WorldWideScience

Sample records for temperature measuring instruments

  1. An intelligent instrument for measuring exhaust temperature of marine engine

    Science.gov (United States)

    Ma, Nan-Qi; Su, Hua; Liu, Jun

    2006-12-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple. Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer). The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually.

  2. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2006-09-30

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating

  3. Studies on a double-interferometer and mesospheric temperature measurements with a sodium-LIDAR-instrument

    International Nuclear Information System (INIS)

    Serwazi, M.

    1989-07-01

    The first part of this report describes the integration and alignment of a second Fabry-Perot-Interferometer into the optical bench of the sodium LIDAR experiment in Northern Norway. The spectral efficiency of this double interferometer was instrumentally and theoretically examined. The second part of the report presents results of temperature measurements in March 1989, which were made jointly with a Rayleigh LIDAR from the Max Planck Institute for Aeronomy. Measured temperatures and Na densities of three nights are presented. (orig.)

  4. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  5. The Relationship Between Radiative Forcing and Temperature. What Do Statistical Analyses of the Instrumental Temperature Record Measure?

    International Nuclear Information System (INIS)

    Kaufmann, R.K.; Kauppi, H.; Stock, J.H.

    2006-01-01

    Comparing statistical estimates for the long-run temperature effect of doubled CO2 with those generated by climate models begs the question, is the long-run temperature effect of doubled CO2 that is estimated from the instrumental temperature record using statistical techniques consistent with the transient climate response, the equilibrium climate sensitivity, or the effective climate sensitivity. Here, we attempt to answer the question, what do statistical analyses of the observational record measure, by using these same statistical techniques to estimate the temperature effect of a doubling in the atmospheric concentration of carbon dioxide from seventeen simulations run for the Coupled Model Intercomparison Project 2 (CMIP2). The results indicate that the temperature effect estimated by the statistical methodology is consistent with the transient climate response and that this consistency is relatively unaffected by sample size or the increase in radiative forcing in the sample

  6. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  7. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  8. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  9. Temperature measurement in the sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnamacharyulu, R.J.; Rao, L.V.G.

    The importance of measuring sea temperature is explained and the various methods employed for this purpose are reviewed. Instruments used for spot measurement of water temperature at the sea surface and at discrete depths (bucket thermometer...

  10. Temperature measuring device

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  11. The measurement of inclination on gravity concrete dams using the tiltmeter instrument

    Directory of Open Access Journals (Sweden)

    Radovanović Slobodan D.

    2015-01-01

    Full Text Available The measurement of inclination on gravity concrete dams using the instrument tiltmeter is described and discussed with special reference on obtained results on the dam 'Đerdap 2' acquired in the three years period. Tiltmetar way of operation is presented both through physical principle of vibrating wire sensors and through described design of the instrument. The influence of the temperature on the measurement of the slope is specially emphasized and presented through temperature correction. Processing the results of real inclination measurements on the dam 'Đerdap 2' with and without temperature correction showed the significant difference. Statistical analysis of measurement data consisted of performed regression analysis and forming of corresponding series with the expected measurement values depending on environmental conditions. At the end we give a summary conclusion on the instrument, the influence of temperature on the measurement and statistical model.

  12. 30 CFR 77.314 - Automatic temperature control instruments.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b) Automatic...

  13. Improved instrumentation for intensity-, wavelength-, temperature-, and magnetic field-resolved photoconductivity spectroscopy

    International Nuclear Information System (INIS)

    Cottingham, Patrick; Morey, Jennifer R.; Lemire, Amanda; Lemire, Penny; McQueen, Tyrel M.

    2016-01-01

    We report instrumentation for photovoltage and photocurrent spectroscopy over a larger continuous range of wavelengths, temperatures, and applied magnetic fields than other instruments described in the literature: 350 nm≤λ≤1700 nm, 1.8 K≤T≤300 K, and B≤9 T. This instrument uses a modulated monochromated incoherent light source with total power<30 μW in combination with an LED in order to probe selected regions of non-linear responses while maintaining low temperatures and avoiding thermal artifacts. The instrument may also be used to measure a related property, the photomagnetoresistance. We demonstrate the importance of normalizing measured responses for variations in light power and describe a rigorous process for performing these normalizations. We discuss several circuits suited to measuring different types of samples and provide analysis for converting measured values into physically relevant properties. Uniform approaches to measurement of these photoproperties are essential for reliable quantitative comparisons between emerging new materials with energy applications. - Highlights: • A novel instrument for measuring photoconductivity and photocurrents of materials and devices. • Continuous parameter space: 350 nm≤λ≤1700, 1.8 K≤T≤300 K, and B≤9 T. • Methodology for treating non-linear responses and variable lamp intensity. • Mathematical detail for extracting properties of materials from measured values is provided.

  14. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2003-09-01

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalized room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.

  15. Operational methods of thermodynamics. Volume 1 - Temperature measurement

    Science.gov (United States)

    Eder, F. X.

    The principles of thermometry are examined, taking into account the concept of temperature, the Kelvin scale, the statistical theory of heat, negative absolute temperatures, the thermodynamic temperature scale, the thermodynamic temperature scale below 1 K, noise thermometry, temperature scales based on black-body radiation, acoustical thermometry, and the International Practical Temperature Scale 1968. Aspects of practical temperature measurement are discussed, giving attention to thermometers based on the expansion of a gas or a liquid, instruments utilizing the relative thermal expansion of two different metals, devices measuring the vapor pressure of a liquid, thermocouples, resistance thermometers, radiation pyrometers of various types, instruments utilizing the temperature dependence of a number of material characteristics, devices for temperature control, thermometer calibration, and aspects of thermometer installation and inertia. A description is presented of the approaches employed for the measurement of low temperatures.

  16. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  17. Constant-Temperature Calorimetry for In-Core Power Measurement

    International Nuclear Information System (INIS)

    Radcliff, Thomas D.; Miller, Don W.; Kauffman, Andrew C.

    2000-01-01

    Reactor thermal limits are based on fuel energy deposition and cladding temperature. This paper presents a two-wire in-core instrument that directly measures fuel energy deposition. The instrument is based on the addition of heat through resistive dissipation of input electrical energy to a small mass of reactor fuel or fuel analogue. A feedback loop controls the input electrical energy needed to maintain the fuel mass at a nearly constant temperature regardless of the nuclear energy deposited in the mass. Energy addition to the fuel and fuel temperature feedback to the controller are provided by a resistive heating element embedded in the fuel mass. As long as the external heat transfer environment remains constant, the input electrical energy is inversely related to the actual nuclear energy deposition. To demonstrate this instrument, we first scaled the sensor and controller parameters and then used the results to guide fabrication of prototype instruments. In-reactor testing was performed to measure the instrument sensitivity, linearity, bandwidth, and long-term drift characteristics of the prototypes. The instrument is shown to be capable of high-sensitivity, linear measurement of fuel energy deposition with sufficient bandwidth for safety-related measurements. It is also clear that a means to compensate the sensor for changes in the external heat transfer environment is required. Means of actively measuring heat losses and performing this compensation are discussed

  18. Design and construction of an instrument for measuring thermistor electrical characteristic

    International Nuclear Information System (INIS)

    Budiono; Yudi Herdiana

    2007-01-01

    In this work an instrument for measuring the electrical characteristic of thermistor has been designed and constructed. The instrument was constructed from main components i.e. a micro controller AT89C51, 3 ADC-0804, a LM35 temperature sensor and IC MAX 232. The IC MAX 232 component is used to connect the micro controller to the personal computer serially by using RS-232 standard. While ADC-0804 was used to convert the analog data (DC voltage) to the digital one so that the data was readable by the micro controller. Digital data from 3 ADC-0804 circuit which have been read by the micro controller was sent directly to the personal computer. The data from the measurement which have been stored in the personal computer was then processed to know the value of temperature and measured thermistor resistance. The processed data could be either stored in a data base or displayed in a monitor or printed in the form of table data and in the form a graph of thermistor resistance as the function of temperature. The result of measurement from measuring instrument of the characteristic of thermistor electric's had been made, being compared by measuring calibrated instrument, the deviation is about 0.33 %. (author)

  19. Instrumentation for Structure Measurements on Highly Non-equilibrium Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Richard [Argonne National Laboratory (ANL); Benmore, Chris J [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Wilding, Martin C [ORNL

    2011-01-01

    Containerless techniques (levitation) completely eliminate contact with the sample. This unique sample environment allows deep supercooling of many liquids and avoids contamination of high temperature melts. Recent experiments at the APS high energy beamline 11 ID-C used aerodynamic levitation with laser beam heating and acoustic levitation with cryogenic cooling. By using these two methods, liquids were studied over much of the temperature range from -40 to +2500 C. This paper briefly describes the instrumentation and its use with an -Si area detector that allows fast, in-situ measurements. Use of the instruments is illustrated with examples of measurements on molten oxides and aqueous materials.

  20. Measurement of temperature, electric conductivity and density of plasma

    International Nuclear Information System (INIS)

    Vasilevova, I.; Nefedov, A.; Oberman, F.; Urinson, A.

    1982-01-01

    Three instruments are briefly described developed by the High Temperatures Institute of the USSR Academy of Sciences for the measurement of plasma temperature, electric conductivity and density. The temperature measuring instrument uses as a standard a light source whose temperature may significantly differ from plasma temperature because three light fluxes are compared, namely the flux emitted by the plasma, the flux emitted directly by the standard source, and the flux emitted by the standard source after passage through the plasma. The results of measurement are computer processed. Electric conductivity is measured using a coil placed in a probe which is automatically extended for a time of maximally 0.3 seconds into the plasma stream. The equipment for measuring plasma density consists of a special single-channel monochromator, a temperature gauge, a plasma pressure gauge, and of a computer for processing the results of measurement. (Ha)

  1. The measurement of inclination on gravity concrete dams using the tiltmeter instrument

    OpenAIRE

    Radovanović Slobodan D.; Brajović Ljiljana M.; Pavić Maja L.; Đurić Srđan S.; Ranđelović Sanja D.; Milivojević Vladimir J.

    2015-01-01

    The measurement of inclination on gravity concrete dams using the instrument tiltmeter is described and discussed with special reference on obtained results on the dam 'Đerdap 2' acquired in the three years period. Tiltmetar way of operation is presented both through physical principle of vibrating wire sensors and through described design of the instrument. The influence of the temperature on the measurement of the slope is specially emphasized and presented through temperature correction. P...

  2. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  3. On the Measurement of Power Law Creep Parameters from Instrumented Indentation

    Science.gov (United States)

    Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.

    2017-11-01

    Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

  4. Verification of the Indicating Measuring Instruments Taking into Account their Instrumental Measurement Uncertainty

    Directory of Open Access Journals (Sweden)

    Zakharov Igor

    2017-12-01

    Full Text Available The specific features of the measuring instruments verification based on the results of their calibration are considered. It is noted that, in contrast to the verification procedure used in the legal metrology, the verification procedure for calibrated measuring instruments has to take into account the uncertainty of measurements into account. In this regard, a large number of measuring instruments, considered as those that are in compliance after verification in the legal metrology, turns out to be not in compliance after calibration. In this case, it is necessary to evaluate the probability of compliance of indicating measuring instruments. The procedure of compliance probability determination on the basis of the Monte Carlo method is considered. An example of calibration of a Vernier caliper is given.

  5. NCTM workshop splinter session, IR thermal measurement instruments

    Science.gov (United States)

    Kaplan, Herbert

    1989-06-01

    The splinter session dealing with commercial industrial thermal measurement state-of-the-hardware had a total attendance of 15. Two papers were presented in the splinter session as follows: (1) Development of an Infrared Imaging System for the Surface Tension Driven Convection Experiment, Alexander D. Pline, NASA LeRC; (2) A Space-qualified PtSi Thermal Imaging System, Robert W. Astheimer, Barnes Engineering Div., EDO Corp. In addition a brief description of SPRITE detector technology was presented by Richard F. Leftwich of Magnovox. As anticipated, the discussions were concerned mainly with thermal imaging figures of merit rather than those for point measurement instruments. The need for uniform guidelines whereby infrared thermal imaging instruments could be specified and evaluated was identified as most important, particularly where temperature measurements are required. Presently there are differences in the way different manufacturers present significant performance parameters in their instrument data sheets. Furthermore, the prospective user has difficulty relating these parameters to actual measurement needs, and procedures by which performance can be verified are poorly defined. The current availability of powerful thermal imaging diagnostic software was discussed.

  6. PCPV instrumentation and measurement techniques at elevated temperatures

    International Nuclear Information System (INIS)

    Zemann, H.

    1978-11-01

    Strain measurement within the structural concrete of the prototype Prestressed Concrete Pressure Vessel have been performed during a one year operation at elevated temperatures up to 120 0 C. Laboratory investigations on the properties of the gauges and the concrete mix are applied to separate the different contributions to the strain data. A decrease of creep and loss of prestress and the arise of stable conditions is observed. (author)

  7. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  8. Estimation of complete temperature fields from measured temperatures

    International Nuclear Information System (INIS)

    Clegg, S.T.; Roemer, R.B.

    1984-01-01

    In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

  9. Review of modern instrumentation for magnetic measurements at high pressure and low temperature

    International Nuclear Information System (INIS)

    Wang, X.; Kamenev, K.V.

    2015-01-01

    High-pressure magnetic susceptibility experiments can provide insights into the changes in magnetic behavior and electric properties which can accompany extreme compressions of material. Instrumentation plays an important role in the experimental work in this field since 1990s. Here we present a comprehensive review of the high-pressure instrumentation development for magnetic measurement from the engineering perspective in the last 20 years. Suitable nonmagnetic materials for high pressure cell are introduced initially. Then we focus on the existing cells developed for magnetic property measurement system (MPMS) SQUID magnetometer from Quantum Design (USA). Two categories of high pressure cells for this system are discussed in detail respectively. Some high pressure cells with built-in magnetic measurement system are also reviewed

  10. Automatic calibration system of the temperature instrument display based on computer vision measuring

    Science.gov (United States)

    Li, Zhihong; Li, Jinze; Bao, Changchun; Hou, Guifeng; Liu, Chunxia; Cheng, Fang; Xiao, Nianxin

    2010-07-01

    With the development of computers and the techniques of dealing with pictures and computer optical measurement, various measuring techniques are maturing gradually on the basis of optical picture processing technique and using in practice. On the bases, we make use of the many years' experience and social needs in temperature measurement and computer vision measurement to come up with the completely automatic way of the temperature measurement meter with integration of the computer vision measuring technique. It realizes synchronization collection with theory temperature value, improves calibration efficiency. based on least square fitting principle, integrate data procession and the best optimize theory, rapidly and accurately realizes automation acquisition and calibration of temperature.

  11. Temperature documentation - instrument for quality assurance; Temperaturdokumentation - Instrument der Qualitaetssicherung

    Energy Technology Data Exchange (ETDEWEB)

    Hegglin, A [Wurm AG, Winterthur (Switzerland)

    2000-10-01

    Important inspection points of a HACCP concept are the temperatures. On the basis of the demands for a systematic temperature documentation, the application of control systems and instruments is described by several examples. (orig.) [German] Wichtige Kontrollpunkte eines HACCP-Konzepts sind die Temperaturen. Ausgehend von den Anforderungen, die an eine systematische Temperaturedokumentation gestellt werden, wird der Einsatz geeigneter Regel- und Ueberwachungsgeraete an mehreren Beispielen erlaeutert. (orig.)

  12. Evidence for Reduced Fatigue Resistance of Contemporary Rotary Instruments Exposed to Body Temperature.

    Science.gov (United States)

    de Vasconcelos, Rafaela Andrade; Murphy, Sarah; Carvalho, Claudio Antonio Talge; Govindjee, Rajiv G; Govindjee, Sanjay; Peters, Ove A

    2016-05-01

    The purpose of this study was to evaluate the effect of 2 different temperatures (20°C and 37°C) on the cyclic fatigue life of rotary instruments and correlate the results with martensitic transformation temperatures. Contemporary nickel-titanium rotary instruments (n = 20 each and tip size #25, including Hyflex CM [Coltene, Cuyahoga Falls, OH], TRUShape [Dentsply Tulsa Dental Specialties, Tulsa, OK], Vortex Blue [Dentsply Tulsa Dental Specialties], and ProTaper Universal [Dentsply Tulsa Dental Specialties]) were tested for cyclic fatigue at room temperature (20°C ± 1°C) and at body temperature (37°C ± 1°C). Instruments were rotated until fracture occurred in a simulated canal with an angle curvature of about 60° and a radius curvature of 3 mm; the center of the curvature was 4.5 mm from the instrument tip. The number of cycles to fracture was measured. Phase transformation temperatures for 2 instruments of each brand were analyzed by differential scanning calorimetry. Data were analyzed using the t test and 1-way analysis of variance with the significance level set at 0.05. For the tested size and at 20°C, Hyflex CM showed the highest resistance to fracture; no significant difference was found between TRUShape and Vortex Blue, whereas ProTaper Universal showed the lowest resistance to fracture. At 37°C, resistance to fatigue fracture was significantly reduced, up to 85%, for the tested instruments (P rotary instruments tested. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Zahradníček, Pavel; Pisoft, P.; Štěpánek, Petr; Bělinová, M.; Dobrovolný, Petr

    2012-01-01

    Roč. 110, 1-2 (2012), s. 17-34 ISSN 0177-798X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : secular station * instrumental period * homogenization * air temperature * precipitation * fluctuation * cyclicity * wavelet analysis * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.759, year: 2012

  14. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Alexandru Dan Toma

    2013-07-01

    Full Text Available The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categories of instruments used to measure the transmission of solar radiation through Earth's atmosphere: instruments that measure radiation from the entire sky and instruments that measure only direct solar radiation. Within each of these categories, instruments can be further subdivided into those that measure radiation over a broad range of wavelengths and those that measure only specific wavelengths.

  15. Measurements of the Ice Water Content of Cirrus in the Tropics and Subtropics. I; Instrument Details and Validation

    Science.gov (United States)

    Weinstock, E. M.; Smith, J. B.; Sayres, D.; Pittman, J. V.; Allen, N.; Demusz, J.; Greenberg, M.; Rivero, M.; Anderson, J. G.

    2003-01-01

    We describe an instrument mounted in a pallet on the NASA WB-57 aircraft that is designed to measure the sum of gas phase and solid phase water, or total water, in cirrus clouds. Using an isokinetic inlet, a 600-watt heater mounted directly in the flow, and Lyman-alpha photofragment fluorescence technique for detection, accurate measurements of total water have been made over almost three orders of magnitude. Isokinetic flow is achieved with an actively controlled roots pump by referencing aircraft pressure, temperature, and true air speed, together with instrument flow velocity, temperature, and pressure. During CRYSTAL FACE, the instrument operated at duct temperatures sufficiently warm to completely evaporate particles up to 150 microns diameter. In flight diagnostics, intercomparison with water measured by absorption in flight, as well as intercomparisons in clear air with water vapor measured by the Harvard water vapor instrument and the JPL infrared tunable diode laser hygrometer validate the detection sensitivity of the instrument and illustrate minimal hysteresis from instrument surfaces. The simultaneous measurement of total water and water vapor in cirrus clouds yields their ice water content.

  16. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  17. Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties.

    Science.gov (United States)

    Bautista, Mary Ann C; Nurjono, Milawaty; Lim, Yee Wei; Dessers, Ezra; Vrijhoef, Hubertus Jm

    2016-12-01

    Policy Points: Investigations on systematic methodologies for measuring integrated care should coincide with the growing interest in this field of research. A systematic review of instruments provides insights into integrated care measurement, including setting the research agenda for validating available instruments and informing the decision to develop new ones. This study is the first systematic review of instruments measuring integrated care with an evidence synthesis of the measurement properties. We found 209 index instruments measuring different constructs related to integrated care; the strength of evidence on the adequacy of the majority of their measurement properties remained largely unassessed. Integrated care is an important strategy for increasing health system performance. Despite its growing significance, detailed evidence on the measurement properties of integrated care instruments remains vague and limited. Our systematic review aims to provide evidence on the state of the art in measuring integrated care. Our comprehensive systematic review framework builds on the Rainbow Model for Integrated Care (RMIC). We searched MEDLINE/PubMed for published articles on the measurement properties of instruments measuring integrated care and identified eligible articles using a standard set of selection criteria. We assessed the methodological quality of every validation study reported using the COSMIN checklist and extracted data on study and instrument characteristics. We also evaluated the measurement properties of each examined instrument per validation study and provided a best evidence synthesis on the adequacy of measurement properties of the index instruments. From the 300 eligible articles, we assessed the methodological quality of 379 validation studies from which we identified 209 index instruments measuring integrated care constructs. The majority of studies reported on instruments measuring constructs related to care integration (33%) and patient

  18. Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties

    Science.gov (United States)

    BAUTISTA, MARY ANN C.; NURJONO, MILAWATY; DESSERS, EZRA; VRIJHOEF, HUBERTUS JM

    2016-01-01

    Policy Points: Investigations on systematic methodologies for measuring integrated care should coincide with the growing interest in this field of research.A systematic review of instruments provides insights into integrated care measurement, including setting the research agenda for validating available instruments and informing the decision to develop new ones.This study is the first systematic review of instruments measuring integrated care with an evidence synthesis of the measurement properties.We found 209 index instruments measuring different constructs related to integrated care; the strength of evidence on the adequacy of the majority of their measurement properties remained largely unassessed. Context Integrated care is an important strategy for increasing health system performance. Despite its growing significance, detailed evidence on the measurement properties of integrated care instruments remains vague and limited. Our systematic review aims to provide evidence on the state of the art in measuring integrated care. Methods Our comprehensive systematic review framework builds on the Rainbow Model for Integrated Care (RMIC). We searched MEDLINE/PubMed for published articles on the measurement properties of instruments measuring integrated care and identified eligible articles using a standard set of selection criteria. We assessed the methodological quality of every validation study reported using the COSMIN checklist and extracted data on study and instrument characteristics. We also evaluated the measurement properties of each examined instrument per validation study and provided a best evidence synthesis on the adequacy of measurement properties of the index instruments. Findings From the 300 eligible articles, we assessed the methodological quality of 379 validation studies from which we identified 209 index instruments measuring integrated care constructs. The majority of studies reported on instruments measuring constructs related to care

  19. Rock mass and shaft concrete lining temperature measurement procedure: Final draft

    International Nuclear Information System (INIS)

    1986-10-01

    This procedure document describes the equipment and procedures which will be used to obtain temperature data from within rock-mass and shaft linings at the Deaf Smith Exploratory Shaft Facility. Temperature measurement methods for instrument temperature correction, fluid temperature correction, heated surface monitoring and air temperature monitoring are outside the scope of this procedure, and are covered in the appropriate individual test procedures. Calibration, acceptance testing and the assignment of transducer reference numbers are outside the scope of this procedure. Section 2.0 provides a summary of the temperature measurement methods which will be employed, together with the measurement locations, environmental considerations and measurement requirements. Test layouts, including detailed descriptions of instruments, support requirements and detailed installation procedures are also presented. Section 3.0 describes the requirements for data recording, ADAS monitoring, and data reporting. Section 4.0 defines personnel responsibilities and qualifications. In addition a measurement and installation schedule is provided, and safety and contingency plans are described. Section 5.0 discusses management and quality assurance requirements. Cited references are listed in Section 6.0. 7 refs., 9 figs

  20. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  1. Measuring transient high temperature thermal phenomena in hostile environment

    International Nuclear Information System (INIS)

    Brenden, B.B.; Hartman, J.S.; Reich, F.R.

    1980-01-01

    The design of equipment for measuring temperature and strain in a rapidly heated and pressurized cylinder of stainless steel is discussed. Simultaneous cinematography of the full circumference of the cylinder without interference with temperature and strain measurements is also illustrated. The integrated system uses a reflective chamber for the sample and requires careful consideration of the spectral energy distribution utilized by each instrument

  2. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  3. Measurement of low-temperature specific heat

    International Nuclear Information System (INIS)

    Stewart, G.R.

    1983-01-01

    The measurement of low-temperature specific heat (LTSH) (0.1 K< T<60 K) has seen a number of breakthroughs both in design concepts and instrumentation in the last 15 years: particularly in small sample calorimetry. This review attempts to provide an overview of both large and small sample calorimetry techniques at temperatures below 60 K, with sufficient references to enable more detailed study. A comprehensive review is made of the most reliable measurements of the LTSH of 84 of the elements to illustrate briefly some of the problems of measurements and analysis, as well as to provide additional references. More detail is devoted to three special areas of low-temperature calorimetry that have seen rapid development recently: (1) measurement of the specific heat of highly radioactive samples, (2) measurement of the specific heat of materials in high magnetic fields (18 T), and (3) measurement of the specific heat of very small (100 μg) samples. The review ends with a brief discussion of the frontier research currently underway on microcalorimetry for nanogram sample weights

  4. Temperature buffer test. Installation of buffer, heaters and instruments in the deposition hole

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik; Sanden, Torbjoern; Aakesson, Mattias [Clay Technology AB, Lund (Sweden); Barcena, Ignacio; Garcia-Sineriz, Jose Luis [Aitemin, Madrid (Spain)

    2010-12-15

    During 2003 the Temperature Buffer Test was installed in Aespoe Hard Rock Laboratory. Temperature, water pressure, relative humidity, total pressure and displacements etc. are measured in numerous points in the test. Most of the cables from the transducers are led in the deposition hole through slots in the rock surface of the deposition hole in watertight tubes to the data collection system in a container placed in the tunnel close to the deposition hole. This report describes the work with the installations of the buffer, heaters, and instruments and yields a description of the final location of all instruments. The report also contains a description of the materials that were installed and the densities yielded after placement.

  5. Temperature buffer test. Installation of buffer, heaters and instruments in the deposition hole

    International Nuclear Information System (INIS)

    Johannesson, Lars-Erik; Sanden, Torbjoern; Aakesson, Mattias; Barcena, Ignacio; Garcia-Sineriz, Jose Luis

    2010-12-01

    During 2003 the Temperature Buffer Test was installed in Aespoe Hard Rock Laboratory. Temperature, water pressure, relative humidity, total pressure and displacements etc. are measured in numerous points in the test. Most of the cables from the transducers are led in the deposition hole through slots in the rock surface of the deposition hole in watertight tubes to the data collection system in a container placed in the tunnel close to the deposition hole. This report describes the work with the installations of the buffer, heaters, and instruments and yields a description of the final location of all instruments. The report also contains a description of the materials that were installed and the densities yielded after placement

  6. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  7. Measurement of strains at high temperatures by means of electro-optics holography

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, G.; Vaitekunas, Jeffrey

    Electro-optics holographic-moire interferometry is used to measure strains at temperatures up to 1000 C. A description of the instrumentation developed to carry out the measurements is given. The data processing technique is also explained. Main problems encountered in recording patterns at high temperatures are analyzed and possible solutions are outlined. Optical results are compared with strain gage values obtained with instrumented specimens and with theoretical results. Very good agreement is found between optical, strain gage and theoretical results.

  8. Musical Intonation of Wind Instruments and Temperature

    Science.gov (United States)

    Zendri, G.; Valdan, M.; Gratton, L. M.; Oss, S.

    2015-01-01

    Wind musical instruments are affected in their intonation by temperature. We show how to account for these effects in a simple experiment, and provide results in languages accessible to both physics and music professionals.

  9. On-line testing of nuclear plant temperature and pressure instrumentation and other critical plant equipment. IAEA regional workshop. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Under European regional TC project RER/4/011, IAEA and VUJE Training centre organized a workshop on On-line Testing of Nuclear Power Plant Temperature and Pressure Instrumentation and Other Critical Plant Equipment in Trnava, Slovak Republic, from 25 to 29 May 1998. The objective of the workshop was to review the state-of-the-art in NPP instrumentation, cover typical instrumentation problems and solutions, describe technical and regulatory requirements for verifying the performance of nuclear power plant instrumentation, describe new methods developed and applied in NPPs for on-line verification and performance of instrumentation and present new techniques using existing instrumentation to identify the on-set problems in the plant electrical, mechanical and thermal hydraulic systems. Particular emphasis was placed on temperature measurements by Resistance Temperature Detectors (RTDs) and thermocouples and pressure measurements using motion-balanced and forced-balanced pressure transmitters. This proceedings includes papers presented by the invited speakers and the participants each with an abstract as wells as a summary of the Round-Table discussions Refs, figs, tabs

  10. On-line testing of nuclear plant temperature and pressure instrumentation and other critical plant equipment. IAEA regional workshop. Working material

    International Nuclear Information System (INIS)

    1998-01-01

    Under European regional TC project RER/4/011, IAEA and VUJE Training centre organized a workshop on On-line Testing of Nuclear Power Plant Temperature and Pressure Instrumentation and Other Critical Plant Equipment in Trnava, Slovak Republic, from 25 to 29 May 1998. The objective of the workshop was to review the state-of-the-art in NPP instrumentation, cover typical instrumentation problems and solutions, describe technical and regulatory requirements for verifying the performance of nuclear power plant instrumentation, describe new methods developed and applied in NPPs for on-line verification and performance of instrumentation and present new techniques using existing instrumentation to identify the on-set problems in the plant electrical, mechanical and thermal hydraulic systems. Particular emphasis was placed on temperature measurements by Resistance Temperature Detectors (RTDs) and thermocouples and pressure measurements using motion-balanced and forced-balanced pressure transmitters. This proceedings includes papers presented by the invited speakers and the participants each with an abstract as wells as a summary of the Round-Table discussions

  11. Thermal conductivity measurement below 40 K of the CFRP tubes for the Mid-Intrared Instrument mounting struts

    DEFF Research Database (Denmark)

    Shaughnessy, B. M.; Eccleston, P.; Fereday, K. J.

    2007-01-01

    The Mid-Infrared Instrument (MIRI) is one of four instruments on the James Webb Space Telescope observatory, scheduled for launch in 2013. It must be cooled to about 7 K and is supported within the telescope’s 40 K instrument module by a hexapod of carbon fibre reinforced plastic (CFRP) tubing. T....... This article describes the measurement of cryogenic thermal conductivity of the candidate CFRP. Measured thermal conductivities were about 0.05 W/m K at a mean temperature of 10 K increasing to about 0.20 W/m K at a mean temperature of 40 K....

  12. Temperature and pressure instrumentation in WWERs and their testing

    International Nuclear Information System (INIS)

    Por, G.

    1998-01-01

    A description of WWER model V-213 reactors of second generation is presented and compared to analogous NPPs including description of temperature and pressure instrumentation which was tested at Paks NPP. From the experimental results it was concluded that measured response of in core neutron detector to bubbles strongly depends on the relative position of detector and point bubble injection. Neutron noise spectra show characteristic sink when the origin of bubbles is close to the detectors. Dependence of phase behaviour on the boiling conditions is included as well

  13. Radiation measuring instrument

    International Nuclear Information System (INIS)

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  14. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    Hanyecz, Veronika; Szabó, Gábor; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád

    2013-01-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m −3 for benzene, 3 mg m −3 for toluene in natural gas, and 5 g m −3 for benzene and 6 g m −3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  15. Water Vapor, Temperature, and Ice Particles in Polar Mesosphere as Measured by SABER/TIMED and OSIRIS/Odin Instruments

    Science.gov (United States)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Although many new details on the properties of mesospheric ice particles that farm Polar Mesospheric Clouds (PMCs) and also cause polar mesospheric summer echoes have been recently revealed, certain aspects of mesospheric ice microphysics and dynamics still remain open. The detailed relation between PMC parameters and properties of their environment, as well as interseasonal and interhemispheric differences and trends in PMC properties that are possibly related to global change, are among those open questions. In this work, mesospheric temperature and water vapor concentration measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to study the properties of PMCs with respect to the surrounding atmosphere. The cloud parameters, namely location, brightness, and altitude, are obtained from the observations made by the Optical Spectrograph and Infrared Imager System (OSIRIS) on the Odin satellite. About a thousand of simultaneous common volume measurements made by SABER and OSIRIS in both hemispheres from 2002 until 2008 are used. The correlation between PMC brightness (and occurrence rate) and temperatures at PMC altitudes and at the mesopause is analysed. The relation between PMC parameters, frost point temperature, and gaseous water vapor content in and below the cloud is also discussed. Interseasonal and interhemispheric differences and trends in the above parameters, as well as in PMC peak altitudes and mesopause altitudes are evaluated.

  16. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  17. Portable radiation instrumentation traceability of standards and measurements

    International Nuclear Information System (INIS)

    Wiserman, A.; Walke, M.

    1995-01-01

    Portable radiation measuring instruments are used to estimate and control doses for workers. Calibration of these instruments must be sufficiently accurate to ensure that administrative and legal dose limits are not likely to be exceeded due to measurement uncertainties. An instrument calibration and management program is established which permits measurements made with an instrument to be traced to a national standard. This paper describes the establishment and maintenance of calibration standards for gamma survey instruments and an instrument management program which achieves traceability of measurement for uniquely identified field instruments. (author)

  18. Kinetic Temperature and Carbon Dioxide from Broadband Infrared Limb Emission Measurements Taken from the TIMED/SABER Instrument

    Science.gov (United States)

    Mertens, Christopher J.; Russell III, James M.; Mlynczak, Martin G.; She, Chiao-Yao; Schmidlin, Francis J.; Goldberg, Richard A.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; hide

    2008-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA's Thermosphere-Ionosphere-Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 micron limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.

  19. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    International Nuclear Information System (INIS)

    Frantlović, Miloš; Stanković, Srđan; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran

    2016-01-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance. (paper)

  20. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  1. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2016-10-01

    Full Text Available High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial–temporal complexity. This paper presents a multi-input multi-output (MIMO self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional–integral–derivative (PID neural network (FCPIDNN and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  2. Generally objective measurement of human temperature and reading ability: some corollaries.

    Science.gov (United States)

    Stenner, A Jackson; Stone, Mark

    2010-01-01

    We argue that a goal of measurement is general objectivity: point estimates of a person's measure (height, temperature, and reader ability) should be independent of the instrument and independent of the sample in which the person happens to find herself. In contrast, Rasch's concept of specific objectivity requires only differences (i.e., comparisons) between person measures to be independent of the instrument. We present a canonical case in which there is no overlap between instruments and persons: each person is measured by a unique instrument. We then show what is required to estimate measures in this degenerate case. The canonical case encourages a simplification and reconceptualization of validity and reliability. Not surprisingly, this reconceptualization looks a lot like the way physicists and chemometricians think about validity and measurement error. We animate this presentation with a technology that blurs the distinction between instruction, assessment, and generally objective measurement of reader ability. We encourage adaptation of this model to health outcomes measurement.

  3. Measurement of proton momentum distributions using a direct geometry instrument

    International Nuclear Information System (INIS)

    Senesi, R; Andreani, C; Kolesnikov, A I

    2014-01-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy E i = 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO

  4. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins

    Science.gov (United States)

    Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André

    2004-12-01

    The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen

  5. In-core fuel element temperature and flow measurment of HFETR

    International Nuclear Information System (INIS)

    Chen Daolong; Jiang Pei

    1988-02-01

    The HFETR in-core fuel element temperature-flow measurement facility and its measurement system are expounded. The applications of the instrumented fuel element to stationary and transient states measurements during the lift of power, the operation test of all lifetime at first load, and the deepening burn-up test at second load are described. The method of determination of the hot point temperature under the fin is discussed. The error analysis is made. The fuel element out-of-pile water deprivation test is described. The development of this measurement facility and succesful application have made important contribution to high power and deep burn-up safe operation at two load, in-core fuel element irradiation, and varied investigation of HFETR. After operation at two loads, the integrated power of this instrumented fuel element arrives at 90.88 MWd, its maximum point burn-up is about 64.9%, so that the economy of fuel use of HFETR is raised very much

  6. New method of noncontact temperature measurement in on-line textile production

    Science.gov (United States)

    Cheng, Xianping; Song, Xing-Li; Deng, Xing-Zhong

    1993-09-01

    Based on the condition of textile production the method of infrared non-contact temperature measurement is adcpted in the heat-setting and drying heat-treatment process . This method is used to monitor the moving cloth. The temperature of the cloth is displayed rapidly and exactly. The principle of the temperature measurement is analysed theoretically in this paper. Mathematical analysis and calculation are used for introducing signal transmitting method. Adopted method of combining software with hardware the temperature is corrected and compensated with the aid of a single-chip microcomputer. The results of test indicate that the application of temperature measurement instrument provides reliable parameters in the quality control. And it is an important measure on improving the quality of products.

  7. Measuring Skin Temperatures with the IASI Hyperspectral Mission

    Science.gov (United States)

    Safieddine, S.; George, M.; Clarisse, L.; Clerbaux, C.

    2017-12-01

    Although the role of satellites in observing the variability of the Earth system has increased in recent decades, remote-sensing observations are still underexploited to accurately assess climate change fingerprints, in particular temperature variations. The IASI - Flux and Temperature (IASI-FT) project aims at providing new benchmarks for temperature observations using the calibrated radiances measured twice a day at any location by the IASI thermal infrared instrument on the suite of MetOp satellites (2006-2025). The main challenge is to achieve the accuracy and stability needed for climate studies, particularly that required for climate trends. Time series for land and sea skin surface temperatures are derived and compared with in situ measurements and atmospheric reanalysis. The observed trends are analyzed at seasonal and regional scales in order to disentangle natural (weather/dynamical) variability and human-induced climate forcings.

  8. Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements

    Science.gov (United States)

    Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.

    2017-12-01

    In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.

  9. Measurement and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold

    2018-01-02

    This is a chapter for a book called the Standard Handbook for Electrical Engineering. Though it is not obvious from the title, the book deals mainly with power engineering. The first chapter (not mine) is about the fundamental quantities used in measurement. This chapter is about the process and the instrumentation.

  10. Investigation of potential factors affecting the measurement of dew point temperature in oil-soaked transformers

    Science.gov (United States)

    Kraus, Adam H.

    Moisture within a transformer's insulation system has been proven to degrade its dielectric strength. When installing a transformer in situ, one method used to calculate the moisture content of the transformer insulation is to measure the dew point temperature of the internal gas volume of the transformer tank. There are two instruments commercially available that are designed for dew point temperature measurement: the Alnor Model 7000 Dewpointer and the Vaisala DRYCAPRTM Hand-Held Dewpoint Meter DM70. Although these instruments perform an identical task, the design technology behind each instrument is vastly different. When the Alnor Dewpointer and Vaisala DM70 instruments are used to measure the dew point of the internal gas volume simultaneously from a pressurized transformer, their differences in dew point measurement have been observed to vary as much as 30 °F. There is minimal scientific research available that focuses on the process of measuring dew point of a gas inside a pressurized transformer, let alone this observed phenomenon. The primary objective of this work was to determine what effect certain factors potentially have on dew point measurements of a transformer's internal gas volume, in hopes of understanding the root cause of this phenomenon. Three factors that were studied include (1) human error, (2) the use of calibrated and out-of-calibration instruments, and (3) the presence of oil vapor gases in the dry air sample, and their subsequent effects on the Q-value of the sampled gas. After completing this portion of testing, none of the selected variables proved to be a direct cause of the observed discrepancies between the two instruments. The secondary objective was to validate the accuracy of each instrument as compared to its respective published range by testing against a known dew point temperature produced by a humidity generator. In a select operating range of -22 °F to -4 °F, both instruments were found to be accurate and within their

  11. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  12. Development of volumetric methane measurement instrument for laboratory scale anaerobic reactors

    International Nuclear Information System (INIS)

    Sahito, A.R.

    2015-01-01

    In the present study, a newly developed VMMI (volumetric Methane-Measuring Instrument) for laboratory scale anaerobic reactors is presented. The VMMI is a reliable, inexpensive, easy to construct, easy to use, corrosion resistant device that does not need maintenance, can measure a wide flow range of gas at varying pressure and temperature. As per the results of the error analysis, the accuracy of the VMMI is unilateral, i.e. -6.91 %. The calibration of VMMI was investigated and a linear variation was found; hence, in situ calibration is recommended for this type of instrument. As per chromatographic analysis, it absorbs almost 100% of the carbon dioxide present in the biogas, results only the methane, and thus eliminates the need of cost intensive composition analysis of biogas through gas chromatograph. (author)

  13. Measurements of hot water service consumptions: temperature influence

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, R.; Vallat, D.; Cyssau, R. (COSTIC, Saint Remy-les-Chevreuse (France))

    This article presents a campaign of measurements of which the aim is the observation of consumptions, for individual installations equiped with a hot water tank. The study takes an interest in the temperature of the water in the tank and the instantaneous power of the generator. The instrumentation, the installations and the results of this campaign are presented in this paper. The conclusion is the ''economic'' temperature of hot sanitary water is below 60/sup 0/C but above 55/sup 0/C.

  14. Virtual experiment instrument of nuclear pulse measuring

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Xiuliang; Yu Hong; Zhang Meiqin

    2009-01-01

    Study on the scheme of application of virtual instrument(VI) technique in measuring of nuclear pulse. The system of Counter based on technology of LabVIEW and NI company's products USB-6009-DAQ is developed. Virtual nuclear instrument-Virtual Counter is realized. This system extends the application of technology of virtual instrument. The experimental results indicate that the system of Counter had the good counting measuring function of Nuclear Pulse. (authors)

  15. MTF measurement of IR optics in different temperature ranges

    Science.gov (United States)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  16. Neutron-multiplication measurement instrument

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results.

  17. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  18. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  19. Specialists' meeting on gas-cooled reactor core and high temperature instrumentation, Windermere, UK, 15-17 June 1982. Summary report

    International Nuclear Information System (INIS)

    1982-09-01

    The Specialists' Meeting on ''Gas-Cooled Reactor Core and High Temperature Instrumentation'' was held at the Beech Hill Hotel, Windermere in England on June 15-17 1982. The meeting was sponsored by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors and was hosted by the Windscale Nuclear Power Development Laboratories of the UKAEA. The meeting was attended by 43 participants from Belgium, France, Federal Republic of Germany, Japan, United Kingdom of Great Britain and Northern Ireland and the United States of America. The objective of the meeting was to provide a forum, both formal and informal, for the exchange and discussion of technical information relating to instrumentation being used or under development for the measurement of core parameters, neutron flux, temperature, coolant flow etc. in gas cooled reactors. The technical part of the meeting was divided into five subject sessions: (A) Temperature Measurement (B) Neutron Detection Instrumentation (C) HTR Instrumentation - General (D) Gas Analysis and Failed Fuel Detection (E) Coolant Mass Flow and Leak Detection. A total of twenty-five papers were presented by the participants on behalf of their organizations during the meeting. A programme of the meeting and list of participants are given in appendices to this report

  20. Introduction to instrumentation and measurements

    CERN Document Server

    Northrop, Robert B

    2014-01-01

    Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describ...

  1. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review.

