay Fast Reactor. In this form the sensor successfully monitored flow, entrained gas and temperature excursions during the final operating cycle of D.F.R. (author)

  17. Monitoring of homogeneity of fuel compacts for high-temperature reactors

    International Nuclear Information System (INIS)

    Mottet, P.; Guery, M.; Chegne, J.

    Apparatus using either gamma transmission or gamma scintillation spectrometry (with NaI(Tl) detector) was developed for monitoring the homogeneity of distribution of fissile and fertile particles in fuel compacts for high-temperature reactors. Three methods were studied: Longitudinal gamma transmission which gives a total distribution curve of heavy metals (U and Th); gamma spectrometry with a well type scintillator, which rapidly gives the U and Th count rates per fraction of compact; and longitudinal gamma spectrometry, giving axial distribution curves for uranium and thorium; apparatus with four scintillators and optimization of the parameters for the measurement, permitting significantly decreasing the duration of the monitoring. These relatively simple procedures should facilitate the industrial monitoring of high-temperature reactor fuel

  18. Design of Tropical Flowers Environmental Parameters Wireless Monitoring System Based on MSP430

    Directory of Open Access Journals (Sweden)

    Huang Jian-Qing

    2016-01-01

    Full Text Available Considering the importance of real-time monitoring tropical flower environment parameters, the paper designs a wireless monitoring system based on MSP430F149 for tropical flower growing parameters. The proposed system uses sensor nodes to obtain data of temperature, humidity and light intensity, sink node to collect data from sensor nodes through wireless sensor network, and monitoring center to process data downloaded from the sink node through RS232 serial port. The node hardware platform is composed of a MSP430F149 processor, AM2306 and NHZD10AI sensors used to adopt temperature, humidity and light intensity data, and an nRF905 RF chip used to receive and send data. The node software, operated in IAR Embedded Workbench, adopts C Language to do node data collection and process, wireless transmission and serial port communication. The software of monitoring center develops in VB6.0, which can provide vivid and explicit real-time monitoring platform for flower farmers.

  19. ITS Temperature Monitoring

    CERN Document Server

    Savin, A E; CERN. Geneva; Gerasimov, S F

    1999-01-01

    The results of the R&D done under the ISTC#345 grant are presented for consideration for possible future application. The choice of the temperature sensors is described. Thin-film miniature Pt-sensors were produced and the results of the metrological studies of the manufactured samples are presented. The multi-channel temperature data readout system prototype and results of long-term stability tests are discussed. List of figures: Figure 1 Thin film Pt-thermometer topology Figure 2 Studies of long-term stability of Pt-thermometers Figure 3 DT structural scheme Figures 4 & 5 Output data ADC read operation, Control register ADC write operation

  20. Dedicated real-time monitoring system for health care using ZigBee.

    Science.gov (United States)

    Alwan, Omar S; Prahald Rao, K

    2017-08-01

    Real-time monitoring systems (RTMSs) have drawn considerable attentions in the last decade. Several commercial versions of RTMS for patient monitoring are available which are used by health care professionals. Though they are working satisfactorily on various communication protocols, their range, power consumption, data rate and cost are really bothered. In this study, the authors present an efficient embedded system based wireless health care monitoring system using ZigBee. Their system has a capability to transmit the data between two embedded systems through two transceivers over a long range. In this, wireless transmission has been applied through two categories. The first part which contains Arduino with ZigBee will send the signals to the second device, which contains Raspberry with ZigBee. The second device will measure the patient data and send it to the first device through ZigBee transceiver. The designed system is demonstrated on volunteers to measure the body temperature which is clinically important to monitor and diagnose for fever in the patients.

  1. development of micro controller-based monitoring system for a stand ...

    African Journals Online (AJOL)

    user

    This paper is on the development of a simple, reliable and high precision photovoltaic monitoring system, which ... design phase [1]. ... affect the life span of the battery, so temperature .... bridge of communication between host computer and.

  2. Computer-based liquid radioactive waste control with plant emergency and generator temperature monitoring

    International Nuclear Information System (INIS)

    Plotnick, R.J.; Schneider, M.I.; Shaffer, C.E.

    1986-01-01

    At the start of the design of the liquid radwaste control system for a nuclear generating station under construction, several serious problems were detected. The solution incorporated a new approach utilizing a computer and a blend of standard and custom software to replace the existing conventionally instrumented benchboard. The computer-based system, in addition to solving the problems associated with the benchboard design, also provided other enhancements which significantly improved the operability and reliability of the radwaste system. The functionality of the computer-based radwaste control system also enabled additional applications to be added to an expanded multitask version of the radwaste computer: 1) a Nuclear Regulatory Commission (NRC) requirement that all nuclear power plants have an emergency response facility status monitoring system; and 2) the sophisticated temperature monitoring and trending requested by the electric generator manufacturer to continue its warranty commitments. The addition of these tasks to the radwaste computer saved the cost of one or more computers that would be dedicated to these work requirements

  3. On line instrument systems for monitoring steam turbogenerators

    Science.gov (United States)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  4. Monitoring of a heat pump to energy recovery and process temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Kaneps, M

    1986-03-01

    This reports on the development and implementation of a heat pump monitoring program detailing the application and adaptation of standard commercial heat pump equipment for the extraction and use of themal energy from ocean source seawater along Canada's Atlantic Coast. The specific application was a lobster holding facility owned by Clearwater Lobsters Limited of Halifax, Nova Scotia. Examination of the daata indicated the heat pump system could extract and use thermal energy at or near initial design conditions. The lobsters were able to be held at consistently lower temperatures which improved product quality and reduced shrinkage. Influx of seawater debris, marine growth, and dryland pound heat gain were indentified as the only major problems. The information gathered from the monitoring study indicated that heat pump systems can be adapted to extract and utilize thermal energy from ocean source seawater. 50 figs., 123 tabs.

  5. Measurement of the temperature distribution inside the power cable using distributed temperature system

    Science.gov (United States)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  6. Temperature Pill

    Science.gov (United States)

    1988-01-01

    Ingestible Thermal Monitoring System was developed at Johns Hopkins University as means of getting internal temperature readings for treatments of such emergency conditions as dangerously low (hypothermia) and dangerously high (hyperthermia) body temperatures. ITMS's accuracy is off no more than one hundredth of a degree and provides the only means of obtaining deep body temperature. System has additional applicability in fertility monitoring and some aspects of surgery, critical care obstetrics, metabolic disease treatment, gerontology (aging) and food processing research. Three-quarter inch silicone capsule contains telemetry system, micro battery, and a quartz crystal temperature sensor inserted vaginally, rectally, or swallowed.

  7. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  8. Site-specific landslide assessment in Alpine area using a reliable integrated monitoring system

    Science.gov (United States)

    Romeo, Saverio; Di Matteo, Lucio; Kieffer, Daniel Scott

    2016-04-01

    Rockfalls are one of major cause of landslide fatalities around the world. The present work discusses the reliability of integrated monitoring of displacements in a rockfall within the Alpine region (Salzburg Land - Austria), taking into account also the effect of the ongoing climate change. Due to the unpredictability of the frequency and magnitude, that threatens human lives and infrastructure, frequently it is necessary to implement an efficient monitoring system. For this reason, during the last decades, integrated monitoring systems of unstable slopes were widely developed and used (e.g., extensometers, cameras, remote sensing, etc.). In this framework, Remote Sensing techniques, such as GBInSAR technique (Groung-Based Interferometric Synthetic Aperture Radar), have emerged as efficient and powerful tools for deformation monitoring. GBInSAR measurements can be useful to achieve an early warning system using surface deformation parameters as ground displacement or inverse velocity (for semi-empirical forecasting methods). In order to check the reliability of GBInSAR and to monitor the evolution of landslide, it is very important to integrate different techniques. Indeed, a multi-instrumental approach is essential to investigate movements both in surface and in depth and the use of different monitoring techniques allows to perform a cross analysis of the data and to minimize errors, to check the data quality and to improve the monitoring system. During 2013, an intense and complete monitoring campaign has been conducted on the Ingelsberg landslide. By analyzing both historical temperature series (HISTALP) recorded during the last century and those from local weather stations, temperature values (Autumn-Winter, Winter and Spring) are clearly increased in Bad Hofgastein area as well as in Alpine region. As consequence, in the last decades the rockfall events have been shifted from spring to summer due to warmer winters. It is interesting to point out that

  9. Honey Bee Colonies Remote Monitoring System

    Directory of Open Access Journals (Sweden)

    Sergio Gil-Lebrero

    2016-12-01

    Full Text Available Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD. The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time.

  10. Real-time Cure Monitoring of Composites Using a Guided wave-based System with High Temperature Piezoelectric Transducers, Fiber Bragg Gratings, and Phase-shifted Fiber Bragg Gratings

    Science.gov (United States)

    Hudson, Tyler Blake

    An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS

  11. Fish product quality evaluation based on temperature monitoring in ...

    African Journals Online (AJOL)

    As one kind of perishable food, fish product is at risk of suffering various damages during cold chain and temperature is the most important factor to affect the product quality. This research work on frozen tilapia fillet was aimed at evaluating the fish product quality and predict shelf-life through monitoring temperature change ...

  12. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    Science.gov (United States)

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  13. Locatable-Body Temperature Monitoring Based on Semi-Active UHF RFID Tags

    Directory of Open Access Journals (Sweden)

    Guangwei Liu

    2014-03-01

    Full Text Available This paper presents the use of radio-frequency identification (RFID technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip’s internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  14. Microcomputer-aided monitor for liquid hydrogen target system

    International Nuclear Information System (INIS)

    Kitami, T.; Watanabe, K.

    1983-03-01

    A microcomputer-aided monitor for a liquid hydrogen target system has been designed and tested. Various kinds of input data such as temperature, pressure, vacuum, etc. are scanned in a given time interval. Variation with time in any four items can be displayed on CRT and, if neccessary, printed out on a sheet of recording paper. (author)

  15. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  16. Development of micro controller-based monitoring system for a ...

    African Journals Online (AJOL)

    Development of micro controller-based monitoring system for a stand-alone ... which are then processed by a microcontroller with Arduino Board and the ... used in meteorological stations and laboratory for measurements of the same parameters. ... 0.0412%,-0.297% and 0.024% for solar radiation intensity, temperature, ...

  17. Low-cost data acquisition systems for photovoltaic system monitoring and usage statistics

    Science.gov (United States)

    Fanourakis, S.; Wang, K.; McCarthy, P.; Jiao, L.

    2017-11-01

    This paper presents the design of a low-cost data acquisition system for monitoring a photovoltaic system’s electrical quantities, battery temperatures, and state of charge of the battery. The electrical quantities are the voltages and currents of the solar panels, the battery, and the system loads. The system uses an Atmega328p microcontroller to acquire data from the photovoltaic system’s charge controller. It also records individual load information using current sensing resistors along with a voltage amplification circuit and an analog to digital converter. The system is used in conjunction with a wall power data acquisition system for the recording of regional power outages. Both data acquisition systems record data in micro SD cards. The data has been successfully acquired from both systems and has been used to monitor the status of the PV system and the local power grid. As more data is gathered it can be used for the maintenance and improvement of the photovoltaic system through analysis of the photovoltaic system’s parameters and usage statistics.

  18. A miniature inductive temperature sensor to monitor temperature noise in the coolant of an LMFBR

    International Nuclear Information System (INIS)

    Dean, S.A.; Sandham, C.W.

    1980-01-01

    A description is given of the design and performance of miniature inductive sensors developed to monitor fast temperature fluctuations in the sodium coolant above the core of a LMFBR. These instruments, designed to be installed within existing thermocouple containment thimbles, also provide a steady-state temperature indication for reactor control purposes. (author)

  19. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  20. Evaluating penetration-monitoring systems

    International Nuclear Information System (INIS)

    Markin, J.T.

    1981-01-01

    Evaluating the performance of a process monitoring system in detecting improper activities that could be related to material diversion requires a framework for addressing the complexity and statistical uncertainty of such systems. This report proposes a methodology that determines the optimal divertor strategy against a monitoring system and the system probability of detection. This method extends previous work by correctly modeling uncorrelated and correlated measurement errors for radiation monitors

  1. Environmental radiation monitoring system

    International Nuclear Information System (INIS)

    Kato, Tsutomu; Shioiri, Masatoshi; Sakamaki, Tsuyoshi

    2007-01-01

    Environmental radiation monitoring systems are used to measure and monitoring gamma-rays at the observation boundaries of nuclear facilities and in the surrounding areas. In recent years, however, few new nuclear facilities have been constructed and the monitoring systems shift to renewal of existing systems. In addition, in order to increase public acceptance, the facilities are being equipped with communication lines to provide data to prefectural environmental centers. In this text, we introduce the latest technology incorporated in replacement of environmental radiation monitoring systems. We also introduce a replacement method that can shorten the duration during which environmental dose rate measurement is interrupted by enabling both the replacement system and the system being replaced to perform measurements in parallel immediately before and after the replacement. (author)

  2. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    Energy Technology Data Exchange (ETDEWEB)

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  3. A sensor monitoring system for telemedicine, safety and security applications

    Science.gov (United States)

    Vlissidis, Nikolaos; Leonidas, Filippos; Giovanis, Christos; Marinos, Dimitrios; Aidinis, Konstantinos; Vassilopoulos, Christos; Pagiatakis, Gerasimos; Schmitt, Nikolaus; Pistner, Thomas; Klaue, Jirka

    2017-02-01

    A sensor system capable of medical, safety and security monitoring in avionic and other environments (e.g. homes) is examined. For application inside an aircraft cabin, the system relies on an optical cellular network that connects each seat to a server and uses a set of database applications to process data related to passengers' health, safety and security status. Health monitoring typically encompasses electrocardiogram, pulse oximetry and blood pressure, body temperature and respiration rate while safety and security monitoring is related to the standard flight attendance duties, such as cabin preparation for take-off, landing, flight in regions of turbulence, etc. In contrast to previous related works, this article focuses on the system's modules (medical and safety sensors and associated hardware), the database applications used for the overall control of the monitoring function and the potential use of the system for security applications. Further tests involving medical, safety and security sensing performed in an real A340 mock-up set-up are also described and reference is made to the possible use of the sensing system in alternative environments and applications, such as health monitoring within other means of transport (e.g. trains or small passenger sea vessels) as well as for remotely located home users, over a wired Ethernet network or the Internet.

  4. Experience with the TUeV pipe monitoring system at the Grohnde nuclear power station

    International Nuclear Information System (INIS)

    Dittmar, H.; Hofstoetter, P.

    1995-01-01

    A special pipe monitoring system has been developed by TUeV Rheinland during the construction, commissioning and operation of the Grohnde nuclear power station. On the basis of measurements during construction and commissioning a basic monitoring system has been developed, using not only a system of sophisticated sensors that had been permanently installed from the beginning but also a large number of quite simple additional sensors. Measurements were taken before, during and after inspections and led to the discovery of unexpected and high stresses during service as well as to long-term changes over a period of years.Special measurements were taken with high temperature strain gauges and thermocouples to identify problems such as temperature layering. A special on-line measuring device was developed and used for the continuous monitoring of temperatures during operation.All these measurements help to identify out areas with high stresses or service conditions giving rise to high loads, in order on the one hand to prevent damage and on the other hand to prove that the pipes are functioning within their design parameters without problems. ((orig.))

  5. Research of Tunnel Construction Monitoring System Base on Senor Information Fusion

    Directory of Open Access Journals (Sweden)

    Kaisheng Zhang

    2014-05-01

    Full Text Available With the complex of the tunnel construction, tunnel construction become more and more difficult, in order to ensure the safety of tunnel construction, the paper introduced a kind of tunnel construction monitoring system based on sensor. The system achieves the real- time monitoring of tunnel construction environment including temperature and humidity, gas concentration, dust concentration, location tracking for construction workers through the wireless communication technology, to control of the real-time status of the tunnel, and ensure timely rescue when the accident occurred.

  6. Intra-hole fluid convection: High-resolution temperature monitoring

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Šafanda, Jan; Krešl, Milan

    2008-01-01

    Roč. 348, č. 3-4 (2008), s. 464-479 ISSN 0022-1694 Institutional research plan: CEZ:AV0Z30120515 Keywords : temperature monitoring * convection * fluid dynamics * borehole logging Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.305, year: 2008

  7. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings.

    Science.gov (United States)

    Zhou, Jianguo; Xu, Yaming; Zhang, Tao

    2016-06-14

    Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.

  8. Grate monitoring systems, state of the art; Metoder foer rosteroevervakning, dagslaegesbestaemning

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet [Aaf Processdesign AB, Linkoeping (Sweden)

    2001-01-01

    During a number of years research and development projects have been made to present methods of monitoring the grate in a grate fired boiler. The monitoring is interesting in order to be able to increase efficiency, increase burn-out of ash, improve the status of emissions, improve transportation of ash and fuel through the furnace, reduce costs for operation and maintenance, handle greater loads etc. Improvement of the combustion has been concentrated to the development of the gas phase combustion. In the past few years the computer development has progressed rapidly and the use of optical monitoring methods have been made possible for monitoring grates. To analyse state of the art of optical grate monitoring systems three different methods have been used, literature search, inquiry where plant owners were asked if they have used grate monitoring systems and if so what experiences they have, and interviews with scientists and users. The inquiry investigation was made during spring 2000 and supplemented with a few known users of grate monitoring systems in august 2000. The interviews were made during august 2000. The methods which have been examined are: Video monitoring; Computer vision; IR-pyrometry; IR-camera technology; Laser measuring methods; Acoustic pyrometry. The survey showed that video monitoring is useful to monitor the fuel bed and an aid to the operators. A good cooling and cleansing system is essential to make the system reliable. If the system is aided with computer vision the computer will show numbers which can be used in the control system. These have been tried at a couple of sites but the system is still being developed and no sites uses this function fully automated. Infrared measurements have been tried in number of research projects. The IR-pyrometer technique is good for measuring temperature but the reliability is too low for some of the users. IR-cameras are used in several waste incineration plants to control the combustion. The systems

  9. Artificial Fruit: Postharvest Online Monitoring of Agricultural Food by Measuring Humidity and Temperature

    Science.gov (United States)

    Hübert, T.; Lang, C.

    2012-09-01

    An online monitoring of environmental and inherent product parameters is required during transportation and storage of fruit and vegetables to avoid quality degradation and spoilage. The control of transpiration losses is suggested as an indicator for fruit freshness by humidity measurements. For that purpose, an electronic sensor is surrounded by a wet porous fiber material which is in contact with the outer atmosphere. Transpiration reduces the water content of the porous material and thus also the internal water activity. The sensor system, known as "artificial fruit," measures the relative humidity and temperature inside the wet material. Humidity and temperature data are collected and transmitted on demand by a miniaturized radio communication unit. The decrease in the measured relative humidity has been calibrated against the mass loss of tomatoes under different external influencing parameters such as temperature, humidity, and air flow. Current battery life allows the sensor system, embedded in a fruit crate, to transmit data on transpiration losses via radio transmission for up to two weeks.

  10. Integrated photovoltaic (PV) monitoring system

    Science.gov (United States)

    Mahinder Singh, Balbir Singh; Husain, NurSyahidah; Mohamed, Norani Muti

    2012-09-01

    The main aim of this research work is to design an accurate and reliable monitoring system to be integrated with solar electricity generating system. The performance monitoring system is required to ensure that the PVEGS is operating at an optimum level. The PV monitoring system is able to measure all the important parameters that determine an optimum performance. The measured values are recorded continuously, as the data acquisition system is connected to a computer, and data is stored at fixed intervals. The data can be locally used and can also be transmitted via internet. The data that appears directly on the local monitoring system is displayed via graphical user interface that was created by using Visual basic and Apache software was used for data transmission The accuracy and reliability of the developed monitoring system was tested against the data that captured simultaneously by using a standard power quality analyzer device. The high correlation which is 97% values indicates the level of accuracy of the monitoring system. The aim of leveraging on a system for continuous monitoring system is achieved, both locally, and can be viewed simultaneously at a remote system.

  11. Development of on-line monitoring system for flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, N.Y.; Lee, S.G.; Hwang, I.S.; Kim, J.T.; Luk, V.K.

    2005-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover wide area in the on-line application. We suggested integrated approach to monitor the FAC-susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible, and that cover wide area, since we don't know where the FAC occurs. For this purpose, we introduced wearing rate model, which concentrates on the electrochemical parameters. By the model, we can predict the wearing rate and then can compare the testing result. After we identified feasibility by analytical way, we developed electrochemical sensors for high temperature application, and introduced mechanical monitoring system, which is still under development. To support the validation of the monitored results, we adopted high temperature UT, which shows good resolution in the testing environment. By this way, all the monitored results can be compared in terms of thickness. Validation test shows the feasibility of sensors. To support direct thickness measurement for wide-area, Direct Current Potential Drop method will be researched to integrate to the developed framework. (authors)

  12. Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes.

    Science.gov (United States)

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung

    2010-01-01

    In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06±0.005 (Ω/°C) and 0.033 pF/%RH, respectively.

  13. Sensor Fabrication Method for in Situ Temperature and Humidity Monitoring of Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2010-04-01

    Full Text Available In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED. The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS, this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304. The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06 ± 0.005 (Ω/°C and 0.033 pF/%RH, respectively.

  14. The drift velocity monitoring system of the CMS barrel muon chambers

    CERN Document Server

    Altenhoefer, Georg Friedrich; Heidemann, Carsten Andreas; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel Francois

    2017-01-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  15. The drift velocity monitoring system of the CMS barrel muon chambers

    Science.gov (United States)

    Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel

    2018-04-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  16. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    Science.gov (United States)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  17. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-01-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration

  18. A temperature monitor circuit with small voltage sensitivity using a topology-reconfigurable ring oscillator

    Science.gov (United States)

    Kishimoto, Tadashi; Ishihara, Tohru; Onodera, Hidetoshi

    2018-04-01

    In this paper, we propose a temperature monitor circuit that exhibits a small supply voltage sensitivity adopting a circuit topology of a reconfigurable ring oscillator. The circuit topology of the monitor is crafted such that the oscillation frequency is determined by the amount of subthreshold leakage current, which has an exponential dependence on temperature. Another important characteristic of the monitor is its small supply voltage sensitivity. The measured oscillation frequency of a test chip fabricated in a 65 nm CMOS process varies only 2.6% under a wide range of supply voltages from 0.4 to 1.0 V at room temperature. The temperature estimation error ranges from -0.3 to 0.4 °C over a temperature range of 10 to 100 °C.

  19. The JET real-time plasma-wall load monitoring system

    International Nuclear Information System (INIS)

    Valcárcel, D.F.; Alves, D.; Card, P.; Carvalho, B.B.; Devaux, S.; Felton, R.; Goodyear, A.; Lomas, P.J.; Maviglia, F.; McCullen, P.; Reux, C.; Rimini, F.; Stephen, A.; Zabeo, L.

    2014-01-01

    Highlights: • The paper describes the JET real-time system monitoring the first-wall plasma loads. • It presents the motivation, physics basis, design and implementation of the system. • It also presents the integration in the JET CODAS. • Operational results are presented. - Abstract: In the past, the Joint European Torus (JET) has operated with a first-wall composed of Carbon Fibre Composite (CFC) tiles. The thermal properties of the wall were monitored in real-time during plasma operations by the WALLS system. This software routinely performed model-based thermal calculations of the divertor and Inner Wall Guard Limiter (IWGL) tiles calculating bulk temperatures and strike-point positions as well as raising alarms when these were beyond operational limits. Operation with the new ITER-like wall presents a whole new set of challenges regarding machine protection. One example relates to the new beryllium limiter tiles with a melting point of 1278 °C, which can be achieved during a plasma discharge well before the bulk temperature rises to this value. This requires new and accurate power deposition and thermal diffusion models. New systems were deployed for safe operation with the new wall: the Real-time Protection Sequencer (RTPS) and the Vessel Thermal Map (VTM). The former allows for a coordinated stop of the pulse and the latter uses the surface temperature map, measured by infra-red (IR) cameras, to raise alarms in case of hot-spots. Integration of WALLS with these systems is required as RTPS responds to raised alarms and VTM, the primary protection system for the ITER-like wall, can use WALLS as a vessel temperature provider. This paper presents the engineering design, implementation and results of WALLS towards D-T operation, where it will act as a primary protection system when the IR cameras are blinded by the fusion reaction neutrons. The first operational results, with emphasis on its performance, are also presented

  20. The JET real-time plasma-wall load monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, D.F., E-mail: daniel.valcarcel@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Alves, D. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Card, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Carvalho, B.B. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Devaux, S. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Felton, R.; Goodyear, A.; Lomas, P.J. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Reux, C. [Ecole Polytechnique, LPP, CNRS UMR 7648, 91128 Palaiseau (France); Rimini, F.; Stephen, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Zabeo, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St., Paul Lez Durance (France); and others

    2014-03-15

    Highlights: • The paper describes the JET real-time system monitoring the first-wall plasma loads. • It presents the motivation, physics basis, design and implementation of the system. • It also presents the integration in the JET CODAS. • Operational results are presented. - Abstract: In the past, the Joint European Torus (JET) has operated with a first-wall composed of Carbon Fibre Composite (CFC) tiles. The thermal properties of the wall were monitored in real-time during plasma operations by the WALLS system. This software routinely performed model-based thermal calculations of the divertor and Inner Wall Guard Limiter (IWGL) tiles calculating bulk temperatures and strike-point positions as well as raising alarms when these were beyond operational limits. Operation with the new ITER-like wall presents a whole new set of challenges regarding machine protection. One example relates to the new beryllium limiter tiles with a melting point of 1278 °C, which can be achieved during a plasma discharge well before the bulk temperature rises to this value. This requires new and accurate power deposition and thermal diffusion models. New systems were deployed for safe operation with the new wall: the Real-time Protection Sequencer (RTPS) and the Vessel Thermal Map (VTM). The former allows for a coordinated stop of the pulse and the latter uses the surface temperature map, measured by infra-red (IR) cameras, to raise alarms in case of hot-spots. Integration of WALLS with these systems is required as RTPS responds to raised alarms and VTM, the primary protection system for the ITER-like wall, can use WALLS as a vessel temperature provider. This paper presents the engineering design, implementation and results of WALLS towards D-T operation, where it will act as a primary protection system when the IR cameras are blinded by the fusion reaction neutrons. The first operational results, with emphasis on its performance, are also presented.

  1. Design and Development a Control and Monitoring System for Greenhouse Conditions Based-On Multi Agent System

    Directory of Open Access Journals (Sweden)

    Seyed Hamidreza Kasaei

    2011-12-01

    Full Text Available The design of a multi-agent system for integrated management of greenhouse production is described. The model supports the integrated greenhouse production, with targets set to quality and quantity of produce with the minimum possible cost in resources and environmental consequences.
    In this paper, we propose a real time and robust system for monitoring and control of the greenhouse condition which can automatically control of greenhouse temperature, lights, humidity, CO2 concentration, sunshine, pH, salinity, water available, soil temperature and soil nutrient for efficient production. We will propose a multi-agent methodology for integrated management systems in greenhouses. In this regards wireless sensor networks play a vital role to monitor
    greenhouse and environment parameters. Each control process of the greenhouse environment is modeled as an autonomous agent with its own inputs, outputs and its own interactions with the other agents. Each agent acts autonomously, as it knows a priori the desired environmental setpoints. Many researchers have been making attempts to develop the greenhouse environment management system. The existing environment management systems are bulky, very costly and difficult to maintain. In the last years, Multi Agent Systems and Wireless Sensor Networks are becoming important solutions to this problem. This paper describes the implementation and
    configuration of the wireless sensor network to monitor and control various parameter of greenhouse. The developed system is simple, cost effective, and easily installable.

