WorldWideScience

Sample records for temperature magnetic refrigeration

  1. Materials for Room Temperature Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered...... candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material...... to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 – 310 K. A magnetic refrigerant...

  2. Materials for room temperature magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl Hansen, B.

    2010-07-15

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 - 310 K. A magnetic refrigerant should fulfill a number of criteria, among these a large magnetic entropy change, a large adiabatic temperature change, preferably little to no thermal or magnetic hysteresis and the material should have the stability required for long term use. As the temperature range required for room temperature cooling is some 40 - 50 K, the magnetic refrigerant should also be able to cover this temperature span either by exhibiting a very broad peak in magnetocaloric effect or by providing the opportunity for creating a materials series with varying transition temperatures. (Author)

  3. Thermal investigations of a room temperature magnetic refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Smaili, Arezki; Chiba, Younes [Ecole Nationale Polytechnique d' Alger (Algeria)], email: arezki.smaili@enp.edu.dz

    2011-07-01

    Magnetic refrigeration is a concept based on the magnetocaloric effect that some materials exhibit when the external magnetic field changes. The aim of this paper is to assess the performance of a numerical model in predicting parameters of an active magnetic regenerator refrigerator. Numerical simulations were conducted to perform a thermal analysis on an active magnetic regenerator refrigerator operating near room temperature with and without applied cooling load. Curves of temperature span, cooling capacity and thermal efficiency as functions of the operating conditions were drawn and are presented in this paper. Results showed that at fixed frequency Ql versus mf has an optimum and COP was increased with cycle frequency values. This study demonstrated that the proposed numerical model could be used to predict parameters of an active magnetic regenerator refrigerator as it provides consistent results.

  4. Magnetic refrigeration--towards room-temperature applications

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Li, X.W.; Boer, F.R. de; Buschow, K.H.J.

    2003-01-01

    Modern society relies very much on readily available cooling. Magnetic refrigeration based on the magneto-caloric effect (MCE) has become a promising competitive technology for the conventional gas-compression/expansion technique in use today. Recently, there have been two breakthroughs in magnetic-refrigeration research: one is that American scientists demonstrated the world's first room-temperature, permanent-magnet, magnetic refrigerator; the other one is that we discovered a new class of magnetic refrigerant materials for room-temperature applications. The new materials are manganese-iron-phosphorus-arsenic (MnFe(P,As)) compounds. This new material has important advantages over existing magnetic coolants: it exhibits a huge MCE, which is larger than that of Gd metal; and its operating temperature can be tuned from about 150 to about 335 K by adjusting the P/As ratio. Here we report on further improvement of the materials by increasing the Mn content. The large entropy change is attributed to a field-induced first-order phase transition enhancing the effect of the applied magnetic field. Addition of Mn reduces the thermal hysteresis, which is intrinsic to the first-order transition. This implies that already moderate applied magnetic fields of below 2 T may suffice

  5. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  6. A flexible numerical model to study an active magnetic refrigerator for near room temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Aprea, Ciro; Maiorino, Angelo [Department of Mechanical Engineering, University of Salerno, Via Ponte Don Melillo 1, 84084 Fisciano (Salerno) (Italy)

    2010-08-15

    Magnetic refrigeration is an emerging technology based on the magnetocaloric effect in solid-state refrigerants. This technology offers a smaller global environmental impact than the refrigeration obtained by means of the classical vapor compression machines operating with fluids such as HFCs. The Active Magnetic Regenerative Refrigeration (AMRR) is currently the most studied ant tested magnetic cycle. It combines the regenerative properties of a high specific heat solid porous matrix with the ability of performing thermo-magnetic cycles thanks to the magnetocaloric property of the refrigerant; while a fluid pulsing through the regenerator works as a heat transfer medium. An active magnetic regenerator can provide larger temperature spans making up for the local small temperature variation of the refrigerant. In the present paper, a practical model for predicting the performance and efficiency of an AMRR cycle has been developed. The model evaluates both the refrigerant properties and the entire cycle of an AMR operating in conformity with a Brayton regenerative cycle. The magnetocaloric material of choice is gadolinium, while the heat transfer medium is liquid water. With this model can be predicted the refrigeration capacity, the power consumption and consequently the Coefficient of Performance. The results show a greater COP when compared to a classical vapor compression plant working between the same temperature levels. (author)

  7. A flexible numerical model to study an active magnetic refrigerator for near room temperature applications

    International Nuclear Information System (INIS)

    Aprea, Ciro; Maiorino, Angelo

    2010-01-01

    Magnetic refrigeration is an emerging technology based on the magnetocaloric effect in solid-state refrigerants. This technology offers a smaller global environmental impact than the refrigeration obtained by means of the classical vapor compression machines operating with fluids such as HFCs. The Active Magnetic Regenerative Refrigeration (AMRR) is currently the most studied ant tested magnetic cycle. It combines the regenerative properties of a high specific heat solid porous matrix with the ability of performing thermo-magnetic cycles thanks to the magnetocaloric property of the refrigerant; while a fluid pulsing through the regenerator works as a heat transfer medium. An active magnetic regenerator can provide larger temperature spans making up for the local small temperature variation of the refrigerant. In the present paper, a practical model for predicting the performance and efficiency of an AMRR cycle has been developed. The model evaluates both the refrigerant properties and the entire cycle of an AMR operating in conformity with a Brayton regenerative cycle. The magnetocaloric material of choice is gadolinium, while the heat transfer medium is liquid water. With this model can be predicted the refrigeration capacity, the power consumption and consequently the Coefficient of Performance. The results show a greater COP when compared to a classical vapor compression plant working between the same temperature levels.

  8. Recent investigations on refrigerants for magnetic refrigerators

    International Nuclear Information System (INIS)

    Hashimoto, T.

    1986-01-01

    In development of the magnetic refrigerator, an important problem is selection of magnetic materials as refrigerants. The main purpose of the present paper is to discuss the magnetic and thermal properties necessary for these refrigerants and to report recent investigations. Magnetic refrigerants can be expediently divided into two groups, one for the Carnottype magnetic refrigerator below 20 K and the other for the Ericsson-type refrigerator. The required physical properties of refrigerants in each type of the magnetic refrigerator are first discussed. And then, the results of recent investigations on the magnetic, thermal and magnetocaloric characters of several promising magnetic refrigerants are shown. Finally, a brief prospect of the magnetic refrigerants and refrigerators is given

  9. Numerical modelling and analysis of a room temperature magnetic refrigeration system

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank

    This thesis presents a two-dimensional mathematical model of an Active Magnetic Regenerator (AMR) system which is used for magnetic refrigeration at room temperature. The purpose of the model is to simulate a laboratory-scale AMR constructed at Risø National Laboratory. The AMR model geometry....... The AMR performs a cyclic process, and to simulate the AMR refrigeration cycle the model starts from an initial temperature distribution in the regenerator and fluid channel and takes time steps forward in time until the cyclical steady-state is obtained. The model can therefore be used to study both...... transient and steady-state phenomena. The AMR performance can be evaluated in terms of the no-load temperature span as well as the refrigeration capacity and the COP. The AMR model was verified extensively and it was concluded that the model has energy conservation and that the solution is independent...

  10. Magnetic refrigeration at room temperature - from magnetocaloric materials to a prototype

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Pryds, Nini; Bahl, Christian Robert Haffenden

    2011-01-01

    Based on the magnetocaloric effect, magnetic refrigeration at room temperature has for the past decade been a promising, environmentally friendly new energy technology predicted to have a significantly higher efficiency than the present conventional methods. However, so far only a few prototype...... refrigeration machines have been presented worldwide and there are still many scientific and technological challenges to be overcome. We report here on the MagCool project, which spans all the way from basic materials studies to the construction of a prototype. Emphasis has been on ceramic magnetocaloric...... materials, their shaping and graded composition for technological use. Modelling the performance of a permanent magnet with optimum use of the flux and relatively low weight, and designing and constructing a prototype continuous magnetic refrigeration device have also been major tasks in the project...

  11. Magnetic refrigeration at room temperature - from magnetocaloric materials to a prototype

    International Nuclear Information System (INIS)

    Kuhn, L Theil; Pryds, N; Bahl, C R H; Smith, A

    2011-01-01

    Based on the magnetocaloric effect, magnetic refrigeration at room temperature has for the past decade been a promising, environmentally friendly new energy technology predicted to have a significantly higher efficiency than the present conventional methods. However, so far only a few prototype refrigeration machines have been presented worldwide and there are still many scientific and technological challenges to be overcome. We report here on the MagCool project, which spans all the way from basic materials studies to the construction of a prototype. Emphasis has been on ceramic magnetocaloric materials, their shaping and graded composition for technological use. Modelling the performance of a permanent magnet with optimum use of the flux and relatively low weight, and designing and constructing a prototype continuous magnetic refrigeration device have also been major tasks in the project.

  12. New type of magnetocaloric effect: Implications on low-temperature magnetic refrigeration using an Ericsson cycle

    International Nuclear Information System (INIS)

    Takeya, H.; Pecharsky, V.K.; Gschneidner, K.A. Jr.; Moorman, J.O.

    1994-01-01

    The low-temperature, high magnetic field heat capacity (1.5 to 70 K and 0 to 9.85 T), dc and ac magnetic behaviors of the compound (Gd 0.54 Er 0.46 )AlNi show that field-induced magnetic entropy change is significant and almost constant over the temperature region of ∼15 to ∼45 K. The resulting temperature dependence of the magnetocaloric effect, nearly constant over a 30+ K temperature range, is unprecedented (most magnetic materials have a caretlike shape temperature dependence). These data show that (Gd 0.54 Er 0.46 )AlNi can be used as an effective active magnetic regenerator material for an Ericsson-cycle magnetic refrigerator, and could substitute for complex composite layered materials suggested earlier

  13. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal...... magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated...... as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other...

  14. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  15. Study of geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2017-01-01

    Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical and effect......Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical...... and effective way to obtain the desired cooling performance. To investigate how to choose and optimize the AMR geometry, a quantitative study is presented by simulations based on a one-dimensional (1D) numerical model. Correlations for calculating the friction factor and heat transfer coefficient are reviewed...... and chosen for modeling different geometries. Moreover, the simulated impacts of various parameters on the regenerator efficiency with a constant specific cooling capacity are presented. An analysis based on entropy production minimization reveals how those parameters affect the main losses occurring inside...

  16. Rotary magnetic refrigerator for superfluid helium production

    International Nuclear Information System (INIS)

    Hakuraku, Y.; Ogata, H.

    1986-01-01

    A new rotary-magnetic refrigerator designed to obtain superfluid helium temperatures by executing a magnetic Carnot cycle is developed. A rotor containing 12 magnetic refrigerants (gadolinium-gallium-garnet) is immersed in liquid helium at 4.2 K and rotated at constant speed in a steady magnetic field distribution. Performance tests demonstrate that the new rotary refrigerator is capable of obtaining a temperature of 1.48 K. The maximum useful cooling power obtained at 1.8 K is 1.81 W which corresponds to a refrigeration efficiency of 34%

  17. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  18. Passive characterization and active testing of epoxy bonded regenerators for room temperature magnetic refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Navickaité, Kristina; Engelbrecht, Kurt

    2017-01-01

    -layer AMR based on spherical particles is tested actively in a small reciprocating magnetic refrigerator, achieving a no-load temperature span of 16.8 °C using about 143 g of epoxy-bonded La(Fe,Mn,Si)13Hy materials. Simulations based on a one-dimensional (1D) AMR model are also implemented to validate......Epoxy bonded regenerators of both spherical and irregular La(Fe,Mn,Si)13Hy particles have been developed aiming at increasing the mechanical strength of active magnetic regenerators (AMR) loaded with brittle magnetocaloric materials and improving the flexibility of shaping the regenerator geometry....... Although the magnetocaloric properties of these materials are well studied, the flow and heat transfer characteristics of the epoxy bonded regenerators have seldom been investigated. This paper presents a test apparatus that passively characterizes regenerators using a liquid heat transfer fluid...

  19. Magnetocaloric refrigeration near room temperature (invited)

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Thanh, D.T.C.; Buschow, K.H.J.

    2007-01-01

    Modern society relies on readily available refrigeration. The ideal cooling machine would be a compact, solid state, silent and energy-efficient heat pump that does not require maintenance. Magnetic refrigeration has three prominent advantages compared to compressor-based refrigeration. First, there are no harmful gases involved, second it may be built more compact as the working material is a solid and third magnetic refrigerators generate much less noise. Recently, a new class of magnetic refrigerant materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: They exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase transition of first order. This MCE is, larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review, we compare the different materials considering both scientific aspects and industrial applicability

  20. A rotary permanent magnet magnetic refrigerator based on AMR cycle

    International Nuclear Information System (INIS)

    Aprea, C.; Cardillo, G.; Greco, A.; Maiorino, A.; Masselli, C.

    2016-01-01

    Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative refrigeration). In order to demonstrate the potential of magnetic refrigeration to provide useful cooling in the near room temperature range, a novel Rotary Permanent Magnet Magnetic Refrigerator (RPMMR) is described in this paper. Gadolinium has been selected as magnetic refrigerant and demineralized water has been employed as regenerating fluid. The total mass of gadolinium (1.20 kg), shaped as packed bed spheres, is housed in 8 regenerators. A magnetic system, based on a double U configuration of permanent magnets, provides a magnetic flux density of 1.25 T with an air gap of 43 mm. A rotary vane pump forces the regenerating fluid through the regenerators. The operational principle of the magnetic refrigerator and initial experimental results are reported and analyzed.

  1. Magnetic refrigeration apparatus and method

    Science.gov (United States)

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  2. Near fifty percent sodium substituted lanthanum manganites—A potential magnetic refrigerant for room temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Omari, I. A. [Department of Physics, Sultan Qaboos University, PC 123 Muscat, Sultanate of Oman (Oman); Suresh, K. G. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2014-03-03

    Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300 K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5 J·kg{sup −1}·K{sup −1} was observed near 300 K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300 K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300 K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62 K at 280 K.

  3. A parasitic magnetic refrigerator for cooling superconducting magnet

    International Nuclear Information System (INIS)

    Nakagome, H.; Takahashi, M.; Ogiwara, H.

    1988-01-01

    The application of magnetic refrigeration principle at a liquid helium temperature (4.2K) is very useful for cooling a superconducting magnet for its potential of high efficiency. The magnetic refrigerator equipped with 14 pieces of GGG (gadolinium-gallium-garnet) single crystal unit (30mm in diameter 10mm in length) in the rotating disk operates along the gradient of the magnetic field produced by a racetrack superconducting magnet, whose maximum magnetic field is 4.5 Tesla and the minimum field is 1.1 Tesla. The final goal of their program is to liquefy gaseous helium evaporated from a liquid helium vessel of the racetrack superconducting magnet by the rotating magnetic refrigerator which operates by using the magnetic field of the superconducting magnet. A 0.12W refrigeration power in the 0.72rpm operation has been achieved under condition of 4.2K to 11.5K operation. The helium evaporation rate of this magnet system is estimated as the order of 10mW, and the achieved refrigeration power of 0.12W at 4.2K is sufficient for cooling the superconducting magnet

  4. High performance magnetocaloric perovskites for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bahl, Christian R. H.; Velazquez, David; Nielsen, Kaspar K.

    2012-01-01

    We have applied mixed valance manganite perovskites as magnetocaloric materials in a magnetic refrigeration device. Relying on exact control of the composition and a technique to process the materials into single adjoined pieces, we have observed temperature spans above 9 K with two materials...

  5. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    Science.gov (United States)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  6. A comparison between rare earth and transition metals working as magnetic materials in an AMR refrigerator in the room temperature range

    International Nuclear Information System (INIS)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2015-01-01

    This paper describes a two-dimensional (2D) multiphysics model of a packed bed regenerator made of magnetocaloric material. The regenerator operates as a refrigerant for a magnetic refrigerator operating at room temperature on the strength of an active magnetic regenerator (AMR) cycle. The model is able to simulate the thermofluidodynamic behavior of the magnetocaloric material and the magnetocaloric effect of the refrigerant. The model has been validated by means of experimental results. Different magnetic materials have been tested with the model as refrigerants: pure gadolinium, second order phase magnetic transition Pr_0_._4_5Sr_0_._3_5MnO_3 and first order phase magnetic transition alloys Gd_5(Si_xGe_1_−_x)_4, LaFe_1_1_._3_8_4Mn_0_._3_5_6Si_1_._2_6H_1_._5_2, LaFe_1_1_._0_5Co_0_._9_4Si_1_._1_0 and MnFeP_0_._4_5As_0_._5_5. The tests were performed with fixed fluid flow rate (5 l/min), AMR cycle frequency (1.25 Hz) and cold heat exchanger temperature (288 K) while the hot heat exchanger temperature was varied in the range 295–302 K. The results, generated for a magnetic induction which varies from 0 to 1.5 T, are presented in terms of temperature span, refrigeration power and coefficient of performance. From a global point of view (performances and cost), the most promising materials are LaFeSi compounds which are really cheaper than rare earth compounds and they give a performance sufficiently higher than gadolinium. - Graphical abstract: • Active Magnetic Refrigeration (AMR) cycle; • First Order Transition magnetic materials (FOMT); • Second Order Transition magnetic materials (SOMT). - Highlights: • Comparison between different magnetic materials. • 2D model of an Active Magnetic Regenerative refrigeration cycle. • Validation of the model with experimental data. • Gd_5(Si_xGe_1_−_x)_4 is the most performant magnetic material. • The most promising are LaFeSi compounds which are cheaper and they give high performances.

  7. An optimized magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction...... of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close...... to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration....

  8. An optimized magnet for magnetic refrigeration

    International Nuclear Information System (INIS)

    Bjork, R.; Bahl, C.R.H.; Smith, A.; Christensen, D.V.; Pryds, N.

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration.

  9. Determining the minimum mass and cost of a magnetic refrigerator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden

    2011-01-01

    An expression is determined for the mass of the magnet and magnetocaloric material needed for a magnetic refrigerator and these are determined using numerical modeling for both parallel plate and packed sphere bed regenerators as function of temperature span and cooling power. As magnetocaloric......, respectively, the cheapest 100 W parallel plate refrigerator with a temperature span of 20 K using Gd and a Halbach magnet has 0.8 kg of magnet, 0.3 kg of Gd and a cost of $35. Using the constant material reduces this cost to $25. A packed sphere bed refrigerator with the constant material costs $7. It is also...

  10. Thermoelectric refrigerator having improved temperature stabilization means

    International Nuclear Information System (INIS)

    Falco, C.M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized

  11. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    Science.gov (United States)

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  12. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    Science.gov (United States)

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  13. Comparing superconducting and permanent magnets for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein; Bahl, C. R. H.

    2016-01-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio...... of the regenerator and desiredinternal magnetic field. It is shown that to produce a 1 T internal field in theregenerator a permanent magnet of hundreds of kilograms is needed or an area ofsuperconducting tape of tens of square meters. The cost of cooling the SC solenoidis shown to be a small fraction of the cost...... of the SC tape. Assuming a cost ofthe SC tape of 6000 $/m2 and a price of the permanent magnet of 100 $/kg, thesuperconducting solenoid is shown to be a factor of 0.3-3 times more expensive thanthe permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspectratio of the regenerator...

  14. Temperature stability limits for an isothermal demagnetization refrigerator

    Science.gov (United States)

    Kittel, P.

    1984-01-01

    It is pointed out that magnetic refrigeration can provide additional cooling for infrared detectors on space missions, taking into account the Shuttle Infrared Telescope Facility (SIRTF) and the Large Deployable Reflector (LDR). From a temperature of 2 K provided by the primary cryogens, magnetic refrigerators could cool bolometers or pumped photoconductors to 0.1 K or below. Such a reduction in operating temperature would increase the sensitivity for bolometers, while the response at longer wavelengths for pumped photoconductors would be improved. Two types of magnetic refrigeration cycles have been proposed. One type uses a complete demagnetization. The present investigation is concerned with the second type, which uses a feedback-controlled isothermal demagnetization, taking into account the temperature stability limits. Attention is given to control system resolution, thermometer noise, reaction time, and thermal time constants.