    Science.gov (United States)

    Hidding, Janine T; Viehoff, Peter B; Beurskens, Carien H G; van Laarhoven, Hanneke W M; Nijhuis-van der Sanden, Maria W G; van der Wees, Philip J

    2016-12-01

    Lymphedema is a common complication of cancer treatment, resulting in swelling and subjective symptoms. Reliable and valid measurement of this side effect of medical treatment is important. The purpose of this study was to provide best evidence regarding which measurement instruments are most appropriate in measuring lymphedema in its different stages. The PubMed and Web of Science databases were used, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Clinical studies on measurement instruments assessing lymphedema were reviewed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) scoring instrument for quality assessment. Data on reliability, concurrent validity, convergent validity, sensitivity, specificity, applicability, and costs were extracted. Pooled data showed good intrarater intraclass correlation coefficients (ICCs) (.89) for bioimpedance spectroscopy (BIS) in the lower extremities and high intrarater and interrater ICCs for water volumetry, tape measurement, and perometry (.98-.99) in the upper extremities. In the upper extremities, the standard error of measurement was 3.6% (σ=0.7%) for water volumetry, 5.6% (σ=2.1%) for perometry, and 6.6% (σ=2.6%) for tape measurement. Sensitivity of tape measurement in the upper extremities, using different cutoff points, varied from 0.73 to 0.90, and specificity values varied from 0.72 to 0.78. No uniform definition of lymphedema was available, and a gold standard as a reference test was lacking. Items concerning risk of bias were study design, patient selection, description of lymphedema, blinding of test outcomes, and number of included participants. Measurement instruments with evidence for good reliability and validity were BIS, water volumetry, tape measurement, and perometry, where BIS can detect alterations in extracellular fluid in stage 1 lymphedema and the other measurement instruments can detect alterations in volume

  2. Standard guide for high-temperature static strain measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This guide covers the selection and application of strain gages for the measurement of static strain up to and including the temperature range from 425 to 650°C (800 to 1200°F). This guide reflects some current state-of-the-art techniques in high temperature strain measurement, and will be expanded and updated as new technology develops. 1.2 This practice assumes that the user is familiar with the use of bonded strain gages and associated signal conditioning and instrumentation as discussed in Refs. (1) and (2). The strain measuring systems described are those that have proven effective in the temperature range of interest and were available at the time of issue of this practice. It is not the intent of this practice to limit the user to one of the gage types described nor is it the intent to specify the type of system to be used for a specific application. However, in using any strain measuring system including those described, the proposer must be able to demonstrate the capability of the proposed sy...

  3. 77 FR 37409 - Request for Domains, Instruments, and Measures for Development of a Standardized Instrument for...

    Science.gov (United States)

    2012-06-21

    ... experience as well. On both issues, CMS is interested in instruments and items which can measure quality of... Measures for Development of a Standardized Instrument for Use in Public Reporting of Enrollee Satisfaction..., communication, coordination of care, customer service), instruments, and measures for measuring the level of...

  4. An improved Peltier effect-based instrument for critical temperature threshold measurement in cold- and heat-induced urticaria.

    Science.gov (United States)

    Magerl, M; Abajian, M; Krause, K; Altrichter, S; Siebenhaar, F; Church, M K

    2015-10-01

    Cold- and heat-induced urticaria are chronic physical urticaria conditions in which wheals, angioedema or both are evoked by skin exposure to cold and heat respectively. The diagnostic work up of both conditions should include skin provocation tests and accurate determination of critical temperature thresholds (CTT) for producing symptoms in order to be able to predict the potential risk that each individual patient faces and how this may be ameliorated by therapy. To develop and validate TempTest(®) 4, a simple and relatively inexpensive instrument for the accurate determination of CTT which may be used in clinical practice. TempTest(®) 4 has a single 2 mm wide 350 mm U-shaped Peltier element generating a temperature gradient from 4 °C to 44 °C along its length. Using a clear plastic guide placed over the skin after provocation, CTT values may be determined with an accuracy of ±1 °C. Here, TempTest(®) 4 was compared with its much more expensive predecessor, TempTest(®) 3, in inducing wheals in 30 cold urticaria patients. Both TempTest(®) 4 and TempTest(®) 3 induced wheals in all 30 patients between 8 ° and 28 °C. There was a highly significant (P < 0.0001) correlation between the instruments in the CTT values in individual patients. The TempTest(®) 4 is a simple, easy to use, licensed, commercially available and affordable instrument for the determination of CTTs in both cold- and heat-induced urticaria. © 2014 European Academy of Dermatology and Venereology.

  5. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    Science.gov (United States)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2017-12-01

    The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.

  6. Present status of ambient dose equivalent rate and radioactive substance concentration measurements in working environment. (3) Measuring instruments for ionizing radiation in working environments

    International Nuclear Information System (INIS)

    Matsubara, Shohei

    2006-01-01

    In order to measure the airborne radioactive substance concentration in working environments, some kinds of sampler such as dust sampler and iodine sampler, measuring instruments (alpha and beta spectrometer, and liquid scintillation counter), monitor (dust-, iodine- and gas-monitor), survey meter for measuring gamma ray dose rate are stated. The measurement method of α, β and γ-ray nuclides and ambient dose-equivalent at 10 mm was explained. Some examples of the list of dust sampler, filter, tritium sampler, dust monitor, iodine monitor, gas monitor, and survey meter on the market are shown. There are so many kinds of measuring instruments for ionizing radiation in working environment that the best instrument for measurement should be selected. The environment conditions such as sample form, temperature and humidity have to be considered in order to evaluate the measurement values. (S.Y.)

  7. High-tech hip implant for wireless temperature measurements in vivo.

    Directory of Open Access Journals (Sweden)

    Georg Bergmann

    Full Text Available When walking long distances, hip prostheses heat up due to friction. The influence of articulating materials and lubricating properties of synovia on the final temperatures, as well as any potential biological consequences, are unknown. Such knowledge is essential for optimizing implant materials, identifying patients who are possibly at risk of implant loosening, and proving the concepts of current joint simulators. An instrumented hip implant with telemetric data transfer was developed to measure the implant temperatures in vivo. A clinical study with 100 patients is planned to measure the implant temperatures for different combinations of head and cup materials during walking. This study will answer the question of whether patients with synovia with poor lubricating properties may be at risk for thermally induced bone necrosis and subsequent implant failure. The study will also deliver the different friction properties of various implant materials and prove the significance of wear simulator tests. A clinically successful titanium hip endoprosthesis was modified to house the electronics inside its hollow neck. The electronics are powered by an external induction coil fixed around the joint. A temperature sensor inside the implant triggers a timer circuit, which produces an inductive pulse train with temperature-dependent intervals. This signal is detected by a giant magnetoresistive sensor fixed near the external energy coil. The implant temperature is measured with an accuracy of 0.1°C in a range between 20°C and 58°C and at a sampling rate of 2-10 Hz. This rate could be considerably increased for measuring other data, such as implant strain or vibration. The employed technique of transmitting data from inside of a closed titanium implant by low frequency magnetic pulses eliminates the need to use an electrical feedthrough and an antenna outside of the implant. It enables the design of mechanically safe and simple instrumented implants.

  8. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges - 15066

    International Nuclear Information System (INIS)

    Sabharwall, P.; O'Brien, J.E.; Yoon, S.J.; Sun, X.

    2015-01-01

    A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic, materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The 3 loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuits heat exchangers (PCHEs) at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integrated System Test (ARTIST) facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 C. degrees), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF 4 ) flow loop operating at low pressure (0.2 MPa), at a temperature of ∼ 450 C. degrees. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift) in measuring operational data for extended periods of times, as data collected will be

  9. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  10. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  11. Measuring instruments of corporate reputation

    Directory of Open Access Journals (Sweden)

    Damir Grgić

    2008-12-01

    Full Text Available The subject of this paper is focused on the instruments for the measurement of corporate reputation. Recent research of the elements which influence the success of a company shows a growing interest in intangible values. Corporate reputation itself has been identified as one of the key intangible assets which create the company’s added value. Understanding of the importance of corporate reputation has been determined as a significant component of the company’s competitiveness, that is, of its competitive edge. Reputation is a normal part of our life and an integral part of our society. Our interest in the honesty and integrity of others is firmly established in all cultures and nowadays the focus of this interest is switching increasingly on companies. Corporate reputation can be acquired by means of strong, well-developed strategies, which are crucial for the opinion of stakeholders regarding future stability and competitive sustainability of the company. On the other hand, it should be emphasized that in order to manage it, corporate reputation has to be measured first. However, although the concept of corporate reputation is universally accepted and its significance has been recognized especially in the last two decades, the process of its measurement is still at an early stage and there is no universally accepted instrument for its measurement. Therefore, the author of this paper gives an overview of the instruments used for the measurement of corporate reputation which have gained a foothold through former practical usage.

  12. Field instrumentation for hydrofracturing stress measurements

    International Nuclear Information System (INIS)

    Bjarnason, Bjarni; Torikka, Arne.

    1989-08-01

    A recently developed system for rock stress measurements by the hydraulic fracturing method is documented in detail. The new equipment is intended for measurement in vertical or nearvertical boreholes, down to a maximum depth of 1000 m. The minimum borehole, diameter required is 56 mm. Downhole instrumentation comprises a straddle packer assembly for borehole fracturing, equipment for determination of fracture orientations and a pressure transducer. The downhole tools are operated by means of a multihose system, containing high pressure hydraulic tubings, signal cable and carrying wire into one hose unit. The surface components of the equipment include a system for generation and control of water pressures up to approximately 75 MPa, an hydraulically operated drum for the multihose and a data acquisition system. All surface instrumentation is permanently mounted on a truck, which also serves as power source for the instrumentation. In addition to the description of instrumentation, the theoretical fundament and the testing procedures associated with the hydraulic fracturing method are briefly outlined

  13. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    International Nuclear Information System (INIS)

    Williams, David E; Henshaw, Geoff S; Bart, Mark; Laing, Greer; Wagner, John; Naisbitt, Simon; Salmond, Jennifer A

    2013-01-01

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution. (paper)

  14. Investigation of metrological parameters of measuring system for small temperature changes

    Directory of Open Access Journals (Sweden)

    Samynina M. G.

    2014-02-01

    Full Text Available Metrological parameters of the non-standard contact device were investigated to characterize its performance in temperature change measurements in the specified temperature range. Several series thermistors with a negative temperature coefficient of resistance connected into a linearization circuit were used as the sensing element of the semiconductor device. Increasing the number of thermistors leads to improved circuitry resolving power and reduced dispersion of this parameter. However, there is the question of optimal ratio of the number of thermistors and implemented temperature resolution, due to the nonlinear resolution dependence of the number of series-connected thermoelements. An example of scheme of four similar thermistors as the primary sensor and of a standard measuring instrument, which is working in ohmmeter mode, shows the ability to measure temperature changes at the level of hundredth of a Celsius degree. In this case, a quantization error, which is determined by a resolution of the measuring system, and the ohmmeter accuracy make the main contribution to the overall accuracy of measuring small temperature changes.

  15. Analysis of pellet center temperatures measured in HALDEN IFA-224 using program FREG-3

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Izumi, Fumio

    1977-01-01

    To verify the program FREG-3, we compared the calculations by FREG-3 with those by measurement in a HALDEN instrumented fuel assembly, IFA-224. FREG-3 generally gives higher pellet center temperatures than the measurement. The temperature distribution calculated by FREG-3 to estimate the stored energy in fuel rods results in safety side. (auth.)

  16. Angle measurement with laser feedback instrument.

    Science.gov (United States)

    Chen, Wenxue; Zhang, Shulian; Long, Xingwu

    2013-04-08

    An instrument for angle measurement based on laser feedback has been designed. The measurement technique is based on the principle that when a wave plate placed into a feedback cavity rotates, its phase retardation varies. Phase retardation is a function of the rotating angle of the wave plate. Hence, the angle can be converted to phase retardation. The phase retardation is measured at certain characteristic points identified in the laser outputting curve that are then modulated by laser feedback. The angle of a rotating object can be measured if it is connected to the wave plate. The main advantages of this instrument are: high resolution, compact, flexible, low cost, effective power, and fast response.

  17. Mixed field dose equivalent measuring instruments

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; McDonald, J.C.; Endres, G.W.R.; Quam, W.

    1985-01-01

    In the past, separate instruments have been used to monitor dose equivalent from neutrons and gamma rays. It has been demonstrated that it is now possible to measure simultaneously neutron and gamma dose with a single instrument, the tissue equivalent proportional counter (TEPC). With appropriate algorithms dose equivalent can also be determined from the TEPC. A simple ''pocket rem meter'' for measuring neutron dose equivalent has already been developed. Improved algorithms for determining dose equivalent for mixed fields are presented. (author)

  18. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  19. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  20. Nuclear instrumentation for radiation measurement

    International Nuclear Information System (INIS)

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  1. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  2. High temperature spectral emissivity measurement using integral blackbody method

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  3. Electro optical system to measure strains at high temperature

    Science.gov (United States)

    Sciammarella, Cesar A.

    1991-12-01

    The measurement of strains at temperatures of the order of 1000 C has become a very important field of research. Technological advances in areas such as the analysis of high speed aircraft structures and high efficiency thermal engines require operational temperatures of this order of magnitude. Current techniques for the measurement of strains, such as electrical strain gages, are at the limit of their useful range and new methods need to be developed. Optical techniques are very attractive in this type of application because of their noncontacting nature. Holography is of particular interest because a minimal preparation of the surfaces is required. Optoelectronics holography is specially suited for this type of application, from the point of view of industrial use. There are a number of technical problems that need to be overcome to measure strains using holographic interferometry at high temperatures. Some of these problems are discussed, and solutions are given. A specimen instrumented with high temperature strains gages is used to compare the results of both technologies.

  4. Performance tests for instruments measuring radon activity concentration

    International Nuclear Information System (INIS)

    Beck, T.R.; Buchroeder, H.; Schmidt, V.

    2009-01-01

    Performance tests of electronic instruments measuring the activity concentration of 222 Rn have been carried out with respect to the standard IEC 61577-2. In total, 9 types of instrument operating with ionization chambers or electrostatic collection have been tested for the influence of different climatic and radiological factors on the measurement characteristics. It is concluded that all types of instrument, which are commercially available, are suitable for indoor radon measurements. Because of the dependence on climatic conditions, the outdoor use is partly limited.

  5. Optimizing measurements of cluster velocities and temperatures for CCAT-prime and future surveys

    Science.gov (United States)

    Mittal, Avirukt; de Bernardis, Francesco; Niemack, Michael D.

    2018-02-01

    Galaxy cluster velocity correlations and mass distributions are sensitive probes of cosmology and the growth of structure. Upcoming microwave surveys will enable extraction of velocities and temperatures from many individual clusters for the first time. We forecast constraints on peculiar velocities, electron temperatures, and optical depths of galaxy clusters obtainable with upcoming multi-frequency measurements of the kinematic, thermal, and relativistic Sunyaev-Zeldovich effects. The forecasted constraints are compared for different measurement configurations with frequency bands between 90 GHz and 1 THz, and for different survey strategies for the 6-meter CCAT-prime telescope. We study methods for improving cluster constraints by removing emission from dusty star forming galaxies, and by using X-ray temperature priors from eROSITA. Cluster constraints are forecast for several model cluster masses. A sensitivity optimization for seven frequency bands is presented for a CCAT-prime first light instrument and a next generation instrument that takes advantage of the large optical throughput of CCAT-prime. We find that CCAT-prime observations are expected to enable measurement and separation of the SZ effects to characterize the velocity, temperature, and optical depth of individual massive clusters (~1015 Msolar). Submillimeter measurements are shown to play an important role in separating these components from dusty galaxy contamination. Using a modular instrument configuration with similar optical throughput for each detector array, we develop a rule of thumb for the number of detector arrays desired at each frequency to optimize extraction of these signals. Our results are relevant for a future "Stage IV" cosmic microwave background survey, which could enable galaxy cluster measurements over a larger range of masses and redshifts than will be accessible by other experiments.

  6. Continuous high-temperature surveillance instrumentation for Dresden-2 hydrogen water chemistry program

    International Nuclear Information System (INIS)

    Fleming, M.F.; Mitchell, R.A.; Nelson, J.L.

    1987-01-01

    The objective of this program (under EPRI Contract RP1930-11) is to install and operate a high-temperature surveillance instrumentation system capable of monitoring the length of cracks in boiling water reactor (BWR) piping during plant operation. The ability to measure crack growth in BWR power plant piping welds is important to rapidly identify the effectiveness of repairs (such as the Hydrogen Water Chemistry Program). The feasibility of a system capable of continuous ultrasonic instrumentation at 600 0 F (288 0 C) was successfully demonstrated at the Dresden-2 suction line known as N1B. This intergranular stress corrosion cracking (IGSCC) surveillance instrumentation is sound in principal, because it survived on N1B for a time period of more than nine months from April 1985 to January 1986 (the last time data were recorded). The redesigned low-profile transducer system used for this system operated successfully for the same nine-month time period. This low profile transducer fits in the two-inch space normally occupied by insulation. As a result of poor routing of the coaxial cables running from the low-profile transducer to the electrical feed-throughs between the drywell and containment, these cables melted. Other instrument cables nearby were not damaged

  7. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    Science.gov (United States)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  8. Dual-resolution Raman spectroscopy for measurements of temperature and twelve species in hydrocarbon–air flames

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, Gaetano; Barlow, Robert S.

    2016-07-12

    This study introduces dual-resolution Raman spectroscopy as a novel diagnostics approach for measurements of temperature and species in flames where multiple hydrocarbons are present. Simultaneous measurement of multiple hydrocarbons is challenging because their vibrational Raman spectra in the C–H stretch region are closely overlapped and are not well known over the range of temperature encountered in flames. Overlap between the hydrocarbon spectra is mitigated by adding a second spectrometer, with a higher dispersion grating, to collect the Raman spectra in the C–H stretch region. A dual-resolution Raman spectroscopy instrument has been developed and optimized for measurements of major species (N2, O2, H2O, CO2, CO, H2, DME) and major combustion intermediates (CH4, CH2O, C2H2, C2H4 and C2H6) in DME–air flames. The temperature dependences of the hydrocarbon Raman spectra over fixed spectral regions have been determined through a series of measurements in laminar Bunsen-burner flames, and have been used to extend a library of previously acquired Raman spectra up to flame temperature. The paper presents the first Raman measurements of up to twelve species in hydrocarbon flames, and the first quantitative Raman measurements of formaldehyde in flames. Lastly, the accuracy and precision of the instrument are determined from measurements in laminar flames and the applicability of the instrument to turbulent DME–air flames is discussed.

  9. Measurement properties of adult quality-of-life measurement instruments for eczema: a systematic review.

    Science.gov (United States)

    Heinl, D; Prinsen, C A C; Deckert, S; Chalmers, J R; Drucker, A M; Ofenloch, R; Humphreys, R; Sach, T; Chamlin, S L; Schmitt, J; Apfelbacher, C

    2016-03-01

    The Harmonising Outcome Measures for Eczema (HOME) initiative has identified quality of life (QoL) as a core outcome domain to be evaluated in every eczema trial. It is unclear which of the existing QoL instruments is most appropriate for this domain. Thus, the aim of this review was to systematically assess the measurement properties of existing measurement instruments developed and/or validated for the measurement of QoL in adult eczema. We conducted a systematic literature search in PubMed and Embase identifying studies on measurement properties of adult eczema QoL instruments. For all eligible studies, we assessed the adequacy of the measurement properties and the methodological quality with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis summarizing findings from different studies was the basis to assign four degrees of recommendation (A-D). A total of 15 articles reporting on 17 instruments were included. No instrument fulfilled the criteria for category A. Six instruments were placed in category B, meaning that they have the potential to be recommended depending on the results of further validation studies. Three instruments had poor adequacy in at least one required adequacy criterion and were therefore put in category C. The remaining eight instruments were minimally validated and were thus placed in category D. Currently, no QoL instrument can be recommended for use in adult eczema. The Quality of Life Index for Atopic Dermatitis (QoLIAD) and the Dermatology Life Quality Index (DLQI) are recommended for further validation research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Current situation and prospect of market on the latest radiation measuring instrument

    International Nuclear Information System (INIS)

    Ha, Chang Ho; Kim, Wang Geum; Cho, Gyu Seong

    2009-12-01

    This book deals with current situation and prospect of market on the latest radiation measuring instrument. The contents of this book are basic of technology on radiation measuring instrument with basic principle of various measuring instrument, current situation of technology and prospect of radiation measuring instrument, effect of spreading and application field of radiation measuring instrument, facility for making and research and development of radiation measuring instrument, prospect of market about radiation measuring instrument, strategy for market entry with the latest radiation measuring instrument and general prospect for the future.

  11. The measurement of plasma temperature by height scattering

    International Nuclear Information System (INIS)

    Katzenstein, J.

    1976-04-01

    One of the most accurate methods for the determination of the electron and ion temperature of a plasma is the measurement of the spectrum of the light scattered from a monoshromatic laser beam by the plasma electrons. The simple case of uncorrelated electrons is treated in detail showing the scattered spectrum to be a simple Gaussian whose half-breadth is proportional to the mean electron thermal velocity hence the square root of electron temperature. The results of a more general treatment are also reviewed which takes into account electron-ion correlations. Experimental requirements on the laser, the spetral instrumentation, and the data analysis are discussed. (author)

  12. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  13. Constraining the temperature history of the past millennium using early instrumental observations

    Directory of Open Access Journals (Sweden)

    P. Brohan

    2012-10-01

    Full Text Available The current assessment that twentieth-century global temperature change is unusual in the context of the last thousand years relies on estimates of temperature changes from natural proxies (tree-rings, ice-cores, etc. and climate model simulations. Confidence in such estimates is limited by difficulties in calibrating the proxies and systematic differences between proxy reconstructions and model simulations. As the difference between the estimates extends into the relatively recent period of the early nineteenth century it is possible to compare them with a reliable instrumental estimate of the temperature change over that period, provided that enough early thermometer observations, covering a wide enough expanse of the world, can be collected.

    One organisation which systematically made observations and collected the results was the English East India Company (EEIC, and their archives have been preserved in the British Library. Inspection of those archives revealed 900 log-books of EEIC ships containing daily instrumental measurements of temperature and pressure, and subjective estimates of wind speed and direction, from voyages across the Atlantic and Indian Oceans between 1789 and 1834. Those records have been extracted and digitised, providing 273 000 new weather records offering an unprecedentedly detailed view of the weather and climate of the late eighteenth and early nineteenth centuries.

    The new thermometer observations demonstrate that the large-scale temperature response to the Tambora eruption and the 1809 eruption was modest (perhaps 0.5 °C. This provides an out-of-sample validation for the proxy reconstructions – supporting their use for longer-term climate reconstructions. However, some of the climate model simulations in the CMIP5 ensemble show much larger volcanic effects than this – such simulations are unlikely to be accurate in this respect.

  14. A new and inexpensive temperature-measuring system. Application to photovoltaic solar facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bohorquez, Miguel Angel Martinez; Enrique Gomez, Juan Manuel; Andujar Marquez, Jose Manuel [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva, Carretera Huelva - Palos de la, Frontera S/N, 21819 Huelva (Spain)

    2009-06-15

    This article presents the design, construction and testing of a new and inexpensive digital sensor-based temperature-measuring system, whose principal characteristics are: precision, ease of connection, immunity to noise, remote operation and easy scaling, and all this at a very low cost. This new digital sensor-based measuring system overcomes the traditional problems of digital measuring sensors, offering characteristics similar to Pt100-based measuring systems, and therefore can be used in any installation where reliable temperature measurement is necessary. It is especially suitable for installations where cost is a deciding factor in the choice of measuring system. It presents a practical application of the developed instrumentation system for use in photovoltaic solar facilities. This new temperature-measuring system has been registered in the Spanish Patent and Trademark Office with the number P200803364. (author)

  15. Instruments to measure behavioural and psychological symptoms of dementia.

    Science.gov (United States)

    van der Linde, Rianne M; Stephan, Blossom C M; Dening, Tom; Brayne, Carol

    2014-03-01

    Reliable and valid measurement of behavioural and psychological symptoms of dementia (BPSD) is important for research and clinical practice. Here we provide an overview of the different instruments and discuss issues involved in the choice of the most appropriate instrument to measure BPSD in research. A list of BPSD instruments was generated. For each instrument Pubmed and SCOPUS were searched for articles that reported on their use or quality. Eighty-three instruments that are used to measure BPSD were identified. Instruments differ in length and detail, whether the interview is with participants, informants or by observation, the target sample and the time frames for use. Reliability and validity is generally good, but reported in few independent samples. When choosing a BPSD instrument for research the research question should be carefully scrutinised and the symptoms of interest, population, quality, detail, time frame and practical issues should be considered. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Micro-XRD and temperature-modulated DSC investigation of nickel-titanium rotary endodontic instruments.

    Science.gov (United States)

    Alapati, Satish B; Brantley, William A; Iijima, Masahiro; Schricker, Scott R; Nusstein, John M; Li, Uei-Ming; Svec, Timothy A

    2009-10-01

    Employ Micro-X-ray diffraction and temperature-modulated differential scanning calorimetry to investigate microstructural phases, phase transformations, and effects of heat treatment for rotary nickel-titanium instruments. Representative as-received and clinically used ProFile GT and ProTaper instruments were principally studied. Micro-XRD analyses (Cu Kalpha X-rays) were performed at 25 degrees C on areas of approximately 50 microm diameter near the tip and up to 9 mm from the tip. TMDSC analyses were performed from -80 to 100 degrees C and back to -80 degrees C on segments cut from instruments, using a linear heating and cooling rate of 2 degrees C/min, sinusoidal oscillation of 0.318 degrees C, and period of 60s. Instruments were also heat treated 15 min in a nitrogen atmosphere at 400, 500, 600 and 850 degrees C, and analyzed. At all Micro-XRD analysis regions the strongest peak occurred near 42 degrees , indicating that instruments were mostly austenite, with perhaps some R-phase and martensite. Tip and adjacent regions had smallest peak intensities, indicative of greater work hardening, and the intensity at other sites depended on the instrument. TMDSC heating and cooling curves had single peaks for transformations between martensite and austenite. Austenite-finish (A(f)) temperatures and enthalpy changes were similar for as-received and used instruments. Heat treatments at 400, 500 and 600 degrees C raised the A(f) temperature to 45-50 degrees C, and heat treatment at 850 degrees C caused drastic changes in transformation behavior. Micro-XRD provides novel information about NiTi phases at different positions on instruments. TMDSC indicates that heat treatment might yield instruments with substantial martensite and improved clinical performance.

  17. Automatic HTS force measurement instrument

    International Nuclear Information System (INIS)

    Sanders, S.T.; Niemann, R.C.

    1999-01-01

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs

  18. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  19. Instrument for measuring metal-thermoelectric semiconductor contact resistence

    International Nuclear Information System (INIS)

    Lanxner, M.; Nechmadi, M.; Meiri, B.; Schildkraut, I.

    1979-02-01

    An instrument for measuring electrical, metal-thermoelectric semiconductor contact resistance is described. The expected errors of measurement are indicated. The operation of the instrument which is based on potential traversing perpendicularly to the contact plane is illustrated for the case of contacts of palladium and bismuth telluride-based thermoelectric material

  20. Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak

    International Nuclear Information System (INIS)

    Wintenberg, A.L.

    1985-04-01

    An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15 0 . Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, and produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity

  1. A Two-Line Absorption Instrument for Scramjet Temperature and Water Vapor Concentration Measurement in HYPULSE

    Science.gov (United States)

    Tsai, C. Y.

    1998-01-01

    A three beam water vapor sensor system has been modified to provide for near simultaneous temperature measurement. The system employs a tunable diode laser to scan spectral line of water vapor. The application to measurements in a scramjet combustor environment of a shock tunnel facility is discussed. This report presents and discusses die initial calibration of the measurement system.

  2. Temperature measurement in French atomic piles; La mesure des temperatures dans les piles atomiques francaises

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Rastoix, G

    1950-10-01

    In the Chatillon reactor the temperature is measured (1) in the interior of one of the vertical A1 cylinders filled with UO{sub 2} (temperature interval 20 to 70 deg. C), and (2) in the center of the tank containing D{sub 2}O (20 to 50 deg. C). The instruments used are silver-constantan thermocouples; the wires are insulated by SiO{sub 2} sheaths, those immersed in D{sub 2}O being placed within Al cases 10 mm diameter. In the Saclay reactor the temperature is taken (1) in the interior of 4 U rods (20 to 300 deg. C), (2) at 2 points of the D{sub 2}O mass (20 to 60 deg. C), (3) at one point in graphite (20 to 100 deg. C), and (4) at 5 points in the catalytic setup (200 deg. C). Copper-constantan couples are used (Ag-constantan is not suitable above 150 deg. C); the wires are enclosed in a sheath of glass fabric. In both reactors the accuracy of the temperature measurements is 0.5 deg. C. (author)

  3. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    Science.gov (United States)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination

  4. Correlation between Temperature-dependent Fatigue Resistance and Differential Scanning Calorimetry Analysis for 2 Contemporary Rotary Instruments.

    Science.gov (United States)

    Arias, Ana; Macorra, José C; Govindjee, Sanjay; Peters, Ove A

    2018-04-01

    The aim of this study was to assess differences in cyclic fatigue (CF) life of contemporary heat-treated nickel-titanium rotary instruments at room and body temperatures and to document corresponding phase transformations. Forty Hyflex EDM (H-EDM) files (Coltene, Cuyahoga Falls, OH [#25/.08, manufactured by electrical discharge machining]) and 40 TRUShape (TS) files (Dentsply Tulsa Dental Specialties, Tulsa, OK [#25/.06v, manufactured by grinding and shape setting]) were divided into 2 groups (n = 20) for CF resistance tests in a water bath either at room (22°C ± 0.5°C) or body temperature (37°C ± 0.5°C). Instruments were rotated in a simulated canal (angle = 60°, radius = 3 mm, and center of the curvature 5 mm from the tip) until fracture occurred. The motor was controlled by an electric circuit that was interrupted after instrument fracture. The mean half-life and beta and eta Weibull parameters were determined and compared. Two instruments of each brand were subjected to differential scanning calorimetry (DSC). While TS instruments lasted significantly longer at room temperature (mean life = 234.7 seconds; 95% confidence interval [CI], 209-263.6) than at body temperature (mean life = 83.2 seconds; 95% CI, 76-91.1), temperature did not affect H-EDM behavior (room temperature mean life = 725.4 seconds; 95% CI, 658.8-798.8 and body temperature mean life = 717.9 seconds; 95% CI, 636.8-809.3). H-EDM instruments significantly outlasted TS instruments at both temperatures. At body temperature, TS was predominantly austenitic, whereas H-EDM was martensitic or in R-phase. TS was in a mixed austenitic/martensitic phase at 22°C, whereas H-EDM was in the same state as at 37°C. H-EDM had a longer fatigue life than TS, which showed a marked decrease in fatigue life at body temperature; neither the life span nor the state of the microstructure in the DSC differed for H-EDM between room or body temperature. Copyright © 2017 American Association of

  5. Impact of instrument response variations on health physics measurements

    International Nuclear Information System (INIS)

    Armantrout, G.A.

    1984-10-01

    Uncertainties in estimating the potential health impact of a given radiation exposure include instrument measurement error in determining exposure and difficulty in relating this exposure to an effective dose value. Instrument error can be due to design or manufacturing deficiencies, limitations of the sensing element used, and calibration and maintenance of the instrument. This paper evaluates the errors which can be introduced by design deficiencies and limitations of the sensing element for a wide variety of commonly used survey instruments. The results indicate little difference among sensing element choice for general survey work, with variations among specific instrument designs being the major factor. Ion chamber instruments tend to be the best for all around use, while scintillator-based units should not be used where accurate measurements are required. The need to properly calibrate and maintain an instrument appears to be the most important factor in instrument accuracy. 8 references, 6 tables

  6. Measurement of Linear Coefficient of Thermal Expansion and Temperature-Dependent Refractive Index Using Interferometric System

    Science.gov (United States)

    Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.

    2017-01-01

    A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.

  7. Measurement of high-temperature spectral emissivity using integral blackbody approach

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-11-01

    Spectral emissivity is one of the most critical thermophysical properties of a material for heat design and analysis. Especially in the traditional radiation thermometry, normal spectral emissivity is very important. We developed a prototype instrument based upon an integral blackbody method to measure material's spectral emissivity at elevated temperatures. An optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit was used to implemented the system. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated reference blackbody which had an effective total emissivity greater than 0.985. During the measurement, a pneumatic cylinder pushed a graphite rode and then the sample crucible to the cold opening within hundreds of microseconds. The linear pyrometer was used to monitor the brightness temperature of the sample surface, and the corresponding opto-converted voltage was fed and recorded by a digital multimeter. To evaluate the temperature drop of the sample along the pushing process, a physical model was proposed. The tube was discretized into several isothermal cylindrical rings, and the temperature of each ring was measurement. View factors between sample and rings were utilized. Then, the actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage signal and the calculated actual temperature, normal spectral emissivity under the that temperature point was obtained. Graphite sample at 1300°C was measured to prove the validity of the method.

  8. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.; McGarry, M. B. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Franz, P. [Consorzio RFX, Padova (Italy); Stephens, H. D. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Pierce College Fort Steilacoom, Lakewood, Washington 98498 (United States)

    2016-11-15

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.

  9. Calibration of the geometrical characteristics of areal surface topography measuring instruments

    International Nuclear Information System (INIS)

    Giusca, C L; Leach, R K; Helery, F; Gutauskas, T

    2011-01-01

    The use of areal surface topography measuring instruments has increased significantly over the past ten years as industry starts to embrace the use of surface structuring to affect the function of a component. This has led to a range of areal surface topography measuring instruments being developed and becoming available commercially. For such instruments to be used as part of quality control during production, it is essential for them to be calibrated according to international standards. The ISO 25178 suite of specification standards on areal surface topography measurement presents a series of tests that can be used to calibrate the metrological characteristics of an areal surface topography measuring instrument. Calibration artefacts and test procedures have been developed that are compliant with ISO 25178. The material measures include crossed gratings, resolution artefacts and pseudorandom surfaces. Traceability is achieved through the NPL Areal Instrument - a primary stylus-based instrument that uses laser interferometers to measure the displacement of the stylus tip. Good practice guides on areal calibration have also been drafted for stylus instruments, coherence scanning interferometers, scanning confocal microscopes and focus variation instruments.

  10. Portable dynamic light scattering instrument and method for the measurement of blood platelet suspensions

    International Nuclear Information System (INIS)

    Maurer-Spurej, Elisabeth; Brown, Keddie; Labrie, Audrey; Marziali, Andre; Glatter, Otto

    2006-01-01

    No routine test exists to determine the quality of blood platelet transfusions although every year millions of patients require platelet transfusions to survive cancer chemotherapy, surgery or trauma. A new, portable dynamic light scattering instrument is described that is suitable for the measurement of turbid solutions of large particles under temperature-controlled conditions. The challenges of small sample size, short light path through the sample and accurate temperature control have been solved with a specially designed temperature-controlled sample holder for small diameter, disposable capillaries. Efficient heating and cooling is achieved with Peltier elements in direct contact with the sample capillary. Focusing optical fibres are used for light delivery and collection of scattered light. The practical use of this new technique was shown by the reproducible measurement of latex microspheres and the temperature-induced morphological changes of human blood platelets. The measured parameters for platelet transfusions are platelet size, number of platelet-derived microparticles and the response of platelets to temperature changes. This three-dimensional analysis provides a high degree of confidence for the determination of platelet quality. The experimental data are compared to a matrix and facilitate automated, unbiased quality testing

  11. Research and development of thermal-fluid measuring instrument

    International Nuclear Information System (INIS)

    Tuzla, K.; Chen, J.C.

    1991-01-01

    The goal of this program is to develop an instrument to measure the time-fraction of liquid contact in the transition and film boiling regimes for flow within a vertical tube. The work was carried out at Lehigh University between February 15, 1989 to February 15, 1991. The instrument to measure time-fraction of liquid contact was successfully developed and tested

  12. Comparison of water gel desserts from fish skin and pork gelatins using instrumental measurements.

    Science.gov (United States)

    Zhou, Peng; Regenstein, Joe M

    2007-05-01

    The objective of this study was to compare water gel desserts from various gelatins using instrumental measurements. The puncture test and texture profile analysis (TPA) with compression were determined at 25% and 75% deformation; the melting properties were determined rheologically by monitoring the change of storage modulus (G') with increasing temperature. The measurements with 25% deformation were always nondestructive, while measurements with 75% deformation were mostly destructive. Desserts made from Alaska pollock gelatin (AG) or gelatin mixtures containing AG were more resistant to the destruction caused by the large deformation than tilapia gelatin and pork gelatins. In addition, the gel dessert made from AG melted at a lower temperature than those from tilapia skin gelatin and pork gelatins, while desserts made from gelatin mixtures reflected the melting properties of the separate gelatins.

  13. Viability of Pushrod Dilatometry Techniques for High Temperature In-Pile Measurements

    Energy Technology Data Exchange (ETDEWEB)

    J. E. Daw; J. L. Rempe; D. L. Knudson; K. G. Condie; J. C. Crepeau

    2008-03-01

    To evaluate the performance of new fuel, cladding, and structural materials for use in advanced and existing nuclear reactors, robust instrumentation is needed. Changes in material deformation are typically evaluated out-of-pile, where properties of materials are measured after samples were irradiated for a specified length of time. To address this problem, a series of tests were performed to examine the viability of using pushrod dilatometer techniques for in-pile instrumentation to measure deformation. The tests were performed in three phases. First, familiarity was gained in the use and accuracy of this system by testing samples with well defined thermal elongation characteristics. Second, high temperature data for steels, specifically SA533 Grade B, Class 1 (SA533B1) Low Alloy Steel and Stainless Steel 304 (SS304), found in Light Water Reactor (LWR) vessels, were aquired. Finally, data were obtained from a short pushrod in a horizontal geometry to data obtained from a longer pushrod in a vertical geometry, the configuration likely to be used for in-situ measurements. Results of testing show that previously accepted data for the structural steels tested, SA533B1 and SS304, are inaccurate at high temperatures (above 500 oC) due to extrpolation of high temperature data. This is especially true for SA533B1, as previous data do not account for the phase transformation of the material between 730 oC and 830 oC. Also, comparison of results for horizontal and vertical configurations show a maximum percent difference of 2.02% for high temperature data.

  14. Evaluation of the measurement properties of symptom measurement instruments for atopic eczema: a systematic review.

    Science.gov (United States)

    Gerbens, L A A; Prinsen, C A C; Chalmers, J R; Drucker, A M; von Kobyletzki, L B; Limpens, J; Nankervis, H; Svensson, Å; Terwee, C B; Zhang, J; Apfelbacher, C J; Spuls, P I

    2017-01-01

    Symptoms have been identified as a core outcome domain for atopic eczema (AE) trials. Various instruments exist to measure symptoms in AE, but they vary in quality and there is a lack of standardization between clinical trials. Our objective was to systematically evaluate the quality of the evidence on the measurement properties of AE symptom instruments, thereby informing consensus discussions within the Harmonising Outcome Measures for Eczema (HOME) initiative regarding the most appropriate instruments for the core outcome domain symptoms. Using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and predefined criteria for good measurement properties on identified development and validation studies of AE symptom instruments, a best evidence synthesis was performed to draw an overall conclusion on quality of the instruments and to provide recommendations. Eighteen instruments were identified and evaluated. When the quality and results of the studies were considered, only five of these instruments had sufficient validation data to consider them for the core outcome set for the core outcome domain symptoms. These were the paediatric Itch Severity Scale (ISS), Patient-Oriented Eczema Measure (POEM), Patient-Oriented SCOring Atopic Dermatitis (PO-SCORAD), Self-Administered Eczema Area and Severity Index (SA-EASI) and adapted SA-EASI. ISS (paediatric version), POEM, PO-SCORAD, SA-EASI and adapted SA-EASI are currently the most appropriate instruments and therefore have the potential to be recommended as core symptom instrument in future clinical trials. These findings will be utilized for the development of a core outcome set for AE. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Instrumentation requirements for the ESF thermomechanical experiments

    International Nuclear Information System (INIS)

    Pott, J.; Brechtel, C.E.

    1992-01-01

    In situ thermomechanical experiments are planned as part of the Yucca Mountain Site Characterization Project that require instruments to measure stress and displacement at temperatures that exceed the typical specifications of existing geotechnical instruments. A high degree of instrument reliability will also be required to satisfy the objectives of the experiments, therefore a study was undertaken to identify areas where improvement in instrument performance was required. A preliminary list of instruments required for the experiments was developed, based on existing test planning and analysis. Projected temperature requirements were compared to specifications of existing instruments to identify instrumentation development needs. Different instrument technologies, not currently employed in geotechnical instrumentation, were reviewed to identify potential improvements of existing designs for the high temperature environment. Technologies with strong potentials to improve instrument performance with relatively high reliability include graphite fiber composite materials, fiber optics, and video imagery

  16. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    Science.gov (United States)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  17. Remote measurement of atmospheric temperature profiles in clouds with rotational Raman lidar; Fernmessung atmosphaerischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    2000-07-01

    The development of a lidar receiver for remote measurements of atmospheric temperature profiles with the rotational Raman method is described. By a new receiver concept, this instrument allowed for the first time remote temperature measurements without any perturbation by the presence of clouds up to a backscatter ratio of 45. In addition, high efficiency of the spectral separation of atmospheric backscatter signals leads to improved measurement resolution: the minimum integration time needed for a statistical uncertainty < {+-}1 K at, e.g., 10 km height and 960 m height resolution is only 5 minutes. The measurement range extends to over 45 km altitude. Results of field campaigns obtained with the instrument are presented and discussed. In winter 1997/98, the instrument was transferred with the GKSS Raman lidar to Esrange (67.9 N, 21.1 E) in northern Sweden, where pioneering remote measurements of local temperatures in orographically induced polar stratospheric clouds could be carried out. (orig.)

  18. Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument

    Science.gov (United States)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.

  19. Measurement properties of adult quality-of-life measurement instruments for eczema: protocol for a systematic review.