  2. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration

  3. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    Science.gov (United States)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  4. A low-cost microcontroller-based system to monitor crop temperature and water status

    Science.gov (United States)

    A prototype microcontroller-based system was developed to automate the measurement and recording of soil-moisture status and canopy-, air-, and soil-temperature levels in cropped fields. Measurements of these conditions within the cropping system are often used to assess plant stress, and can assis...

  5. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.

  6. A cryogenic monitor system for the Liquid Argon Calorimeter in the SLD detector

    International Nuclear Information System (INIS)

    Fox, M.J.; Fox, J.D.

    1988-10-01

    This paper describes the monitoring electronics system design for the Liquid Argon Calorimeter (LAC) portion of the SLD detector. This system measures temperatures and liquid levels inside the LAC cryostat and transfers the results over a fiber-optic serial link to an external monitoring computer. System requirements, unique design constraints, and detailed analog, digital and software designs are presented. Fault tolerance and the requirement for a single design to work in several different operating environments are discussed. 4 refs., 3 figs., 1 tab

  7. Mobile monitoring and embedded control system for factory environment.

    Science.gov (United States)

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  8. Mobile Monitoring and Embedded Control System for Factory Environment

    Science.gov (United States)

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  9. Mobile Monitoring and Embedded Control System for Factory Environment

    Directory of Open Access Journals (Sweden)

    Kuang-Yow Lian

    2013-12-01

    Full Text Available This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC technology is used to carry out the actual electricity load experiments using smart phones.

  10. Multiplexed FBG Monitoring System for Forecasting Coalmine Water Inrush Disaster

    Directory of Open Access Journals (Sweden)

    B. Liu

    2012-01-01

    Full Text Available This paper presents a novel fiber-Bragg-grating- (FBG- based system which can monitor and analyze multiple parameters such as temperature, strain, displacement, and seepage pressure simultaneously for forecasting coalmine water inrush disaster. The sensors have minimum perturbation on the strain field. And the seepage pressure sensors adopt a drawbar structure and employ a corrugated diaphragm to transmit seepage pressure to the axial strain of FBG. The pressure sensitivity is 20.20 pm/KPa, which is 6E3 times higher than that of ordinary bare FBG. The FBG sensors are all preembedded on the roof of mining area in coalmine water inrush model test. Then FBG sensing network is set up applying wavelength-division multiplexing (WDM technology. The experiment is carried out by twelve steps, while the system acquires temperature, strain, displacement, and seepage pressure signals in real time. The results show that strain, displacement, and seepage pressure monitored by the system change significantly before water inrush occurs, and the strain changes firstly. Through signal fusion analyzed it can be concluded that the system provides a novel way to forecast water inrush disaster successfully.

  11. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  12. A Novel Electric Bicycle Battery Monitoring System Based on Android Client

    Directory of Open Access Journals (Sweden)

    Chuanxue Song

    2017-01-01

    Full Text Available The battery monitoring system (BMS plays a crucial role in maintaining the safe operation of the lithium battery electric bicycle and prolonging the life of the battery pack. This paper designed a set of new battery monitoring systems based on the Android system and ARM single-chip microcomputer to enable direct management of the lithium battery pack and convenient monitoring of the state of the battery pack. The BMS realizes the goal of monitoring the voltage, current, and ambient temperature of lithium batteries, estimating the state of charge (SOC and state of health (SOH, protecting the battery from abuse during charging or discharging, and ensuring the consistency of the batteries by integrating the passive equalization circuit. The BMS was proven effective and feasible through several tests, including charging/discharging, estimation accuracy, and communication tests. The results indicated that the BMS could be used in the design and application of the electric bicycle.

  13. Rack Protection Monitor - A Simple System

    International Nuclear Information System (INIS)

    Orr, S.

    1997-12-01

    The Rack Protection Monitor is a simple, fail-safe device to monitor smoke, temperature and ventilation sensors. It accepts inputs from redundant sensors and has a hardwired algorithm to prevent nuisance power trips due to random sensor failures. When a sensor is triggered the Rack Protection Monitor latches and annunicates the alarm. If another sensor is triggered, the Rack Protection Monitor locally shuts down the power to the relay rack and sends alarm to central control

  14. An integrated system for pipeline condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Andrew P.; Lees, Gareth; Hartog, Arthur; Twohig, Richard; Kader, Kamal; Hilton, Graeme; Mullens, Stephen; Khlybov, Artem [Schlumberger, Southampton (United Kingdom); Sanderson, Norman [BP Exploration, Sunbury (United Kingdom)

    2009-07-01

    In this paper we present the unique and innovative 'Integriti' pipeline and flow line integrity monitoring system developed by Schlumberger in collaboration with BP. The system uses optical fiber distributed sensors to provide simultaneous distributed measurements of temperature, strain and vibration for the detection, monitoring, and location of events including: Third Party Interference (TPI), including multiple simultaneous disturbances; geo-hazards and landslides; gas and oil leaks; permafrost protection. The Integriti technology also provides a unique means for tracking the progress of cleaning and instrumented pigs using existing optical telecom and data communications cables buried close to pipelines. The Integriti solution provides a unique and proactive approach to pipeline integrity management. It performs analysis of a combination of measurands to provide the pipeline operator with an event recognition and location capability, in effect providing a hazard warning system, and offering the operator the potential to take early action to prevent loss. Through the use of remote, optically powered amplification, an unprecedented detection range of 100 km is possible without the need for any electronics and therefore remote power in the field. A system can thus monitor 200 km of pipeline when configured to monitor 100 km upstream and downstream from a single location. As well as detecting conditions and events leading to leaks, this fully integrated system provides a means of detecting and locating small leaks in gas pipelines below the threshold of present online leak detection systems based on monitoring flow parameters. Other significant benefits include: potential reductions in construction costs; enhancement of the operator's existing integrity management program; potential reductions in surveillance costs and HSE risks. In addition to onshore pipeline systems this combination of functionality and range is available for practicable

  15. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    Science.gov (United States)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  16. The Improved NRL Tropical Cyclone Monitoring System with a Unified Microwave Brightness Temperature Calibration Scheme

    Directory of Open Access Journals (Sweden)

    Song Yang

    2014-05-01

    Full Text Available The near real-time NRL global tropical cyclone (TC monitoring system based on multiple satellite passive microwave (PMW sensors is improved with a new inter-sensor calibration scheme to correct the biases caused by differences in these sensor’s high frequency channels. Since the PMW sensor 89 GHz channel is used in multiple current and near future operational and research satellites, a unified scheme to calibrate all satellite PMW sensor’s ice scattering channels to a common 89 GHz is created so that their brightness temperatures (TBs will be consistent and permit more accurate manual and automated analyses. In order to develop a physically consistent calibration scheme, cloud resolving model simulations of a squall line system over the west Pacific coast and hurricane Bonnie in the Atlantic Ocean are applied to simulate the views from different PMW sensors. To clarify the complicated TB biases due to the competing nature of scattering and emission effects, a four-cloud based calibration scheme is developed (rain, non-rain, light rain, and cloudy. This new physically consistent inter-sensor calibration scheme is then evaluated with the synthetic TBs of hurricane Bonnie and a squall line as well as observed TCs. Results demonstrate the large TB biases up to 13 K for heavy rain situations before calibration between TMI and AMSR-E are reduced to less than 3 K after calibration. The comparison stats show that the overall bias and RMSE are reduced by 74% and 66% for hurricane Bonnie, and 98% and 85% for squall lines, respectively. For the observed hurricane Igor, the bias and RMSE decrease 41% and 25% respectively. This study demonstrates the importance of TB calibrations between PMW sensors in order to systematically monitor the global TC life cycles in terms of intensity, inner core structure and convective organization. A physics-based calibration scheme on TC’s TB corrections developed in this study is able to significantly reduce the

  17. Inductive Monitoring System (IMS)

    Data.gov (United States)

    National Aeronautics and Space Administration — IMS: Inductive Monitoring System The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to extract models of normal...

  18. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring.

    Science.gov (United States)

    Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin

    2018-04-13

    Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  19. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring

    Directory of Open Access Journals (Sweden)

    Yiwei Sun

    2018-04-01

    Full Text Available Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C and forearm temperature (35.3 °C are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  20. CERN safety system monitoring - SSM

    International Nuclear Information System (INIS)

    Hakulinen, T.; Ninin, P.; Valentini, F.; Gonzalez, J.; Salatko-Petryszcze, C.

    2012-01-01

    CERN SSM (Safety System Monitoring) is a system for monitoring state-of-health of the various access and safety systems of the CERN site and accelerator infrastructure. The emphasis of SSM is on the needs of maintenance and system operation with the aim of providing an independent and reliable verification path of the basic operational parameters of each system. Included are all network-connected devices, such as PLCs (local purpose control unit), servers, panel displays, operator posts, etc. The basic monitoring engine of SSM is a freely available system-monitoring framework Zabbix, on top of which a simplified traffic-light-type web-interface has been built. The web-interface of SSM is designed to be ultra-light to facilitate access from hand-held devices over slow connections. The underlying Zabbix system offers history and notification mechanisms typical of advanced monitoring systems. (authors)

  1. Heat stress monitoring system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System's heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker's reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  2. Portable System for Monitoring the Microclimate in the Footwear-Foot Interface

    Directory of Open Access Journals (Sweden)

    José de Jesús Sandoval-Palomares

    2016-07-01

    Full Text Available A new, continuously-monitoring portable device that monitors the diabetic foot has shown to help in reduction of diabetic foot complications. Persons affected by diabetic foot have shown to be particularly sensitive in the plantar surface; this sensitivity coupled with certain ambient conditions may cause dry skin. This dry skin leads to the formation of fissures that may eventually result in a foot ulceration and subsequent hospitalization. This new device monitors the micro-climate temperature and humidity areas between the insole and sole of the footwear. The monitoring system consists of an array of ten sensors that take readings of relative humidity within the range of 100% ± 2% and temperature within the range of −40 °C to 123.8 ± 0.3 °C. Continuous data is collected using embedded C software and the recorded data is processed in Matlab. This allows for the display of data; the implementation of the iterative Gauss-Newton algorithm method was used to display an exponential response curve. Therefore, the aim of our system is to obtain feedback data and provide the critical information to various footwear manufacturers. The footwear manufactures will utilize this critical information to design and manufacture diabetic footwear that reduce the risk of ulcers in diabetic feet.

  3. Embedded DAQ System Design for Temperature and Humidity Measurement

    International Nuclear Information System (INIS)

    Memon, T.R.

    2013-01-01

    In this work, we have proposed a cost effective DAQ (Data Acquisition) system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench). The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity). Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays. (author)

  4. An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network

    Science.gov (United States)

    Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun

    In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.

  5. Development of a Personal Integrated Environmental Monitoring System

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2014-11-01

    Full Text Available Environmental pollution in the urban areas of Hong Kong has become a serious public issue but most urban inhabitants have no means of judging their own living environment in terms of dangerous threshold and overall livability. Currently there exist many low-cost sensors such as ultra-violet, temperature and air quality sensors that provide reasonably accurate data quality. In this paper, the development and evaluation of Integrated Environmental Monitoring System (IEMS are illustrated. This system consists of three components: (i position determination and sensor data collection for real-time geospatial-based environmental monitoring; (ii on-site data communication and visualization with the aid of an Android-based application; and (iii data analysis on a web server. This system has shown to be working well during field tests in a bus journey and a construction site. It provides an effective service platform for collecting environmental data in near real-time, and raises the public awareness of environmental quality in micro-environments.

  6. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    Science.gov (United States)

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  7. Copilot: Monitoring Embedded Systems

    Science.gov (United States)

    Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

    2012-01-01

    Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.

  8. Measurement of Detector Efficiency for the CZT Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kang Hwa; Kon, Kang Seo; Kim, Jeongin [KHNP, Radiation Health Research Institute, Seoul (Korea, Republic of)

    2014-05-15

    Evaluation method of using CZT have been being attempted in various places such as AEP(American Electronic Power) etc since EDF(Electricite de France) had apply to the project named 'Source Term Reduction'. CZT can measure source terms on various places in nuclear power plants because it is available at room temperature unless a seperate device and portability is good. Consequently, CZT show good result from analysis of source terms in nuclear power plants. This study found out efficiency of CZT detector that is now researched in CZT Monitoring System for measure source terms on RCS system of domestic old and new nuclear power plants and verified measured efficiency values by comparing to reference efficiency we already know. This study was carried out for finding out detector's efficiency depending on necessary energy in order to save quantitative radioactivity value of source terms. Eventually, this study is to develope CZT Monitoring System measuring CRUD in domestic PWRs primary system or piping system by carrying out in-vivo. Considering error ratio ±20% on radioactivity value of CRM used in measuring and verifying efficiency, measurement of detector Efficiency for the CZT Monitoring System is good. But more various tests is needed than now for an accurate measurement.

  9. Waste monitoring system for effluents

    International Nuclear Information System (INIS)

    Macdonald, J.M.; Gomez, B.; Trujillo, L.; Malcom, J.E.; Nekimken, H.; Pope, N.; Bibeau, R.

    1995-07-01

    The waste monitoring system in use at Los Alamos National Laboratory's Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system

  10. A neuro-fuzzy inference system for sensor monitoring

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the information of other sensors. The paramters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors

  11. Status analysis for the confinement monitoring technology of PWR spent nuclear fuel dry storage system

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chang Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    Leading national R and D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

  12. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    Science.gov (United States)

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  13. Power consumption monitoring using additional monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Truşcă, M. R. C., E-mail: radu.trusca@itim-cj.ro; Albert, Ş., E-mail: radu.trusca@itim-cj.ro; Tudoran, C., E-mail: radu.trusca@itim-cj.ro; Soran, M. L., E-mail: radu.trusca@itim-cj.ro; Fărcaş, F., E-mail: radu.trusca@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Abrudean, M. [Technical University of Cluj-Napoca, Cluj-Napoca (Romania)

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  14. A total patient monitoring system for point-of-care applications

    Science.gov (United States)

    Whitchurch, Ashwin K.; Abraham, Jose K.; Varadan, Vijay K.

    2007-04-01

    Traditionally, home care for chronically ill patients and the elderly requires periodic visits to the patient's home by doctors or healthcare personnel. During these visits, the visiting person usually records the patient's vital signs and takes decisions as to any change in treatment and address any issues that the patient may have. Patient monitoring systems have since changed this scenario by significantly reducing the number of home visits while not compromising on continuous monitoring. This paper describes the design and development of a patient monitoring systems capable of concurrent remote monitoring of 8 patient-worn sensors: Electroencephalogram (EEG), Electrocardiogram (ECG), temperature, airflow pressure, movement and chest expansion. These sensors provide vital signs useful for monitoring the health of chronically ill patients and alerts can be raised if certain specified signal levels fall above or below a preset threshold value. The data from all eight sensors are digitally transmitted to a PC or to a standalone network appliance which relays the data through an available internet connection to the remote monitoring client. Thus it provides a real-time rendering of the patient's health at a remote location.

  15. Monitoring of full scale tensegrity skeletons under temperature change

    OpenAIRE

    KAWAGUCHI, Ken'ichi; OHYA, Shunji

    2009-01-01

    p. 224-231 Strain change in the members of full-scale tensegrity skeletons has been monitored for eight years. The one-day data of one of the tensegrity frame on the hottest and the coldest day in the record are reported and discussed. Kawaguchi, K.; Ohya, S. (2009). Monitoring of full scale tensegrity skeletons under temperature change. Symposium of the International Association for Shell and Spatial Structures. Editorial Universitat Politècnica de València. http://hdl.handle.net/10...

  16. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Satomi, Junkichi; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within ±8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  17. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  18. Temperature studies of the TileCal ROD G-Links for the validation of the air-cooling system

    CERN Document Server

    Valero, A; Abdallah, J; Castillo, V; Cuenca, C; Ferrer, A; Fullana, E; González, V; Higón, E; Munar, A; Poveda, J; Salvachúa, B; Sanchis, E; Solans, C; Torres, J; Valls, J A

    2007-01-01

    In this paper we show the results of the temperature studies performed on the TileCal ROD G-Links in order to validate the air-cooling system. In the first part of the note we present results on the characterization tests of the temperature monitor system for the G-Link chips of the TileCal ROD motherboard, performed at IFIC-Valencia. We report on the performance of the temperature behavior system and some cooling studies of a single ROD motherboard. We conclude that the present system can be successfully used to online monitor the temperature of the ROD G-Links. In the second part we show the results of the studies performed with multiple RODs in a standard 9U VME crate in the laboratory at IFIC, and in their final location in the ATLAS cavern. We conclude that the air-cooling provided by the standard VME crate fans is enough to keep the temperature of the G-Links well within specifications.

  19. Development and installation of solution measurement and monitoring system (SMMS) at TRP

    International Nuclear Information System (INIS)

    Satoh, Takehiko; Yamanaka, Atsushi; Kashimura, Takao; Yamamoto, Tokuhiro

    2001-01-01

    The IAEA proposed TRP safeguard improvement plants in 1995 for closer and more efficient safeguards of TRP. Development of Solution Measurement and Monitoring System (SMMS) is one item of the plans and has been carried out under the JASPAS program as JA-6. Following to the IAEA's acceptance test, after the installation of the SMMS in 1999, field test of this system has been carried out. The main purpose of the SMMS is to establish the IAEA's independent monitoring system. Besides input and output accountability tanks, seven Pu storage tanks and a pot attached to the Pu storage tanks are monitored continuously, and solution level, density and temperature data of these tanks are recorded by the SMMS. Authentication of the SMMS, confirmed by the IAEA at the acceptance test, is kept by failure detection and recording functions of the system. (author)

  20. Embedded DAQ System Design for Temperature and Humidity Measurement

    Directory of Open Access Journals (Sweden)

    Tarique Rafique Memon

    2016-05-01

    Full Text Available In this work, we have proposed a cost effective DAQ (Data Acquisition system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench. The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity. Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays

  1. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  2. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  3. Plant operation state monitoring system

    International Nuclear Information System (INIS)

    Sakai, Masanori; Babuchi, Katsumi; Arato, Toshiaki

    1994-01-01

    The system of the present invention accurately monitors a plant operation state of a plant, such as a nuclear power plant and a thermal power plant by using high temperature water, based on water quality informations. That is, water quality informations for the objective portion by using an electrochemical water quality sensor disposed in the objective portion to be monitored in the plant are continuously extracted for a predetermined period of time. Water quality is evaluated based on the extracted information. Obtained results for water quality evaluation and predetermined reference values of the plant operation handling are compared. Necessary part among the results of the measurement is displayed or recorded. The predetermined period of time described above is a period that the water quality information reaches at least a predetermined value or a period that the predetermined value is estimated by the water quality information, and it is defined as a period capable of measuring the information for three months continuously. The measurement is preferably conducted continuously in a period up to each periodical inspection on about every one year. (I.S.)

  4. Monitoring on internal temperature of composite insulator with embedding fiber Bragg grating for early diagnosis

    Science.gov (United States)

    Chen, Wen; Tang, Ming

    2017-04-01

    The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.

  5. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.

    Science.gov (United States)

    Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H

    2018-01-01

    Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.

  6. Environmental monitoring and information systems

    International Nuclear Information System (INIS)

    Gibbert, R.

    1998-01-01

    Environmental monitoring and information systems installed by Dornier are summarized. A broad spectrum of environmental areas from air quality and water to radioactivity is covered. Nuclear power plant monitoring systems, either as remote or plant-internal monitoring systems, form an important element of the work undertaken. The systems delivered covered local, regional or national areas. The range of services provided, and hardware and software platforms are listed. (R.P.)

  7. Design of aquaponics water monitoring system using Arduino microcontroller

    Science.gov (United States)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  8. Construction of a remote controlled monitoring system with GPIB devices and EPICS

    International Nuclear Information System (INIS)

    Yoshikawa, Takeshi; Yamamoto, Noboru.

    1995-01-01

    The Experimental Physics and Industrial Control System (EPICS) has been used for the accelerator control system in recent years. EPICS has rich set of tools to create application with Graphical User Interface (GUI). It reduces the load of complex programming for GUI and shortens the application development period. This paper will describe the remote temperature monitoring system using EPICS. (author)

  9. Data monitoring system of technical diagnosis system for EAST

    International Nuclear Information System (INIS)

    Qian Jing; Weng Peide; Chen Zhuomin; Wu Yu; Xi Weibin; Luo Jiarong

    2010-01-01

    Technical diagnosis system (TDS) is an important subsystem to monitor status parameters of EAST (experimental advanced superconducting tokamak). The upgraded TDS data monitoring system is comprised of management floor, monitoring floor and field floor.. Security protection, malfunction record and analysis are designed to make the system stable, robust and friendly. During the past EAST campaigns, the data monitoring system has been operated reliably and stably. The signal conditioning system and software architecture are described. (authors)

  10. Design of energy saving monitoring system on isothermal oilless lubricated air compressor

    Science.gov (United States)

    Ma, S. N.; Liu, Q.; Xu, B. L.; Liu, Y.; Hu, F.

    2017-10-01

    This design introduces a kind of STM32F051C8T6 circuit monitoring system which is based on the ARM core. According to the operating principle of air compressor, the reduction of temperature and current is converted to save electricity and directly displayed, save electricity information stored at the same time, to achieve real-time monitoring air compressor energy saving effect in the process of operation.

  11. The Monitor System for the LHCb on-line farm

    CERN Document Server

    Bonifazi, F; Carbone, A; Galli, D; Gregori, D; Marconi, U; Peco, G; Vagnoni, V

    2005-01-01

    The aim of the LHCb on-line farm Monitor System is to keep under control all the working indicators which are relevant for the farm operation, and to set the appropriate alarms whenever an error or a critical condition comes up. Since the most stressing tasks of the farm are the data transfer and processing, relevant indicators includes the CPU and the memory load of the system, the network interface and the TCP/IP stack parameters, the rates of the interrupts raised by the network interface card and the detailed status of the running processes. The monitoring of computers’ physical conditions (temperatures, fan speeds and motherboard voltages) are the subject of a separate technical note, since they are accessed in a different way, by using the IPMI protocol.

  12. The JOYO remote monitoring system

    International Nuclear Information System (INIS)

    Damico, Joseph P.; Hashimoto, Yu

    2000-01-01

    The evolution of the personal computer, operating systems and applications software and the Internet has brought drastic change and many benefits worldwide. Remote monitoring systems benefit from computer network and other modern software technologies. The availability of fast, inexpensive and secure communications enables new solutions for monitoring system applications. The JOYO Remote Monitoring System (RMS) utilizes computer network communications and modular software design to provide a distributed integrated solution for monitoring multiple storage locations. This paper describes the remote monitoring system installed at the JOYO Fast Reactor. The system combines sensors, software, and computer network technologies to create a powerful data collection, storage and dissemination capability. The RMS provides a flexible, scalable solution for a variety of applications. The RMS integrates a variety of state of the art technologies from several sources and serves as a test bed for cutting edge technologies that can be shared with outside users. This paper describes the system components and their operation and discusses system benefits. Current activities and future plants for the JOYO RMS will be discussed. (author)

  13. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  14. Unattended Monitoring System Design Methodology

    International Nuclear Information System (INIS)

    Drayer, D.D.; DeLand, S.M.; Harmon, C.D.; Matter, J.C.; Martinez, R.L.; Smith, J.D.

    1999-01-01

    A methodology for designing Unattended Monitoring Systems starting at a systems level has been developed at Sandia National Laboratories. This proven methodology provides a template that describes the process for selecting and applying appropriate technologies to meet unattended system requirements, as well as providing a framework for development of both training courses and workshops associated with unattended monitoring. The design and implementation of unattended monitoring systems is generally intended to respond to some form of policy based requirements resulting from international agreements or domestic regulations. Once the monitoring requirements are established, a review of the associated process and its related facilities enables identification of strategic monitoring locations and development of a conceptual system design. The detailed design effort results in the definition of detection components as well as the supporting communications network and data management scheme. The data analyses then enables a coherent display of the knowledge generated during the monitoring effort. The resultant knowledge is then compared to the original system objectives to ensure that the design adequately addresses the fundamental principles stated in the policy agreements. Implementation of this design methodology will ensure that comprehensive unattended monitoring system designs provide appropriate answers to those critical questions imposed by specific agreements or regulations. This paper describes the main features of the methodology and discusses how it can be applied in real world situations

  15. Integrated System of Structural Health Monitoring and Intelligent Management for a Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2014-01-01

    Full Text Available It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province. The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  16. Savannah River Plant remote environmental monitoring system

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1987-01-01

    The SRP remote environmental monitoring system consists of separations facilities stack monitors, production reactor stack monitors, twelve site perimeter monitors, river and stream monitors, a geostationary operational environmental satellite (GOES) data link, reactor cooling lake thermal monitors, meteorological tower system, Weather Information and Display (WIND) system computer, and the VANTAGE data base management system. The remote environmental monitoring system when fully implemented will provide automatic monitoring of key stack releases and automatic inclusion of these source terms in the emergency response codes

  17. Development of a majority vote decision module for a self-diagnostic monitoring system for an air-operated valve system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Shin [Dept. of Information and Communication Engineering, Sejong University, Seoul (Korea, Republic of); Chai, Jang Bom [Dept. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of); Kim, In Taek [Dept. of Information and Communication Engineering, Myongji University, Yongin (Korea, Republic of)

    2015-08-15

    A self-diagnostic monitoring system is a system that has the ability to measure various physical quantities such as temperature, pressure, or acceleration from sensors scattered over a mechanical system such as a power plant, in order to monitor its various states, and to make a decision about its health status. We have developed a self-diagnostic monitoring system for an air-operated valve system to be used in a nuclear power plant. In this study, we have tried to improve the self-diagnostic monitoring system to increase its reliability. We have implemented three different machine learning algorithms, i.e., logistic regression, an artificial neural network, and a support vector machine. After each algorithm performs the decision process independently, the decision-making module collects these individual decisions and makes a final decision using a majority vote scheme. With this, we performed some simulations and presented some of its results. The contribution of this study is that, by employing more robust and stable algorithms, each of the algorithms performs the recognition task more accurately. Moreover, by integrating these results and employing the majority vote scheme, we can make a definite decision, which makes the self-diagnostic monitoring system more reliable.

  18. Development of a majority vote decision module for a self-diagnostic monitoring system for an air-operated valve system

    International Nuclear Information System (INIS)

    Kim, Woo Shin; Chai, Jang Bom; Kim, In Taek

    2015-01-01

    A self-diagnostic monitoring system is a system that has the ability to measure various physical quantities such as temperature, pressure, or acceleration from sensors scattered over a mechanical system such as a power plant, in order to monitor its various states, and to make a decision about its health status. We have developed a self-diagnostic monitoring system for an air-operated valve system to be used in a nuclear power plant. In this study, we have tried to improve the self-diagnostic monitoring system to increase its reliability. We have implemented three different machine learning algorithms, i.e., logistic regression, an artificial neural network, and a support vector machine. After each algorithm performs the decision process independently, the decision-making module collects these individual decisions and makes a final decision using a majority vote scheme. With this, we performed some simulations and presented some of its results. The contribution of this study is that, by employing more robust and stable algorithms, each of the algorithms performs the recognition task more accurately. Moreover, by integrating these results and employing the majority vote scheme, we can make a definite decision, which makes the self-diagnostic monitoring system more reliable

  19. Comprehensive long distance and real-time pipeline monitoring system based on fiber optic sensing

    Energy Technology Data Exchange (ETDEWEB)

    Nikles, Marc; Ravet, Fabien; Briffod, Fabien [Omnisens S.A., Morges (Switzerland)

    2009-07-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions. These pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. (author)

  20. Arduino Based Infant Monitoring System

    Science.gov (United States)

    Farhanah Mohamad Ishak, Daing Noor; Jamil, Muhammad Mahadi Abdul; Ambar, Radzi

    2017-08-01

    This paper proposes a system for monitoring infant in an incubator and records the relevant data into a computer. The data recorded by the system can be further referred by the neonatal intensive care unit (NICU) personnel for diagnostic or research purposes. The study focuses on designing the monitoring system that consists of an incubator equipped with humidity sensor to measure the humidity level, and a pulse sensor that can be attached on an infant placed inside the incubator to monitor infant’s heart pulse. The measurement results which are the pulse rate and humidity level are sent to the PC via Arduino microcontroller. The advantage of this system will be that in the future, it may also enable doctors to closely monitor the infant condition through local area network and internet. This work is aimed as an example of an application that contributes towards remote tele-health monitoring system.