  15. Magnetic refrigeration down to 1.6 K for the future circular collider e$^+$e$^-$

    CERN Document Server

    Tkaczuk, Jakub; Millet, Francois; Rousset, Bernard; Duval, Jean Marc

    2017-01-01

    High-field superconducting rf cavities of the future circular collider e+e− may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 103 times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  16. Review and comparison of magnet designs for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    One of the key issues in magnetic refrigeration is generating the magnetic field that the magnetocaloric material must be subjected to. The magnet constitutes a major part of the expense of a complete magnetic refrigeration system and a large effort should therefore be invested in improving...... the magnet design. A detailed analysis of the efficiency of different published permanent magnet designs used in magnetic refrigeration applications is presented in this paper. Each design is analyzed based on the generated magnetic flux density, the volume of the region where this flux is generated...... and the amount of magnet material used. This is done by characterizing each design by a figure of merit magnet design efficiency parameter, Λcool. The designs are then compared and the best design found. Finally recommendations for designing the ideal magnet design are presented based on the analysis...

  17. The lifetime cost of a magnetic refrigerator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian R.H.; Nielsen, Kaspar Kirstein

    2016-01-01

    The total cost of a 25 W average load magnetic refrigerator using commercial grade Gd is calculated using a numerical model. The price of magnetocaloric material, magnet material and cost of operation are considered, and all influence the total cost. The lowest combined total cost with a device...... lifetime of 15 years is found to be in the range $150-$400 depending on the price of the magnetocaloric and magnet material. The cost of the magnet is largest, followed closely by the cost of operation, while the cost of the magnetocaloric material is almost negligible. For the lowest cost device...... characteristics are based on the performance of a conventional A+++ refrigeration unit. In a rough life time cost comparison between the AMR device and such a unit we find similar costs, the AMR being slightly cheaper, assuming the cost of the magnet can be recuperated at end of life....

  18. High-entropy bulk metallic glasses as promising magnetic refrigerants

    International Nuclear Information System (INIS)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao; Wang, Jun-Qiang; Li, Run-Wei; Inoue, Akihisa

    2015-01-01

    In this paper, the Ho 20 Er 20 Co 20 Al 20 RE 20 (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS M pk ) and refrigerant capacity (RC) reaches 15.0 J kg −1 K −1 and 627 J kg −1 at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS M pk and RC. In addition, the magnetic ordering temperature, ΔS M pk and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures

  19. Modeling of in-vehicle magnetic refrigeration

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Bahl, Christian R.H.; Engelbrecht, Kurt

    2014-01-01

    A high-performance magnetic refrigeration device is considered as a potential technology for in-vehicle air conditioners in electric vehicles. The high power consumption of a conventional air conditioner in an electric vehicle has considerable impacts on cruising distance. For this purpose...

  20. Modeling of In-vehicle Magnetic refrigeration

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Bahl, Christian; Engelbrecht, Kurt

    2012-01-01

    A high-performance magnetic refrigeration device is considered as a potential technology for in-vehicle air conditioners in electric vehicles. The high power consumption of a conventional air conditioner in an electric vehicle has considerable impacts on cruising distance. For this purpose...

  1. A versatile magnetic refrigeration test device

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Petersen, Thomas Frank; Pryds, Nini

    2008-01-01

    of the applied magnetic field. An advanced two-dimensional numerical model has previously been implemented in order to help in the optimization of the design of a refrigeration test device. Qualitative agreement between the results from model and the experimental results is demonstrated for each of the four...... different parameter variations mentioned above. (C) 2008 American Institute of Physics....

  2. Comparing superconducting and permanent magnets for magnetic refrigeration

    Directory of Open Access Journals (Sweden)

    R. Bjørk

    2016-05-01

    Full Text Available We compare the cost of a high temperature superconducting (SC tape-based solenoid with a permanent magnet (PM Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 $/m2 and a price of the permanent magnet of 100 $/kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  3. Carnot type magnetic refrigeration below 4.2 K - computer simulation

    International Nuclear Information System (INIS)

    Hashimoto, T.; Numazawa, T.; Maro, T.

    1984-01-01

    Cooling devices based on a utilization of the Carnot type magnetic refrigeration cycle are usually selected for the temperature range from 20 K to 1.8 K. However, the refrigeration power in the case of such devices is frequently limited by the heat transfer coefficient between the heat source and the magnetic working substance. Thus, in a magnetic refrigerator studied by Delpuech et al. (1981), the refrigeration power is mainly restricted by the heat transfer coefficient in the isothermal magnetization process at 4.2 K. The present investigation is concerned with the development of a method for achieving high refrigeration power on the basis of a study utilizing computer simulation. One of two methods considered for enhancing refrigeration power is related to the change in the magnetic field, while the other method involves an enlargement of the effective area of gadolinium-gallium-garnet (GGG) with the aid of deep grooves in the surface. 6 references

  4. Basics of Low-temperature Refrigeration

    CERN Document Server

    Alekseev, A.

    2014-07-17

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  5. Basics of Low-temperature Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A [Linde AG, Munich (Germany)

    2014-07-01

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  6. Optimization of Multi-layer Active Magnetic Regenerator towards Compact and Efficient Refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2016-01-01

    Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat r....... In addition, simulations are carried out to investigate the potential of applying nanofluid in future magnetic refrigerators.......Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat...... their Curie temperature. Simulations are implemented to investigate how to layer the FOPT materials for obtaining higher cooling capacity. Moreover, based on entropy generation minimization, optimization of the regenerator geometry and related operating parameters is presented for improving the AMR efficiency...

  7. New magnetic refrigeration materials for the liquefaction of hydrogen

    International Nuclear Information System (INIS)

    Gschneidner, K.A.; Takeya, H.; Moorman, J.O.; Pecharsky, V.K.; Malik, S.K.; Zimm, C.B.

    1994-01-01

    Five heavy lanthanide ferromagnetic intermetallic compounds were studied as potential magnetic refrigerants for the liquefaction of hydrogen gas. (Dy 0.5 Er 0.5 )Al 2 and TbNi 2 appear to be better refrigerants than GdPd for a Joule-Brayton cycle refrigerator, while (Gd 0.54 Er 0.46 )AlNi seems to be a suitable refrigerant for an Ericsson cycle refrigerator

  8. Preliminary experimental results from a linear reciprocating magnetic refrigerator prototype

    International Nuclear Information System (INIS)

    Tagliafico, Luca Antonio; Scarpa, Federico; Valsuani, Federico; Tagliafico, Giulio

    2013-01-01

    A linear reciprocating magnetic refrigerator prototype was designed and built with the aid of an industrial partner. The refrigerator is based on the Active Magnetic Regenerative cycle, and exploits two regenerators working in parallel. The active material is Gadolinium in plates, 0.8 mm thick, for a total mass of 0.36 kg. The device is described and results about magnetic field and temperature span measurements are presented. The designed permanent magnet structure, based on an improved cross-type arrangement, generates a maximum magnetic field intensity of 1.55 T in air, over a gap of (13 × 50 × 100) mm 3 . The maximum temperature span achieved is 5.0 K, in a free run condition. -- Highlights: ► We give preliminary results from a linear reciprocating magnetic refrigerator prototype. ► The design is intended to process visualization and investigation. ► The prototype behavior gives us various suggestions to improve its general performance

  9. Review of magnetic refrigeration system as alternative to conventional refrigeration system

    Science.gov (United States)

    Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.

    2017-10-01

    The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.

  10. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  11. (Dy0.5Er0.5)Al2: A large magnetocaloric effect material for low-temperature magnetic refrigeration

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Takeya, H.; Moorman, J.O.; Pecharsky, V.K.

    1994-01-01

    The low-temprature heat capacity and ac and dc magnetic properties of (Dy 0.5 Er 0.5 )Al 2 have been studied as a function of magnetic fields up to ∼10 T. The magnetocaloric effect in (Dy 0.5 Er 0.5 )Al 2 is 30% larger than that of the prototype material, GdPd. Magnetic measurements show that there is no measurable magnetic hysteresis above ∼17 K. These results suggest that (Dy 0.5 Er 0.5 )Al 2 would be a significantly better magnetic refrigerant than GdPd

  12. Magnetic refrigeration down to 1.6 K for the future circular collider e^{+}e^{-}

    Directory of Open Access Journals (Sweden)

    Jakub Tkaczuk

    2017-04-01

    Full Text Available High-field superconducting rf cavities of the future circular collider e^{+}e^{-} may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 10^{3} times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  13. A plastic dilution refrigerator in a 35 T magnet

    International Nuclear Information System (INIS)

    Oliveira, N.F.Jr; Bindilatti, V.; Haar, E. ter; Martin, R.V.; McNiff, E.J.Jr.

    1996-01-01

    We have built a plastic dilution refrigerator, small enough to fit in the bore of the 35 T hybrid magnet at MIT. The base temperature at H = 0 was 20 mK, measured with a CMN thermometer. In the field, we used capacitive glass thermometers and Matsushita resistors. All data obtained were consistent with a field independent glass thermometer and a negligible magnetoresistance of the Matsushitas at high fields. The minimum temperature measured at 34 T was 25 mK. The effect of magnet vibrations as well as field sweeps (≅ 1 T/min) corresponded to less than 1 μW heating. We observed that, above 29 T, the temperature gradients existent inside the mixing chamber suddenly disappeared, with the temperature becoming homogeneous from top to bottom. We attribute this fact to the effect of the magnetic forces on the liquid. (author)

  14. Contribution to magnetic refrigeration study at liquid helium study

    International Nuclear Information System (INIS)

    Lacaze, A.

    1985-10-01

    An experimental prototype of magnetic refrigerator operates, following a Carnot cycle, with gallium gadolinium garnet, from liquid helium at 4.2 0 K. Analysis of the cyle and heat exchanges allowed to improve performance up to get more than 50% of Carnot yield at 1.8 0 K and nearly 80% at 2.1 0 K. Operation conditions of a regenerator refrigerator between 4 and 20 0 K are studied. The association of a magnetic refrigerator and a gas refrigerator is analyzed. Among different ways to realize the magnetic stage, an active regenerator cycle is chosen. An experimental device is described [fr

  15. Application of magnetic refrigeration and its assessment - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovski, A.; Vuarnoz, D.; Diebold, M.; Gonin, C.; Egolf, P. W.

    2007-07-01

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done in 2007 at the University of Applied Sciences of Western Switzerland on a project involving refrigeration based on magnetic effects. Possible refrigeration technologies and the evaluation of the potential of magnetic refrigeration are discussed. A calculation tool developed to determine the coefficient of performance (COP) values and the exergy efficiency as a function of magnetic field strength and rotational frequency for rotary types of magnetic refrigerators is introduced. Two applications that are considered to be very interesting for initial research, namely a household refrigerator without a freezing compartment and a large-size central chilling unit are discussed. The COP values of such large-scale systems are commented on. The study of the use of even superconducting magnets is considered as being an economic solution.

  16. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    Science.gov (United States)

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  17. Second law analysis of the helium refrigerators for the HERA proton magnet ring

    International Nuclear Information System (INIS)

    Ziegler, B.O.

    1986-01-01

    Each of the three refrigerators for the HERA proton magnet ring must provide 6.775 kW of refrigeration at 4.3 0 K plus 20.5 g/s of helium at 2.5 bar and 4.5 0 K for leads cooling and 20 kW of refrigeration at 40-80 0 K for shield cooling. The capital cost of large refrigerators is small compared with operating costs. Therefore the refrigeration process was analysed on the basis of exergy. This means the irreversibility of each component is expressed as power input into the plant. The process realised consists of the turbine cycle, divided into two streams with 5 gas bearing turbines all together, and the Joule Thomson cycle. Special attention was paid to the cold end of the plant. The optimization resulted in a new configuration with two turboexpanders running in parallel on different temperature levels

  18. Mechanical vapor compression refrigeration for low temperature industrial applications today

    International Nuclear Information System (INIS)

    Ferguson, J.E.

    1987-01-01

    If the super conductor industry settles out at a temperature of -100 0 F or above, mechanical refrigeration will be vying for the cooling business. Today there very definitely is a break point in the application of equipment at approximately -120 0 F or 189 0 K. Other technologies are generally utilized below this level. However, with market potential comes invention and breakthroughs in refrigeration can also occur. Today standard refrigeration systems are cost effective, reliable and produced in the millions for high temperature applications of +10 0 F to +40 0 F evaporator temperature. Lower temperatures require additional hardware, consume additional power and are produced today in limited quantities for special applications

  19. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  20. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2017-11-07

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  1. Defrost Temperature Termination in Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  2. Ecological optimization for an irreversible magnetic Ericsson refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Hao; Wu Guo-Xing

    2013-01-01

    An irreversible Ericsson refrigeration cycle model is established, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leakage, and the efficiency of the regenerator are taken into account. Expressions for several important performance parameters, such as the cooling rate, coefficient of performance (COP), power input, exergy output rate, entropy generation rate, and ecological function are derived. The influences of the heat leakage and the time of the regenerative processes on the ecological performance of the refrigerator are analyzed. The optimal regions of the ecological function, cooling rate, and COP are determined and evaluated. Furthermore, some important parameter relations of the refrigerator are revealed and discussed in detail. The results obtained here have general significance and will be helpful in gaining a deep understanding of the magnetic Ericsson refrigeration cycle. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Continuous magnetic refrigeration in the superfluid helium range

    International Nuclear Information System (INIS)

    Lacaze, Alain.

    1982-10-01

    An experimental prototype magnetic refrigerator based on the well known adiabatic demagnetization principle is described. A continuous process is employed in which gadolinium garnet follows successive magnetization-demagnetization cycles between a hot liquid helium source at 4.2K and a cold superfluid helium source at T [fr

  4. Interface Behavior in Functionally Graded Ceramics for the Magnetic Refrigeration: Numerical Modeling

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    The active magnetic regenerator refrigerator is currently the most common magnetic refrigeration device for near room temperature applications, and it is driven by the magnetocaloric effect in the regenerator material. In order to make this efficient, a graded configuration of the magnetocaloric...... the influence of the different material properties, i.e. the density and the viscosity, on the interface between the flows, since this is highly important for the efficiency of the device. The Newtonian flow behavior with relatively high viscosity is assumed for each fluid and used in the simulation...

  5. Redundant cryorefrigerator system for a refrigerated superconductive magnet

    International Nuclear Information System (INIS)

    Ackermann, R.A.

    1992-01-01

    This patent describes a cryorefrigerator system for a refrigerated superconductive magnet. It comprises a mounting means rigidly attached to the magnet; at least two cryorefrigerator means mounted on the mounting means such that the cryorefrigerator means moves on the mounting means and at least one of the two cryorefrigerator means being substantially out of contact with the magnet; and an adjustment means rigidly attached to the cryorefrigerator means for moving the at least one of the cryorefrigerator means

  6. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  7. Conceptual design of a 0.1 W magnetic refrigerator for operation between 10 K and 2 K

    International Nuclear Information System (INIS)

    Helvensteijn, B.P.M.; Kashani, A.

    1990-01-01

    The design of a magnetic refrigerator for space applications is discussed. The refrigerator is to operate in the temperature range of 10 K-2 K, at a 2 K cooling power of 0.10 W. As in other magnetic refrigerators operating in this temperature range GGG has been selected as the refrigerant. Crucial to the design of the magnetic refrigerator are the heat switches at both the hot and cold ends of the GGG pill. The 2 K heat switch utilizes a narrow He II filled gap. The 10 K heat switch is based on a narrow helium gas gap. For each switch, the helium in the gap is cycled by means of activated carbon pumps. The design concentrates on reducing the switching times of the pumps and the switches as a whole. A single stage system (one magnet; one refrigerant pill) is being developed. Continuous cooling requires the fully stationary system to have at least two stages running parallel/out of phase with each other. In order to conserve energy, it is intended to recycle the magnetic energy between the magnets. To this purpose, converter networks designed for superconducting magnetic energy storage are being studied. 17 refs

  8. Magnetic Refrigeration – an Energy Efficient Technology for the Future

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Smith, Anders; Pryds, Nini

    2009-01-01

    . This magnetocaloric effect is inherent to all magnetic materials, but manifests itself stronger in some materials. The thermodynamically reversible nature of the magnetocaloric effect holds out the promise of a more energy efficient method of refrigeration compared to conventional compressor technology. Coupling...

  9. Effect of evaporator temperature on vapor compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2011-12-01

    Full Text Available This paper presents a comparable evaluation of R600a (isobutane, R290 (propane, R134a, R22, for R410A, and R32 an optimized finned-tube evaporator, and analyzes the evaporator effect on the system coefficient of performance (COP. Results concerning the response of a refrigeration system simulation software to an increase in the amount of oil flowing with the refrigerant are presented. It is shown that there is optima of the apparent overheat value, for which either the exchanged heat or the refrigeration coefficient of performance (COP is maximized: consequently, it is not possible to optimize both the refrigeration COP and the evaporator effect. The obtained evaporator optimization results were incorporated in a conventional analysis of the vapor compression system. For a theoretical cycle analysis without accounting for evaporator effects, the COP spread for the studied refrigerants was as high as 11.7%. For cycle simulations including evaporator effects, the COP of R290 was better than that of R22 by up to 3.5%, while the remaining refrigerants performed approximately within a 2% COP band of the R22 baseline for the two condensing temperatures considered.

  10. Effect of high entropy magnetic regenerator materials on power of the GM refrigerator

    International Nuclear Information System (INIS)

    Hashimoto, Takasu; Yabuki, Masanori; Eda, Tatsuji; Kuriyama, Toru; Nakagome, Hideki

    1994-01-01

    In previous work the authors have proved that heavy rare earth compounds with low magnetic transition temperature T c are very useful as regenerator materials in low temperature range. Applying the magnetic material Er 3 Ni particles to the 2nd regenerator of the GM refrigerator, they were able to reach the 2 K range but could not obtain high refrigeration power at 4.2 K. This is thought to be due to the temperature dependence of the magnetic specific heat. They present here a method by which high refrigeration power is obtained at low temperature. The simplest means of obtaining high power is with a hybrid structure regenerator which is composed of two kinds of magnetic materials, high T c and low T c materials. Computer simulation and experiments were carried out to verify the superiority of the hybrid regenerator. The authors succeeded experimentally in obtaining the high power of ∼ 1.1 watt at 4.2 K. They will report other detailed results and discuss developing way of the magnetic regenerator in future

  11. Magnetic refrigeration: Materials, design, and applications. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning cryogenics using magnetic refrigerants. Refrigerant properties, magnetic materials, and thermal characteristics are discussed. Magnetic refrigerators are used for helium liquefaction, cooling superconductors, and superfluid helium production. Carnot-cycle refrigerators, reciprocating refrigerators, parasitic refrigerators, Ericsson refrigerators, and Stirling cycle refrigerators are among the types of magnetic refrigerators evaluated. (Contains a minimum of 94 citations and includes a subject term index and title list.)

  12. Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.; Alyousef, Y.M.

    2014-01-01

    The basic SAR (solar-driven adsorption refrigeration) machine is an intermittent cold production system. Recently, the CO-SAR (continuous operation solar-powered adsorption refrigeration) system is developed. The CO-SAR machine is based on the theoretical CTAR (constant temperature adsorption refrigeration) cycle in which the adsorption process takes place at a constant temperature that equals the ambient temperature. Practically, there should be a temperature gradient between the adsorption bed and the surrounding atmosphere to provide a driving potential for heat transfer. In the present study, the dynamic analysis of the CTAR cycle is developed. This analysis provides a comparison between the theoretical and the dynamic operation of the CTAR cycle. The developed dynamic model is based on the D-A adsorption equilibrium equation and the energy and mass balances in the adsorption reactor. Results obtained from the present work demonstrate that, the idealization of the constant temperature adsorption process in the theoretical CTAR cycle is not far from the real situation and can be approached. Furthermore, enhancing the heat transfer between the adsorption bed and the ambient during the bed pre-cooling process helps accelerating the heat rejection process from the adsorption reactor and therefore approaching the isothermal process. - Highlights: • The dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle is developed. • The CTAR theoretical and dynamic cycles are compared. • The dynamic cycle approaches the ideal one by enhancing the bed precooling

  13. Refrigeration Performance and Entropy Generation Analysis for Reciprocating Magnetic Refrigerator with Gd Plates

    Directory of Open Access Journals (Sweden)

    Yonghua You

    2018-06-01

    Full Text Available In the current work, a novel 2D numerical model of stationary grids was developed for reciprocating magnetic refrigerators, with Gd plates, in which the magneto-caloric properties, derived from the Weiss molecular field theory, were adopted for the built-in energy source of the magneto-caloric effect. The numerical simulation was conducted under the conditions of different structural and operational parameters, and the effects of the relative fluid displacement (φ on the specific refrigeration capacity (qref and the Coefficient of Performance (COP were obtained. Besides the variations of entropy, the generation rate and number were studied and the contours of the local entropy generation rate are presented for discussion. From the current work, it is found that with an increase in φ, both the qref and COP followed the convex variation trend, while the entropy generation number (Ns varied concavely. As for the current cases, the maximal qref and COP were equal to 151.2 kW/m3 and 9.11, respectively, while the lowest Ns was the value of 2.4 × 10−4 K−1. However, the optimal φ for the largest qref and COP, and for the lowest Ns, were inconsistent, thus, some compromises need be made in the optimization of magnetic refrigerators.