    Science.gov (United States)

    Apfelbacher, Christian J; Heinl, Daniel; Prinsen, Cecilia A C; Deckert, Stefanie; Chalmers, Joanne; Ofenloch, Robert; Humphreys, Rosemary; Sach, Tracey; Chamlin, Sarah; Schmitt, Jochen

    2015-04-16

    Eczema is a common chronic or chronically relapsing skin disease that has a substantial impact on quality of life (QoL). By means of a consensus-based process, the Harmonising Outcome Measures in Eczema (HOME) initiative has identified QoL as one of the four core outcome domains to be assessed in all eczema trials (Allergy 67(9):1111-7, 2012). Various measurement instruments exist to measure QoL in adults with eczema, but there is a great variability in both content and quality (for example, reliability and validity) of the instruments used, and it is not always clear if the best instrument is being used. Therefore, the aim of the proposed research is a comprehensive systematic assessment of the measurement properties of the existing measurement instruments that were developed and/or validated for the measurement of patient-reported QoL in adults with eczema. This study is a systematic review of the measurement properties of patient-reported measures of QoL developed and/or validated for adults with eczema. Medline via PubMed and EMBASE will be searched using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing, or comparing measurement properties of QoL instruments for adult patients with eczema. Eligibility assessment and data abstraction will be performed independently by two reviewers. Evidence tables will be generated for study characteristics, instrument characteristics, measurement properties, and interpretability. The quality of the measurement properties will be assessed using predefined criteria. Methodological quality of studies will be assessed using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis will be undertaken if more than one study has investigated a particular measurement property. The proposed systematic review will produce a comprehensive assessment of measurement properties of existing QoL instruments in

  20. Development of a portable ambient temperature radiometric assaying instrument

    International Nuclear Information System (INIS)

    Lavietes, A.D.; McQuaid, J.H.; Ruhter, W.D.; Paulus, T.J.

    1995-01-01

    There is a strong need for portable radiometric instrumentation that can accurately confirm the presence of nuclear materials and allow isotopic analysis of radionuclides in the field. To fulfill this need, the authors are developing a hand-held, non-cryogenic, low-power gamma- and X-ray measurement and analysis instrument that can both search and then accurately verify the presence of nuclear materials. The authors report on the use of cadmium zinc telluride detectors, signal processing electronics, and the new field-portable instrument based on the MicroNOMAD Multichannel Analyzer from EG and G ORTEC. They will also describe the isotopic analysis that allows uranium enrichment measurements to be made accurately in the field. The benefits of this work are realized in a wide spectrum of applications that include Arms Control, Nuclear Safeguards, Environmental Management, Emergency Response, and Treaty Verification

  1. Special instrumentation developed for FARO and KROTOS FCI experiments: High temperature ultrasonic sensor and dynamic level sensor

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Jorzik, E.; Anselmi, M.

    1998-01-01

    Development and application of special instrumentation for FARO and KROTOS fuel-coolant interaction experiments at JRC-Ispra are described. A temperature sensor based on ultrasonic techniques is described with the discussion on the improvements in sensor fabrication technique and design. The sensor can be used to measure temperatures in the range from 1800 deg C to 3100 deg C with an accuracy of ± 50 deg C. The design allows local temperature measurements in multiple zones along the sensor element. This sensor has been used successfully in a number of FARO experiments where temperature distributions in molten corium pools have been measured. It will be also used in the future Phebus FP tests. Furthermore, a water level meter sensor based on the time domain reflectometry technique is described. This high speed sensor allows monitoring of liquid level under very demanding ambient conditions, as e.g. 5MPa, 550 K in FARO. This sensor has been successfully applied in a number of FARO and KROTOS tests where the water level rise caused by a molten corium and Al 2 O 3 pours have been measured. (author)

  2. 30 CFR 75.1719-3 - Methods of measurement; light measuring instruments.

    Science.gov (United States)

    2010-07-01

    ... being measured and a sufficient distance from the surface to allow the light sensing element in the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of measurement; light measuring... § 75.1719-3 Methods of measurement; light measuring instruments. (a) Compliance with § 75.1719-1(d...

  3. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  4. Temperature Measurements in the Magnetic Measurement Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  5. Measuring device for the temperature coefficient of reactor moderators

    International Nuclear Information System (INIS)

    Nakano, Yuzo.

    1987-01-01

    Purpose: To rapidly determine by automatic calculation the temperature coefficient for moderators which has been determined so far by a log of manual processings. Constitution: Each of signals from a control rod position indicator, a reactor reactivity, instrument and moderator temperature meter are inputted, and each of the signals and designed valued for the doppler temperature coefficients are stored. Recurling calculation is conducted based on the reactivity and the moderator temperature at an interval where the temperature changes of the moderators are equalized at an identical control rod position, to determine isothermic coefficient. Then, the temperature coefficient for moderator are calculated from the isothermic coefficient and the doppler temperature coefficient. The relationship between the reactivity and the moderator temperature is plotted on a X-Y recorder. The stored signals and the calculated temperature coefficient for moderators are sequentially displayed and the results are printed out when the measurement is completed. According to the present device, since the real time processing is conducted, the processing time can be shortened remarkably. Accordingly, it is possible to save the man power for the test of the nuclear reactor and improve the reactor operation performance. (Kamimura, M.)

  6. Measurement control program for NDA instruments

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marks, T.

    1983-01-01

    Measurement control checks for nondestructive assay instruments have been a constant and continuing concern at Los Alamos National Laboratory. This paper summarizes the evolution of the measurement control checks in the various high-resolution gamma systems we have developed. In-plant experiences with these systems and checks will be discussed. Based on these experiences, a set of measurement control checks is recommended for high-resolution gamma-ray systems

  7. Comparison of nanoparticle measurement instruments for occupational health applications

    International Nuclear Information System (INIS)

    Leskinen, J.; Joutsensaari, J.; Lyyränen, J.; Koivisto, J.; Ruusunen, J.; Järvelä, M.; Tuomi, T.; Hämeri, K.; Auvinen, A.; Jokiniemi, J.

    2012-01-01

    Nanoparticles are used in many applications because of their novel properties compared to bulk material. A growing number of employees are working with nanomaterials and their exposure to nanoparticles trough inhalation must be evaluated and monitored continuously. However, there is an ongoing debate in the scientific literature about what are the relevant parameters to measure to evaluate exposure to level. In this study, three types of nanoparticles (ammonium sulphate, synthesised TiO 2 agglomerates and aerosolised TiO 2 powder, modes in a range of 30–140 nm mobility size) were measured with commonly used aerosol measurement instruments: scanning and fast mobility particle sizers (SMPS, FMPS), electrical low pressure impactor (ELPI), condensation particle counter (CPC) together with nanoparticle surface area monitor (NSAM) to achieve information about the interrelations of the outputs of the instruments. In addition, the ease of use of these instruments was evaluated. Differences between the results of different instruments can mainly be attributed to the nature of test particles. For spherical ammonium sulphate nanoparticles, the data from the instruments were in good agreement while larger differences were observed for particles with more complex morphology, the TiO 2 agglomerates and powder. For instance, the FMPS showed a smaller particle size, a higher number concentration and a narrower size distribution compared with the SMPS for TiO 2 particles. Thus, the type of the nanoparticle was observed to influence the data obtained from these different instruments. Therefore, care and expertise are essential when interpreting results from aerosol measurement instruments to estimate nanoparticle concentrations and properties.

  8. Measurement of sexual functioning after spinal cord injury: preferred instruments

    DEFF Research Database (Denmark)

    Alexander, Marcalee Sipski; Brackett, Nancy L; Bodner, Donald

    2009-01-01

    into male and female sexual function, male reproductive function, and female reproductive function. The instruments that have been used most frequently to measure these aspects of sexual function over the past 5 years were identified by expert consensus. Finally, these instruments were subjected...... to a critical review. RESULTS: The Female Sexual Function Index (FSFI), measurement of vaginal pulse amplitude (VPA), the International Index of Erectile Function (IIEF), and the measurement of ejaculatory function and semen quality were considered appropriate measures to assess sexual responses......BACKGROUND/OBJECTIVE: To determine the utility of certain instruments to assess sexuality and fertility after SCI, an expert panel identified key areas to study and evaluated available instruments. These were rated according to certain predefined criteria. METHODS: The authors divided sexual issues...

  9. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement

    Science.gov (United States)

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  10. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  11. A Secure System Architecture for Measuring Instruments in Legal Metrology

    Directory of Open Access Journals (Sweden)

    Daniel Peters

    2015-03-01

    Full Text Available Embedded systems show the tendency of becoming more and more connected. This fact combined with the trend towards the Internet of Things, from which measuring instruments are not immune (e.g., smart meters, lets one assume that security in measuring instruments will inevitably play an important role soon. Additionally, measuring instruments have adopted general-purpose operating systems to offer the user a broader functionality that is not necessarily restricted towards measurement alone. In this paper, a flexible software system architecture is presented that addresses these challenges within the framework of essential requirements laid down in the Measuring Instruments Directive of the European Union. This system architecture tries to eliminate the risks general-purpose operating systems have by wrapping them, together with dedicated applications, in secure sandboxes, while supervising the communication between the essential parts and the outside world.

  12. A critical appraisal of instruments to measure outcomes of interprofessional education.

    Science.gov (United States)

    Oates, Matthew; Davidson, Megan

    2015-04-01

    Interprofessional education (IPE) is believed to prepare health professional graduates for successful collaborative practice. A range of instruments have been developed to measure the outcomes of IPE. An understanding of the psychometric properties of these instruments is important if they are to be used to measure the effectiveness of IPE. This review set out to identify instruments available to measure outcomes of IPE and collaborative practice in pre-qualification health professional students and to critically appraise the psychometric properties of validity, responsiveness and reliability against contemporary standards for instrument design. Instruments were selected from a pool of extant instruments and subjected to critical appraisal to determine whether they satisfied inclusion criteria. The qualitative and psychometric attributes of the included instruments were appraised using a checklist developed for this review. Nine instruments were critically appraised, including the widely adopted Readiness for Interprofessional Learning Scale (RIPLS) and the Interdisciplinary Education Perception Scale (IEPS). Validity evidence for instruments was predominantly based on test content and internal structure. Ceiling effects and lack of scale width contribute to the inability of some instruments to detect change in variables of interest. Limited reliability data were reported for two instruments. Scale development and scoring protocols were generally reported by instrument developers, but the inconsistent application of scoring protocols for some instruments was apparent. A number of instruments have been developed to measure outcomes of IPE in pre-qualification health professional students. Based on reported validity evidence and reliability data, the psychometric integrity of these instruments is limited. The theoretical test construction paradigm on which instruments have been developed may be contributing to the failure of some instruments to detect change in

  13. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    Science.gov (United States)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  14. Ion temperature measurements in the scrape-off layer of the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Kocan, M.

    2009-10-01

    The thesis describes measurements of the scrape-off layer (SOL) ion temperature T i with a retarding field analyzer (RFA) in the limiter tokamak Tore Supra. Considerable emphasis is placed on study of the instrumental effects of RFAs and their influence on T i measurements. In general, the influence of instrumental effects on T i measurements is found to be relatively small. The instrumental study is followed by systematic measurements of T i (as well as other parameters) in the Tore Supra SOL. This includes the scaling of SOL temperatures and electron density with the main plasma parameters (such as the plasma density, toroidal magnetic field, working gas, and the radiated power fraction). Except at very high densities or in detached plasmas, SOL T i is found to be higher than T e by up to a factor of 7. While SOL T i is found to vary by almost two orders of magnitude, following the variation of the core temperatures, SOL T e changes only little and seems to be decoupled from the core plasma. The first continuous T i /T e profile from the edge of the confined plasma into the SOL is constructed using data from different tokamaks. It is shown that T i /T e > 1 in the SOL but also in the confined plasma, and increases with radius. The first evidence of poloidal asymmetry of the radial ion and electron energy transport in the SOL is reported. Implications for ITER start-up phase are discussed. Correlation of the asymmetries of SOL T i and T e measured from both directions along the magnetic field lines with changes of the parallel Mach number is studied. SOL T i was measured for the first time in Tore Supra by charge exchange recombination spectroscopy (CXRS) and compared to RFA data. A factor of 4 higher T i measured by CXRS is a subject of further analysis. (A.C.)

  15. The link between ozone and temperature as derived from sonde measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fortuin, J P.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands)

    1996-12-31

    The current study is based on ozone and temperature measurements, recorded at 8 ozonesonde stations over the period 1971 -1991. The ozonesonde and raw instruments are attached to the same balloon, which has the advantage that datasets are truly synoptic. The ozonesonde stations are located in Canada (Resolute, Edmonton, Churchill and Goose Bay), Japan (Sapporo, Tateno and Kagoshima U.S.) (Wallops Island). The ozone and temperature datasets are submitted to a multiple linear regression analysis. The predictors are time cycle, solar flux at 10.7 cm, quasi-biennial oscillation (equatorial wind at 30 hPa where available), the wind direction recorded during the same balloon flight. To account possible changes in ozonesonde instruments, a step function is used. The El Chichon volcanic eruption is accounted for using the 9-season window technique. Results are presented for the warm and cold half year periods of the annual cycle

  16. The link between ozone and temperature as derived from sonde measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fortuin, J.P.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands)

    1995-12-31

    The current study is based on ozone and temperature measurements, recorded at 8 ozonesonde stations over the period 1971 -1991. The ozonesonde and raw instruments are attached to the same balloon, which has the advantage that datasets are truly synoptic. The ozonesonde stations are located in Canada (Resolute, Edmonton, Churchill and Goose Bay), Japan (Sapporo, Tateno and Kagoshima U.S.) (Wallops Island). The ozone and temperature datasets are submitted to a multiple linear regression analysis. The predictors are time cycle, solar flux at 10.7 cm, quasi-biennial oscillation (equatorial wind at 30 hPa where available), the wind direction recorded during the same balloon flight. To account possible changes in ozonesonde instruments, a step function is used. The El Chichon volcanic eruption is accounted for using the 9-season window technique. Results are presented for the warm and cold half year periods of the annual cycle

  17. Diabetes-related emotional distress instruments: a systematic review of measurement properties.

    Science.gov (United States)

    Lee, Jiyeon; Lee, Eun-Hyun; Kim, Chun-Ja; Moon, Seung Hei

    2015-12-01

    The objectives of this study were to identify all available diabetes-related emotional distress instruments and evaluate the evidence regarding their measurement properties to help in the selection of the most appropriate instrument for use in practice and research. A systematic literature search was performed. PubMed, Embase, CINAHL, and PsycINFO were searched systematically for articles on diabetes-related emotional distress instruments. The Consensus-based Standards for the Selection of Health Measurement Instruments checklist was used to evaluate the methodological quality of the identified studies. The quality of results with respect to the measurement properties of each study was evaluated using Terwee's quality criteria. An ancillary meta-analysis was performed. Of the 2345 articles yielded by the search, 19 full-text articles evaluating 6 diabetes-related emotional distress instruments were included in this study. No instrument demonstrated evidence for all measurement properties. The Problem Areas in Diabetes scale (PAID) was the most frequently studied and the best validated of the instruments. Pooled summary estimates of the correlation coefficient between the PAID and serum glycated hemoglobin revealed a positive but weak correlation. No diabetes-related emotional distress instrument demonstrated evidence for all measurement properties. No instrument was better than another, although the PAID was the best validated and is thus recommended for use. Further psychometric studies of the diabetes-related emotional distress instruments with rigorous methodologies are required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings.

  19. Repairing method of color TV with measuring instrument

    International Nuclear Information System (INIS)

    1996-01-01

    This book concentrates on repairing method of color TV with measuring instrument, which deals with direction and sorts of measuring instrument for service, application and basic technique of an oscilloscope and a synchroscope, constituent of TV and wave reading, everything for test skill for service man, service technique by electronic voltmeter, service technique by sweep generator and maker generator, dot-bar generator and support skill for color TV and color bar generator and application technology of color circuit.

  20. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  1. Assessing Ultraviolet Hazards Using Portable Measuring Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ridyard, A

    2000-07-01

    The 'Erythemal Action Spectrum' shows an increase of 10{sup 3} in human skin sensitivity to UV radiation over only 30 nm of change of wavelength, from 328 nm to 298 nm. This represents a severe challenge to the manufacturing and calibration of a portable instrument which can measure the vanishingly small amounts of short wavelength UV from solarium tanning lamps, and to apply accurately an action spectra to be able to quantify the hazard presented by such lamps to skin. The classification of UV lamp types from their 'effective irradiance' requires very sharp discrimination between UV power contained in the short wavelength and the long wavelength parts of the UV spectra, so radiometers give misleading results. The only instrument suitable for making these measurements is the spectroradiometer. The development of such an instrument in a hand held portable form is described, with the difficulties associated with its calibration and such factors as stray light rejection. (author)

  2. Assessing Ultraviolet Hazards Using Portable Measuring Instruments

    International Nuclear Information System (INIS)

    Ridyard, A.

    2000-01-01

    The 'Erythemal Action Spectrum' shows an increase of 10 3 in human skin sensitivity to UV radiation over only 30 nm of change of wavelength, from 328 nm to 298 nm. This represents a severe challenge to the manufacturing and calibration of a portable instrument which can measure the vanishingly small amounts of short wavelength UV from solarium tanning lamps, and to apply accurately an action spectra to be able to quantify the hazard presented by such lamps to skin. The classification of UV lamp types from their 'effective irradiance' requires very sharp discrimination between UV power contained in the short wavelength and the long wavelength parts of the UV spectra, so radiometers give misleading results. The only instrument suitable for making these measurements is the spectroradiometer. The development of such an instrument in a hand held portable form is described, with the difficulties associated with its calibration and such factors as stray light rejection. (author)

  3. The high temperature out-of-pile test of LVDT for elongation measurement of fuel pellet

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Jo, M. S.; Joo, K. N.; Park, S. J.; Gang, Y. H.; Kim, Y. J. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), the elongation measurement technique of the fuel pellet is being developed using LVDT(Linear Variable Differential Transformer). The well qualified out-of-pile test were needed to understand the LVDT's detail characteristics at high temperature for the detail design of the fuel irradiation instrumented capsule, because LVDT is very sensitive to variation of temperature. Therefore, the high temperature out-of-pile test system for fuel pellet elongation was developed, and this test was performed under the temperature condition between room temperature and 300 .deg. C with increasing the elongation from 0 to 5 mm. The LVDT's high temperature characteristics and temperature sensitivity of LVDT were analyzed through this experiment. Based on the result of this test, the method for the application of LVDT and elongation detector at high temperature was introduced. It is known that the results will be used to predict accurately the elongation of fuel pellet during irradiation test.

  4. Development of retrieval, reservation and management system for measuring instruments

    International Nuclear Information System (INIS)

    Tsuda, Kenzo; Ito, Emi.

    1985-08-01

    In order to computerize the lending and management of measuring instruments, at first, the specification of the software was examined, but thereafter, the development was begun. The largest aim of the computerization was the automation and labor saving of the lending works of diverse measuring instruments and the automatic management. From user side, it is desirable to know the specification and the state of use and reservation of measuring instruments and to be able to easily make reservation based on the information. Besides, from management side, it is desirable to know the location and the state of use and reservation of measuring instruments, to immediately prepare for lending and returning, and to automate the recording of lending and returning. So as to satisfy those conditions, the automatic reservation and management system for measuring instruments was developed. At the same time, the means to simply input required data such as specification, names of manufacturers and equipment number was developed. The input of data was carried out for three months from October, 1984, and the system was almost completed in December, 1984. The full scale operation was started in Junuary, 1985. (Kako, I.)

  5. Instrument-free exothermic heating with phase change temperature control for paper microfluidic devices

    Science.gov (United States)

    Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H.

    2013-03-01

    Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C.

  6. Noise evaluation of a point autofocus surface topography measuring instrument

    Science.gov (United States)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  7. Industrial measurement instruments that use radioisotopes

    International Nuclear Information System (INIS)

    Monno, Asao

    2004-01-01

    An example of a large-scale system for controlling hot rolling, and recent developments for a gamma-ray thickness gauge for the inner-mill housing of a plate and a thickness gauge for a hot seamless tube mill are introduced. The dramatically higher speed response, versatile intelligent elements, larger data capacity and formation of a database are advantages of these instruments over conventional devices. Moreover, Fuji Electric's industrial measuring instruments that use radioisotopes are manufactured and marketed to be compatible with those of Hitachi, and we have already compiled a track record of many deliveries. (author)

  8. Measurements of the cosmic microwave background temperature at 1.47 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Bensadoun, Marc John [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 ± 0.25 K (68% C.L.) measured from White Mountain and 2.26 ± 0.21 K from the South Pole site. The combined result is 2.27 ± 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is ~2.5 σ (~l% probability) from the 2.74 ± 0.02,K global average CMB temperature.

  9. Intelligent type sodium instrumentations for LMFR

    International Nuclear Information System (INIS)

    Daolong Chen

    1996-01-01

    The constructions and their performances of a lot of newly developed intelligent type sodium instrumentations that consist of the intelligent type sodium flowmeter, the intelligent type immersed sodium flowmeter, the intelligent type sodium manometer and the intelligent type sodium level gauge are described. The graduation characteristic equations for corresponding transducer using the medium temperature as the parameter are given. Because the operating temperature limit of measured medium (sodium) is wide, so the on-line compensation of the temperature effect of their graduation characteristics much be considered. The tests show that these intelligent type sodium instrumentations possess of good linearity. The accurate sodium process parameter (flowrate, pressure and level) measurement data can be obtained by means of their on-line compensation function of the temperature effect. Moreover, these intelligent type sodium instrumentations possess of the self-inspection, the electric shutoff protection, the setting of full-scale, the setting of alarm limits (two upper limits and two lower limits alarms), the thermocouple breaking alarm, each other isolative the 0-10V direct-current analogue output and CENTRONICS standard digital output, and the alarm relay contact output. These intelligent type sodium instrumentations are suitable particularly for the instrument, control and protective systems of LMFR by means of these excellent functions based on microprocessor. The basic error of the intelligent type sodium flowmeter, immersed sodium flowmeter, sodium manometer and sodium level gauge is respectively ±2%, ±2.3%, ±0.3% and ±1.9% of measuring range. (author). 4 refs, 9 figs

  10. Global rainbow refractometry for droplet temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux [Institut de Radioprotection et de Surete Nucleaire DSU/SERAC, BP 68, 91192 Gif-sur-Yvette Cedex (France); Gerard Grehan [UMR 6614 CORIA, Laboratoire d' Electromagnetisme et Systemes Particulaires Site Universitaire du Madrillet, Avenue de l' universite BP 12, 76 801 Saint Etienne du Rouvray Cedex, (France)

    2005-07-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm{sup 3}. The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  11. Global rainbow refractometry for droplet temperature measurement

    International Nuclear Information System (INIS)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux; Gerard Grehan

    2005-01-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm 3 . The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  12. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  13. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  14. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  15. Temperature measurement of the reactor materials samples irradiated in the fuel channels of the RA reactor - Annex 16

    International Nuclear Information System (INIS)

    Nikolic, M.; Djalovic, M.

    1964-01-01

    Reactor materials as graphite, stainless steel, magnox, zirconium alloys, etc. were exposed to fast neutron flux inside the fuel elements specially adapted for this purpose. Samples in the form ampoules were placed in capsules inside the fuel channels and cooled by heavy water which cools the fuel elements. In order to monitor the samples temperature 42 thermocouples were placed in the samples. That was necessary for reactor safety reasons and for further interpretation of measured results. Temperature monitoring was done continuously by multichannel milivoltmeters. This paper describes the technique of introducing the thermocouples, compensation instruments, control of the cold ends and adaptation of the instruments for precision (0.5%) temperature measurement in the range 30 deg - 130 deg C; 30 deg - 280 deg C and 30 deg - 80 deg C [sr

  16. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  17. The quality of systematic reviews of health-related outcome measurement instruments.

    Science.gov (United States)

    Terwee, C B; Prinsen, C A C; Ricci Garotti, M G; Suman, A; de Vet, H C W; Mokkink, L B

    2016-04-01

    Systematic reviews of outcome measurement instruments are important tools for the selection of instruments for research and clinical practice. Our aim was to assess the quality of systematic reviews of health-related outcome measurement instruments and to determine whether the quality has improved since our previous study in 2007. A systematic literature search was performed in MEDLINE and EMBASE between July 1, 2013, and June 19, 2014. The quality of the reviews was rated using a study-specific checklist. A total of 102 reviews were included. In many reviews the search strategy was considered not comprehensive; in only 59 % of the reviews a search was performed in EMBASE and in about half of the reviews there was doubt about the comprehensiveness of the search terms used for type of measurement instruments and measurement properties. In 41 % of the reviews, compared to 30 % in our previous study, the methodological quality of the included studies was assessed. In 58 %, compared to 55 %, the quality of the included instruments was assessed. In 42 %, compared to 7 %, a data synthesis was performed in which the results from multiple studies on the same instrument were somehow combined. Despite a clear improvement in the quality of systematic reviews of outcome measurement instruments in comparison with our previous study in 2007, there is still room for improvement with regard to the search strategy, and especially the quality assessment of the included studies and the included instruments, and the data synthesis.

  18. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    Science.gov (United States)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  19. An FPGA-based instrumentation platform for use at deep cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.; Pauka, S. J.; Waddy, S. J.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Microsoft Station Q Sydney, The University of Sydney, Sydney NSW 2006 (Australia); Frechtling, M. K. [Microsoft Station Q Sydney, The University of Sydney, Sydney NSW 2006 (Australia); School of Electrical Engineering, The University of Sydney, Sydney NSW 2006 (Australia)

    2016-01-15

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  20. The measurement of collaboration within healthcare settings: a systematic review of measurement properties of instruments.

    Science.gov (United States)

    Walters, Stephen John; Stern, Cindy; Robertson-Malt, Suzanne

    2016-04-01

    There is a growing call by consumers and governments for healthcare to adopt systems and approaches to care to improve patient safety. Collaboration within healthcare settings is an important factor for improving systems of care. By using validated measurement instruments a standardized approach to assessing collaboration is possible, otherwise it is only an assumption that collaboration is occurring in any healthcare setting. The objective of this review was to evaluate and compare measurement properties of instruments that measure collaboration within healthcare settings, specifically those which have been psychometrically tested and validated. Participants could be healthcare professionals, the patient or any non-professional who contributes to a patient's care, for example, family members, chaplains or orderlies. The term participant type means the designation of any one participant; for example 'nurse', 'social worker' or 'administrator'. More than two participant types was mandatory. The focus of this review was the validity of tools used to measure collaboration within healthcare settings. The types of studies considered for inclusion were validation studies, but quantitative study designs such as randomized controlled trials, controlled trials and case studies were also eligible for inclusion. Studies that focused on Interprofessional Education, were published as an abstract only, contained patient self-reporting only or were not about care delivery were excluded. The outcome of interest was validation and interpretability of the instrument being assessed and included content validity, construct validity and reliability. Interpretability is characterized by statistics such as mean and standard deviation which can be translated to a qualitative meaning. The search strategy aimed to find both published and unpublished studies. A three-step search strategy was utilized in this review. The databases searched included PubMed, CINAHL, Embase, Cochrane Central

  1. Temperature measurement device

    International Nuclear Information System (INIS)

    Oltman, B.G.; Eckerman, K.F.; Romberg, G.P.; Prepejchal, W.

    1975-01-01

    Thermoluminescent dosimeter (TLD) material is exposed to a known amount of radiation and then exposed to the environment where temperature measurements are to be taken. After a predetermined time period, the TLD material is read in a known manner to determine the amount of radiation energy remaining in the TLD material. The difference between the energy originally stored by irradiation and that remaining after exposure to the temperature ofthe environment is a measure of the average temperature of the environment during the exposure. (U.S.)

  2. Temperature measurement device

    International Nuclear Information System (INIS)

    Fournier, Christian; Lions, Noel.

    1975-01-01

    The present invention relates to a temperature measuring system that can be applied in particular to monitoring the temperature of the cooling liquid metal of the outlet of the core assemblies of a fast reactor. Said device combines a long hollow metallic pole, at least partially dipped into the liquid metal and constituting a first thermocouple junction between said pole, and two metallic conductors of different nature, joined at one of their ends to constitute the second thermocouple junction. Said conductors suitably insulated are arranged inside a sheath. Said sheath made of the same metals as the pole extends inside the latter and is connected with the pole through a soldered joint. Said reliable system permits an instantaneous measurement of a quantity representing the variations in the recorded temperature and a measurement of the mean surrounding temperature that can be direcly used as a reference for calibrating the first one [fr

  3. Measurements of local temperature distributions in rod bundles with sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1984-12-01

    In an electrically heated 19-rod bundle (P/D = 1.30, W/R = 1.40) with sodium flow the three-dimensional temperature fields in the rod clads were measured. The main characteristics of the test section are three adjacent heater rods in the duct wall zone instrumented on four measuring planes and rotatable by 360 0 under full power conditions; furthermore spacer grids which are axially movable, and a system allowing to bow one heater rod over the last third of its heated length. The results of measurements of the azimuthal temperature variations of the rotatable rods are presented for different operating conditions (80 2 ), different spacer grid positions relative to the measuring planes and different bowing positions of one rod. For better understanding of the experimental results cross sections of the 19-rod bundle were prepared. It became evident, that a well-known bundle geometry is very important for the interpretation of the experimental results. (orig.) [de

  4. Model SH intelligent instrument for thickness measuring

    International Nuclear Information System (INIS)

    Liu Juntao; Jia Weizhuang; Zhao Yunlong

    1995-01-01

    The authors introduce Model SH Intelligent Instrument for thickness measuring by using principle of beta back-scattering and its application range, features, principle of operation, system design, calibration and specifications

  5. Ambipolar potential measurement plans and instrumentation. Final report, 1 October 1980-30 September 1982

    International Nuclear Information System (INIS)

    Dahlbacka, G.; Stringfield, R.; Glaros, S.; Buck, V.; Larsen, J.; Burr, L.; Boyle, M.; Lepage, J.; Cirigliano, R.

    1983-03-01

    A Thomson parabola charged particle spectrometer was built with an energy resolution of 80 keV and an active silicon detector array that is read by a computer-compatible CAMAC. The instrument was checked out at the University of Rochester Omega Laser facility. Experiments to measure the ambipolar potential and the dE/dx thermonuclear target to within 50 keV are now possible. The ion temperature of the burn can be determined to within 10%

  6. Health Status Measurement Instruments in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Yves Lacasse

    1997-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is associated with primary respiratory impairment, disability and handicap, as well as with secondary impairments not necessarily confined to the respiratory system. Because the primary goals of managing patients with COPD include relief of dyspnea and the improvement of health-related quality of life (HRQL, a direct measurement of HRQL is important. Fourteen disease-specific and nine generic questionnaires (four health profiles and five utility measures most commonly used to measure health status in patients with COPD were reviewed. The measures were classified according to their domain of interest, and their measurement properties - specifications, validity, reliability, responsiveness and interpretability - were described. This review suggests several findings. Currently used health status instruments usually refer to the patients’ perception of performance in three major domains of HRQL - somatic sensation, physical and occupational function, and psychological state. The choice of a questionnaire must be related to its purpose, with a clear distinction being made between its evaluative and discriminative function. In their evaluative function, only a few instruments fulfilled the criteria of responsiveness, and the interpretability of most questionnaires is limited. Generic questionnaires should not be used alone in clinical trials as evaluative instruments because of their inability to detect change over time. Further validation and improved interpretability of existing instruments would be of greater benefit to clinicians and scientists than the development of new questionnaires.

  7. Assessment of wind turbine load measurement instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Morfiadakis, E; Papadopoulos, K [CRES (Greece); Borg, N van der [ECN, Petten (Netherlands); Petersen, S M [Risoe, Roskilde (Denmark); Seifert, H [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In the framework of Sub-Task3 `Wind turbine load measurement instrumentation` of EU-project `European Wind Turbine Testing Procedure Development`, the load measurement techniques have been assessed by laboratory, full scale and numerical tests. The existing methods have been reviewed with emphasis on the strain gage application techniques on composite materials and recommendations are provided for the optimisation of load measurement techniques. (au) EU. 14 refs.

  8. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Science.gov (United States)

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  9. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    Science.gov (United States)

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  10. Development of assessment instruments to measure critical thinking skills

    Science.gov (United States)

    Sumarni, W.; Supardi, K. I.; Widiarti, N.

    2018-04-01

    Assessment instruments that is commonly used in the school generally have not been orientated on critical thinking skills. The purpose of this research is to develop assessment instruments to measure critical thinking skills, to test validity, reliability, and practicality. This type of research is Research and Development. There are two stages on the preface step, which are field study and literacy study. On the development steps, there some parts, which are 1) instrument construction, 2) expert validity, 3) limited scale tryout and 4) narrow scale try-out. The developed assessment instrument are analysis essay and problem solving. Instruments were declared valid, reliable and practical.

  11. Experimental evaluation of permanent magnet probe flowmeter measuring high temperature liquid sodium flow in the ITSL

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Kim, Yun Ho [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Jong-Man; Kim, Tae-Joon [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung Joong, E-mail: sungjkim@mit.edu [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-12-15

    Highlights: • An Instrument Test Sodium Loop (ITSL) has been built and tested in various conditions at KAERI. • Free fall of liquid sodium was conducted experimentally and numerically. • A Permanent Magnet Probe Flowmeter (PMPF) was experimented in the ITSL. • Excellent linearity of the PMPF was achieved under high temperature condition. - Abstract: The Instrument Test Sodium Loop (ITSL) installed at Korea Atomic Energy Research Institute (KAERI) is a medium-size experimental facility dedicated to obtaining relevant experimental data of liquid sodium flow characteristics under various thermal hydraulic conditions and sodium purification. The ITSL has been utilized to perform thermal flow measurement of the liquid sodium and to calibrate a Permanent Magnet Probe Flowmeter (PMPF). The primary objective of this study is to obtain liquid sodium flow rate given a wide temperature range using the PMPF. Non-stationary method was adopted for the calibration of the probe given the liquid sodium temperature range of 150–415 °C. A relationship between the measured voltage signal and flow rate was obtained successfully. It is observed that the calibration experiments result in excellent linear relationships between measured voltage and volumetric flow rate at various temperature conditions. Also a computational analysis using FlowMaster, is employed to facilitate the calibration process by predicting the liquid sodium flow rate. Finally the effect of the fluid temperature on thermal flow measurements is discussed in light of the obtained experimental data.

  12. Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering

    Directory of Open Access Journals (Sweden)

    M. Alpers

    2004-01-01

    Full Text Available For the first time, three different temperature lidar methods are combined to obtain time-resolved complete temperature profiles with high altitude resolution over an altitude range from the planetary boundary layer up to the lower thermosphere (about 1–105 km. The Leibniz-Institute of Atmospheric Physics (IAP at Kühlungsborn, Germany (54° N, 12° E operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges: (1 Probing the spectral Doppler broadening of the potassium D1 resonance lines with a tunable narrow-band laser allows atmospheric temperature profiles to be determined at metal layer altitudes (80–105 km. (2 Between about 20 and 90 km, temperatures were calculated from Rayleigh backscattering by air molecules, where the upper start values for the calculation algorithm were taken from the potassium lidar results. Correction methods have been applied to account for, e.g. Rayleigh extinction or Mie scattering of aerosols below about 32 km. (3 At altitudes below about 25 km, backscattering in the Rotational Raman lines is strong enough to obtain temperatures by measuring the temperature dependent spectral shape of the Rotational Raman spectrum. This method works well down to about 1 km. The instrumental configurations of the IAP lidars were optimized for a 3–6 km overlap of the temperature profiles at the method transition altitudes. We present two night-long measurements with clear wave structures propagating from the lower stratosphere up to the lower thermosphere.

  13. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  14. Requirements for a quality measurement instrument for semantic standards

    NARCIS (Netherlands)

    Folmer, E.J.A.; Krukkert, D.; Oude Luttighuis, P.; Hillegersberg van, J. van

    2010-01-01

    This study describes requirements for an instrument to measure the quality of semantic standards. A situational requirements engineering method was used, resulting in a goal-tree in which requirements are structured. This structure shows requirements related to the input of the instrument; stating

  15. A systematic review of instruments that measure attitudes toward homosexual men.

    Science.gov (United States)

    Grey, Jeremy A; Robinson, Beatrice Bean E; Coleman, Eli; Bockting, Walter O

    2013-01-01

    Scientific interest in the measurement of homophobia and internalized homophobia has grown over the past 30 years, and new instruments and terms have emerged. To help researchers with the challenging task of identifying appropriate measures for studies in sexual-minority health, we reviewed measures of homophobia published in the academic literature from 1970 to 2012. Instruments that measured attitudes toward male homosexuals/homosexuality or measured homosexuals' internalized attitudes toward homosexuality were identified using measurement manuals and a systematic review. A total of 23 instruments met criteria for inclusion, and their features were summarized and compared. All 23 instruments met minimal criteria for adequate scale construction, including scale development, sampling, reliability, and evidence of validity. Validity evidence was diverse and was categorized as interaction with gay men, HIV/AIDS variables, mental health, and conservative religious or political beliefs. Homophobia was additionally correlated with authoritarianism and bias, gender ideology, gender differences, and reactions to homosexual stimuli. Internalized homophobia was validated by examining relationships with disclosing one's homosexuality and level of homosexual identity development. We hope this review will make the process of instrument selection more efficient by allowing researchers to easily locate, evaluate, and choose the proper measure based on their research question and population of interest.

  16. Measurement properties of quality-of-life measurement instruments for infants, children and adolescents with eczema: a systematic review.

    Science.gov (United States)

    Heinl, D; Prinsen, C A C; Sach, T; Drucker, A M; Ofenloch, R; Flohr, C; Apfelbacher, C

    2017-04-01

    Quality of life (QoL) is one of the core outcome domains identified by the Harmonising Outcome Measures for Eczema (HOME) initiative to be assessed in every eczema trial. There is uncertainty about the most appropriate QoL instrument to measure this domain in infants, children and adolescents. To systematically evaluate the measurement properties of existing measurement instruments developed and/or validated for the measurement of QoL in infants, children and adolescents with eczema. A systematic literature search in PubMed and Embase, complemented by a thorough hand search of reference lists, retrieved studies on measurement properties of eczema QoL instruments for infants, children and adolescents. For all eligible studies, we judged the adequacy of the measurement properties and the methodological study quality with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Results from different studies were summarized in a best-evidence synthesis and formed the basis to assign four degrees of recommendation. Seventeen articles, three of which were found by hand search, were included. These 17 articles reported on 24 instruments. No instrument can be recommended for use in all eczema trials because none fulfilled all required adequacy criteria. With adequate internal consistency, reliability and hypothesis testing, the U.S. version of the Childhood Atopic Dermatitis Impact Scale (CADIS), a proxy-reported instrument, has the potential to be recommended depending on the results of further validation studies. All other instruments, including all self-reported ones, lacked significant validation data. Currently, no QoL instrument for infants, children and adolescents with eczema can be highly recommended. Future validation research should primarily focus on the CADIS, but also attempt to broaden the evidence base for the validity of self-reported instruments. © 2016 British Association of Dermatologists.

  17. Development of a Self-Rating instrument to Measure Team Situation Awareness

    NARCIS (Netherlands)

    Schraagen, J.M.C.; Koning, L. de; Hof, T.; Dongen, K. van

    2010-01-01

    The goal of this paper is to describe the development of an instrument to measure team situation awareness (TSA). Individual team member SA may or may not be shared through communication processes with other team members. Most existing instruments do not measure these processes but measure TSA as a

  18. Holdup Measures on an SRNL Mossbauer Spectroscopy Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Brown, T.; Salaymeh, S.

    2010-05-05

    Gamma-ray holdup measurements of a Mossbauer spectroscopy instrument are described and modeled. In the qualitative acquisitions obtained in a low background area of Savannah River National Laboratory, only Am-241 and Np-237 activity were observed. The Am-241 was known to be the instrumental activation source, while the Np-237 is clearly observed as a source of contamination internal to the instrument. The two sources of activity are modeled separately in two acquisition configurations using two separate modeling tools. The results agree well, demonstrating a content of (1980 {+-} 150) {mu}Ci Am-241 and (110 {+-} 50) {mu}Ci of Np-237.

  19. Intercomparison of different instruments for measuring radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, Michikuni; Iida, Takao

    1990-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap method, a flow-type ionization chamber (pulse-counting method), a two-filter method, an electrostatic collection method and a passive integration radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq·m -3 (in outdoor air) to 110 Bq·m -3 (in indoor air). The results obtained by these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling method was about 52% of radon concentration. (author)

  20. Intercomparison of different instruments that measure radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, M.; Iida, T.; Ikebe, Y.

    1987-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap technique, a flow-type ionization chamber (pulse-counting technique), a two-filter method, an electrostatic collection method and a passive integrating radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq/m/sup 3/ (in outdoor air) to 110 Bq/m/sup 3/ (in indoor air). The results obtained from these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling technique was about 52% of radon concentrations

  1. Nondestructive assay instrument for measurement of plutonium in solutions

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hsue, F.; Li, T.K.; Canada, T.R.

    1979-01-01

    A nondestructive assay (NDA) instrument that measures the 239 Pu content in solutions, using a passive gamma-ray spectroscopy technique, has been developed and installed in the LASL Plutonium Processing Facility. A detailed evaluation of this instrument has been performed. The results show that the instrument can routinely determine 239 Pu concentrations of 1 to 500 g/l with accuracies of 1 to 5% and assay times of 1 to 2 x 10 3 s

  2. Water temperature and concentration measurements within the expanding blast wave of a high explosive

    International Nuclear Information System (INIS)

    Carney, J R; Lightstone, J M; Piecuch, S; Koch, J D

    2011-01-01

    We present an application of absorption spectroscopy to directly measure temperature and concentration histories of water vapor within the expansion of a high explosive detonation. While the approach of absorption spectroscopy is well established, the combination of a fast, near-infrared array, broadband light source, and rigid gauge allow the first application of time-resolved absorption measurements in an explosive environment. The instrument is demonstrated using pentaerythritol tetranitrate with a sampling rate of 20 kHz for 20 ms following detonation. Absorption by water vapor is measured between 1335 and 1380 nm. Water temperatures are determined by fitting experimental transmission spectra to a simulated database. Water mole fractions are deduced following the temperature assignment. The sources of uncertainty and their impact on the results are discussed. These measurements will aid the development of chemical-specific reaction models and the predictive capability in technical fields including combustion and detonation science

  3. Measurements of the cosmic microwave background temperature at 1. 47 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

  4. D-Catch instrument : development and psychometric testing of a measurement instrument for nursing documentation in hospitals

    NARCIS (Netherlands)

    Paans, Wolter; Sermeus, Walter; Nieweg, Roos; van der Schans, Cees P.

    AIM: This paper is a report of the development and testing of the psychometric properties of an instrument to measure the accuracy of nursing documentation in general hospitals. BACKGROUND: Little information is available about the accuracy of nursing documentation. None of the existing instruments

  5. To IO-3 type instrument for measuring relative deviation of mean frequency

    International Nuclear Information System (INIS)

    Albats, Ya.Eh.; Bitite, Ya.A.; Ivanov, G.M.; Karpel'tseva, L.P.; Tesnavs, Eh.R.; Shuvtsan, Ya.V.