  1. Remote Monitoring of Soil Water Content, Temperature, and Heat Flow Using Low-Cost Cellular (3G) IoT Technology

    Science.gov (United States)

    Ham, J. M.

    2016-12-01

    New microprocessor boards, open-source sensors, and cloud infrastructure developed for the Internet of Things (IoT) can be used to create low-cost monitoring systems for environmental research. This project describes two applications in soil science and hydrology: 1) remote monitoring of the soil temperature regime near oil and gas operations to detect the thermal signature associated with the natural source zone degradation of hydrocarbon contaminants in the vadose zone, and 2) remote monitoring of soil water content near the surface as part of a global citizen science network. In both cases, prototype data collection systems were built around the cellular (2G/3G) "Electron" microcontroller (www.particle.io). This device allows connectivity to the cloud using a low-cost global SIM and data plan. The systems have cellular connectivity in over 100 countries and data can be logged to the cloud for storage. Users can view data real time over any internet connection or via their smart phone. For both projects, data logging, storage, and visualization was done using IoT services like Thingspeak (thingspeak.com). The soil thermal monitoring system was tested on experimental plots in Colorado USA to evaluate the accuracy and reliability of different temperature sensors and 3D printed housings. The soil water experiment included comparison opens-source capacitance-based sensors to commercial versions. Results demonstrate the power of leveraging IoT technology for field research.

  2. Affordable Remote Health Monitoring System for the Elderly Using Smart Mobile Device

    Directory of Open Access Journals (Sweden)

    Matthew CLARK

    2015-01-01

    Full Text Available Aging population has been growing as life expectancy increases. In the years to come a much larger percentage of the population will be dependent on others for their daily care. According to a recent report more than 11 million seniors live alone in the USA. These seniors may face serious consequences when they have an emergency situation. However health-monitoring systems are often not affordable for many seniors. The remote health monitoring system presented in this paper addresses the challenge to provide caregivers an emergency alert system for the elderly based on monitoring of their heart rates, breathing activities, and room temperature measurements. The device also allows the dependents to make on demand request for assistance. The remote communication is enabled through the cellular telephone services; so there is no special or additional subscription services needed. This is essential to make the device more affordable for the elderly. We expect that this affordable remote health-monitoring system can be used to help seniors who live alone be safer and healthier.

  3. Software for marine ecological environment comprehensive monitoring system based on MCGS

    Science.gov (United States)

    Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.

    2017-08-01

    The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.

  4. Monitoring and Control of an Adsorption System Using Electrical Properties of the Adsorbent for Organic Compound Abatement.

    Science.gov (United States)

    Hu, Ming-Ming; Emamipour, Hamidreza; Johnsen, David L; Rood, Mark J; Song, Linhua; Zhang, Zailong

    2017-07-05

    Adsorption systems typically need gas and temperature sensors to monitor their adsorption/regeneration cycles to separate gases from gas streams. Activated carbon fiber cloth (ACFC)-electrothermal swing adsorption (ESA) is an adsorption system that has the potential to be controlled with the electrical properties of the adsorbent and is studied here to monitor and control the adsorption/regeneration cycles without the use of gas and temperature sensors and to predict breakthrough before it occurs. The ACFC's electrical resistance was characterized on the basis of the amount of adsorbed organic gas/vapor and the adsorbent temperature. These relationships were then used to develop control logic to monitor and control ESA cycles on the basis of measured resistance and applied power values. Continuous sets of adsorption and regeneration cycles were performed sequentially entirely on the basis of remote electrical measurements and achieved ≥95% capture efficiency at inlet concentrations of 2000 and 4000 ppm v for isobutane, acetone, and toluene in dry and elevated relative humidity gas streams, demonstrating a novel cyclic ESA system that does not require gas or temperature sensors. This contribution is important because it reduces the cost and simplifies the system, predicts breakthrough before its occurrence, and reduces emissions to the atmosphere.

  5. Enhanced FBG sensor-based system performance assessment for monitoring strain along a prestressed CFRP rod in structural monitoring

    DEFF Research Database (Denmark)

    Kerrouche, A.; Boyle, W.J.O.; Sun, T.

    2009-01-01

    of the existing FBG-based system and the evaluation of the software developed to be compatible with a resolution reaching as high as +/- 0.15 mu epsilon is presented. The system has been tested under particular conditions where a prestressed CFRP (carbon fiber reinforced polymer) rod to which a FBG sensor......Fiber Bragg grating (FBG) sensor-based systems have been widely used for many engineering applications including most recently a number of applications in structural health monitoring. It is well known that strain and temperature both affect the FBG spectrum which in the interrogation system...

  6. Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare

    Science.gov (United States)

    Hariz, Alex; Mehmood, Nasir; Voelcker, Nico

    2015-12-01

    Chronic wounds, such as venous leg ulcers, can be monitored non-invasively by using modern sensing devices and wireless technologies. The development of such wireless diagnostic tools may improve chronic wound management by providing evidence on efficacy of treatments being provided. In this paper we present a low-power portable telemetric system for wound condition sensing and monitoring. The system aims at measuring and transmitting real-time information of wound-site temperature, sub-bandage pressure and moisture level from within the wound dressing. The system comprises commercially available non-invasive temperature, moisture, and pressure sensors, which are interfaced with a telemetry device on a flexible 0.15 mm thick printed circuit material, making up a lightweight biocompatible sensing device. The real-time data obtained is transmitted wirelessly to a portable receiver which displays the measured values. The performance of the whole telemetric sensing system is validated on a mannequin leg using commercial compression bandages and dressings. A number of trials on a healthy human volunteer are performed where treatment conditions were emulated using various compression bandage configurations. A reliable and repeatable performance of the system is achieved under compression bandage and with minimal discomfort to the volunteer. The system is capable of reporting instantaneous changes in bandage pressure, moisture level and local temperature at wound site with average measurement resolutions of 0.5 mmHg, 3.0 %RH, and 0.2 °C respectively. Effective range of data transmission is 4-5 m in an open environment.

  7. On-line monitoring system development for single-phase flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, Na Young; Lee, Seung Gi; Ryu, Kyung Ha; Hwang, Il Soon

    2007-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover a wide area in an on-line application. We suggest an integrated approach to monitor the flow accelerated corrosion (FAC) susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible and that cover wide area, since we do not know where the FAC occurs. For this purpose, we introduce the wearing rate model which focuses on the electrochemical parameters. Using this model, we can predict the wearing rate and then compare testing results. Through analysis we identified feasibility and then developed electrochemical sensors for high temperature application; we also introduced a mechanical monitoring system which is still under development. To support the validation of the monitored results, we adopted high temperature ultrasonic transducer (UT), which shows good resolution in the testing environment. As such, all the monitored results can be compared in terms of thickness. Our validation tests demonstrated the feasibility of sensors. To support direct thickness measurement for a wide-area, the direct current potential drop (DCPD) method will be researched to integrate into the developed framework

  8. System health monitoring

    International Nuclear Information System (INIS)

    Reneke, J.A.; Fryer, M.O.

    1995-01-01

    Well designed large systems include many instrument taking data. These data are used in a variety of ways. They are used to control the system and its components, to monitor system and component health, and often for historical or financial purposes. This paper discusses a new method of using data from low level instrumentation to monitor system and component health. The method uses the covariance of instrument outputs to calculate a measure of system change. The method involves no complicated modeling since it is not a parameter estimation algorithm. The method is iterative and can be implemented on a computer in real time. Examples are presented for a metal lathe and a high efficiency particulate air (HEPA) filter. It is shown that the proposed method is quite sensitive to system changes such as wear out and failure. The method is useful for low level system diagnostics and fault detection

  9. Online Chip Temperature Monitoring Using υce-Load Current and IR Thermography

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; Trintis, Ionut

    2015-01-01

    This paper presents on-state collector-emitter voltage (υce, on)-load current (Ic) method to monitor chip temperature on power insulated gate bipolar transistor (IGBT) modules in converter operation. The measurement method is also evaluated using infrared (IR) thermography. Temperature dependencies...

  10. Design of project management system for 10 MW high temperature gas-cooled test reactor

    International Nuclear Information System (INIS)

    Zhu Yan; Xu Yuanhui

    1998-01-01

    A framework of project management information system (MIS) for 10 MW high temperature gas-cooled test reactor is introduced. Based on it, the design of nuclear project management information system and project monitoring system (PMS) are given. Additionally, a new method of developing MIS and Decision Support System (DSS) has been tried

  11. Data Acquisition for Low-Temperature Geothermal Well Tests and Long-Term Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1992-03-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  12. Data acquisition for low-temperature geothermal well tests and long-term monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  13. Integrated Monitoring System of Production Processes

    Directory of Open Access Journals (Sweden)

    Oborski Przemysław

    2016-12-01

    Full Text Available Integrated monitoring system for discrete manufacturing processes is presented in the paper. The multilayer hardware and software reference model was developed. Original research are an answer for industry needs of the integration of information flow in production process. Reference model corresponds with proposed data model based on multilayer data tree allowing to describe orders, products, processes and save monitoring data. Elaborated models were implemented in the integrated monitoring system demonstrator developed in the project. It was built on the base of multiagent technology to assure high flexibility and openness on applying intelligent algorithms for data processing. Currently on the base of achieved experience an application integrated monitoring system for real production system is developed. In the article the main problems of monitoring integration are presented, including specificity of discrete production, data processing and future application of Cyber-Physical-Systems. Development of manufacturing systems is based more and more on taking an advantage of applying intelligent solutions into machine and production process control and monitoring. Connection of technical systems, machine tools and manufacturing processes monitoring with advanced information processing seems to be one of the most important areas of near future development. It will play important role in efficient operation and competitiveness of the whole production system. It is also important area of applying in the future Cyber-Physical-Systems that can radically improve functionally of monitoring systems and reduce the cost of its implementation.

  14. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  15. Maintenance of radiation monitoring systems

    International Nuclear Information System (INIS)

    Aoyama, Kei

    2001-01-01

    As the safety and quality of atomic power facilities are more strongly required, the reliability improvement and preventive maintenance of radiation monitoring systems are important. This paper describes the maintenance of radiation monitoring systems delivered by Fuji Electric and the present status of preventive maintenance technology. Also it introduces the case that we developed a fault diagnosis function adopting a statistics technique and artificial intelligence (AI) and delivered a radiation monitoring system including this function. This system can output a fault analysis result and a countermeasure from the computer in real time. (author)

  16. Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring

    Directory of Open Access Journals (Sweden)

    Romain Coulon

    2017-10-01

    Full Text Available The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and reliable information are required. High-pressure xenon (HPXe chambers have range of resolution and efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl, CdZnTe, and LaBr3:Ce. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environmental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe detector was performed to minimize the detector capacitance and the required power supply. Simulations were done with the MCNPX2.7 particle transport code to estimate the intrinsic efficiency of the HPXe detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide perspective for further analysis.

  17. Monitoring of the temperature reactivity coefficient at the PWR nuclear plant

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1996-01-01

    For monitoring temperature coefficient of reactivity of pressurized water reactor a method based on the correction of fluctuation in signals of i-core neutron detectors and core-exit thermocouples and neural network paradigm is used it is shown that the moderator temperature coefficient of relativity can be predicted with the aid of the back propagation neural network technique by measuring the frequency response function between the in-core neutron flux and the core-exit coolant temperature

  18. Configuration of Risk Monitor System by PLant Defense-In.Depth Monitor and Relability Monitor

    DEFF Research Database (Denmark)

    Yoshikawa, Hidekazu; Lind, Morten; Yang, Ming

    2012-01-01

    A new method of risk monitor system of a nuclear power plant has been proposed from the aspect by what degree of safety functions incorporated in the plant system is maintained by multiple barriers of defense-in-depth (DiD). Wherein, the central idea is plant DiD risk monitor and reliability...... monitor derived from the four aspects of (i) design principle of nuclear safety to realize DiD concept, (ii) definition of risk and risk to be monitored, (iii) severe accident phenomena as major risk, (iv) scheme of risk ranking, and (v) dynamic risk display. In this paper, the overall frame...... of the proposed frame on risk monitor system is summarized and the detailed discussion is made on the definitions of major terminologies of risk, risk ranking, anatomy of fault occurrence, two-layer configuration of risk monitor, how to configure individual elements of plant DiD risk monitor and its example...

  19. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  20. Configuration of risk monitor system by plant defense-in-depth risk monitor and reliability monitor

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Lind Morten; Yang Ming; Hashim Muhammad; Zhang Zhijian

    2012-01-01

    A new method of risk monitor system of a nuclear power plant has been proposed from the aspect by what degree of safety functions incorporated in the plant system is maintained by multiple barriers of defense-in-depth (DiD). Wherein, the central idea is plant DiD risk monitor and reliability monitor derived from the five aspects of (1) design principle of nuclear safety based on DiD concept, (2) definition of risk and risk to be monitored, (3) severe accident phenomena as major risk, (4) scheme of risk ranking, and (5) dynamic risk display. In this paper, the overall frame of the proposed risk monitor system is summarized and the detailed discussion is made on major items such as definition of risk and risk ranking, anatomy of fault occurrence, two-layer configuration of risk monitor, how to configure individual elements of plant DiD risk monitor, and lastly how to apply for a PWR safety system. (author)

  1. Design and realization of high voltage disconnector condition monitoring system

    Science.gov (United States)

    Shi, Jinrui; Xu, Tianyang; Yang, Shuixian; Li, Buoyang

    2017-08-01

    The operation status of the high voltage disconnector directly affects the safe and stable operation of the power system. This article uses the wireless frequency hopping communication technology of the communication module to achieve the temperature acquisition of the switch contacts and high voltage bus, to introduce the current value of the loop in ECS, and judge the operation status of the disconnector by considering the ambient temperature, calculating the temperature rise; And through the acquisition of the current of drive motor in the process of switch closing and opening, and fault diagnosis of the disconnector by analyzing the change rule of the drive motor current, the condition monitoring of the high voltage disconnector is realized.

  2. The Danish Marine Monitoring System

    DEFF Research Database (Denmark)

    Ærtebjerg, G.

    1997-01-01

    Indeholder abstracts fra Workshop on Marine Monitoring Systems and Technology, Risø, 17-18 April 1996.......Indeholder abstracts fra Workshop on Marine Monitoring Systems and Technology, Risø, 17-18 April 1996....

  3. Development of instrumentation systems for severe accidents. 4. New accident tolerant in-containment pressure transducer for containment pressure monitoring system

    International Nuclear Information System (INIS)

    Oba, Masato; Teruya, Kuniyuki; Yoshitsugu, Makoto; Ikeuchi, Takeshi

    2015-01-01

    The accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (TF-1 accident) caused severe situations and resulted in a difficulty in measuring important parameters for monitoring plant conditions. Therefore, we have studied the TF-1 accident to select the important parameters that should be monitored at the severe accident and are developing the Severe Accident Instrumentations and Monitoring Systems that could measure the parameters in severe accident conditions. Mitsubishi Heavy Industries, LTD (MHI) developed a new accident tolerant containment pressure monitoring system and demonstrated that the monitoring system could endure extremely harsh environmental conditions that envelop severe accident environmental conditions inside a containment such as maximum operating temperature of up to 300degC and total integrated dose (TID) of 1 MGy gamma. The new containment pressure monitoring system comprises of a strain gage type pressure transducer and a mineral insulated (MI) cable with ceramic connectors, which are located in the containment, and a strain measuring amplifier located outside the containment. Less thermal and radiation degradation is achieved because of minimizing use of organic materials for in-containment equipment such as the transducer and connectors. Several tests were performed to demonstrate the performance and capability of the in-containment equipment under severe accident environmental conditions and the major steps in this testing were run in the following test sequences: (1) the baseline functional tests (e.g., repeatability, non-linearity, hysteresis, and so on) under normal conditions, (2) accident radiation testing, (3) seismic testing, and (4) steam/temperature test exposed to simulated severe accident environmental conditions. The test results demonstrate that the new pressure transducer can endure the simulated severe accident conditions. (author)

  4. Acoustic system for pipe rupture monitoring and leak detection

    International Nuclear Information System (INIS)

    Herzog, W.; Jonas, H.

    1982-06-01

    As a safety aspect pipe rupture and leakage effects are of particular interest in nuclear power plants where severe consequences for the reactor may result. Counter measures against postulated pipe breaks and leakages in nuclear power plants are necessary whenever the main safety goals: safe shut-down, safe afterheat removal and retention of radioactivity, are endangered. The requirements to be met by a leak detection system depend on the time available for counter actions. If this time is short so that automatic actions are necessary the German safety criteria for nuclear power plants (Criterion 6.1) require two physically diverse signals to be monitored. One fairly obvious possibility of leak detection is to monitor process parameters (pressure, flow). As a diverse signal physical parameters outside the process may be employed: pressure transients temperature, humidity are principally suitable. In practical application, however, it is difficult to predict these parameters by way of calculation in order to establish the required set-point of the monitoring system. Experimental determination is possible only in special cases. A study of several ways of diverse leak detection methods leads to the very promising acoustic method. We investigated experimentally the feasibility of monitoring the sound created by a leakage. Air borne sound as well as body borne sound was analyzed

  5. Feasibility analysis of marine ecological on-line integrated monitoring system

    Science.gov (United States)

    Chu, D. Z.; Cao, X.; Zhang, S. W.; Wu, N.; Ma, R.; Zhang, L.; Cao, L.

    2017-08-01

    The in-situ water quality sensors were susceptible to biological attachment. Moreover, sea water corrosion and wave impact damage, and many sensors scattered distribution would cause maintenance inconvenience. The paper proposed a highly integrated marine ecological on-line integrated monitoring system, which can be used inside monitoring station. All sensors were reasonably classified, the similar in series, the overall in parallel. The system composition and workflow were described. In addition, the paper proposed attention issues of the system design and corresponding solutions. Water quality multi-parameters and 5 nutrient salts as the verification index, in-situ and systematic data comparison experiment were carried out. The results showed that the data consistency of nutrient salt, PH and salinity was better. Temperature and dissolved oxygen data trend was consistent, but the data had deviation. Turbidity fluctuated greatly; the chlorophyll trend was similar with it. Aiming at the above phenomena, three points system optimization direction were proposed.

  6. Tank Monitor and Control System sensor acceptance test procedure. Revision 6

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    The purpose of this Acceptance Test Procedure (ATP) is to verify the correct reading of sensor elements connected to the Tank Monitor and Control System (TMACS). The system functional requirements are contained in WHC-SD-WM-RD-013, Rev. 1 (WHC 1992a). This ATP is intended to be used for testing of the connection of existing temperature sensors, new temperature sensors, pressure sensing equipment, new Enraf level gauges, sensors that generate a current output, and discrete (on/off) inputs. The TMACS operation was verified by the original ATP (WHC 1991 c). It is intended that this ATP will be used each time sensors are added to the system. As a result, the data sheets have been designed to be generic

  7. Computer-controlled radiation monitoring system

    International Nuclear Information System (INIS)

    Homann, S.G.

    1994-01-01

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory's Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable

  8. Corrosion Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Russ Braunling

    2004-10-31

    The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

  9. The use of thermal imaging to monitoring skin temperature during cryotherapy: A systematic review

    Science.gov (United States)

    Matos, Filipe; Neves, Eduardo Borba; Norte, Marco; Rosa, Claudio; Reis, Victor Machado; Vilaça-Alves, José

    2015-11-01

    Cryotherapy has been applied on clinical injuries and as a method for exercise recovery. It is aimed to reduce edema, nervous conduction velocity, and tissue metabolism, as well as to accelerate the recovery process of the muscle injury induced by exercise. Objective: This review aim to investigate the applicability of thermal imaging as a method for monitoring skin temperature during cryotherapy. Method: Search the Web of Science database using the terms "Cryotherapy", "Thermography", "Thermal Image" and "Cooling". Results: Nineteen studies met the inclusion criteria and pass the PEDro scale quality evaluation. Evidence support the use of thermal imaging as a method for monitoring the skin temperature during cryotherapy, and it is superior to other contact methods and subjective methods of assessing skin temperature. Conclusion: Thermography seems to be an efficient, trustworthy and secure method in order to monitoring skin temperature during cryotherapy application. Evidence supports the use of thermography in detriment of contact methods as well as other subjective ones.

  10. Temperature monitoring with FBG sensor during diffuser-assisted laser-induced interstitial thermotherapy (Conference Presentation)

    Science.gov (United States)

    Pham, Ngot T.; Lee, Seul Lee; Lee, Yong Wook; Kang, Hyun Wook

    2017-02-01

    Temperature variations are often monitored by using sensors operating at the site of treatment during Laser-induced Interstitial Thermotherapy (LITT). Currently, temperature measurements during LITT have been performed with thermocouples (TCs). However, TCs could directly absorb laser light and lead to self-heating (resulting in an over-estimation). Fiber Bragg grating (FBG) sensors can instead overcome this limitation of the TCs due to its insensitivity to electromagnetic interference. The aim of the current study was to quantitatively evaluate the FBG temperature sensor with a K-type thermocouple to real-time monitor temperature increase in ex vivo tissue during diffuser-assisted LITT. A 4-W 980-nm laser was employed to deliver optical energy in continuous mode through a 600-µm core-diameter diffusing applicator. A goniometric measurement validated the uniform light distribution in polar and longitudinal directions. The FBG sensor showed a linear relationship (R2 = 0.995) between wavelength shift and temperature change in air and tissue along with a sensitivity of 0.0114 nm/˚C. Regardless of sensor type, the measured temperature increased with irradiation time and applied power but decreased with increasing distance from the diffuser surface. The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT (4.0±0.3-mm at 99˚C after 120-s). The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT s irradiation). The FBG-integrated diffuser was able to monitor the interstitial temperature in tubular tissue (porcine urethra) real-time during laser treatment. However, the thermal coagulation thickness of the porcine urethra was measured to be 1.5 mm that was slightly thicker ( 20%) than that of the bovine liver after 4-W 980-nm laser for 48 s. The FBG temperature sensor can be a feasible tool to real-time monitor the temporal development of the temperature during the diffuser-assisted LITT to

  11. Inverse method for temperature and stress monitoring in complex-shaped bodies

    International Nuclear Information System (INIS)

    Duda, Piotr; Taler, Jan E- mail: aler@ss5.mech.pk.edu.pl; Roos, Eberhard

    2004-01-01

    The purpose of this work is to formulate a space marching method, which an be used to solve inverse multidimensional heat conduction problems. The method is designed to reconstruct the transient temperature distribution in a hole construction element based on measured temperatures taken at selected points on the outer surface of the construction element. Next, the Finite element Method is used to calculate thermal stresses and stresses caused by other loads such as, for instance, internal pressure. The developed method or solving temperature and total stress distribution is tested using the measured temperatures generated from a direct solution. Transient temperature nd total stress distributions obtained from the method presented below are compared with the values obtained from the direct solution. Finally, the resented method is experimentally verified during the cooling of a hick-walled cylindrical element. The model of a pressure vessel was reheated at 300 deg.C and then cooled by cold water injection. The comparison of results obtained from the inverse method with experimental data hows the high accuracy of the developed method. The presented method allows o optimize the power block's start-up and shut-down operations, contributes o the reduction of heat loss during these operations and to the extension of power block's life. The fatigue and creep usage factor can be computed in an n-line mode. The presented method herein can be applied to monitoring systems that work in conventional as well as in nuclear power plants

  12. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  13. Detector and front-end electronics of a fissile mass flow monitoring system

    International Nuclear Information System (INIS)

    Paulus, M.J.; Uckan, T.; Lenarduzzi, R.; Mullens, J.A.; Castleberry, K.N.; McMillan, D.E.; Mihalczo, J.T.

    1997-01-01

    A detector and front-end electronics unit with secure data transmission has been designed and implemented for a fissile mass flow monitoring system for fissile mass flow of gases and liquids in a pipe. The unit consists of 4 bismuth germanate (BGO) scintillation detectors, pulse-shaping and counting electronics, local temperature sensors, and on-board local area network nodes which locally acquire data and report to the master computer via a secure network link. The signal gain of the pulse-shaping circuitry and energy windows of the pulse-counting circuitry are periodicially self calibrated and self adjusted in situ using a characteristic line in the fissile material pulse height spectrum as a reference point to compensate for drift such as in the detector gain due to PM tube aging. The temperature- dependent signal amplitude variations due to the intrinsic temperature coefficients of the PM tube gain and BGO scintillation efficiency have been characterized and real-time gain corrections introduced. The detector and electronics design, measured intrinsic performance of the detectors and electronics, and the performance of the detector and electronics within the fissile mass flow monitoring system are described

  14. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Directory of Open Access Journals (Sweden)

    You-Liang Ding

    2015-01-01

    Full Text Available Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge’s abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  15. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Science.gov (United States)

    Wu, Lai-Yi

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  16. Autonomous Monitoring Aerial Robot System for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji H.; Gu, Beom W; Thai, Van X.; Rim, C. T. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, autonomous monitoring aerial robot system (AMARS), which includes omnidirectional wireless charging platform, aerial robot, landing coils and a battery management board, is proposed to guarantee automatic monitoring of NPPs. The prototype of the system is fabricated, and omnidirectional charging of the system is experimentally validated with 1 C charging state. AR(Aerial Robots)s are essential for NPP accident management because human cannot access to the accident site due to the risks of unexpected explosions, collapses, and high level of radioactive contaminants. Moreover, ARs can support operators to manage normal operation of NPPs built in harsh environment of high temperature and humidity such as UAE Barakah NPP. Because these ARs usually have very low energy capacity, however, the operation time of ARs is less than 30 minutes and should be recharged regularly by human powers, which makes it impossible to monitor NPPs by ARs automatically. In this paper, the concept of AMARS has been proposed and its performance was successfully verified with a fabricated prototype. The charging state of the on board battery in AR was measured as 0.5 C with the induced voltage of 18.6 V, which is well matched to the designed induced voltage when the AR was placed on the edge of the wireless charging platform.

  17. Design of Deformation Monitoring System for Volcano Mitigation

    Science.gov (United States)

    Islamy, M. R. F.; Salam, R. A.; Munir, M. M.; Irsyam, M.; Khairurrijal

    2016-08-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment.

  18. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  19. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.

    Science.gov (United States)

    Sebok, Eva; Engesgaard, Peter; Duque, Carlos

    2017-08-24

    This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.

  20. Monitoring of Danish marketed solar heating systems

    International Nuclear Information System (INIS)

    Ellehauge, K.