  14. Performance analysis of a rotary active magnetic refrigerator

    International Nuclear Information System (INIS)

    Lozano, J.A.; Engelbrecht, K.; Bahl, C.R.H.; Nielsen, K.K.; Eriksen, D.; Olsen, U.L.; Barbosa, J.R.; Smith, A.; Prata, A.T.; Pryds, N.

    2013-01-01

    Highlights: • Experimental results of a novel rotary active magnetic refrigerator are obtained. • Experiments are compared to predictions from a 1D numerical AMR model. • Performance is evaluated considering parasitic losses for a range of conditions. • A cooling power of 200 W is produced at a span of 16.8 K with a COP of 0.69. • The attained overall second-law efficiency is around 5%. - Abstract: Performance results for a novel rotary active magnetic regenerator (AMR) and detailed numerical model of it are presented. The experimental device consists of 24 regenerators packed with gadolinium (Gd) spheres rotating inside a four-pole permanent magnet with magnetic field of 1.24 T. A parametric study of the temperature span, cooling power, coefficient of performance (COP) and efficiency of the system was carried out over a range of different hot reservoir temperatures, volumetric flow rates and cooling powers. Detailed modeling of the AMR using a 1D model was performed and compared with the experimental results. An overall mapping of the thermal losses of the system was performed, and good agreement between the experimental and numerical results was found when parasitic heat losses were subtracted from the modeling results. The performance of the system was evaluated via the COP, the exergetic-equivalent cooling power (Ex Q ), and the overall second law efficiency, η 2nd . Losses mapping indicated that friction and thermal leakage to the ambient are the most important contributors to the reduction of the system performance. Based on modeling results, improvements on the flow distributor design and reduction of the cold end thermal parasitic losses are expected to enhance the efficiency of the system. For an operating frequency of 1.5 Hz, a volumetric flow rate of 400 L/h, a hot reservoir temperature of 297.7 K, and thermal loads of 200 and 400 W, the obtained temperature spans, ΔT S , were 16.8 K and 7.1 K, which correspond to COPs of 0.69 and 1

  15. 4 K to 20 K rotational-cooling magnetic refrigerator capable of 1-mW to >1-W operation

    International Nuclear Information System (INIS)

    Barclay, J.A.

    1980-02-01

    The low-temperature, magnetic entropy of certain single-crystal paramagnetic materials, such as DyPO 4 , changes dramatically as the crystal rotates in a magnetic field. A new magnetic refrigerator design based on the anisotropic nature of such materials is presented. The key advantages of the rotational-cooling concept are (1) a single, rotary motion is required, (2) magnetic field shaping is not a problem because the entire working material is in a constant field, and (3) the refrigerator can be smaller than comparable magnetic refrigerators because the working material is entirely inside the magnet at all times. The main disadvantage of the rotational-cooling concept is that small-dimension single crystals are required

  16. Progress in magnetic refrigeration and future challenges

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Pryds, Nini

    2014-01-01

    Since a regenerative magnetic cooling cycle was first demonstrated in 1976, many developments have been made in the areas of system modeling, magnetocaloric materials and system design. Systems have gone from laboratory demonstrators using superconducting magnets to near commercial systems using ...

  17. Experiments on a modular magnetic refrigeration device

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Jensen, Jesper Buch; Bahl, Christian

    2012-01-01

    of different experiments. The test device is of the reciprocating type, and the magnetic field source is provided by a permanent Halbach magnet assembly with an average flux density of 1.03 Tesla. This work presents experimental results for flat plate regenerators made of gadolinium and sintered compounds...

  18. Developments in magnetocaloric refrigeration

    International Nuclear Information System (INIS)

    Brueck, Ekkes

    2005-01-01

    Modern society relies on readily available refrigeration. Magnetic refrigeration has three prominent advantages compared with compressor-based refrigeration. First, there are no harmful gases involved; second, it may be built more compactly as the working material is a solid; and third, magnetic refrigerators generate much less noise. Recently a new class of magnetic refrigerant-materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: they exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase-transition of first order. This MCE is larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review we compare the different materials considering both scientific aspects and industrial applicability. Because fundamental aspects of MCE are not so widely discussed, we also give some theoretical considerations. (topical review)

  19. Development of a novel rotary magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime A.; Capovilla, Matheus S.; Trevizoli, Paulo V.

    2016-01-01

    are presented as a function of the operating frequency, fluid flow rate, hot reservoir temperature and thermal load. The performance of the device was evaluated in terms of the coefficient of performance (COP) and overall second-law efficiency (η2nd). The maximum no-load temperature span was 12 K at 1.5 Hz...

  20. A fundamental study of a regenerator for an Ericsson magnetic refrigerator

    International Nuclear Information System (INIS)

    Matsumoto, K.; Ito, T.; Numazawa, T.; Hashimoto, T.; Kuriyama, T.; Nakagome, H.

    1986-01-01

    The authors studied an Ericsson magnetic refrigerator above 20 K. The magnetic working material passes through the regenerator during internal heat transfer processes. In the temperature range above 20 K, a solid is indispensable for a regenerator in need of the large volumetric heat capacity. Therefore lead is used for the testing regenerator. As thermal conduction of gaseous helium is expected to be useful for the heat transfer between the regenerator and the working material, the authors have made the gap between them small in order to achieve good heat transfer. They investigated the heat transfer process between working material and regenerator experimentally in the temperature from 25 K to 55 K

  1. Effect of geometrical shape of the working substance Gadolinium on the performance of a regenerative magnetic Brayton refrigeration cycle

    International Nuclear Information System (INIS)

    Diguet, Gildas; Lin, Guoxing; Chen, Jincan

    2013-01-01

    Based on Mean Field Theory (MFT), the entropy of magnetic material Gadolinium (Gd), which is a function of the local magnetic field and temperature, is calculated and analyzed. This local magnetic field is the sum of the applied field H 0 plus the exchange field H W =λM and the demagnetizing field H d =−NM, where the demagnetizing factor N depends on the shape of magnetic materials. Hereby, the impacts of the demagnetizing factor N on the magnetic entropy, magnetic entropy change and main thermodynamics performance of a regenerative magnetic Brayton refrigeration cycle using Gd as the working substance are investigated and evaluated in detail. The results obtained underline the importance of the shape of the working substance used in magnetic refrigerators for room-temperature application; elongated materials provide better thermodynamics performance such as higher COP and net heat absorption. It is pointed out that for low external fields, the magnetic refrigerator ceased to be functional if flat materials were used. - Highlights: ► Gd entropy is calculated as a function of temperature and internal magnetic field. ► Magnetic Brayton cycle properties generally depend on the demagnetizing factor. ► Redundant heat transfer is highly sensitive to the demagnetizing factor. ► The net cooling quantity is highly sensitive to the demagnetizing factor. ► Coefficient of performance is dependant to the magnetic material shape.

  2. Magnetic refrigeration system with separated inlet and outlet flow

    Energy Technology Data Exchange (ETDEWEB)

    Auringer, Jon Jay; Boeder, Andre Michael; Chell, Jeremy Jonathan; Leonard, John Paul; Zimm, Carl Bruno

    2017-06-14

    An active magnetic regenerative (AMR) refrigerator apparatus can include at least one AMR bed with a first end and a second end and a first heat exchanger (HEX) with a first end and a second end. The AMR refrigerator can also include a first pipe that fluidly connects the first end of the first HEX to the first end of the AMR bed and a second pipe that fluidly connects the second end of the first HEX to the first end of the AMR bed. The first pipe can divide into two or more sub-passages at the AMR bed. The second pipe can divide into two or more sub-passages at the AMR bed. The sub-passages of the first pipe and the second pipe can interleave at the AMR bed.

  3. Nonlinear Superheat and Evaporation Temperature Control of a Refrigeration Plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Thybo, Claus; Larsen, Lars F. S.

    2006-01-01

    This paper proposes novel control of the superheat of the evaporator in a refrigeration system. A new model of the evaporator is developed and based on this model the superheat is transferred to a referred variable. It is shown that control of this variable leads to a linear system independent...... of the working point. The model also gives a method for control of the evaporation temperature. The proposed method is validated by experimental results....

  4. Applications of magnetic refrigeration and its assessment. A feasibility study - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovski, A.; Diebold, M.; Vuarnoz, D.; Gonin, C.; Egolf, P. W.

    2008-04-15

    Magnetic refrigeration has the potential to replace conventional refrigeration systems - with often problematic refrigerants - in several niche markets or even some main markets of the refrigeration domain. Based on this insight the Swiss Federal Office of Energy has asked a division of the University of Applied Sciences of Western Switzerland (HEIG-VD) in Yverdon-les-Bains to list all possible refrigeration technologies and to evaluate the potential of magnetic refrigeration for these specific applications. The HEIG-VD researchers have developed a calculation tool to determine the coefficient of performance (COP) value and the exergy efficiency as a function of the magnetic field strength and the rotation frequency of a rotary type of magnetic refrigerator. The considered machine design is based on a patent, which was deposited by these scientists. Based on this work, it is found that especially two applications are very interesting for a closer investigation: the household refrigerator without a freezing compartment and the central chilling unit, which may be of large size. In the domains of refrigeration, where magnetic refrigeration could be successfully applied, the costs for magnetic refrigeration machines would be a little higher than those of the conventional ones. On the other hand the study shows possibilities how the magnetic refrigeration machines could reach higher COP values than those of the corresponding gas compression/expansion machines. Therefore, for magnetic refrigeration one may assume lower costs of operation. For large systems - as e.g. chiller units - it should be studied, if superconducting magnets could be economically applied. (author)

  5. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-10-01

    Full Text Available Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hydrocarbons extraction from the associated gas flow. In this paper it is shown that cooling temperature plays significant role in low-temperature condensation process. Two operation modes for refrigeration unit were proposed: permanent, in which the concentration of the refrigerant mixture does not change and dynamic, in which the concentration of refrigerant mixtures depends on the ambient temperature. Based on the analysis of exergy losses the optimal concentration of refrigerant mixtures propane/ethane for both modes of operation of the refrigeration unit has been determined. On the basis of the conducted pinch-analysis the modification of refrigeration unit with refrigerant separation into fractions was developed. Additional recuperative heat exchangers for utilization heat were added to the scheme. Several important measures to increase the mass flow rate of refrigerant through the second section of the refrigeration centrifugal compressor from 22.5 to 25 kg/s without violating the agreed operational mode of the compressor sections were implemented.

  6. Comparison between a 1D and a 2D numerical model of an active magnetic regenerative refrigerator

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden

    2008-01-01

    The active magnetic regenerator (AMR) refrigeration system represents an environmentally attractive alternative to vapour-compression refrigeration. This paper compares the results of two numerical AMR models: (1) a 1D finite difference model and (2) a 2D finite element model. Both models simulate...... a reciprocating AMR and can determine the cyclical steady-state temperature profile of the system as well as performance parameters such as the refrigeration capacity, the work input and the coefficient of performance (COP). The models are used to analyse an AMR with a regenerator made of flat parallel plates...... results of overall results such as the refrigeration capacity but that a 2D model is required for a detailed analysis of the phenomena occurring inside the AMR....

  7. Current status of development on superconducting magnetic energy storage systems and magnetic refrigeration

    International Nuclear Information System (INIS)

    Hirano, Naoki

    2010-01-01

    Superconducting magnetic energy storage (SMES) systems have excellent characteristics as energy-storage equipment in power systems such as high efficiency, quick response, and no deterioration in repetitive operations. There are many projects to develop SMES throughout the world. Since 1991, a national project by the Agency for Natural Resources and Energy Japan has been working to develop an SMES system to control power in power systems. Moreover, SMES has been developed to compensate for momentary voltage dips since 2003. To reduce energy consumption due to prolonged operating times, we developed energy-conserving electrical equipment incorporating refrigerating aggregates such as air conditioners. We conduced R and D to convert magnetic refrigeration and highly-efficient, energy-conserving/environmentally friendly technologies, to practical applications. The current status in the development of SMES to control power systems, bridging to deal with instantaneous voltage dips, and magnetic refrigeration technology will be explained in this paper. (author)

  8. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian

    2012-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators...

  9. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.

    2014-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at the Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators...

  10. Food Safety Practices Linked with Proper Refrigerator Temperatures in Retail Delis.

    Science.gov (United States)

    Brown, Laura G; Hoover, Edward Rickamer; Faw, Brenda V; Hedeen, Nicole K; Nicholas, David; Wong, Melissa R; Shepherd, Craig; Gallagher, Daniel L; Kause, Janell R

    2018-05-01

    Listeria monocytogenes (L. monocytogenes) causes the third highest number of foodborne illness deaths annually. L. monocytogenes contamination of sliced deli meats at the retail level is a significant contributing factor to L. monocytogenes illness. The Centers for Disease Control and Prevention's Environmental Health Specialists Network (EHS-Net) conducted a study to learn more about retail delis' practices concerning L. monocytogenes growth and cross-contamination prevention. This article presents data from this study on the frequency with which retail deli refrigerator temperatures exceed 41°F, the Food and Drug Administration (FDA)-recommended maximum temperature for ready-to-eat food requiring time and temperature control for safety (TCS) (such as retail deli meat). This provision was designed to control bacterial growth in TCS foods. This article also presents data on deli and staff characteristics related to the frequency with which retail delis refrigerator temperatures exceed 41°F. Data from observations of 445 refrigerators in 245 delis showed that in 17.1% of delis, at least one refrigerator was >41°F. We also found that refrigeration temperatures reported in this study were lower than those reported in a related 2007 study. Delis with more than one refrigerator, that lacked refrigerator temperature recording, and had a manager who had never been food safety certified had greater odds of having a refrigerator temperature >41°F. The data from this study suggest that retail temperature control is improving over time. They also identify a food safety gap: some delis have refrigerator temperatures that exceed 41°F. We also found that two food safety interventions were related to better refrigerated storage practices: kitchen manager certification and recording refrigerated storage temperatures. Regulatory food safety programs and the retail industry may wish to consider encouraging or requiring kitchen manager certification and recording refrigerated

  11. Contribution to the study of a magnetic refrigeration between 4.2 and 1.8 kelvin

    International Nuclear Information System (INIS)

    Delpuech, Claude.

    1980-11-01

    This thesis includes three parts. (1) Construction of a study alternating refrigerator. This is essentially a double acting machine, with ancillary refrigeration by helium expansion. This refrigerator operates in a liquid helium bath at 4.2 K and the cold source is a superfluid bath whose temperature can be brought down to 1.6 K. The magnetic components, actuated by a periodic translation movement, are magnetized cyclically in the 4.2 K bath, then demagnetized in the central bath forming the cold source. The bar slides in guide bearings, isolating the central chamber of the 4.2 K bath. This can be cooled through the copper wall by the refrigeration bath. A relief valve and a level gauge enable the operation of the ancillary refrigerator to be adjusted. A temperature of under 1.8 K was obtained in a superfluid bath at atmospheric pressure. (2) Study of possible thermal exchange improvements in supercritical helium by artificially creating turbulency between two walls. This study could concern rotary machines described in an addendum. (3) Some physical properties of paramagnetic rare earth salts are also studied [fr

  12. Computer simulation of transitional process to the final stable Brayton cycle in magnetic refrigeration

    International Nuclear Information System (INIS)

    Numasawa, T.; Hashimoto, T.

    1981-01-01

    The final working cycle in the magnetic refrigeration largely depends on the heat transfer coefficient β in the system, the parameter γ of the heat inflow from the outer system to this cycle and the period tau of the cycle. Therefore, so as to make clear this dependence, the time variation of the Brayton cycle with β, γ and tau has been investigated. In the present paper the transitional process of this cycle and the dependence of the final cooling temperature of the heat load on β, γ and tau have all been shown. (orig.)

  13. On subcooler design for integrated two-temperature supermarket refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, No. 4800, Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    The energy saving opportunity of supermarket refrigeration systems using subcooler between the medium-temperature (MT) refrigeration system and the low-temperature (LT) refrigeration system has been identified in the previous work. This paper presents a model-based comprehensive analysis on the subcooler design. The optimal subcooling control is discussed as well. With optimal subcooler size and subcooling control, the maximum energy savings of integrated two-temperature supermarket refrigeration system using R404A or R134a as working fluid can achieve 27% or 20%, respectively. The load ratio of MT to LT system and the operating conditions have considerable impact on the energy savings. (author)

  14. Optimization of the performance characteristics in an irreversible magnetic Brayton refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Hao; Liu Sanqiu

    2008-01-01

    An irreversible cycle model of magnetic Brayton refrigerators is established, in which the thermal resistance and irreversibility in the two adiabatic processes are taken into account. Expressions for several important performance parameters, such as the coefficient of performance, cooling rate and power input are derived. Moreover, the optimal performance parameters are obtained at the maximum coefficient of performance. The optimization region (or criteria) for an irreversible magnetic Brayton refrigerator is obtained. The results obtained here have general significance and will be helpful to understand deeply the performance of a magnetic Brayton refrigeration cycle

  15. Low-temperature measurement system based on a closed-cycle refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Mitsuyuki; Kawamata, Shuichi; Ishida, Takekazu; Okayasu, Satoru; Hojou, Kiichi

    2003-05-01

    We have built a new torque magnetometer with a closed-cycle helium refrigerator. The temperature can be lowered down to 1.5 K by pumping liquefied helium in sample space. The temperature can be stabilized within {+-}0.01 K by using the two-independent PID loops. A piezoresistor bridge configured with a silicon cantilever surface is used to detect a torque. A transeverse magnetic field, which is fabricated by the several pieces of the permanent magnets, can produce a field up to 10 kG in any direction. The system has complete control from a computer by coding a LabVIEW. We have demonstrated the torque curves of a single crystal YBa{sub 2}Cu{sub 4}O{sub 8} successfully even at 1.6 K.

  16. Low-temperature measurement system based on a closed-cycle refrigerator

    International Nuclear Information System (INIS)

    Tsuji, Mitsuyuki; Kawamata, Shuichi; Ishida, Takekazu; Okayasu, Satoru; Hojou, Kiichi

    2003-01-01

    We have built a new torque magnetometer with a closed-cycle helium refrigerator. The temperature can be lowered down to 1.5 K by pumping liquefied helium in sample space. The temperature can be stabilized within ±0.01 K by using the two-independent PID loops. A piezoresistor bridge configured with a silicon cantilever surface is used to detect a torque. A transeverse magnetic field, which is fabricated by the several pieces of the permanent magnets, can produce a field up to 10 kG in any direction. The system has complete control from a computer by coding a LabVIEW. We have demonstrated the torque curves of a single crystal YBa 2 Cu 4 O 8 successfully even at 1.6 K

  17. Experimental Studies with an Active Magnetic Regenerating Refrigerator

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian

    2015-01-01

    Experimental results for an active magnetic regenerator (AMR) are presented. The focus is on whether or not it pays off to partly substitute soft magnetic material with non-magnetic insulation in a flux-conducting core in the magnet system. Such a substitution reduces losses due to heat conduction...... and eddy currents, but also reduces the magnetic field. Two different cores were tested in the AMR system with different cooling loads and it is shown, that in the present case, replacing half of the iron with insulation lead to an average reduction in temperature span of 14%, but also a small decrease...... in COP, hence the substitution did not pay off. Furthermore, it is shown experimentally, that small imbalances in the heat transfer fluid flow greatly influence the system performance. A reduction of these imbalances through valve adjustments resulted in an increase in the temperature span from...