    1979-01-01

    A description is given of the 10-3 instrument intended for automatic measurement of a relative deviation of the pulse flow mean frequency from the preset value with digital presentation of measurement results, and also for the conversion of this relative deviation into an electric coded signal and in an analogue voltage signal. The 10-3 instrument comprises a master pulse generator, two preliminary scalers, two electronic switches, two storage pulse counters, control devices, a counter digital volume setter, a rewriting device, an internal storage, a digital display, and a digital-to-analog converter. The principle of the instrument operation consists in counting the pulses of measured and reference pulse flows by two storage counters. Basic performances of the instrument are given. The main advantage of the 10-3 instrument lies in the fact that it presents the results of measuring by a digital radioisotope instrument directly in physical units of the measured parameter, and that, in turn, obviates the necessity for additional mathematical operations when data processing [ru

  6. Agri-Environmental Policy Measures in Israel: The Potential of Using Market-Oriented Instruments

    Science.gov (United States)

    Amdur, Liron; Bertke, Elke; Freese, Jan; Marggraf, Rainer

    2011-05-01

    This paper examines the possibilities of developing agri-environmental policy measures in Israel, focusing on market-oriented instruments. A conceptual framework for developing agri-environmental policy measures is presented, first in very broad lines (mandatory regulations, economic instruments and advisory measures) and subsequently focusing on economic instruments, and specifically, on market-oriented ones. Two criteria of choice between the measures are suggested: their contribution to improving the effectiveness of the policy; and the feasibility of their implementation. This is the framework used for analyzing agri-environmental measures in Israel. Israel currently implements a mix of mandatory regulations, economic instruments and advisory measures to promote the agri-environment. The use of additional economic instruments may improve the effectiveness of the policy. When comparing the effectiveness of various economic measures, we found that the feasibility of implementation of market-oriented instruments is greater, due to the Israeli public's preference for strengthening market orientation in the agricultural sector. Four market-oriented instruments were practiced in a pilot project conducted in an Israeli rural area. We found that in this case study, the institutional feasibility and acceptance by stakeholders were the major parameters influencing the implementation of the market-oriented instruments, whereas the instruments' contribution to enhancing the ecological or economic effectiveness were hardly considered by the stakeholders as arguments in favor of their use.

  7. Gearbox Instrumentation for the Investigation of Bearing Axial Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lambert, Scott R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-27

    Failures in gearbox bearings have been the primary source of reliability issues for wind turbine drivetrains, leading to costly downtime and unplanned maintenance. The most common failure mode is attributed to so-called axial cracks or white-etching cracks, which primarily affect the intermediate and high-speed-stage bearings. The high-speed-shaft and bearing loads and sliding will be measured with a specially instrumented gearbox installed in a 1.5-megawatt turbine at the National Wind Technology Center in an upcoming test campaign. Additional instrumentation will also measure the tribological environment of these bearings, including bearing temperatures, lubricant temperature and water content, air temperature and humidity, and stray electrical current across the bearings. This paper fully describes the instrumentation package and summarizes initial results.

  8. Development of a Computerized Multifunctional Form and Position Measurement Instrument

    International Nuclear Information System (INIS)

    Liu, P; Tian, W Y

    2006-01-01

    A model machine of multifunctional form and position measurement instrument controlled by a personal computer has been successfully developed. The instrument is designed in rotary table type with a high precision air bearing and the radial rotation error of the rotary table is 0.08 μm. Since a high precision vertical sliding carriage supported by an air bearing is used for the instrument, the straightaway motion error of the carriage is 0.3 μm/200 mm and the parallelism error of the motion of the carriage relative to the rotation axis of the rotary table is 0.4 μm/200 mm. The mathematical models have been established for assessing planar and spatial straightness, flatness, roundness, cylindricity, and coaxality errors. By radial deviation measurement, the instrument can accurately measure form and position errors of such workpieces as shafts, round plates and sleeves of medium or small dimensions with the tolerance grades mostly used in industry

  9. Control device intended for a gamma radiation measuring instrument

    International Nuclear Information System (INIS)

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  10. Characterization of a traceable profiler instrument for areal roughness measurement

    International Nuclear Information System (INIS)

    Thomsen-Schmidt, P

    2011-01-01

    A two-dimensional profiler instrument was designed and realized at the PTB (Physikalisch-Technische Bundesanstalt). The main function of the instrument is to provide traceable results in the field of roughness measurement. It is equipped with a linear moving stylus which is guided by precision air bearings. The moving part of the stylus has weight around 1 g and is carried by a magnetic field. The contacting force of the tip onto the surface under test is controlled by a small voice coil actuator in a closed control loop. Vertical movements of the stylus are captured by two different, completely independent measurement systems, covering a range of 100 µm. The first one is an interferometer, which provides a traceable signal, and the second one is an inductive measurement system. The signal from the inductive measurement system is calibrated by the interferometer. The sample under test is carried within the x–y-plane by a linear guided table with low noise air bearings. These air bearings are preloaded by vacuum and a constant gap is achieved by gas pressure controllers. Both axes of the table are driven by linear voice coil actuators and their movement in the plane is measured by linear encoders. The sample carrier is equipped with two axes tilt compensation, by which the sample under test can be levelled automatically using the measurement system of the stylus. Real-time data acquisition, manual handling and automated procedures are managed by a programmable controller and proprietary software written in LabVIEW. After measurement, data from the system can be directly transferred into the smd- or sdf-format. Results of measurements on different samples to characterize the metrological behaviour of the instrument will be reported. To characterize the uncertainty of the instrument, a model is applied, which is in accordance with approved rules for contact stylus instruments

  11. UPTF test instrumentation. Measurement system identification, engineering units and computed parameters

    International Nuclear Information System (INIS)

    Sarkar, J.; Liebert, J.; Laeufer, R.

    1992-11-01

    This updated version of the previous report /1/ contains, besides additional instrumentation needed for 2D/3D Programme, the supplementary instrumentation in the inlet plenum of SG simulator and hot and cold leg of broken loop, the cold leg of intact loops and the upper plenum to meet the requirements (Test Phase A) of the UPTF Programme, TRAM, sponsored by the Federal Minister of Research and Technology (BMFT) of the Federal Republic of Germany. For understanding, the derivation and the description of the identification codes for the entire conventional and advanced measurement systems classifying the function, and the equipment unit, key, as adopted in the conventional power plants, have been included. Amendments have also been made to the appendices. In particular, the list of measurement systems covering the measurement identification code, instrument, measured quantity, measuring range, band width, uncertainty and sensor location has been updated and extended to include the supplementary instrumentation. Beyond these amendments, the uncertainties of measurements have been precisely specified. The measurement identification codes which also stand for the identification of the corresponding measured quantities in engineering units and the identification codes derived therefrom for the computed parameters have been adequately detailed. (orig.)

  12. Embedded DAQ System Design for Temperature and Humidity Measurement

    International Nuclear Information System (INIS)

    Memon, T.R.

    2013-01-01

    In this work, we have proposed a cost effective DAQ (Data Acquisition) system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench). The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity). Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays. (author)

  13. Analysis of in-core coolant temperatures of FFTF instrumented fuels tests at full power

    International Nuclear Information System (INIS)

    Hoth, C.W.

    1981-01-01

    Two full size highly instrumented fuel assemblies were inserted into the core of the Fast Flux Test Facility in December of 1979. The major objectives of these instrumented tests are to provide verification of the FFTF core conditions and to characterize temperature patterns within FFTF driver fuel assemblies. A review is presented of the results obtained during the power ascents and during irradiation at a constant reactor power of 400 MWt. The results obtained from these instrumented tests verify the conservative nature of the design methods used to establish core conditions in FFTF. The success of these tests also demonstrates the ability to design, fabricate, install and irradiate complex, instrumented fuel tests in FFTF using commercially procured components

  14. Measurements with the new PHE neutron survey instrument

    International Nuclear Information System (INIS)

    Eakins, J.S.; Tanner, R.J.; Hager, L.G.

    2014-01-01

    A novel design of survey instrument has been developed to accurately estimate ambient dose equivalent from neutrons with energies in the range from thermal to 20 MeV. The device features moderating and attenuating layers to ease measurement of fast and intermediate energy neutrons, combined with guides that channel low-energy neutrons to the single, central detector. A prototype of this device has been constructed and exposed to a set of calibration fields: the resulting measured responses are presented and discussed here, and compared against Monte Carlo data. A simple simulated workplace neutron field has also been developed to test the device. Measured response data have been determined for a prototype design of neutron survey instrument, using facilities at PHE and NPL. In general, the results demonstrated good directional invariance and agreed well with data obtained by Monte Carlo modelling, raising confidence in the accuracy of the response characteristics expected for the device. A simple simulated workplace field has also been developed and characterised, and the performance of the device assessed in it: agreement between measured and modelled results suggests that the device would behave as anticipated in real workplace fields. These performances will be investigated further in the future, as the design makes the transition from a research prototype to a commercially available instrument. (authors)

  15. Development of measurement standards for verifying functional performance of surface texture measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A [Life and Industrial Product Development Department Olympus Corporation, 2951 Ishikawa-machi, Hachiouji-shi, Tokyo (Japan); Suzuki, H [Industrial Marketing and Planning Department Olympus Corporation, Shinjyuku Monolith, 3-1 Nishi-Shinjyuku 2-chome, Tokyo (Japan); Yanagi, K, E-mail: a_fujii@ot.olympus.co.jp [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata (Japan)

    2011-08-19

    A new measurement standard is proposed for verifying overall functional performance of surface texture measuring instruments. Its surface is composed of sinusoidal surface waveforms of chirp signals along horizontal cross sections of the material measure. One of the notable features is that the amplitude of each cycle in the chirp signal form is geometrically modulated so that the maximum slope is kept constant. The maximum slope of the chirp-like signal is gradually decreased according to movement in the lateral direction. We fabricated the measurement standard by FIB processing, and it was calibrated by AFM. We tried to evaluate the functional performance of Laser Scanning Microscope by this standard in terms of amplitude response with varying slope angles. As a result, it was concluded that the proposed standard can easily evaluate the performance of surface texture measuring instruments.

  16. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  17. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  18. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral banda)

    Science.gov (United States)

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  19. Thickness measurement instrument with memory storage of multiple calibrations

    International Nuclear Information System (INIS)

    Lieber, S.; Schlesinger, J.; Lieber, D.; Baker, A.

    1979-01-01

    An improved backscatter instrument for the nondestructive measurement of coatings on a substrate is described. A memory having selectable memory areas, each area having stored intelligence available which is determinative of the shape of a functional plot of coating thickness versus backscatter counts per minute unique for each particular combination of emitting isotope, substrate material, coating material and physical characteristics of the measuring instrument. A memory selector switch connects a selected area of memory to a microprocessor operating under program control whereby the microprocessor reads the intelligence stored at the selected area and converts the backscattered count of the coating being measured into indicia of coating thickness

  20. Reconstruction of core inlet temperature distribution by cold leg temperature measurements

    International Nuclear Information System (INIS)

    Saarinen, S.; Antila, M.

    2010-01-01

    The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance

  1. Trends in instrumentation for environmental radiation measurements at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Hiebert, R.D.; Wolf, M.A.

    1980-01-01

    Recent instruments developed to fulfill radiation monitoring needs at Los Alamos Scientific Laboratory are described. Laboratory instruments that measure tritium gas effluents alone, or in the presence of activated air from D-T fusion reactors are discussed. Fully portable systems for gamma, x-ray, and alpha analyses in the field are described. Also included are descriptions of survey instruments that measure low levels of transuranic contaminants and that measure pulsed-neutron dose rates

  2. A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils

    Directory of Open Access Journals (Sweden)

    Alan Kardek Rêgo Segundo

    2015-10-01

    Full Text Available The scarcity of drinking water affects various regions of the planet. Although climate change is responsible for the water availability, humanity plays an important role in preserving this precious natural resource. In case of negligence, the likely trend is to increase the demand and the depletion of water resources due to the increasing world population. This paper addresses the development, design and construction of a low cost system for measuring soil volumetric water content (θ, electrical conductivity (σ and temperature (T, in order to optimize the use of water, energy and fertilizer in food production. Different from the existing measurement instruments commonly deployed in these applications, the proposed system uses an auto-balancing bridge circuit as measurement method. The proposed models to estimate θ and σ and correct them in function of T are compared to the ones reported in literature. The final prototype corresponds to a simple circuit connected to a pair of electrode probes, and presents high accuracy, high signal to noise ratio, fast response, and immunity to stray capacitance. The instrument calibration is based on salt solutions with known dielectric constant and electrical conductivity as reference. Experiments measuring clay and sandy soils demonstrate the satisfactory performance of the instrument.

  3. A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils.

    Science.gov (United States)

    Rêgo Segundo, Alan Kardek; Martins, José Helvecio; Monteiro, Paulo Marcos de Barros; de Oliveira, Rubens Alves; Freitas, Gustavo Medeiros

    2015-10-05

    The scarcity of drinking water affects various regions of the planet. Although climate change is responsible for the water availability, humanity plays an important role in preserving this precious natural resource. In case of negligence, the likely trend is to increase the demand and the depletion of water resources due to the increasing world population. This paper addresses the development, design and construction of a low cost system for measuring soil volumetric water content (θ), electrical conductivity (σ) and temperature (T), in order to optimize the use of water, energy and fertilizer in food production. Different from the existing measurement instruments commonly deployed in these applications, the proposed system uses an auto-balancing bridge circuit as measurement method. The proposed models to estimate θ and σ and correct them in function of T are compared to the ones reported in literature. The final prototype corresponds to a simple circuit connected to a pair of electrode probes, and presents high accuracy, high signal to noise ratio, fast response, and immunity to stray capacitance. The instrument calibration is based on salt solutions with known dielectric constant and electrical conductivity as reference. Experiments measuring clay and sandy soils demonstrate the satisfactory performance of the instrument.

  4. The effect of cloud liquid water on tropospheric temperature retrievals from microwave measurements

    Directory of Open Access Journals (Sweden)

    L. Bernet

    2017-11-01

    Full Text Available Microwave radiometry is a suitable technique to measure atmospheric temperature profiles with high temporal resolution during clear sky and cloudy conditions. In this study, we included cloud models in the inversion algorithm of the microwave radiometer TEMPERA (TEMPErature RAdiometer to determine the effect of cloud liquid water on the temperature retrievals. The cloud models were built based on measurements of cloud base altitude and integrated liquid water (ILW, all performed at the aerological station (MeteoSwiss in Payerne (Switzerland. Cloud base altitudes were detected using ceilometer measurements while the ILW was measured by a HATPRO (Humidity And Temperature PROfiler radiometer. To assess the quality of the TEMPERA retrieval when clouds were considered, the resulting temperature profiles were compared to 2 years of radiosonde measurements. The TEMPERA instrument measures radiation at 12 channels in the frequency range from 51 to 57 GHz, corresponding to the left wing of the oxygen emission line complex. When the full spectral information with all the 12 frequency channels was used, we found a marked improvement in the temperature retrievals after including a cloud model. The chosen cloud model influenced the resulting temperature profile, especially for high clouds and clouds with a large amount of liquid water. Using all 12 channels, however, presented large deviations between different cases, suggesting that additional uncertainties exist in the lower, more transparent channels. Using less spectral information with the higher, more opaque channels only also improved the temperature profiles when clouds where included, but the influence of the chosen cloud model was less important. We conclude that tropospheric temperature profiles can be optimized by considering clouds in the microwave retrieval, and that the choice of the cloud model has a direct impact on the resulting temperature profile.

  5. Intelligent type sodium instrumentations for LMFBR

    International Nuclear Information System (INIS)

    Chen Daolong

    1996-07-01

    The constructions and performances of lots of newly developed intelligent type sodium instrumentations are described. The graduation characteristic equations for corresponding transducer using the medium temperature as the parameter are given. These intelligent type sodium instrumentations are possessed of good linearity. The accurate measurement data of sodium process parameters (flowrate, pressure and level) can be obtained by means of their on-line compensation function of the temperature effect. Moreover, these intelligent type sodium instrumentations are possessed of the self-inspection, the electric shutoff protection, the setting of full-scale, the setting of alarm limits (two upper limits and two lower limits alarms), the thermocouple breaking alarm, mutual isolative the 0∼10 V direct-current analogue output and the CENTRONICS standard digital output, and the alarm relay contact output. Theses intelligent type sodium instrumentations are suitable particularly for the instrument, control and protective systems of LMFBR by means of these excellent functions based on microprocessor. The basic errors of the intelligent type sodium flowmeter, immersed sodium flowmeter, sodium manometer and sodium level gauge are +-2%, +-2.3%, +-0.3% and +-1.9% of measuring ranges respectively. (9 figs.)

  6. Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT

    Directory of Open Access Journals (Sweden)

    Tamás Pardy

    2017-06-01

    Full Text Available Non-instrumented nucleic acid amplification tests (NINAAT are a novel paradigm in portable molecular diagnostics. They offer the high detection accuracy characteristic of nucleic acid amplification tests (NAAT in a self-contained device, without the need for any external instrumentation. These Point-of-Care tests typically employ a Lab-on-a-Chip for liquid handling functionality, and perform isothermal nucleic acid amplification protocols that require low power but high accuracy temperature control in a single well-defined temperature range. We propose temperature control solutions based on commercially available heating elements capable of meeting these challenges, as well as demonstrate the process by which such elements can be fitted to a NINAAT system. Self-regulated and thermostat-controlled resistive heating elements were evaluated through experimental characterization as well as thermal analysis using the finite element method (FEM. We demonstrate that the proposed solutions can support various NAAT protocols, as well as demonstrate an optimal solution for the loop-mediated isothermal amplification (LAMP protocol. Furthermore, we present an Arduino-compatible open-source thermostat developed for NINAAT applications.

  7. Implementation of Moderator Circulation Test Temperature Measurement System

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yeong Muk; Hong, Seok Boong; Kim, Min Seok; Choi, Hwa Rim [KAERI, Daejeon (Korea, Republic of); Kim, Hyung Shin [Chungnam University, Daejeon (Korea, Republic of)

    2016-05-15

    Moderator Circulation Test(MCT) facility is 1/4 scale facility designed to reproduce the important characteristics of moderator circulation in a CANDU6 calandria under a range of operating conditions. MCT is an equipment with 380 acrylic pipes instead of the heater rods and a preliminary measurement of velocity field using PIV(Particle Image Velocimetry) is performed under the iso-thermal test conditions. The Korea Atomic Energy Research Institute (KAERI) started implementation of MCT Temperature Measurement System (TMS) using multiple infrared sensors. To control multiple infrared sensors, MCT TMS is implemented using National Instruments (NI) LabVIEW programming language. The MCT TMS is implemented to measure sensor data of multiple infrared sensors using the LabVIEW. The 35 sensor pipes of MCT TMS are divided into 2 ports to meet the minimum measurement time of 0.2 seconds. The software of MCT TMS is designed using collection function and processing function. The MCT TMS has the function of monitoring the states of multiple infrared sensors. The GUI screen of MCT TMS is composed of sensor pipe categories for user.

  8. Implementation of Moderator Circulation Test Temperature Measurement System

    International Nuclear Information System (INIS)

    Lim, Yeong Muk; Hong, Seok Boong; Kim, Min Seok; Choi, Hwa Rim; Kim, Hyung Shin

    2016-01-01

    Moderator Circulation Test(MCT) facility is 1/4 scale facility designed to reproduce the important characteristics of moderator circulation in a CANDU6 calandria under a range of operating conditions. MCT is an equipment with 380 acrylic pipes instead of the heater rods and a preliminary measurement of velocity field using PIV(Particle Image Velocimetry) is performed under the iso-thermal test conditions. The Korea Atomic Energy Research Institute (KAERI) started implementation of MCT Temperature Measurement System (TMS) using multiple infrared sensors. To control multiple infrared sensors, MCT TMS is implemented using National Instruments (NI) LabVIEW programming language. The MCT TMS is implemented to measure sensor data of multiple infrared sensors using the LabVIEW. The 35 sensor pipes of MCT TMS are divided into 2 ports to meet the minimum measurement time of 0.2 seconds. The software of MCT TMS is designed using collection function and processing function. The MCT TMS has the function of monitoring the states of multiple infrared sensors. The GUI screen of MCT TMS is composed of sensor pipe categories for user

  9. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  10. Laser Pyrometer For Spot Temperature Measurements

    Science.gov (United States)

    Elleman, D. D.; Allen, J. L.; Lee, M. C.

    1988-01-01

    Laser pyrometer makes temperature map by scanning measuring spot across target. Scanning laser pyrometer passively measures radiation emitted by scanned spot on target and calibrated by similar passive measurement on blackbody of known temperature. Laser beam turned on for active measurements of reflectances of target spot and reflectance standard. From measurements, temperature of target spot inferred. Pyrometer useful for non-contact measurement of temperature distributions in processing of materials.

  11. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  12. Phonation Quotient in Women: A Measure of Vocal Efficiency Using Three Aerodynamic Instruments.

    Science.gov (United States)

    Joshi, Ashwini; Watts, Christopher R

    2017-03-01

    The purpose of this study was to examine measures of vital capacity and phonation quotient across three age groups in women using three different aerodynamic instruments representing low-tech and high-tech options. This study has a prospective, repeated measures design. Fifteen women in each age group of 25-39 years, 40-59 years, and 60-79 years were assessed using maximum phonation time and vital capacity obtained from three aerodynamic instruments: a handheld analog windmill type spirometer, a handheld digital spirometer, and the Phonatory Aerodynamic System (PAS), Model 6600. Phonation quotient was calculated using vital capacity from each instrument. Analyses of variance were performed to test for main effects of the instruments and age on vital capacity and derived phonation quotient. Pearson product moment correlation was performed to assess measurement reliability (parallel forms) between the instruments. Regression equations, scatterplots, and coefficients of determination were also calculated. Statistically significant differences were found in vital capacity measures for the digital spirometer compared with the windmill-type spirometer and PAS across age groups. Strong positive correlations were present between all three instruments for both vital capacity and derived phonation quotient measurements. Measurement precision for the digital spirometer was lower than the windmill spirometer compared with the PAS. However, all three instruments had strong measurement reliability. Additionally, age did not have an effect on the measurement across instruments. These results are consistent with previous literature reporting data from male speakers and support the use of low-tech options for measurement of basic aerodynamic variables associated with voice production. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Towards an Enterprise Architecture Benefits Measurement Instrument

    NARCIS (Netherlands)

    Dr.ir. Raymond Slot; Henk Plessius; Marlies Steenbergen, van

    2015-01-01

    Author supplied: Based on the Enterprise Architecture Value Framework (EAVF) - a generic framework to classify benefits of Enterprise Architecture (EA) - a measurement instrument for EA benefits has been developed and tested in a survey with 287 respondents. In this paper we present the results of

  14. An instrument for X-ray set quality assurance measurements

    International Nuclear Information System (INIS)

    Willetts, R.J.; West, M.B.; Brydon, J.

    1989-01-01

    This paper describes a prototype electronic instrument for performing quality assurance (QA) measurements on diagnostic radiological equipment with a view to long-term performance assessment on a Regional basis. The instrument is based on a Tandy 200 laptop computer and has been developed primarily to include the assessment of image intensifier/TV systems in a general QA package. It is capable of accepting signals from the following sources: (1) a radiation detector (diode array); (2) a Keithley kV divider (Keithley Instruments, Inc.); (3) the video output of an image intensifier system. (author)

  15. Custom ultrasonic instrumentation for flow measurement and real-time binary gas analysis in the CERN ATLAS experiment

    Science.gov (United States)

    Alhroob, M.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.

    2017-01-01

    The development of custom ultrasonic instrumentation was motivated by the need for continuous real-time monitoring of possible leaks and mass flow measurement in the evaporative cooling systems of the ATLAS silicon trackers. The instruments use pairs of ultrasonic transducers transmitting sound bursts and measuring transit times in opposite directions. The gas flow rate is calculated from the difference in transit times, while the sound velocity is deduced from their average. The gas composition is then evaluated by comparison with a molar composition vs. sound velocity database, based on the direct dependence between sound velocity and component molar concentration in a gas mixture at a known temperature and pressure. The instrumentation has been developed in several geometries, with five instruments now integrated and in continuous operation within the ATLAS Detector Control System (DCS) and its finite state machine. One instrument monitors C3F8 coolant leaks into the Pixel detector N2 envelope with a molar resolution better than 2ṡ 10-5, and has indicated a level of 0.14 % when all the cooling loops of the recently re-installed Pixel detector are operational. Another instrument monitors air ingress into the C3F8 condenser of the new C3F8 thermosiphon coolant recirculator, with sub-percent precision. The recent effect of the introduction of a small quantity of N2 volume into the 9.5 m3 total volume of the thermosiphon system was clearly seen with this instrument. Custom microcontroller-based readout has been developed for the instruments, allowing readout into the ATLAS DCS via Modbus TCP/IP on Ethernet. The instrumentation has many potential applications where continuous binary gas composition is required, including in hydrocarbon and anaesthetic gas mixtures.

  16. Systematic review of measurement properties of self-reported instruments for evaluating self-care in adults.

    Science.gov (United States)

    Matarese, Maria; Lommi, Marzia; De Marinis, Maria Grazia

    2017-06-01

    The aims of this study were as follows: to identify instruments developed to assess self-care in healthy adults; to determine the theory on which they were based; their validity and reliability properties and to synthesize the evidence on their measurement properties. Many instruments have been developed to assess self-care in many different populations and conditions. Clinicians and researchers should select the most appropriate self-care instrument based on the knowledge of their measurement properties. Systematic review of measurement instruments according to the protocol recommended by the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) panel. PubMed, Embase, PsycINFO, Scopus and CINAHL databases were searched from inception to December 2015. Studies testing measurement properties of self-report instruments assessing self-care in healthy adults, published in the English language and in peer review journals were selected. Two reviewers independently appraised the methodological quality of the studies with the COSMIN checklist and the quality of results using specific quality criteria. Twenty-six articles were included in the review testing the measurement properties of nine instruments. Seven instruments were based on Orem's Self-care theory. Not all the measurement properties were evaluated for the identified instruments. No self-care instrument showed strong evidence supporting the evaluated measurement properties. Despite the development of several instruments to assess self-care in the adult population, no instrument can be fully recommended to clinical nurses and researchers. Further studies of high methodological quality are needed to confirm the measurement properties of these instruments. © 2016 John Wiley & Sons Ltd.

  17. Embedded DAQ System Design for Temperature and Humidity Measurement

    Directory of Open Access Journals (Sweden)

    Tarique Rafique Memon

    2016-05-01

    Full Text Available In this work, we have proposed a cost effective DAQ (Data Acquisition system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench. The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity. Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays

  18. Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip S.; Wood, Ezra; Kundu, Shuvashish; Dusanter, Sébastien

    2018-02-01

    Ground-level ozone (O3) is an important pollutant that affects both global climate change and regional air quality, with the latter linked to detrimental effects on both human health and ecosystems. Ozone is not directly emitted in the atmosphere but is formed from chemical reactions involving volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and sunlight. The photochemical nature of ozone makes the implementation of reduction strategies challenging and a good understanding of its formation chemistry is fundamental in order to develop efficient strategies of ozone reduction from mitigation measures of primary VOCs and NOx emissions. An instrument for direct measurements of ozone production rates (OPRs) was developed and deployed in the field as part of the IRRONIC (Indiana Radical, Reactivity and Ozone Production Intercomparison) field campaign. The OPR instrument is based on the principle of the previously published MOPS instrument (Measurement of Ozone Production Sensor) but using a different sampling design made of quartz flow tubes and a different Ox (O3 and NO2) conversion-detection scheme composed of an O3-to-NO2 conversion unit and a cavity attenuated phase shift spectroscopy (CAPS) NO2 monitor. Tests performed in the laboratory and in the field, together with model simulations of the radical chemistry occurring inside the flow tubes, were used to assess (i) the reliability of the measurement principle and (ii) potential biases associated with OPR measurements. This publication reports the first field measurements made using this instrument to illustrate its performance. The results showed that a photo-enhanced loss of ozone inside the sampling flow tubes disturbs the measurements. This issue needs to be solved to be able to perform accurate ambient measurements of ozone production rates with the instrument described in this study. However, an attempt was made to investigate the OPR sensitivity to NOx by adding NO inside the instrument

  19. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, K., E-mail: widmann1@llnl.gov; Beiersdorfer, P.; Magee, E. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boyle, D. P.; Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  20. FJ-2207 measuring instrument detection pipe surface a level of pollution method

    International Nuclear Information System (INIS)

    Wang Jiangong

    2010-01-01

    On the pipe surface contamination were detected α level of pollution is a frequently encountered dose-detection work. Because the pipeline surface arc, while the measuring probe for the plane, which for accurate measurement difficult. In this paper, on the FJ-2207-type pipe surface contamination measuring instrument measuring pollution levels in the α method was studied. Introduced the FJ-2207 measuring instrument detection pipe surface α pollution levels. Studied this measuring instrument on the same sources of surface, plane α level of radioactivity measured differences in the results obtained control of the apparatus when the direct measurement of the surface correction factor, and gives 32-216 specifications commonly used pipe direct measurement of the amendment factor. Convenient method, test results are reliable for the accurate measurement of pipe pollution levels in the surface of α as a reference and learning. (authors)

  1. AATSR: global-change and surface-temperature measurements from Envisat

    Science.gov (United States)

    Llewellyn-Jones, D.; Edwards, M. C.; Mutlow, C. T.; Birks, A. R.; Barton, I. J.; Tait, H.

    2001-02-01

    The Advanced Along-Track Scanning Radiometer (AATSR) onboard ESA's Envisat spacecraft is designed to meet the challenging task of monitoring and detecting climate change. It builds on the success of its predecessor instruments on the ERS-1 and ERS-2 satellites, and will lead to a 15+ year record of precise and accurate global Sea-Surface Temperature (SST) measurements, thereby making a valuable contribution to the long-term climate record. With its high-accuracy, high-quality imagery and channels in the visible, near-infrared and thermal wavelengths, AATSR data will support many applications in addition to oceanographic and climate research, including a wide range of land-surface, cryosphere and atmospheric studies.

  2. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  3. Field measurements and interpretation of TMI-2 instrumentation: IC-10-dPT

    International Nuclear Information System (INIS)

    Jones, J.E.; Smith, J.T.; Mathis, M.V.

    1982-01-01

    This report describes the measurements and results of the Control Rod Drive Bypass Flow IC-10-dPT. This instrument consists of a Bailey Type BY Process Computer Transmitter connected to a readout module by approximately 500 feet of cable through a penetration junction and an instrument mounting junction. The status of this instrument is uncertain, but it was producing a reasonable output reading of zero flow which could indicate it had not failed. As a result, measurements on this instrument were designed to determine if it were properly functioning

  4. A temperature profiler

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.; Desa, E.

    An instrument developed for measuring temperature profiles at sea in depth or time scales is described. PC-based programming offers flexibility in setting up the instrument for the mode of operation prior to each cast. A real time clock built...

  5. Assessing medical professionalism: A systematic review of instruments and their measurement properties

    Science.gov (United States)

    Li, Honghe; Liu, Yang; Wen, Deliang

    2017-01-01

    Background Over the last three decades, various instruments were developed and employed to assess medical professionalism, but their measurement properties have yet to be fully evaluated. This study aimed to systematically evaluate these instruments’ measurement properties and the methodological quality of their related studies within a universally acceptable standardized framework and then provide corresponding recommendations. Methods A systematic search of the electronic databases PubMed, Web of Science, and PsycINFO was conducted to collect studies published from 1990–2015. After screening titles, abstracts, and full texts for eligibility, the articles included in this study were classified according to their respective instrument’s usage. A two-phase assessment was conducted: 1) methodological quality was assessed by following the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist; and 2) the quality of measurement properties was assessed according to Terwee’s criteria. Results were integrated using best-evidence synthesis to look for recommendable instruments. Results After screening 2,959 records, 74 instruments from 80 existing studies were included. The overall methodological quality of these studies was unsatisfactory, with reasons including but not limited to unknown missing data, inadequate sample sizes, and vague hypotheses. Content validity, cross-cultural validity, and criterion validity were either unreported or negative ratings in most studies. Based on best-evidence synthesis, three instruments were recommended: Hisar’s instrument for nursing students, Nurse Practitioners’ Roles and Competencies Scale, and Perceived Faculty Competency Inventory. Conclusion Although instruments measuring medical professionalism are diverse, only a limited number of studies were methodologically sound. Future studies should give priority to systematically improving the performance of existing

  6. Attachment of Free Filament Thermocouples for Temperature Measurements on CMC

    Science.gov (United States)

    Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.

    1997-01-01

    Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems.

  7. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  8. A survey of temperature measurement

    International Nuclear Information System (INIS)

    Saltvold, J.R.

    1976-03-01

    Many different techniques for measuring temperature have been surveyed and are discussed. The concept of temperature and the physical phenomena used in temperature measurement are also discussed. Extensive tables are presented in which the range and accuracy of the various techniques and other related data are included. (author)

  9. Measuring Software Test Verification for Complex Workpieces based on Virtual Gear Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yin Peili

    2017-08-01

    Full Text Available Validity and correctness test verification of the measuring software has been a thorny issue hindering the development of Gear Measuring Instrument (GMI. The main reason is that the software itself is difficult to separate from the rest of the measurement system for independent evaluation. This paper presents a Virtual Gear Measuring Instrument (VGMI to independently validate the measuring software. The triangular patch model with accurately controlled precision was taken as the virtual workpiece and a universal collision detection model was established. The whole process simulation of workpiece measurement is implemented by VGMI replacing GMI and the measuring software is tested in the proposed virtual environment. Taking involute profile measurement procedure as an example, the validity of the software is evaluated based on the simulation results; meanwhile, experiments using the same measuring software are carried out on the involute master in a GMI. The experiment results indicate a consistency of tooth profile deviation and calibration results, thus verifying the accuracy of gear measuring system which includes the measurement procedures. It is shown that the VGMI presented can be applied in the validation of measuring software, providing a new ideal platform for testing of complex workpiece-measuring software without calibrated artifacts.

  10. Labview applications based on field programmable gate array (FPGA) on temperature measurement system of heating-02

    International Nuclear Information System (INIS)

    Kussigit Santosa

    2013-01-01

    Temperature measurements system has been created at the heating-02 test using LabVIEW 2011 software. Making this measurement systems on FPGA is the development of previous a measurement system using the measurement with cDAQ9188. The advantage of this system is the independence of the system means that the execution time can run itself without a computer. The scope of the current study was limited on the development, programming and testing of data acquisition focused on programming of the FPGA modules that have been embedded on the cRIO 9074. In the making of temperature measurement systems is required the data acquisition system by National Texas Instruments cRIO 9074 module, power supply, Ni 9023 module, 7011 HIOKI current source, the software Labview 2011 and the computer. The using method is stringing the temperature measurement system, programming of data acquisition the FPGA as well as the acquisition system interface that is easy to do observations. From the experimental results, it can be concluded that the temperature measurement system can run well. So that the measurement system is expected to be used for the actual measurement. (author)

  11. MHTGR steam generator on-line heat balance, instrumentation and function

    International Nuclear Information System (INIS)

    Klapka, R.E.; Howard, W.W.; Etzel, K.T.; Basol, M.; Karim, N.U.

    1991-09-01

    Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints

  12. Instrumented indentation for characterization of irradiated metals at room and high temperatures

    International Nuclear Information System (INIS)

    Sacksteder, Irene

    2011-01-01

    The reliability and sustainability of future fusion power plants will highly depend on the aptitude of materials to withstand severe irradiation conditions induced by the burning plasma in reactors. The so-called reduced-activation ferritic-martensitic (RAFM) steels are the current promising candidates for the structural applications considering the reactor's first wall. These steels exhibit irradiation embrittlement and hardening for defined irradiation conditions that are mainly characterized by the irradiation temperature and the irradiation dose. A proper characterization of such irradiated steels implies the use of adapted mechanical testing tools. In the present study, the instrumented indentation technique makes use of a post-processing tool based on neural networks. This technique has been selected for its ability to examine tensile properties by multistage indents on miniaturized irradiated metallic samples. The steel specimens studied in this project have been neutron-irradiated up to a dose of 15 dpa. They have been subsequently tested at room temperature in a Hot Cell by means of an adapted commercial indentation device. The significant irradiation-induced hardening effect present in the range of 250-350 deg C could be observed in the hardness and material's strength parameters. These two material parameters show a similar evolution with increasing irradiation temperatures. Post-irradiation annealing treatments of Eurofer97 have been realized and leads to a partial recovery of the irradiation damage. Considering the demands for characterization in irradiated steels at high temperature and for post-irradiation annealing experiments, the existing instrumented indentation device has been further developed during this work. A conceptual design has been proposed for an indentation testing machine, operating at up to 650 deg C, while remaining the critical temperature limit for tensile strength of the newly developed oxide dispersion strengthening ferritic

  13. Measuring teamwork in health care settings: a review of survey instruments.

    Science.gov (United States)

    Valentine, Melissa A; Nembhard, Ingrid M; Edmondson, Amy C

    2015-04-01

    Teamwork in health care settings is widely recognized as an important factor in providing high-quality patient care. However, the behaviors that comprise effective teamwork, the organizational factors that support teamwork, and the relationship between teamwork and patient outcomes remain empirical questions in need of rigorous study. To identify and review survey instruments used to assess dimensions of teamwork so as to facilitate high-quality research on this topic. We conducted a systematic review of articles published before September 2012 to identify survey instruments used to measure teamwork and to assess their conceptual content, psychometric validity, and relationships to outcomes of interest. We searched the ISI Web of Knowledge database, and identified relevant articles using the search terms team, teamwork, or collaboration in combination with survey, scale, measure, or questionnaire. We found 39 surveys that measured teamwork. Surveys assessed different dimensions of teamwork. The most commonly assessed dimensions were communication, coordination, and respect. Of the 39 surveys, 10 met all of the criteria for psychometric validity, and 14 showed significant relationships to nonself-report outcomes. Evidence of psychometric validity is lacking for many teamwork survey instruments. However, several psychometrically valid instruments are available. Researchers aiming to advance research on teamwork in health care should consider using or adapting one of these instruments before creating a new one. Because instruments vary considerably in the behavioral processes and emergent states of teamwork that they capture, researchers must carefully evaluate the conceptual consistency between instrument, research question, and context.

  14. Legal control scenario applied to embedded software in measuring instruments

    International Nuclear Information System (INIS)

    Castro, C.G. de; Brandao, P.C.; Leitao, F.O.

    2013-01-01

    This paper presents a scenario of legal control of software in measuring instruments. Such control is hampered by intrinsic problems related to software analysis and verification. To circumvent these difficulties, several projects are being developed to attack different stages of legal control, such as the model type approval, periodic verifications and metrological expertise. The proposals that will arise from these projects will be discussed among the parts and may be incorporated into the measuring instruments. (author)

  15. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  16. Instruments measuring family or caregiver burden in severe mental illness

    NARCIS (Netherlands)

    Schene, A. H.; Tessler, R. C.; Gamache, G. M.

    1994-01-01

    The consequences of psychiatric disorders for family members, usually called family or caregiver burden, have been studied during the last 4 decades. During this period a variety of instruments have been developed to measure the impact of mental illness on family members, but not all instruments

  17. Informal caregiving in COPD: A systematic review of instruments and their measurement properties.

    Science.gov (United States)

    Cruz, Joana; Marques, Alda; Machado, Ana; O'Hoski, Sachi; Goldstein, Roger; Brooks, Dina

    2017-07-01

    Increasing symptoms and activity restriction associated with COPD progression greatly impact on the lives of their informal caregivers, who play a vital role in maintaining their health. An understanding of this impact is important for clinicians to support caregivers and maintain a viable patient environment at home. This systematic review aimed to identify the instruments commonly used to assess informal caregiving in COPD and describe their measurement properties in this population. Searches were conducted in PubMed, Scopus, Web of Science, CINAHL and PsycINFO and in references of key articles, until November 2016 (PROSPERO: CRD42016041401). Instruments used to assess the impact of COPD on caregivers were identified and their properties described. Quality of studies was rated using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Quality of the measurement properties of instruments was rated as 'positive', 'negative' or 'indeterminate'. Patients cared for, had moderate to very severe COPD and the sample of caregivers ranged from 24 to 406. Thirty-five instruments were used in fifty studies to assess caregivers' psychological status and mood (9 instruments), burden/distress (12 instruments), quality of life (5 instruments) or other (9 instruments). Eighteen studies assessed the measurement properties of 21 instruments, most commonly hypothesis testing (known validity) and internal consistency. Study quality varied from 'poor' to 'fair' and with many properties rated as 'indeterminate'. Although several instruments have been used to assess the impact of COPD on caregivers, an increased understanding of their properties is needed before their widespread implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Innovations for In-Pile Measurements in the Framework of the CEA-SCK•CEN Joint Instrumentation Laboratory

    Science.gov (United States)

    Villard, Jean-Francois; Schyns, Marc

    2010-12-01

    Optimizing the life cycle of nuclear systems under safety constraints requires high-performance experimental programs to reduce uncertainties on margins and limits. In addition to improvement in modeling and simulation, innovation in instrumentation is crucial for analytical and integral experiments conducted in research reactors. The quality of nuclear research programs relies obviously on an excellent knowledge of their experimental environment which constantly calls for better online determination of neutron and gamma flux. But the combination of continuously increasing scientific requirements and new experimental domains -brought for example by Generation IV programsnecessitates also major innovations for in-pile measurements of temperature, dimensions, pressure or chemical analysis in innovative mediums. At the same time, the recent arising of a European platform around the building of the Jules Horowitz Reactor offers new opportunities for research institutes and organizations to pool their resources in order to face these technical challenges. In this situation, CEA (French Nuclear Energy Commission) and SCK'CEN (Belgian Nuclear Research Centre) have combined their efforts and now share common developments through a Joint Instrumentation Laboratory. Significant progresses have thus been obtained recently in the field of in-pile measurements, on one hand by improvement of existing measurement methods, and on the other hand by introduction in research reactors of original measurement techniques. This paper highlights the state-of-the-art and the main requirements regarding in-pile measurements, particularly for the needs of current and future irradiation programs performed in material testing reactors. Some of the main on-going developments performed in the framework of the Joint Instrumentation Laboratory are also described, such as: - a unique fast neutron flux measurement system using fission chambers with 242Pu deposit and a specific online data processing

  19. Instrument evaluation no. 9. Mini-instruments dose rate meter type 5 - 1OR

    International Nuclear Information System (INIS)

    Iles, W.J.; Burgess, P.H.; Callowhill, K.

    1977-04-01

    This instrument is a portable, battery powered dose rate meter covering the dose rate range from 0 to 200 mrad h -1 . The instrument is designed to measure X- and γ-radiation dose rates over the energy range from 45 keV to 3 MeV. The radiation detector of the instrument is a GM tube with a specially designed energy compensation sheath. This detector is incorporated in a probe connected to the rate meter by an extensible cable which may be either hand-held or clipped on to the top of the instrument case. All the measurements in this report have been taken with the long axis of the probe normal to the direction of the incident radiation, the orientation recommended by the manufacturer. The information is given under the following headings: facilities and controls; radiation characteristics; electrical characteristics; effect of ambient temperature; mechanical characteristics; summary of performance; conclusions. (U.K.)