    1993-01-01

    The paper describes the monitoring of manufactured solar heating systems for domestic hot water combined with space heating and systems for domestic hot water only. Results from the monitoring of 5 marketed combined systems for domestic hot water and space heating are presented. The systems situated at one family houses at different sites in Denmark have been monitored from January/February 1992. For the detailed monitoring of manufactured systems only for domestic hot water a test facility for simultaneous monitoring of 5 solar heating systems has been established at the Thermal Insulation Laboratory. (au)

  1. Analysis of post-tensioned girders structural behaviour using continuous temperature and strain monitoring

    Science.gov (United States)

    Bednarski, Ł.; Sieńko, R.; Howiacki, T.

    2017-10-01

    This article presents the possibility of using structural health monitoring system data for the analysis of structure’s operation during its life cycle. Within the specific case study it was proved, that continuous, automatic and long term monitoring of selected physical quantities such as strains and temperatures, can significantly improve the assessment of technical condition by identifying hazardous phenomena. In this work the analysis of structural behaviour of post-tensioned girders within the roofing of sport halls in Cracow, Poland, was performed based on measurement results and verified by numerical model carried out in SOFiSTiK software. Thanks to the possibility of performing calculations in real time and informing the manager of the object about abnormalities it is possible to manage the structure in effective way by, inter alia, planning the renovations or supporting decisions about snow removal.

  2. Radiation monitor system for nuclear power plants

    International Nuclear Information System (INIS)

    Wu Bingzhe; Guo Shusheng

    1990-12-01

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called t hree-level alarms . Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133 Xe monitor, 131 I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  3. Design of a wearable bio-patch for monitoring patient's temperature.

    Science.gov (United States)

    Vicente, Jose M; Avila-Navarro, Ernesto; Juan, Carlos G; Garcia, Nicolas; Sabater-Navarro, Jose M

    2016-08-01

    New communication technologies allow us developing useful and more practical medical applications, in particular for ambulatory monitoring. NFC communication has the advantages of low powering and low influence range area, what makes this technology suitable for health applications. This work presents an explanation of the design process of planar NFC antennas in a wearable biopatch. The problem of optimizing the communication distance is addressed. Design of a biopatch for continuous temperature monitoring and experimental results obtained wearing this biopatch during daily activities are presented.

  4. Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring

    OpenAIRE

    Fei Fei; Shengli Zhou; John D. Mai; Wen Jung Li

    2014-01-01

    Wireless sensor networks (WSNs) have been widely used for intelligent building management applications. Typically, indoor environment parameters such as illumination, temperature, humidity and air quality are monitored and adjusted by an intelligent building management system. However, owing to the short life-span of the batteries used at the sensor nodes, the maintenance of such systems has been labor-intensive and time-consuming. This paper discusses a battery-less self-powering system that...

  5. [Personal computer-based computer monitoring system of the anesthesiologist (2-year experience in development and use)].

    Science.gov (United States)

    Buniatian, A A; Sablin, I N; Flerov, E V; Mierbekov, E M; Broĭtman, O G; Shevchenko, V V; Shitikov, I I

    1995-01-01

    Creation of computer monitoring systems (CMS) for operating rooms is one of the most important spheres of personal computer employment in anesthesiology. The authors developed a PC RS/AT-based CMS and effectively used it for more than 2 years. This system permits comprehensive monitoring in cardiosurgical operations by real time processing the values of arterial and central venous pressure, pressure in the pulmonary artery, bioelectrical activity of the brain, and two temperature values. Use of this CMS helped appreciably improve patients' safety during surgery. The possibility to assess brain function by computer monitoring the EEF simultaneously with central hemodynamics and body temperature permit the anesthesiologist to objectively assess the depth of anesthesia and to diagnose cerebral hypoxia. Automated anesthesiological chart issued by the CMS after surgery reliably reflects the patient's status and the measures taken by the anesthesiologist.

  6. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures

    Science.gov (United States)

    Zachary A. Holden; Anna E. Klene; Robert F. Keefe; Gretchen G. Moisen

    2013-01-01

    Inexpensive temperature sensors are widely used in agricultural and forestry research. This paper describes a low-cost (~3 USD) radiation shield (radshield) designed for monitoring surface air temperatures in harsh outdoor environments. We compared the performance of the radshield paired with low-cost temperature sensors at three sites in western Montana to several...

  7. Monitoring system and methods for a distributed and recoverable digital control system

    Science.gov (United States)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A monitoring system and methods are provided for a distributed and recoverable digital control system. The monitoring system generally comprises two independent monitoring planes within the control system. The first monitoring plane is internal to the computing units in the control system, and the second monitoring plane is external to the computing units. The internal first monitoring plane includes two in-line monitors. The first internal monitor is a self-checking, lock-step-processing monitor with integrated rapid recovery capability. The second internal monitor includes one or more reasonableness monitors, which compare actual effector position with commanded effector position. The external second monitor plane includes two monitors. The first external monitor includes a pre-recovery computing monitor, and the second external monitor includes a post recovery computing monitor. Various methods for implementing the monitoring functions are also disclosed.

  8. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  9. A Grid job monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Dumitrescu, Catalin [Fermi National Accelerator Laboratory (United States); Nowack, Andreas [RWTH Aachen (Germany); Padhi, Sanjay [University of California San Diego (United States); Sarkar, Subir, E-mail: subir.sarkar@cern.c [INFN, Sezione di Pisa and Scuola Normale Superiore, Pisa (Italy)

    2010-04-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components : (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  10. A grid job monitoring system

    International Nuclear Information System (INIS)

    Dumitrescu, Catalin; Nowack, Andreas; Padhi, Sanjay; Sarkar, Subir

    2010-01-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components: (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  11. The CUORE slow monitoring systems

    Science.gov (United States)

    Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.

    2017-09-01

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.

  12. Computer systems and software description for Standard-E+ Hydrogen Monitoring System (SHMS-E+)

    International Nuclear Information System (INIS)

    Tate, D.D.

    1997-01-01

    The primary function of the Standard-E+ Hydrogen Monitoring System (SHMS-E+) is to determine tank vapor space gas composition and gas release rate, and to detect gas release events. Characterization of the gas composition is needed for safety analyses. The lower flammability limit, as well as the peak burn temperature and pressure, are dependent upon the gas composition. If there is little or no knowledge about the gas composition, safety analyses utilize compositions that yield the worst case in a deflagration or detonation. Knowledge of the true composition could lead to reductions in the assumptions and therefore there may be a potential for a reduction in controls and work restrictions. Also, knowledge of the actual composition will be required information for the analysis that is needed to remove tanks from the Watch List. Similarly, the rate of generation and release of gases is required information for performing safety analyses, developing controls, designing equipment, and closing safety issues. This report outlines the computer system design layout description for the Standard-E+ Hydrogen Monitoring System

  13. An intelligent fetal monitoring system

    International Nuclear Information System (INIS)

    Inaba, J.; Akatsuka, T.; Kubo, T.; Iwasaki, H.

    1986-01-01

    An intelligent monitoring system is constructed by a multi-micro-computer system. The monitoring signals are fetal heart rate (FHR) and uterine contraction (UC) through the conventional monitoring device for a day until the delivery. These signals are fed to a micro-computer in digital format, and evaluated by the computer in real time according to the diagnostic algorithm of the expert physician. Monitoring signals are always displayed on the CRT screen and in the case of dangerous state of the fetus, warning signal will appear on the screen and the doctor or nurse will be called. All these signals are sent to the next micro-computer with 10MB hard disk system. On this computer, the doctor and nurse can retrieve and inspect the details of the process by clock-key and/or events-key. After finishing monitoring process, summarized report is constructed and printed out on the paper

  14. Design of a monitoring system for the cultivation of garden tomato in greenhouse

    Directory of Open Access Journals (Sweden)

    Diana Elizabeth Minda Gilces

    2017-09-01

    Full Text Available This paper briefly discusses the design and implementation of a prototype that monitors temperature, humidity and ultraviolet solar radiation levels in a greenhouse set for the cultivation of garden tomato. The Scrum agile methodology was applied through the deployment of the prototype. The monitoring system is composed by low cost, commercially available sensors, a database and a computer program developed in JAVA. It provides charts, audible and visual alerts, as well as daily, monthly and yearly statistical reports of sensed data. Implementation in the greenhouse aids farmers in the decision- making process regarding crop exposure to the sun, water and ambient temperature, thus enhancing quality of the cultivation process.

  15. Distributed Monitoring System Based on ICINGA

    CERN Multimedia

    Haen, C; Neufeld, N

    2011-01-01

    The LHCb online system relies on a large and heterogeneous I.T. infrastructure : it comprises more than 2000 servers and embedded systems and more than 200 network devices. While for the control and monitoring of detectors, PLCs, and readout boards an industry standard SCADA system PVSSII has been put in production, we use a low level monitoring system to monitor the control infrastructure itself. While our previous system was based on a single central NAGIOS server, our current system uses a distributed ICINGA infrastructure.

  16. GTA Beamloss-Monitor System

    International Nuclear Information System (INIS)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-01-01

    The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, γ) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitor System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 μs assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper

  17. GTA beamloss-monitor system

    International Nuclear Information System (INIS)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-01-01

    The GTA Beamloss-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamloss-Monitor System measures the induced gamma radiation, from (p,γ) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals, integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamloss-Monitor System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 μs assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics, is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/93 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper. (Author) 4 figs., ref

  18. Ecohydrological drought monitoring and prediction using a land data assimilation system

    Science.gov (United States)

    Sawada, Y.; Koike, T.

    2017-12-01

    Despite the importance of the ecological and agricultural aspects of severe droughts, few drought monitor and prediction systems can forecast the deficit of vegetation growth. To address this issue, we have developed a land data assimilation system (LDAS) which can simultaneously simulate soil moisture and vegetation dynamics. By assimilating satellite-observed passive microwave brightness temperature, which is sensitive to both surface soil moisture and vegetation water content, we can significantly improve the skill of a land surface model to simulate surface soil moisture, root zone soil moisture, and leaf area index (LAI). We run this LDAS to generate a global ecohydrological land surface reanalysis product. In this presentation, we will demonstrate how useful this new reanalysis product is to monitor and analyze the historical mega-droughts. In addition, using the analyses of soil moistures and LAI as initial conditions, we can forecast the ecological and hydrological conditions in the middle of droughts. We will present our recent effort to develop a near real time ecohydrological drought monitoring and prediction system in Africa by combining the LDAS and the atmospheric seasonal prediction.

  19. Offsite emergency radiological monitoring system and technology

    International Nuclear Information System (INIS)

    Mao Yongze

    1994-01-01

    The study and advance of the offsite radiological monitoring system and technology which is an important branch in the field of nuclear monitoring technology are described. The author suggests that the predicting and measuring system should be involved in the monitoring system. The measuring system can further be divided into four sub-systems, namely plume exposure pathway, emergency worker, ingestion exposure pathway and post accident recovery measuring sub-systems. The main facilities for the monitoring system are concluded as one station, one helicopter, one laboratory and two vehicles. The instrumentation for complement of the facilities and their good performance characteristics, up-to-date technology are also introduced in brief. The offsite emergency radiation monitoring system and technology are compared in detail with those recommended by FEMA U.S.A.. Finally the paper discusses some trends in development of emergency radiation monitoring system and technology in the developed countries

  20. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  1. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ye

    2018-02-01

    Full Text Available In this paper, a fiber Bragg grating (FBG-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC. Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW. The stochastic characteristic of stress concentration factor (SCF of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.

  2. System specification for the integrated monitoring and surveillance system

    International Nuclear Information System (INIS)

    1997-09-01

    This System Specification establishes the requirements for the Plutonium Focus Area (PFA) Integrated Monitoring and Surveillance System (IMSS). In this document, ''Integrated Monitoring and Surveillance System'' is used to describe the concept of integrated sensors, computers, personnel, and systems that perform the functions of sensing conditions, acquiring data, monitoring environmental safety and health, controlling and accounting for materials, monitoring material stability, monitoring container integrity, transferring data, and analyzing, reporting, and storing data. This concept encompasses systems (e.g. sensors, personnel, databases, etc.) that are already in place at the sites but may require modifications or additions to meet all identified surveillance requirements. The purpose of this System Specification is to provide Department of Energy (DOE) sites that store plutonium materials with a consolidation of all known requirements for the storage and surveillance of 3013 packages of stabilized plutonium metals and oxides. This compilation may be used (1) as a baseline for surveillance system design specifications where 3013 packages of stabilized plutonium metals and oxides will be stored and monitored; (2) as a checklist for evaluating existing surveillance systems to ensure that all requirements are met for the storage and surveillance of 3013 packages of stabilized plutonium metals and oxides; and (3) as a baseline for preparing procurement specifications tailored for site specific storage and surveillance of 3013 packages of stabilized plutonium metals and oxides

  3. Active-sensing based damage monitoring of airplane wings under low-temperature and continuous loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun Young; Jung, Hwee Kwon; Park, Gyu Hae [Dept. of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Ha, Jae Seok; Park, Chan Yik [7th R and D Institute, Agency for Denfense Development, Yuseong (Korea, Republic of)

    2016-10-15

    As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beam forming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

  4. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  5. Integrated systems of monitoring and environmental data processing for nuclear facilities

    International Nuclear Information System (INIS)

    Diaconu, C.; Guta, V.; Oprea, I.; Oprea, M.; Stoica, M.; Pirvu, V.; Vasilache, E.; Pirvu, I.

    2001-01-01

    The processing of huge amount of data necessary to assess the real radiological situation both in normal operational conditions and during accidents requires an efficient system of monitoring and data processing. It must be able to secure information for the complex systems of radioactivity control aiming at evaluating the nuclear accident consequences and establishing a basis for correct decision making in the field of civil protection. The integrated environmental monitoring systems are based on a number of fixed and mobile installations, a meteorological parameter measurement station, a center for data processing and a communication network, working all under the control of a real-time operation system. They collect, and process the radioactivity level and meteorological data and transmit them through the communication network. The local monitoring stations are made of detector ensembles with pressurized ionization chambers and autonomous units providing continuously information on dose and integrated rates, average values as well as the current state of the station. The meteorological data acquisition station supplies information concerning wind direction and speed, the temperature and precipitation level. The information processing center is based on a PC integrated in a local network which collects data from the radiation monitoring equipment, meteorological station as well as other work stations which process various dosimetric parameters. It is connected to Internet, so ensuring fast transfer of information towards interested authorities. The communication network consists in a local or extended Ethernet network, radio or serial connections for radioactivity level monitoring units which can be stationary, portable or mobile. Requirements raised by the application of geographic information system (GIS) and the real time operation system (QNX) ensuring multiuser and multitask operations are discussed

  6. The Pajarito Monitor: a high-sensitivity monitoring system for highly enriched uranium

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.; Garcia, C.; Martinez, J.

    1984-01-01

    The Pajarito Monitor for Special Nuclear Material is a high-sensitivity gamma-ray monitoring system for detecting small quantities of highly enriched uranium transported by pedestrians or motor vehicles. The monitor consists of two components: a walk-through personnel monitor and a vehicle monitor. The personnel monitor has a plastic-scintillator detector portal, a microwave occupancy monitor, and a microprocessor control unit that measures the radiation intensity during background and monitoring periods to detect transient diversion signals. The vehicle monitor examines stationary motor vehicles while the vehicle's occupants pass through the personnel portal to exchange their badges. The vehicle monitor has four groups of large plastic scintillators that scan the vehicle from above and below. Its microprocessor control unit measures separate radiation intensities in each detector group. Vehicle occupancy is sensed by a highway traffic detection system. Each monitor's controller is responsible for detecting diversion as well as serving as a calibration and trouble-shooting aid. Diversion signals are detected by a sequential probability ratio hypothesis test that minimizes the monitoring time in the vehicle monitor and adapts itself well to variations in individual passage speed in the personnel monitor. Designed to be highly sensitive to diverted enriched uranium, the monitoring system also exhibits exceptional sensitivity for plutonium

  7. Temperature- and pH-sensitive wearable materials for monitoring foot ulcers

    Directory of Open Access Journals (Sweden)

    Salvo P

    2017-01-01

    Full Text Available Pietro Salvo,1,2 Nicola Calisi,1 Bernardo Melai,1 Valentina Dini,3 Clara Paoletti,1 Tommaso Lomonaco,1 Andrea Pucci,1 Fabio Di Francesco,1 Alberto Piaggesi,4 Marco Romanelli3 1Department of Chemistry and Industrial Chemistry, University of Pisa, 2Institute of Clinical Physiology, National Council of Research, 3Wound Healing Research Unit, Department of Dermatology, University of Pisa, 4Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy Abstract: Foot ulcers account for 15% of comorbidities associated with diabetes. Presently, no device allows the status of foot ulcers to be continuously monitored when patients are not hospitalized. In this study, we describe a temperature and a pH sensor capable of monitoring diabetic foot and venous leg ulcers developed in the frame of the seventh framework program European Union project SWAN-iCare (smart wearable and autonomous negative pressure device for wound monitoring and therapy. Temperature is measured by exploiting the variations in the electrical resistance of a nanocomposite consisting of multiwalled carbon nanotubes and poly(styrene-b-(ethylene-co-butylene-b-styrene. The pH sensor used a graphene oxide (GO layer that changes its electrical potential when pH changes. The temperature sensor has a sensitivity of ~85 Ω/°C in the range 25°C–50°C and a high repeatability (maximum standard deviation of 0.1% over seven repeated measurements. For a GO concentration of 4 mg/mL, the pH sensor has a sensitivity of ~42 mV/pH and high linearity (R2=0.99. Keywords: diabetic foot ulcer, wearable sensors, wound temperature, wound pH

  8. Hanger-type laundry monitor system

    International Nuclear Information System (INIS)

    Aoyama, Kei; Kouno, Yoshio; Yanagishima, Ryouhei; Ikeda, Yasuyuki; Nakatani, Masahiro

    1987-01-01

    Laundry monitor is installed in nuclear power plants or other nuclear facilities in order to efficiently detect radioactive contamination remains on the surfaces of the working clothes which were used in the controlled area and washed afterward. The number of the working clothes which must be measured has been increasing in accordance with the increase of the nuclear facilities. This fact and recent intensified radiation control require automatic, high-speed and high sensitive measurement. Conveyer-type laundry monitor in which the working clothes are inserted by the metal net conveyer has been generally used, and recently new system with an automatic folder has become more popular. But, this type of system has not so big capacity because the clothes are conveyed longitudinally and also requires considerable wide space when installed. Fuji electric Co., Ltd. has been engaging in research and development for an optimum laundry monitor system used in nuclear facilities since the joint investigation with ten electric power companies in Japan in 1982. Consequently hanger-type laundry monitor system using automatic hanger conveyer was developed and 2 systems were delivered to Chubu Electric Power Co., Ltd. in 1986. This system permits to detect radioactive contamination on the working clothes, pick the contaminated clothes out and fold the uncontaminated clothes fully automatically and continuously. Moreover it allows to shorten the measurement time because the clothes are conveyed transversely and save the installation space, so that this will be regarded as considerably complete system in the world. This report describes the outline of the hanger-type laundry monitor system. (author)

  9. Storage monitoring systems for the year 2000

    International Nuclear Information System (INIS)

    Nilsen, C.; Pollock, R.

    1997-01-01

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000

  10. Performance Monitoring Applied to System Supervision

    Directory of Open Access Journals (Sweden)

    Bertille Somon

    2017-07-01

    Full Text Available Nowadays, automation is present in every aspect of our daily life and has some benefits. Nonetheless, empirical data suggest that traditional automation has many negative performance and safety consequences as it changed task performers into task supervisors. In this context, we propose to use recent insights into the anatomical and neurophysiological substrates of action monitoring in humans, to help further characterize performance monitoring during system supervision. Error monitoring is critical for humans to learn from the consequences of their actions. A wide variety of studies have shown that the error monitoring system is involved not only in our own errors, but also in the errors of others. We hypothesize that the neurobiological correlates of the self-performance monitoring activity can be applied to system supervision. At a larger scale, a better understanding of system supervision may allow its negative effects to be anticipated or even countered. This review is divided into three main parts. First, we assess the neurophysiological correlates of self-performance monitoring and their characteristics during error execution. Then, we extend these results to include performance monitoring and error observation of others or of systems. Finally, we provide further directions in the study of system supervision and assess the limits preventing us from studying a well-known phenomenon: the Out-Of-the-Loop (OOL performance problem.

  11. 37Ar monitoring techniques and on-site inspection system

    International Nuclear Information System (INIS)

    Duan Rongliang; Chen Yinliang; Li Wei; Wang Hongxia; Hao Fanhua

    2001-01-01

    37 Ar is separated, purified and extracted from air sample with a low temperature gas-solid chromatographic purifying method, prepared into a radioactive measurement source and its radioactivity is measured with a proportional counter. Based on the monitoring result, a judgement can be made if an nuclear explosion event has happened recently in a spectabilis area. A series of element techniques that are associated the monitoring of the trace element 37 Ar have been investigated and developed. Those techniques include leaked gas sampling, 37 Ar separation and purification, 37 Ar radioactivity measurement and the on-site inspection of 37 Ar. An advanced 37 Ar monitoring method has been developed, with which 200 liters of air can be treated in 2 hours with sensitivity of 0.01 Bq/L for 37 Ar radioactivity measurement. A practical 37 Ar On-site Inspection system has been developed. This research work may provide technical and equipment support for the verification protection, verification supervision and CTBT verification

  12. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  13. Plant-wide integrated equipment monitoring and analysis system

    International Nuclear Information System (INIS)

    Morimoto, C.N.; Hunter, T.A.; Chiang, S.C.

    2004-01-01

    A nuclear power plant equipment monitoring system monitors plant equipment and reports deteriorating equipment conditions. The more advanced equipment monitoring systems can also provide information for understanding the symptoms and diagnosing the root cause of a problem. Maximizing the equipment availability and minimizing or eliminating consequential damages are the ultimate goals of equipment monitoring systems. GE Integrated Equipment Monitoring System (GEIEMS) is designed as an integrated intelligent monitoring and analysis system for plant-wide application for BWR plants. This approach reduces system maintenance efforts and equipment monitoring costs and provides information for integrated planning. This paper describes GEIEMS and how the current system is being upgraded to meet General Electric's vision for plant-wide decision support. (author)

  14. Design of Deformation Monitoring System for Volcano Mitigation

    International Nuclear Information System (INIS)

    Islamy, M R F; Salam, R A; Khairurrijal; Munir, M M; Irsyam, M

    2016-01-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment. (paper)

  15. Heat exchanger performance monitoring guidelines

    International Nuclear Information System (INIS)

    Stambaugh, N.; Closser, W. Jr.; Mollerus, F.J.

    1991-12-01

    Fouling can occur in many heat exchanger applications in a way that impedes heat transfer and fluid flow and reduces the heat transfer or performance capability of the heat exchanger. Fouling may be significant for heat exchanger surfaces and flow paths in contact with plant service water. This report presents guidelines for performance monitoring of heat exchangers subject to fouling. Guidelines include selection of heat exchangers to monitor based on system function, safety function and system configuration. Five monitoring methods are discussed: the heat transfer, temperature monitoring, temperature effectiveness, delta P and periodic maintenance methods. Guidelines are included for selecting the appropriate monitoring methods and for implementing the selected methods. The report also includes a bibliography, example calculations, and technical notes applicable to the heat transfer method

  16. Benzene Monitor System report

    International Nuclear Information System (INIS)

    Livingston, R.R.

    1992-01-01

    Two systems for monitoring benzene in aqueous streams have been designed and assembled by the Savannah River Technology Center, Analytical Development Section (ADS). These systems were used at TNX to support sampling studies of the full-scale open-quotes SRAT/SME/PRclose quotes and to provide real-time measurements of benzene in Precipitate Hydrolysis Aqueous (PHA) simulant. This report describes the two ADS Benzene Monitor System (BMS) configurations, provides data on system operation, and reviews the results of scoping tests conducted at TNX. These scoping tests will allow comparison with other benzene measurement options being considered for use in the Defense Waste Processing Facility (DWPF) laboratory. A report detailing the preferred BMS configuration statistical performance during recent tests has been issued under separate title: Statistical Analyses of the At-line Benzene Monitor Study, SCS-ASG-92-066. The current BMS design, called the At-line Benzene Monitor (ALBM), allows remote measurement of benzene in PHA solutions. The authors have demonstrated the ability to calibrate and operate this system using peanut vials from a standard Hydragard trademark sampler. The equipment and materials used to construct the ALBM are similar to those already used in other applications by the DWPF lab. The precision of this system (±0.5% Relative Standard Deviation (RSD) at 1 sigma) is better than the purge ampersand trap-gas chromatograpy reference method currently in use. Both BMSs provide a direct measurement of the benzene that can be purged from a solution with no sample pretreatment. Each analysis requires about five minutes per sample, and the system operation requires no special skills or training. The analyzer's computer software can be tailored to provide desired outputs. Use of this system produces no waste stream other than the samples themselves (i.e. no organic extractants)

  17. On predicting monitoring system effectiveness

    Science.gov (United States)

    Cappello, Carlo; Sigurdardottir, Dorotea; Glisic, Branko; Zonta, Daniele; Pozzi, Matteo

    2015-03-01

    While the objective of structural design is to achieve stability with an appropriate level of reliability, the design of systems for structural health monitoring is performed to identify a configuration that enables acquisition of data with an appropriate level of accuracy in order to understand the performance of a structure or its condition state. However, a rational standardized approach for monitoring system design is not fully available. Hence, when engineers design a monitoring system, their approach is often heuristic with performance evaluation based on experience, rather than on quantitative analysis. In this contribution, we propose a probabilistic model for the estimation of monitoring system effectiveness based on information available in prior condition, i.e. before acquiring empirical data. The presented model is developed considering the analogy between structural design and monitoring system design. We assume that the effectiveness can be evaluated based on the prediction of the posterior variance or covariance matrix of the state parameters, which we assume to be defined in a continuous space. Since the empirical measurements are not available in prior condition, the estimation of the posterior variance or covariance matrix is performed considering the measurements as a stochastic variable. Moreover, the model takes into account the effects of nuisance parameters, which are stochastic parameters that affect the observations but cannot be estimated using monitoring data. Finally, we present an application of the proposed model to a real structure. The results show how the model enables engineers to predict whether a sensor configuration satisfies the required performance.

  18. Monitoring in educational development projects : the development of a monitoring system

    NARCIS (Netherlands)

    Plomp, T.; Huijsman, Hari; Kluyfhout, Eric

    1992-01-01

    Monitoring in education is usually focused on the monitoring of educational systems at different levels. Monitoring of educational projects receives only recently explicit attention. The paper discusses first the concepts of educational monitoring and evaluation. After that, the experience with

  19. Preliminary Design of Critical Function Monitoring System of PGSFR

    International Nuclear Information System (INIS)

    2015-01-01

    A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation control and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system

  20. Preliminary Design of Critical Function Monitoring System of PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation control and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system

  1. Scour Monitoring System for Subsea Pipeline Based on Active Thermometry: Numerical and Experimental Studies

    Directory of Open Access Journals (Sweden)

    Jun Du

    2013-01-01

    Full Text Available A scour monitoring system for subsea pipeline based on active thermometry is proposed in this paper. The temperature reading of the proposed system is based on a distributed Brillouin optical fiber sensing technique. A thermal cable acts as the main component of the system, which consists of a heating belt, armored optical fibers and heat-shrinkable tubes which run parallel to the pipeline. The scour-induced free span can be monitored through different heat transfer behaviors of in-water and in-sediment scenarios during heating and cooling processes. Two sets of experiments, including exposing different lengths of the upper surface of the pipeline to water and creating free spans of various lengths, were carried out in laboratory. In both cases, the scour condition was immediately detected by the proposed monitoring system, which confirmed the system is robust and very sensitive. Numerical study of the method was also investigated by using the finite element method (FEM with ANSYS, resulting in reasonable agreement with the test data. This brand new system provides a promising, low cost, highly precise and flexible approach for scour monitoring of subsea pipelines.