  18. Domestic Refrigerators Temperature Prediction Strategy for the Evaluation of the Expected Power Consumption

    DEFF Research Database (Denmark)

    Lakshmanan, Venkatachalam; Marinelli, Mattia; Kosek, Anna Magdalena

    2013-01-01

    This paper discusses and presents a simple temperature prediction strategy for the domestic refrigerator. The main idea is to predict the duration it takes to the Cold chamber temperature to reach the thresholds according to the state of the compressor and to the last temperature measurements....... The experiments are conducted at SYSLAB facility at DTU Risø Campus having a set of refrigerators working at different set point temperatures, with different ambient temperatures and under different thermal load conditions. The prediction strategy is tested using a set of different refrigerators in order...

  19. Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe0.975Ni0.025Rh

    International Nuclear Information System (INIS)

    Manekar, Meghmalhar; Roy, S B

    2011-01-01

    We present the results of magnetocaloric effect (MCE) measurements on Fe 0.975 Ni 0.025 Rh. The MCE is estimated using both the isothermal field-dependent magnetization and the temperature-dependent magnetization in constant magnetic fields. We find a very large effective refrigerant capacity of nearly 492.8 J kg -1 , with the hot end at about 307 K, which is reproducible over many field cycles. We compare this refrigerant capacity with those of two well known systems, namely Gd 5 Ge 1.9 Si 2 Fe 0.1 and MnFeP 0.45 As 0.55 , which show a large MCE near room temperature, and also with our earlier results on the parent Fe-Rh alloy. The large effective refrigerant capacity in our sample is one of the largest achieved yet at room temperature with a significant improvement over the parent Fe-Rh system. (fast track communication)

  20. Central magnetic cooling and refrigeration machines (chiller) and their assessment. A feasibility study - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egolf, P. W.; Gonin, C. [University of Applied Sciences of Western Switzerland, HEIG-VD, Yverdon-les Bains (Switzerland); Kitanovski, A. [University of Ljubljana, Ljubljana (Slovenia)

    2010-03-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a feasibility study made concerning magnetic cooling and refrigeration machines. This report presents a comprehensive thermodynamic and economic analysis of applications of rotary magnetic chillers. The study deals with magnetic chillers based on permanent magnets and superconducting magnets, respectively. The numerical design of permanent magnet assemblies with different magnetic flux densities is discussed. The authors note that superconducting magnetic chillers are feasible only in large-scale applications with over 1 MW of cooling power. This report describes new ideas for magnetic refrigeration technologies, which go beyond the state of the art. They show potential for a substantial reduction of costs and further improvements in efficiency. Rotary magnetic liquid chillers with 'wavy' structures and using micro tubes are discussed, as are superconducting magnetic chillers and future magneto-caloric technologies.

  1. A Cold Cycle Dilution Refrigerator for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The cold cycle dilution refrigerator is a continuous refrigerator capable of cooling to temperatures below 100 mK that makes use of a novel thermal magnetic pump....

  2. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  3. Mobile refrigeration system for precool and warm up of superconducting magnets

    Science.gov (United States)

    Gandla, S. K.; Longsworth, R. C.

    2017-12-01

    Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.

  4. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  5. Using a Linux Cluster for Parallel Simulations of an Active Magnetic Regenerator Refrigerator

    DEFF Research Database (Denmark)

    Petersen, T.F.; Pryds, N.; Smith, A.

    2006-01-01

    This paper describes the implementation of a Comsol Multiphysics model on a Linux computer Cluster. The Magnetic Refrigerator (MR) is a special type of refrigerator with potential to reduce the energy consumption of household refrigeration by a factor of two or more. To conduct numerical analysis....... The coupled set of equations and the transient convergence towards the final steady state means that the model has an excessive solution time. To make parametric studies practical, the developed model was implemented on a Cluster to allow parallel simulations, which has decreased the solution time...

  6. Demonstration of the Use of Remote Temperature Monitoring Devices in Vaccine Refrigerators in Haiti.

    Science.gov (United States)

    Cavallaro, Kathleen F; Francois, Jeannot; Jacques, Roody; Mentor, Derline; Yalcouye, Idrissa; Wilkins, Karen; Mueller, Nathan; Turner, Rebecca; Wallace, Aaron; Tohme, Rania A

    After the 2010 earthquake, Haiti committed to introducing 4 new antigens into its routine immunization schedule, which required improving its cold chain (ie, temperature-controlled supply chain) and increasing vaccine storage capacity by installing new refrigerators. We tested the feasibility of using remote temperature monitoring devices (RTMDs) in Haiti in a sample of vaccine refrigerators fueled by solar panels, propane gas, or electricity. We analyzed data from 16 RTMDs monitoring 24 refrigerators in 15 sites from March through August 2014. Although 5 of the 16 RTMDs exhibited intermittent data gaps, we identified typical temperature patterns consistent with refrigerator door opening and closing, propane depletion, thermostat insufficiency, and overstocking. Actual start-up, annual maintenance, and annual electricity costs for using RTMDs were $686, $179, and $9 per refrigerator, respectively. In Haiti, RTMD use was feasible. RTMDs could be prioritized for use with existing refrigerators with high volumes of vaccines and new refrigerators to certify their functionality before use. Vaccine vial monitors could provide additional useful information about cumulative heat exposure and possible vaccine denaturation.

  7. Thermoeconomic Optimization of Cascade Refrigeration System Using Mixed Carbon Dioxide and Hydrocarbons at Low Temperature Circuit

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2016-12-01

    Full Text Available Many applications and industrial processes require very low cooling temperature, such as cold storage in the biomedical field, requiring temperature below -80 °C. However,single-cycle refrigeration systems can only achieve the effective cooling temperature of -40 °C and, also, the performance of the cycle will decrease drastically for cooling temperatures lower than -35°C. Currently, most of cascade refrigeration systems use refrigerants that have ozone depletion potential (ODP and global warming potential (GWP, therefore, in this study, a cascade system is simulated using a mixture of environmentally friendly refrigerants, namely, carbon dioxide and a hydrocarbon (propane, ethane or ethylene as the refrigerant of the low temperature circuit. A thermodynamic analysis is performed to determine the optimal composition of the mixture of carbon dioxide and hydrocarbons in the scope of certain operating parameters. In addition, an economic analysis was also performed to determine the annual cost to be incurred from the cascade refrigeration system. The multi-objective/thermoeconomic optimization points out optimal operating parameter values of the system, to addressing both exergy efficiency and its relation to the costs to be incurred.

  8. Composite magnetic refrigerants for an Ericsson cycle: New method of selection using a numerical approach

    International Nuclear Information System (INIS)

    Smaieli, A.; Chahine, R.

    1997-01-01

    The efficient operation of an Ericsson cycle requires the magnetic entropy change (AS) be constant as a function of temperature. To realize this condition using composite materials, a numerical method has been developed to determine the optimum proportions of the components. The Gd x Er 1-x (x = 0.69, 0.90) alloys have been used to investigate the validity of the numerical method. The values of ΔS have been determined from experimental magnetization curves of these alloys, in the 0.1-9 T magnetic field and the 200-290 K range. The calculations have led to the mass ratio y = 0.56 for the composite (Gd 0.90 Er 0.10 ) y (Gd 0.69 Er 0.31 ) 1-y . The ΔS of this composite is fairly constant in the 225-280 K range. To confirm this result, the magnetization curves of the composite material have been determined experimentally, and the corresponding ΔS was compared with the one predicted numerically. A good agreement was found proving the method's ability to properly determine the required fractions of the refrigerant's constituent materials

  9. Theoretical Models for the Cooling Power and Base Temperature of Dilution Refrigerators

    CERN Document Server

    Wikus, Patrick

    2010-01-01

    He-3/He-4 dilution refrigerators are widely used for applications requiring continuous cooling at temperatures below approximately 300 mK. Despite of the popularity of these devices in low temperature physics, the thermodynamic relations underlying the cooling mechanism of He-3/He-4 refrigerators are very often incorrectly used. Several thermodynamic models of dilution refrigeration have been published in the past, sometimes contradicting each other. These models are reviewed and compared with each other over a range of different He-3 flow rates. In addition, a new numerical method for the calculation of a dilution refrigerator's cooling power at arbitrary flow rates is presented. This method has been developed at CERN's Central Cryogenic Laboratory. It can be extended to include many effects that cannot easily be accounted for by any of the other models, including the degradation of heat exchanger performance due to the limited number of step heat exchanger elements, which can be considerable for some design...

  10. Magnetic hysteresis and refrigeration capacity of Ni–Mn–Ga alloys near Martensitic transformation

    International Nuclear Information System (INIS)

    Bin, Fu; Yi, Long; Jing-Fang, Duan; Chao-Lun, Wang; Yong-Qin, Chang; Rong-Chang, Ye; Guang-Heng, Wu

    2010-01-01

    This paper studies the magnetic hysteresis and refrigeration capacity of Ni-Mn-Ga alloys in detail during heating and cooling isothermal magnetisation processes. The Ni-Mn-Ga alloys show larger magnetic hysteresis when they transform from austenite to martensite, but smaller magnetic hysteresis when they transform from martensite to austenite. This behaviour is independent of either the pure Ni-Mn-Ga alloys or the alloys doped with other elements. Because of the existence of the magnetic hysteresis, the relation between the magnetic entropy change and refrigeration capacity is not simply linear. For practical consideration, magnetocaloric effect of Ni-Mn-Ga alloys should be investigated both on cooling and heating processes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. A low temperature cryostat with a refrigerator for studying electron-irradiation effects on solids, 2

    International Nuclear Information System (INIS)

    Oka, Takashi; Yoshida, Toshio; Shono, Yoshihiko

    1978-01-01

    A convenient cryostat with a small cryogenic refrigerator for studying electron-irradiation effects on solids is reported. The lowest temperature at the sample room is about 10 K or less. In a temperature region below 80 K, the sample temperature can be controlled within 0.05 K. (auth.)

  12. Active magnetic regenerator refrigeration with rotary multi-bed technology

    DEFF Research Database (Denmark)

    Eriksen, Dan

    is a flux conducting iron core which was laminated for electrical and thermal insulation to minimize heat leaks and eddy current losses. Experimental investigations with different configurations of iron and insulation in the core focusing on the impact on temperature span and COP were conducted. AMR...... magnetic regenerator (AMR) prototypes. The starting point is the design and ex- periments with a rotary multi-bed prototype at the Technical University of Denmark. Promising results were obtained with this machine in terms of temperature span and cooling power. However, issues limiting the energy...... the former may be reduced by simple design improvements, the latter is non- trivial and requires detailed geometrical optimization assisted by numerical modeling and improved manufacturing techniques. Finally, possible applications are discussed and a concept of operating the AMR machine in combination...

  13. A Dual Operational Refrigerator/Flow Cryostat with Wide Bore Medium Field Magnet for Application Demonstration

    Science.gov (United States)

    Young, E. A.; Bailey, W. O. S.; Al-Mosawi, M. K.; Beduz, C.; Yang, Y.; Chappell, S.; Twin, A.

    Since stand alone cryocooler systems have become more widely available, there has been increased commercial interest in superconductor applications in the temperature range intermediate to liquid helium and liquid nitrogen. There are however few facilities that have large in-field bore size with variable temperatures. A large bore system can reduce costs associated with full scale demonstration magnets by testing smaller coils and qualify medium length (up to meters) conductors. A 5 T, wide bore, (170 mm) Nb3Sn Oxford Instrument magnet has been integrated into a custom built dual mode refrigerator/helium flow cryostat with 600A HTS current leads. In one mode the system can be used with zero field without cost of liquid helium relying for cooling on a Sumitomo GM cryocooler with 1.5W at 4.2K: (no He) this can be used either as the sole characterisation method, or as a preliminary check before more expensive and extensive measurements are taken. The first measurements using MgB2 wire from 10 to 20K were made using a transient current step of ∼5s duration, as opposed to a DC measurement. This has the advantage of not requiring thermal equilibrium to be achieved at nominal current. The feasibility of this technique for determining critical transport properties is discussed.

  14. The effect of coolants on the performance of magnetic micro-refrigerators.

    Science.gov (United States)

    Silva, D J; Bordalo, B D; Pereira, A M; Ventura, J; Oliveira, J C R E; Araújo, J P

    2014-06-01

    Magnetic refrigeration is an alternative cooling technique with envisaged technological applications on micro- and opto-electronic devices. Here, we present a magnetic micro-refrigerator cooling device with embedded micro-channels and based on the magnetocaloric effect. We studied the influence of the coolant fluid in the refrigeration process by numerically simulating the heat transfer processes using the finite element method. This allowed us to calculate the cooling power of the device. Our results show that gallium is the most efficient coolant fluid and, when used with Gd5Si2Ge2, a maximum power of 11.2 W/mm3 at a working frequency of -5 kHz can be reached. However, for operation frequencies around 50 Hz, water is the most efficient fluid with a cooling power of 0.137 W/mm3.

  15. A low temperature cryostat with a refrigerator for studying electron irradiation effects on solids

    International Nuclear Information System (INIS)

    Oka, Takashi; Yoshida, Toshio; Kitagawa, Michiharu; Yanai, Masayoshi

    1976-01-01

    A low temperature cryostat with a small cryogenic refrigerator is described which is convenient for studying irradiation effects of the energetic electrons on solids. It allows a sample to be kept about 12 K without irradiation and 15 K under the irradiation at a heating rate of 1.5 w. The sample temperature can be changed up to room temperature by adjusting the power of an attached heater and the pressure of a compressor for the refrigerator. The optical and electrical properties of the sample can be measured under and after irradiation. (auth.)

  16. A review – Status of CO2 as a low temperature refrigerant: Fundamentals and R and D opportunities

    International Nuclear Information System (INIS)

    Bansal, Pradeep

    2012-01-01

    Carbon dioxide (CO 2 ) has emerged as one of the most promising and preferred refrigerants for low temperature refrigeration systems in the food and refrigeration industry and/or recreational activities. In recent times, the widespread use of CO 2 refrigerant, particularly in supermarkets, has proved commercially attractive worldwide. Some of the designs that are most commonly used in industry include cascade, transcritical and transcritical booster, while many other interesting designs and variations are also being consistently used for specific situations. This paper presents the holistic view of the fundamentals and application of CO 2 refrigerant in low temperature refrigeration systems, along with some discussion on its benign properties, thermodynamic analysis, the challenges, the need for fundamental research and design of novel systems for its continuing dominance in the refrigeration industry.

  17. Control of the Tevatron Satellite Refrigeration system

    International Nuclear Information System (INIS)

    Theilacker, J.; Chapman, L.; Gannon, J.; Hentges, M.; Martin, M.; Rode, C.H.; Zagel, J.

    1984-01-01

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  18. PASTEURISASI HIGH TEMPERATURE SHORT TIME (HTST) SUSU TERHADAP Listeria monocytogenes PADA PENYIMPANAN REFRIGERATOR

    OpenAIRE

    SABIL, SYAHRIANA

    2015-01-01

    2015 SYAHRIANA SABIL (I 111 11 273). Pasteurisasi High Temperature Short Time (HTST) Susu terhadap Listeria monocytogenes pada Penyimpanan Refrigerator. Dibimbing oleh RATMAWATI MALAKA dan FARIDA NUR YULIATI. Pasteurisasi High Temperature Short Time (HTST) merupakan proses pemanasan susu di bawah titik didih yang diharapkan dapat membunuh Listeria monocytogenes (L. monocytogenes) karena bersifat patogen dan mengakibatkan listeriosis yang merupakan penyakit zoonosis. Tu...

  19. Performance characteristics of a magnetic Ericsson refrigeration cycle using GdxDy1−x as the working substance

    International Nuclear Information System (INIS)

    Diguet, Gildas; Lin, Guoxing; Chen, Jincan

    2014-01-01

    Based on the experimental isothermal entropy change of the magnetic materials Gd x Dy 1−x , the thermodynamic performance of a regeneration Ericsson refrigeration cycle is evaluated and analyzed. The effects of non-perfect regeneration on the cyclic performance are highlighted. For a room temperature hot reservoir, the cooling quantity, non-perfect regeneration heat quantity, and net cooling quantity of the established regeneration Ericsson refrigeration cycle are calculated as a function of the cold reservoir temperature. Furthermore, for several typical compositions x of the Gd x Dy 1−x alloys, the values of the cooling quantity, non-perfect regeneration heat quantity, work input, net cooling quantity, and coefficient of performance (COP) are listed for given temperatures of the cold reservoir. The cyclic performance of the Gd x Dy 1−x alloys with different composition x is compared and some significant analyses are provided. - Highlights: • We examine the thermodynamics properties of the magnetocaloric alloys Gd x Dy 1−x . • We model a magnetic Ericsson cycle with regeneration process. • Calculations are based on experimental isothermal entropies change. • A cold reservoir temperature limit was found depending on ‘x’ composition value and operating conditions. • Lowest ‘x’ composition values have larger COP but lower net cooling quantities

  20. Thermodynamic performance of R502 alternative refrigerant mixtures for low temperature and transport applications

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Jung, Dongsoo

    2007-01-01

    In this study, two pure hydrocarbon refrigerants, R1270 (propylene) and R290 (propane), and three binary mixtures composed of R1270, R290 and R152a were tested in a refrigerating bench tester with a scroll compressor in an attempt to substitute R502, which is used in most low temperature and transport refrigeration applications. The test bench provided 3-3.5 kW capacity, and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions, resulting in the average saturation temperatures of -28 and 45 o C in the evaporator and condenser, respectively. The test results showed that all refrigerants tested had 9.6-18.7% higher capacity and 17.1-27.3% higher COP than R502. The compressor discharge temperature of R1270 was similar to that of R502, while those of all the other refrigerants were 23.7-27.9 o C lower than that of R502. For all alternative refrigerants, the charge was reduced up to 60% as compared to R502. There, of course, was no problem with mineral oil, since the mixtures were mainly composed of hydrocarbons. Since some of them are mixtures, one can change their compositions a little to suit various needs in many applications without significant deterioration of the performance. Overall, these alternative refrigerants offer better system performance and reliability than R502 and can be used as long term substitutes for R502 due to their excellent environmental properties

  1. Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartments to their set point temperatures.

  2. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures

    International Nuclear Information System (INIS)

    Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Xia, Z.Z.

    2016-01-01

    Highlights: • Modular silica gel–water adsorption chiller was designed and tested. • Single/double effect LiBr–water absorption chiller was operated and tested. • 1.n effect LiBr–water absorption chiller was proposed, designed and tested. • CaCl_2/AC–ammonia adsorption refrigerator was introduced and tested. • NH_3–H_2O absorption ice maker with better internal heat recovery was introduced. - Abstract: Solar driven air conditioning systems can cope with solar collectors working in a wide range of temperatures. Sorption systems, including absorption and adsorption refrigeration systems, are among the best choices for solar cooling. Five systems including modular silica gel–water adsorption chiller, single/double effect LiBr–water absorption chiller, 1.n effect LiBr–water absorption chiller, CaCl_2/AC (activated carbon)–ammonia adsorption refrigerator, and the water–ammonia absorption ice maker with better internal heat recovery were presented. The above five sorption chillers/refrigerators work under various driven temperatures and fulfill different refrigeration demands. The thermodynamic design and system development of the systems were shown. All these systems have improvements in comparison with existing systems and may offer good options for high efficient solar cooling in the near future.

  3. Design of nested Halbach cylinder arrays for magnetic refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Trevizoli, Paulo V., E-mail: trevizoli@polo.ufsc.br; Lozano, Jaime A.; Peixer, Guilherme F.; Barbosa Jr, Jader R.

    2015-12-01

    We present an experimentally validated analytical procedure to design nested Halbach cylinder arrays for magnetic cooling applications. The procedure aims at maximizing the magnetic flux density variation in the core of the array for a given set of design parameters, namely the inner diameter of the internal magnet, the air gap between the magnet cylinders, the number of segments of each magnet and the remanent flux density of the Nd{sub 2}Fe{sub 14}B magnet grade. The design procedure was assisted and verified by 3-D numerical modeling using a commercial software package. An important aspect of the optimal design is to maintain an uniform axial distribution of the magnetic flux density in the region of the inner gap occupied by the active magnetocaloric regenerator. An optimal nested Halbach cylinder array was manufactured and experimentally evaluated for the magnetic flux density in the inner gap. The analytically calculated magnetic flux density variation agreed to within 5.6% with the experimental value for the center point of the magnet gap. - Highlights: • An analytical procedure to design nested Halbach cylinder arrays is proposed. • An optimal magnet configuration was built based on the analytical procedure. • The procedure was validated with 3D COMSOL simulations and experimental data.