  20. New portable hand-held radiation instruments for measurements and monitoring

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1987-01-01

    Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification

  1. Development of the instrument IMAQE-Food to measure effectiveness of quality management

    NARCIS (Netherlands)

    Spiegel, van der M.; Luning, P.A.; Ziggers, G.W.; Jongen, W.M.F.

    2005-01-01

    Purpose - Manufacturers use several quality assurance systems to assure quality. However, their effectiveness cannot be assessed because an instrument does not exist. This article is based on a study that was set up to identify performance measurement indicators of an instrument that measures

  2. Portable instrumentation for quantitatively measuring radioactive surface contaminations, including 90Sr

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1983-10-01

    In order to measure the effectiveness of decontamination efforts, a quantitative analysis of the radiocontamination is necessary, both before and after decontamination. Since it is desirable to release the decontaminated material for unrestricted use or disposal, the assay equipment must provide adequate sensitivity to measure the radioactivity at or below the release limit. In addition, the instrumentation must be capable of measuring all kinds of radiocontaminants including fission products, activation products, and transuranic materials. Finally, the survey instrumentation must be extremely versatile in order to assay the wide variety of contaminated surfaces in many environments, some of which may be extremely hostile or remote. This communication describes the development and application of portable instrumentation capable of quantitatively measuring most transuranics, activation products, and fission products, including 90 Sr, on almost any contaminated surface in nearly any location

  3. Self-administered health literacy instruments for people with diabetes: systematic review of measurement properties.

    Science.gov (United States)

    Lee, Eun-Hyun; Kim, Chun-Ja; Lee, Jiyeon; Moon, Seung Hei

    2017-09-01

    The aims of this study were to identify all available self-administered instruments measuring health literacy in people with diabetes and to determine the current instrument that is the most appropriate for applying to this population in both practice and research. A systematic review of measurement properties. MEDLINE, EMBASE and CINAHL electronic databases from their inception up to 28 March 2016. The methodological quality of each included study was assessed using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. The reported results for measurement properties in the studies were assessed according to Terwee's quality criteria. Thirteen self-administered instruments measuring health literacy in people with diabetes were identified, of which six (44%) were diabetes-specific instruments. The instruments that covered the broadest contents of health literacy were the Health Literacy Scale and Health Literacy Questionnaire. The (test-retest) reliability, measurement error and responsiveness were not evaluated for any instrument, while internal consistency and hypothesis testing validity were the most frequently assessed measurement properties. With the current evidence, the Health Literacy Scale may be the most appropriate instrument for patients with diabetes in practice and research. However, the structural validity of this scale needs to be further established, particularly in other language versions. It is also recommended to use the Diabetes Numeracy Test-15 along with the Health Literacy Scale to complement the lack of numeracy measures in the Health Literacy Scale. © 2017 John Wiley & Sons Ltd.

  4. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  5. Instrument evaluation, calibration, and installation for the heater experiments at Stripa

    International Nuclear Information System (INIS)

    Schrauf, T.; Pratt, H.; Simonson, E.; Hustrulid, W.; Nelson, P.; DuBois, A.; Binnall, E.; Haught, R.

    1979-12-01

    Borehole instrumentation for the measurement of temperature, displacement, and stress was evaluated, modified, calibrated, and installed in an underground site at Stripa, Sweden where experiments are currently underway to investigate the suitability of granite as a storage medium for nuclear waste. Three arrays of borehole instrumentation measure the thermomechanical effects caused by electrical heaters which simulate the thermal output of canisters of radioactive waste. Because most rock mechanics investigations are carried out at modest temperatures, a sustained operating temperature as high as 200 0 C was an unusual and most important criterion governing the instrumentation program. Extensive laboratory experiments were conducted to determine the effect of high temperature on instrument behavior and also to develop calibration and data-reduction procedures. The rod extensometers were tested for anchor creep, the selection of a suitable high-temperature pressurizing fluid, and the thermal stability of the grout. Four temperature corrections are incorporated into the data reduction of the USBM borehole deformation measurement: the bridge voltage offset correction, the change in calibration factor induced by temperature, and the thermal expansion of the gage and of the rock. The vibrating wire gages were calibrated in the laboratory by loading gages installed in a granite block at pressures up to 13 MPa and at temperatures ranging from 20 0 to 200 0 C. Both the slope and offset of the response equation are corrected for temperature effects. Most thermocouples were calibrated in an oven at the field site. Thermocouples were emplaced with individual gages and into holes backfilled with sand or grout

  6. QNOTE: an instrument for measuring the quality of EHR clinical notes.

    Science.gov (United States)

    Burke, Harry B; Hoang, Albert; Becher, Dorothy; Fontelo, Paul; Liu, Fang; Stephens, Mark; Pangaro, Louis N; Sessums, Laura L; O'Malley, Patrick; Baxi, Nancy S; Bunt, Christopher W; Capaldi, Vincent F; Chen, Julie M; Cooper, Barbara A; Djuric, David A; Hodge, Joshua A; Kane, Shawn; Magee, Charles; Makary, Zizette R; Mallory, Renee M; Miller, Thomas; Saperstein, Adam; Servey, Jessica; Gimbel, Ronald W

    2014-01-01

    The outpatient clinical note documents the clinician's information collection, problem assessment, and patient management, yet there is currently no validated instrument to measure the quality of the electronic clinical note. This study evaluated the validity of the QNOTE instrument, which assesses 12 elements in the clinical note, for measuring the quality of clinical notes. It also compared its performance with a global instrument that assesses the clinical note as a whole. Retrospective multicenter blinded study of the clinical notes of 100 outpatients with type 2 diabetes mellitus who had been seen in clinic on at least three occasions. The 300 notes were rated by eight general internal medicine and eight family medicine practicing physicians. The QNOTE instrument scored the quality of the note as the sum of a set of 12 note element scores, and its inter-rater agreement was measured by the intraclass correlation coefficient. The Global instrument scored the note in its entirety, and its inter-rater agreement was measured by the Fleiss κ. The overall QNOTE inter-rater agreement was 0.82 (CI 0.80 to 0.84), and its note quality score was 65 (CI 64 to 66). The Global inter-rater agreement was 0.24 (CI 0.19 to 0.29), and its note quality score was 52 (CI 49 to 55). The QNOTE quality scores were consistent, and the overall QNOTE score was significantly higher than the overall Global score (p=0.04). We found the QNOTE to be a valid instrument for evaluating the quality of electronic clinical notes, and its performance was superior to that of the Global instrument. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Measuring participants' immersion in healthcare simulation: the development of an instrument.

    Science.gov (United States)

    Hagiwara, Magnus Andersson; Backlund, Per; Söderholm, Hanna Maurin; Lundberg, Lars; Lebram, Mikael; Engström, Henrik

    2016-01-01

    Immersion is important for simulation-based education; however, questionnaire-based instruments to measure immersion have some limitations. The aim of the present work is to develop a new instrument to measure immersion among participants in healthcare simulation scenarios. The instrument was developed in four phases: trigger identification, content validity scores, inter-rater reliability analysis and comparison with an existing immersion measure instrument. A modified Delphi process was used to develop the instrument and to establish validity and reliability. The expert panel consisted of 10 researchers. All the researchers in the team had previous experience of simulation in the health and/or fire and rescue services as researchers and/or educators and simulation designers. To identify triggers, the panel members independently screened video recordings from simulation scenarios. Here, a trigger is an event in a simulation that is considered a sign of reduced or enhanced immersion among simulation participants. The result consists of the Immersion Score Rating Instrument (ISRI). It contains 10 triggers, of which seven indicate reduced and three enhanced immersion. When using ISRI, a rater identifies trigger occurrences and assigns them strength between 1 and 3. The content validity analysis shows that all the 10 triggers meet an acceptable content validity index for items (I-CVI) standard. The inter-rater reliability (IRR) among raters was assessed using a two-way mixed, consistency, average-measures intra-class correlation (ICC). The ICC for the difference between weighted positive and negative triggers was 0.92, which indicates that the raters are in agreement. Comparison with results from an immersion questionnaire mirrors the ISRI results. In conclusion, we present a novel and non-intrusive instrument for identifying and rating the level of immersion among participants in healthcare simulation scenarios.

  8. Determination of transient temperature and heat flux on the surface of a reactor control rod based on temperature measurements at the interior points

    International Nuclear Information System (INIS)

    Cebula, Artur; Taler, Jan

    2014-01-01

    The paper presents heat transfer calculation results concerning a control rod of nuclear power plant. Apart from numerical calculation results, experimental heat transfer measurements of the control rod model are also presented. The control rod that is the object of interest is surrounded by a mixing region of hot and cold streams and, as a consequence, is subjected to thermal fluctuations. The paper describes a method based on the solution of the inverse heat conduction problem (IHCP) for determining heat flux on the outer surface of the rod. Numerical tests were conducted to validate the method by comparison of the results with the time changes of surface temperature and heat flux which were obtained from the computational fluid dynamics (CFD) simulation of the mixing process. A measuring instrument was designed to measure the heat flux at the outer surface of the control rod model. In addition, the principle of operation and construction of heat flux meter is presented in detail. -- Highlights: • Temperature and heat flux estimation during cooling of control rod are presented. • The inverse technique is based on the space marching method. • The instrument for surface heat flux measurement was manufactured and tested. • CFD simulations were used to validate the developed inverse technique. • Actual data were used to demonstrate practical applicability of the method

  9. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  10. Instrumentation to Measure the Capacitance of Biosensors by Sinusoidal Wave Method

    Directory of Open Access Journals (Sweden)

    Pavan Kumar KATHUROJU

    2009-09-01

    Full Text Available Micro Controller based instrumentation to measure the capacitance of biosensors is developed. It is based on frequency domain technique with sinusoidal wave input. Changes in the capacitance of biosensor because of the analyte specific reaction are calculated by knowing the current flowing through the sample. A dedicated 8-bit microcontroller (AT89C52 and its associated peripherals are employed for the hardware and application specific software is developed in ‘C’ language. The paper describes the methodology, instrumentation details along with a specific application to glucose sensing. The measurements are conducted with glucose oxidase based capacitance biosensor and the obtained results are compared with the conventional method of sugar measurements using the UV-Visible spectroscopy (Phenol-Sulphuric acid assay method. Measurement accuracy of the instrument is found to be ± 5 %. Experiments are conducted on glucose sensor with different bias voltages. It is found that for bias voltages varying from 0.5 to 0.7 Volt, the measurements are good for this application.

  11. Measurement properties of quality of life measurement instruments for infants, children and adolescents with eczema: protocol for a systematic review.

    Science.gov (United States)

    Heinl, Daniel; Prinsen, Cecilia A C; Drucker, Aaron M; Ofenloch, Robert; Humphreys, Rosemary; Sach, Tracey; Flohr, Carsten; Apfelbacher, Christian

    2016-02-09

    Eczema is a common chronic or chronically relapsing, inflammatory skin disease that exerts a substantial negative impact on quality of life (QoL). The Harmonising Outcome Measures for Eczema (HOME) initiative has used a consensus-based process which identified QoL as one of the four core outcome domains to be assessed in all eczema clinical trials. A number of measurement instruments exist to measure QoL in infants, children, and adolescents with eczema, and there is a great variability in both content and quality of the instruments used. Therefore, the objective of the proposed research is to comprehensively and systematically assess the measurement properties of the existing measurement instruments that were developed and/or validated for the measurement of patient-reported QoL in infants, children, and adolescents with eczema. This study is a systematic review of the measurement properties of patient-reported measures of QoL developed and/or validated for infants, children, and adolescents with eczema. A systematic literature search will be carried out in MEDLINE via PubMed and EMBASE using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing, or comparing measurement properties of QoL instruments for infants, children, and adolescents with eczema. Two reviewers will independently perform eligibility assessment and data abstraction. Evidence tables will be used to record study characteristics, instrument characteristics, measurement properties, and interpretability. The adequacy of the measurement properties will be assessed using predefined criteria. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist will be used to evaluate the methodological quality of included studies. A best evidence synthesis will be undertaken if more than one study has examined a particular measurement property. The proposed systematic review will yield a comprehensive assessment

  12. Instrumented Glove Measures Positions Of Fingers

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.

  13. Instruments to assess self-care among healthy children: A systematic review of measurement properties.

    Science.gov (United States)

    Urpí-Fernández, Ana-María; Zabaleta-Del-Olmo, Edurne; Montes-Hidalgo, Javier; Tomás-Sábado, Joaquín; Roldán-Merino, Juan-Francisco; Lluch-Canut, María-Teresa

    2017-12-01

    To identify, critically appraise and summarize the measurement properties of instruments to assess self-care in healthy children. Assessing self-care is a proper consideration for nursing practice and nursing research. No systematic review summarizes instruments of measurement validated in healthy children. Psychometric review in accordance with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) panel. MEDLINE, CINAHL, PsycINFO, Web of Science and Open Grey were searched from their inception to December 2016. Validation studies with a healthy child population were included. Search was not restricted by language. Two reviewers independently assessed the methodological quality of included studies using the COSMIN checklist. Eleven studies were included in the review assessing the measurement properties of ten instruments. There was a maximum of two studies per instrument. None of the studies evaluated the properties of test-retest reliability, measurement error, criterion validity and responsiveness. Internal consistency and structural validity were rated as "excellent" or "good" in four studies. Four studies were rated as "excellent" in content validity. Cross-cultural validity was rated as "poor" in the two studies (three instruments) which cultural adaptation was carried out. The evidence available does not allow firm conclusions about the instruments identified in terms of reliability and validity. Future research should focus on generate evidence about a wider range of measurement properties of these instruments using a rigorous methodology, as well as instrument testing on different countries and child population. © 2017 John Wiley & Sons Ltd.

  14. Notes on instrumentation and control

    CERN Document Server

    Roy, G J

    2013-01-01

    Notes on Instrumentation and Control presents topics on pressure (i.e., U-tube manometers and elastic type gauges), temperature (i.e. glass thermometer, bi-metallic strip thermometer, filled system thermometer, vapor pressure thermometer), level, and flow measuring devices. The book describes other miscellaneous instruments, signal transmitting devices, supply and control systems, and monitoring systems. The theory of automatic control and semi-conductor devices are also considered. Marine engineers will find the book useful.

  15. Metrological Array of Cyber-Physical Systems. Part 7. Additive Error Correction for Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yuriy YATSUK

    2015-06-01

    Full Text Available Since during design it is impossible to use the uncertainty approach because the measurement results are still absent and as noted the error approach that can be successfully applied taking as true the nominal value of instruments transformation function. Limiting possibilities of additive error correction of measuring instruments for Cyber-Physical Systems are studied basing on general and special methods of measurement. Principles of measuring circuit maximal symmetry and its minimal reconfiguration are proposed for measurement or/and calibration. It is theoretically justified for the variety of correction methods that minimum additive error of measuring instruments exists under considering the real equivalent parameters of input electronic switches. Terms of self-calibrating and verification the measuring instruments in place are studied.

  16. Instruments for measuring mental health recovery: a systematic review.

    Science.gov (United States)

    Sklar, Marisa; Groessl, Erik J; O'Connell, Maria; Davidson, Larry; Aarons, Gregory A

    2013-12-01

    Persons in recovery, providers, and policymakers alike are advocating for recovery-oriented mental health care, with the promotion of recovery becoming a prominent feature of mental health policy in the United States and internationally. One step toward creating a recovery-oriented system of care is to use recovery-oriented outcome measures. Numerous instruments have been developed to assess progress towards mental health recovery. This review identifies instruments of mental health recovery and evaluates the appropriateness of their use including their psychometric properties, ease of administration, and service-user involvement in their development. A literature search using the Medline and Psych-INFO databases was conducted, identifying 21 instruments for potential inclusion in this review, of which thirteen met inclusion criteria. Results suggest only three instruments (25%) have had their psychometric properties assessed in three or more unique samples of participants. Ease of administration varied between instruments, and for the majority of instruments, development included service user involvement. This review updates and expands previous reviews of instruments to assess mental health recovery. As mental health care continues to transform to a recovery-oriented model of service delivery, this review may facilitate selection of appropriate assessments of mental health recovery for systems to use in evaluating and improving the care they provide. © 2013.

  17. Temperature measuring device

    International Nuclear Information System (INIS)

    Brixy, H.

    1977-01-01

    The temperature measuring device is equipped with an electric resistor installed within a metal shroud tube so as to be insulated from it, the noise voltage of which resistor is fed to a measuring unit. The measuring junctions of one or two thermocouples are connected with the electric resistor and the legs of one or both thermocouples can be connected to the measuring unit by means of a switch. (orig.) [de

  18. A set of portable radioisotopic control and measuring instruments

    International Nuclear Information System (INIS)

    Pospeev, V.V.; Sidorov, V.N.; Tesnavs, Eh.R.; Uleksin, V.I.

    1979-01-01

    The problems and perspectives are examined of the portable radioisotope instruments application in agriculture, building industry, engeeniring and geological survay and in melioration. Principles are given of creation a series of radioisotopic instruments based on the principle of ganging. The series described consists of radioisotopic densimeters and moisture gages of the portable type, based on the ganging principle. The instruments differ in the measuring converters and have unified information processing and power supply devices. Criteria are stated for the ganging principle estimation, in particular, estimation of the technical means' compatibility. Four different types of compatibility are distinguished: an information compatibility; a metrological compatibility; structural and operational compatibility. Description is given of the unified information processing device - the unified pulse counter of the SIP-1M type and description of a row of radioisotopic measuring converters, which provides a possibility for completing the portable radioisotope densimeter of the RPP-2 type, intended for measuring densities of concrets and soils in the surface layer up to 30 cm and the density range from 1000 to 2500 kg/m 3 ; portable radioisotope densimeter of the RPP-1 type having measuring range from 600 to 1500 kg/m 3 ; surface-depth radioisotopic densimeter of the PPGR-1 type and surface-depth radioisotopic moisture gage of the VPGR-1 type [ru

  19. Geotechnical instrumentation requirements for at-depth testing and repository monitoring in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-01-01

    Minimum required geotechnical measurements for confirmation of repository performance include thermal and thermomechanical responses; changes in stress, strain, and displacements; and pore pressure and groundwater flow characteristics. Conditions expected in tuff are: maximum rock temperatures of less than 250 0 C, stresses less than 100 MPa, strains between +-0.01 mm/mm, and pore pressures less than 35 KPa in the unsaturated zone where hydraulic head is not the primary contributor. The paper describes instrumentation needed to make the desired measurements. In general, the instrumentation and data system are required to be stable and reliable for tens of years. Designs must consider requirements for temperature stability, temperature expansion compensation, moisture resistance, and long-term durability in mining-type environments. Severe requirements such as these suggest consideration of techniques for in-situ replacement of instrumentation. State-of-the-art instrumentation is briefly described along with a discussion of needs for refinement, replacement/recalibration and instrumentation development

  20. Development of an Optical Sensor Head for Current and Temperature Measurements in Power Systems

    Directory of Open Access Journals (Sweden)

    Fábio V. B. de Nazaré

    2013-01-01

    Full Text Available The development of a current and temperature monitoring optical device intended to be used in high-voltage environments, particularly transmission lines, is presented. The system is intended to offer not only measurement reliability, but to be also practical and light weighted. Fiber Bragg gratings (FBGs are employed in the measurement of both physical parameters: the current will be acquired using a hybrid sensor head setup—an FBG fixed on a magnetostrictive rod—while a single-point temperature information is provided by a dedicated grating. An inexpensive and outdoor-suitable demodulation method, such as the fixed filter technique, should be used in order to improve the instrumentation robustness, avoiding expensive and complex auxiliary electronics. The preliminary results for laboratory tests are also discussed.

  1. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, J [comp.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments.

  2. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    International Nuclear Information System (INIS)

    Lehner, J.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments

  3. A comparative review of measurement instruments to inform and evaluate effectiveness of disability inclusive development.

    Science.gov (United States)

    Goujon, Nicolas; Devine, Alexandra; Baker, Sally M; Sprunt, Beth; Edmonds, Tanya J; Booth, Jennifer K; Keeffe, Jill E

    2014-01-01

    A review of existing measurement instruments was conducted to examine their suitability to measure disability prevalence and assess quality of life, protection of disability rights and community participation by people with disabilities, specifically within the context of development programs in low and middle-income countries. From a search of PubMed and the grey literature, potentially relevant measurement instruments were identified and examined for their content and psychometric properties, where possible. Criteria for inclusion were: based on the WHO's International Classification of Functioning Disability and Health (ICF), used quantitative methods, suitable for population-based studies of disability inclusive development in English and published after 1990. Characteristics of existing instruments were analysed according to components of the ICF and quality of life domains. Ten instruments were identified and reviewed according to the criteria listed above. Each version of instruments was analysed separately. Only three instruments included a component on quality of life. Domains from the ICF that were addressed by some but not all instruments included the environment, technology and communication. The measurement instruments reviewed covered the range of elements required to measure disability-inclusion within development contexts. However no single measurement instrument has the capacity to measure both disability prevalence and changes in quality of life according to contemporary disability paradigms. The review of measurement instruments supports the need for developing an instrument specifically intended to measure disability inclusive practice within development programs. Implications for Rehabilitation Surveys and tools are needed to plan disability inclusive development. Existing measurement tools to determine prevalence of disability, wellbeing, rights and access to the community were reviewed. No single validated tool exists for population

  4. A measuring instrument for evaluation of quality systems.

    NARCIS (Netherlands)

    Wagner, C.; Bakker, D.H. de; Groenewegen, P.P.

    1999-01-01

    Objective: To develop an instrument for provider organizations, consumers, purchasers, and policy makers to measure and compare the development of quality systems in provider organizations. Design: Cross-sectional study of provider organizations using a structured questionnaire to survey managers.

  5. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  6. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  7. Core-adjacent instrumentation systems for pebble bed reactors for process heat application - state of planning

    International Nuclear Information System (INIS)

    Benninghofen, G.; Serafin, N.; Spillekothen, H.G.; Hecker, R.; Brixy, H.; Serpekian, T.

    1982-06-01

    Planning and theoretical/experimental development work for core surveillance instrumentation systems is being performed to meet requirements of pebble bed reactors for process heat application. Detailed and proved instrumentation concepts are now available for the core-adjacent instrumentation systems. The current work and the results of neutron flux measurements at high temperatures are described. Operation devices for long-term accurate gas outlet temperature measurements up to approximately 1423 deg. K will also be discussed. (author)

  8. An instrumentation for control and measurement of activated mineral samples

    International Nuclear Information System (INIS)

    Skaarup, P.

    1976-01-01

    A description is given of an instrumentation for control of a pneumatic tube system used to transport mineral samples for activation in a reactor and from there to a detector arrangement. A possible content of uranium in the samples can be seen from the radiation measured. The instrumentation includes a PDP-11 computer and a CAMAC crate

  9. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  10. Mars Exospheric Temperature Trends as Revealed by MAVEN NGIMS Measurements

    Science.gov (United States)

    Bougher, Stephen W.; Olsen, Kirk; Roeten, Kali; Bell, Jared; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith; Jakosky, Bruce

    2015-11-01

    The Martian dayside upper thermosphere and exosphere temperatures (Texo) have been the subject of considerable debate and study since the first Mariner ultraviolet spectrometer (UVS) measurements (1969-1972), up to recent Mars Express SPICAM UVS measurements (2004-present) (e.g., see reviews by Stewart 1987; Bougher et al. 2000, 2014; Müeller-Wodarg et al. 2008; Stiepen et al. 2014). Prior to MAVEN, the Martian upper atmosphere thermal structure was poorly constrained by a limited number of both in-situ and remote sensing measurements at selected locations, seasons, and periods scattered throughout the solar cycle. Nevertheless, it is recognized that the Mars orbit eccentricity determines that both the solar cycle and seasonal variations in upper atmosphere temperatures must be considered together. The MAVEN NGIMS instrument measures the neutral composition of the major gas species (e.g. He, N, O, CO, N2, O2, NO, Ar and CO2) and their major isotopes, with a vertical resolution of ~5 km for targeted species and a target accuracy of <25% for most of these species (Mahaffy et al. 2014; 2015). Corresponding temperatures can now be derived from the neutral scale heights (especially CO2, Ar, and N2) (e.g. Mahaffy et al. 2015; Bougher et al. 2015). Texo mean temperatures spanning ~200 to 300 km are examined for both Deep Dip and Science orbits over 11-February 2015 (Ls ~ 290) to 14-July 2015 (Ls ~ 12). During these times, dayside sampling below 300 km occurred from the dusk terminator, across the dayside, and approaching the dawn terminator. NGIMS temperatures are investigated to extract spatial (e.g. SZA) and temporal (e.g. orbit-to-orbit, seasonal, solar rotational) variability and trends over this sampling period. Solar and seasonal driven trends in Texo are clearly visible, but orbit-to-orbit variability is significant, and demands further investigation to uncover the major drivers that are responsible.

  11. Towards a measurement instrument for determinants of innovations

    NARCIS (Netherlands)

    Fleuren, M.A.H.; Paulussen, T.G.W.M.; van Dommelen, P.; van Buuren, S.

    2014-01-01

    Objective. To develop a short instrument to measure determinants of innovations that may affect its implementation. Design. We pooled the original data from eight empirical studies of the implementation of evidence-based innovations. The studies used a list of 60 potentially relevant determinants

  12. Process Skill Assessment Instrument: Innovation to measure student’s learning result holistically

    Science.gov (United States)

    Azizah, K. N.; Ibrahim, M.; Widodo, W.

    2018-01-01

    Science process skills (SPS) are very important skills for students. However, the fact that SPS is not being main concern in the primary school learning is undeniable. This research aimed to develop a valid, practical, and effective assessment instrument to measure student’s SPS. Assessment instruments comprise of worksheet and test. This development research used one group pre-test post-test design. Data were obtained with validation, observation, and test method to investigate validity, practicality, and the effectivenss of the instruments. Results showed that the validity of assessment instruments is very valid, the reliability is categorized as reliable, student SPS activities have a high percentage, and there is significant improvement on student’s SPS score. It can be concluded that assessment instruments of SPS are valid, practical, and effective to be used to measure student’s SPS result.

  13. Precision and accuracy of blood glucose measurements using three different instruments.

    Science.gov (United States)

    Nowotny, B; Nowotny, P J; Strassburger, K; Roden, M

    2012-02-01

    Assessment of insulin sensitivity by dynamic metabolic tests such as the hyperinsulinemic euglycemic clamp critically relies on the reproducible and fast measurement of blood glucose concentrations. Although various instruments have been developed over the last decades, little is known as to the accuracy and comparability. We therefore compared the best new instrument with the former gold standard instruments to measure glucose concentrations in metabolic tests. Fasting blood samples of 15 diabetic and 10 healthy subjects were collected into sodium-fluoride tubes, spiked with glucose (0, 2.8, 6.9 and 11.1 mmol/l) and measured either as whole blood (range 3.3-26.3 mmol/l) or following centrifugation as plasma (range 3.9-32.0 mmol/l). Plasma samples were analyzed in the YSI-2300 STAT plus (YSI), EKF Biosen C-Line (EKF) and the reference method, Beckman Glucose analyzer-II (BMG), whole blood samples in EKF instruments with YSI as reference method. The average deviation of the EKF from the reference, BMG, was 3.0 ± 3.5% without any concentration-dependent variability. Glucose measurements by YSI were in good agreement with that by BMG (plasma) and EKF (plasma and whole blood) up to concentrations of 13.13 mmol/l (0.5 ± 3.7%), but deviation increased to -6.2 ± 3.8% at higher concentrations. Precision (n = 6) was ±2.2% (YSI), ±3.9% (EKF) and ±5.2% (BMG). The EKF instrument is comparable regarding accuracy and precision to the reference method BMG and can be used in metabolic tests, while the YSI showed a systematic shift at higher glucose concentrations. Based on these results we decided to replace BMG with EKF instrument in metabolic tests. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  14. Instrumentation and Controls evaluation for space nuclear power systems

    International Nuclear Information System (INIS)

    Anderson, J.L.; Oakes, L.C.

    1984-01-01

    Design of control and protection systems should be coordinated with the design of the neutronic, thermal-hydraulic, and mechanical aspects of the core and plant at the earliest possible stage of concept development. An integrated systematic design approach is necessary to prevent uncoordinated choices in one technology area from imposing impractical or impossible requirements in another. Significant development and qualification will be required for virtually every aspect of reactor control and instrumentation. In-core instrumentation widely used in commercial light water reactors will not likely be usable in the higher temperatures of a space power plant. Thermocouples for temperature measurement and gamma thermometers for flux measurement appear to be the only viable candidates. Recent developments in ex-core neutron detectors may provide achievable alternatives to in-core measurements. Reliable electronic equipment and high-temperature actuators will require major development efforts

  15. Measurement of non-invasive X-ray measuring instruments

    International Nuclear Information System (INIS)

    Abe, Shinji

    2013-01-01

    Described are the history, measuring system, characteristics and present state of the instruments in the title (NXMI). NXMI, non-invasive to the inner circuit of X-ray generator, is now essential for the quality control of generator with reference to definitions by International Electrotechnical Commission (IEC) and Japan Industrial Standards (JIS). Non-invasive measurement of the generator's tube voltage in 1944 is the first report where the absorption difference of Cu plates with different thickness is used. At present, NXMI, being compact, can measure multiple properties of X-ray generated, such as the tube voltage (TV), current (TC), imaging time, dose/dose rate, total filtration, half value layer, and TV/output waveform. TV is measurable by the penetration difference of X-rays through Cu filters of different thickness, which is a linear function of TV; TC, with the clamp-type ammeter placed at the generator high voltage cable; and the dose, with the semiconductor detector. Characteristics can be evaluable within the upper trigger level of the detector (radiation time, dose measured here), in which measured are the irradiation (imaging) time, delay time, and TV (within the window width). Authors' practical quality control of the generator is conducted through calibration for which data are obtained by invasive (direct) precise measurement of TV, TC, imaging time and dose with reference to JIS. Periodical calibration and consequent quality control of NXMI are essential for the maintenance of precision of the generator. (T.T.)

  16. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, low power instrumentation for the real-time direct measurement of carbonyl sulfide (OCS) in the atmosphere, especially...

  17. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  18. Bioimpedance-Based Wearable Measurement Instrumentation for Studying the Autonomic Nerve System Response to Stressful Working Conditions

    Science.gov (United States)

    Ferreira, J.; Álvarez, L.; Buendía, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R.; Seoane, F.

    2013-04-01

    The assessment of mental stress on workers under hard and stressful conditions is critical to identify which workers are not ready to undertake a mission that might put in risk their own life and the life of others. The ATREC project aims to enable Real Time Assessment of Mental Stress of the Spanish Armed Forces during military activities. Integrating sensors with garments and using wearable measurement devices, the following physiological measurements were recorded: heart and respiration rate, skin galvanic response as well as peripheral temperature. The measuring garments are the following: a sensorized glove, an upper-arm strap and a repositionable textrode chest strap system with 6 textrodes. The implemented textile-enabled instrumentation contains: one skin galvanometer, two temperature sensors, for skin and environmental, and an Impedance Cardiographer/Pneumographer containing a 1 channel ECG amplifier to record cardiogenic biopotentials. The implemented wearable systems operated accordingly to the specifications and are ready to be used for the mental stress experiments that will be executed in the coming phases of the project in healthy volunteers.

  19. Bioimpedance-Based Wearable Measurement Instrumentation for Studying the Autonomic Nerve System Response to Stressful Working Conditions

    International Nuclear Information System (INIS)

    Ferreira, J; Buendía, R; Seoane, F; Álvarez, L; Ayllón, D; Llerena, C; Gil-Pita, R

    2013-01-01

    The assessment of mental stress on workers under hard and stressful conditions is critical to identify which workers are not ready to undertake a mission that might put in risk their own life and the life of others. The ATREC project aims to enable Real Time Assessment of Mental Stress of the Spanish Armed Forces during military activities. Integrating sensors with garments and using wearable measurement devices, the following physiological measurements were recorded: heart and respiration rate, skin galvanic response as well as peripheral temperature. The measuring garments are the following: a sensorized glove, an upper-arm strap and a repositionable textrode chest strap system with 6 textrodes. The implemented textile-enabled instrumentation contains: one skin galvanometer, two temperature sensors, for skin and environmental, and an Impedance Cardiographer/Pneumographer containing a 1 channel ECG amplifier to record cardiogenic biopotentials. The implemented wearable systems operated accordingly to the specifications and are ready to be used for the mental stress experiments that will be executed in the coming phases of the project in healthy volunteers.

  20. Hydroxyl temperature and intensity measurements during noctilucent cloud displays

    Directory of Open Access Journals (Sweden)

    M. J. Taylor

    1995-10-01

    Full Text Available Two Fourier transform spectrometers have been used to investigate the properties of the near-infrared hydroxyl (OH nightglow emission under high-latitude summertime conditions and any association with noctilucent clouds (NLCs. The measurements were made from Poker Flat Research Range, Alaska (65.1°N, 147.5°W, during August 1986. Simultaneous photographic observations of the northern twilight sky were made from Gulkana, Alaska (62.2°N, 145.5°W, approximately 340 km to the south to establish the presence of NLCs over the spectrometer site. Data exhibiting significant short-term variations in the relative intensity (as much as 50–100% and rotational temperature (typically 5–15 K were recorded on six occasions when NLCs were observed. Joint measurements were also obtained on several "cloud-free" nights. No obvious relationship was found linking the mean OH intensity or its variation with the occurrence of NLCs. However, a clear tendency was found for the mean OH temperature to be lower on NLC nights than on cloud-free nights. In particular, a significant fraction of the OH(3–1 band spectra recorded by each instrument (16–57% exhibited temperatures below ~154 K on NLC nights compared with <3% on cloud-free nights. This result is qualitatively consistent with current models for ice particle nucleation and growth, but the mean OH temperature on NLC nights (~156 K was significantly higher than would be expected for long-term particle growth in this region. These observations raise questions concerning the expected proximity of the high-latitude, summertime OH layer and the NLC growth region.

  1. Hydroxyl temperature and intensity measurements during noctilucent cloud displays

    Directory of Open Access Journals (Sweden)

    M. J. Taylor

    Full Text Available Two Fourier transform spectrometers have been used to investigate the properties of the near-infrared hydroxyl (OH nightglow emission under high-latitude summertime conditions and any association with noctilucent clouds (NLCs. The measurements were made from Poker Flat Research Range, Alaska (65.1°N, 147.5°W, during August 1986. Simultaneous photographic observations of the northern twilight sky were made from Gulkana, Alaska (62.2°N, 145.5°W, approximately 340 km to the south to establish the presence of NLCs over the spectrometer site. Data exhibiting significant short-term variations in the relative intensity (as much as 50–100% and rotational temperature (typically 5–15 K were recorded on six occasions when NLCs were observed. Joint measurements were also obtained on several "cloud-free" nights. No obvious relationship was found linking the mean OH intensity or its variation with the occurrence of NLCs. However, a clear tendency was found for the mean OH temperature to be lower on NLC nights than on cloud-free nights. In particular, a significant fraction of the OH(3–1 band spectra recorded by each instrument (16–57% exhibited temperatures below ~154 K on NLC nights compared with <3% on cloud-free nights. This result is qualitatively consistent with current models for ice particle nucleation and growth, but the mean OH temperature on NLC nights (~156 K was significantly higher than would be expected for long-term particle growth in this region. These observations raise questions concerning the expected proximity of the high-latitude, summertime OH layer and the NLC growth region.

  2. An intelligent instrument for measuring the dynamic parameters of groundwater

    International Nuclear Information System (INIS)

    Du Guoping

    2002-01-01

    An intelligent instrument was developed for measuring direction and velocity of the groundwater, permeability coefficient, hydraulic transmitting coefficient, static level, hydraulic gradient and flow direction of each layer. The instrument can be widely applied for detecting seepage of abutment and river bank, exploitation of groundwater, conservation of water and soil, water surging in mine, survey of groundwater resource and environment protection etc

  3. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  4. Investigation of optimal manufacturing process for freeze-dried formulations: Observation of frozen solutions by low temperature X-ray diffraction measurements

    International Nuclear Information System (INIS)

    Egawa, Hiroaki; Yonemochi, Etsuo; Terada, Katsuhide

    2005-01-01

    Freeze-drying is used for the production of sterile injections in the pharmaceutical industry. However, most pharmaceutical compounds are obtained as less stable amorphous form. Freeze crystallization by annealing is an effective method for pharmaceutical compounds that fail to crystallize in the freeze-drying process. Crystallization occurs in the frozen solution during the thermal treatment. In order to establish suitable annealing conditions efficiently, it is important to observe the crystallization process directly in the frozen solution. Recently, low temperature X-ray diffraction has been used to observe frozen solutions. In order to investigate the crystallization process kinetically, the temperature of the low temperature X-ray diffraction instrument must be accurately controlled. We calibrated the temperature of X-ray diffraction instrument by measuring eutectic temperatures of solutions for a series of compounds. Each eutectic crystal was observed in frozen solution with ice crystal below the eutectic temperature. Eutectic temperatures were detected by the decrease in diffraction intensity associated with heating from below the eutectic temperature. Good correlation was obtained between values in the literature and experimental values

  5. Instrumentation and measurement method for the ATLAS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Chu, In Chul; Eu, Dong Jin; Kang, Kyong Ho; Kim, Yeon Sik; Song, Chul Hwa; Baek, Won Pil

    2007-03-15

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS is constructed by thermal-hydraulic safety research division in KAERI. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400 which is a Korean evolution type nuclear reactors. A total 1300 instrumentations is equipped in the ATLAS test facility. In this report, the instrumentation of ATLAS test facility and related measurement methods were introduced.

  6. Digital instrument for reactivity measurements in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S [Institute of Nuclear Research, Warsaw (Poland)

    1979-07-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given.

  7. Temperature radiation measuring equipment. Temperaturstrahlungsmessgeraet

    Energy Technology Data Exchange (ETDEWEB)

    Lotzer, W

    1981-01-22

    The invention is concerned with a temperature radiation measuring equipment for non-contact temperature measurement by the light intensity variation method, with a photoelectric resistance as the measuring element. By having a circuit with a transistor, the 'dark resistance' occurring in the course of time is compensated for and thus gives a genuine reading (ie. the voltage drop across the photoelectric resistance remains constant).

  8. Design and manufacturing of instrumented capsule(03F-05K) for nuclear fuel irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, J. M.; Shin, Y. T. [and others

    2004-06-01

    An instrumented capsule is being developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule(02F-11K) for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. The instrumented capsule includes three test fuel rods installed thermocouple to measure fuel centerline temperature and three SPNDs (self-powered neutron detector) to monitor the neutron flux. Its stability was verified by out-of-pile performance test, and its safety evaluation was also shown that the safety requirements were satisfied. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.8 full power days at 24 MWth). During irradiation, the centerline temperature of PWR UO{sub 2} fuel pellets fabricated by KEPCO Nuclear Fuel Company and the neutron flux were continuously measured and monitored. In the year of 2004, 3 test fuel rods and the instrumented capsule(03F-05K) were designed and fabricated to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. This capsule is being irradiated in the test hole OR5 of HANARO reactor from April 26, 2004.

  9. Temperature measurement of flat glass edge during grinding and effect of wheel and workpiece speeds

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2017-01-01

    Flat glass temperature at the vicinity of the grinding wheel during grinding can become very high and reach that of the glass transition (typically around 550–600 °C). In such cases, the mechanical strength of glass is greatly affected and the grinding process cannot be carried out properly. Hence, thermal phenomena must be managed by adjusting the machining parameters to avoid overheating. For this purpose, it is very important to be able to measure the glass temperature, especially at the grinding interface. However, measuring the interfacial glass temperature is difficult and none of the existing methods for metal grinding is adequate for glass grinding. This work shows a novel temperature method that uses constantan and copper strips on both sides of the glass plates; thermoelectric contact being provided by the metallic binder of diamond particles in the grinding wheel. This new technique allows the measurement of the glass edge temperature during the wheel displacement around the glass plate. The experimental results show an average glass edge temperature between 300 and 600 °C depending on the value of the machining parameters such as work speed, wheel speed, depth of cut and water coolant flow rate. As this new thermal instrumentation is rather intrusive, glass temperature biases were analysed using a 3D heat transfer model with a moving source. Model computations performed using finite elements show that the temperature biases are less than 70 °C, which is smaller than the standard deviation of the glass edge temperatures measured during grinding. (paper)

  10. Impact of the Atlantic Multidecadal Oscillation (AMO) on deriving anthropogenic warming rates from the instrumental temperature record

    NARCIS (Netherlands)

    van der Werf, G.R.; Dolman, A.J.

    2014-01-01

    The instrumental surface air temperature record has been used in several statistical studies to assess the relative role of natural and anthropogenic drivers of climate change. The results of those studies varied considerably, with anthropogenic temperature trends over the past 25-30 years suggested

  11. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    Science.gov (United States)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  12. How to apply the optimal estimation method to your lidar measurements for improved retrievals of temperature and composition

    Science.gov (United States)

    Sica, R. J.; Haefele, A.; Jalali, A.; Gamage, S.; Farhani, G.

    2018-04-01

    The optimal estimation method (OEM) has a long history of use in passive remote sensing, but has only recently been applied to active instruments like lidar. The OEM's advantage over traditional techniques includes obtaining a full systematic and random uncertainty budget plus the ability to work with the raw measurements without first applying instrument corrections. In our meeting presentation we will show you how to use the OEM for temperature and composition retrievals for Rayleigh-scatter, Ramanscatter and DIAL lidars.

  13. Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors

    Science.gov (United States)

    Bao, Yi; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, Brillouin scattering-based distributed fiber optic sensor is implemented to measure temperature distributions and detect cracks in concrete structures subjected to fire for the first time. A telecommunication-grade optical fiber is characterized as a high temperature sensor with pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA), and implemented to measure spatially-distributed temperatures in reinforced concrete beams in fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9%. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  14. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    Science.gov (United States)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  15. A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets

    Science.gov (United States)

    Davies, Ashley Gerard; Gunapala, Sarath; Soibel, Alexander; Ting, David; Rafol, Sir; Blackwell, Megan; Hayne, Paul O.; Kelly, Michael

    2017-09-01

    The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 μm are

  16. 27 CFR 19.277 - Measuring devices and proofing instruments.

    Science.gov (United States)

    2010-04-01

    ... proof or volume. (b) Instruments. Hydrometers and thermometers used by proprietors to gauge spirits... made in conjunction with the volumetric measurement of spirits by meter. If a meter does not have a...

  17. Development of source range measurement instrument in Xi'an pulsed reactor

    CERN Document Server

    Wang Li

    2002-01-01

    Source range measurement instrument in Xi'an pulsed reactor is key equipment of low-side measuring in source range. At the same time, it is also weighty component of out-of-pile neutron-flux level observation system. The authors have done some researching and renovating based on the similar type devices used in nuclear reactor to improve the meter sensitivity, measuring range, noise proof features, reliability in running and maintainability which belong to the main performance index of the instrument. The design ideas, configurations, working principle, performance indexes, technique features and effect in utilizing are introduced briefly

  18. Temperature measurement systems in wearable electronics

    Science.gov (United States)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  19. Instrumentation for two-phase flow measurements in code verification experiments

    International Nuclear Information System (INIS)

    Fincke, J.R.; Anderson, J.L.; Arave, A.E.; Deason, V.A.; Lassahn, G.D.; Goodrich, L.D.; Colson, J.B.; Fickas, E.T.