  2. CERN GSM monitoring system

    CERN Multimedia

    Ghabrous Larrea, C

    2009-01-01

    As a result of the tremendous development of GSM services over the last years, the number of related services used by organizations has drastically increased. Therefore, monitoring GSM services is becoming a business critical issue in order to be able to react appropriately in case of incident. In order to provide with GSM coverage all the CERN underground facilities, more than 50 km of leaky feeder cable have been deployed. This infrastructure is also used to propagate VHF radio signals for the CERN’s fire brigade. Even though CERN’s mobile operator monitors the network, it cannot guarantee the availability of GSM services, and for sure not VHF services, where signals are carried by the leaky feeder cable. So, a global monitoring system has become critical to CERN. In addition, monitoring this infrastructure will allow to characterize its behaviour over time, especially with LHC operation. Given that commercial solutions were not yet mature, CERN developed a system based on GSM probes and an application...

  3. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    Science.gov (United States)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  4. Remote supervision of GIS monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Pannunzio, J.; Juge, P.; Ficheux, A.; Rayon, J.L. [Areva T and D Automation Canada Inc., Monteal, PQ (Canada)

    2007-07-01

    Operators of gas-insulated substations (GIS) are increasingly concerned with failure prevention, scheduled maintenance, personnel safety and shortage of maintenance crews. Until recently, the density levels of the insulating gas sulfur hexafluoride (SF6) was the only parameter controlled in gas-insulated substations. Modern digital type control and monitoring equipment have been widely used in the past decade. Remote indication of gas density and status of dynamic components was made possible and shown on local control panels. Modern GIS monitoring systems offer features such as SF6 monitoring, SF6 leakage trends, internal arc localization and detection. The required information is recorded in a local computer and displaced onto a local human machine interface (HMI) or a local industrial PC mounted next to the GIS. These monitoring systems are used as decision making tools to facilitate maintenance activities and optimize the management of assets. This paper presented the latest developments in digital monitoring systems in terms of modern digital architecture; management of information flows between monitoring systems and control systems; operation of remote supervision; configuration of high voltage substations and information sharing; and, types of links between GIS room and remote supervision. This paper also demonstrated what can be achieved by moving the central HMI of a GIS monitoring system to the decision-making centres. It was shown that integrated features that allow remote on-line or automated management have reached an acceptable level of reliability and comfort for operators. 5 figs.

  5. Development of a groundwater monitoring system at Horonobe Underground Research Center

    International Nuclear Information System (INIS)

    Nanjo, Isao; Amano, Yuki; Iwatsuki, Teruki; Murakami, Hiroaki; Kunimaru, Takanori; Morikawa, Keita; Hosoya, Shinichi

    2012-03-01

    Japan Atomic Energy Agency (JAEA) develops basic investigation techniques for deep geological environment around Underground Research Laboratory (URL) at Horonobe area, Japan. The observation technique of hydrochemical condition in low permeable sedimentary rock around the facility is one of R and D subjects. We report, 1) development of hydrochemical monitoring system to observe water pressure, pH, electric conductivity, dissolved oxygen, redox potential and temperature, 2) hydrochemical observation results around URL under construction. The applicability of the hydrochemical monitoring system is evaluated for low permeable sedimentary rock bearing abundant dissolved gases. The hydrochemical observation during facility construction demonstrates that pH and redox potential of groundwater almost did not changed even at hydraulic disturbed zone (water pressure decreased zone). A CD-ROM is attached as an appendix. (J.P.N.)

  6. System of message for gamma-radiation monitor

    International Nuclear Information System (INIS)

    Bolic, M.D.; Koturovic, A.M.

    2001-01-01

    Paper describes a system of voice messages for gamma-radiation monitor based on PC. The systems reproduces recorded messages that is simpler than the process of their synthesis. Message choice is based on combination of recorded digital results and/or received reference messages or warnings. The system of generation of voice messages applies the Windows based software. The total memory array required to create independent voice system is maximum 1.7 mbyte. The monitor may be used for continuous monitoring of radioactivity level with 5-8 s period of message repetition. Another option of the system operation is based on monitor application for the environment monitoring. Period of messages in this case is equal to 5-30 min [ru

  7. Real-Time Monitoring and Control of HgCdTe MBE Using an Integrated Multi-Sensor System

    National Research Council Canada - National Science Library

    Olson, G

    1998-01-01

    We present recent progress on the use of an integrated real-time sensing and control system for monitoring and controlling substrate temperature, layer composition, and effusion cell flux during MBE...

  8. Stack Monitoring System At PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Zamrul Faizad Omar; Mohd Sabri Minhat; Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Izhar Abu Hussin

    2014-01-01

    This paper describes the current Stack Monitoring System at PUSPATI TRIGA Reactor (RTP) building. A stack monitoring system is a continuous air monitor placed at the reactor top for monitoring the presence of radioactive gaseous in the effluent air from the RTP building. The system consists of four detectors that provide the reading for background, particulate, Iodine and Noble gas. There is a plan to replace the current system due to frequent fault of the system, thus thorough understanding of the current system is required. Overview of the whole system will be explained in this paper. Some current results would be displayed and moving forward brief plan would be mentioned. (author)

  9. Study on Real-Time Simulation Analysis and Inverse Analysis System for Temperature and Stress of Concrete Dam

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-01-01

    Full Text Available In the concrete dam construction, it is very necessary to strengthen the real-time monitoring and scientific management of concrete temperature control. This paper constructs the analysis and inverse analysis system of temperature stress simulation, which is based on various useful data collected in real time in the process of concrete construction. The system can produce automatically data file of temperature and stress calculation and then achieve the remote real-time simulation calculation of temperature stress by using high performance computing techniques, so the inverse analysis can be carried out based on a basis of monitoring data in the database; it fulfills the automatic feedback calculation according to the error requirement and generates the corresponding curve and chart after the automatic processing and analysis of corresponding results. The system realizes the automation and intellectualization of complex data analysis and preparation work in simulation process and complex data adjustment in the inverse analysis process, which can facilitate the real-time tracking simulation and feedback analysis of concrete temperature stress in construction process and enable you to discover problems timely, take measures timely, and adjust construction scheme and can well instruct you how to ensure project quality.

  10. Digital radiation monitor system

    International Nuclear Information System (INIS)

    Quan Jinhu; Zhai Yongchun; Guan Junfeng; Ren Dangpei; Ma Zhiyuan

    2003-01-01

    The article introduced digital radiation monitor system. The contents include: how to use advanced computer net technology to establish equipment net for nuclear facility, how to control and manage measuring instruments on field equipment net by local area net, how to manage and issue radiation monitoring data by internet

  11. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2015-12-01

    Full Text Available In recent years, structural health monitoring and management (SHMM has become a popular approach and is considered essential for achieving well-performing, long-lasting, sustainable transportation infrastructure systems. Key requirements in ideal SHMM of road infrastructure include long-term, continuous, and real-time monitoring of pavement response and performance under various pavement geometry-materials-loading configurations and environmental conditions. With advancements in wireless technologies, integration of wireless communications into sensing device is considered an alternate and superior solution to existing time- and labor-intensive wired sensing systems in meeting the requirements of an ideal SHMM. This study explored the development and integration of a wireless communications sub-system into a commercial off-the-shelf micro-electromechanical sensor-based concrete pavement monitoring system. A success-rate test was performed after the wireless transmission system was buried in the concrete slab, and the test results indicated that the system was able to provide reliable communications at a distance of more than 46 m (150 feet. This will be a useful feature for highway engineers performing routine pavement scans from the pavement shoulder without the need for traffic control or road closure.

  12. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009–10

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.

    2012-01-01

    During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles

  13. Instrumentation for Power System Disturbance Monitoring, Data ...

    African Journals Online (AJOL)

    In this paper, the level of instrumentation for power system disturbance monitoring, data acquisition and control in Nigerian Electric Power System; National Electric Power Authority (NEPA) is presented. The need for accurate power system disturbance monitoring is highlighted. A feature of an adequate monitoring, data ...

  14. Distributed Piezoelectric Sensor System for Damage Identification in Structures Subjected to Temperature Changes

    Directory of Open Access Journals (Sweden)

    Jaime Vitola

    2017-05-01

    Full Text Available Structural health monitoring (SHM is a very important area in a wide spectrum of fields and engineering applications. With an SHM system, it is possible to reduce the number of non-necessary inspection tasks, the associated risk and the maintenance cost in a wide range of structures during their lifetime. One of the problems in the detection and classification of damage are the constant changes in the operational and environmental conditions. Small changes of these conditions can be considered by the SHM system as damage even though the structure is healthy. Several applications for monitoring of structures have been developed and reported in the literature, and some of them include temperature compensation techniques. In real applications, however, digital processing technologies have proven their value by: (i offering a very interesting way to acquire information from the structures under test; (ii applying methodologies to provide a robust analysis; and (iii performing a damage identification with a practical useful accuracy. This work shows the implementation of an SHM system based on the use of piezoelectric (PZT sensors for inspecting a structure subjected to temperature changes. The methodology includes the use of multivariate analysis, sensor data fusion and machine learning approaches. The methodology is tested and evaluated with aluminum and composite structures that are subjected to temperature variations. Results show that damage can be detected and classified in all of the cases in spite of the temperature changes.

  15. Distributed Piezoelectric Sensor System for Damage Identification in Structures Subjected to Temperature Changes.

    Science.gov (United States)

    Vitola, Jaime; Pozo, Francesc; Tibaduiza, Diego A; Anaya, Maribel

    2017-05-31

    Structural health monitoring (SHM) is a very important area in a wide spectrum of fields and engineering applications. With an SHM system, it is possible to reduce the number of non-necessary inspection tasks, the associated risk and the maintenance cost in a wide range of structures during their lifetime. One of the problems in the detection and classification of damage are the constant changes in the operational and environmental conditions. Small changes of these conditions can be considered by the SHM system as damage even though the structure is healthy. Several applications for monitoring of structures have been developed and reported in the literature, and some of them include temperature compensation techniques. In real applications, however, digital processing technologies have proven their value by: (i) offering a very interesting way to acquire information from the structures under test; (ii) applying methodologies to provide a robust analysis; and (iii) performing a damage identification with a practical useful accuracy. This work shows the implementation of an SHM system based on the use of piezoelectric (PZT) sensors for inspecting a structure subjected to temperature changes. The methodology includes the use of multivariate analysis, sensor data fusion and machine learning approaches. The methodology is tested and evaluated with aluminum and composite structures that are subjected to temperature variations. Results show that damage can be detected and classified in all of the cases in spite of the temperature changes.

  16. Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated how different ventilation system types influence classroom temperature and air quality. Five classrooms were selected in the same school. They were ventilated by manually operable windows, manually operable windows with exhaust fan, automatically operable windows...... with and without exhaust fan and by mechanical ventilation system. Temperature, relative humidity, carbon dioxide (CO2) concentration and opening of windows were continuously monitored for one month during heating season in 2012. Classroom with manually operable windows had the highest carbon dioxide concentration...... levels so that the estimated ventilation rate was the lowest compared with the classrooms ventilated with other systems. Temperatures were slightly lower in classroom ventilated by manually operable windows with exhaust fan. Windows were opened seldom even in the classroom ventilated by manually operable...

  17. Health monitoring system for a tall building with Fiber Bragg grating sensors

    Science.gov (United States)

    Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.

    2009-03-01

    Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.

  18. Chapter 6: Temperature

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. Richard; F. Richard Hauer,; Lamberti, G.A.

    2017-01-01

    Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to local variability. Spatiotemporal heterogeneity in freshwater ecosystems influences habitat distributions, physiological functions, and phenology of all aquatic organisms. In this chapter we provide an overview of methods for monitoring stream temperature, characterization of thermal profiles, and modeling approaches to stream temperature prediction. Recent advances in temperature monitoring allow for more comprehensive studies of the underlying processes influencing annual variation of temperatures and how thermal variability may impact aquatic organisms at individual, population, and community based scales. Likewise, the development of spatially explicit predictive models provide a framework for simulating natural and anthropogenic effects on thermal regimes which is integral for sustainable management of freshwater systems.

  19. Monitoring and control of a hybrid energy system

    International Nuclear Information System (INIS)

    Raceanu, M.; Culcer, M.; Patularu, L.; Enache, A.; Balan, M.; Varlam, M.

    2010-01-01

    Full text: This article presents monitoring and control of a Hybrid Energy System (HES). The HES is composed of six main components: solar panels, electrolyzer, fuel cells stack, charge controller, DC-AC inverter and lead acid batteries. Solar panels function as the primary source of energy, converting the energy from the sun into electricity that is given to a DC bus. Electrolyzer is a device that produces hydrogen and oxygen from the water following a process electrochemical. When there is excess energy from solar panels, electrolyzer is switched to produce hydrogen which is stored in hydrogen tank. Hydrogen produced is used by an assembly of fuel cell; this produces electricity that is transmitted on the DC bus, using hydrogen produced by electrolysis. Can be measured and displayed in real time data including, voltage, current, flow of hydrogen from the fuel cell, voltage, current, temperature of the photovoltaic panels, pressure hydrogen from electrolysis, pressure hydrogen tank and battery voltage. The control system is designed according to state of charge (SoC) of the battery. Are presented control strategy which ensures the On/Off control of the electrolyzer, to consume electricity from the battery and to generate electricity from fuel cells. The system hardware consists of an acquisition board, communication system of type CAN, sensors and interface devices. Monitoring and control software was developed in LabView 9.0. (authors)

  20. Standard Guide for Use of Melt Wire Temperature Monitors for Reactor Vessel Surveillance, E 706 (IIIE)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide describes the application of melt wire temperature monitors and their use for reactor vessel surveillance of light-water power reactors as called for in Practice E 185. 1.2 The purpose of this guide is to recommend the selection and use of the common melt wire technique where the correspondence between melting temperature and composition of different alloys is used as a passive temperature monitor. Guidelines are provided for the selection and calibration of monitor materials; design, fabrication, and assembly of monitor and container; post-irradiation examinations; interpretation of the results; and estimation of uncertainties. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (See Note 1.)

  1. A unique radiation area monitoring system

    International Nuclear Information System (INIS)

    Murphy, P.C.; Allen, G.C.

    1978-01-01

    The Remote Area Monitoring Systems (RAMS) monitors four radiation areas with two independent systems in each area. Each system consists of power supplies, four ionization chambers, and four analog and digital circuits. The first system controls the warning beacons, horns, annunciation panel and interlocks. The second system presents a quantitative dose rate indication at the console and in the radiation area

  2. A new temperature threshold detector - Application to missile monitoring

    Science.gov (United States)

    Coston, C. J.; Higgins, E. V.

    Comprehensive thermal surveys within the case of solid propellant ballistic missile flight motors are highly desirable. For example, a problem involving motor failures due to insulator cracking at motor ignition, which took several years to solve, could have been identified immediately on the basis of a suitable thermal survey. Using conventional point measurements, such as those utilizing typical thermocouples, for such a survey on a full scale motor is not feasible because of the great number of sensors and measurements required. An alternate approach recognizes that temperatures below a threshold (which depends on the material being monitored) are acceptable, but higher temperatures exceed design margins. In this case hot spots can be located by a grid of wire-like sensors which are sensitive to temperature above the threshold anywhere along the sensor. A new type of temperature threshold detector is being developed for flight missile use. The considered device consists of KNO3 separating copper and Constantan metals. Above the KNO3 MP, galvanic action provides a voltage output of a few tenths of a volt.

  3. Remote Arrhythmia Monitoring System Developed

    Science.gov (United States)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  4. The Design of Bulk Carrier Cargo Holds State Integrated Monitoring System

    Directory of Open Access Journals (Sweden)

    Gao Ru-jiang

    2016-01-01

    Full Text Available Most ship cargo hold Internal uses artificial watch or is unattended. Therefore, it is impossible to know the appropriate information of the cargo holds Internal timely and accurately. Cargo damage and ship accidents occurred frequently. Automation remote processing and monitoring alarm system for the bulk carrier is an important part of the marine automation. The system plays a significant role to guarantee the navigation safety for bulk carriers. The paper introduced the important parts of the integrated monitoring system, structural design, hardware configuration, various modules communication transmission and various data processing software design were included. Based on embedded development, the real time information including the cargo hold internal humidity temperature, oxygen concentration, smoke gas concentration, cold water well level and other data were collected, as well the hatch closed state was detected and the cargo hold internal real time video information was collected. Then the real-time communication between the control display and acquisition modules were assured. By adjusting the corresponding buttons on the bridge according to the monitoring information, so that the cargo hold always in a safe environment, so as to avoid cargo hold accidents.

  5. A new energy-harvesting device system for wireless sensors, adaptable to on-site monitoring of MR damper motion

    International Nuclear Information System (INIS)

    Yu, Miao; Peng, Youxiang; Wang, Siqi; Fu, Jie; Choi, S B

    2014-01-01

    Under extreme service conditions in vehicle suspension systems, some defects exist in the hardening, bodying, and poor temperature stability of magnetorheological (MR) fluid. These defects can cause weak and even invalid performance in the MR fluid damper (MR damper for short). To ensure the effective validity of the practical applicability of the MR damper, one must implement an online state-monitoring sensor to monitor several performance factors, such as acceleration. In this empirical work, we propose a new energy-harvesting device system for the wireless sensor system of an MR damper. The monitoring sensor system consists of several components, such as an energy-harvesting device, energy-management circuit, and wireless sensor node. The electrical energy harvested from the kinetic energy of the MR fluid that flows within the MR damper can be automatically charged and discharged with the help of an energy-management circuit for the wireless sensor node. After verifying good performance from each component, an experimental apparatus is built to evaluate the feasibility of the proposed self-powered wireless sensor system. The measured results of pressure, temperature, and acceleration data within the MR damper clearly demonstrate the practical applicability of monitoring the operating work states of the MR damper when it is subjected to sinusoidal excitation. (technical note)

  6. Tracking the harmonic response of magnetically-soft sensors for wireless temperature, stress, and corrosive monitoring

    Science.gov (United States)

    Ong, Keat G.; Grimes, Craig A.

    2002-01-01

    This paper describes the application of magnetically-soft ribbon-like sensors for measurement of temperature and stress, as well as corrosive monitoring, based upon changes in the amplitudes of the higher-order harmonics generated by the sensors in response to a magnetic interrogation signal. The sensors operate independently of mass loading, and so can be placed or rigidly embedded inside nonmetallic, opaque structures such as concrete or plastic. The passive harmonic-based sensor is remotely monitored through a single coplanar interrogation and detection coil. Effects due to the relative location of the sensor are eliminated by tracking harmonic amplitude ratios, thereby, enabling wide area monitoring. The wireless, passive, mass loading independent nature of the described sensor platform makes it ideally suited for long-term structural monitoring applications, such as measurement of temperature and stress inside concrete structures. A theoretical model is presented to explain the origin and behavior of the higher-order harmonics in response to temperature and stress. c2002 Elsevier Science B.V. All rights reserved.

  7. Flood and Traffic Wireless Monitoring System for Smart Cities

    KAUST Repository

    Moussa, Mustafa

    2016-10-01

    The convergence of computation, communication and sensing has led to the emergence of Wireless Sensor Networks (WSNs), which allow distributed monitoring of physical phenomena over extended areas. In this thesis, we focus on a dual flood and traffic flow WSN applicable to urban environments. This fixed sensing system is based on the combination of ultrasonic range-finding with remote temperature sensing, and can sense both phenomena with a high degree of accuracy. This enables the monitoring of urban areas to lessen the impact of catastrophic flood events, by monitoring flood parameters and traffic flow to enable public evacuation and early warning, allocate the resources efficiently or control the traffic to make cities more productive and smarter. We present an implementation of the device, and illustrate its performance in water level estimation and rain detection using a novel combination of L1 regularized reconstruction and machine learning algorithms on a 6-month dataset involving four different sensors. Our results show that water level can be estimated with an uncertainty of 1 cm using a combination of thermal sensing and ultrasonic distance measurements. The demonstration of the performance included the detection of an actual flash flood event using two sensors located in Umm Al Qura University (Mecca). Finally, we show that Lagrangian (mobile) sensors can be used to inexpensively increase the performance of the system with respect to traffic sensing. These sensors are based on Inertial Measurement Units (IMUs), which have never been investigated in the context of traffic ow monitoring before. We investigate the divergence of the speed estimation process, the lack of the calibration parameters of the system, and the problem of reconstructing vehicle trajectories evolving in a given transportation network. To address these problems, we propose an automatic calibration algorithm applicable to IMU-equipped ground vehicles, and an L1 regularized least squares

  8. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  9. A new temperature collection system

    International Nuclear Information System (INIS)

    Kong Wenchuang; Wang Daihua; Zhang Zhijie

    2011-01-01

    According to the characteristics of explosion field temperature testing, a new temperature collection system based on complex programmable logic device (CPLD), single chip microcontroller (SCM) and static ram (SRAM) is proposed. The system adopts the NANMAC E12 type of thermocouple as the temperature sensor, DS600 temperature sensor for cold temperature compensation, with rapid synchronous collection, trigger and working parameters adjustable characteristics. The system used SCM combined with USB communication interface, easy operation and reliable. (authors)

  10. Online Monitoring of Temperature Using Wireless Module in a Rotating Drum-Applicable to Leather Industries

    Directory of Open Access Journals (Sweden)

    T. Narayani

    2015-07-01

    Full Text Available In order to ensure safe and efficient operation of unit processes, foremost requirement is accurate measurement of process variables, with which quality can be monitored and controlled. Understanding the necessity of online monitoring of process temperature in tanning/dyeing process, the article is focused on wireless measurement of physical parameters involved in wet processing of hides/ skins and monitoring through digital computer for further analysis. It’s a challenging task to measure and communicate the process information from a closed rotating drum. Wireless communication is proposed because of its enhanced security, superfast operating speed, and increased mobility. The physical parameters which are predominant in tanning process are temperature, pH, conductivity etc. of the process fluid. It is necessary to carryout dyeing at 65 0C for producing raw to wet blue process. As a first attempt, wireless module for temperature measurement has been developed. The module includes signal transmitter and receiver section. In the transmitter section, the temperature which is measured by an integrated sensor is converted into frequency signal and imposed on a radio frequency signal (career signal and get transmitted in air. On the other side, receiver section receives the radio frequency signal and converts that into electrical signals to interface with the digital computer for online monitoring. The module is able to receive and control temperature of tanning drum within a distance of 100 meters. Real time experiments on the fabricated model show interesting results for commercialization.

  11. Surveillance systems (PWR) - loose parts monitoring - vibration monitoring - leakage detection

    International Nuclear Information System (INIS)

    Schuette, A.; Blaesig, H.

    1982-01-01

    The contribution is engaged in the task and the results of the loose parts monitoring and the vibration monitoring following from the practice at the PWR of Biblis. First a description of both systems - location and type of the sensors used, the treatment of the measurements and the indications - is given. The results of the analysis of some events picked up by the surveillance systems are presented showing applicabilty and benefit of such systems. (orig.)

  12. Low-cost sensor system for non-invasive monitoring of cell growth in disposable bioreactors

    OpenAIRE

    Reinecke, Tobias; Biechele, Philipp; Schulte, V.; Scheper, Thomas; Zimmermann, Stefan

    2015-01-01

    To ensure productivity and product quality, the parameters of biotechnological processes need to be monitored. Along temperature or pH, one important parameter is the cell density in the culture medium. In this work, we present a low-cost sensor system for online cell growth monitoring in bioreactors via permittivity measurements based on coplanar transmission lines. To evaluate the sensor, E. coli cultivations are performed. We found a good correlation between optical density of the culture ...

  13. Car monitoring information systems

    Directory of Open Access Journals (Sweden)

    Alica KALAŠOVÁ

    2008-01-01

    Full Text Available The objective of this contribution is to characterize alternatives of information systems used for managing, processing and evaluation of information related to company vehicles. Especially we focus on logging, transferring and processing of on-road vehicle movement information in inland and international transportation. This segment of company information system has to monitor the car movement – actively or passively – according to demand of the company and after the processing it has to evaluate and give the complex monitoring of a situation of all the company vehicles to the controller.

  14. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in American Samoa from 2012 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  15. Passive sensor systems for nuclear material monitoring

    International Nuclear Information System (INIS)

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-01-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y 2 O 3 ) with 6 LiF (95% 6 Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant

  16. Remote container monitoring and surveillance systems

    International Nuclear Information System (INIS)

    Resnik, W.M.; Kadner, S.P.

    1995-01-01

    Aquila Technologies Group is developing a monitoring and surveillance system to monitor containers of nuclear materials. The system will both visually and physically monitor the containers. The system is based on the combination of Aquila's Gemini All-Digital Surveillance System and on Aquila's AssetLAN trademark asset tracking technology. This paper discusses the Gemini Digital Surveillance system as well as AssetLAN technology. The Gemini architecture with emphasis on anti-tamper security features is also described. The importance of all-digital surveillance versus other surveillance methods is also discussed. AssetLAN trademark technology is described, emphasizing the ability to continually track containers (as assets) by location utilizing touch memory technology. Touch memory technology provides unique container identification, as well as the ability to store and retrieve digital information on the container. This information may relate to container maintenance, inspection schedules, and other information. Finally, this paper describes the combination of the Gemini system with AssetLAN technology, yielding a self contained, container monitoring and area/container surveillance system. Secure container fixture design considerations are discussed. Basic surveillance review functions are also discussed

  17. Critical function monitoring system algorithm development

    International Nuclear Information System (INIS)

    Harmon, D.L.

    1984-01-01

    Accurate critical function status information is a key to operator decision-making during events threatening nuclear power plant safety. The Critical Function Monitoring System provides continuous critical function status monitoring by use of algorithms which mathematically represent the processes by which an operating staff would determine critical function status. This paper discusses in detail the systematic design methodology employed to develop adequate Critical Function Monitoring System algorithms

  18. Road structural elements temperature trends diagnostics using sensory system of own design

    Science.gov (United States)

    Dudak, Juraj; Gaspar, Gabriel; Sedivy, Stefan; Pepucha, Lubomir; Florkova, Zuzana

    2017-09-01

    A considerable funds is spent for the roads maintenance in large areas during the winter. The road maintenance is significantly affected by the temperature change of the road structure. In remote locations may occur a situation, when it is not clear whether the sanding is actually needed because the lack of information on road conditions. In these cases, the actual road conditions are investigated by a personal inspection or by sending out a gritting vehicle. Here, however, is a risk of unnecessary trip the sanding vehicle. This situation is economically and environmentally unfavorable. The proposed system solves the problem of measuring the temperature profile of the road and the utilization of the predictive model to determine the future development trend of temperature. The system was technically designed as a set of sensors to monitor environmental values such as the temperature of the road, ambient temperature, relative air humidity, solar radiation and atmospheric pressure at the measuring point. An important part of the proposal is prediction model which based on the inputs from sensors and historical measurements can, with some probability, predict temperature trends at the measuring point. The proposed system addresses the economic and environmental aspects of winter road maintenance.