  4. Microbiological Studies of Semi-Preserved Natural Condiments Paste Stored in Refrigerator and Ambient Temperature

    Science.gov (United States)

    Dien, H. A.; Montolalu, R. I.; Mentang, F.; Mandang, A. S. K.; Rahmi, A. D.; Berhimpon, S.

    2018-01-01

    The aims of this studies were to prepare juice and raw condiment to be come semipreserve pastes, and to do microbial assessments on the both pastes during storing in refrigerator and ambient temperatures. For both pastes in refrigerator, samples were taken at 0, 2, 4, 5, 6, 8, 10, 15, 20, 25, and 30 days, and in ambient temperature samples were taken at 0, 1, 2, 3, 4, and 6 days. Assessment were done for TPC, total coliform and E. coli, Salmonella sp, Staphylococcus sp., Vibrio sp., pH and water content. The results shown that juice paste stored in refrigerator still good until 30 days (TPC 1,5x104 CFU/g), and in ambient temperature still good until 6 days (2x104 CFU/g). Condiment paste stored in refrigerator still good until 30 days (6.5x103 CFU/g), and in ambient temperature still good until 6 days (1.17x104 CFU/g). However, recommended that condiment paste stored in ambient temperature only until 4 days (7.3x103CFU/g), while that juice paste until 5 days (7.8x103CFU/g). There were no pathogenic bacteria found in all samples.

  5. The Performance of Rotary Magnetic Refrigerators with Layered Beds of LaFeSiH(Magnetic Cooling)

    OpenAIRE

    Steven, JACOBS; Steven, RUSSEK; Jon, AURINGER; Andre, BOEDER; Jeremy, CHELL; Lenny, KOMOROWSKI; John, LEONARD; Carl, ZIMM; Astronautics Technology Center; Astronautics Corporation; Astronautics Technology Center; Astronautics Technology Center; Astronautics Technology Center; Astronautics Technology Center; Astronautics Technology Center

    2013-01-01

    Astronautics Corporation has designed, constructed, and extensively tested two generations of magnetic refrigerators employing a rotary magnet-fixed bed architecture. This paper reviews and summarizes the performance of these prototypes. In particular, the testing on the 1st-generation prototype demonstrates the significant performance advantage associated with the use of layered beds of LaFeSiH, a magnetocaloric material with a sharp, first-order transition and a readily adjustable Curie tem...

  6. Brownian micro-engines and refrigerators in a spatially periodic temperature field: Heat flow and performances

    International Nuclear Information System (INIS)

    Ai Baoquan; Wang Liqiu; Liu Lianggang

    2006-01-01

    We study the thermodynamic features of a thermal motor driven by temperature differences, which consists of a Brownian particle moving in a sawtooth potential with an external load. The motor can work as a heat engine or a refrigerator under different conditions. The heat flow driven by both potential and kinetic energy is considered. The former is reversible when the engine works quasistatically and the latter is always irreversible. The efficiency of the heat engine (Coefficient Of Performance (COP) of a refrigerator) can never approach Carnot efficiency (COP)

  7. Experimental measurement of the refrigerant temperature of the TRIGA Mark III reactor of the ININ

    International Nuclear Information System (INIS)

    Gallardo S, L.F.; Alonso V, G.

    1991-08-01

    With the object of knowing the axial temperature profile of the refrigerant in the core of the TRIGA Mark III reactor of the ININ, the temperatures of this, at the enter, in the center and the exit of the core were measured, in the positions: west 2, north 2 and south 1. This was made by means of the thermo pars introduction mounted in aluminum guides, connected to a measurer of digital temperature, whose resolution is of ± 0.1 C. The measurements showed a bigger heating of the refrigerant in the superior half of the core, that which suggests that the axial profile of temperature of the reactor is not symmetrical with respect to the center or that those temperature measurements in the center are not correct. (Author)

  8. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    Science.gov (United States)

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  9. Optimum operating regimes of common paramagnetic refrigerants

    CERN Document Server

    Wikus, P; Figueroa-Feliciano, E

    2011-01-01

    Adiabatic Demagnetization Refrigerators (ADRs) are commonly used in cryogenic laboratories to achieve subkelvin temperatures. ADRs are also the technology of choice for several space borne instruments which make use of cryogenic microcalorimeters or bolometers {[}1-4]. For these applications, refrigerants with high ratios of cooling capacity to volume, or cooling capacity to mass are usually required. In this manuscript, two charts for the simple selection of the most suitable of several common refrigerants (CAA, CMN, CPA, DGG, FAA, GGG, GLF and MAS) are presented. These graphs are valid for single stage cycles. The selection of the refrigerants is uniquely dependent on the starting conditions of the refrigeration cycle (temperature and magnetic field density) and the desired final temperature. Only thermodynamic properties of the refrigerants have been taken into account, and other important factors such as availability and manufacturability have not been considered. (C) 2011 Elsevier Ltd. All rights reserve...

  10. General performance characteristics and parametric optimum criteria of a nano-thermoelectric refrigerator with an external magnetic field

    International Nuclear Information System (INIS)

    Wang Hao; Wu Guoxing; Xie Jian

    2012-01-01

    In the paper, we describe a single-level quantum dot with an external magnetic field that works as a nano-thermoelectric refrigerator. Based on the model, the expressions for the cooling rate (R), the power input (P) and the coefficient of performance (ε) are derived. The effects of the magnetic field strength and the level energy on the performance of the refrigerator are revealed. The optimal performance characteristics of the refrigerator are analyzed by numerical calculation. Furthermore, the practical operating regions of the cycle are determined.

  11. Reciprocating magnetic refrigerator for 2--4 K operation: Initial results

    International Nuclear Information System (INIS)

    Barclay, J.A.; Moze, O.; Paterson, L.

    1979-01-01

    The basic theory and design of a reciprocating magnetic refrigerator to pump heat from 2.2 to 4.2 K is presented. The results of initial experiments are shown. These results include conduction losses, eddy current losses, frictional losses, and mixing losses. Two cooling cycles were attempted and a net cooling power of 52 mW was observed at 1/60 Hz. The key problems in this design are identified and discussed

  12. Operational history of Fermilab's 1500 W refrigerator used for energy saver magnet production testing

    International Nuclear Information System (INIS)

    Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.W.; Cooper, W.E.

    1985-09-01

    The 1500 W helium refrigerator system utilizes two oil-injected screw compressors staged to feed a liquid nitrogen pre-cooled cold box. Refrigeration is provided by two Sulzer TGL-22 magnetic/gas bearing turbines. The refrigerator feeds six magnet test stands via a 10,000 L dewar and subcooler equipped distribution box. The design of the controls has permitted the system to be routinely operated 24 hours/day, seven days/week with only five operators. It has operated approximately 90% of the 4-1/2 years prior to shutting down in 1984 for a period of one year to move the compressor skid. Scheduled maintenance, failures, repairs and holidays are about equal to the 10% off time. The equipment described was used to test approximately 1200 superconducting magnets for the Fermilab accelerator ring. The seven year operating experience is presented as an equipment and technique review. Compressor hours currently exceed 42,000 and turbine hours exceed 39,000 each. Failure rates, causes, preventive maintenance, monitoring practices and equipment, and modifications are examined along with notes on some of the more successful applications of technique and equipment. 4 refs

  13. Optimization of a cascade refrigeration system using refrigerant C_3H_8 in high temperature circuits (HTC) and a mixture of C_2H_6/CO_2 in low temperature circuits (LTC)

    International Nuclear Information System (INIS)

    Nasruddin; Sholahudin, S.; Giannetti, N.; Arnas

    2016-01-01

    Highlights: • Multi-objective optimization is conducted in the cascade refrigeration system. • Combination of operating temperature and refrigerant performance has been studied. • Characteristic of C_3H_8 and a mixture of C_2H_6/CO_2 have been investigated. • Determining of CO_2 fraction to optimize refrigeration system has been done. - Abstract: This paper discusses the multi-objectives optimization of a cascade refrigeration system using refrigerant C_3H_8 in high temperature circuits (HTC) and a mixture of C_2H_6/CO_2 in low temperature circuits (LTC). The evaporator temperature, condenser temperature, C_2H_6/CO_2 mixture condensation temperature, cascade temperature differences, and the CO_2 mass fraction are chosen as the decision variables. Whereas cooling capacity, cold space temperature, and ambient temperature are taken as the constraints. The purpose of this research is to design a cascade refrigeration system whose optimum performance are defined in terms of economics and thermodynamics. Accordingly, there are two objective functions that should be simultaneously optimized including the total annual cost which consists of the capital and operational cost and the total exergy destruction of the system. To this aim, the optimum operating temperature of the system and CO_2 fraction should be determined so that the system has minimum exergy destruction and annual cost. Results show that, the optimum value of the decision variables for this system can be determined by trade-off between annual cost and exergy destruction.

  14. Design of a horizonal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel

    Science.gov (United States)

    Wu, Y. Y.

    1982-01-01

    The design of a horizontal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel is presented. The basic principles of magnetic suspension theory are described and theoretical calculations of the superconducting magnet are provided. The experimental results of the boil-off of liquid nitrogen and liquid helium in the cryostat are reported.

  15. High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk.

    Science.gov (United States)

    Ranieri, M L; Huck, J R; Sonnen, M; Barbano, D M; Boor, K J

    2009-10-01

    The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72 degrees C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60 degrees C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2 degrees C) and then held at 6 degrees C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9 degrees C were lower than in milk processed at 85.2 degrees C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can

  16. A pathway to optimize the properties of magnetocaloric Mn_2_-_xFe_xP_1_-_yGe_y for magnetic refrigeration

    International Nuclear Information System (INIS)

    Liu, D.M.; Zhang, Z.L.; Zhou, S.L.; Huang, Q.Z.; Deng, X.J.; Yue, M.; Liu, C.X.; Zhang, J.X.; Lynn, J.W.

    2016-01-01

    Magnetocaloric materials can be useful in magnetic refrigeration applications, but to be practical the magneto-refrigerant needs to have a very large magnetocaloric effect (MCE) near room temperature for modest applied fields (<2 T) with small hysteresis and magnetostriction, and should have a complete magnetic transition, and environmentally friendly. One system that may fulfill these requirements is Mn_2_-_xFe_xP_1_-_yGe_y, where a combined first-order structural and magnetic transition occurs between the high temperature paramagnetic and low temperature ferromagnetic phase. We have used neutron diffraction, differential scanning calorimetry, and magnetization measurements to study the effects of Mn and Ge location in the structure on the ordered magnetic moment, MCE, and hysteresis for a series of compositions of the system near optimal doping. The diffraction results indicate that the Mn ions located on the 3f site enhance the desirable properties, while those located on the 3 g sites are detrimental. The phase fraction that transforms, hysteresis of the transition, and entropy change can be affected greatly by both the compositional homogeneity and the particle size, and an annealing procedure has been developed that substantially improves the performance of all three properties of the material. We also establish a correlation between applied magnetic field to complete the transition and the temperature range of coexistence of the PM and FM phase. On the basis of these results we have identified a pathway to understand the nature and to optimize the MCE properties of this system for magnetic refrigeration applications. - Highlights: • Compositional homogeneity and particle size affect the MCE properties. • Mn ions located on the 3f site enhance the desirable MCE properties. • A pathway to understand the nature and to optimize the MCE properties was identified.

  17. Performance analysis of a rotary active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.

    2013-01-01

    of the cold end thermal parasitic losses are expected to enhance the efficiency of the system. For an operating frequency of 1.5Hz, a volumetric flow rate of 400L/h, a hot reservoir temperature of 297.7K, and thermal loads of 200 and 400W, the obtained temperature spans, δTS, were 16.8K and 7.1K, which...... study of the temperature span, cooling power, coefficient of performance (COP) and efficiency of the system was carried out over a range of different hot reservoir temperatures, volumetric flow rates and cooling powers. Detailed modeling of the AMR using a 1D model was performed and compared...

  18. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  19. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    Science.gov (United States)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  20. Effect of prior refrigeration on botulinal outgrowth in perishable canned cured meat when temperature abused.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1978-01-01

    Perishable canned cured meat inoculated with Clostridium botulinum spores was placed at 4.4 or 10 degrees C after manufacture. Spore germination occurred at 10 degrees C. The germinated cell count remained stable over a period of 16 to 18 weeks. During that time period the inhibitory system and residual nitrite descreased. These factors combine to make perishable canned cured meats more prone to spoilage and potential hazard if they are temperature abused after a period of refrigerated storage. PMID:350155

  1. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Kassuga, Theo [Navigant Consulting Inc., Burlington, MA (United States)

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  2. β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures.

    Science.gov (United States)

    Horner, T W; Dunn, M L; Eggett, D L; Ogden, L V

    2011-07-01

    Many consumers are unable to enjoy the benefits of milk due to lactose intolerance. Lactose-free milk is available but at about 2 times the cost of regular milk or greater, it may be difficult for consumers to afford. The high cost of lactose-free milk is due in part to the added cost of the lactose hydrolysis process. Hydrolysis at refrigerated temperatures, possibly in the bulk tank or package, could increase the flexibility of the process and potentially reduce the cost. A rapid β-galactosidase assay was used to determine the relative activity of commercially available lactase samples at different temperatures. Four enzymes exhibited low-temperature activity and were added to refrigerated raw and pasteurized milk at various concentrations and allowed to react for various lengths of time. The degree of lactose hydrolysis by each of the enzymes as a function of time and enzyme concentration was determined by HPLC. The 2 most active enzymes, as determined by the β-galactosidase assay, hydrolyzed over 98% of the lactose in 24h at 2°C using the supplier's recommended dosage. The other 2 enzymes hydrolyzed over 95% of the lactose in 24h at twice the supplier's recommended dosage at 2°C. Results were consistent in all milk types tested. The results show that it is feasible to hydrolyze lactose during refrigerated storage of milk using currently available enzymes. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Magnetic behavior of VBr2 at very low temperatures

    International Nuclear Information System (INIS)

    Arthur, J.R.; Kawarazaki, S.; Hirakawa, K.

    1985-01-01

    Vanadium dibromide, along with VCl 2 and VI 2 , has a hexagonal crystal structure (CdI 2 structure) in which the magnetic coupling of vanadium ions within the c planes is much stronger than the interplane coupling. These systems are of interest as possible examples of highly frustrated two-dimensional triangular lattice antiferromagnets. This interest is encouraged by high-temperature magnetic susceptibility measurements, which yield Weiss constants of several hundred degrees Kelvin. In fact, magnetic transitions do not occur in these substances until temperatures of less than 50 K are reached, indicating that the antiferromagnetic interactions are frustrated. A search for possible new transitions at very low temperatures was conducted with a VBr 2 single-crystal sample mounted in the dilution refrigerator neutron diffraction facility at HFIR. The crystal was not of very good quality, but three distinct magnetic reflections were observed at 4.2 K and below

  4. The effect of cool water pack preparation on vaccine vial temperatures in refrigerators.

    Science.gov (United States)

    Goldwood, Geneva; Diesburg, Steven

    2018-01-02

    Cool water packs are a useful alternative to ice packs for preventing unintentional freezing of vaccines during outreach in some situations. Current guidelines recommend the use of a separate refrigerator for cooling water packs from ambient temperatures to prevent possible heat degradation of adjacent vaccine vials. To investigate whether this additional equipment is necessary, we measured the temperatures that vaccine vials were exposed to when warm water packs were placed next to vials in a refrigerator. We then calculated the effect of repeated vial exposure to those temperatures on vaccine vial monitor status to estimate the impact to the vaccine. Vials were tested in a variety of configurations, varying the number and locations of vials and water packs in the refrigerator. The calculated average percentage life lost during a month of repeated warming ranged from 20.0% to 30.3% for a category 2 (least stable) vaccine vial monitor and from 3.8% to 6.0% for a category 7 (moderate stability) vaccine vial monitor, compared to 17.0% for category 2 vaccine vial monitors and 3.1% for category 7 vaccine vial monitors at a constant 5 °C. The number of vials, number of water packs, and locations of each impacted vial warming and therefore percentage life lost, but the vaccine vial monitor category had a higher impact on the average percentage life lost than any of the other parameters. The results suggest that damage to vaccines from repeated warming over the course of a month is not certain and that cooling water packs in a refrigerator where vaccines are being stored may be a useful practice if safe procedures are established. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Flow boiling heat transfer coefficients at cryogenic temperatures for multi-component refrigerant mixtures of nitrogen-hydrocarbons

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.

  6. Review on numerical modeling of active magnetic regenerators for room temperature applications

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Tusek, Jaka; Engelbrecht, Kurt

    2011-01-01

    The active magnetic regenerator (AMR) is an alternative refrigeration cycle with a potential gain of energy efficiency compared to conventional refrigeration techniques. The AMR poses a complex problem of heat transfer, fluid dynamics and magnetic fields, which requires detailed and robust modeling....... This paper reviews the existing numerical modeling of room temperature AMR to date. The governing equations, implementation of the magnetocaloric effect (MCE), fluid flow and magnetic field profiles, thermal conduction etc. are discussed in detail as is their impact on the AMR cycle. Flow channeling effects...

  7. Two-stage high frequency pulse tube refrigerator with base temperature below 10 K

    Science.gov (United States)

    Chen, Liubiao; Wu, Xianlin; Liu, Sixue; Zhu, Xiaoshuang; Pan, Changzhao; Guo, Jia; Zhou, Yuan; Wang, Junjie

    2017-12-01

    This paper introduces our recent experimental results of pulse tube refrigerator driven by linear compressor. The working frequency is 23-30 Hz, which is much higher than the G-M type cooler (the developed cryocooler will be called high frequency pulse tube refrigerator in this paper). To achieve a temperature below 10 K, two types of two-stage configuration, gas coupled and thermal coupled, have been designed, built and tested. At present, both types can achieve a no-load temperature below 10 K by using only one compressor. As to gas-coupled HPTR, the second stage can achieve a cooling power of 16 mW/10K when the first stage applied a 400 mW heat load at 60 K with a total input power of 400 W. As to thermal-coupled HPTR, the designed cooling power of the first stage is 10W/80K, and then the temperature of the second stage can get a temperature below 10 K with a total input power of 300 W. In the current preliminary experiment, liquid nitrogen is used to replace the first coaxial configuration as the precooling stage, and a no-load temperature 9.6 K can be achieved with a stainless steel mesh regenerator. Using Er3Ni sphere with a diameter about 50-60 micron, the simulation results show it is possible to achieve a temperature below 8 K. The configuration, the phase shifters and the regenerative materials of the developed two types of two-stage high frequency pulse tube refrigerator will be discussed, and some typical experimental results and considerations for achieving a better performance will also be presented in this paper.

  8. Study of a magnetic refrigeration cycle by active regeneration between 15 and 4.2 kelvins

    International Nuclear Information System (INIS)

    Bredy, P.

    1989-01-01

    Magnetic refrigeration with active regeneration cycles was realized on a test bench. From a hot source at 14K cold power near 20 mW is reached on liquid helium at 4.2 K. Efficiency of the cooling loop is around 0.20. Different geometries are tested and a part of observed physical phenomena are simulated with a numerical model. Interest of ferromagnetic cryogenic materials for the range 4-15 K is evidenced by measurement of thermomagnetic properties of europium sulfide [fr

  9. A novel absorption refrigeration cycle for heat sources with large temperature change

    International Nuclear Information System (INIS)

    Yan, Xiaona; Chen, Guangming; Hong, Daliang; Lin, Shunrong; Tang, Liming

    2013-01-01

    To increase the use efficiency of available thermal energy in the waste gas/water, a novel high-efficient absorption refrigeration cycle regarded as an improved single-effect/double-lift configuration is proposed. The improved cycle using an evaporator/absorber (E/A) promotes the coefficient of performance and reduces the irreversible loss. Water–lithium bromide is used as the working pair and a simulation study under the steady working conditions is conducted. The results show that the temperature of waste gas discharged is about 20 °C lower than that of the conventional single-effect cycle and the novel cycle we proposed can achieve more cooling capacity per unit mass of waste gas/water at the simulated working conditions. -- Graphical abstract: Pressure – temperature diagram for water – lithium bromide. Highlights: ► A novel waste heat-driven absorption refrigeration cycle is presented. ► The novel cycle can reject heat at much lower temperature. ► The available temperature range of heat source of the proposed cycle is wider. ► Multiple heat sources with different temperatures can be used in the novel cycle

  10. A floor cover to improve temperature distribution and quality preservation in maritime refrigerated container transport of grapes

    NARCIS (Netherlands)

    Lukasse, Leo; Mensink, Manon; Wissink, Edo

    2017-01-01

    Like many other fruits, table grapes depend on accurate temperature management during transport in maritime refrigerated containers. Ideally the temperature inside the container is equal to set point in every location in the container. Unfortunately door-end temperatures are always higher due to

  11. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field.