    1981-01-01

    The development of instrumentation and techniques for the measurement of mass flow rate in two-phase flows conducted at the Idaho National Engineering Laboratory during the past year is briefly described. Instruments discussed are the modular drag-disc turbine transducer, the gamma densitometers, the ultrasonic densitometer, Pitot tubes, and full-flow drag screens. Steady state air-water and transient steam-water data are presented

  20. Instrumentation of steam cycle HTR's up to 900 MWe

    International Nuclear Information System (INIS)

    Leithner, D.E.; Winkenbach, B.

    1982-06-01

    Due to basic design features and inherent safety qualities in-core instrumentation is not needed in an HTR. Reactor safety requirements can be met by integral measurements. A modest spatial resolving power of the out-of-core instrumentation is sufficient for all operational purposes in small and medium sized steam cycle HTR's. Thus, the instrumentation concept of the THTR 300 MWe prototype reactor can be adopted without major changes for the HTR 450 MWe reactor project, as is demonstrated here for the neutron flux and temperature measurements. (author)

  1. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenbiao; Zhang, Pu [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Wenzhong, E-mail: lwz7410@hust.edu.cn [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  2. Models and error analyses of measuring instruments in accountability systems in safeguards control

    International Nuclear Information System (INIS)

    Dattatreya, E.S.

    1977-05-01

    Essentially three types of measuring instruments are used in plutonium accountability systems: (1) the bubblers, for measuring the total volume of liquid in the holding tanks, (2) coulometers, titration apparatus and calorimeters, for measuring the concentration of plutonium; and (3) spectrometers, for measuring isotopic composition. These three classes of instruments are modeled and analyzed. Finally, the uncertainty in the estimation of total plutonium in the holding tank is determined

  3. Measuring Poisson Ratios at Low Temperatures

    Science.gov (United States)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  4. Toward Development of a Generalized Instrument to Measure Andragogy

    Science.gov (United States)

    Holton, Elwood F., III; Wilson, Lynda Swanson; Bates, Reid A.

    2009-01-01

    Andragogy has emerged as one of the dominant frameworks for teaching adults during the past 40 years. A major and glaring gap in andragogy research is the lack of a measurement instrument that adequately measures both andragogical principles and process design elements. As a result, no definitive empirical test of the theory has been possible. The…

  5. Geotechnical instrumentation requirements for atdepth testing and repository monitoring in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1983-01-01

    This paper outlines geotechnical instrumentation requirements for the possible establishment of a nuclear waste repository in tuff on the Nevada Test Site (NTS). The Nuclear Regulatory Commission (NRC) has specified a continuing program to confirm performance during the operational period of the repository, which could last 50 years. Minimum required geotechnical measurements for confirmation of performance include thermal and thermomechanical responses; changes in stress, strain, and displacements; and pore pressure and groundwater flow characteristics. Conditions expected in tuff are: maximum rock temperatures of less than 250 0 C, stresses less than 100 MPa, strains between + or -0.01 mm/mm, and pore pressures less than 35 KPa in the unsaturated zone where hydraulic head is not the primary contributor. The paper describes instrumentation needed to make the desired measurements. In general, the instrumentation and data system are required to be stable and reliable for tens of years. Designs must consider requirements for temperature stability, temperature expansion compensation, moisture resistance, and long-term durability in mining-type environments. Severe requirements such as these suggest consideration of techniques for in-situ replacement of instrumentation. State-of-the-art instrumentation is briefly described along with a discussion of needs for refinement, replacement/recalibration and instrumentation development

  6. Manipulation of Samples at Extreme Temperatures for Fast in-situ Synchrotron Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Richard [Materials Development, Inc., Arlington Heights, IL (United States)

    2016-04-22

    An aerodynamic sample levitation system with laser beam heating was integrated with the APS beamlines 6 ID-D, 11 ID-C and 20 BM-B. The new capability enables in-situ measurements of structure and XANES at extreme temperatures (300-3500 °C) and in conditions that completely avoid contact with container surfaces. In addition to maintaining a high degree of sample purity, the use of aerodynamic levitation enables deep supercooling and greatly enhanced glass formation from a wide variety of melts and liquids. Development and integration of controlled extreme sample environments and new measurement techniques is an important aspect of beamline operations and user support. Processing and solidifying liquids is a critical value-adding step in manufacturing semiconductors, optical materials, metals and in the operation of many energy conversion devices. Understanding structural evolution is of fundamental importance in condensed materials, geology, and biology. The new capability provides unique possibilities for materials research and helps to develop and maintain a competitive materials manufacturing and energy utilization industry. Test samples were used to demonstrate key features of the capability including experiments on hot crystalline materials, liquids at temperatures from about 500 to 3500 °C. The use of controlled atmospheres using redox gas mixtures enabled in-situ changes in the oxidation states of cations in melts. Significant innovations in this work were: (i) Use of redox gas mixtures to adjust the oxidation state of cations in-situ (ii) Operation with a fully enclosed system suitable for work with nuclear fuel materials (iii) Making high quality high energy in-situ x-ray diffraction measurements (iv) Making high quality in-situ XANES measurements (v) Publishing high impact results (vi) Developing independent funding for the research on nuclear materials This SBIR project work led to a commercial instrument product for the niche market of processing and

  7. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  8. Studies of Behavior Melting Temperature Characteristics for Multi Thermocouple In-Core Instrument Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghyup; Chae, Myoungeun; Kim, Sungjin; Lee, Kyulim [Woojin inc, Hwasung (Korea, Republic of)

    2015-05-15

    Bottom-up type in-core instruments (ICIs) are used for the pressurized water reactors of OPR-1000, APR- 1400 in order to measure neutron flux and temperature in the reactor. It is a well-known technique and a proven design using years in the nuclear field. ICI consists of one pair of K-type thermocouple, five self-powered neutron detectors (SPNDs) and one back ground detector. K-type thermocouple's purpose is to measure the core exit temperature (CET) in the reactor. The CET is a very important factor for operating nuclear power plants and it is 327 .deg. C when generally operating the reactor in the nuclear power plant(NPP) in case of OPR- 1000. If the CET will exceed 650 .deg. C, Operators in the main control room should be considered to be an accident situation in accordance with a severe accident management guidance(SAMG). The Multi Thermocouple ICI is a new designed ICI assuming severe accident conditions. It consists of four more thermocouples than the existing design, so it has five Ktype thermocouples besides the thermocouple measuring CET is located in the same elevation as the ICI. Each thermocouple is able to be located in the desired location as required. The Multi Thermocouple ICI helps to measure the temperature distribution of the entire reactor. In addition, it will measure certain point of melted core because of the in-vessel debris of nuclear fuel when an accident occurs more seriously. In this paper, to simulate a circumstance such as a nuclear reactor severe accident was examined. In this study, the K-type thermocouples of Multi Thermocouple ICI was confirmed experimentally to be able to measure up to 1370 .deg. C before the thermocouples have been melted. And after the thermocouples were melted by debris, it was able to be monitored that the signal of EMF directed the infinite value of voltage. Therefore through the results of the test, it can be assumed that if any EMF data among the Multi Thermocouple ICI will direct the infinite value

  9. Studies of Behavior Melting Temperature Characteristics for Multi Thermocouple In-Core Instrument Assembly

    International Nuclear Information System (INIS)

    Shin, Donghyup; Chae, Myoungeun; Kim, Sungjin; Lee, Kyulim

    2015-01-01

    Bottom-up type in-core instruments (ICIs) are used for the pressurized water reactors of OPR-1000, APR- 1400 in order to measure neutron flux and temperature in the reactor. It is a well-known technique and a proven design using years in the nuclear field. ICI consists of one pair of K-type thermocouple, five self-powered neutron detectors (SPNDs) and one back ground detector. K-type thermocouple's purpose is to measure the core exit temperature (CET) in the reactor. The CET is a very important factor for operating nuclear power plants and it is 327 .deg. C when generally operating the reactor in the nuclear power plant(NPP) in case of OPR- 1000. If the CET will exceed 650 .deg. C, Operators in the main control room should be considered to be an accident situation in accordance with a severe accident management guidance(SAMG). The Multi Thermocouple ICI is a new designed ICI assuming severe accident conditions. It consists of four more thermocouples than the existing design, so it has five Ktype thermocouples besides the thermocouple measuring CET is located in the same elevation as the ICI. Each thermocouple is able to be located in the desired location as required. The Multi Thermocouple ICI helps to measure the temperature distribution of the entire reactor. In addition, it will measure certain point of melted core because of the in-vessel debris of nuclear fuel when an accident occurs more seriously. In this paper, to simulate a circumstance such as a nuclear reactor severe accident was examined. In this study, the K-type thermocouples of Multi Thermocouple ICI was confirmed experimentally to be able to measure up to 1370 .deg. C before the thermocouples have been melted. And after the thermocouples were melted by debris, it was able to be monitored that the signal of EMF directed the infinite value of voltage. Therefore through the results of the test, it can be assumed that if any EMF data among the Multi Thermocouple ICI will direct the infinite value

  10. Pulpar temperature changes during mechanical reduction of equine cheek teeth: comparison of different motorised dental instruments, duration of treatments and use of water cooling.

    Science.gov (United States)

    O'Leary, J M; Barnett, T P; Parkin, T D H; Dixon, P M; Barakzai, S Z

    2013-05-01

    Although equine motorised dental instruments are widely used, there is limited information on their thermal effect on teeth. The recently described variation in subocclusal secondary dentine depth overlying individual pulp horns may affect heat transmission to the underlying pulps. This study compared the effect of 3 different equine motorised dental instruments on the pulpar temperature of equine cheek teeth with and without the use of water cooling. It also evaluated the effect of subocclusal secondary dentine thickness on pulpar temperature changes. A thermocouple probe was inserted into the pulp horns of 188 transversely sectioned maxillary cheek teeth with its tip lying subocclusally. Pulpar temperature changes were recorded during and following the continuous use of 3 different equine motorised dental instruments (A, B and C) for sequential time periods, with and without the use of water cooling. Using motorised dental instrument B compared with either A or C increased the likelihood that the critical temperature was reached in pulps by 8.6 times. Compared with rasping for 30 s, rasping for 45, 60 and 90 s increased the likelihood that the critical temperature would be reached in pulps by 7.3, 8.9 and 24.7 times, respectively. Thicker subocclusal secondary dentine (odds ratio [OR] = 0.75/mm) and water cooling (OR = 0.14) were both protective against the likelihood of the pulp reaching the critical temperature. Prolonged rasping with motorised dental instruments increased the likelihood that a pulp would be heated above the critical temperature. Increased dentinal thickness and water cooling had protective roles in reducing pulpar heating. Motorised dental instruments have the potential to seriously damage equine pulp if used inappropriately. Higher speed motorised dental instruments should be used for less time and teeth should be water cooled during or immediately after instrument use to reduce the risk of thermal pulpar damage. © 2012 EVJ Ltd.

  11. The Measurement of Sexual Harassment: Comparison of the Results of Three Different Instruments

    NARCIS (Netherlands)

    Junger, Marianne

    1990-01-01

    This study examines the results of three instruments developed to measure sexual harassment. Two instruments were used in the Dutch national victimization survey: an oral interview and a written questionnaire. Three issues will be discussed: (1) do both instruments produce the same victimization

  12. A ball diameter-measuring instrument in a gauge block interferometer

    NARCIS (Netherlands)

    Kotte, G.J.W.L.; Haitjema, H.; Decker, J.E.; Brown, N.

    1998-01-01

    An instrument for the measurement of ball diameters in the 0.5-20 mm range in a gauge block interferometer is realized. The measurement principle is that the ball is positioned between an optical flat and a calibrated gauge block. The total length is measured in a gauge block relative to the optical

  13. Temperature measurements in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Breton, D.

    1958-01-01

    The temperatures needed to produce thermonuclear reactions are of the order of several million degrees Kelvin. Devising methods for measuring such temperatures has been the subject of research in many countries. In order to present the problem clearly and to demonstrate its importance, the author reviews the various conditions which must be fulfilled in order that reactions may be qualified as thermonuclear. The relationship between the temperature and the cross-section of the reactions is studied, and it is shown that the notion of temperature in the plasmas is complex, which leads to a consideration of the temperature of the ions and that of the electrons. None of the methods for the temperature measurements is completely satisfactory because of the hypotheses which must be made, and which are seldom fulfilled during high-intensity discharges in the plasmas. In practice it is necessary to use several methods simultaneously. (author) [fr

  14. Developing a TPACK measurement instrument for 21st century pre-service teachers

    Directory of Open Access Journals (Sweden)

    Teemu Valtonen

    2015-11-01

    Full Text Available  Future skills, so-called 21st century skills, emphasise collaboration, creativity, critical thinking, problem-solving and especially ICT skills (Voogt & Roblin, 2012. Teachers have to be able to use various pedagogical approaches and ICT in order to support the development of their students’ 21st century skills (Voogt & Roblin, 2012. These skills, particularly ICT skills, pose challenges for teachers and teacher education. This paper focuses on developing an instrument for measuring pre-service teachers’ knowledge related to ICT in the context of 21st century skills.Technological Pedagogical Content Knowledge (TPACK; Mishra & Kohler, 2006 was used as a theoretical framework for designing the instrument. While the TPACK framework is actively used, the instruments used to measure it have proven challenging. This paper outlines the results of the development process of the TPACK-21 instrument. A new assessment instrument was compiled and tested on pre-service teachers in Study1 (N=94. Based on these results, the instrument was further developed and tested in Study2 (N=267. The data of both studies were analysed using multiple quantitative methods in order to evaluate the psychometric properties of the instruments. The results provide insight into the challenges of the development process itself and also suggest new solutions to overcome these difficulties.

  15. A multi-functional testing instrument for heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.; Yin, M. J.

    2014-01-01

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (μ-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and μ-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties

  16. Mesospheric Temperature Measurements over Scandinavia During the Gravity Wave Life Cycle Campaign (GW-LCYCLE)

    Science.gov (United States)

    Pautet, P. D.; Taylor, M.; Kaifler, B.

    2016-12-01

    The Gravity Wave Life Cycle (GW-LCYCLE) project took place in Northern Scandinavia during the winter 2015-16. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves, especially the orographic waves generated over the Scandinavian mountain range. A series of instruments was operated at several ground-based locations and on-board the DLR HALO Gulfstream V and Falcon aircrafts. As part of this project, Utah State University (USU) deployed 3 Advanced Mesospheric Temperature Mappers (AMTM) at the ALOMAR facility, Norway (operational since December 2010), at the IRF institute in Kiruna, Sweden, and at the FMI institute in Sodankylä, Finland. Each of these instruments measures the OH (3,1) rotational temperature over a large region (200x160km) at 87km altitude. During the campaign, their total coverage extended across the Scandinavian Mountain Range, from the wind side in the west to 500 km to the east in the lee of the mountains, allowing the investigation of the occurrence and evolution of gravity waves (GWs) over this part of Scandinavia. Furthermore, the AMTM in Sodankylä operated in the container housing a DLR Rayleigh lidar. Both instruments ran simultaneously and autonomously from November 2015 to April 2016, providing an unprecedented complementary high-quality data set. This presentation will introduce preliminary results obtained during this campaign, in particular the evolution of the mesospheric temperature through the winter, the analysis of mountain waves occurrence and dynamics at mesospheric altitude, as well as the investigation of interesting individual GW cases.

  17. Ambient temperature effects on broadband UV-B measurements using fluorescent phosphor (MgWO4)-based detectors

    Science.gov (United States)

    Dichter, Bronislaw K.; Beaubien, David J.; Beaubien, Arthur F.

    1994-01-01

    Results of field tests on a group of broadband UV-B pyranometers are presented. A brief description of the instrument is given. The effects of ambient temperature on thermally unregulated fluorescent phosphor (Robertson type) meters are presented and compared with the performance of thermally stabilized instruments. Means for correcting data from thermally unregulated instruments, where the prevailing ambient temperatures are known, are outlined.

  18. The Kelvin and Temperature Measurements

    Science.gov (United States)

    Mangum, B. W.; Furukawa, G. T.; Kreider, K. G.; Meyer, C. W.; Ripple, D. C.; Strouse, G. F.; Tew, W. L.; Moldover, M. R.; Johnson, B. Carol; Yoon, H. W.; Gibson, C. E.; Saunders, R. D.

    2001-01-01

    The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for “on-site” thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by

  19. Instruments to measure anxiety in children, adolescents, and young adults with cancer: a systematic review.

    Science.gov (United States)

    Lazor, Tanya; Tigelaar, Leonie; Pole, Jason D; De Souza, Claire; Tomlinson, Deborah; Sung, Lillian

    2017-09-01

    The primary objective was to describe anxiety measurement instruments used in children and adolescents with cancer or undergoing hematopoietic stem cell transplantation (HSCT) and summarize their content and psychometric properties. We conducted searches of MEDLINE, Embase, PsycINFO, HAPI, and CINAHL. We included studies that used at least one instrument to measure anxiety quantitatively in children or adolescents with cancer or undergoing HSCT. Two authors independently identified studies and abstracted study demographics and instrument characteristics. Twenty-seven instruments, 14 multi-item and 13 single-item, were used between 78 studies. The most commonly used instrument was the State-Trait Anxiety Inventory in 46 studies. Three multi-item instruments (Children's Manifest Anxiety Scale-Mandarin version, PROMIS Pediatric Anxiety Short Form, and the State-Trait Anxiety Inventory) and two single-item instruments (Faces Pain Scale-Revised and 10-cm Visual Analogue Scale, both adapted for anxiety) were found to be reliable and valid in children with cancer. We identified 14 different multi-item and 13 different single-item anxiety measurement instruments that have been used in pediatric cancer or HSCT. Only three multi-item and two single-item instruments were identified as being reliable and valid among pediatric cancer or HSCT patients and would therefore be appropriate to measure anxiety in this population.

  20. Electron Density Measurement on JUICE Mission by Mutual Impedance Technique: MIME Instrument as a Part of RPWI Consortium

    Science.gov (United States)

    Rauch, J. L.; Henri, P.; Wahlund, J. E.; Le Duff, O.; Sene, O.; Colin, F.; Lagoutte, D.; Gilet, N.; Ahlen, L.; Bergman, J.; Gill, R.; Puccio, W.

    2017-09-01

    Mutual Impedance MEasurements (MIME) instrument is a part of the Radio Wave Plasma Investigation (RPWI) consortium which has been selected by European Space Agency (ESA) on the nest planetary mission JJUpiter ICy moons Exploer (JUICE) for a launch in 2022. The goals are to explore Jupiter and its potentially habitable icy moons and to study its plasma environment. Impedance probes, which are well known in geophysical prospection, in particular for ground permittivity investigations, have been successfully transposed to space plasmas diagnostic. Transmitting and receiving electrodes are used for measuring on open circuit the dynamic impedance of the system at several fixed frequencies over a range that includes characteristic frequencies of the ambient plasma. The measurements are then interpreted using a suitable theory and the values of plasma parameters, such as the electron density and possibly the temperature of the plasma can be deduced. To show how powerful this technique is, results obtained in the Earth's plasmasphere by the mutual impedance probe onboard ROSETTA are presented as example. MIME instrument proposal is then described and its ability to make valuable measurements in the Jupiter space environment and in particular around Europe, Callisto and Ganymede is investigated..

  1. Core outcome measurement instruments for clinical trials in nonspecific low back pain

    Science.gov (United States)

    Chiarotto, Alessandro; Boers, Maarten; Deyo, Richard A.; Buchbinder, Rachelle; Corbin, Terry P.; Costa, Leonardo O.P.; Foster, Nadine E.; Grotle, Margreth; Koes, Bart W.; Kovacs, Francisco M.; Lin, C.-W. Christine; Maher, Chris G.; Pearson, Adam M.; Peul, Wilco C.; Schoene, Mark L.; Turk, Dennis C.; van Tulder, Maurits W.; Terwee, Caroline B.; Ostelo, Raymond W.

    2018-01-01

    Abstract To standardize outcome reporting in clinical trials of patients with nonspecific low back pain, an international multidisciplinary panel recommended physical functioning, pain intensity, and health-related quality of life (HRQoL) as core outcome domains. Given the lack of a consensus on measurement instruments for these 3 domains in patients with low back pain, this study aimed to generate such consensus. The measurement properties of 17 patient-reported outcome measures for physical functioning, 3 for pain intensity, and 5 for HRQoL were appraised in 3 systematic reviews following the COSMIN methodology. Researchers, clinicians, and patients (n = 207) were invited in a 2-round Delphi survey to generate consensus (≥67% agreement among participants) on which instruments to endorse. Response rates were 44% and 41%, respectively. In round 1, consensus was achieved on the Oswestry Disability Index version 2.1a for physical functioning (78% agreement) and the Numeric Rating Scale (NRS) for pain intensity (75% agreement). No consensus was achieved on any HRQoL instrument, although the Short Form 12 (SF12) approached the consensus threshold (64% agreement). In round 2, a consensus was reached on an NRS version with a 1-week recall period (96% agreement). Various participants requested 1 free-to-use instrument per domain. Considering all issues together, recommendations on core instruments were formulated: Oswestry Disability Index version 2.1a or 24-item Roland-Morris Disability Questionnaire for physical functioning, NRS for pain intensity, and SF12 or 10-item PROMIS Global Health form for HRQoL. Further studies need to fill the evidence gaps on the measurement properties of these and other instruments. PMID:29194127

  2. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    Science.gov (United States)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  3. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  4. Development of a Novel Multispectral Instrument for Handheld and UAS Measurements of Surface Albedo; First Applications for Glaciers in the Peruvian Andes and for Nevada's Black Rock Desert

    Science.gov (United States)

    Boehmler, J. M.; Stevens, C.; Arnott, W. P.; Watts, A.; All, J.; Schmitt, C. G.

    2017-12-01

    Accurate atmospheric aerosol characteristics derived from satellite measurements are needed over a variety of land surfaces. Nonhomogeneous and bright surface reflectance across California and Nevada may be a contributing factor in the discrepancies observed between ground based and satellite-retrieved atmospheric aerosol optical depth (AOD). We developed and deployed a compact and portable instrument to measure albedo to evaluate a major factor that influences the accuracy of AOD retrievals. The instrument will be operated on an unmanned aircraft system (UAS) to control areal averaging for comparison with satellite derived albedo from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS). A handheld version of the instrument was mounted on a trekking pole and used for obtaining in situ glacier albedo measurements in the Cordillera Blanca of Peru during the summer of 2017. The instrument weighs approximately 433 g and consists of two parts, a mountable, payload portion (300 g) which houses the sensors, and a handheld screen (133 g) to display real-time data from the payload portion. Both parts are powered by a 9V battery and run on a Teensy 3.6/3.2 microcontroller. To retrieve albedo, two micro-spectrometers manufactured by Hamamatsu Photonics, each with a spectral range of 340 -780 nm, are utilized; one for obtaining the downwelling solar radiation and the other for measuring the solar radiation reflected from the surface. Additional components on the instrument include temperature, pressure and humidity sensors with a one second time response; a GPS for position and altitude; an infrared sensor to measure ground temperature; a digital level and compass for orienting the instrument; a camera for taking photos of the sky and surface; a radio for two-way communication between the screen display and sensor payload; and a micro SD card for recording data. We will present the instrument design along with surface albedo measurements for glaciers of the Peruvian

  5. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    Energy Technology Data Exchange (ETDEWEB)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-08-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  6. Precision Tiltmeter as a Reference for Slope Measuring Instruments

    International Nuclear Information System (INIS)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-01-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 (micro)rad (rms)

  7. A measurement instrument for bone mineral content of adult and children

    International Nuclear Information System (INIS)

    Liu Shaofang

    1996-01-01

    The γ radiation source was used in bone mineral content measurement analysis of adult and children and a new instrument is developed successfully. It's precision is +2%. The advantage of this instrument is light, cheap and reliable. It can be used widely in medical science and clinic for diagnosis on certain diseases and research work

  8. Inflammatory bowel disease-specific health-related quality of life instruments: a systematic review of measurement properties.

    Science.gov (United States)

    Chen, Xin-Lin; Zhong, Liang-Huan; Wen, Yi; Liu, Tian-Wen; Li, Xiao-Ying; Hou, Zheng-Kun; Hu, Yue; Mo, Chuan-Wei; Liu, Feng-Bin

    2017-09-15

    This review aims to critically appraise and compare the measurement properties of inflammatory bowel disease (IBD)-specific health-related quality of life instruments. Medline, EMBASE and ISI Web of Knowledge were searched from their inception to May 2016. IBD-specific instruments for patients with Crohn's disease, ulcerative colitis or IBD were enrolled. The basic characteristics and domains of the instruments were collected. The methodological quality of measurement properties and measurement properties of the instruments were assessed. Fifteen IBD-specific instruments were included, which included twelve instruments for adult IBD patients and three for paediatric IBD patients. All of the instruments were developed in North American and European countries. The following common domains were identified: IBD-related symptoms, physical, emotional and social domain. The methodological quality was satisfactory for content validity; fair in internal consistency, reliability, structural validity, hypotheses testing and criterion validity; and poor in measurement error, cross-cultural validity and responsiveness. For adult IBD patients, the IBDQ-32 and its short version (SIBDQ) had good measurement properties and were the most widely used worldwide. For paediatric IBD patients, the IMPACT-III had good measurement properties and had more translated versions. Most methodological quality should be promoted, especially measurement error, cross-cultural validity and responsiveness. The IBDQ-32 was the most widely used instrument with good reliability and validity, followed by the SIBDQ and IMPACT-III. Further validation studies are necessary to support the use of other instruments.

  9. Quality appraisal of generic self-reported instruments measuring health-related productivity changes: a systematic review

    Science.gov (United States)

    2014-01-01

    Background Health impairments can result in disability and changed work productivity imposing considerable costs for the employee, employer and society as a whole. A large number of instruments exist to measure health-related productivity changes; however their methodological quality remains unclear. This systematic review critically appraised the measurement properties in generic self-reported instruments that measure health-related productivity changes to recommend appropriate instruments for use in occupational and economic health practice. Methods PubMed, PsycINFO, Econlit and Embase were systematically searched for studies whereof: (i) instruments measured health-related productivity changes; (ii) the aim was to evaluate instrument measurement properties; (iii) instruments were generic; (iv) ratings were self-reported; (v) full-texts were available. Next, methodological quality appraisal was based on COSMIN elements: (i) internal consistency; (ii) reliability; (iii) measurement error; (iv) content validity; (v) structural validity; (vi) hypotheses testing; (vii) cross-cultural validity; (viii) criterion validity; and (ix) responsiveness. Recommendations are based on evidence syntheses. Results This review included 25 articles assessing the reliability, validity and responsiveness of 15 different generic self-reported instruments measuring health-related productivity changes. Most studies evaluated criterion validity, none evaluated cross-cultural validity and information on measurement error is lacking. The Work Limitation Questionnaire (WLQ) was most frequently evaluated with moderate respectively strong positive evidence for content and structural validity and negative evidence for reliability, hypothesis testing and responsiveness. Less frequently evaluated, the Stanford Presenteeism Scale (SPS) showed strong positive evidence for internal consistency and structural validity, and moderate positive evidence for hypotheses testing and criterion validity. The

  10. Comparison of instrumental and interpolated meteorological data-based summer temperature reconstructions on Mt. Taibai in the Qinling Mountains, northwestern China

    Science.gov (United States)

    Qin, Jin; Bai, Hongying; Su, Kai; Liu, Rongjuan; Zhai, Danping; Wang, Jun; Li, Shuheng; Zhou, Qi; Li, Bin

    2018-01-01

    Previous dendroclimatical studies have been based on the relationship between tree growth and instrumental climate data recorded at lower land meteorological stations, but the climate conditions somehow differ between sampling sites and distant population centers. Thus, in this study, we performed a comparison between the 152-year reconstruction of June to July mean air temperature on the basis of interpolated meteorological data and instrumental meteorological data. The reconstruction explained 38.7% of the variance in the interpolated temperature data (37.2% after the degrees of freedom were adjusted) and 39.6% of the variance in the instrumental temperature data (38.4% after adjustment for loss of degrees of freedom) during the period 1962-2013 AD. The first global warming (the 1920s) and recent warming (1990-2013) found from the reconstructed temperature series match reasonably well with two other reported summer temperature reconstructions from north-central China. Cold periods occurred three times during 1866-1885, 1901-1921, and 1981-2000, while hot periods occurred four times during 1886-1900, 1922-1933, 1953-1966, and 2001-2007. The extreme warm (cold) years are coherent with the documentary drought (flood) events. Significant 31-22-year, 22-18-year, and 12-8-year cycles indicate major fluctuations in regional temperatures may reflect large-scale climatic shifts.

  11. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  12. The high temperature out-of-pile test of LVDT for internal pressure measurement of nuclear fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Son, J. M.; Kim, B. K.; Kim, D. S.; Yoon, K. B.; Sin, Y. T.; Park, S. J.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    As a part of the development of instrumentation technologies for the nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), the internal pressure measurement technique of the nuclear fuel rod is being developed using LVDT(Linear Variable Differential Transformer). As the results of out-of-pile test at room temperature, it was concluded that the well qualified out-of-pile tests were needed to understand the LVDT's detail characteristics at high temperature for the detail design of the fuel irradiation capsule, because LVDT is very sensitive to variation of temperature. Therefore, the high temperature out-of-pile test system for pressure measurement was developed, and this test was performed under the temperature condition between room temperature and 300 .deg. C increasing the pressure from 0 bar to 30 bar. The LVDT's high temperature characteristics and temperature sensitivity of LVDT were analyzed through this experiment. Based on the result of this test, the method for the application of LVDT at high temperature was introduced. It is known that the results will be used to predict accurately the internal pressure of fuel rod during irradiation test.

  13. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    Science.gov (United States)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  14. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    Science.gov (United States)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  15. Microprocessor-controlled data-acquisition instrument for neutron-activation measurements

    International Nuclear Information System (INIS)

    Jones, B.A.

    1981-01-01

    This paper describes a microprocessor controlled data acquisition instrument designed at Lawrence Livermore National Laboratory to provide experimenters with a diagnostic tool for measuring the performance of laser imploded fusion targets via neutron activation techniques. This instrument features the ability to count four independent inputs simultaneously while providing a front panel readout of these inputs, plus a time of day clock. A hardcopy printout of the data is also provided by a built-in thermal printer. All running modes and parameters are user selectable via a front panel keypad, and a complete set of internal self-testing diagnostics are available for debug

  16. Surface temperature measurement with radioactive kryptonates

    International Nuclear Information System (INIS)

    Pruzinec, J.; Piatrik, M.

    1976-01-01

    The preparation and use of radioactive kryptonates is described for measuring surface temperatures within the region of 45 to 70 degC. Two samples each were prepared of kryptonated beechwood and hydroquinone on a paper carrier. One sample served as the standard which during the experiment was placed in a thermostat at a constant temperature of 45 degC. The second sample was placed in another thermostat where the temperature changed from 45 to 70 degC. Both samples were in the thermostat for 30 mins. The temperature was raised in steps of 2.5 degC and the time of measurement was constant in both samples. The dependences are given of the drop in activity on temperature for both types of samples. The difference was determined of the drop in activity between the standard and the second sample and the relation for measuring the temperature of the sample was determined therefrom. (J.B.)

  17. Thermo Scientific Ozone Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note that because of internal pneumatic switching limitations the instrument only makes an independent measurement every 4 seconds. Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample temperatures, flows, chamber pressure, lamp intensities and a multiplicity of housekeeping information. There is also a field for operator comments made at any time while data is being collected.

  18. Complex Susceptibility Measurement Using Multi-frequency Slingram EMI Instrument

    OpenAIRE

    Simon , François Xavier; Tabbagh , Alain; Thiesson , Julien; Donati , J.C.; Sarris , A.

    2014-01-01

    International audience; Complex magnetic susceptibility is a well-known property both theoretically and experimentally. To achieve this measurement, different ways have been tested, like TDEM or multi-frequential measurement on soil sample. In this study we carry out the measurements by the use of a multi-frequential EMI Slingram instrument to collect data quickly and in-situ. The use of multi-frequency data is also a way to correct effects of the conductivity on the in-phase component and ef...

  19. A New Instrument for the Measurement of the Waveform in X-Ray Units

    International Nuclear Information System (INIS)

    Ramirez-Jimenez, Francisco J.; Martinez-Hernandez, Marco A.

    2004-01-01

    The experience gained in the quality control in X-ray units used in Radiology has demonstrated that the measurement of the waveform of the X-ray beam, measured as the response of a radiation detector is very helpful to decide if the unit fulfills the quality control requirements and also has been useful to define some kind of faults in the unit. Several instruments are available on the market to make this measurement but they need in general a storage or digital oscilloscope to see the waveform. In this work a stand alone new instrument is proposed in which the waveform is seen in a Liquid Crystal Display (LCD). The instrument is based in the X-ray response of a photo diode. The analog response depending on time is converted to digital numbers that are stored sequentially in a memory. The stored information is recovered with a microcontroller and reconstructed in the screen of the LCD. The instrument is able to measure in the mammographic range from 22 kV to 35 kV and in the conventional range from 40 kV to 120 kV in the different settings of current encountered on practical applications, the time range for the measurement of the X-ray shot is from 100 ms to 3 s. The instrument can be useful in quality control practices and in the verification and maintenance of X-ray units

  20. 77 FR 42483 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2012-07-19

    ..., 9700 South Cass Ave., Lemont, IL 60439. Instrument: Low-Temperature Scanning Tunneling Microscope.... Requirements for this instrument include: simultaneous measurements of tunneling current and force signals at... manipulation capabilities, single atom/molecule tunneling spectroscopy, ultrahigh vacuum compatibility, bath...

  1. Development and evaluation of a workpiece temperature analyzer for industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    An instrument capable of measuring the bulk temperature of a workpiece while it is being heated could have a variety of applications. If such an instrument were reasonably priced, it would have a tremendous impact upon national energy usage. The Department of Energy has realized the importance of this type of instrument and has sponsored three concurrent programs to evaluate three different technologies for this type of instrument. In one of these programs, Surface Combustion is the prime contractor to develop a pulsed laser, polarizing interferometer based sensor to be used as a workpiece temperature analyzer (WPTA). The overall goal of the program is to develop a workpiece temperature analyzer for industrial furnaces to significantly improve product quality, productivity and energy efficiency. The workpiece temperature analyzer concept in this program uses a pulsed laser polarizing interferometer (PLPI) for measuring sound velocity through a workpiece. This type of instrument has a high resolution and could detect surface motion of as small as 10 picometer. The sound velocity measurement can be converted to an average workpiece temperature through a mathematical equation programmed into the microprocessor used for control. 76 refs., 12 figs., 14 tabs.

  2. The Development of a Tactical-Level Full Range Leadership Measurement Instrument

    Science.gov (United States)

    2010-03-01

    full range leadership theory has become established as the predominant and most widely researched theory on leadership . The most commonly used survey...instrument to assess full range leadership theory is the Multifactor Leadership Questionnaire, originally developed by Bass in 1985. Although much...existing literature to develop a new full range leadership theory measurement instrument that effectively targets low- to mid-level supervisors, or

  3. Vibration condition measure instrument of motor using MEMS accelerometer

    Science.gov (United States)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  4. Apparatus Would Measure Temperatures Of Ball Bearings

    Science.gov (United States)

    Gibson, John C.; Fredricks, Thomas H.

    1995-01-01

    Rig for testing ball bearings under radial and axial loads and measuring surface temperatures undergoing development. Includes extensible thermocouples: by means of bellows as longitudinal positioners, thermocouples driven into contact with bearing balls to sense temperatures immediately after test run. Not necessary to disassemble rig or to section balls to obtain indirect indications of maximum temperatures reached. Thermocouple measurements indicate temperatures better than temperature-sensitive paints.

  5. Cryogenic instrumentation needs in the controlled thermonuclear research program

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    The magnet development effort for the controlled thermonuclear research program will require extensive testing of superconducting coils at various sizes from small-scale models to full-size prototypes. Extensive use of diagnostic instrumentation will be required and to make detailed comparisons of predicted and actual performance in magnet tests and to monitor the test facility for incipient failure modes. At later stages of the program, cryogenic instrumentation will be required to monitor magnet system performance in fusion power reactors. Measured quantities may include temperature, strain, deflection, coil resistance, helium coolant pressure and flow, current, voltages, etc. The test environment, which includes high magnetic fields (up to 8-10 T) and low temperature, makes many commercial measuring devices inoperative or at least inaccurate. In order to ensure reliable measurements, careful screening of commercial devices for performance in the test environment will be required. A survey of potentially applicable instrumentation is presented along with available information on operation in the test environment based on experimental data or on analysis of the physical characteristics of the device. Areas where further development work is needed are delineated

  6. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems.

    Science.gov (United States)

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-02-29

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach.

  7. Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar

    Science.gov (United States)

    Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.

    2015-06-01

    The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.

  8. Looking Forward - A Next Generation of Thermal Infrared Planetary Instruments

    Science.gov (United States)

    Christensen, P. R.; Hamilton, V. E.; Edwards, C. S.; Spencer, J. R.

    2017-12-01

    Thermal infrared measurements have provided important information about the physical properties of planetary surfaces beginning with the initial Mariner spacecraft in the early 1960's. These infrared measurements will continue into the future with a series of instruments that are now on their way or in development that will explore a suite of asteroids, Europa, and Mars. These instruments are being developed at Arizona State University, and are next-generation versions of the TES, Mini-TES, and THEMIS infrared spectrometers and imagers. The OTES instrument on OSIRIS-REx, which was launched in Sept. 2016, will map the surface of the asteroid Bennu down to a resolution of 40 m/pixel at seven times of day. This multiple time of day coverage will be used to produce global thermal inertia maps that will be used to determine the particle size distribution, which will in turn help select a safe and appropriate sample site. The EMIRS instrument, which is being built in partnership with the UAE's MBRSC for the Emirates Mars Mission, will measure martian surface temperatures at 200-300 km/pixel scales at over the full diurnal cycle - the first time the full diurnal temperature cycle has been observed since the Viking mission. The E-THEMIS instrument on the Europa Clipper mission will provide global mapping at 5-10 km/pixel scale at multiple times of day, and local observations down to resolutions of 50 m/pixel. These measurements will have a precision of 0.2 K for a 90 K scene, and will be used to map the thermal inertia and block abundances across Europa and to identify areas of localized endogenic heat. These observations will be used to investigate the physical processes of surface formation and evolution and to help select the landing site of a future Europa lander. Finally, the LTES instrument on the Lucy mission will measure temperatures on the day and night sides of the target Trojan asteroids, again providing insights into their surface properties and evolution

  9. Validating an instrument for measuring brand equity of CSR driven organizations in Malaysia

    Directory of Open Access Journals (Sweden)

    Singh Dara Singh Karpal

    2017-06-01

    Full Text Available The objective of this study is to develop and propose a valid and reliable instrument to measure brand equity of CSR driven organizations in Malaysia. An instrument to measure brand equity was constructed with adaptations from two key sources, namely Yew Leh and Lee (2011 and Yoo and Donthu (2001. As such the study only focuses on the development and validation of an instrument to measure brand equity of CSR driven organizations. The usable sample population included 909 respondents from 12 states of West Malaysia which were selected using a quota sampling plan. Confirmatory factor analysis (CFA and reliability analysis were carried out to test and validate the proposed brand equity instrument containing four components (brand awareness, brand association, perceived quality and brand loyalty with a total of 13 items. Results from the CFA and reliability analysis indicated that all the items representing the four components were valid and can be used to measure the brand equity of organizations that are practicing CSR. The study tried to set an empirical basis for brand equity and CSR related research which could be used by future researchers in different industries and geographical locations. The study also implies the need for organizations to assess the success of their CSR efforts through the use of the proposed instrument in order to gauge whether all their CSR efforts translate to improved brand equity.

  10. A digital instrument for reactivity measurements in a nuclear reactor

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    1979-01-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given. (author)

  11. Michelson interferometer for measuring temperature

    Science.gov (United States)

    Xie, Dong; Xu, Chunling; Wang, An Min

    2017-09-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displaying Kerr nonlinearity. We obtain the analytical equations and numerically calculate the precision with parameters within the reach of current technology, proving that the precision of temperature can be greatly enhanced by using a nonlinear medium. Our results show that one can create an accurate thermometer by measuring the photons in the Michelson interferometer, with no need to directly measure the population of thermalized sample.

  12. Measurement of shared decision making - a review of instruments

    NARCIS (Netherlands)

    Scholl, I.; Koelewijn-van Loon, M.; Sepucha, K.; Elwyn, G.; Legare, F.; Harter, M.; Dirmaier, J.

    2011-01-01

    The last years have seen a clear move towards shared decision making (SDM) and increased patient involvement in many countries. However, as the field of SDM research is still relatively young, new instruments for the measurement of (shared) decision making (process, outcome and surrounding elements)

  13. A review of instruments developed to measure food neophobia

    DEFF Research Database (Denmark)

    Damsbo-Svendsen, Marie; Frøst, Michael Bom; Olsen, Annemarie

    2017-01-01

    Food choices are influenced by an individual's attitude towards foods. Food neophobia may be associated with less variety of diets, inadequate nutrient intake and high product failure rate for new food products entering the market. To quantify the extent of these challenges, instruments to measur...

  14. Torsional resistance of XP-endo Shaper at body temperature compared with several nickel-titanium rotary instruments.

    Science.gov (United States)

    Elnaghy, A M; Elsaka, S E

    2018-05-01

    To compare the torsional resistance of XP-endo Shaper (XPS; size 30, .01 taper, FKG Dentaire, La Chaux-de-Fonds, Switzerland) instruments at body temperature with TRUShape (TRS; size 30, .06 taper, Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), ProFile Vortex (PV; size 30, .04 taper, Dentsply Tulsa Dental Specialties) and FlexMaster (FM; size 30, .04 taper, VDW GmbH, Munich, Germany) nickel-titanium rotary instruments. A metal block with a square-shaped mould (5 mm × 5 mm × 5 mm) was positioned inside a glass container. Five millimetres of the tip of each instrument was held inside the metal block by filling the mould with a resin composite. The instruments were tested for torsional resistance in saline solution at 37 °C. Data were analysed using one-way analysis of variance (anova) and Tukey post hoc tests. The significance level was set at P instruments tested (P instruments (P = 0.211). The ranking for torsional resistance values was: FM > PV > TRS > XPS. FlexMaster and ProFile Vortex instruments were more resistant to torsional stress compared with TRUShape and XP-endo Shaper instruments. The manufacturing process used to produce XP-endo Shaper instruments did not enhance their resistance to torsional stress as compared with the other instruments. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Measuring stakeholder participation in evaluation: an empirical validation of the Participatory Evaluation Measurement Instrument (PEMI).