  19. Investigations on Temperature Fields during Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling

    Directory of Open Access Journals (Sweden)

    J. Schilp

    2014-07-01

    Full Text Available Process monitoring and modelling can contribute to fostering the industrial relevance of additive manufacturing. Process related temperature gradients and thermal inhomogeneities cause residual stresses, and distortions and influence the microstructure. Variations in wall thickness can cause heat accumulations. These occur predominantly in filigree part areas and can be detected by utilizing off-axis thermographic monitoring during the manufacturing process. In addition, numerical simulation models on the scale of whole parts can enable an analysis of temperature fields upstream to the build process. In a microscale domain, modelling of several exposed single hatches allows temperature investigations at a high spatial and temporal resolution. Within this paper, FEM-based micro- and macroscale modelling approaches as well as an experimental setup for thermographic monitoring are introduced. By discussing and comparing experimental data with simulation results in terms of temperature distributions both the potential of numerical approaches and the complexity of determining suitable computation time efficient process models are demonstrated. This paper contributes to the vision of adjusting the transient temperature field during manufacturing in order to improve the resulting part's quality by simulation based process design upstream to the build process and the inline process monitoring.

  20. Centralized environmental radiation monitoring system in JAERI

    International Nuclear Information System (INIS)

    Katagiri, Hiroshi; Kobayashi, Hideo

    1993-03-01

    Japan Atomic Energy Research Institute (JAERI) has continued the radiation background survey and environmental radiation monitoring to ensure the safety of the residents around the Institute. For the monitoring of β and γ radiations and α and β radioactivities in air, the centralized automatic environmental radiation monitoring system (EMS) applying a computer with monitoring stations (MS) was established. The system has been renewed twice in 1973 and 1988. In 1962, a new concept emergency environmental γ-ray monitoring system (MP) was begun to construct and completed in 1965 independent of EMS. The first renewal of the EMS was carried out by focusing on the rapid and synthetic judgement and estimation of the environmental impacts caused by radiation and radioactive materials due to the operation of nuclear facilities by centralizing the data measured at MS, MP, a meteorological station, stack monitors and drainage monitoring stations under the control of computer. Present system renewed in 1988 was designed to prevent the interruption of monitoring due to computer troubles, communication troubles and power failures especially an instant voltage drop caused by thunder by reflecting the experiences through the operation and maintenance of the former system. Dual telemeters whose power is constantly supplied via batteries (capable of 10 min. monitoring after power failure) are equipped in the monitoring center to cope with telemeter troubles, which has operated successfully without any suspension being attributable to the power failures and telemeter troubles. (J.P.N.)

  1. Risk Identification in a Smart Monitoring System Used to Preserve Artefacts Based on Textile Materials

    Science.gov (United States)

    Diaconescu, V. D.; Scripcariu, L.; Mătăsaru, P. D.; Diaconescu, M. R.; Ignat, C. A.

    2018-06-01

    Exhibited textile-materials-based artefacts can be affected by the environmental conditions. A smart monitoring system that commands an adaptive automatic environment control system is proposed for indoor exhibition spaces containing various textile artefacts. All exhibited objects are monitored by many multi-sensor nodes containing temperature, relative humidity and light sensors. Data collected periodically from the entire sensor network is stored in a database and statistically processed in order to identify and classify the environment risk. Risk consequences are analyzed depending on the risk class and the smart system commands different control measures in order to stabilize the indoor environment conditions to the recommended values and prevent material degradation.

  2. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  3. Distributed intelligent urban environment monitoring system

    Science.gov (United States)

    Du, Jinsong; Wang, Wei; Gao, Jie; Cong, Rigang

    2018-02-01

    The current environmental pollution and destruction have developed into a world-wide major social problem that threatens human survival and development. Environmental monitoring is the prerequisite and basis of environmental governance, but overall, the current environmental monitoring system is facing a series of problems. Based on the electrochemical sensor, this paper designs a small, low-cost, easy to layout urban environmental quality monitoring terminal, and multi-terminal constitutes a distributed network. The system has been small-scale demonstration applications and has confirmed that the system is suitable for large-scale promotion

  4. Long-term monitoring of temperature in the subsoil using Fiber Optic Distributed Sensing

    Science.gov (United States)

    Susanto, Kusnahadi; Malet, Jean-Philippe; Gance, Julien; Marc, Vincent

    2017-04-01

    Monitoring changes in soil water content in the vadose zone of soils is a great importance for various hydrological, agronomical, ecological and environmental studies. By using soil temperature measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS), we can indirectly document soil water changes at high spatial and temporal frequency. In this research, we installed an observatory of soil temperature on a representative black marl slope of the long-term Draix-Bléone hydrological observatory (South French Alps, Réseau de Basins-Versants / RBV). A 350 m long reinforced fiber optic cable was buried at 0.05, 0.10 and 0.15 m of depths and installed at the soil surface. The total length of the monitored profile is 60 m, and it three different soil units consisting of argillaceous weathered black marls, silty colluvium under grass and silty colluvium under forest. Soil temperature is measured every 6 minutes at a spatial resolution of 0.50 m using a double-ended configuration. Both passive and active (heating of the FO) is used to document soil water changes. We present the analysis of a period of 6 months of temperature measurements (January-July 2016). Changes in soil temperature at various temporal scales (rainfall event, season) and for the three units are discussed. These changes indicate different processes of water infiltration at different velocities in relation to the presence of roots and the soil permeability. We further test several inversion strategies to estimate soil water content from the thermal diffusivity of the soils using simple and more complex thermal models. Some limitations of using this indirect technique for long-term monitoring are also presented. The work is supported by the research project HYDROSLIDE and the large infrastructure project CRITEX funded by the French Research Agency (ANR).

  5. Development of sleep monitoring system for observing the effect of the room ambient toward the quality of sleep

    Science.gov (United States)

    Saad, W. H. M.; Khoo, C. W.; Rahman, S. I. Ab; Ibrahim, M. M.; Saad, N. H. M.

    2017-06-01

    Getting enough sleep at the right times can help in improving quality of life and protect mental and physical health. This study proposes a portable sleep monitoring device to determine the relationship between the room ambient and quality of sleep. Body condition parameter such as heart rate, body temperature and body movement was used to determine quality of sleep and Audio/video-based monitoring system. The functionality test on all sensors is carried out to make sure that all sensors is working properly. The functionality of the overall system is designed for a better experience with a very minimal intervention to the user. The simple test on the body condition (body temperature and heart rate) while asleep with several different ambient parameters (humidity, brightness and temperature) are varied and the result shows that someone has a better sleep in a dark and colder ambient. This can prove by lower body temperature and lower heart rate.

  6. Performance of zeolite scavenge column in Xe monitoring system

    International Nuclear Information System (INIS)

    Wang Qian; Wang Hongxia; Li Wei; Bian Zhishang

    2010-01-01

    In order to improve the performance of zeolite scavenge column, its ability of removal of humidity and carbon dioxide was studied by both static and dynamic approaches. The experimental results show that various factors, including the column length and diameter, the mass of zeolite, the content of water in air, the temperature rise during adsorption, and the activation effectiveness all effect the performance of zeolite column in scavenging humanity and carbon dioxide. Based on these results and previous experience, an optimized design of the zeolite column is made for use in xenon monitoring system. (authors)

  7. Demonstration of the Use of Remote Temperature Monitoring Devices in Vaccine Refrigerators in Haiti.

    Science.gov (United States)

    Cavallaro, Kathleen F; Francois, Jeannot; Jacques, Roody; Mentor, Derline; Yalcouye, Idrissa; Wilkins, Karen; Mueller, Nathan; Turner, Rebecca; Wallace, Aaron; Tohme, Rania A

    After the 2010 earthquake, Haiti committed to introducing 4 new antigens into its routine immunization schedule, which required improving its cold chain (ie, temperature-controlled supply chain) and increasing vaccine storage capacity by installing new refrigerators. We tested the feasibility of using remote temperature monitoring devices (RTMDs) in Haiti in a sample of vaccine refrigerators fueled by solar panels, propane gas, or electricity. We analyzed data from 16 RTMDs monitoring 24 refrigerators in 15 sites from March through August 2014. Although 5 of the 16 RTMDs exhibited intermittent data gaps, we identified typical temperature patterns consistent with refrigerator door opening and closing, propane depletion, thermostat insufficiency, and overstocking. Actual start-up, annual maintenance, and annual electricity costs for using RTMDs were $686, $179, and $9 per refrigerator, respectively. In Haiti, RTMD use was feasible. RTMDs could be prioritized for use with existing refrigerators with high volumes of vaccines and new refrigerators to certify their functionality before use. Vaccine vial monitors could provide additional useful information about cumulative heat exposure and possible vaccine denaturation.

  8. Holter monitoring of central and peripheral temperature: possible uses and feasibility study in outpatient settings.

    Science.gov (United States)

    Varela, Manuel; Cuesta, David; Madrid, Juan Antonio; Churruca, Juan; Miro, Pau; Ruiz, Raul; Martinez, Carlos

    2009-08-01

    Conventional clinical thermometry has important limitations. A continuous monitoring of temperature may offer significant advantages, including the use of chronobiological and complexity analysis of temperature profile and eventually the identification of a "pre-febrile" pattern. We present a clinical model designed to measure, store and/or transmit in real time a central and a peripheral temperature reading. The results of its use in a healthy, free-living population is reported. Thirty subjects (15 women, 15 men, 20-70 years old), were monitored for 24 h while following their normal life. Temperatures were recorded every minute at the external auditory channel (EAC) and on the skin, at the intersection of the 5th intercostal space and the anterior axillary line. A Cosinor analysis and Approximate Entropy (ApEn) (m = 2, r = 0.15*SD, N = 180) were calculated for both temperatures. Median temperature was 35.55 degrees C [interquartile range (IR) 0.77 degrees C] in the external auditory channel (EAC) and 34.62 degrees C (IR 1.61) in the specified skin location. Median gradient between AEC and skin was 0.93 (IR 1.57). A circadian rhythm was present both in EAC and skin temperature, with a mean amplitude of 0.44 degrees C and an acrophase at 21:02 for the EAC and 0.70 degrees C and 00:42 for the skin. During the night there was a sizable increase in peripheral temperature, with a decrease in gradient and a loss of complexity in the temperature profile, most significantly in the peripheral temperature. Continuous monitoring of central and peripheral temperature may be a helpful tool in both ambulatory and admitted patients and may offer new approaches in clinical thermometry.

  9. Visualization System for Monitoring Data Management Systems

    Directory of Open Access Journals (Sweden)

    Emanuel Pinho

    2016-11-01

    Full Text Available Usually, a Big Data system has a monitoring system for performance evaluation and error prevention. There are some disadvantages in the way that these tools display the information and its targeted approach to physical components. The main goal is to study visual and interactive mechanisms that allow the representation of monitoring data in grid computing environments, providing the end-user information, which can contribute objectively to the system analysis. This paper is an extension of the paper presented at (Pinho and Carvalho 2016 and has the purpose to present the state of the art, carries out the proposed solution and present the achieved goals.

  10. Online NPP monitoring with neuro-expert system

    International Nuclear Information System (INIS)

    Nabeshima, K.

    2002-01-01

    This study present a hybrid monitoring system for nuclear power plant utilizing neural networks and a rule-based expert system. The whole monitoring system including a data acquisition system and the advisory displays has been tested by an on-line simulator of pressurized water reactor. From the testing results, it was shown that the neural network in the monitoring system successfully modeled the plant dynamics and detected the symptoms of anomalies earlier than the conventional alarm system. The expert system also worked satisfactorily in diagnosing and displaying the system status by using the outputs of neural networks and a priori knowledge base

  11. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Laug, David V.; Scates, Dawn M.; Reber, Edward L.; Roybal, Lyle G.; Walter, John B.; Harp, Jason M. [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Morris, Robert N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A system has been developed for safety testing of irradiated coated particle fuel. Black-Right-Pointing-Pointer FACS system is designed to facilitate remote operation in a shielded hot cell. Black-Right-Pointing-Pointer System will measure release of fission gases and condensable fission products. Black-Right-Pointing-Pointer Fuel performance can be evaluated at temperatures as high as 2000 Degree-Sign C in flowing helium. - Abstract: The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 Degree-Sign C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated

  12. Development of a New ICT-Based Multisensor Blood Pressure Monitoring System for Use in Hemodynamic Biomarker-Initiated Anticipation Medicine for Cardiovascular Disease: The National IMPACT Program Project.

    Science.gov (United States)

    Kario, Kazuomi; Tomitani, Naoko; Kanegae, Hiroshi; Yasui, Nobuhiko; Nishizawa, Masafumi; Fujiwara, Takeshi; Shigezumi, Takeya; Nagai, Ryozo; Harada, Hiroshi

    We have developed a multisensor home and ambulatory blood pressure (BP) monitoring system for monitoring 24-h central and brachial BP variability concurrent with physical activity (PA), temperature, and atmospheric pressure. The new BP monitoring system utilizes our recently developed biological and environmental signal monitoring Information Communication Technology/Internet of Things system, which can simultaneously monitor the environment (temperature, illumination, etc.) of different rooms in a house (entryway, bedroom, living room, bathing room, and toilet), and a wrist-type high-sensitivity actigraph for identifying the location of patients. By collecting both data on BP and environmental parameters, the system can assess the brachial and central hemodynamic BP reactivity profiles of patients, such as actisensitivity (BP change with PA), thermosensitivity (with temperature), and atmospheric sensitivity (with atmospheric pressure). We used this new system to monitor ambulatory BP variability in outpatients with one or more cardiovascular disease (CVD) risk factors both in summer and winter. Actisensitivity (the slope of the regression line of ambulatory BP against the log-physical activity) was higher in winter than summer. By multi-level analysis using the parameters monitored by this system, we estimated the ambulatory BPs under different conditions. The individual time-series big data collected by this system will contribute to anticipation medicine for CVD. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Area monitoring intelligent system - SIMA

    International Nuclear Information System (INIS)

    Bhoem, P.; Hisas, F.; Gelardi, G.

    1990-01-01

    The area monitoring intelligent system (SIMA) is an equipment to be used in radioprotection. SIMA has the function of monitoring the radiation levels of determined areas of the installations where radioactive materials are handled. (Author) [es

  14. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    Stafford, R.G.; DeVore, R.K.

    1977-01-01

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  15. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    Science.gov (United States)

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Upgrade of the LHCb ECAL monitoring system

    CERN Document Server

    Guz, Yu

    2015-01-01

    The LHCb ECAL is a shashlik calorimeter of 6016 cells, covering 7.68 x 6.24 m$^2$ area. To monitor the readout chain of each ECAL cell, the LHCb ECAL is equipped with a LED based monitoring system. During the LHC Run I (2009-2012) it was found that the precision of the monitoring suffers from the radiation degradation of transparency of polystyrene clear fibers used to transport the LED light to the ECAL photomultipliers. In order to improve the performance of the monitoring system, and especially in view of significant increase of LHCb working luminosity foreseen after 2018, the present plastic fibers have been replaced by radiation hard quartzfi bers. The performance of the old LHCb ECAL monitoring system during LHC Run I and the design of the upgraded system are discussed here.

  17. Centralized environmental radiation monitoring system in JAERI

    International Nuclear Information System (INIS)

    Katagiri, H.; Kobalyashi, H.

    1993-01-01

    JAERI has continued the environmental radiation background survey and monitoring to ensure the safety of the peoples around the institute since one year before the first criticality of JRR-1 (Japan Research Reactor No.1) in August 1957. Air absorbed doses from β and γ radiation, α and β radioactivity in air and the radioactivities in environmental samples were the monitoring items. For the monitoring of β and γ radiation and α and β radioactivity in air, monitoring station and the centralized automatic environmental radiation monitoring system applying a computer were established as a new challenging monitoring system for nuclear facility, which was the first one not only in Japan but also in the would in 1960 and since then the system has been renewed two times (in 1973 and 1988) by introducing the latest technology in the fields of radiation detection and computer control at each stage. Present system renewed in 1988 was designed to prevent the interruption of monitoring due to computer troubles, communication troubles and power failures especially an instant voltage drop arisen from thunder by reflecting the experiences through the operation and maintenance of the former system. Dual telemeters whose power is constantly supplied via batteries (capable of 10 min monitoring after power failure) are equipped in the monitoring center to cope with telemeter troubles, which has operated successfully without any suspension being attributable to the power failures and telemeter troubles

  18. The software and hardware design of a 16 channel online dose rate monitoring system

    International Nuclear Information System (INIS)

    Tang Wenjuan; Yan Yonghong; Yang Shiming; Li Xiaonan; Min Jian

    2011-01-01

    The software and hardware design of a 16 channel online dose rate monitoring system is presented. After being amplified and A/D converted, the output signal of the sensors was sent to a microprocessor through an FPGA, where the low-frequency filter, calculation, temperature compensation and pedestal deduction were accomplished. Such steps corrected the variation of dark current dependent on temperature fluctuations in a effective way, and finally the instantaneous dose rate results with enough precise were obtained. (authors)

  19. Life Support Systems: Environmental Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Environmental Monitoring (EM) systems task objectives are to develop and demonstrate onboard...

  20. Acoustic emission leak monitoring system LMS-96

    International Nuclear Information System (INIS)

    Liska, J.; Cvrcek, M.; Mueller, L.

    1997-01-01

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  1. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.; Murali, N. [Real Time Systems Division, Electronics, Instrumentation and Radiological Safety Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-02-15

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.

  2. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  3. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Hawaiian Archipelago from 2010 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  4. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Marianas Archipelago from 2011 to 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  5. Real-time performance monitoring and management system

    Science.gov (United States)

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  6. Online monitoring of dynamic tip clearance of turbine blades in high temperature environments

    Science.gov (United States)

    Han, Yu; Zhong, Chong; Zhu, Xiaoliang; Zhe, Jiang

    2018-04-01

    Minimized tip clearance reduces the gas leakage over turbine blade tips and improves the thrust and efficiency of turbomachinery. An accurate tip clearance sensor, measuring the dynamic clearances between blade tips and the turbine case, is a critical component for tip clearance control. This paper presents a robust inductive tip clearance sensor capable of monitoring dynamic tip clearances of turbine machines in high-temperature environments and at high rotational speeds. The sensor can also self-sense the temperature at a blade tip in situ such that temperature effect on tip clearance measurement can be estimated and compensated. To evaluate the sensor’s performance, the sensor was tested for measuring the tip clearances of turbine blades under various working temperatures ranging from 700 K to 1300 K and at turbine rotational speeds ranging from 3000 to 10 000 rpm. The blade tip clearance was varied from 50 to 2000 µm. The experiment results proved that the sensor can accurately measure the blade tip clearances with a temporal resolution of 10 µm. The capability of accurately measuring the tip clearances at high temperatures (~1300 K) and high turbine rotation speeds (~30 000 rpm), along with its compact size, makes it promising for online monitoring and active control of blade tip clearances of high-temperature turbomachinery.

  7. Development of monitoring system using acoustic emission for detection of helium gas leakage for primary cooling system and flow-induced vibration for heat transfer tube of heat exchangers for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Kunitomi, Kazuhiko; Furusawa, Takayuki; Shinozaki, Masayuki; Satoh, Yoshiyuki; Yanagibashi, Minoru

    1998-10-01

    The High Temperature Engineering Test Reactor (HTTR) uses helium gas for its primary coolant, whose leakage inside reactor containment vessel is considered in design of the HTTR. It is necessary to detect leakage of helium gas at an early stage so that total amount of the leakage should be as small as possible. On the other hand, heat transfer tubes of heat exchangers of the HTTR are designed not to vibrate at normal operation, but the flow-induced vibration is to be monitored to provide against an emergency. Thus monitoring system of acoustic emission for detection of primary coolant leakage and vibration of heat transfer tubes was developed and applied to the HTTR. Before the application to the HTTR, leakage detection test was performed using 1/4 scaled model of outer tube of primary concentric hot gas duct. Result of the test covers detectable minimum leakage rate and effect of difference in gas, pressure, shape of leakage path and distance from the leaking point. Detectable minimum leakage rate was about 5 Ncc/sec. The monitoring system is promising in leakage detection, though countermeasure to noise is to be needed after the HTTR starts operating. (author)

  8. International experience feedback on fatigue monitoring systems for nuclear power plants

    International Nuclear Information System (INIS)

    Morilhat, P.

    1997-01-01

    From the very beginning of electro-nuclear programmes the need has become internationally obvious to develop systems aiming at automation and improvement of monitoring of the transients stressing the main mechanical components of nuclear units, by checking the conservativeness of the design no longer from a comparison of causes (temperature and pressure variations) but by directly assessing the results (stresses and linked damage). Prototypes of such systems have appeared since the middle of the 1980's mainly in France, the USA and Germany, and manufacturing them has since continued. Several years of development and on site testing of prototypes of fatigue measuring devices designed by the R and D Direction have enabled contacts with the developers of similar systems to be established and, in some cases, comparisons to be made. The experience accumulated in the use of such systems, both in France and abroad from now on makes a first experience feedback possible. The fatigue measuring device concept is based on a succession of elementary modules which enable the information received from the unit to be processed, first in the form of transient counting (transient meters), then in the form of mechanical diagnosis (fatigue monitoring systems). Among the systems in operation some provide actually only the transient meter part while others link transient meters and fatigue meters (EDF, EPRI and MITSUBISHI systems and some versions of the SIEMENS system). Moreover, numerous systems require, in addition to unit operation instrumentation, specific instrumentation located in monitored areas. The number of devices in operation has not stopped growing since the middle of the 80's to reach 53 systems working in 1996. The biggest developers are EPRI and its consultant Structural Integrity Associates (FatiguePro system), SIEMENS (FAMOS system) and EDF whose gradual implementation of SYSFAC from '96 is going to make its share particularly increase. Technical experience feedback

  9. Uranium concentration monitor manual: 2300 system

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.

    1985-04-01

    This manual describes the design, operation, and procedures for measurement control for the automated uranium concentration monitor on the 2300 solvent extraction system at the Oak Ridge Y-12 Plant. The nonintrusive monitor provides a near-real time readout of uranium concentration at two locations simultaneously in the solvent extraction system for process monitoring and control. Detectors installed at the top of the extraction column and at the bottom of the backwash column acquire spectra of gamma rays from the solvent extraction solutions in the columns. Pulse-height analysis of these spectra gives the concentration of uranium in the organic product of the extraction column and in the aqueous product of the solvent extraction system. The visual readouts of concentrations for process monitoring are updated every 2 min for both detection systems. Simultaneously, the concentration results are shipped to a remote computer that has been installed by Y-12 to demonstrate automatic control of the solvent extraction system based on input of near-real time process operation information. 8 refs., 13 figs., 4 tabs

  10. Standard-D hydrogen monitoring system, system design description

    International Nuclear Information System (INIS)

    Schneider, T.C.

    1996-01-01

    During most of the year, it is assumed that the vapor space in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty-five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gasses to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gasses from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. The Standard Hydrogen Monitoring System (SHMS) is designed to monitor and quantify the percent hydrogen concentration during these potential gas releases. This document describes the design of the Standard-D Hydrogen Monitoring System, (SHMS-D) and its components as it differs from the original SHMS

  11. Radiation monitoring system based on EPICS

    International Nuclear Information System (INIS)

    Wang Weizhen; Li Jianmin; Wang Xiaobing; Hua Zhengdong; Xu Xunjiang

    2008-01-01

    Shanghai Synchrotron Radiation Facility (SSRF for short) is a third-generation light source building in China, including a 150 MeV injector, 3.5 GeV booster, 3.5 GeV storage ring and an amount of beam line stations. During operation, a mass of Synchrotron Radiation will be produced by electrons in the booster and the storage ring. Bremsstrahlung and neutrons will also be produced as a result of the interaction between the electrons, especially the beam loss, and the wall of the vacuum beam pipe. SSRF Radiation Monitoring System is established for monitoring the radiation dosage of working area and environment while SSRF operating. The system consists of detectors, intelligent data-collecting modules, monitoring computer, and managing computer. The software system is developed based on EPICS (Experimental Physics and Industrial Control System), implementing the collecting and monitoring the data output from intelligent modules, analyzing the data, and so on. (authors)

  12. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    Egberts, J.

    2012-01-01

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author) [fr

  13. FFTF fission gas monitor computer system

    International Nuclear Information System (INIS)

    Hubbard, J.A.

    1987-01-01

    The Fast Flux Test Facility (FFTF) is a liquid-metal-cooled test reactor located on the Hanford site. A dual computer system has been developed to monitor the reactor cover gas to detect and characterize any fuel or test pin fission gas releases. The system acquires gamma spectra data, identifies isotopes, calculates specific isotope and overall cover gas activity, presents control room alarms and displays, and records and prints data and analysis reports. The fission gas monitor system makes extensive use of commercially available hardware and software, providing a reliable and easily maintained system. The design provides extensive automation of previous manual operations, reducing the need for operator training and minimizing the potential for operator error. The dual nature of the system allows one monitor to be taken out of service for periodic tests or maintenance without interrupting the overall system functions. A built-in calibrated gamma source can be controlled by the computer, allowing the system to provide rapid system self tests and operational performance reports

  14. Creep-fatigue monitoring system for header ligaments of fossil power plants

    International Nuclear Information System (INIS)

    Chen, K.L.; Deardorf, A.F.; Copeland, J.F.; Pflasterer, R.; Beckerdite, G.

    1993-01-01

    The cracking of headers (primary and secondary superheater outlet, and reheater outlet headers) at ligament locations is an important issue for fossil power plants. A model for crack initiation and growth has been developed, based on creep-fatigue damage mechanisms. This cracking model is included in a creep-fatigue monitoring system to assess header structural integrity under high temperature operating conditions. The following principal activities are required to achieve this goal: (1) the development of transfer functions and (2) the development of a ligament cracking model. The first task is to develop stress transfer functions to convert measured (monitored) temperatures, pressures and flow rates into stresses to be used to compute damage. Elastic three-dimensional finite element analyses were performed to study transient thermal stress behavior. The sustained pressure stress redistribution due to high temperature creep was studied by nonlinear finite element analyses. The preceding results are used to derive Green's functions and pressure stress gradient transfer functions for monitoring at the juncture of the tube with the header inner surface, and for crack growth at the ligaments. The virtual crack closure method is applied to derive a stress intensity factor K solution for a corner crack at the tube/header juncture. Similarly, using the reference stress method, the steady state creep crack growth parameter C * is derived for a header corner crack. The C * solution for a small corner crack in a header can be inserted directed into the available C t solution, along with K to provide the complete transient creep solution

  15. Monitoring system for automation of experimental researches in cutting

    International Nuclear Information System (INIS)

    Kuzinovski, Mikolaj; Trajchevski, Neven; Filipovski, Velimir; Tomov, Mite; Cichosz, Piotr

    2009-01-01

    This study presents procedures being performed when projecting and realizing experimental scientific researches by application of the automated measurement system with a computer support in all experiment stages. A special accent is placed on the measurement system integration and mathematical processing of data from experiments. Automation processes are described through the realized own automated monitoring system for research of physical phenomena in the cutting process with computer-aided data acquisition. The monitoring system is intended for determining the tangential, axial and radial component of the cutting force, as well as average temperature in the cutting process. The hardware acquisition art consists of amplifiers and A/D converters, while as for analysis and visualization software for P C is developed by using M S Visual C++. For mathematical description researched physical phenomena CADEX software is made, which in connection with MATLAB is intended for projecting processing and analysis of experimental scientific researches against the theory for planning multi-factorial experiments. The design and construction of the interface and the computerized measurement system were done by the Faculty of Mechanical Engineering in Skopje in collaboration with the Faculty of Electrical Engineering and Information Technologies in Skopje and the Institute of Production Engineering and Automation, Wroclaw University of Technology, Poland. Gaining own scientific research measurement system with free access to hardware and software parts provides conditions for a complete control of the research process and reduction of interval of the measuring uncertainty of gained results from performed researches.