    Science.gov (United States)

    Sladkov, Maksym; Bakker, M P; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

    2011-04-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film. © 2011 American Institute of Physics

  12. The refrigeration of high temperature superconductors between 25K and 65K

    International Nuclear Information System (INIS)

    Richardson, R.N.; Scurlock, R.G.; Tavner, A.C.R.

    1996-01-01

    The present state of the art indicates that acceptable j - H characteristics for power applications of the new high Tc superconductors will only be achieved using materials at temperatures below liquid nitrogen temperature. A boiling point of 27.1K and high specific cooling capacity make neon an eminently suitable choice of refrigerant at these temperatures. A cryostat has been constructed which employs a two stage Gifford-McMahon cooler to liquefy neon gas. The cryostat contains up to 5 litres of liquid neon which can be used for open-quote in-situ close-quote experiments or transfer to another cryostat. Another set of cryostats are being used with liquid nitrogen/oxygen mixtures at reduced pressure for temperatures down to 50K. All these cryostats provide a core facility for characterising and operating high T c superconductors at Southampton

  13. Low Temperature Refrigeration as an Alternative Anti-Pest Treatment of Dates

    Science.gov (United States)

    Lallouche, Ahmed; Kolodyaznaya, Valentina; Boulkrane, Mohamed Said; Baranenko, Denis

    2017-11-01

    Large amounts of dates are produced and consumed around the world each year. Apomyelois ceratoniae causes main losses during storage and export of date fruit. Fumigation is the most widely used treatment to prevent postharvest losses. However, this treatment negatively affects the biological value of dates, environmental and economic parameters of production. Widespread fumigation agent methyl bromide is toxic to a human body and contributes to the destruction of the ozone layer. The aim of the current work was to find a new method based on the use of low temperature refrigeration to reduce the pest and insect infestation preserving the nutritive value of dates during cold storage at the same time. A. ceratoniae mortality under different temperatures and dates respiration rate, sugar, organic acids, pectic substances content and sensorial characteristics were studied. The results indicate that at -18 °C the A. ceratonie larva dies within 2 h, the eggs and larvae - within 24 h respectively. Thus, it is clearly shown that there is no need in using chemicals or irradiation to prevent dates pests. Physicochemical and organoleptic proprieties of dates were satisfactory during 360 d at -18 °C and during 180 d at +4 °C. The low temperature refrigeration and storage at -18 °C is recommended for dates to prevent pests and quality losses. It is apparently advantageous for environment and climate if compared with other anti-pest treatment variants.

  14. Temperature measurement of RE123 bulk superconductors on magnetizing process

    International Nuclear Information System (INIS)

    Yokoyama, K.; Kaneyama, M.; Oka, T.; Fujishiro, H.; Noto, K.

    2004-01-01

    We study on the magnetization behavior of to magnetize RE123 bulk superconductors to apply it as strong magnets. Through magnetizing process, the temperature of bulk superconductors is raised by pinning loss caused by the magnetic fluxes motion (e.g. flux jump of flux flow), and the trapped field is decreased. This paper presents the measurement of temperature changes of Sm123 bulk superconductors during the exciting process by iteratively magnetizing pulsed-field operation with reducing amplitudes (IMRA) method. Five thermocouples are put on the surface of Sm123 bulk superconductor of 46 mm in diameter. The temperatures at the center, on the growth sector boundary (GSB) line and in the sector region surrounded by GSB's line (inter-GSB region) are monitored. The temperature at a cold stage is also measured. A Hall sensor is attached near the center thermocouple to measure the trapped field. After a bulk superconductor is cooled by the GM type refrigerator until 40 K, iterative pulsed-fields of 2.32-5.42 T are applied by a magnetizing coil. When high magnetic field of 5.42 T is applied, a temperature of bulk superconductor reaches to 72.4 K and the magnetic field distribution has C form with which a part of circle is dented, and then, a trapped field is 2.28 T. When a lower magnetic field of 4.64 T is applied, a maximum temperature is 68.3 K and a trapped field is raised to 2.70 T, and moreover, the distribution becomes round shape like field-cooling method (FC). We showed clearly that heat generation by pinning loss was related to the mechanism of magnetic field capture

  15. Analytical solution of concentric two-pole Halbach cylinders as a preliminary design tool for magnetic refrigeration systems

    Science.gov (United States)

    Fortkamp, F. P.; Lozano, J. A.; Barbosa, J. R.

    2017-12-01

    This work presents a parametric analysis of the performance of nested permanent magnet Halbach cylinders intended for applications in magnetic refrigeration and heat pumping. An analytical model for the magnetic field generated by the cylinders is used to systematically investigate the influence of their geometric parameters. The proposed configuration generates two poles in the air gap between the cylinders, where active magnetic regenerators are positioned for conversion of magnetic work into cooling capacity or heat power. A sample geometry based on previous designs of magnetic refrigerators is investigated, and the results show that the magnetic field in the air gap oscillates between 0 to approximately 1 T, forming a rectified cosine profile along the circumference of the gap. Calculations of the energy density of the magnets indicate the need to operate at a low energy (particular the inner cylinder) in order to generate a magnetic profile suitable for a magnetic cooler. In practice, these low-energy regions of the magnet can be potentially replaced by soft ferromagnetic material. A parametric analysis of the air gap height has been performed, showing that there are optimal values which maximize the magnet efficiency parameter Λcool . Some combinations of cylinder radii resulted in magnetic field changes that were too small for practical purposes. No demagnetization of the cylinders has been found for the range of parameters considered.

  16. Experimental Investigation of the Effect of Change in Ambient Air Temperature on Power Consumption of Domestic Refrigerators

    Directory of Open Access Journals (Sweden)

    J. A. Olorunmaiye

    2012-12-01

    Full Text Available One of the manifestations of climate change is increase.in ambient air temperature usually referred to as global warming. For sustainable development in a country, there is need to identify impacts of climate change and the necessary adaptation and mitigation strategies to adopt. To simulate the effect of global warming on the power consumption of refrigerators, a (model No. 150 THERMOCOOL refrigerator filled with twenty-five 750cl packaged water bottleswas run in an air-conditioned room, in a room with the air-conditioner switched off and near an oven in a bakery. The electric power consumption of the refrigerator was measured using "Watts up?.net" Watt meter and the ambient temperature was measured using FLUKE temperature/humidity meter. The average hourly energy consumption of the refrigerator operating at mean ambient temperatures of 25.4°C, 30.7oC, 38.8°C were 93.844 Wh, 100.32 Wh and 105.08 Wh respectively. Some possible ways to reduce the increase in power consumption of refrigerators due to global warming include using compressors of higher efficiency and condensers of greater effectiveness.

  17. The effect of heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for magnetic refrigeration

    International Nuclear Information System (INIS)

    Bruno, Nickolaus M.; Yegin, Cengiz; Karaman, Ibrahim; Chen, Jing-Han; Ross, Joseph H.; Liu, Jian; Li, Jianguo

    2014-01-01

    The inverse magnetocaloric effect (MCE) in bulk polycrystalline and melt-spun ribbons of the Ni 43 Mn 42 Co 4 Sn 11 meta-magnetic shape memory alloy (MSMA) is investigated. The influence of several material properties on the MCE and relative cooling power (RCP) are discussed and the property combinations for optimum MCE and RCP identified for a given thermodynamic framework. These include a small slope of magnetic field vs. martensitic transformation temperature phase diagram, a narrow transformation range, low transformation thermal hysteresis and a large change in magnetization on martensitic transformation, which results in low levels of applied magnetic fields desired for repeated MCE on field cycling. The thermo-magnetic responses of the samples were measured before and after heat treatments. The heat-treated ribbons produced the most favorable MCE by exhibiting the highest magnetization change and smallest elastic energy storage through the transformation. This was attributed to the specific microstructural features, including grain size to thickness ratio and degree of L2 1 ordering. In addition, issues in the literature in determining RCP for MSMAs are discussed, and a new method to find RCP is proposed and implemented. Completely reversible magnetic-field-induced martensitic transformation cycles were used to investigate hysteresis losses relative to actual refrigeration cycles, whereby the RCP was calculated using the defined thermodynamic framework and indirectly measured entropy changes. The annealed ribbons exhibited the high RCP level of 242 J kg −1 under the applied field of 7 T compared with a theoretical maximum of 343 J kg −1 . Similar values of RCP in other MSMAs can be achievable if microstructural elastic energy storage and hysteresis loss are minimized during the transformation with the help of annealing treatments

  18. Functionally Graded Ceramics Fabricated with Side-by-Side Tape Casting for Use in Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Bulatova, Regina; Bahl, Christian; Andersen, Kjeld Bøhm

    2015-01-01

    Functionally graded ceramic tapes have been fabricated by a side-by-side tape casting technique. This study shows the possibility and describes the main principles of adjacent coflow of slurries resulting in formation of thin plates of graded ceramic material. Results showed that the small...... variations of solvent and binder system concentrations have a substantial effect on slurry viscosity. Varying these parameters showed that side-by-side tape casting with a well-defined interface area is possible for slurries with viscosities above 3500 mPa s at a casting shear rate of 3.3 s -1...... of developing this graded ceramic tape casting was applications of these specific magnetocaloric properties within the magnetic refrigeration technology....

  19. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Munk, Jeffrey D [ORNL; Shrestha, Som S [ORNL; Linkous, Randall Lee [ORNL; Goetzler, William [Navigant Consulting Inc.; Guernsey, Matt [Navigant Consulting Inc.; Kassuga, Theo [Navigant Consulting Inc.

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  20. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  1. Behavior of the magnetocaloric effect in La0.7Ba0.2Ca0.1Mn1-xSnxO3 manganite oxides as promising candidates for magnetic refrigeration

    Science.gov (United States)

    Dhahri, Ja.; Mnefgui, Safa; Ben Hassine, A.; Tahri, Ta.; Oumezzine, M.; Hlil, E. K.

    2018-05-01

    The magnetocaloric effect along with magnetic phase transition in the peroveskite polycrystalline samples La0.7Ba0.2Ca0.1Mn1-xSnxO3 (x = 0 and 0.1) was investigated. The samples were synthesized using conventional solid state reaction at 1400 °C temperature. Magnetization vs. temperature measurements, under a magnetic field of μ0H = 0.05 T, showed a paramagnetic-ferromagnetic transition at Curie temperature, TC, which decreases from 310 K for x = 0-290 K for x = 0.1. A large magnetic entropy change | ΔSM | deduced from isothermal magnetization curves, has been observed in our samples with a peak centered on their respective TC. Interesting values of the relative cooling power (RCP), 237 J kg-1 for x = 0 and 248 J kg-1 x = 0.1, make these samples promising candidates for magnetic refrigeration around room temperature.

  2. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  3. Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Park, Seong Ryong; Baik, Young Jin; Chang, Ki Chang; Ra, Ho Sang; Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Yong Chan [Korea University, Seoul (Korea, Republic of)

    2011-12-15

    This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than 90 .deg. C when the heat source and sink temperatures were 50 .deg. C. Experiments with various NH{sub 3}/H{sub 2}O mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific NH{sub 3} concentration.

  4. Exergy analysis of refrigerators for large scale cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Loehlein, K [Sulzer Cryogenics, Winterthur (Switzerland); Fukano, T [Nippon Sanso Corp., Kawasaki (Japan)

    1993-01-01

    Facilities with superconducting magnets require cooling capacity at different temperature levels and of different types (refrigeration or liquefaction). The bigger the demand for refrigeration, the more investment for improved efficiency of the refrigeration plant is justified and desired. Refrigeration cycles are built with discrete components like expansion turbines, cold compressors, etc. Therefore the exergetic efficiency for producing refrigeration on a distinct temperature level is significantly dependent on the 'thermodynamic arrangement' of these components. Among a variety of possibilities, limited by the range of applicability of the components, one has to choose the best design for higher efficiency on every level. Some influences are being quantified and aspects are given for a optimal integration of the refrigerator into the whole cooling system. (orig.).

  5. Effect of temperature in domestic refrigerators on fresh-cut Iceberg salad quality and waste.

    Science.gov (United States)

    Manzocco, L; Alongi, M; Lagazio, C; Sillani, S; Nicoli, M C

    2017-12-01

    The evolution of different quality parameters (firmness, weight loss, colour changes, microbial counts, consumer rejection) of packed fresh-cut Iceberg salad was assessed at 4, 8 and 12°C to simulate domestic refrigerators running at different conditions. The increase in storage temperature did not affect salad firmness and weight loss but increased colour changes, microbial growth and consumer rejection. A survey among Italian consumers was also carried out and demonstrated that fresh-cut salad was mainly consumed within the first 5days after purchasing. Consumer rejection data were combined with data relevant to the distribution of salad consumption over the days following product purchase, to estimate salad wasting risk. When salad was stored at 4 and 8°C, estimated wasted packages within the expiration date (7days) were sustainable interventions to tackle food waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Equivalent Temperature-Enthalpy Diagram for the Study of Ejector Refrigeration Systems

    Directory of Open Access Journals (Sweden)

    Mohammed Khennich

    2014-05-01

    Full Text Available The Carnot factor versus enthalpy variation (heat diagram has been used extensively for the second law analysis of heat transfer processes. With enthalpy variation (heat as the abscissa and the Carnot factor as the ordinate the area between the curves representing the heat exchanging media on this diagram illustrates the exergy losses due to the transfer. It is also possible to draw the paths of working fluids in steady-state, steady-flow thermodynamic cycles on this diagram using the definition of “the equivalent temperature” as the ratio between the variations of enthalpy and entropy in an analyzed process. Despite the usefulness of this approach two important shortcomings should be emphasized. First, the approach is not applicable for the processes of expansion and compression particularly for the isenthalpic processes taking place in expansion valves. Second, from the point of view of rigorous thermodynamics, the proposed ratio gives the temperature dimension for the isobaric processes only. The present paper proposes to overcome these shortcomings by replacing the actual processes of expansion and compression by combinations of two thermodynamic paths: isentropic and isobaric. As a result the actual (not ideal refrigeration and power cycles can be presented on equivalent temperature versus enthalpy variation diagrams. All the exergy losses, taking place in different equipments like pumps, turbines, compressors, expansion valves, condensers and evaporators are then clearly visualized. Moreover the exergies consumed and produced in each component of these cycles are also presented. The latter give the opportunity to also analyze the exergy efficiencies of the components. The proposed diagram is finally applied for the second law analysis of an ejector based refrigeration system.

  7. Reduction of pasteurization temperature leads to lower bacterial outgrowth in pasteurized fluid milk during refrigerated storage: a case study.

    Science.gov (United States)

    Martin, N H; Ranieri, M L; Wiedmann, M; Boor, K J

    2012-01-01

    Bacterial numbers over refrigerated shelf-life were enumerated in high-temperature, short-time (HTST) commercially pasteurized fluid milk for 15 mo before and 15 mo after reducing pasteurization temperature from 79.4°C (175°F) [corrected] to 76.1°C (169°F). Total bacterial counts were measured in whole fat, 2% fat, and fat-free milk products on the day of processing as well as throughout refrigerated storage (6°C) at 7, 14, and 21 d postprocessing. Mean total bacterial counts were significantly lower immediately after processing as well as at 21 d postprocessing in samples pasteurized at 76.1°C versus samples pasteurized at 79.4°C. In addition to mean total bacterial counts, changes in bacterial numbers over time (i.e., bacterial growth) were analyzed and were lower during refrigerated storage of products pasteurized at the lower temperature. Lowering the pasteurization temperature for unflavored fluid milk processed in a commercial processing facility significantly reduced bacterial growth during refrigerated storage. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Open-refrigerated retail display case temperature profile and its impact on product quality and microbiota of stored baby spinach

    Science.gov (United States)

    Open-refrigerated display cabinets are widely used in supermarkets and grocery chains around the globe. However, the temperature conditions in these display cases are variable which may impact product quality and safety. Therefore, we investigated the quality and microbiological populations of bagge...

  9. Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengjun; Wang, Huaixin; Guo, Tao [Department of Thermal Energy and Refrigeration Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)

    2010-05-15

    Experimental investigations were carried out on non-azeotropic refrigerant mixtures, named M1A (mass fraction of 20%R152a and 80%R245fa), M1B (mass fraction of 37% R152a and 63%R245fa) and M1C (mass fraction of 50%R152a and 50%R245fa), based on a water-to-water heat pump system in the condensing temperature range of 70-90 C with a cycle temperature lift of 45 C. Performance of R245fa was tested for comparison. Unfair factors in experimental comparative evaluation research with the same apparatus were identified and corrected. Experimental cycle performance of the mixtures were tested and compared with improved experimental assessment methodology. The results show that all of the mixtures deliver higher discharge temperature, higher heating capacity, higher COP and higher {epsilon}{sub h,c} than R245fa. M1B presents the most excellent cycle performance and is recommended as working fluid for moderate/high temperature heat pump. (author)

  10. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  11. Potential energy savings using dynamically optimizing control in refrigeration systems under daily variations in ambient temperature

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus; Wisniewski, Rafal

    2007-01-01

    The objective of this study is to investigate the energy saving potential for refrigeration systems by refrigeration more at the colder night time than at the warmer day time. The potential is evaluated using an optimal control policy and illustrated on a simulation example. The results show...

  12. Manufacturing A Refrigerator with Heat Recovery Unit

    Directory of Open Access Journals (Sweden)

    Mustafa Mohammed Kadhim

    2018-02-01

    Full Text Available This study aims to exploite the rejected heating energy from condenser and benefit from it to reheat the foods and other materials. It can also be employed to improve the coefficient of performance of a refrigerator at the same time by using approximately the same consumption electrical energy used to operate the compressor and refrigerator in general. This idea has been implemented by manufacturing of a refrigerator with using additional part has the same metal and condenser pipe diameters but its surface area does not exceed 40% from total surface area of the condenser and its design as an insulated cabinet from all sides to prevent heat leakage through it and located between the compressor and the condenser. Small electrical fan has been added inside this cabinet to provide a suitable air circulation and a homogenous temperature distribution inside the cabinet space. It is expected that the super heating energy of refrigerant (R134a which comes out of the compressor would be removed  inside this cabinet and this insist to condensate the refrigerant (cooling fluid with a rate higher than that used in the normal refrigerator only. Three magnetic valves have been used in order to control the refrigerant flow in state of operation the refrigerator only or to gather with heating cabinet. To measure the temperatures at each process of the simple vapor compression refrigeration cycle, nine temperature sensors at input and output of each compressor, condenser and an evaporator in additional to input of cabinet and inside it and on evaporator surface have been provided. Five pressure gages have been used to measure the value of pressure and compare it for the two states of operation. The consumption of electrical energy  can be calculated by adding an ammeter and a voltmeter and compare between the consumption energy of both states. The obtained results show that there is an improvement in the coeffecient of performance in state of operation the

  13. Magnetic refrigeration capabilities of magnetocaloric Ni2Mn:75Cu:25Ga

    Science.gov (United States)

    Mishra, S. K.; Jenkins, C. A.; Dubenko, I.; Samanta, T.; Ali, N.; Roy, S.