    Science.gov (United States)

    Daigneault, Pierre-Marc; Jacob, Steve; Tremblay, Joël

    2012-08-01

    Stakeholder participation is an important trend in the field of program evaluation. Although a few measurement instruments have been proposed, they either have not been empirically validated or do not cover the full content of the concept. This study consists of a first empirical validation of a measurement instrument that fully covers the content of participation, namely the Participatory Evaluation Measurement Instrument (PEMI). It specifically examines (1) the intercoder reliability of scores derived by two research assistants on published evaluation cases; (2) the convergence between the scores of coders and those of key respondents (i.e., authors); and (3) the convergence between the authors' scores on the PEMI and the Evaluation Involvement Scale (EIS). A purposive sample of 40 cases drawn from the evaluation literature was used to assess reliability. One author per case in this sample was then invited to participate in a survey; 25 fully usable questionnaires were received. Stakeholder participation was measured on nominal and ordinal scales. Cohen's κ, the intraclass correlation coefficient, and Spearman's ρ were used to assess reliability and convergence. Reliability results ranged from fair to excellent. Convergence between coders' and authors' scores ranged from poor to good. Scores derived from the PEMI and the EIS were moderately associated. Evidence from this study is strong in the case of intercoder reliability and ranges from weak to strong in the case of convergent validation. Globally, this suggests that the PEMI can produce scores that are both reliable and valid.

  16. Instrumented measurements on radioactive waste disposal containers during experimental drop testing - 59142

    International Nuclear Information System (INIS)

    Quercetti, Thomas; Musolff, Andre; Mueller, Karsten

    2012-01-01

    In context with disposal container safety assessment of containers for radioactive waste the German Federal Institute for Materials Research and Testing (BAM) performed numerous drop tests in the last years. The tests were accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The instrumentation of a specimen is an important tool to evaluate its mechanical behavior during impact. Test results as deceleration-time and strain-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of calculations based on finite-element methods. Strain gauges are useful to determine the time dependent magnitude of any deformation and the associated stresses. Accelerometers are widely used for the measuring of motion i.e. speed or the displacement of the rigid cask body, vibration and shock events. In addition high-speed video technique can be used to visualize and analyze the kinematical impact scenario by motion analysis. The paper describes some selected aspects on instrumented measurements and motion analysis in context with low level radioactive waste (LLW) container drop testing. (authors)

  17. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

    1978-01-15

    The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

  18. Design and manufacturing of 05F-01K instrumented capsule for nuclear fuel irradiation in Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J. M.; Shin, Y. T.; Park, S. J. (and others)

    2007-07-15

    An instrumented capsule was developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel pellet elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in Hanaro. The instrumented capsule(02F-11K) for measuring and monitoring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. It was successfully irradiated in the test hole OR5 of Hanaro from March 14, 2003 to June 1, 2003 (53.84 full power days at 24 MW). In the year of 2004, 3 test fuel rods and the instrumented capsule(03F-05K) were designed and manufactured to measure fuel centerline temperature, internal pressure of fuel rod, and fuel axial deformation during irradiation test. This capsule was irradiated in the test hole OR5 of Hanaro reactor from April 26, 2004 to October 1, 2004 (59.5 EFPD at 24 {approx} 30 MW). The six typed dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been designed and manufactured to enhance the efficiency of the irradiation test using the instrumented fuel capsule. The 05F-01K instrumented fuel capsule was designed and manufactured for a design verification test of the three dual instrumented fuel rods. The irradiation test of the 05F-01K instrumented fuel capsule will be carried out at the OR5 vertical experimental hole of Hanaro.

  19. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  20. Survey on Johnson noise thermometry for temperature instrumentation

    International Nuclear Information System (INIS)

    Hwang, I. K.; Kim, Y. K.; Kim, J. S.; Moon, B. S.

    2002-01-01

    Johnson Noise Thermometry is an drift-free temperature measurement method which is able to maintain the best accuracy without calibration for a long period. Resistance Temperature Detectors (RTDs) and Thermocouples used widely in power plants have the drift problem which causes a measurement error. Despite the advantage of Johnson Noise thermometry, it has not been used because it is very sensitive to electromagnetic noise and environment. It also requires more complicated signal processing methods. This paper presents the characteristics of Johnson Noise thermometry and various implementation method proposed over the past decades time period. The key factor in development of a noise thermometer is how to extract the tiny noise signal from the sensor and discriminate out the unnecessary noise interference from the environments. The new digital technology of fast signal processing skill will useful to challenge the existing problems fir commercialization of noise thermometry

  1. Radiometric temperature measurements fundamentals

    CERN Document Server

    Zhang, Zhuomin M; Machin, Graham

    2009-01-01

    This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

  2. Temperature Measurement and Damage Detection in Concrete Beams Exposed to Fire Using PPP-BOTDA Based Fiber Optic Sensors.

    Science.gov (United States)

    Bao, Yi; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, distributed fiber optic sensors based on pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA) are characterized and deployed to measure spatially-distributed temperatures in reinforced concrete specimens exposed to fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9 %. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  3. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review.

    Science.gov (United States)

    Lima, Elaine; Teixeira-Salmela, Luci F; Simões, Luan; Guerra, Ana C C; Lemos, Andrea

    2016-03-15

    While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed.

  4. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review

    Directory of Open Access Journals (Sweden)

    Elaine Lima

    2016-01-01

    Full Text Available Background While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. Objective To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Method Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. Results A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. Conclusion The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed.

  5. Comparison of Global Distributions of Zonal-Mean Gravity Wave Variance Inferred from Different Satellite Instruments

    Science.gov (United States)

    Preusse, Peter; Eckermann, Stephen D.; Offermann, Dirk; Jackman, Charles H. (Technical Monitor)

    2000-01-01

    Gravity wave temperature fluctuations acquired by the CRISTA instrument are compared to previous estimates of zonal-mean gravity wave temperature variance inferred from the LIMS, MLS and GPS/MET satellite instruments during northern winter. Careful attention is paid to the range of vertical wavelengths resolved by each instrument. Good agreement between CRISTA data and previously published results from LIMS, MLS and GPS/MET are found. Key latitudinal features in these variances are consistent with previous findings from ground-based measurements and some simple models. We conclude that all four satellite instruments provide reliable global data on zonal-mean gravity wave temperature fluctuations throughout the middle atmosphere.

  6. Isothermal temperature reactivity coefficient measurement in TRIGA reactor

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Trkov, A.

    2002-01-01

    Direct measurement of an isothermal temperature reactivity coefficient at room temperatures in TRIGA Mark II research reactor at Jozef Stefan Institute in Ljubljana is presented. Temperature reactivity coefficient was measured in the temperature range between 15 o C and 25 o C. All reactivity measurements were performed at almost zero reactor power to reduce or completely eliminate nuclear heating. Slow and steady temperature decrease was controlled using the reactor tank cooling system. In this way the temperatures of fuel, of moderator and of coolant were kept in equilibrium throughout the measurements. It was found out that TRIGA reactor core loaded with standard fuel elements with stainless steel cladding has small positive isothermal temperature reactivity coefficient in this temperature range.(author)

  7. Protocol of the COSMIN study: COnsensus-based Standards for the selection of health Measurement INstruments

    Directory of Open Access Journals (Sweden)

    Patrick DL

    2006-01-01

    Full Text Available Abstract Background Choosing an adequate measurement instrument depends on the proposed use of the instrument, the concept to be measured, the measurement properties (e.g. internal consistency, reproducibility, content and construct validity, responsiveness, and interpretability, the requirements, the burden for subjects, and costs of the available instruments. As far as measurement properties are concerned, there are no sufficiently specific standards for the evaluation of measurement properties of instruments to measure health status, and also no explicit criteria for what constitutes good measurement properties. In this paper we describe the protocol for the COSMIN study, the objective of which is to develop a checklist that contains COnsensus-based Standards for the selection of health Measurement INstruments, including explicit criteria for satisfying these standards. We will focus on evaluative health related patient-reported outcomes (HR-PROs, i.e. patient-reported health measurement instruments used in a longitudinal design as an outcome measure, excluding health care related PROs, such as satisfaction with care or adherence. The COSMIN standards will be made available in the form of an easily applicable checklist. Method An international Delphi study will be performed to reach consensus on which and how measurement properties should be assessed, and on criteria for good measurement properties. Two sources of input will be used for the Delphi study: (1 a systematic review of properties, standards and criteria of measurement properties found in systematic reviews of measurement instruments, and (2 an additional literature search of methodological articles presenting a comprehensive checklist of standards and criteria. The Delphi study will consist of four (written Delphi rounds, with approximately 30 expert panel members with different backgrounds in clinical medicine, biostatistics, psychology, and epidemiology. The final checklist will

  8. Temperature measurement in the flowing medium

    Directory of Open Access Journals (Sweden)

    Sedlák Kamil

    2018-01-01

    Full Text Available The article deals with a brief description of methods of temperature measurements in a flowing water steam. Attention is paid to the measurement of pseudo static temperature by a single sealed thermocouple entering the flowing liquid through the flown-by wall. Then three types of probes for stagnation temperature measurement are shown, whose properties were tested using CFD calculations. The aim was to design a probe of stagnation parameters of described properties which can be used for measuring flow parameters in a real steam turbine. An important factor influencing the construction is not only the safe manipulation of the probe when inserting and removing it from the machine in operation, but also the possibility to traverse the probe along the blade length.

  9. Calibration of areal surface topography measuring instruments

    Science.gov (United States)

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  10. Effect of water vapour absorption on hydroxyl temperatures measured from Svalbard

    Directory of Open Access Journals (Sweden)

    J. M. Chadney

    2017-03-01

    Full Text Available We model absorption by atmospheric water vapour of hydroxyl airglow emission using the HIgh-resolution TRANsmission molecular absorption database (HITRAN2012. Transmission coefficients are provided as a function of water vapour column density for the strongest OH Meinel emission lines in the (8–3, (5–1, (9–4, (8–4, and (6–2 vibrational bands. These coefficients are used to determine precise OH(8–3 rotational temperatures from spectra measured by the High Throughput Imaging Echelle Spectrograph (HiTIES, installed at the Kjell Henriksen Observatory (KHO, Svalbard. The method described in this paper also allows us to estimate atmospheric water vapour content using the HiTIES instrument.

  11. Calorimetric method for current sharing temperature measurements in ITER conductor samples in SULTAN

    International Nuclear Information System (INIS)

    Bagnasco, M.

    2009-01-01

    Several Toroidal Field Conductor short samples with slight layout variations have been assembled and tested in the SULTAN facility at CRPP. The measurement campaigns started in 2007 and are still ongoing. The performance of every conductor is expressed in terms of current sharing temperature (T cs ), i.e. the temperature at which a defined electric field, 10 μV/m, is detected in the cable due to the incipient superconducting-to-normal state transition. The T cs at specific operating conditions is the key design parameter for the ITER conductors and is the main object of the qualification tests. Typically, the average electric field is measured with voltage tap pairs attached on the jacket along the conductor. The inability however to explain observed premature voltage developments opened the discussion about possible alternative measuring methods. The He flow calorimetric method is based on the measurement of the resistive power generation in the conductor. It relies on the detection of very small temperature increases along the conductor in steady state operation. The accuracy and the reliability of the calorimetric method in SULTAN are critically discussed, with particular emphasis on the instrumentation requirements and test procedures. The application of the calorimetric method to the recent SULTAN test campaigns is described with its merits and limits. For future tests of ITER conductors in SULTAN, the calorimetric method for T cs test is proposed as a routine procedure.

  12. Absolute measurement of LDR brachytherapy source emitted power: Instrument design and initial measurements.

    Science.gov (United States)

    Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A

    2016-02-01

    Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.

  13. Compilation of three-dimensional coordinates and specific data of the instrumentation of the prestressed concrete pressure vessel/high temperature helium test rig

    International Nuclear Information System (INIS)

    Klausinger, D.

    1977-04-01

    The positions of the thermoelements, strain gauges of various types, and of Gloetzl instruments installed by SGAE in the model vessel of the Common Project Prestressed Concrete Pressure Vessel/High Temperature Helium Test Rig are defined in cylindrical coordinates. The specific data of the instruments are given like configuration of multiple instruments; type, group and number of the instrument; number of cable and of channel; calibration factors; resistances of instruments and cables. (author)

  14. Portable Instrument to Measure CDOM Light Absorption in Aquatic Systems: WPI Success Story

    Science.gov (United States)

    2001-01-01

    World Precision Instruments, Inc. (WPI), of Sarasota, FL, in collaboration with NASA's John C. Stennis Space Center, has developed an innovative instrument to accurately measure Colored Dissolved Organic Matter (CDOM) absorption in the field. This successful collaboration has culminated in an exciting new device, called the UltraPath, now commercially available through WPI. Traditional methods of measuring absorption of dissolved materials require special handling and storage prior to measurement. Use of laboratory spectrophotometers as the measuring devices have proven time consuming, cumbersome, and delicate to handle. The UltraPath provides a low-cost, highly sensitive, rugged, portable system that is capable of high sensitivity measurements in widely divergent waters.

  15. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)

    2016-10-15

    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  16. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    Science.gov (United States)

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  17. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature

    Science.gov (United States)

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang

    2016-01-01

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120

  18. Wideband filter radiometers for blackbody temperature measurements

    Science.gov (United States)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  19. The Development, Validity, and Reliability of a Psychometric Instrument Measuring Competencies in Student Affairs

    Science.gov (United States)

    Sriram, Rishi

    2014-01-01

    The study of competencies in student affairs began more than 4 decades ago, but no instrument currently exists to measure competencies broadly. This study builds upon previous research by developing an instrument to measure student affairs competencies. Results not only validate the competencies espoused by NASPA and ACPA, but also suggest adding…

  20. Recent evolution of HTGR instrumentation in the USA

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1982-06-01

    The reactor instrumentation system for the 2240 MW(t) HTGR includes ex-core neutron detectors for automatic nuclear power control, separate ex-core neutron detectors for automatic protection purposes (reactor trip), reactor core outlet thermocouples that measure the temperature of the primary coolant (helium) as it exits the nuclear core, cold helium thermocouples that measure the temperature of the primary coolant as it enters the core, external pressure differential gages that measure primary coolant flow, in-core fission chambers that are utilized to map neutron flux, and ex-core primary coolant moisture monitors. All of these subsystems, except for the in-core flux mapping units, are also part of the Fort St. Vrain HTGR, which has provided significant experience for the design of the new system. In-core flux mapping is not necessary at FSV for normal operation because its relatively small core is fairly ''visible'' from the location of the ex-core instruments. However, temporary in-core fission couples, microphones, and displacement sensors, as well as sensitive ex-core accelerometers were utilized to identify periodic core block lateral movement and measure neutron flux and primary coolant temperatures. A search for in-core sensors to facilitate mapping neutron flux distributions in the larger core of the 2240 MW(t) HTGR has led to the selection of a high temperature fission chamber, which has been tested up to 1000 deg. C at General Atomic. The chamber shows adequate signal to noise ratio and repeatability. Other reactor instruments planned for the 2240 MW(t) are of the FSV type (i.e. thermocouples) or improved versions of the FSV design (i.e. moisture monitors). New concepts such as acoustic thermometers are also being considered

  1. Reliability of Instruments Measuring At-Risk and Problem Gambling Among Young Individuals

    DEFF Research Database (Denmark)

    Edgren, Robert; Castrén, Sari; Mäkelä, Marjukka

    2016-01-01

    This review aims to clarify which instruments measuring at-risk and problem gambling (ARPG) among youth are reliable and valid in light of reported estimates of internal consistency, classification accuracy, and psychometric properties. A systematic search was conducted in PubMed, Medline, and Psyc......Info covering the years 2009–2015. In total, 50 original research articles fulfilled the inclusion criteria: target age under 29 years, using an instrument designed for youth, and reporting a reliability estimate. Articles were evaluated with the revised Quality Assessment of Diagnostic Accuracy Studies tool....... Reliability estimates were reported for five ARPG instruments. Most studies (66%) evaluated the South Oaks Gambling Screen Revised for Adolescents. The Gambling Addictive Behavior Scale for Adolescents was the only novel instrument. In general, the evaluation of instrument reliability was superficial. Despite...

  2. Engagement in Games: Developing an Instrument to Measure Consumer Videogame Engagement and Its Validation

    Directory of Open Access Journals (Sweden)

    Amir Zaib Abbasi

    2017-01-01

    Full Text Available The aim of the study is to develop a new instrument to measure engagement in videogame play termed as consumer videogame engagement. The study followed the scale development procedure to develop an instrument to measure the construct of consumer videogame engagement. In this study, we collected the data in two different phases comprising study 1 (n=136 and study 2 (n=270. We employed SPSS 22.0 for exploratory factor analysis using study 1 respondents to explore the factors for consumer videogame engagement and reliability analysis. Results of EFA resulted with six-factor solution. We further used SmartPLS 3.0 software on study 2 respondents to further confirm the six-factor solution as reflective measurement model on the first-order level, and three second-order formative constructs on the second-order or higher-order level as formative measurement model. Results of the reflective measurement model and formative measurement model evidenced that consumer videogame engagement has strong psychometric properties and is a valid instrument to measure engagement in videogame play. Results also confirmed that consumer videogame engagement is a multidimensional construct as well as a reflective-formative construct. The study is unique in its investigation as it develops an instrument to measure engagement in videogame play which comprises the cognitive, affective, and behavioral dimensions.

  3. Systematic Review of Measurement Property Evidence for 8 Financial Management Instruments in Populations With Acquired Cognitive Impairment.

    Science.gov (United States)

    Engel, Lisa; Chui, Adora; Beaton, Dorcas E; Green, Robin E; Dawson, Deirdre R

    2018-03-07

    To critically appraise the measurement property evidence (ie, psychometric) for 8 observation-based financial management assessment instruments. Seven databases were searched in May 2015. Two reviewers used an independent decision-agreement process to select studies of measurement property evidence relevant to populations with adulthood acquired cognitive impairment, appraise the quality of the evidence, and extract data. Twenty-one articles were selected. This review used the COnsensus-based Standards for the selection of health Measurement Instruments review guidelines and 4-point tool to appraise evidence. After appraising the methodologic quality, the adequacy of results and volume of evidence per instrument were synthesized. Measurement property evidence with high risk of bias was excluded from the synthesis. The volume of measurement property evidence per instrument is low; most instruments had 1 to 3 included studies. Many included studies had poor methodologic quality per measurement property evidence area examined. Six of the 8 instruments reviewed had supporting construct validity/hypothesis-testing evidence of fair methodologic quality. There is a dearth of acceptable quality content validity, reliability, and responsiveness evidence for all 8 instruments. Rehabilitation practitioners assess financial management functions in adults with acquired cognitive impairments. However, there is limited published evidence to support using any of the reviewed instruments. Practitioners should exercise caution when interpreting the results of these instruments. This review highlights the importance of appraising the quality of measurement property evidence before examining the adequacy of the results and synthesizing the evidence. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Assessment of body temperature measurement options.

    Science.gov (United States)

    Sund-Levander, Märtha; Grodzinsky, Ewa

    Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature.

  5. Validation of an instrument to measure students' motivation and self-regulation towards technology learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-05-01

    Background:Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose:The present study is to validate an instrument for assessing senior high school students' motivation and self-regulation towards technology learning. Sample:A total of 1822 Taiwanese senior high school students (1020 males and 802 females) responded to the newly developed instrument. Design and method:The Motivation and Self-regulation towards Technology Learning (MSRTL) instrument was developed based on the previous instruments measuring students' motivation and self-regulation towards science learning. Exploratory and confirmatory factor analyses were utilized to investigate the structure of the items. Cronbach's alpha was applied for measuring the internal consistency of each scale. Furthermore, multivariate analysis of variance was used to examine gender differences. Results:Seven scales, including 'Technology learning self-efficacy,' 'Technology learning value,' 'Technology active learning strategies,' 'Technology learning environment stimulation,' 'Technology learning goal-orientation,' 'Technology learning self-regulation-triggering,' and 'Technology learning self-regulation-implementing' were confirmed for the MSRTL instrument. Moreover, the results also showed that male and female students did not present the same degree of preference in all of the scales. Conclusions:The MSRTL instrument composed of seven scales corresponding to 39 items was shown to be valid based on validity and reliability analyses. While male students tended to express more positive and active performance in the motivation scales, no gender differences were found in the self-regulation scales.

  6. Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer.

    Science.gov (United States)

    Peest, Christian; Schinke, Carsten; Brendel, Rolf; Schmidt, Jan; Bothe, Karsten

    2017-01-01

    Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Cary 5000 in accordance with the Guide to the expression of uncertainty in measurements. We focus on the instrumentation-related uncertainty contributions rather than the specific application and thus outline a general procedure which can be adapted for other instruments. Moreover, we discover a systematic signal deviation due to the inertia of the measurement amplifier and develop and apply a correction procedure. Thereby we increase the usable dynamic range of the instrument by more than one order of magnitude. We present methods for the quantification of the uncertainty contributions and combine them into an uncertainty budget for the device.

  7. 7 CFR 28.301 - Measurement: humidity; temperature.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  8. Measurement equivalence of the food related lifestyle instrument (FRL) in Ireland and Great Britain

    DEFF Research Database (Denmark)

    O´Sullivan, C.; Scholderer, Joachim; Cowan, Cathal

    2005-01-01

    The food-related lifestyle instrument (FRL) is tested for cross-cultural validity. Representative consumer samples from the UK 1998 ( N = 1000) and Ireland 2001 (N = 1024) are compared using multi-sample confirmatory factor analysis with structured means. The results suggest that, in all five FRL...... domains, the measurement characteristics of the survey instrument were completely invariant across the two cultures. No indication was found of any bias. Regarding future applications of the FRL, it can be concluded that the instrument has identical measurement characteristics when applied to consumer...

  9. Instrument for the measuring magnetic field characteristics of induction acceleration

    International Nuclear Information System (INIS)

    Novikov, V.M.; Romasheva, P.I.

    1976-01-01

    An instrument for the measuring instantaneous values of variable and pulsed magnetic fields with an amplitide of 0.005-2.0 and duration of 5x10 -6 -2x10 -2 sec is described. Time resolution is not less than 0.5 musec, measuring accuracy is about 1%. Induction coils are used as sensors. A digital voltmeter serves as a secondary recorder

  10. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  11. Instrumentation for electromagnetic field generation in biological measurements

    International Nuclear Information System (INIS)

    Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.

    2005-01-01

    Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)

  12. Bulk temperature measurement in thermally striped pipe flows

    International Nuclear Information System (INIS)

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique

  13. Developing and validating an instrument for measuring mobile computing self-efficacy.

    Science.gov (United States)

    Wang, Yi-Shun; Wang, Hsiu-Yuan

    2008-08-01

    IT-related self-efficacy has been found to have a critical influence on system use. However, traditional measures of computer self-efficacy and Internet-related self-efficacy are perceived to be inapplicable in the context of mobile computing and commerce because they are targeted primarily at either desktop computer or wire-based technology contexts. Based on previous research, this study develops and validates a multidimensional instrument for measuring mobile computing self-efficacy (MCSE). This empirically validated instrument will be useful to researchers in developing and testing the theories of mobile user behavior, and to practitioners in assessing the mobile computing self-efficacy of users and promoting the use of mobile commerce systems.

  14. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Fixsen, D. J.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Meyer, S. S.; Noerdlinger, P. D.

    1994-01-01

    The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).

  15. Design and operation of dust measuring instrumentation based on the beta-radiation method

    International Nuclear Information System (INIS)

    Lilienfeld, P.

    1975-01-01

    The theory, instrument design aspects and applications of beta-radiation attenuation for the measurement of the mass concentration of airborne particulates are reviewed. Applicable methods of particle collection, beta sensing configurations, source ( 63 Ni, 14 C, 147 Pr, 85 Kr) and detector design criteria, electronic signal processing, digital control and instrument programming techniques are treated. Advantages, limitations and error sources of beta-attenuation instrumentation are analyzed. Applications to industrial dust measurements, source testing, ambient monitoring, and particle size analysis are the major areas of practical utilization of this technique, and its inherent capability for automated and unattended operation provides compatibility with process control synchronization and alarm, telemetry, and incorporation into pollution monitoring network sensing stations. (orig.) [de

  16. Black carbon emissions in gasoline vehicle exhaust: a measurement and instrument comparison.

    Science.gov (United States)

    Kamboures, Michael A; Hu, Shishan; Yu, Yong; Sandoval, Julia; Rieger, Paul; Huang, Shiou-Mei; Zhang, Sherry; Dzhema, Inna; Huo, Darey; Ayala, Alberto; Chang, M C Oliver

    2013-08-01

    A pilot study was conducted to evaluate the performance and agreement of several commercially available black carbon (BC) measurement instruments, when applied to the quantification of BC in light-duty vehicle (LDV) exhaust. Samples from six vehicles, three fuels, and three driving cycles were used. The pilot study included determinations of the method detection limit (MDL) and repeatability. With respect to the MDL, the real-time instruments outperformed the time-integrated instruments, with MDL = 0.12 mg/mi for the AE51 Aethalometer, and 0.15 mg/mi for the Micro Soot Sensor (MSS), versus 0.38 mg/mi for the IMPROVE_A thermal/ optical method, and 0.35 mg/mi for the OT21_T Optical Transmissometer. The real-time instruments had repeatability values ranging from 30% to 35%, which are somewhat better than those of the time-integrated instruments (40-41%). These results suggest that, despite being less resource intensive, real-time methods can be equivalent or superior to time-integrated methods in terms of sensitivity and repeatability. BC mass data, from the photoacoustic and light attenuation instruments, were compared against same-test EC data, determined using the IMPROVE_A method. The MSS BC data was well correlated with EC, with R2 = 0.85 for the composite results and R2 = 0.86 for the phase-by-phase (PBP) results. The correlation of BC, by the AE51, AE22, and OT21_T with EC was moderate to weak. The weaker correlation was driven by the inclusion of US06 test data in the linear regression analysis. We hypothesize that test-cycle-dependent BC:EC ratios are due to the different physicochemical properties of particulate matter (PM) in US06 and Federal Test Procedure (FTP) tests. Correlation amongst the real-time MSS, PASS-1, AE51, and AE22 instruments was excellent (R2 = 0.83-0.95), below 1 mg/mi levels. In the process of investigating these BC instruments, we learned that BC emissions at sub-1 mg/mi levels can be measured and are achievable by current

  17. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  18. Neutron Measurement Instrumentation Development at KIT for the European ITER TBM

    Energy Technology Data Exchange (ETDEWEB)

    Klix, A.; Fischer, U.; Raj, P.; Reimann, Th.; Szalkai, D.; Tian, K. [Association KIT-EURATOM, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany); Angelone, M. [Associazione ENEA-EURATOM sulla Fusione, ENEA C.R., I-00044 Frascati (Italy); Gehre, D. [Technical University of Dresden, D-01069 Dresden (Germany); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    Fusion power reactors will rely on the internal production of the fuel tritium from lithium in the tritium breeding blanket. Test Blanket Modules (TBM) will be installed in ITER with the aim to investigate the nuclear performance of different breeding blanket designs. Currently there is no fully qualified nuclear instrumentation available for the measurement of neutron fluxes and tritium production rates which would be able to withstand the harsh environment conditions in the TBM such as high temperature (>400 deg. C) and, depending on the operation scenario, intense radiation levels. As partner of the European Consortium on Nuclear Data and Measurement Techniques in the framework of several F4E specific grants and contracts, KIT and ENEA have jointly studied the possibility to develop and test detectors suitable to operate in ITER-TBMs. Here we present an overview of ongoing work on three types of neutron flux monitors under development for the TBMs with focus on the KIT activities. A neutron activation system (NAS) with pneumatic sample transport could provide absolute neutron flux measurements in selected positions. A test system for investigating activation materials with short half-lives was constructed at the DT neutron generator laboratory of Technical University of Dresden to investigate the neutronics aspects. Several irradiations have been performed with focus on the simultaneous measurement of the extracted activated probes. An engineering assessment of a TBM NAS in the conceptual design phase has been done which considered issues of design requirements and integration. Last but not least, a mechanical test bench is under construction at KIT which will address issues of driving the activation probes, solutions for loading the system etc. experimentally. Self-powered neutron detectors (SPND) are widely applied in fission reactor monitoring, and the commercially available SPNDs are sensitive to thermal neutrons. We are investigating novel materials for

  19. Device for the alternative option of temperature measurement

    Science.gov (United States)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Cubik, Jakub; Cvejn, Daniel; Vasinek, Vladimir

    2017-10-01

    Polydimethylsiloxane (PDMS) has good optical properties, and its composition offers the possibility of use in many applications (industry, security device, medicine applications and etc.). We focused on the alternative option of temperature measurement in this article. Our approach is based on measuring changes of chromaticity correlated temperature corresponding to changes in temperature. Described device uses an optical fiber with a defined layer of PDMS and luminophore and we assume that it can find use also in the field of security. The article describes the process of making the prototype of the device and its verification based on laboratory results. The measured temperature depends mainly on the type of optical fiber and the measured temperature range is determined by the thermal resistance of used optical fiber. Using a calibration measurement can determine the value of temperature with an accuracy of +/- 2,5 %.

  20. Temperature sensitivity study of eddy current and digital gauge probes for nuclear fuel rod oxide measurement

    Science.gov (United States)

    Beck, Faith R.; Lind, R. Paul; Smith, James A.

    2018-04-01

    Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.

  1. Operational and reliability experience with reactor instrumentation

    International Nuclear Information System (INIS)

    Dixon, F.; Gow, R.S.

    1978-01-01

    In the last 15 years the CEGB has experienced progressive plant development, integration and changes in operating regime through nine nuclear (gas-cooled reactor) power stations with corresponding instrumentation advances leading towards more refined centralized control. Operation and reliability experience with reactor instrumentation is reported in this paper with reference to the progressive changes related to the early magnox, late magnox and AGR periods. Data on instrumentation reliability in terms of reactor forced outages are presented and show that the instrumentation contributions to loss of generating plant availability are small. Reactor safety circuits, neutron flux and temperature measurements, gas analysis and vibration monitoring are discussed. In reviewing the reactor instrumentation the emphasis is on reporting recent experience, particularly on AGR equipment, but overall performance and changes to magnox equipment are included so that some appreciation can be obtained of instrumentation requirements with respect to plant lifetimes. (author)

  2. Measurements of impurity migration in graphite at high temperatures using a proton microprobe

    International Nuclear Information System (INIS)

    Shroy, R.E.; Soo, P.; Sastre, C.A.; Schweiter, D.G.; Kraner, H.W.; Jones, K.W.

    1978-01-01

    The migration of fission products and other impurities through the graphite core of a High Temperature Gas Cooled Reactor is of prime importance in studies of reactor safety. Work in this area is being carried out in which graphite specimens are heated to temperatures up to 3800 0 C to induce migration of trace elements whose local concentrations are then measured with a proton microprobe. This instrument is a powerful device for such work because of its ability to determine concentrations at a part per million (ppm) level in a circular area as small as 10 μm while operating in an air environment. Studies show that Si, Ca, Cl, and Fe impurities in graphite migrate from hotter to cooler regions. Also Si, S, Cl, Ca, Fe, Mn, and Cr are observed to escape from the graphite and be deposited on cooler surfaces

  3. EPRI instruments reach commercial market

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Electric Power Research Institute has developed instruments capable of verifying time responses of power plant pressure sensors and temperature sensors. A patent is pending on the pressure-sensor device, and the temperature-sensor device is already commercially available. The devices, EPRI's first hardware products to be marketed, are the result of research to find technological solutions to the problems of knowing the time period when temperature and pressure changes occur in light water reactors. The hydraulic pressure-sensor device is a portable unit that can conveniently test equipment in place. Utilities can obtain detailed information from EPRI's project report to construct their own. The loop current step response (LCSR), measuring resistance temperature, is also a compact system suitable for in-plant testing

  4. Proposal for a Universal Test Mirror for Characterization of Slope Measuring Instruments

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Warwick, Tony; Noll, Tino; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf D.

    2007-01-01

    The development of third generation light sources like the Advanced Light Source (ALS) or BESSY II brought to a focus the need for high performance synchrotron optics with unprecedented tolerances for slope error and micro roughness. Proposed beam lines at Free Electron Lasers (FEL) require optical elements up to a length of one meter, characterized by a residual slope error in the range of 0.1mu rad (rms),and rms values of 0.1 nm for micro roughness. These optical elements must be inspected by highly accurate measuring instruments, providing a measurement uncertainty lower than the specified accuracy of the surface under test. It is essential that metrology devices in use at synchrotron laboratories be precisely characterized and calibrated to achieve this target. In this paper we discuss a proposal for a Universal Test Mirror (UTM) as a realization of a high performance calibration instrument. The instrument would provide an ideal calibration surface to replicate a redundant surface under test of redundant figure. The application of a sophisticated calibration instrument will allow the elimination of the majority of the systematic error from the error budget of an individual measurement of a particular optical element. We present the limitations of existing methods, initial UTM design considerations, possible calibration algorithms, and an estimation of the expected accuracy

  5. Automation by microcomputer of a geodetic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1985-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 μm and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  6. Automation by microprocessor of an geodesic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1984-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 micrometers and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  7. Measurement of the temperature distribution inside the power cable using distributed temperature system

    Science.gov (United States)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  8. Fluid temperature measurement technique by using Raman scattering

    International Nuclear Information System (INIS)

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  9. Temperature measurement with industrial color camera devices

    Science.gov (United States)

    Schmidradler, Dieter J.; Berndorfer, Thomas; van Dyck, Walter; Pretschuh, Juergen

    1999-05-01

    This paper discusses color camera based temperature measurement. Usually, visual imaging and infrared image sensing are treated as two separate disciplines. We will show, that a well selected color camera device might be a cheaper, more robust and more sophisticated solution for optical temperature measurement in several cases. Herein, only implementation fragments and important restrictions for the sensing element will be discussed. Our aim is to draw the readers attention to the use of visual image sensors for measuring thermal radiation and temperature and to give reasons for the need of improved technologies for infrared camera devices. With AVL-List, our partner of industry, we successfully used the proposed sensor to perform temperature measurement for flames inside the combustion chamber of diesel engines which finally led to the presented insights.

  10. Noise thermometry - a new temperature measuring method

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Rittinghaus, K.F.

    1975-01-01

    The thermal Johnson-Niquist noise is the basis of noise thermometry. This temperature measuring method is, e.g., of interest insofar as the noise thermometer gives absolute values as a primary thermometer and is in principle extensively independent of environmental influences and material properties. The resistance values of the measuring probe are about 10 Ohm to a few kOhm. The demands of electronics are high, the self-noise of the measuring apparatus must be as small as possible; a comparative measuring method is advantageous. 1 to 2,500 K are given as a possible temperature range. An accuracy of 0.1% could be achieved in laboratory measurements. Temperature measurements to be used in operation in a few nuclear reactors are mentioned. (HP/LH) [de

  11. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  12. Effective dose measurement at workplaces within an instrumented anthropomorphic phantom

    International Nuclear Information System (INIS)

    Villagrasa, C.; Darreon, J.; Martin-Burtat, N.; Clairand, I.; Colin, J.; Fontbonne, J. M.

    2011-01-01

    The Laboratory of Ionizing Radiation Dosimetry of the IRSN (France) is developing an instrumented anthropomorphic phantom in order to measure the effective dose for photon fields at workplaces. This anthropomorphic phantom will be equipped with small active detectors located inside at chosen positions. The aim of this paper is to present the development of these new detectors showing the results of the characterisation of the prototype under metrological conditions. New evaluations of the effective dose for standard and non-homogenous irradiation configurations taking into account the real constraints of the project have been done validating the feasibility and utility of the instrument. (authors)

  13. A Practitioner's Instrument for Measuring Secondary Mathematics Teachers' Beliefs Surrounding Learner-Centered Classroom Practice.

    Science.gov (United States)

    Lischka, Alyson E; Garner, Mary

    In this paper we present the development and validation of a Mathematics Teaching Pedagogical and Discourse Beliefs Instrument (MTPDBI), a 20 item partial-credit survey designed and analyzed using Rasch measurement theory. Items on the MTPDBI address beliefs about the nature of mathematics, teaching and learning mathematics, and classroom discourse practices. A Rasch partial credit model (Masters, 1982) was estimated from the pilot study data. Results show that item separation reliability is .96 and person separation reliability is .71. Other analyses indicate the instrument is a viable measure of secondary teachers' beliefs about reform-oriented mathematics teaching and learning. This instrument is proposed as a useful measure of teacher beliefs for those working with pre-service and in-service teacher development.

  14. Improving the spectral measurement accuracy based on temperature distribution and spectra-temperature relationship

    Science.gov (United States)

    Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin

    2018-05-01

    Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.

  15. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  16. Designing an accurate system for temperature measurements

    Directory of Open Access Journals (Sweden)

    Kochan Orest

    2017-01-01

    Full Text Available The method of compensation of changes in temperature field along the legs of inhomogeneous thermocouple, which measures a temperature of an object, is considered in this paper. This compensation is achieved by stabilization of the temperature field along the thermocouple. Such stabilization does not allow the error due to acquired thermoelectric inhomogeneity to manifest itself. There is also proposed the design of the furnace to stabilize temperature field along the legs of the thermocouple which measures the temperature of an object. This furnace is not integrated with the thermocouple mentioned above, therefore it is possible to replace this thermocouple with a new one when it get its legs considerably inhomogeneous.. There is designed the two loop measuring system with the ability of error correction which can use simultaneously a usual thermocouple as well as a thermocouple with controlled profile of temperature field. The latter can be used as a reference sensor for the former.

  17. Design verification test of instrumented capsule (02F-11K) for nuclear fuel irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, J. M.; Oh, J. M. [and others

    2004-01-01

    An instrumented capsule is being developed to be able to measure fuel characteristics, such as fuel temperature, internal pressure of fuel rod, fuel elongation, and neutron flux, etc., during the irradiation test of nuclear fuel in HANARO. The instrumented capsule for measuring and monitoring fuel centerline temperature and neutron flux was designed and manufactured. The instrumented capsule includes three test fuel rods installed thermocouple to measure fuel centerline temperature and three SPNDs (Self-Powered Neutron Detector) to monitor the neutron flux. Its stability was verified by out-of-pile performance test, and its safety evaluation was also shown that the safety requirements were satisfied. And then, to verify the design of the instrumented capsule in the test hole, it was successfully irradiated in the test hole of HANARO from March 14, 2003 to June 1, 2003 (53.8 full power days at 24 MWth). During irradiation, the centerline temperature of PWR UO{sub 2} fuel pellets fabricated by KEPCO Nuclear Fuel Company and the neutron flux were continuously measured and monitored. The test fuel rods were irradiated at less than 350 W/cm to 5.13 GWD/MTU with fuel centerline peak temperature below 1,375 .deg. C. The structural stability of the capsule was satisfied by the naked eye in service pool of HANARO. The capsule and test fuel rods were dismantled and test fuel rods were examined at the hot cell of IMEF (Irradiated Material Examination Facility)

  18. EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering

    Science.gov (United States)

    Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael

    2008-08-01

    Measurement and instrumentation have long played an important role in Production Engineering, through supporting both the traditional field of manufacturing and the new field of micro/nano-technology. Papers published in this special feature were selected and updated from those presented at The 8th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2007) held at Tohoku University, Sendai, Japan, on 24-27 September 2007. ISMTII 2007 was organized by ICMI (The International Committee on Measurements and Instrumentation), Japan Society for Precision Engineering (JSPE, Technical Committee of Intelligent Measurement with Nanoscale), Korean Society for Precision Engineering (KSPE), Chinese Society for Measurement (CSM) and Tohoku University. The conference was also supported by Center for Precision Metrology of UNC Charlotte and Singapore Institute of Manufacturing Technology. A total of 220 papers, including four keynote papers, were presented at ISMTII 2007, covering a wide range of topics, including micro/nano-metrology, precision measurement, online & in-process measurement, surface metrology, optical metrology & image processing, biomeasurement, sensor technology, intelligent measurement & instrumentation, uncertainty, traceability & calibration, and signal processing algorithms. The guest editors recommended publication of updated versions of some of the best ISMTII 2007 papers in this special feature of Measurement Science and Technology. The first two papers were presented in ISMTII 2007 as keynote papers. Takamasu et al from The University of Tokyo report uncertainty estimation for coordinate metrology, in which methods of estimating uncertainties using the coordinate measuring system after calibration are formulated. Haitjema, from Mitutoyo Research Center Europe, treats the most often used interferometric measurement techniques (displacement interferometry and surface interferometry) and their major sources of errors. Among

  19. Judgement on the data for fuel assembly outlet temperatures of WWER fuel assemblies in power reactors based on measurements with experimental fuel assemblies

    International Nuclear Information System (INIS)

    Krause, F.

    1986-01-01

    In the period from 1980 to 1985, in the Rheinsberg nuclear power plant experimental fuel assemblies were used on lattices at the periphery of the core. These particular fuel assemblies dispose of an extensive in-core instrumentation with different sensors. Besides this, they are fit out with a device to systematically thottle the coolant flow. The large power gradient present at the core position of the experimental fuel assembly causes a temperature profile along the fuel assemblies which is well provable at the measuring points of the outlet temperature. Along the direction of flow this temperature profile in the coolant degrades only slowly. This effect is to be taken into account when measuring the fuel assembly outlet temperature of WWER fuel assemblies. Besides this, the results of the measurements hinted both at a γ-heating of the temperature measuring points and at tolerances in the calculation of the micro power density distribution. (author)

  20. Outdoor surface temperature measurement: ground truth or lie?

    Science.gov (United States)

    Skauli, Torbjorn

    2004-08-01

    Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.

  1. Measuring the temperature dependent thermal diffusivity of geomaterials using high-speed differential scanning calorimetry

    Science.gov (United States)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Vasseur, Jeremie; Lavallée, Yan

    2016-04-01

    Heat diffusion in the Earth's crust is critical to fundamental geological processes, such as the cooling of magma, heat dissipation during and following transient heating events (e.g. during frictional heating along faults), and to the timescales of contact metamorphosis. The complex composition and multiphase nature of geomaterials prohibits the accurate modeling of thermal diffusivities and measurements over a range of temperatures are sparse due to the specialized nature of the equipment and lack of instrument availability. We present a novel method to measure the thermal diffusivity of geomaterials such as minerals and rocks with high precision and accuracy using a commercially available differential scanning calorimeter (DSC). A DSC 404 F1 Pegasus® equipped with a Netzsch high-speed furnace was used to apply a step-heating program to corundum single crystal standards of varying thicknesses. The standards were cylindrical discs of 0.25-1 mm thickness with 5.2-6 mm diameter. Heating between each 50 °C temperature interval was conducted at a rate of 100 °C/min over the temperature range 150-1050 °C. Such large heating rates induces temperature disequilibrium in the samples used. However, isothermal segments of 2 minutes were used during which the temperature variably equilibrated with the furnace between the heating segments and thus the directly-measured heat-flow relaxed to a constant value before the next heating step was applied. A finite-difference 2D conductive heat transfer model was used in cylindrical geometry for which the measured furnace temperature was directly applied as the boundary condition on the sample-cylinder surfaces. The model temperature was averaged over the sample volume per unit time and converted to heat-flow using the well constrained thermal properties for corundum single crystals. By adjusting the thermal diffusivity in the model solution and comparing the resultant heat-flow with the measured values, we obtain a model

  2. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

    Science.gov (United States)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.