  16. Imaging technique for real-time temperature monitoring during cryotherapy of lesions

    Science.gov (United States)

    Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey

    2016-11-01

    Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to -16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and -13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.

  17. Moisture monitoring and control system engineering study

    International Nuclear Information System (INIS)

    Carpenter, K.E.; Fadeff, J.G.

    1995-01-01

    During the past 50 years, a wide variety of chemical compounds have been placed in the 149 single-shell tanks (SSTS) on the Hanford Site. A concern relating to chemical stability, chemical control, and safe storage of the waste is the potential for propagating reactions as a result of ferrocyanide-oxidizer and organic-oxidizer concentrations in the SSTS. Propagating reactions in fuel-nitrate mixtures are precluded if the amounts of fuel and moisture present in the waste are within specified limits. Because most credible ignition sources occur near the waste surface, the main emphasis of this study is toward monitoring and controlling moisture in the top 14 cm (5.5 in.) of waste. The purpose of this engineering study is to recommend a moisture monitoring and control system for use in SSTs containing sludge and saltcake. This study includes recommendations for: (1) monitoring and controlling moisture in SSTs; (2) the fundamental design criteria for a moisture monitoring and control system; and (3) criteria for the deployment of a moisture monitoring and control system in hanford Site SSTs. To support system recommendations, technical bases for selecting and using a moisture monitoring and control system are presented. Key functional requirements and a conceptual design are included to enhance system development and establish design criteria

  18. The SSRL injector beam position monitoring systems

    International Nuclear Information System (INIS)

    Lavender, W.; Baird, S.; Brennan, S.; Borland, M.; Hettel, R.; Nuhn, H.D.; Ortiz, R.; Safranek, J.; Sebek, J.; Wermelskirchen, C.; Yang, J.

    1991-01-01

    The beam position monitoring system of the SSRL injector forms a vital component of its operation. Several different types of instrumentation are used to measure the position or intensity of the electron beam in the injector. These include current toroids, fluorescent screens, Faraday cups, the 'Q' meter, a synchrotron light monitor, and electron beam position monitors. This paper focuses on the use of the electron beam position monitors to measure electron trajectories in the injector transport lines and the booster ring. The design of the beam position monitors is described in another paper to be presented at this conference. There are three different beam position monitor systems in the injector. One system consists of a set of five BPMs located on the injection transport line from the linac to the booster (known as the LTB line). There is a second system of six BPMs located on the ejection transport line (known as the BTS line). Finally, there is an array of 40 BPMs installed on the main booster ring itself. This article describes the software and processing electronics of the systems used to measure electron beam trajectories for the new SSRL injector for SPEAR

  19. A multiparameter wearable physiologic monitoring system for space and terrestrial applications

    Science.gov (United States)

    Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.; hide

    2005-01-01

    A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.

  20. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  1. An Airborne Wireless Sensor System for Near-Real Time Air Pollution Monitoring

    Directory of Open Access Journals (Sweden)

    Orestis EVANGELATOS

    2015-06-01

    Full Text Available Over the last decades with the rapid growth of industrial zones, manufacturing plants and the substantial urbanization, environmental pollution has become a crucial health, environmental and safety concern. In particular, due to the increased emissions of various pollutants caused mainly by human sources, the air pollution problem is elevated in such extent where significant measures need to be taken. Towards the identification and the qualification of that problem, we present in this paper an airborne wireless sensor network system for automated monitoring and measuring of the ambient air pollution. Our proposed system is comprised of a pollution-aware wireless sensor network and unmanned aerial vehicles (UAVs. It is designed for monitoring the pollutants and gases of the ambient air in three-dimensional spaces without the human intervention. In regards to the general architecture of our system, we came up with two schemes and algorithms for an autonomous monitoring of a three-dimensional area of interest. To demonstrate our solution, we deployed the system and we conducted experiments in a real environment measuring air pollutants such as: NH3, CH4, CO2, O2 along with temperature, relative humidity and atmospheric pressure. Lastly, we experimentally evaluated and analyzed the two proposed schemes.

  2. DEVELOPMENT OF A MICROCONTROLLED TEMPERATURE MONITORING SYSTEM AND EVALUATION OF THE SENSOR ELEMENT IMPLANT IN BOVINES DESENVOLVIMENTO DE UM SISTEMA MICROCONTROLADO DE MONITORAÇÃO DA TEMPERATURA E AVALIAÇÃO DO IMPLANTE DO ELEMENTO SENSOR DIGITAL EM BOVINOS

    Directory of Open Access Journals (Sweden)

    Ernane José Xavier Costa

    2007-09-01

    Full Text Available

    this paper presents a complete system for tempe-rature monitoring. the system was developed to speed up bovine behavior studies under temperature exposure. the equipment uses digital technology with custom setup ca-pability by means of computer program and the sensor can be implanted in to animal. results obtained show that the developed system is able to monitor bovine temperatures with a sample rate of five minutes during 30 days with accuracy of 0.0625 oc.

    KEY-WORDS: Heat stress sensors, optical, temperature, transceptor.

    um sistema completo de instrumentação para monitoração de temperatura é apresentado neste artigo. o sistema foi desenvolvido para auxiliar estudo de estresse térmico em bovinos. neste equipamento, o elemento sensor pode ser implantado no animal. o equipamento consiste de tecnologia digital e óptica com capacidade de configuração através de programa de computador. os resultados obtidos mostram que o sistema desenvolvido é capaz de monitorar a temperatura de bovinos a cada cinco minutos durante trinta dias com resolução de 0.0625 oc.

    PALAVRAS-CHAVE: estresse térmico sensores, óptico, temperatura, transceptor.  

  3. National Satellite Forest Monitoring systems for REDD+

    Science.gov (United States)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows

  4. Monitoring of Thermal Protection Systems and MMOD using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2014-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.

  5. Development of an improved wearable device for core body temperature monitoring based on the dual heat flux principle.

    Science.gov (United States)

    Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong

    2017-04-01

    In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08  ±  0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13  ±  0.22 °C compared with sublingual temperature, while a significant increase of 1.36  ±  0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.

  6. A Data Transmission Algorithm Based on Dynamic Grid Division for Coal Goaf Temperature Monitoring

    Directory of Open Access Journals (Sweden)

    Qingsong Hu

    2014-01-01

    Full Text Available WSN (wireless sensor network is a perfect tool of temperature monitoring in coal goaf. Based on the three-zone theory of goaf, the GtmWSN model is proposed, and its dynamic features are analyzed. Accordingly, a data transmission scheme, named DTDGD, is worked out. Firstly, sink nodes conduct dynamic grid division on the GtmWSN according to virtual semicircle. Secondly, each node will confirm to which grid it belongs based on grid number. Finally, data will be delivered to sink nodes with greedy forward and hole avoidance. Simulation results and field data showed that the GtmWSN and DTDGD satisfied the lifetime need of goaf temperature monitoring.

  7. Automated Vehicle Monitoring System

    OpenAIRE

    Wibowo, Agustinus Deddy Arief; Heriansyah, Rudi

    2014-01-01

    An automated vehicle monitoring system is proposed in this paper. The surveillance system is based on image processing techniques such as background subtraction, colour balancing, chain code based shape detection, and blob. The proposed system will detect any human's head as appeared at the side mirrors. The detected head will be tracked and recorded for further action.

  8. An analysis of spatial representativeness of air temperature monitoring stations

    Science.gov (United States)

    Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen

    2018-05-01

    Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

  9. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    International Nuclear Information System (INIS)

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwartz, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R"2 = 0.81. Furthermore, based on the model's results, we analyzed the spatial profile of Tair within the study domain for representative days. - Highlights: • The location of warmest and coldest zones are constant over the last 30 years. • Distinct diurnal and temporal Brightness Temperature behavior divide the city into four segments. • We assess air temperature from satellite surface temperature (R"2 = 0.81). - The location of warmest and coldest zones are constant over the last 30 years. Distinct diurnal and temporal Surface Temperature behavior divide the city into four different segments.

  10. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    Science.gov (United States)

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.

  11. Long-term temperature monitoring at the biological community site on the Nankai accretionary prism off Kii Peninsula

    Science.gov (United States)

    Goto, S.; Hamamoto, H.; Yamano, M.; Kinoshita, M.; Ashi, J.

    2008-12-01

    Nankai subduction zone off Kii Peninsula is one of the most intensively surveyed areas for studies on the seismogenic zone. Multichannel seismic reflection surveys carried out in this area revealed the existence of splay faults that branched from the subduction zone plate boundary [Park et al., 2002]. Along the splay faults, reversal of reflection polarity was observed, indicating elevated pore fluid pressure along the faults. Cold seepages with biological communities were discovered along a seafloor outcrop of one of the splay faults through submersible observations. Long-term temperature monitoring at a biological community site along the outcrop revealed high heat flow carried by upward fluid flow (>180 mW/m2) [Goto et al., 2003]. Toki et al. [2004] estimated upward fluid flow rates of 40-200 cm/yr from chloride distribution of interstitial water extracted from sediments in and around biological community sites along the outcrop. These observation results suggest upward fluid flow along the splay fault. In order to investigate hydrological nature of the splay fault, we conducted long-term temperature monitoring again in the same cold seepage site where Goto et al. [2003] carried out long-term temperature monitoring. In this presentation, we present results of the temperature monitoring and estimate heat flow carried by upward fluid flow from the temperature records. In this long-term temperature monitoring, we used stand-alone heat flow meter (SAHF), a probe-type sediment temperature recorder. Two SAHFs (SAHF-3 and SAHF-4) were used in this study. SAHF-4 was inserted into a bacterial mat, within several meters of which the previous long-term temperature monitoring was conducted. SAHF-3 was penetrated into ordinary sediment near the bacterial mat. The sub-bottom temperature records were obtained for 8 months. The subsurface temperatures oscillated reflecting bottom- water temperature variation (BTV). For sub-bottom temperatures measured with SAHF-3 (outside of

  12. Current status of technology development on remote monitoring system

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Lee, Y. K.; Lee, Y. D.; Na, W. W.

    1997-03-01

    IAEA is planning to perform the remote monitoring system in nuclear facility in order to reinforce the economical and efficient inspection. National lab. in U.S. is developing the corresponding core technology and field trial will be done to test the remote monitoring system by considering the case that it replace the current safeguards system. U.S. setup the International Remote Monitoring Project to develop the technology. IAEA makes up remote monitoring team and setup the detail facility to apply remote monitoring system. Therefore, early participation in remote monitoring technology development will make contribution in international remote monitoring system and increase the transparency and confidence in domestic nuclear activities. (author). 12 refs., 20 figs

  13. Temperature-monitored optical treatment for radial tissue expansion.

    Science.gov (United States)

    Bak, Jinoh; Kang, Hyun Wook

    2017-07-01

    Esophageal stricture occurs in 7-23% of patients with gastroesophageal reflux disease. However, the current treatments including stent therapy, balloon dilation, and bougienage involve limitations such as stent migration, formation of the new strictures, and snowplow effect. The purpose of the current study was to investigate the feasibility of structural expansion in tubular tissue ex vivo during temperature-monitored photothermal treatment with a diffusing applicator for esophageal stricture. Porcine liver was used as an ex vivo tissue sample for the current study. A glass tube was used to maintain a constant distance between the diffuser and tissue surface and to evaluate any variations in the luminal area after 10-W 1470-nm laser irradiation for potential stricture treatment. The 3D goniometer measurements confirmed roughly isotropic distribution with less than 10% deviation from the average angular intensity over 2π (i.e., 0.86 ± 0.09 in arbitrary unit) from the diffusing applicator. The 30-s irradiation increased the tissue temperature up to 72.5 °C, but due to temperature feedback, the interstitial tissue temperature became saturated at 70 °C (i.e., steady-state error = ±0.4 °C). The irradiation times longer than 5 s presented area expansion index of 1.00 ± 0.04, signifying that irreversible tissue denaturation permanently deformed the lumen in a circular shape and secured the equivalent luminal area to that of the glass tube. Application of a temperature feedback controller for photothermal treatment with the diffusing applicator can regulate the degree of thermal denaturation to feasibly treat esophageal stricture in a tubular tissue.

  14. Shared performance monitor in a multiprocessor system

    Science.gov (United States)

    Chiu, George; Gara, Alan G.; Salapura, Valentina

    2012-07-24

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  15. Highly Integrated MEMS-ASIC Sensing System for Intracorporeal Physiological Condition Monitoring.

    Science.gov (United States)

    Xue, Ning; Wang, Chao; Liu, Cunxiu; Sun, Jianhai

    2018-01-02

    In this paper, a highly monolithic-integrated multi-modality sensor is proposed for intracorporeal monitoring. The single-chip sensor consists of a solid-state based temperature sensor, a capacitive based pressure sensor, and an electrochemical oxygen sensor with their respective interface application-specific integrated circuits (ASICs). The solid-state-based temperature sensor and the interface ASICs were first designed and fabricated based on a 0.18-μm 1.8-V CMOS (complementary metal-oxide-semiconductor) process. The oxygen sensor and pressure sensor were fabricated by the standard CMOS process and subsequent CMOS-compatible MEMS (micro-electromechanical systems) post-processing. The multi-sensor single chip was completely sealed by the nafion, parylene, and PDMS (polydimethylsiloxane) layers for biocompatibility study. The size of the compact sensor chip is only 3.65 mm × 1.65 mm × 0.72 mm. The functionality, stability, and sensitivity of the multi-functional sensor was tested ex vivo. Cytotoxicity assessment was performed to verify that the bio-compatibility of the device is conforming to the ISO 10993-5:2009 standards. The measured sensitivities of the sensors for the temperature, pressure, and oxygen concentration are 10.2 mV/°C, 5.58 mV/kPa, and 20 mV·L/mg, respectively. The measurement results show that the proposed multi-sensor single chip is suitable to sense the temperature, pressure, and oxygen concentration of human tissues for intracorporeal physiological condition monitoring.

  16. 40 CFR 63.7927 - What are my inspection and monitoring requirements for closed vent systems and control devices?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are my inspection and monitoring... Pollutants: Site Remediation Closed Vent Systems and Control Devices § 63.7927 What are my inspection and... temperature at the inlet of the catalyst bed, the hourly average temperature at the outlet of the catalyst bed...

  17. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    Data from the two ESA satellites ERS-1 and ERS-2 are used in global and regional analysis of sea level and sea surface temperature trends over the last, 7.8 years. T he ERS satellites and in the future the ENVISAT satellite provide unique opportunity for monitoring both changes in sea level and sea...

  18. An automated neutron monitor maintenance system

    International Nuclear Information System (INIS)

    Moore, F.S.; Griffin, J.C.; Odell, D.M.C.

    1996-01-01

    Neutron detectors are commonly used by the nuclear materials processing industry to monitor fissile materials in process vessels and tanks. The proper functioning of these neutron monitors must be periodically evaluated. We have developed and placed in routine use a PC-based multichannel analyzer (MCA) system for on-line BF3 and He-3 gas-filled detector function testing. The automated system: 1) acquires spectral data from the monitor system, 2) analyzes the spectrum to determine the detector's functionality, 3) makes suggestions for maintenance or repair, as required, and 4) saves the spectrum and results to disk for review. The operator interface has been designed to be user-friendly and to minimize the training requirements of the user. The system may also be easily customized for various applications

  19. Integrated environmental monitoring and information system

    International Nuclear Information System (INIS)

    Klinda, J.; Lieskovska, Z.

    1998-01-01

    The concept of the environmental monitoring within the territory of the Slovak Republic and the concept of the integrated environmental information system of the Slovak Republic were accepted and confirmed by the Government Order No. 449/1992. The state monitoring system covering the whole territory of Slovakia is the most important and consists of 13 Partial Monitoring Systems (PMSs). List of PMSs is included. The listed PMSs are managed according to the concept of the Sectoral Information System (SIS) of the Ministry of the Environment of the Slovak Republic (MESR) which was established by the National Council Act No. 261/1995 Coll. on the SIS. The SIS consists of 18 subsystems which are listed. The overviews of budget of PMSs as well as of environmental publications and periodicals of the MESR are included

  20. Remote Maintenance Monitoring System -

    Data.gov (United States)

    Department of Transportation — The Remote Maintenance and Monitoring System (RMMS) is a collection of subsystems that includes telecommunication components, hardware, and software, which serve to...

  1. Development of a DOAS System for ToTAL-DOAS Applications with Temperature Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Javier A; Frins, Erna, E-mail: jramos@fing.edu.uy [Instituto de Fisica, Facultad de Ingenieria, UdelaR (Uruguay)

    2011-01-01

    The ToTAL -DOAS (Topographic Target Light scattering - Differential optical Absorption Spectroscopy) is a novel atmospheric monitoring technique. The aim of our work has been enhancing a prototype, previously assembled within our research group, adding to it a temperature control and developing specific control software. The whole system offers the possibility of two dimension movement for spectra acquisition with a telescope of a field of view of approximately 0.03{sup 0}, which let in signals in the near-UV and visible spectral range. The enhanced DOAS system is intended to be located on the roof of our faculty building to monitor SO2 and NO2 traces above the city of Montevideo. We are presenting the results of device's characterization.

  2. Structure health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2003-01-01

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  3. Structural health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok [Nonstructive Measurment Lab., KRISS, Daejeon (Korea, Republic of)

    2003-07-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  4. Structure health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok [Smart Measurment Group. Korea Resarch Institute of Standards and Science, Saejeon (Korea, Republic of)

    2003-05-15

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  5. Structural health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok

    2003-01-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  6. Loose parts monitoring system

    International Nuclear Information System (INIS)

    Wakasa, Kohji; Nishida, Eiichi; Ishii, Kazuo; Yamanaka, Hiroto.

    1987-01-01

    In the loose parts monitoring system (LPMS), installed for integrity monitoring of the nuclear power plants; when there occur foreign metallic objects in the reactor primary system, including a steam generator and the piping, the sounds caused by them moving with the cooling water and thereby getting in contact with various structures are detected. Its purpose is, therefore, to detect any abnormality in the reactor plant system through such abnormal sounds due to loose or fallen supports etc., and so provide this information to the reactor operators. In principle, accelerometers are distributed in such as reactor vessel, steam generator, coolant pumps, etc., so that various sounds are collected and converted into electrical signals, followed by analysis of the data. Described are the LPMS configuration/functions, the course taken in LPMS development, future problems, etc. (Mori, K.)

  7. OPTIMIZATION METHODS FOR HYDROECOLOGICAL MONITORING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Inna Pivovarova

    2016-09-01

    Full Text Available The paper describes current approaches to the rational distribution of monitoring stations. A short review and the organization of the system of hydro-geological observations in different countries are presented. On the basis of real data we propose a solution to the problem of how to calculate the average area per one hydrological station, which is the main indicator of the efficiency and performance of the monitoring system in general. We conclude that a comprehensive approach to the monitoring system organization is important, because only hydrometric and hydrochemical activities coordinated in time provide possibilities needed to analyse the underline causes of the observed pollutants content dynamics in water bodies in the long term.

  8. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  9. Time temperature indicators as devices intelligent packaging

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2013-01-01

    Full Text Available Food packaging is an important part of food production. Temperature is a one of crucial factor which affecting the quality and safety of food products during distribution, transport and storage. The one way of control of food quality and safety is the application of new packaging systems, which also include the intelligent or smart packaging. Intelligent packaging is a packaging system using different indicators for monitoring the conditions of production, but in particular the conditions during transport and storage. Among these indicators include the time-temperature indicators to monitor changes in temperature, which is exposed the product and to inform consumers about the potential risks associated with consumption of these products. Time temperature indicators are devices that show an irreversible change in a physical characteristic, usually color or shape, in response to temperature history. Some are designed to monitor the evolution of temperature with time along the distribution chain and others are designed to be used in the consumer packages.

  10. A continuous hyperspatial monitoring system of evapotranspiration and gross primary productivity from Unmanned Aerial Systems

    Science.gov (United States)

    Wang, Sheng; Bandini, Filippo; Jakobsen, Jakob; Zarco-Tejada, Pablo J.; Köppl, Christian Josef; Haugård Olesen, Daniel; Ibrom, Andreas; Bauer-Gottwein, Peter; Garcia, Monica

    2017-04-01

    Unmanned Aerial Systems (UAS) can collect optical and thermal hyperspatial (challenges for an operational monitoring using UAS compared to satellites: the payload capacity of most commercial UAS is less than 2 kg, but miniaturized sensors have low signal to noise ratios and small field of view requires mosaicking hundreds of images and accurate orthorectification. In addition, wind gusts and lower platform stability require appropriate geometric and radiometric corrections. Finally, modeling fluxes on days without images is still an issue for both satellite and UAS applications. This study focuses on designing an operational UAS-based monitoring system including payload design, sensor calibration, based on routine collection of optical and thermal images in a Danish willow field to perform a joint monitoring of ET and GPP dynamics over continuous time at daily time steps. The payload (approach (Potter et al., 1993). Both models estimate ET and GPP under optimum potential conditions down-regulated by the same biophysical constraints dependent on remote sensing and atmospheric data to reflect multiple stresses. Vegetation indices were calculated from the multispectral data to assess vegetation conditions, while thermal infrared imagery was used to compute a thermal inertia index to infer soil moisture constraints. To interpolate radiometric temperature between flights, a prognostic Surface Energy Balance model (Margulis et al., 2001) based on the force-restore method was applied in a data assimilation scheme to obtain continuous ET and GPP fluxes. With this operational system, regular flight campaigns with a hexacopter (DJI S900) have been conducted in a Danish willow flux site (Risø) over the 2016 growing season. The observed energy, water and carbon fluxes from the Risø eddy covariance flux tower were used to validate the model simulation. This UAS monitoring system is suitable for agricultural management and land-atmosphere interaction studies.

  11. Modification of GNPS environment radiation monitoring network system

    International Nuclear Information System (INIS)

    Jiang Lili; Cao Chunsheng

    1999-01-01

    GNPS Environment Radiation Continuous Monitoring System (KRS), the only real time on-line system of site radiation monitoring, was put into service in 1993 prior to the first loading the the plant. It is revealed through several years of operation that this system has some deficiencies such as inadequate real time monitoring means, no figure and diagram display function on the central computer, high failures, frequent failure warning signals, thus making the availability of the system at a low level. In recent years, with the rapid development of computer network technology and increasingly strict requirements on the NPP environment protection raised by the government and public, KRS modification had become necessary and urgent. In 1996, GNPS carried out modification work on the measuring geometry condition of γ radiation monitoring sub-station and lightening protection. To enhance the functions of real time monitoring and data auto-processing, further modification of the system was made in 1998, including the update of the software and hardware of KRS central processor, set-up of system computer local network and database. In this way, the system availability and monitoring quality are greatly improved and effective monitoring and analysis means are provided for gaseous release during normal operation and under accident condition

  12. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  13. Reliability of operating WWER monitoring systems

    International Nuclear Information System (INIS)

    Yastrebenetsky, M.A.; Goldrin, V.M.; Garagulya, A.V.

    1996-01-01

    The elaboration of WWER monitoring systems reliability measures is described in this paper. The evaluation is based on the statistical data about failures what have collected at the Ukrainian operating nuclear power plants (NPP). The main attention is devoted to radiation safety monitoring system and unit information computer system, what collects information from different sensors and system of the unit. Reliability measures were used for decision the problems, connected with life extension of the instruments, and for other purposes. (author). 6 refs, 6 figs

  14. Reliability of operating WWER monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Yastrebenetsky, M A; Goldrin, V M; Garagulya, A V [Ukrainian State Scientific Technical Center of Nuclear and Radiation Safety, Kharkov (Ukraine). Instrumentation and Control Systems Dept.

    1997-12-31

    The elaboration of WWER monitoring systems reliability measures is described in this paper. The evaluation is based on the statistical data about failures what have collected at the Ukrainian operating nuclear power plants (NPP). The main attention is devoted to radiation safety monitoring system and unit information computer system, what collects information from different sensors and system of the unit. Reliability measures were used for decision the problems, connected with life extension of the instruments, and for other purposes. (author). 6 refs, 6 figs.

  15. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    Science.gov (United States)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-03-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high

  16. Wireless physiological monitoring system for psychiatric patients.

    Science.gov (United States)

    Rademeyer, A J; Blanckenberg, M M; Scheffer, C

    2009-01-01

    Patients in psychiatric hospitals that are sedated or secluded are at risk of death or injury if they are not continuously monitored. Some psychiatric patients are restless and aggressive, and hence the monitoring device should be robust and must transmit the data wirelessly. Two devices, a glove that measures oxygen saturation and a dorsally-mounted device that measures heart rate, skin temperature and respiratory rate were designed and tested. Both devices connect to one central monitoring station using two separate Bluetooth connections, ensuring a completely wireless setup. A Matlab graphical user interface (GUI) was developed for signal processing and monitoring of the vital signs of the psychiatric patient. Detection algorithms were implemented to detect ECG arrhythmias such as premature ventricular contraction and atrial fibrillation. The prototypes were manufactured and tested in a laboratory setting on healthy volunteers.

  17. The arrangement of deformation monitoring project and analysis of monitoring data of a hydropower engineering safety monitoring system

    Science.gov (United States)

    Wang, Wanshun; Chen, Zhuo; Li, Xiuwen

    2018-03-01

    The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.

  18. Health Monitoring for Coated Steel Belts in an Elevator System

    Directory of Open Access Journals (Sweden)

    Huaming Lei

    2012-01-01

    Full Text Available This paper presents a method of health monitoring for coated steel belts in an elevator system by measuring the electrical resistance of the ropes embedded in the belt. A model on resistance change caused by fretting wear and stress fatigue has been established. Temperature and reciprocating cycles are also taken into consideration when determining the potential strength degradation of the belts. It is proved by experiments that the method could effectively estimate the health degradation of the most dangerous section as well as other ones along the whole belts.

  19. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    Science.gov (United States)

    Saveliev, Alexei V [Chicago, IL; Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  20. Radiation monitoring of nuclear census intelligent data management and mobile monitoring data acquisition system

    International Nuclear Information System (INIS)

    Huang Libin; Zhong Zhijing; Zhou Yinhang; Guo Hongbo

    2014-01-01

    The system, employing advanced intelligent terminal, mobile applications, database technology, can achieve all kinds of field monitoring, mobile radiation monitoring data collected for laboratory analysis; employing GPS technology, can achieve the geographic information of the radiation monitoring data, time tagging and other anti-cheating measures; the system also established a mass database management system; the system is suitable for all types of nuclear-related units with special adaptive functions; system will be extended to GIS-based management capabilities of nuclear contamination distribution in latter stage. (authors)

  1. Mechatronics in design of monitoring and diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, T.; Barszcz, T. [Univ. of Mining and Metallurgy, Krakow (Poland); Hanc, A. [Energocontrol Ltd., Krakow (Poland)

    2003-07-01

    Nowadays development of computer engineering in area of hardware and software gives new possibilities of monitoring and diagnostics system design. The paper presents analysis of new possible solutions for design of monitoring and diagnostic systems including; smart sensor design, modular software design and communication modules. New concept of monitoring system based on home page server solution (nano-server) is presented. Smart sensor design concept with embedded hardware for diagnostic application is shown. New software concept for monitoring and diagnostics automation and examples of applications of new design for condition monitoring based on proposed solution are carefully discussed. (orig.)