    2013-03-01

    Doping-driven competition between energetically similar ground states leads to many exciting materials phenomena such as the emergence of high-Tc superconductivity, diluted magnetic semiconductors, and colossal magnetoresistance. Doped Ni2MnGa Heusler alloy, which is a multifunctional ferromagnetic alloy with various exotic physical properties demonstrates this notion of rich phenomenology via modified ground spin states. Adopting this generic concept, here we will present a novel doped Ni2Mn.75Cu.25Ga alloy that offers unprecedented co-existence of the magnetocaloric effect and fully controlled ferromagnetism at room temperature. Application of site engineering enables us to manipulate the ground spin state that leads to the decrease in magnetic transition temperature and also increases the delocalization of the Mn magnetism. SQUID magnetometery suggests that Cu doping enhances the saturation magnetization, coercive field and clarity of magnetic hysteresis loops. By exploiting x-ray absorption techniques and measuring element specific magnetic hysteresis loops, here we will describe the microscopic origin of enhnaced magnetocaloric properties and d-d interaction driven charge transfer effects in Ni2Mn.75Cu.25Ga This work was supported by DOE Grant No. DE-FG02-06ER46291

  14. Performance characteristics and parametric optimum criteria of a Brownian micro-refrigerator in a spatially periodic temperature field

    International Nuclear Information System (INIS)

    Lin Bihong; Chen Jincan

    2009-01-01

    It is shown that a microscopic system consisting of Brownian particles moving in a spatially asymmetric but periodic potential (ratchet) and contacting with the alternating hot and cold reservoirs along space coordinate and an external force applying on the particles may work as a refrigerator. In order to clarify the underlying physical pictures of the system, the heat flows via both the potential energy and the kinetic energy of the particles are considered simultaneously. Based on an Arrhenius' factor describing the forward and backward particle currents, expressions for some important performance parameters of the refrigerator, such as the coefficient of performance, cooling rate and power input, are derived analytically. The maximum coefficient of performance and cooling rate are numerically calculated for some given parameters. The influence of the main parameters such as the external force, barrier height of the potential, asymmetry of the potential and temperature ratio of the heat reservoirs on the performance of the Brownian refrigerator is discussed. The optimum criteria of some characteristic parameters are given. It is found that the Brownian refrigerator may be controlled to operate in different regions through the choice of several parameters

  15. Radiation sensitivities of Listeria monocytogenes isolated from chicken meat and their growth at refrigeration temperatures

    International Nuclear Information System (INIS)

    Harsojo; Banati, D.; Ito, H.

    1997-01-01

    Listeria monocytogenes were isolated in 5 lots, more than one cell in each 25-g sample of 10 lots of chicken meat, which was obtained from several different areas in Japan. From taxonomic study, the psychrotrophic type of 3 isolates grew well at 4°C on Trypticase soy agar slant, whereas 2 isolates grew poorly. Cells of all isolates were sensitive to γ-irradiation in phosphate buffer, and the D 10 values obtained were 0.16 to 0.18 kGy under aerobic irradiation conditions similar to the values of salmonellae. In the chicken meat sample, the D 10 value obtained was 0.42 kGy the same value as in phosphate buffer under anaerobic irradiation conditions, and the necessary dose for inactivation of L. monocytogenes was estimated to be 2 kGy in raw chicken meat below 10 -4 CFU (colony forming unit) per gram. In the storage study of chicken meat which was inoculated with about 3×10 3 CFU per gram of L. monocytogenes, the psychrotrophic type of the isolates grew quickly at 7 to 10°C storage. However, a dose of 1 kGy was also effective to suppress the growth of L. monocytogenes at refrigeration temperatures below 10°C

  16. Adopted Methodology for Cool-Down of SST-1 Superconducting Magnet System: Operational Experience with the Helium Refrigerator

    Science.gov (United States)

    Sahu, A. K.; Sarkar, B.; Panchal, P.; Tank, J.; Bhattacharya, R.; Panchal, R.; Tanna, V. L.; Patel, R.; Shukla, P.; Patel, J. C.; Singh, M.; Sonara, D.; Sharma, R.; Duggar, R.; Saxena, Y. C.

    2008-03-01

    The 1.3 kW at 4.5 K helium refrigerator / liquefier (HRL) was commissioned during the year 2003. The HRL was operated with its different modes as per the functional requirements of the experiments. The superconducting magnets system (SCMS) of SST-1 was successfully cooled down to 4.5 K. The actual loads were different from the originally predicted boundary conditions and an adjustment in the thermodynamic balance of the refrigerator was necessary. This led to enhanced capacity, which was achieved without any additional hardware. The required control system for the HRL was tuned to achieve the stable thermodynamic balance, while keeping the turbines' operating parameters at optimized conditions. An extra mass flow rate requirement was met by exploiting the margin available with the compressor station. The methodology adopted to modify the capacity of the HRL, the safety precautions and experience of SCMS cool down to 4.5 K, are discussed.

  17. A dilution refrigerator combining low base temperature, high cooling power and low heat leak for use with nuclear cooling

    International Nuclear Information System (INIS)

    Bradley, D.I.; Guenault, A.M.; Keith, V.; Miller, I.E.; Pickett, G.R.; Bradshaw, T.W.; Locke-Scobie, B.G.

    1982-01-01

    The design philosophy, design, construction and performance of a dilution refrigerator specifically intended for nuclear cooling experiments in the submillikelvin regime is described. Attention has been paid from the outset to minimizing sources of heat leaks, and to achieving a low base temperature and relatively high cooling power below 10 mK. The refrigerator uses sintered silver heat exchangers similar to those developed at Grenoble. The machine has a base temperature of 3 mK or lower and can precool a copper nuclear specimen in 6.8 T to 8 mK in 70 h. The heat leak to the innermost nuclear stage is < 30 pW after only a few days' running. (author)

  18. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  19. Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Bahl, Christian Robert Haffenden; Nielsen, Kaspar Kirstein

    2011-01-01

    in an experimental device. This paper compares the performance of three magnetocaloric material candidates for AMRs, La(Fe,Co,Si)13, (La,Ca,Sr)MnO3 and Gd, in an experimental active magnetic regenerator with a parallel plate geometry. The performance of single-material regenerators of each magnetocaloric material...... family were compared. In an attempt to improve system performance, graded two-material regenerators were made from two different combinations of La(Fe,Co,Si)13 compounds having different magnetic transition temperatures. One combination of the La(Fe,Co,Si)13 materials yielded a higher performance, while...

  20. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  1. Magnetic refrigeration cycle analysis using selected thermodynamic property characterizations for gadolinium gallium garnet

    International Nuclear Information System (INIS)

    Murphy, R.W.

    1992-01-01

    Magneto-thermodynamic property characterizations were selected, adapted, and compared to material property data for gadolinium gallium garnet in the temperature range 4--40 K and magnetic field range 0--6 T. The most appropriate formulations were incorporated into a model in which methods similar to those previously developed for other materials and temperature ranges were used to make limitation and relative performance assessments of Carnot, ideal regenerative, and pseudo-constant field regenerative cycles. Analysis showed that although Carnot cycle limitations on available temperature lift for gadolinium gallium garnet are not as severe as those for materials previously examined, substantial improvements in cooling capacity/temperature lift combinations can be achieved using regenerative cycles within specified fields limits if significant loss mechanisms are mitigated

  2. Effect of Gaseous Ozone Exposure on the Bacteria Counts and Oxidative Properties of Ground Hanwoo Beef at Refrigeration Temperature.

    Science.gov (United States)

    Cho, Youngjae; Muhlisin; Choi, Ji Hye; Hahn, Tae-Wook; Lee, Sung Ki

    2014-01-01

    This study was designed to elucidate the effect of ozone exposure on the bacteria counts and oxidative properties of ground Hanwoo beef contaminated with Escherichia coli O157:H7 at refrigeration temperature. Ground beef was inoculated with 7 Log CFU/g of E. coli O157:H7 isolated from domestic pigs and was then subjected to ozone exposure (10×10(-6) kg O3 h(-1)) at 4℃ for 3 d. E. coli O157:H7, total aerobic and anaerobic bacterial growth and oxidative properties including instrumental color changes, TBARS, catalase (CAT) and glutathione peroxidase (GPx) activity were evaluated. Ozone exposure significantly prohibited (pgenerator inside a refrigerator. Further studies regarding the ozone concentrations and exposure times are needed.

  3. Stable superconducting magnet. [high current levels below critical temperature

    Science.gov (United States)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  4. Low temperature Mössbauer studies on magnetic nanocomposites

    Indian Academy of Sciences (India)

    Unknown

    in the recording industry for achieving high density infor- mation storage and in the refrigeration industry ( ... by an ultra fine grain size (< 50 nm) have created a great deal of interest in recent years by virtue of their ... The reduction in size modifies the magnetic order in these materials. The magnetic nanocomposites can be ...

  5. A review of magnetic heat pump technology

    International Nuclear Information System (INIS)

    Barclay, J.A.

    1990-01-01

    The area of technology classified as heat pumps generally refers to refrigerators, heat pumps and heat engines. This review is restricted to the literature on magnetic refrigerators and magnetic heat pumps which are referred to interchangeably. Significant progress has been made on the development of engineering prototypes of cryogenic, nonregenerative magnetic refrigerators utilizing conductive heat transfer in the 0.1 K to 20 K temperature range. Advances have also been made in analysis of regenerative magnetic refrigerators and heat pumps utilizing the active magnetic regeneration (AMR) concept. Units based on AMR are being modeled, designed and/or built to operate in various temperature ranges including 1.8-4.5 K, 4-15 K, 15-85 K, and 270-320 K. The near room temperature units have been scaled to 50 kW as both refrigerators and heat pumps. The progress of magnetic refrigeration over the last three years is summarized and discussed

  6. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  7. Magnetic phase transitions and large magnetic entropy change with a wide temperature span in HoZn

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingwei, E-mail: wei0396@hotmail.com [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster (Germany); Yuan, Ye [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Zhang, Yikun [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Pöttgen, Rainer [Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster (Germany); Zhou, Shengqiang [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany)

    2015-09-15

    Highlights: • Magnetic phase transitions and magnetocaloric effect in HoZn were studied. • The critical properties of HoZn were systematically investigated. • The obtained critical exponents are satisfied with scaling theory. • A large reversible magnetocaloric effect in HoZn was observed. • HoZn could be a promising candidate for magnetic refrigeration. - Abstract: CsCl-type HoZn undergoes two successive magnetic phase transitions: (i) paramagnetic to ferromagnetic (FM) at T{sub C} ∼ 72 K and (ii) a spin reorientation (SR) at T{sub SR} ∼ 26 K. Magnetization and modified Arrott plots indicate that HoZn undergoes a second-order magnetic phase transition around T{sub C}. The obtained critical exponents have some small deviations from the mean-field theory, indicating a short range or a local magnetic interaction which is properly related to the coexistence of FM and SR transitions at low temperature. Two successive magnetic transitions in HoZn induce one broad pronounced peak together with a shoulder in the temperature dependence of the magnetic entropy change −ΔS{sub M}(T) curves, resulting in a wide temperature range with a large relative cooling power (RCP). For a field change of 0–7 T, the maximum value of −ΔS{sub M} is 15.2 J/kg K around T{sub C} with a large RCP value of 1124 J/kg. The large reversible magnetocaloric effect (MCE) and RC indicate that HoZn is a good candidate for active magnetic refrigeration.

  8. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    Science.gov (United States)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  9. Transportation of perishable and refrigerated foods in mylar foil bags and insulated containers: a time-temperature study.

    Science.gov (United States)

    Li, Yanyan; Schrade, John P; Su, Haiyan; Specchio, John J

    2014-08-01

    Data are lacking on the temperature changes of food during transport without the use of refrigerated trucks. The purpose of this study was to evaluate the ability of several insulated and noninsulated containers with or without frozen gel packs to keep perishable and refrigerated foods within the temperature safe zone in relationship to duration of transport. The study was designed to duplicate the practices exhibited by customers purchasing perishable food products from a cash-and-carry business. Approximately 40 perishable food items were evaluated. Four types of containers were tested: a mylar foil bag, a commercial insulated bag, a generic insulated bag, and a commercial insulated blanket. Mixed foods were placed into these containers with or without frozen gel packs, transported in unrefrigerated vehicles, and monitored for 4 h for temperature changes. Two environmental temperatures, room temperature of 21.1°C and a stress temperature of 37.8°C, were evaluated. The internal temperature and surface temperature of the food products in these containers increased slowly but remained well below the U.S. Food and Drug Administration Food Code requirements. The various containers were similar in their ability to retain coolness. The presence of frozen gel packs dramatically enhanced the cold-holding capacity of the containers. The temperature of foods increased more rapidly when stressed in a heated environment. The containers tested used with the frozen gel packs can keep the surface and internal temperatures of various perishable foods (starting at 4.4°C or less) within the Food Code recommendation of under 21.1°C for 4 h. Cash-and-carry businesses should strongly encourage their retail customers to utilize these containers with frozen gel packs to safely transport perishable foods.

  10. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    Science.gov (United States)

    Pecharsky, Alexandra O.; Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    2006-10-03

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  11. Development of a Proof of Concept Low Temperature Superfluid Magnetic Pump with Applications

    Science.gov (United States)

    Jahromi, Amir E.

    State of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin coolers over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. Development of a proof of concept Superfluid Magnetic Pump is discussed in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He- 4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, or active magnetic regenerative refrigerators. Due to its superior thermal transport properties this pump can also be used as a simple circulator of sub-Lambda 4He to distribute cooling over large surface areas. The pump discussed in this work was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pascal. This pump worked in an "ideal" thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be put to test in suitable sub Kelvin refrigeration systems. Numerical modeling of an Active Magnetic Regenerative Refrigerator (AMRR) that uses the Superfluid Magnetic Pump (SMP) to circulate liquid 3He-4He through a magnetic regenerator is presented as a potential application of such a pump.

  12. A multi-stage traveling-wave thermoacoustically-driven refrigeration system operating at liquefied natural gas temperature

    Science.gov (United States)

    Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.

    2017-12-01

    This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.

  13. A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qun; Li, Peng-Fei [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Zou, Zhi-Ming, E-mail: 2014005@glut.edu.cn [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Zheng [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Shu-Xia, E-mail: liusx@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China)

    2017-02-15

    A metal-organic framework (MOF) based on gadolinium ion (Gd{sup 3+}) and tricarboxylate ligand, [Gd(BTPCA)(H{sub 2}O)]·2DMF·3H{sub 2}O (Gd-BTPCA) (H{sub 3}BTPCA =1,1′,1′-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic acid; DMF=dimethylformamide), was synthesized and structurally characterized. The adjacent Gd{sup 3+} ions are intraconnected by the carboxylate groups of the BTPCA{sup 3-} ligands to form a 1D Gd{sup 3+} ion chain. The 1D Gd{sup 3+} ion chains are interconnected by the BTPCA{sup 3-} ligands, giving rise to a 3D framework with 1D open channel. The magnetic studies indicate that Gd-BTPCA exhibits weak ferromagnetic interactions, and acts as a cryogenic magnetic refrigerant having the magnetic entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Graphical abstract: A 1D gadolinium(III) chains-based metal-organic framework performed ferromagnetic coupling on the magnetic property. Magnetic investigation reveals that Gd-BTPCA exhibits the entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Highlights: • The MOF based on gadolinium ion and tricarboxylate ligand was synthesized. • This MOF is connected with 1D Gd{sup 3+} ions chain and the carboxylate groups of BTPCA{sup 3-} ligands. • The magnetic studies indicate that the MOF exhibits the weak ferromagnetic interactions. • Magnetic investigation reveals that the MOF exhibits the high entropy change.

  14. Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    International Nuclear Information System (INIS)

    Fujieda, S.; Fukamichi, K.; Suzuki, S.

    2014-01-01

    Highlights: • The aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe 0.88 Si 0.12 ) 13 becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe 0.88 Si 0.12 ) 13 in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration

  15. Helium refrigerator for 'SULTAN'

    International Nuclear Information System (INIS)

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  16. Improvement of two-stage GM refrigerator performance using a hybrid regenerator

    International Nuclear Information System (INIS)

    Ke, G.; Makuuchi, H.; Hashimoto, T.; Onishi, A.; Li, R.; Satoh, T.; Kanazawa, Y.

    1994-01-01

    To improve the performance of two-stage GM refrigerators, a hybrid regenerator with magnetic materials of Er 3 Ni and ErNi 0.9 Co 0.1 was used in the 2nd stage regenerator because of its large heat exchange capacity. The largest refrigeration capacity achieved with the hybrid regenerator was 0.95W at helium liquefied temperature of 4.2K. This capacity is 15.9% greater than the 0.82W refrigerator with only Er 3 Ni as the 2nd regenerator material. Use of the hybrid regenerator not only increases the refrigeration capacity at 4.2K, but also allows the 4K GM refrigerator to be used with large 1st stage refrigeration capacity, thus making it more practical

  17. Magnetic heat pumping near room temperature

    Science.gov (United States)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  18. Thermodynamic analysis of a novel ejector expansion transcritical CO_2/N_2O cascade refrigeration (NEETCR) system for cooling applications at low temperatures

    International Nuclear Information System (INIS)

    Megdouli, K.; Ejemni, N.; Nahdi, E.; Mhimid, A.; Kairouani, L.

    2017-01-01

    Natural substances are becoming very promising for long term alternative for refrigeration purposes. In this paper, two natural refrigerants have been proposed and analyzed for a novel ejector expansion transcritical cascade refrigeration (NEETCR) system. Nitrous oxide (N_2O) is used in the low temperature circuit (LTC) whereas carbon dioxide (CO_2) is used in the high temperature circuit (HTC) of the NEETCR system. The reject of refrigerant vapor heat in the HTC is carried out through the use of transcritical carbon dioxide Rankine cycle. This produces work, which will be used to reduce the consumption work of compressors and feed pump thereby resulting in the improvement of the energy efficiency of the whole system. The simulation results were obtained by a computer FORTRAN program, where REFPROP 9 database was used to get the refrigerant thermodynamic properties. The simulation results showed that the (NEETCR) system had higher coefficient of performance and higher system second law efficiency compared to the EETCR system. An enhancement more than 9% in the COP and exergy efficiency of NEETCR system was found in comparison with EETCR system, when the cooling capacity and operating conditions of the two systems were the same. The increase of COP of NEETCR system and its efficiency along with the reduction of power consumption make it more practical for the use in cooling applications. - Highlights: • Exergy-energy analysis of two cascade refrigeration systems is conducted. • The input power of the NEETCR system is lower than that of the EETCR system. • The COP of the NEETCR system is higher than that of the EETCR system. • The NEETCR system is promise in cascade refrigeration system.

  19. Development of a proof of concept low temperature 4He Superfluid Magnetic Pump

    Science.gov (United States)

    Jahromi, Amir E.; Miller, Franklin K.

    2017-03-01

    We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.

  20. Influence of quantum degeneracy and regeneration on the performance of Bose-Stirling refrigeration-cycles operated in different temperature regions

    International Nuclear Information System (INIS)

    Lin Bihong; Zhang Yue; Chen Jincan

    2006-01-01

    The Stirling refrigeration cycle using an ideal Bose-gas as the working substance is called the Bose-Stirling refrigeration cycle, which is different from other thermodynamic cycles such as the Carnot cycle, Ericsson cycle, Brayton cycle, Otto cycle, Diesel cycle and Atkinson cycle working with an ideal Bose gas and may be operated across the critical temperature of Bose-Einstein condensation of the Bose system. The performance of the cycle is investigated, based on the equation of state of an ideal Bose gas. The inherent regenerative losses of the cycle are considered and the coefficient of performance and the amount of refrigeration of the cycle are calculated. The results obtained here are compared with those derived from the classical Stirling refrigeration cycle, using an ideal gas as the working substance. The influence of quantum degeneracy and inherent regenerative losses on the performance of the Bose Stirling refrigeration cycle operated in different temperature regions is discussed in detail, and consequently, general performance characteristics of the cycle are revealed

  1. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  2. Effects of hysteresis and Brayton cycle constraints on magnetocaloric refrigerant performance

    Science.gov (United States)

    Brown, T. D.; Buffington, T.; Shamberger, P. J.

    2018-05-01

    Despite promising proofs of concept, system-level implementation of magnetic refrigeration has been critically limited by history-dependent refrigerant losses that interact with governing thermodynamic cycles to adversely impact refrigeration performance. Future development demands a more detailed understanding of how hysteresis limits performance, and of how different types of cycles can mitigate these limitations, but without the extreme cost of experimental realization. Here, the utility of Brayton cycles for magnetic refrigeration is investigated via direct simulation, using a combined thermodynamic-hysteresis modeling framework to compute the path-dependent magnetization and entropy of a model alloy for a variety of feasible Brayton cycles between 0-1.5 T and 0-5 T. By simultaneously varying the model alloy's hysteresis properties and applying extensions of the thermodynamic laws to non-equilibrium systems, heat transfers and efficiencies are quantified throughout the space of hystereses and Brayton cycles and then compared with a previous investigation using Ericsson cycles. It is found that (1) hysteresis losses remain a critical obstacle to magnetic refrigeration implementation, with efficiencies >80% in the model system requiring hysteresis refrigerant transformation temperatures at the relevant fields; (3) for a given hysteresis and field constraint, Brayton and Ericsson-type cycles generate similar efficiencies; for a given temperature span, Ericsson cycles lift more heat per cycle, with the difference decreasing with the refrigerant heat capacity outside the phase transformation region.