    2017-10-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  3. Proceedings of the symposium on advanced measurement techniques and instrumentation: abstract book

    International Nuclear Information System (INIS)

    Kale, Y.B.; Kushwaha, M.; Somkuwar, S.P.; Ajayakumar, S.; Sampathkumar, R.

    2011-01-01

    In order to consolidate the existing knowledge base and further to focus on the future directions of the field of advanced measurement techniques and instrumentation, Bhabha Atomic Research Centre has organized a three-day symposium on 'Advanced Measurement Techniques and Instrumentation' at Multi Purpose Hall, Training School Hostel, Anushaktinagar, Mumbai during February 02-04, 2011. The symposium is aimed at providing a forum to discuss the emerging trends and challenges ahead in the important area of measurement science and technology. This is a unique symposium, which brings together scientists and engineers from all disciplines and provides them a platform for close interaction to exchange ideas, methodologies and expertise, which is extremely important for synergic growth of this field. The symposium consists of 27 talks, which include keynote address, plenary and invited talks, and 63 contributory papers. The abstracts of these papers are brought to you in this volume. Readers may observe that the scientific programme of the symposium covers a wide ranging issues including advanced scientific concepts in measurements, instrumentation strategies, mathematical techniques and development of devices for applications in fundamental physics, astrophysics, fusion plasmas, nuclear reactors, accelerators, environment, chemical and biological sciences, and national security. Papers relevant to INIS are indexed separately

  4. Instruments assessing attitudes toward or capability regarding self-management of osteoarthritis: a systematic review of measurement properties.

    Science.gov (United States)

    Eyles, J P; Hunter, D J; Meneses, S R F; Collins, N J; Dobson, F; Lucas, B R; Mills, K

    2017-08-01

    To make a recommendation on the "best" instrument to assess attitudes toward and/or capabilities regarding self-management of osteoarthritis (OA) based on available measurement property evidence. Electronic searches were performed in MEDLINE, EMBASE, CINAHL and PsychINFO (inception to 27 December 2016). Two reviewers independently rated measurement properties using the Consensus-based Standards for the selection of Health Measurement Instruments (COSMIN) 4-point scale. Best evidence synthesis was determined by considering COSMIN ratings for measurement property results and the level of evidence available for each measurement property of each instrument. Eight studies out of 5653 publications met the inclusion criteria, with eight instruments identified for evaluation: Multidimensional Health Locus of Control (MHLC), Perceived Behavioural Control (PBC), Patient Activation Measure (PAM), Educational Needs Assessment (ENAT), Stages of Change Questionnaire in Osteoarthritis (SCQOA), Effective Consumer Scale (EC-17) and Perceived Efficacy in Patient-Physician Interactions five item (PEPPI-5) and ten item scales. Measurement properties assessed for these instruments included internal consistency (k = 8), structural validity (k = 8), test-retest reliability (k = 2), measurement error (k = 1), hypothesis testing (k = 3) and cross-cultural validity (k = 3). No information was available for content validity, responsiveness or minimal important change (MIC)/minimal important difference (MID). The Dutch PEPPI-5 demonstrated the best measurement property evidence; strong evidence for internal consistency and structural validity but limited evidence for reliability and construct validity. Although PEPPI-5 was identified as having the best measurement properties, overall there is a poor level of evidence currently available concerning measurement properties of instruments to assess attitudes toward and/or capabilities regarding osteoarthritis self-management. Further

  5. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D; Dittrich, P-G; Duentsch, E [Senior Network Manager NEMO SpectroNet, Technologie- und Innovationspark Jena GmbH, Wildenbruchstrasse 15, D-07745 Jena (Germany)

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  6. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    International Nuclear Information System (INIS)

    Hofmann, D; Dittrich, P-G; Duentsch, E

    2010-01-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  7. Psychometric testing of an instrument to measure the experience of home.

    Science.gov (United States)

    Molony, Sheila L; McDonald, Deborah Dillon; Palmisano-Mills, Christine

    2007-10-01

    Research related to quality of life in long-term care has been hampered by a paucity of measurement tools sensitive to environmental interventions. The primary aim of this study was to test the psychometric properties of a new instrument, the Experience of Home (EOH) Scale, designed to measure the strength of the experience of meaningful person-environment transaction. The instrument was administered to 200 older adults in diverse dwelling types. Principal components analysis provided support for construct validity, eliciting a three-factor solution accounting for 63.18% of variance in scores. Internal consistency reliability was supported with Cronbach's alpha of .96 for the entire scale. The EOH Scale is a unique research tool to evaluate interventions to improve quality of living in residential environments.

  8. Acoustic emission measurement during instrumented impact tests

    International Nuclear Information System (INIS)

    Crostack, H.A.; Engelhardt, A.H.

    1983-01-01

    Results of instrumented impact tests are discussed. On the one hand the development of the loading process at the hammer tup was recorded by means of a piezoelectric transducer. This instrumentation supplied a better representation of the load versus time than the conventional strain gauges. On the other hand the different types of acoustic emission occurring during a test could be separated. The acoustic emission released at the impact of the hammer onto the specimen is of lower frequency and its spectrum is strongly decreasing with increasing frequency. Plastic deformation also emits signals of lower frequency that are of quasi-continuous character. Both signal types can be discriminated by filtering. As a consequence typical burst signal were received afterwards that can be correlated with crack propagation. Their spectra exhibit considerable portions up to about 1.9 MHz. The development in time of the burst signals points to the kind of crack propagation resp. its sequence of appearance. However, definitive comparison between load and acoustic emission should become possible, only when the disadvantages of the common load measurement can be reduced, e.g. by determining the load directly at the specimen instead of the hammer tup

  9. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines

    Science.gov (United States)

    Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.

    2017-01-01

    The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the

  10. Belgium and France join forces in measuring instrument research. SCK-CEN and CEA are jointly developing an innovative type of gamma detector

    International Nuclear Information System (INIS)

    Vermeeren, L.

    2011-01-01

    Real-time monitoring is extremely important to accurately interpret irradiation experiments in research reactors. SCK-CEN has years of expertise in developing sensors to monitor neutron flux, temperature, gamma radiation, etc. It has been collaborating with the CEA since 2006. Both partners share research and research results in the Laboratoire Commun de Instrumentation. Recently, a joint patent application was made for a new type of sensor to measure gamma rays.

  11. How is the instrumental color of meat measured?

    Science.gov (United States)

    Tapp, W N; Yancey, J W S; Apple, J K

    2011-09-01

    Peer-reviewed journal articles (n=1068) were used to gather instrumental color measurement information in meat science research. The majority of articles, published in 10 peer-reviewed journals, originated from European countries (44.8%) and North America (38.5%). The predominant species was pork (44.2%), and most researchers used Minolta (60.0%) over Hunter (31.6%) colorimeters. Much of the research was done using illuminant D65 (32.3%); nevertheless, almost half (48.9%) of the articles did not report the illuminant. Moreover, a majority of the articles did not report aperture size (73.6%) or the number of readings per sample (52.4%). Many factors influence meat color, and a considerable proportion of the peer-reviewed, published research articles failed to include information necessary to replicate and/or interpret instrumental color results; therefore, a standardized set of minimum reportable parameters for meat color evaluation should be identified. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Card controlled beta backscatter thickness measuring instrument

    International Nuclear Information System (INIS)

    Schlesinger, J.

    1978-01-01

    An improved beta backscatter instrument for the nondestructive measurement of the thickness of thin coatings on a substrate is described. Included therein is the utilization of a bank of memory stored data representative of isotope, substrate, coating material and thickness range characteristics in association with a control card having predetermined indicia thereon selectively representative of a particular isotope, substrate material, coating material and thickness range for conditioning electronic circuit means by memory stored data selected in accord with the predetermined indicia on a control card for converting backscattered beta particle counts into indicia of coating thickness

  13. The sensitivity to humidity of radon monitoring instruments

    International Nuclear Information System (INIS)

    Schmied, H.

    1984-01-01

    In a project funded by the Swedish Building Research Council (BFR) a continuous radon monitoring instrument (RGA-400 EDA Instr. Inc.) with electrostatic field collection has been calibrated. The original calibration factor gave no reliable radon readings and was therefore corrected for relative humidity by EDA. From four calibrations in the radon chamber at the Swedish Radiation Protection Board (SSI) it was clear that the instrument was sensitive to absolute humidity, which gave better agreement than relative humidity or temperature. Sensitivity to humidity for this principle of measure ment has been presented in various papers without presenting any combined influence with temperature, which can lead to the wrong conclusions, especially when the temperature levels differ. Some laboratories use humidity absorbants to overcome this humidity dependence. In this paper the calibration results for the FGA-400 radon readings only, are presented. (Author)

  14. AmeriFlux Measurement Component (AMC) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, Ken [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Biraud, Sebastien C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-01

    An AMC system was installed at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility North Slope of Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling photosynthetically active radiation (PAR) sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape.

  15. Temperature measurement in the adult emergency department: oral, tympanic membrane and temporal artery temperatures versus rectal temperature.

    Science.gov (United States)

    Bijur, Polly E; Shah, Purvi D; Esses, David

    2016-12-01

    The objective was to compare agreement between three non-invasive measures of temperature and rectal temperatures and to estimate the sensitivity and specificity of these measures to detect a rectal temperature of 38°C or higher. We conducted a study of the diagnostic accuracy of oral, tympanic membrane (TM) and temporal artery (TA) thermometry to measure fever in an urban emergency department (ED). Data were collected from adult patients who received rectal temperature measurement. Bland-Altman analysis was performed; sensitivity, specificity and 95% CIs were calculated. 987 patients were enrolled. 36% of the TM and TA readings differed by 0.5°C or more from rectal temperatures, 50% of oral temperatures. TM measures were most precise-the SD of the difference from rectal was 0.4°C TM, and 0.6°C for oral and TA (ptemperature of 38°C or higher were: 37.0%, 68.3% and 71.1%, respectively (oral vs TM and TA pmethods (pmethods met benchmarks for diagnostic accuracy using the criterion of 38°C to detect rectal temperature of 38°C. A TM cutpoint of 37.5°C provides maximum diagnostic accuracy of the three non-invasive measures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    International Nuclear Information System (INIS)

    Baumgartner, A.; Maringer, F.J.; Michai, P.; Kreuziger, M.

    2006-01-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  17. Double-theodolite measurement system used in the image calibration of space photographic instrument

    Institute of Scientific and Technical Information of China (English)

    LI Yan; QIAO Yan-feng; SU Wan-xin; LIU Ze-xun

    2005-01-01

    The purpose of characterizing the image of space photographic instrument is to gain the space included angles from three coordinate axes in the three-dimensional coordinate of the image and the directionality of the three axes of coordinate in the frame of axes of the instrument. The two reference frames will keep in the same direction finally by adjusting according to space angles. This problem was solved by a new high-precision measurement system composed of a double-theodolite and a set of communication system. In the survey system, two TDA5005 total stations from Leica Company will be selected as the double-theodolite and the interdependence of both coordinate systems can be achieved by moving the stations only at one time. Therefore, this measurement system provides a highly efficient and high-precision surveying method to the image calibration of the space photographic instrument. According to the experiment, its measuring accuracy can reach arc-second level.

  18. Development of a nursing workload measurement instrument in burn care

    NARCIS (Netherlands)

    Jong, A.E.; Leeman, J.; Middelkoop, E.

    2009-01-01

    Existing workload measurement instruments fail to represent specific nursing activities in a setting where patients are characterized by a diversity of cause, location, extent and depth of burns, of age and of history. They also do not include educational levels and appropriate time standards. The

  19. The "Intentionality Measurement Instrument" [or "IMI"]: A Comprehensive Psychometric Instrument Based upon the Dual Quadrant Scalar Model of Intentionality That Is Designed to Measure Intent, Motive Type, and Disposition

    Science.gov (United States)

    Osler, James Edward, II

    2016-01-01

    The overall aim of this paper is to provide an epistemological rational for the measurement of intentionality. The purpose of this narrative is to identify "Intentionality" as an arena of action in the dispositional learning domain can be measured using an "Intentionality Measurement Instrument" [also referred by the acronym…

  20. Metering instrument of quality factor Q of gravitational wave antenna

    International Nuclear Information System (INIS)

    Jia-yan, C.; Tong-ren, G.

    1982-01-01

    The quality factor, Q, of gravitational wave antenna depends on the material property as well as external conditions, such as temperature, residual pressure in vacuum tank, support type, additional loss from transducer on antenna, etc. In order to find out the relationship between the antenna Q and external conditions automatical operating in succession is required. The authors have designed and made a metering instrument for quality factor Q. The metering instrument of Q can measure Q of the metal cylinder and other bar of higher Q. It can give data of the measurement at regular intervals as desired. It can measure accurately the longitudinal fundamental mode frequency of the cylinder with a digital frequency meter record oscillating signal from metering instrument. Because the metering instrument excites free-vibration of the cylinder with free-running type and keep up the stationary amplitude for a long time. (Auth.)

  1. OECD/CSNI specialist meeting on advanced instrumentation and measurements techniques: summary and conclusions

    International Nuclear Information System (INIS)

    1997-01-01

    This specialist meeting on Advanced Instrumentation and Measurements Techniques was held in Santa Barbara (USA) in 1997 and attracted some 70 participants in ten technical sessions and a session of the round table discussions, with a total of 41 papers. It was intended to bring together the international experts in multi-phase flow instrumentation, experiment and modeling to review the state-of-the-art of the two-phase flow instrumentation methods and to discuss the relation between modeling needs and instrumentation capabilities. The following topics were included: Modeling needs and future direction for improved constitutive relations, interfacial area transport equation, and multi-dimensional two-fluid model formulation; local instrumentation developments for void fraction, interfacial area, phase velocities, turbulence, entrainment, particle size, thermal non-equilibrium, shear stress, nucleation, condensation and boiling; global instrumentation developments for void fraction, mass flow, two-phase level, non-condensable concentration, flow regimes, low flow and break flow; relation between modeling needs and instrumentation capabilities, future directions for experiments focused on modeling needs and for instrumentation developments

  2. Instrumentation for the follow-up of severe accidents

    International Nuclear Information System (INIS)

    Munoz Sanchez, A.; Nino Perote, R.

    2000-01-01

    During severe accidents, it is foreseeable that the instrumentation installed in a plant is subjected to conditions which are more hostile than those for which the instrumentation was designed and qualified. Moreover, new, specific instrumentation is required to monitor variables which have not been considered until now, and to control systems which lessen the consequences of severe accidents. Both existing instrumentation used to monitor critical functions in design basis accident conditions and additional instrumentation which provides the information necessary to control and mitigate the consequences of severe accidents, have to be designed to withstand such conditions, especially in terms of measurements range, functional characteristics and qualification to withstand pressure and temperature loads resulting from steam explosion, hydrogen combustion/explosion and high levels of radiation over long periods of time. (Author)

  3. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F. [Washington University, St. Louis, MO 63130 (United States); Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klemic, J.; Labrador, A. W.; Mewaldt, R. A., E-mail: wrb@wustl.edu [California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  4. [Instrument to measure adherence in hypertensive patients: contribution of Item Response Theory].

    Science.gov (United States)

    Rodrigues, Malvina Thaís Pacheco; Moreira, Thereza Maria Magalhaes; Vasconcelos, Alexandre Meira de; Andrade, Dalton Francisco de; Silva, Daniele Braz da; Barbetta, Pedro Alberto

    2013-06-01

    To analyze, by means of "Item Response Theory", an instrument to measure adherence to t treatment for hypertension. Analytical study with 406 hypertensive patients with associated complications seen in primary care in Fortaleza, CE, Northeastern Brazil, 2011 using "Item Response Theory". The stages were: dimensionality test, calibrating the items, processing data and creating a scale, analyzed using the gradual response model. A study of the dimensionality of the instrument was conducted by analyzing the polychoric correlation matrix and factor analysis of complete information. Multilog software was used to calibrate items and estimate the scores. Items relating to drug therapy are the most directly related to adherence while those relating to drug-free therapy need to be reworked because they have less psychometric information and low discrimination. The independence of items, the small number of levels in the scale and low explained variance in the adjustment of the models show the main weaknesses of the instrument analyzed. The "Item Response Theory" proved to be a relevant analysis technique because it evaluated respondents for adherence to treatment for hypertension, the level of difficulty of the items and their ability to discriminate between individuals with different levels of adherence, which generates a greater amount of information. The instrument analyzed is limited in measuring adherence to hypertension treatment, by analyzing the "Item Response Theory" of the item, and needs adjustment. The proper formulation of the items is important in order to accurately measure the desired latent trait.

  5. In-core failure of the instrumented BWR rod by locally induced high coolant temperature

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the BWR type light water loop instrumented in HBWR, a current BWR type fuel rod pre-irradiated up to 5.6 MWd/kgU was power ramped to 50 kW/m. During the ramp, the diameter of the rod was expanded significantly at the bottom end. The behaviour was different from which caused by pellet-cladding interaction (PCI). In the post-irradiation examination, the rod was found to be failed. In this paper, the cause of the failure was studied and obtained the followings. (1) The significant expansion of the rod diameter was attributed to marked oxidation of cladding outer diameter, appeared in the direction of 0 0 -180 0 degree with a shape of nodular. (2) The cladding in the place was softened by high coolant temperature. Coolant pressure, 7MPa intruded the cladding into inside chamfer void at pellet interface. (3) At the place of the significant oxidation, an instrumented transformer was existed and the coolant flow area was very little. The reduction of the coolant flow was enhanced by the bending of the cladding which was caused in pre-irradiation stage. They are considered to be a principal cause of local closure of coolant flow and resultant high temperature in the place. (author)

  6. Plan for the testing of radiation measurement instrumentation intended for use at an excavation site

    International Nuclear Information System (INIS)

    Gehrke, R.J.

    1994-11-01

    This plan describes performance tests to be made with ionizing radiation measurement instrumentation designed and built for in-field assay at an excavation site. One instrument measures gross gamma-ray and neutron fields and the other identifies gamma-ray emitting radionuclides and also is capable of assaying for selected hazardous materials. These instruments will be operationally tested to verify that original specifications have been met and performance tested to establish and verify that they have the potential to function as intended at an excavation site

  7. Development of an instrument for measuring moisture deep into solid materials

    International Nuclear Information System (INIS)

    Westin, R.; Walletun, H.

    1993-01-01

    It is of value in some applications to be able to detect humidity rather deep into a solid material, for example when determining the moisture content in the frame of buildings, in insulation or in biofuels. Common to these measurement problems is that it is difficult to measure moisture in the bulk of a solid, in contrast to the surface layers. In this report is described the principle and the functioning of an instrument to measure moisture at larger depths than other instruments that are available today. It is intended for use primarily on solid materials, not on gases or liquids. Field experience is also reported here. The principle of the measuring technique is nuclear: we have utilized the ability of hydrogen atoms to moderate (or brake) high energy neutrons. If there is hydrogen in the sample, fast neutrons will interact with the hydrogen atoms and one may detect and count low energy, so called thermal neutrons. The intensity of the slow neutron flux is proportional to the water content, if one assumes that hydrogen atoms are water, i.e. moisture

  8. Temperature measurement of the reactor materials samples irradiated in the fuel channels of the RA reactor - Annex 16; Prilog 16 - Merenje temperature uzoraka reaktorskih materijala ozracivanih u gorivnim kanalima reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, M; Djalovic, M [Institute of Nuclear Sciences Boris Kidric, Reaktor RA, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    Reactor materials as graphite, stainless steel, magnox, zirconium alloys, etc. were exposed to fast neutron flux inside the fuel elements specially adapted for this purpose. Samples in the form ampoules were placed in capsules inside the fuel channels and cooled by heavy water which cools the fuel elements. In order to monitor the samples temperature 42 thermocouples were placed in the samples. That was necessary for reactor safety reasons and for further interpretation of measured results. Temperature monitoring was done continuously by multichannel milivoltmeters. This paper describes the technique of introducing the thermocouples, compensation instruments, control of the cold ends and adaptation of the instruments for precision (0.5%) temperature measurement in the range 30 deg - 130 deg C; 30 deg - 280 deg C and 30 deg - 80 deg C. Ozracivanje uzoraka materijala za izgradnju reaktora kao sto su grafit, nerdjajuci celik, magnox, legure cirkonijuma, aluminijuma itd. vrseno je u fluksu brzih neutrona unutar samih gorivnih elemenata koji su specijalno adaptirani za ovu svrhu. Uzorci u vidu ampula smesteni su u kapsulu od aluminijuma i postavljeni unutar kanala gde su hladjeni cirkulacijom teske vode koja hladi same gorivne elemente. U cilju kontrole temperature uzoraka radi bezbednosti samog reaktora, kao i radi kasnije interpretacije rezultata ispitivanja radijacionog ostecenja materijala, ugradjeno je 42 termopara u uzorke. Kontrola temperature je vrsena kontinualno visekanalnim registratorima. U radu je prikazana tehnika izvodjenja termoparova, kompenzacionih vodova, kontrola hladnih krajeva i prilagodjenje instrumentacije za merenje i registraciju temperature sa tacnoscu 0,5% u opsezima 30 deg - 130 deg C; 30 deg - 280 deg C i 30 deg - 80 deg C (author)

  9. Temperature standards, what and where: resources for effective temperature measurements

    International Nuclear Information System (INIS)

    Johnston, W.W. Jr.

    1982-01-01

    Many standards have been published to describe devices, methods, and other topics. How they are developed and by whom are briefly described, and an attempt is made to extract most of those relating to temperature measurements. A directory of temperature standards and their sources is provided

  10. The design of nuclear radiation measuring instrument of embedded network

    International Nuclear Information System (INIS)

    Zhang Huaiqiang; Ge Liangquan; Xiong Shengqing

    2009-01-01

    The design and realization of nuclear radiation measuring instrument is introduced. Due to the current nuclear instrument often used serial interface to communicate the PC, it is widely used for simple design and easy operation. However, as the demand of remote data acquisition and the call of sharing resources, the design of embedded the TCP/IP protocol stack into MCU, it may send the nuclear signal in Internet. Some devices that link each other with the network can be networked. The design is not only realizing remote data acquisition and sharing resources, but also reducing costs and improving the maintainability of the system. (authors)

  11. Description of the universal low-temperature measuring system

    International Nuclear Information System (INIS)

    Langfeld, R.; Maurer, C.

    1987-01-01

    There are various measuring methods for a characterization of semiconductor devices, especially for analysis of radiation effects after ion implantation. The four most important methods are: 1. Recording of voltage-current characteristics at pn-junctions or Schottky diodes. 2. Determination of the temperature dependence of the electrical resistance, e.g. of amorphous semiconductor layers, by feeding a constant voltage and measuring the current as a function of sample temperature. 3. Measurement of the resistive layer capacitance of a semiconductor diode as a function of the fed blocking voltage and determination of the doping concentration profile. 4. Time-resolved capacitance measurement after abrupt blocking-voltage alterations at pn - or Schottky diodes as a function of specimen temperature for determining defects in semiconductors, DLTS method. A measuring equipment has been set up that allows measurements being made in the temperature range between 14 K and 400 K, on up to eight specimens in one temperature test. Operating mode and handling of the computerized measuring program are described. (orig./HP) [de

  12. Homogenization of long instrumental temperature and precipitation series over the Spanish Northern Coast

    Science.gov (United States)

    Sigro, J.; Brunet, M.; Aguilar, E.; Stoll, H.; Jimenez, M.

    2009-04-01

    The Spanish-funded research project Rapid Climate Changes in the Iberian Peninsula (IP) Based on Proxy Calibration, Long Term Instrumental Series and High Resolution Analyses of Terrestrial and Marine Records (CALIBRE: ref. CGL2006-13327-C04/CLI) has as main objective to analyse climate dynamics during periods of rapid climate change by means of developing high-resolution paleoclimate proxy records from marine and terrestrial (lakes and caves) deposits over the IP and calibrating them with long-term and high-quality instrumental climate time series. Under CALIBRE, the coordinated project Developing and Enhancing a Climate Instrumental Dataset for Calibrating Climate Proxy Data and Analysing Low-Frequency Climate Variability over the Iberian Peninsula (CLICAL: CGL2006-13327-C04-03/CLI) is devoted to the development of homogenised climate records and sub-regional time series which can be confidently used in the calibration of the lacustrine, marine and speleothem time series generated under CALIBRE. Here we present the procedures followed in order to homogenise a dataset of maximum and minimum temperature and precipitation data on a monthly basis over the Spanish northern coast. The dataset is composed of thirty (twenty) precipitation (temperature) long monthly records. The data are quality controlled following the procedures recommended by Aguilar et al. (2003) and tested for homogeneity and adjusted by following the approach adopted by Brunet et al. (2008). Sub-regional time series of precipitation, maximum and minimum temperatures for the period 1853-2007 have been generated by averaging monthly anomalies and then adding back the base-period mean, according to the method of Jones and Hulme (1996). Also, a method to adjust the variance bias present in regional time series associated over time with varying sample size has been applied (Osborn et al., 1997). The results of this homogenisation exercise and the development of the associated sub-regional time series

  13. Radiation monitoring and measuring instrument developed by Turkish Atomic Energy Authority

    International Nuclear Information System (INIS)

    Kuecuekarslan, N.; Gueven, A.

    2001-01-01

    Turkish Atomic Energy Authority (TAEA), Cekmece Nuclear Research and Training Center, Nuclear Electronics Department is working on research, development and production of radiation monitoring and measuring instruments in the aims of TAEA to serve our Country. Advanced micro controller technology is used to cover problems of radiation measurement. Control by micro controller enables reliable, stable measurement and display of low level dose rate fields. It makes possible the simultaneous measurement of both dose and dose rate values

  14. Can Reliability of Multiple Component Measuring Instruments Depend on Response Option Presentation Mode?

    Science.gov (United States)

    Menold, Natalja; Raykov, Tenko

    2016-01-01

    This article examines the possible dependency of composite reliability on presentation format of the elements of a multi-item measuring instrument. Using empirical data and a recent method for interval estimation of group differences in reliability, we demonstrate that the reliability of an instrument need not be the same when polarity of the…

  15. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  16. Software System for the Calibration of X-Ray Measuring Instruments

    International Nuclear Information System (INIS)

    Gaytan-Gallardo, E.; Tovar-Munoz, V. M.; Cruz-Estrada, P.; Vergara-Martinez, F. J.; Rivero-Gutierrez, T.

    2006-01-01

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in Mexico (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed

  17. Development of an instrument to measure organisational culture in community pharmacies in Great Britain.

    Science.gov (United States)

    Marques, Iuri; Willis, Sarah Caroline; Schafheutle, Ellen Ingrid; Hassell, Karen

    2018-04-09

    Purpose Organisational culture (OC) shapes individuals' perceptions and experiences of work. However, no instrument capable of measuring specific aspects of OC in community pharmacy exists. The purpose of this paper is to report the development and validation of an instrument to measure OC in community pharmacy in Great Britain (GB), and conduct a preliminary analysis of data collected using it. Design/methodology/approach Instrument development comprised three stages: Stage I: 12 qualitative interviews and relevant literature informed instrument design; Stage II: 30 cognitive interviews assessed content validity; and Stage III: a cross-sectional survey mailed to 1,000 community pharmacists in GB, with factor analysis for instrument validation. Statistical analysis investigated how community pharmacists perceived OC in their place of work. Findings Factor analysis produced an instrument containing 60 items across five OC dimensions - business and work configuration, social relationships, personal and professional development, skills utilisation, and environment and structures. Internal reliability for the dimensions was high (0.84 to 0.95); item-total correlations were adequate ( r=0.46 to r=0.76). Based on 209 responses, analysis suggests different OCs in community pharmacy, with some community pharmacists viewing the environment in which they worked as having a higher frequency of aspects related to patient contact and safety than others. Since these aspects are important for providing high healthcare standards, it is likely that differences in OC may be linked to different healthcare outcomes. Originality/value This newly developed and validated instrument to measure OC in community pharmacy can be used to benchmark existing OC across different pharmacies and design interventions for triggering change to improve outcomes for community pharmacists and patients.

  18. Development and validation of a survey instrument to measure children's advertising literacy

    NARCIS (Netherlands)

    Rozendaal, E.; Opree, S.J.; Buijzen, M.A.

    2016-01-01

    The aim of this study was to develop and validate a survey measurement instrument for children's advertising literacy. Based on the multidimensional conceptualization of advertising literacy by 0056"> Rozendaal, Lapierre, Van Reijmersdal, and Buijzen (2011), 39 items were created to measure two

  19. Quantification and handling of sampling errors in instrumental measurements: a case study

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Bro, R.

    2004-01-01

    in certain situations, the effect of systematic errors is also considerable. The relevant errors contributing to the prediction error are: error in instrumental measurements (x-error), error in reference measurements (y-error), error in the estimated calibration model (regression coefficient error) and model...

  20. An Experiment in Radiation Measurement Using the Depron Instrument

    Science.gov (United States)

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  1. Novel method for noncontact measurement of particle temperatures

    NARCIS (Netherlands)

    Wagenaar, B.M.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, W.P.M.

    1995-01-01

    A nonintrusive temperature measurement technique is developed for noncontact measurement of the temperature of single particles with <200 µm dia. It is based on the temperature dependence of the fluorescence spectrum resulting from irradiation of a certain phosphor mixture with UV light by applying

  2. Novel method for noncontact measurement of particle temperatures

    NARCIS (Netherlands)

    Wagenaar, B.M.; Wagenaar, B.M.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1995-01-01

    A nonintrusive temperature measurement technique is developed for noncontact measurement of the temperature of single particles with < 200 m dia. It is based on the temperature dependence of the fluorescence spectrum resulting from irradiation of a certain phosphor mixture with UV light by applying

  3. Evaluation of the measurement properties of self-reported health-related work-functioning instruments among workers with common mental disorders.

    Science.gov (United States)

    Abma, Femke I; van der Klink, Jac J L; Terwee, Caroline B; Amick, Benjamin C; Bültmann, Ute

    2012-01-01

    During the past decade, common mental disorders (CMD) have emerged as a major public and occupational health problem in many countries. Several instruments have been developed to measure the influence of health on functioning at work. To select appropriate instruments for use in occupational health practice and research, the measurement properties (eg, reliability, validity, responsiveness) must be evaluated. The objective of this study is to appraise critically and compare the measurement properties of self-reported health-related work-functioning instruments among workers with CMD. A systematic review was performed searching three electronic databases. Papers were included that: (i) mainly focused on the development and/or evaluation of the measurement properties of a self-reported health-related work-functioning instrument; (ii) were conducted in a CMD population; and (iii) were fulltext original papers. Quality appraisal was performed using the consensus-based standards for the selection of health status measurement instruments (COSMIN) checklist. Five papers evaluating measurement properties of five self-reported health-related work-functioning instruments in CMD populations were included. There is little evidence available for the measurement properties of the identified instruments in this population, mainly due to low methodological quality of the included studies. The available evidence on measurement properties is based on studies of poor-to-fair methodological quality. Information on a number of measurement properties, such as measurement error, content validity, and cross-cultural validity is still lacking. Therefore, no evidence-based decisions and recommendations can be made for the use of health-related work functioning instruments. Studies of high methodological quality are needed to properly assess the existing instruments' measurement properties.

  4. Measuring Lagrangian accelerations using an instrumented particle

    International Nuclear Information System (INIS)

    Zimmermann, R; Fiabane, L; Volk, R; Pinton, J-F; Gasteuil, Y

    2013-01-01

    Accessing and characterizing a flow imposes a number of constraints on the employed measurement techniques; in particular, optical methods require transparent fluids and windows in the vessel. Whereas one can adapt the apparatus, fluid and methods in the laboratory to these constraints, this is hardly possible for industrial mixers. In this paper, we present a novel measurement technique which is suitable for opaque or granular flows: consider an instrumented particle, which continuously transmits the force/acceleration acting on it as it is advected in a flow. Its density is adjustable for a wide range of fluids and because of its small size and its wireless data transmission, the system can be used both in industrial and in scientific mixers, allowing for a better understanding of the flow within. We demonstrate the capabilities and precision of the particle by comparing its transmitted acceleration to alternative measurements, in particular in the case of a turbulent von Kármán flow. Our technique proves to be an efficient and fast tool to characterize flows. (paper)

  5. Measurement of rotational temperature at Kolhapur, India

    Directory of Open Access Journals (Sweden)

    G. K. Mukherjee

    2004-09-01

    Full Text Available Measurements of the hydroxyl rotational temperature for the (8,3 Meinel band have been reported from the observations of the ratio of the relative intensities of P1(2 and P1(4 lines of the OH(8,3 band at Kolhapur (16.8° N, 74.2° E, dip lat. 10.6° N in India during the period 1 November 2002-29 April 2003 using tilting-filter photometers. Mean values of rotational temperature have been computed for 60 nights. The monthly mean value of temperature lies in the range 194(±11-208(±18K. The mean rotational temperature obtained from all the measurements was found to be 202±15K. The results agree with other low-latitude measurements of rotational temperature using photometric airglow techniques. Quasi-periodic fluctuations with a period of about one to two hours have been prominent on many nights. Furthermore, the results show the general agreement between observations and model (MSIS-86 predictions.

  6. INSTRUMENTS MEASURING PERCEIVED RACISM/RACIAL DISCRIMINATION: REVIEW AND CRITIQUE OF FACTOR ANALYTIC TECHNIQUES

    Science.gov (United States)

    Atkins, Rahshida

    2015-01-01

    Several compendiums of instruments that measure perceived racism and/or discrimination are present in the literature. Other works have reviewed the psychometric properties of these instruments in terms of validity and reliability and have indicated if the instrument was factor analyzed. However, little attention has been given to the quality of the factor analysis performed. The aim of this study was to evaluate the exploratory factor analyses done on instruments measuring perceived racism/racial discrimination using guidelines from experts in psychometric theory. The techniques used for factor analysis were reviewed and critiqued and the adequacy of reporting was evaluated. Internet search engines and four electronic abstract databases were used to identify 16 relevant instruments that met the inclusion/exclusion criteria. Principal component analysis was the most frequent method of extraction (81%). Sample sizes were adequate for factor analysis in 81 percent of studies. The majority of studies reported appropriate criteria for the acceptance of un-rotated factors (81%) and justified the rotation method (75%). Exactly 94 percent of studies reported partially acceptable criteria for the acceptance of rotated factors. The majority of articles (69%) reported adequate coefficient alphas for the resultant subscales. In 81 percent of the studies, the conceptualized dimensions were supported by factor analysis. PMID:25626225

  7. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  8. Pulse Wave Velocity Measuring System using Virtual Instrumentation on Mobile Device

    Directory of Open Access Journals (Sweden)

    Razvan Alin Ciobotariu

    2013-03-01

    Full Text Available Virtual instrumentation is a concept that permits customizable modular software measurement and the development of the user-defined tools for control, process and visualization of data, creating versatile systems, using modular programming, intuitive and easy to use. In this paper we investigate a possibility of using virtual instrumentation in the development of two physiological parameters monitoring system, in order to assess a cardiovascular parameter, the Pulse Wave Velocity (PWV. We choose to monitor this parameter due to major incidence and impact of cardiovascular diseases (CVD.

  9. The Karen instruments for measuring quality of nursing care: construct validity and internal consistency.

    Science.gov (United States)

    Lindgren, Margareta; Andersson, Inger S

    2011-06-01

    Valid and reliable instruments for measuring the quality of care are needed for evaluation and improvement of nursing care. Previously developed and evaluated instruments, the Karen-patient and the Karen-personnel based on Donabedian's Structure-Process-Outcome triad (S-P-O triad) had promising content validity, discriminative power and internal consistency. The objective of this study was to further develop the instruments with regard to construct validity and internal consistency. This prospective study was carried out in medical and surgical wards at a hospital in Sweden. A total of 95 patients and 120 personnel were included. The instruments were tested for construct validity by performing factor analyses in two steps and for internal consistency using Cronbach's alpha coefficient. The first confirmatory factor analyses, with a pre-determined three-factor solution did not load well according to the S-P-O triad, but the second exploratory factor analysis with a six-factor solution appeared to be more coherent and the distribution of variables seemed to be logical. The reliability, i.e. internal consistency, was good in both factor analyses. The Karen-patient and the Karen-personnel instruments have achieved acceptable levels of construct validity. The internal consistency of the instruments is good. This indicates that the instruments may be suitable to use in clinical practice for measuring the quality of nursing care.

  10. The instrumentation of fast reactor

    International Nuclear Information System (INIS)

    Endo, Akira

    2003-03-01

    The author has been engaged in the development of fast reactors over the last 30 years with both an involvement with the early technology development on the experimental breeder reactor Joyo, and latterly continuing this work on the prototype breeder reactor, Monju. In order to pass on this experience to younger engineers this paper is produced to outline this experience in the sincere hope that the information given will be utilised in future educational training material. The paper discusses the wide diversity on the associated instrument technology which the fast breeder reactor requires. The first chapter outlines the fast reactor system, followed by discussions on reactor instrumentation, measurement principles, temperature dependencies, and verification response characteristics from various viewpoints, are discussed in chapters two and three. The important issues of failed fuel location detection, and sodium leak detection from steam generators are discussed in chapters 4 and 5 respectively. Appended to this report is an explanation on the methods of measuring response characteristics on instrumentation systems using error analysis, random signal theory and measuring method of response characteristic by AR (autoregressive) model on which it appears is becoming an indispensable problem for persons involved with this technology in the future. (author)

  11. High temperature measurement by noise thermometry

    International Nuclear Information System (INIS)

    Decreton, M.C.

    1982-06-01

    Noise thermometry has received a lot of attention for measurements of temperatures in the high range around 1000-2000 deg. K. For these measurements, laboratory type experiments have been mostly performed. These have shown the interest of the technique when long term stability, high precision and insensibility to external conditions are concerned. This is particularly true for measurements in nuclear reactors where important drifts due to irradiation effects are experienced with other measurement techniques, as thermocouple for instance. Industrial noise thermometer experiments have not been performed extensively up to now. The subject of the present study is the development of a 1800 deg. K noise thermometer for nuclear applications. The measurement method is based on a generalized noise power approach. The rms noise voltage (Vsub(s)) and noise current (Isub(s)) are successively measured on the resistive sensor. The same quantities are also measured on a dummy short circuited probe (Vsub(d) and Isub(d)). The temperature is then deduced from these measured values by the following formula: cTsub(s) = (Vsub(s) 2 - Vsub(d) 2 )(Vsub(s)/Isub(s) - Vsub(d)/Isub(d)) - 1 , where c is a constant and Tsub(s) the absolute temperature of the sensor. This approach has the particular advantage of greatly reducing the sensibility to environmental perturbations on the leads and to the influence of amplifier noise sources. It also eliminates the necessity of resistance measurement and keeps the electronic circuits as simple as possible

  12. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  13. Field instruments for real time in-situ crude oil concentration measurements

    International Nuclear Information System (INIS)

    Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.

    2003-01-01

    Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs

  14. Measurement of magnetic property of FePt granular media at near Curie temperature

    International Nuclear Information System (INIS)

    Yang, H.Z.; Chen, Y.J.; Leong, S.H.; An, C.W.; Ye, K.D.; Hu, J.F.

    2017-01-01

    The characterization of the magnetic switching behavior of heat assisted magnetic recording (HAMR) media at near Curie temperature (T_c) is important for high density recording. In this study, we measured the magnetic property of FePt granular media (with room temperature coercivity ~25 kOe) at near T_c with a home built HAMR testing instrument. The local area of HAMR media is heated to near T_c by a flat-top optical heating beam. The magnetic property in the heated area was in-situ measured by a magneto-optic Kerr effect (MOKE) testing beam. The switching field distribution (SFD) and coercive field (H_c) of the FePt granular media and their dependence on the optical heating power at near T_c were studied. We measured the DC demagnetization (DCD) signal with pulsed laser heating at different optical powers. We also measured the T_c distribution of the media by measuring the AC magnetic signal as a function of optical heating power. In a summary, we studied the SFD, H_c of the HAMR media at near T_c in a static manner. The present methodology will facilitate the HAMR media testing. - Highlights: • A flat-top optical beam homogeneously heats up HAMR media to near T_c. • When H_c of media drops to 5 kOe with optical heating, SFD is measured to be 0.6. • H_c, SFD, M_s of HAMR media at near T_c are measured with the methodology.

  15. Qualification of a truly distributed fiber optic technique for strain and temperature measurements in concrete structures

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-04-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  16. Instrument Control (iC) - An Open-Source Software to Automate Test Equipment.

    Science.gov (United States)

    Pernstich, K P

    2012-01-01

    It has become common practice to automate data acquisition from programmable instrumentation, and a range of different software solutions fulfill this task. Many routine measurements require sequential processing of certain tasks, for instance to adjust the temperature of a sample stage, take a measurement, and repeat that cycle for other temperatures. This paper introduces an open-source Java program that processes a series of text-based commands that define the measurement sequence. These commands are in an intuitive format which provides great flexibility and allows quick and easy adaptation to various measurement needs. For each of these commands, the iC-framework calls a corresponding Java method that addresses the specified instrument to perform the desired task. The functionality of iC can be extended with minimal programming effort in Java or Python, and new measurement equipment can be addressed by defining new commands in a text file without any programming.

  17. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  18. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    Directory of Open Access Journals (Sweden)

    Won Hyun Park

    2007-03-01

    Full Text Available The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm in wavefront error, the ensquared energy of 61.7%(in 14 μ m and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1} at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  19. Non-invasive measuring instrument of kVp, R/M and exposure time

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Elbern, Alwin W.

    1996-01-01

    The development of an instrument for fast measurement of essential parameters related to quality control of X-ray equipment is described. The unit is designed with a 80 C31 micro controller, a function keyboard, an αnumeric display and a probe with PV diodes. Testing and calibration in this non-invasive instrument has been done at the X-rays equipment for the Santa Rita Hospital in Porto Alegre, Rio Grande do Sul State, Brazil

  20. The Construct Validity of an Instrument for Measuring Type 2 ...

    African Journals Online (AJOL)

    Abstract. Purpose: To develop an instrument (DSCKQ-30) for measuring type 2 diabetic patients' knowledge of self-care practices. Methods: A 30-item questionnaire (DSCKQ-30) consisting of close ended questions was developed for this study. DSCKQ-30 was self administered to a cross-section of randomly selected 400 ...