  2. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval

    Science.gov (United States)

    Sugiura, T.; Hirata, H.; Hand, J. W.; van Leeuwen, J. M. J.; Mizushina, S.

    2011-10-01

    Clinical trials of hypothermic brain treatment for newborn babies are currently hindered by the difficulty in measuring deep brain temperatures. As one of the possible methods for noninvasive and continuous temperature monitoring that is completely passive and inherently safe is passive microwave radiometry (MWR). We have developed a five-band microwave radiometer system with a single dual-polarized, rectangular waveguide antenna operating within the 1-4 GHz range and a method for retrieving the temperature profile from five radiometric brightness temperatures. This paper addresses (1) the temperature calibration for five microwave receivers, (2) the measurement experiment using a phantom model that mimics the temperature profile in a newborn baby, and (3) the feasibility for noninvasive monitoring of deep brain temperatures. Temperature resolutions were 0.103, 0.129, 0.138, 0.105 and 0.111 K for 1.2, 1.65, 2.3, 3.0 and 3.6 GHz receivers, respectively. The precision of temperature estimation (2σ confidence interval) was about 0.7°C at a 5-cm depth from the phantom surface. Accuracy, which is the difference between the estimated temperature using this system and the measured temperature by a thermocouple at a depth of 5 cm, was about 2°C. The current result is not satisfactory for clinical application because the clinical requirement for accuracy must be better than 1°C for both precision and accuracy at a depth of 5 cm. Since a couple of possible causes for this inaccuracy have been identified, we believe that the system can take a step closer to the clinical application of MWR for hypothermic rescue treatment.

  3. Monitoring the CMS Data Acquisition System

    CERN Document Server

    Bauer, Gerry; Biery, K; Branson, J; Cano, E; Cheung, H; Ciganek, M; Cittolin, S; Coarasa, J A; Deldicque, C; Dusinberre, E; Erhan, S; Fortes Rodrigues, F; Gigi, D; Glege, F; Gomez-Reino, R; Gutleber, J; Hatton, D; Laurens, J F; Lopez Perez, J A; Meijers, F; Meschi, E; Meyer, A; Mommsen, R; Moser, R; O'Dell, V; Oh, A; Orsini, L B; Patras, V; Paus, C; Petrucci, A; Pieri, M; Racz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Shpakov, D; Simon, S; Sumorok, K; Zanetti, M.

    2010-01-01

    The CMS data acquisition system comprises O(20000) interdependent services that need to be monitored in near real-time. The ability to monitor a large number of distributed applications accurately and effectively is of paramount importance for robust operations. Application monitoring entails the collection of a large number of simple and composed values made available by the software components and hardware devices. A key aspect is that detection of deviations from a specified behaviour is supported in a timely manner, which is a prerequisite in order to take corrective actions efficiently. Given the size and time constraints of the CMS data acquisition system, efficient application monitoring is an interesting research problem. We propose an approach that uses the emerging paradigm of Web-service based eventing systems in combination with hierarchical data collection and load balancing. Scalability and efficiency are achieved by a decentralized architecture, splitting up data collections into regions of col...

  4. Hybrid Wireless Hull Monitoring System for Naval Combat Vessels

    Science.gov (United States)

    2010-03-01

    Payload Data Acquisition System (SPDAS) is designed by the Technology Management Group, Inc. ( TMG ). In its design, the monitoring system is intended...monitoring system custom designed by TMG for the U.S. Navy. The Scientific Payload Data Acquisition System (SPDAS) is a wired hull monitoring system

  5. Radiation monitoring system in medical facilities

    International Nuclear Information System (INIS)

    Matsuno, Kiyoshi

    1981-01-01

    (1) RI selective liquid effluent monitor is, in many cases, used at medical facilities to obtain data for density of radioactivity of six radionuclides. In comparison with the conventional gross measuring systems, over-evaluation is less, and the monitor is more practical. (2) Preventive monitor for loss of radium needle is a system which prevents missing of radium needle at a flush-toilet in radium treatment wards, and this monitor is capable of sensing a drop-off of radium needle of 0.5 mCi (minimum). (3) Short-lived positron gas measuring device belongs to a BABY CYCLOTRON installed in a hospital, and this device is used to measure density of radioactivity, radioactive impurity and chemical impurity of produced radioactive gas. (author)

  6. Soft bio-integrated systems for continuous health monitoring

    Science.gov (United States)

    Raj, M.; Wei, P. H.; Morey, B.; Wang, X.; Keen, B.; DePetrillo, P.; Hsu, Y. Y.; Ghaffari, R.

    2014-06-01

    Electronically-enabled wearable systems that monitor physiological activity and electrophysiological activity hold the key to truly personalized medical care outside of the hospital setting. However, fundamental technical challenges exist in achieving medical systems that are comfortable, unobtrusive and fully integrated without external connections to bench top instruments. In particular, there is a fundamental mismatch in mechanical coupling between existing classes of rigid electronics and soft biological substrates, like the skin. Here we describe new mechanical and electrical design strategies for wearable devices with mechanical properties that approach that of biological tissue. These systems exploit stretchable networks of conformal sensors (i.e. electrodes, temperature sensors, and accelerometers) and associated circuitry (i.e. microcontroller, memory, voltage regulators, rechargeable battery, wireless communication modules) embedded in ultrathin, elastomeric substrates. Quantitative analyses of sensor performance and mechanics under tensile and torsional stresses illustrate the ability to mechanically couple with soft tissues in a way that is mechanically invisible to the user. Representative examples of these soft biointegrated systems can be applied for continuous sensing of muscle and movement activity in the home and ambulatory settings.

  7. Bulk laundry monitoring system

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Jain, Amit; Verma, Amit; Anilkumar, S.; Babu, D.A.R.; Sharma, D.N.; Rande, N.R.; Singh, B.N.

    2012-01-01

    Protective wear (like boiler suits, hand gloves etc.) is essential while handling radioactive material in plants/laboratories. During the course of work, it is quite possible that protective wear may get contaminated. These protective wears are packed in laundry bags and send to Decontamination Centre (DC). There is a need for monitoring the laundry bags at the time of receipt, as well as before dispatch to respective locations to comply with AERB guidelines, To avoid cross contamination during wash cycle, contaminated bags (> 0.5 mR/h on surface) need to be segregated. Present paper describes the development of such system for monitoring surface dose rate on bags at the time of receipt. The system installed at ETP after calibration, effectively segregates the contaminated bags from the rest and prevents from cross contamination during wash cycle. Reduction in man-rem consumption due to semi automatic monitoring. Improved sensitivity due to good geometry, long counting time, background and attenuation corrections. Optimum utilization of decontamination chemicals based on level of contamination and keeping track of its inventory. Generation of decontamination process data base for improvement

  8. Apparatus, System, And Method For Roadway Monitoring

    KAUST Repository

    Claudel, Christian G.

    2015-06-02

    An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.

  9. Apparatus, System, And Method For Roadway Monitoring

    KAUST Repository

    Claudel, Christian G.

    2015-01-01

    An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.

  10. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-01-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs

  11. NOKIA - nuclear power plant monitoring system

    International Nuclear Information System (INIS)

    Anon.

    The monitoring system is described developed specially for the LOVIISA-1 and -2 nuclear power plants with two WWER-440 units. The multiprocessor system of the WWER-440 contains 3 identical main computers. The in core instrumentation is based on stationary self-powered neutron detectors and on thermocouples for measuring the coolant temperature. The system has equipment for the automatic control of the insulation resistance of the self-powered detectors. It is also equipped with a wide range of standard and special programmes. The standard programmes permit the recording of analog and digital data at different frequencies depending on the pre-set requirements. These data are processed and form data files which are accessible from all programmes. The heart of the special programme is a code for the determination of the power distribution in the core of the WWER-440 reactor. The main part of the programme is the algorithm for computing measured neutron fluxes derived from the signals of the self-powered detectors and the algorithm for deriving the global distribution of the neutron flux in the core. The computed power distribution is used for the determination of instantaneous thermal loads and the distribution of burnup in the core. The production programme of the FINNATOM company for nuclear power plants is listed. (B.S.)

  12. The Design and Implementation of Smart Monitoring System for Large-Scale Railway Maintenance Equipment Cab Based on ZigBee Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hairui Wang

    2014-06-01

    Full Text Available In recent years, organizations use IEEE 802.15.4 and ZigBee technology to deliver solution in variety areas including home environment monitoring. ZigBee technology has advantages on low-cost, low power consumption and self-forming. With the rapid expansion of the Internet, there is the requirement for remote monitoring large-scale railway maintenance equipment cab. This paper discusses the disadvantages of the existing smart monitoring system, and proposes a solution. A ZigBee wireless sensor network smart monitoring system and Wi-Fi network is integrated through a home gateway to increase the system flexibility. At the same time the home gateway cooperated with a pre- processing system provide a flexible user interface, and the security and safety of the smart monitoring system. To testify the efficiency of the proposed system, the temperature and humidity sensors and light sensors have developed and evaluated in the smart monitoring system.

  13. Enhancing the functionality of reactor protection systems to provide diagnostic and monitoring information: The ISATTM approach

    International Nuclear Information System (INIS)

    Baldwin, J.A.; Rowe, B.J.; Jones, C.D.

    1996-01-01

    The ISAT TM architecture has been successfully implemented as the Single Channel Trip System (SCTS), part of the primary protection system of Nuclear Electric's Dungeness 'B' Advanced Gas-Cooled Reactors. The system is the first computer-based protection system licensed on a UK civil nuclear reactor. The system provides protection against single channel faults resulting in high coolant gas outlet temperature. The SCTS was designed to output data at several points in the system to an Ethernet to allow checks to be made on the operation of parts of the protection system and the system as a whole. In order to monitor the performance of this shutdown system a PC based monitoring system was developed to take input as data from the Ethernet, check its integrity and then analyze the data to provide information of the state of the system and subsystems. The SCTS monitor was basically intended to alert the operator to any fault on the safety system and indicate its source, provide a diagnosis of the cause of any trip initiated by the safety system, and log the occurrences of these incidents for later inspection. The intention was also to provide accurate real-time information on the thermocouple readings and to decrease the effort required to maintain the safety system. This paper will describe briefly the development of the ISAT TM monitoring system: how its requirements were arrived at, and how the design, code and testing were carried out to ensure approval for this application. It will then go on to report how the ISAT TM monitor has performed during its time in service: how more functionality has been added over and above its original requirements. Features of additional monitors for the SCTS and other ISAT TM systems will also be described. (author). 2 refs, 5 figs

  14. Monitoring support system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashikawa, Yuichi; Kubota, Rhuji; Tanaka, Keiji; Takano, Yoshiyuki

    1996-01-01

    The nuclear power plants in Japan reach to 49 plants and supply 41.19 million kW in their installed capacities, which is equal to about 31% of total electric power generation and has occupied an important situation as a stable energy supplying source. As an aim to keeping safe operation and working rate of the power plants, various monitoring support systems using computer technology, optical information technology and robot technology each advanced rapidly in recent year have been developed to apply to the actual plants for a plant state monitoring system of operators in normal operation. Furthermore, introduction of the emergent support system supposed on accidental formation of abnormal state of the power plants is also investigated. In this paper, as a monitoring system in the recent nuclear power plants, design of control panel of recent central control room, introduction to its actual plant and monitoring support system in development were described in viewpoints of improvement of human interface, upgrade of sensor and signal processing techniques, and promotion of information service technique. And, trend of research and development of portable miniature detector and emergent monitoring support system are also introduced in a viewpoint of labor saving and upgrade of the operating field. (G.K.)

  15. Beacon-Colss core monitoring system application and benefits

    International Nuclear Information System (INIS)

    Boyd, W.A.; Yoon, T.Y.

    2005-01-01

    Westinghouse and KNFC are creating an upgraded core monitoring system by merging the BEACON system (best estimate analyzer for core operation-nuclear) and COLSS (core operating limit supervisory system) into an integrated product. Although both BEACON and COLSS are core monitoring systems that have been in operation at many plants for a number of years, they each have some features and capabilities that are not in the other. Therefore it has been decided to incorporate portions of COLSS into the beacon system to create an optional level to support core monitoring applications on selected combustion engineering (C-E) designed plants. This optional level in the beacon system will be called BEACON-COLSS and will allow the beacon system to monitor the LCO's and Tech Spec limits at CE plants that currently use COLSS. This paper will present the structure of the new core monitoring system and the benefits it achieves for current COLSS plants, i.e., CE plants in the US and KSNP (Korean standard nuclear power plant). (authors)

  16. Applications for cyber security - System and application monitoring

    International Nuclear Information System (INIS)

    Marron, J. E.

    2006-01-01

    Standard network security measures are adequate for defense against external attacks. However, many experts agree that the greater threat is from internal sources. Insiders with malicious intentions can change controller instructions, change alarm thresholds, and issue commands to equipment which can damage equipment and compromise control system integrity. In addition to strict physical security the state of the system must be continually monitored. System and application monitoring goes beyond the capabilities of network security appliances. It will include active processes, operating system services, files, network adapters and IP addresses. The generation of alarms is a crucial feature of system and application monitoring. The alarms should be integrated to avoid the burden on operators of checking multiple locations for security violations. Tools for system and application monitoring include commercial software, free software, and ad-hoc tools that can be easily created. System and application monitoring is part of a 'defense-in-depth' approach to a control network security plan. Layered security measures prevent an individual security measure failure from being exploited into a successful security breach. Alarming of individual failures is essential for rapid isolation and correction of single failures. System and application monitoring is the innermost layer of this defense strategy. (authors)

  17. Functional food monitoring as part of the new Dutch dietary monitoring system

    NARCIS (Netherlands)

    Rompelberg CJM; Jager M; Bakker MI; Buurma-Rethans EJM; Ocke MC; CVG

    2006-01-01

    Good data on functional food consumption necessary for an adequate Dutch nutrition policy are lacking. This lack may be overcome in future by including functional food monitoring in the new dietary monitoring system in the Netherlands. One specific form of monitoring could be an Internet-based

  18. Development of the temperature field at the WWER-440 core outlet monitoring system and application of the data analyses methods

    International Nuclear Information System (INIS)

    Spasova, V.; Georgieva, N.; Haralampieva, Tz.

    2001-01-01

    On-line internal reactor monitoring by 216 thermal couples, located at the reactor core outlet, is carried out during power operation of WWER-440 Units 1 and 2 at Kozloduy NPP. Automatic monitoring of technology process is performed by IB-500MA, which collects and performs initial data processing (discrediting and conversion of analogue signals into digital mode). The paper also presents the results and analyses of power distribution monitoring during the past 21-th and current 22-th fuel cycle at Kozloduy NPP, Unit 1 by using archiving system capacity and related software. The possibility to perform operational assessment and analysis of power distribution in the reactor core in each point of the fuel cycle is checked by comparison of the neutron-physical calculation results with reactor coolant system parameters. Paper shows that the processing and analysis of accumulated significant amount of data in the archive files increases accuracy and reliability of power distribution monitoring in the reactor core in each moment of the fuel cycle of WWER-440 reactors at Kozloduy NPP

  19. A radiation monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Iwai, Masaru; Nakamori, S.; Ikeda, H.; Oda, M.

    1974-01-01

    Safety with respect to radiation is vital factor, particularly in view of the increasing number of nuclear power plants. For this purpose, a radiation monitoring system is provided to perform constant supervision. This article describes the purpose, installation location, specifications and circuitry of a system which is divided into three units: the process monitor, area monitor and off-site monitor. (auth.)

  20. Monitoring Distributed Real-Time Systems: A Survey and Future Directions

    Science.gov (United States)

    Goodloe, Alwyn E.; Pike, Lee

    2010-01-01

    Runtime monitors have been proposed as a means to increase the reliability of safety-critical systems. In particular, this report addresses runtime monitors for distributed hard real-time systems. This class of systems has had little attention from the monitoring community. The need for monitors is shown by discussing examples of avionic systems failure. We survey related work in the field of runtime monitoring. Several potential monitoring architectures for distributed real-time systems are presented along with a discussion of how they might be used to monitor properties of interest.

  1. On-line fatigue monitoring system for reactor pressure vessel

    International Nuclear Information System (INIS)

    Tokunaga, K.; Sakai, A.; Aoki, T.; Ranganath, S.; Stevens, G.L.

    1994-01-01

    A workstation-based, on-line fatigue monitoring system for tracking fatigue usage applied to an operating boiling water reactor (BWR), Tsuruga Unit-1, is described. The system uses the influence function approach and determines component stresses using temperature, pressure, and flow rate data that are made available via signal taps from previously existing plant sensors. Using plant unique influence functions developed specifically for the feedwater nozzle location, the system calculates stresses as a function of time and computed fatigue usage. The analysis method used to compute fatigue usage complies with MITI Code Notification No.501. Fatigue usage results for an entire fuel cycle are presented and compared to assumed design basis events to confirm that actual plant thermal duty is significantly less severe than originally estimated in the design basis stress report. As a result, the system provides the technical basis to more accurately evaluate actual reactor conditions as well as the justification for plant life extension. (author)

  2. Safeguards equipment of the future: Integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    From the beginning, equipment to support IAEA Safeguards could be characterized as that which is used to measure nuclear material, Destructive Assay (DA) and Non Destructive Assay (NDA), and that which is used to provide continuity of knowledge between inspection intervals, Containment ampersand Surveillance (C/S). C/S equipment has often been thought of as Cameras and Seals, with a limited number of monitors being employed as they became available. In recent years, technology has advanced at an extremely rapid rate, and continues to do so. The traditional film cameras are being replaced by video equipment, and fiber optic and electronic seals have come into rather widespread use. Perhaps the most interesting aspect of this evolution, and that which indicates the wave of the future without much question, is the integration of video surveillance and electronic seals with a variety of monitors. This is demonstrated by safeguards systems which are installed in several nuclear facilities in France, Germany, Japan, the UK, the USA, and elsewhere. The terminology of Integrated Monitoring Systems (IMS) has emerged, with the employment of network technology capable of interconnecting all desired elements in a very flexible manner. Also, the technology for transmission of a wide variety of information to off-site locations, termed Remote Monitoring, is in widespread industrial use, requiring very little adaptation for safeguards use. This paper examines the future of the Integrated Monitoring Systems and Remote Monitoring in International Safeguards, including technical and other related factors

  3. Delta count-rate monitoring system

    International Nuclear Information System (INIS)

    Van Etten, D.; Olsen, W.A.

    1985-01-01

    A need for a more effective way to rapidly search for gamma-ray contamination over large areas led to the design and construction of a very sensitive gamma detection system. The delta count-rate monitoring system was installed in a four-wheel-drive van instrumented for environmental surveillance and accident response. The system consists of four main sections: (1) two scintillation detectors, (2) high-voltage power supply amplifier and single-channel analyzer, (3) delta count-rate monitor, and (4) count-rate meter and recorder. The van's 6.5-kW generator powers the standard nuclear instrument modular design system. The two detectors are mounted in the rear corners of the van and can be run singly or jointly. A solid-state bar-graph count-rate meter mounted on the dashboard can be read easily by both the driver and passenger. A solid-state strip chart recorder shows trends and provides a permanent record of the data. An audible alarm is sounded at the delta monitor and at the dashboard count-rate meter if a detected radiation level exceeds the set background level by a predetermined amount

  4. Development and application of all-digital monitoring system

    International Nuclear Information System (INIS)

    Xu Tao; Li Jing; Wang Wei

    2014-01-01

    All digital control system has developed into a mainstream means of monitoring, and achieved information, intelligence, and networking. All-digital control system is characterized by clear image, large transport stream, so the higher the data storage and network bandwidth should be required. Existing analog surveillance system architecture, hardware and software configuration can not meet the requirements of all-digital monitoring system, so how to solve the original analog surveillance system is gradually transformed into fully digital monitoring system, to avoid incompatibility issues in surveillance monitoring system upgrade become a research project. This paper describes the advantages and future direction of megapixels camera and proposes key technologies to solve the resolution and frame rate with the actual project requirements, achieves a core technology of megapixels video surveillance system, and proposes solutions for the actual renovation project problems. (authors)

  5. Propose Reactor Control and Monitoring System for RTP

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha

    2011-01-01

    Reactor control and monitoring system is a one of the important features used in reactor. The control and monitoring must come together to provide safety, excellent performance and reliable in nuclear reactor technology application. Objectives of this technical paper are to design and propose reactor control system and reactor monitoring system in Research Reactor (RTP) for Reactor Upgrading Project. (author)

  6. Water monitoring and its information management system in China; Chugoku ni okeru suishitsu monitoring to joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Quan, H.

    1996-01-10

    This paper summarizes the water monitoring system (WMS) in China applied mainly to surface water and operated within the competence of the Environmental Protection Agency. The WMS consists of a national water monitoring network and a water information system that monitors surface water periodically. The WMS comprises water monitoring stations classified from class 1 to class 4, which are located in 2,222 locations. Stations from class 1 to class 3 are operated by using computers, but class 4 stations are still incapable to use floppy disks to perform information transmission. When an information management system is completed at the China-Japan Friendship Environmental Protection Center being constructed by gratis assistance from the Japanese Government, transmission of water quality data will become possible by means of the cable line system in addition to the table system and the floppy system. The water quality data are published to general people in the forms of Chinese gazette for the environmental conditions, the environment yearbook, and the reports on environmental quality. However, the more important is to publish more publications to make people aware of the actual state of water pollution and have them cooperate in environment preservation. 4 refs., 1 fig.

  7. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  8. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  9. Quality monitored distributed voting system

    Science.gov (United States)

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  10. A Prototype Wire Position Monitoring System

    International Nuclear Information System (INIS)

    Wang, Wei

    2010-01-01

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1(micro)m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1(micro)m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  11. The NASA Carbon Monitoring System

    Science.gov (United States)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  12. Airborne Wireless Sensor Networks for Airplane Monitoring System

    Directory of Open Access Journals (Sweden)

    Shang Gao

    2018-01-01

    Full Text Available In traditional airplane monitoring system (AMS, data sensed from strain, vibration, ultrasound of structures or temperature, and humidity in cabin environment are transmitted to central data repository via wires. However, drawbacks still exist in wired AMS such as expensive installation and maintenance, and complicated wired connections. In recent years, accumulating interest has been drawn to performing AMS via airborne wireless sensor network (AWSN system with the advantages of flexibility, low cost, and easy deployment. In this review, we present an overview of AMS and AWSN and demonstrate the requirements of AWSN for AMS particularly. Furthermore, existing wireless hardware prototypes and network communication schemes of AWSN are investigated according to these requirements. This paper will improve the understanding of how the AWSN design under AMS acquires sensor data accurately and carries out network communication efficiently, providing insights into prognostics and health management (PHM for AMS in future.

  13. Novel OSNR Monitoring Technique in Dense WDM Systems using Inherently Generated CW Monitoring Channels

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2007-01-01

    We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing.......We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing....

  14. Building an End-to-end System for Long Term Soil Monitoring

    Science.gov (United States)

    Szlavecz, K.; Terzis, A.; Musaloiu-E., R.; Cogan, J.; Szalay, A.; Gray, J.

    2006-05-01

    We have developed and deployed an experimental soil monitoring system in an urban forest. Wireless sensor nodes collect data on soil temperature, soil moisture, air temperature, and light. Data are uploaded into a SQL Server database, where they are calibrated and reorganized into an OLAP data cube. The data are accessible on-line using a web services interface with various visual tools. Our prototype system of ten nodes has been live since Sep 2005, and in 5 months of operation over 6 million measurements have been collected. At a high level, our experiment was a success: we detected variations in soil condition corresponding to topography and external environmental parameters as expected. However, we encountered a number of challenging technical problems: need for low-level programming at multiple levels, calibration across space and time, and cross- reference of measurements with external sources. Based upon the experience with this system we are now deploying 200 mode nodes with close to a thousand sensors spread over multiple sites in the context of the Baltimore Ecosystem Study LTER. www

  15. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Pacific Remote Island Areas from 2011 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  16. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    International Nuclear Information System (INIS)

    Qing, Xinlin P; Beard, Shawn J; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-01-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H 2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment

  17. Operational readiness of filtered air discharge monitoring systems

    International Nuclear Information System (INIS)

    Lafortune, J.F.; Jamieson, T.J.

    1993-08-01

    An assessment of the operational readiness of the Filtered Air Discharge (FAD) Stack Monitoring systems, installed in Canadian CANDU nuclear power plants, was performed in this project. Relevant Canadian and foreign standards and regulatory requirements have been reviewed and documentation on FAD stack monitoring system design, operation, testing and maintenance have been assessed to identify likely causes and potential failures of FAD stack monitoring systems and their components under both standby and accident conditions. Recommendations have also been provided in this report for design and performance review guidelines for CANDU stations. A case study of the FAD stack monitoring system at Pickering NGS is also documented in this report

  18. A new type gamma-ray spectrum monitoring system

    CERN Document Server

    Cheng Bo; Zhou Jian Bin; Zhang Zhi Ming; Tong Yun Fu

    2002-01-01

    This new radiation monitoring system can be used to monitor the radiation of building materials and the radiation of atmosphere, to explore and evaluate rock for building in the field, and this system can be used to monitor the gamma irradiation near the nuclear establishments in the average situation and in the serious situation of the radiation incident have happened. The control core of this monitoring system is SCM-AT89C52, and gamma-ray sensing head consists of scintillator phi 50 mm x 50 mm NaI(Tl) and PMT GDB44. This system can be used to measure the whole gamma-ray spectrum of 256 channels

  19. Advanced in-core monitoring system for high-power reactors

    International Nuclear Information System (INIS)

    Mitin, V.I.; Alekseev, A.N.; Golovanov, M.N.; Zorin, A.V.; Kalinushkin, A.E.; Kovel, A.I.; Milto, N.V.; Musikhin, A.M.; Tikhonova, N.V.; Filatov, V.P.

    2006-01-01

    This paper encompasses such section as objective, conception and engineering solution for construction of advanced in-core instrumentation system for high power reactor, including WWER-1000. The ICIS main task is known to be an on-line monitoring of power distribution and functionals independently of design programs to avoid a common cause error. This paper shows in what way the recovery of power distribution has been carried out using the signals from in-core neutron detectors or temperature sensors. On the basis of both measured and processed data, the signals of preventive and emergency protection on local parameters (linear power of the maximum intensive fuel rods, departure from nucleate boiling ratio peaking factor) have been automatically generated. The paper presents a detection technology and processing methods for signals from SPNDs and TCs, ICIS composition and structure, computer hardware, system and applied software. Structure, composition and the taken decisions allow combining class IE and class B and C tasks in accordance with international standards of separation and safety category realization. Nowadays, ICIS-M is a system that is capable to ensure: monitoring, safety, information display and diagnostics function, which allow securing actual increase of quality, reliability and safety in operation of nuclear fuel and power units. Meanwhile, it reduce negative influence of human factor on thermal technical reliability in the operational process (Authors)

  20. Smart health monitoring systems: an overview of design and modeling.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid

    2013-04-01

    Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way health care is currently delivered. Although smart health monitoring systems automate patient monitoring tasks and, thereby improve the patient workflow management, their efficiency in clinical settings is still debatable. This paper presents a review of smart health monitoring systems and an overview of their design and modeling. Furthermore, a critical analysis of the efficiency, clinical acceptability, strategies and recommendations on improving current health monitoring systems will be presented. The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems. In order to achieve this, over fifty different monitoring systems have been selected, categorized, classified and compared. Finally, major advances in the system design level have been discussed, current issues facing health care providers, as well as the potential challenges to health monitoring field will be identified and compared to other similar systems.