  3. Temperature dependence in magnetic particle imaging

    Science.gov (United States)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  4. Thermoacoustic refrigeration

    Science.gov (United States)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-12-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  5. CFD-simulations of a 4π-contiuous-mode dilution refrigerator for the CB-ELSA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Altfelde, Timo; Bornstein, Marcel; Dutz, Hartmut; Goertz, Stefan; Miebach, Roland; Reeve, Scott; Runkel, Stefan; Sommer, Marco; Streit, Benjamin [Physikalisches Institut, Bonn (Germany)

    2015-07-01

    The polarized target group at Bonn operates a dilution refrigerator for double polarization experiments at the Crystal Barrel in Bonn. To get high target polarizations and long relaxation times low temperatures are indispensable. To reach temperatures below 30 mK and to allow for the use of an internal polarization magnet, the polarized target group is building a new continuous mode dilution refrigerator. As a optimizing tool for the construction of dilution refrigerators and for a better understanding of the different incoming and outgoing fluid streams several CFD-simulations are done. First the different streams are simulated independently for different parts of the refrigerator to get a better estimation of the flow parameters. Then the simulation is extended to include the heat exchange between the different streams at the heat exchangers for different operational parameters of the refrigerator. Afterwards the precooling stages of the refrigerator will be tested to compare the predicted and the measured operational parameters.

  6. CFD-simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bornstein, Marcel; Dutz, Hartmut; Goertz, Stefan; Reeve, Scott; Runkel, Stefan [Physikalisches Institut, Bonn Univ. (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    The polarized target group at Bonn operates a dilution refrigerator for double polarization experiments at the Crystal Barrel in Bonn. To get high target polarizations and long relaxation times low temperatures are indispensable. To reach temperatures below 30 mK and to allow for the use of an internal polarization magnet, the polarized target group is building a new continuous mode dilution refrigerator. As a optimizing tool for the construction of dilution refrigerators and for a better understanding of the different incoming and outgoing fluid streams several Computational Fluid Dynamic simulations are done. The heat exchange between the different streams of the refrigerator were simulated for the precooling stages within one simulation including a submesh for each fluid and solid. This leads to a better estimation of the flow characteristics and the operational parameter of the refrigerator. The last steps of construction and the preparation of the refrigerator for first test measurements are ongoing.

  7. Performance study on a low-temperature absorption–compression cascade refrigeration system driven by low-grade heat

    International Nuclear Information System (INIS)

    Xu, Yingjie; Chen, Guangming; Wang, Qin; Han, Xiaohong; Jiang, Ning; Deng, Shiming

    2016-01-01

    Highlights: • An absorption–compression system for low-temperature is developed and analyzed. • Cooling capacity, compression power, and discharge temperature are all improved. • At −170 °C, giving 200 W low-grade cooling capacity, COP increases by 28.6%. • Simulation results are verified experimentally, showing good agreement. - Abstract: This paper presents a performance study on a low-temperature absorption–compression cascade refrigeration system (LACRS), which consists of an absorption subsystem (AS) and a vapor compression auto-cascade subsystem (CS). In the system, low-grade heat of AS is used to subcool the CS, which can obtain cold energy at −170 °C. A simulation study is carried out to investigate the effects of evaporating temperature and low-grade cooling capacity on system performance. The study results show that as low-grade cooling capacity from the AS is provided to the CS, high-grade cooling capacity increases, compressor power consumption decreases, and the COP of the CS therefore increases. Comparing with compression auto-cascade cycle, the largest COP improvement of LACRS is about 38%. The model is verified by experimental data. An additional high-grade cooling capacity is obtained experimentally at −170 °C. The study results presented in this paper not only demonstrate the excellent performance of the LACRS, but also provide important guidance to further system design, and practical application.

  8. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  9. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  10. A Designed Room Temperature Multilayered Magnetic Semiconductor

    Science.gov (United States)

    Bouma, Dinah Simone; Charilaou, Michalis; Bordel, Catherine; Duchin, Ryan; Barriga, Alexander; Farmer, Adam; Hellman, Frances; Materials Science Division, Lawrence Berkeley National Lab Team

    2015-03-01

    A room temperature magnetic semiconductor has been designed and fabricated by using an epitaxial antiferromagnet (NiO) grown in the (111) orientation, which gives surface uncompensated magnetism for an odd number of planes, layered with the lightly doped semiconductor Al-doped ZnO (AZO). Magnetization and Hall effect measurements of multilayers of NiO and AZO are presented for varying thickness of each. The magnetic properties vary as a function of the number of Ni planes in each NiO layer; an odd number of Ni planes yields on each NiO layer an uncompensated moment which is RKKY-coupled to the moments on adjacent NiO layers via the carriers in the AZO. This RKKY coupling oscillates with the AZO layer thickness, and it disappears entirely in samples where the AZO is replaced with undoped ZnO. The anomalous Hall effect data indicate that the carriers in the AZO are spin-polarized according to the direction of the applied field at both low temperature and room temperature. NiO/AZO multilayers are therefore a promising candidate for spintronic applications demanding a room-temperature semiconductor.

  11. Stability of sodium bicarbonate injection 8.4% in syringes over a six-week period in refrigerated temperature.

    Science.gov (United States)

    Seki, Jack T; Wang, Tian Q; Yip, Paul M; Mazzulli, Tony; Minden, Mark D

    2018-04-01

    Background Dysfunctional central venous catheter prohibits the administration of potential life-saving chemotherapy and the delivery of essential supportive care needs to patients. Sodium bicarbonate injection has been shown to impede against fibrin clot formation and prolong prothrombin time and thrombin clotting time. Sodium bicarbonate injection has been tried as a second-line agent with good results in a small number of patients (internal data not published) when alteplase failed. We assessed whether the pre-filled sodium bicarbonate injection in 5 mL syringes would not only preserve sterility and retain its pH and concentration but also amount to the potential cost savings for future use when stored in a refrigerated environment. Methodology Twelve pre-filled 5 mL syringes were prepared aseptically, of which four each were tested for pH, sodium bicarbonate injection concentration and sterility when stored in refrigerated temperature over a six-week period. A standard pH meter, enzymatic carbon dioxide analyzer, and a 14-day incubation for microbial detection were employed for this study. Results Sodium bicarbonate concentration measured in the form of carbon dioxide ranged from 923 mmol/L or (1846 mosol/L) to 1006 mmol/L or (2012 mosmol/L), and pH ranged from (7.88 to 8.05) were reported over the duration of the study period. The 14-day incubation period resulted in no microbial growth. Conclusion Our study results have indicated that the pH and sodium bicarbonate injection concentration values were stable and within range, comparable to those reported by the manufacturer within the study period. The contents of the subdivided sodium bicarbonate injection 5 mL syringes retained sterility over a 14-day incubation period.

  12. Thermoacoustic engines and refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  13. Temperature Measurements in the Magnetic Measurement Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  14. Flammable refrigerants

    NARCIS (Netherlands)

    Gerwen, R.J.M. van; Verwoerd, M.; Oostendorp, P.A.

    1999-01-01

    Hydrocarbons are promising alternatives for CFC, HCFC and HFC refrigerants. Due to their flammable nature, safety aspects have to be considered carefully. The world-wide situation concerning acceptability and practical application of flammable refrigerants is becoming more and more complex and

  15. Material properties and modeling characteristics for MnFeP1-xAsx materials for application in magnetic refrigeration

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Bahl, Christian R.H.

    2013-01-01

    and thermal hysteresis, and it is not well understood how the hysteresis will affect performance in a practical AMR device. The amount of hysteresis shown by a material can be controlled to an extent by tuning the processing conditions used during material synthesis; therefore, knowledge of the practical......Compounds of MnFeP1-xAsx have received attention recently for their use in active magnetic regenerators (AMR) because of their relatively high isothermal entropy change and adiabatic temperature change with magnetization. However, the materials also generally exhibit a significant magnetic...... impact of hysteresis is a key element to guide successful material development and synthesis. The properties of a magnetocaloric MnFeP1-xAsx compound are characterized as a function of temperature and applied magnetic field, and the results are used to assess the effects of hysteresis on magnetocaloric...

  16. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  17. Refrigeration systems of high temperature superconduction transformers for rail vehicles. Final report; Kaelteversorgung von Schienenfahrzeug-Transformatoren mit HT-Supraleitung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Glatthaar, R.

    2000-09-01

    The refrigeration system for the HTS-transformer was designed in cooperation with the transformer manufacturer and the requirements for the refrigerator have been determined. Several active and passive refrigeration systems were investigated, two of them have been elaborated more detailed. All the refrigeration systems are based on the concept of a liquid nitrogen flow rate of 1000 g/s passing through the 6 MVA transformer at a temperature of approx. 66 K and at a pressure of approx. 3 bars. The passive system uses as refrigerant source a tank with liquid nitrogen, weighing approx. 2300 kg and consuming 500 kg liquid nitrogen per day. After evaporating and preheating the nitrogen used exits to atmosphere with a vacuum pump. The active system elaborated more detailed applies a Stirling engine for refrigeration, will weigh 1600 kg and needs an average electric power of 25 kW. The refrigeration system for a transformer of ceramic superconducting material has significant advantages with regard to weight, power consumption and investment costs compared to a transformer of the same size manufactured as metallic superconductors. (orig.) [German] In Zusammenarbeit mit dem Transformatorhersteller wurden die Kaelteversorgung des HTS-Transformators konzipiert und die Anforderungen an die Kaelteanlage festgelegt. Verschiedene sogenannte passive und aktive Systeme fuer die Kaelteversorgung wurden untersucht, zwei davon naeher ausgearbeitet. Die Kuehlkonzepte sehen vor, dass fuer einen Transformator der Leistung 6 MVA ein Strom an fluessigem Stickstoff von 1000 g/s mit einer Temperatur von ca. 66 K und unter einem Druck von rund 3 bar durch den Transformator geleitet wird. Das passive System ist gekennzeichnet durch Einsatz eines Tanks fuer fluessigen Stickstoff als Kaeltequelle, hat ein Gewicht von etwa 2300 kg und einen Verbrauch an fluessigem Stickstoff von 500 kg/Tag. Der Stickstoff wird nach Verdampfung und Anwaermung mit Hilfe einer Vakuumpumpe an die Umgebung abgegeben

  18. Growth of Listeria monocytogenes in Camembert and other soft cheeses at refrigeration temperatures.

    Science.gov (United States)

    Back, J P; Langford, S A; Kroll, R G

    1993-08-01

    Listeria monocytogenes survived and, under most conditions, multiplied when inoculated directly into the cheese milk of laboratory made Camembert cheeses. The rate and extent of growth was reduced at lower storage temperatures. Significantly higher rates of growth occurred at the surface compared with the centre of the cheeses, and these were probably associated with increased pH and proteolysis at the cheese surface due to the mould ripening process. Similar results were obtained with Camenbert cheeses surface inoculated after manufacture. There was also temperature-dependent growth of List. monocytogenes on a range of inoculated commercially manufactured soft cheeses. Significant growth occurred in Cambazola, French and English Brie, blue and white Lymeswold, French Camembert and Brie with garlic. Little if any growth occurred in blue and white Stilton, Mycella, Chaume and full fat soft cheese with garlic and herbs at the temperatures examined.

  19. Specifications for refrigerating transport. More rigid temperature specifications for cooling transport; Anforderungen im Transportkaeltebereich. Erhoehte Anforderungen beim Kuehltransport wegen verschaerfter Temperaturvorschriften

    Energy Technology Data Exchange (ETDEWEB)

    Grosskopf, P [Frigoblock Grosskopf GmbH, Essen (Germany)

    2002-09-01

    The recommendations of the Federal Institute of Consumer Health Protection and Veterinary Medicine (Bundesinstitut fuer gesundheitlichen Verbraucherschutz und Veterinaermedizin, BgVV), which sums up all German and European temperature specifications for fresh and refrigerated products, as well as the new Ordinance on Refrigerated food (Verordnung ueber tiefgefrorene Lebensmittel, TLMV) and the new German Ordinance on Food Hygiene (Lebensmittelhygieneverordnjung,LMHV) including temperature monitoring specifications according to HACCP, induced these associations to draw up practical recommendations and guidelines for their members. [German] Die Temperaturempfehlungen des Bundesinstituts fuer gesundheitlichen Verbraucherschutz und Veterinaermedizin (BgVV), die alle deutschen und europaeischen Temperaturvorschriften fuer Frisch- und Tiefkuehlprodukte zusammenfassen sowie die Neufassung der Verordnung ueber tiefgefrorene Lebensmittel (TLMV) und die neue bundeseinheitliche Lebensmittelhygiene-Verordnung (LMHV) inkl. der Temperaturueberwachungsvorschriften gemaess HACCP, haben die betroffenen Verbaende veranlasst, entsprechende Praxisempfehlungen und Leitlinien fuer ihre Mitglieder zu erarbeiten. (orig.)

  20. 46 CFR 154.702 - Refrigerated carriage.

    Science.gov (United States)

    2010-10-01

    ... Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1) Have enough capacity to maintain the cargo vapor pressure in each cargo tank served by the system below... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  1. Magnon-driven quantum dot refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan, E-mail: jcchen@xmu.edu.cn

    2015-12-18

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  2. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    OpenAIRE

    Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei

    2014-01-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the st...

  3. Monte Carlo approach to define the refrigerator capacities for JT-60SA

    International Nuclear Information System (INIS)

    Wanner, Manfred; Barabaschi, Pietro; Lamaison, Valerie; Michel, Frederic; Reynaud, Pascal; Roussel, Pascal

    2011-01-01

    The JT-60SA cryogenic system shall provide refrigeration to keep the superconducting magnets and their structures at 4.4 K, cryo-pumps at 3.7 K, thermal shields at 80-100 K, and deliver a flow of 50 K helium to the current leads. A Monte Carlo method is proposed to determine the capacity contingencies for the refrigeration system. Attributing individual contingencies and distribution probability functions to the design variables allows the different load contributions to be statistically averaged. The total refrigeration contingency is derived for each temperature level from the 95% confidence level of the integrated distribution function.

  4. Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Pryds, Nini; Smith, Anders

    2008-01-01

    heat exchanger. The model simulates the different steps of the AMR refrigeration cycle and evaluates the performance in terms of refrigeration capacity and temperature span between the two heat exchangers. The model was used to perform an analysis of an AMR with a regenerator made of gadolinium...

  5. Ripening and shelf life of 'BRS Caipira' banana fruit stored under room temperature or refrigeration

    Directory of Open Access Journals (Sweden)

    Orjana Santos Lima

    2014-04-01

    Full Text Available BRS Caipira variety, internationally known as 'Yangambi km 5', is an alternative to meet the demand of 'Maçã'-type fruit due to its resistance to Panama disease. This study had the objective of generating information about 'BRS Caipira' fruit ripening and cold storage potential. For the ripening study fruits were stored under room temperature conditions (25±2°C / 58±6% U.R. and assessed for postharvest life evaluation and characterization of seven maturity stages based on peel color: completely green - MS1; green with yellow traces - MS2; more green than yellow - MS3; more yellow than green - MS4; yellow with green tips - MS5; completely yellow - MS6; yellow with brown spots - MS7. For the cold storage potential study, fruits at MS1 were cold stored (14±1°C / 53±2% U.R. for 28 days. Weekly, fruits were transferred to room temperature to ripen until MS6 when were assessed for quality attributes. Ripening of 'BRS Caipira' fruit was characterized as slow between MS1 and MS2 (averaging five days, then fast between MS2 and MS6 (up to four days in average, and undergoing determinant changes between MS6 and MS7: pulp yield reached 80%, titratable acidity reduced by 50% and ratio increased by 78%. Cold storage extended shelf life by up to 19 days as compared with control, without visible symptoms of chilling injury, although tends to reduce soluble solids in ripe fruit. Maximum recommended time for storage of 'BRS Caipira' fruit at 14°C is 21 days, since it allows a few more days under room temperature until fruit reach MS6.

  6. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  7. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Directory of Open Access Journals (Sweden)

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  8. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet.

    Science.gov (United States)

    Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi

    2009-02-01

    We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  9. Magnetocaloric effect of Gd5 Si2 Ge2 alloys in low magnetic field

    Indian Academy of Sciences (India)

    Administrator

    Gd5Si2Ge2 compounds are promising as high-performance magnetic refrigerants working room temperature in relatively low ... 2000) as well as their magnetic properties (Pecharsky ... tron microscope (SEM) with the energy dispersive X-ray.

  10. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenbiao; Zhang, Pu [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Wenzhong, E-mail: lwz7410@hust.edu.cn [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  11. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  12. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    Science.gov (United States)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  13. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    International Nuclear Information System (INIS)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power

  14. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    Energy Technology Data Exchange (ETDEWEB)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S. [AL-AT, 2 rue de Clémencières, 38360 Sassenage (France); Baguer, G. M. Gistau [CRYOGUY, 44, chemin de la Buisse, 38330 Biviers (France)

    2014-01-29

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  15. Physicochemical and microbiological changes during the refrigerated storage of lamb loins sous-vide cooked at different combinations of time and temperature.

    Science.gov (United States)

    Roldán, Mar; Antequera, Teresa; Hernández, Alejandro; Ruiz, Jorge

    2015-10-01

    This study aimed to determine the influence of cooking temperature (either 60 ℃ or 80 ℃) and time (6 h or 24 h) on the physicochemical (weight loss, moisture content, instrumental color, instrumental texture, lipid and protein oxidation) and microbiological changes underwent by sous-vide cooked lamb loins during refrigerated storage for 30 days. There was a slight trend to decreasing weight losses in some of the cooking treatments, but only in samples cooked at 60 ℃ for 6 h it was paralleled with an increase in moisture content. The only noteworthy oxidative change was a marked decrease in conjugated dienes after two weeks of storage in samples cooked at 80 ℃ for 24 h. Neither instrumental texture nor color showed noticeable variations during the storage. Microbial population remained quite low during the whole refrigerated storage. Overall, most of the studied parameters showed only scarce changes throughout 30 days of refrigerated storage that most likely would not influence the quality of sous-vide cooked loin lambs. © The Author(s) 2014.

  16. Optimal thermoeconomic performance of an irreversible regenerative ferromagnetic Ericsson refrigeration cycle

    International Nuclear Information System (INIS)

    Xu, Zhichao; Guo, Juncheng; Lin, Guoxing; Chen, Jincan

    2016-01-01

    On the basis of the Langevin theory of classical statistical mechanics, the magnetization, entropy, and iso-field heat capacity of ferromagnetic materials are analyzed and their mathematical expressions are derived. An irreversible regenerative Ericsson refrigeration cycle by using a ferromagnetic material as the working substance is established, in which finite heat capacity rates of low and high temperature reservoirs, non-perfect regenerative heat of the refrigeration cycle, additional regenerative heat loss, etc. are taken into account. Based on the regenerative refrigeration cycle model, a thermoeconomic function is introduced as one objective function and optimized with respect to the temperatures of the working substance in the two iso-thermal processes. By means of numerical calculation, the effects of the effective factor of the heat exchangers in high/low temperature reservoir sides, efficiency of the regenerator, heat capacity rate of the low temperature reservoir, and applied magnetic field on the optimal thermoeconomic function as well as the corresponding cooling rate and coefficient of performance are revealed. The results obtained in this paper can provide some theoretical guidance for the optimal design of actual regenerative magnetic refrigerator cycle. - Highlights: • Thermodynamic performance of ferromagnetic material is analyzed. • An irreversible regenerative ferromagnetic Ericsson refrigeration cycle is set up. • The thermoeconomic objective function is introduced and optimized. • Impacts of the thermoeconomic and other parameters are discussed.

  17. Estimating relic magnetic fields from CMB temperature correlations

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2009-01-01

    The temperature and polarization inhomogeneities of the cosmic microwave background might bear the mark of predecoupling magnetism. The parameters of a putative magnetized background are hereby estimated, for the first time, from the observed temperature autocorrelation as well as from the measured temperature-polarization cross correlation.

  18. Estimating relic magnetic fields from CMB temperature correlations

    CERN Document Server

    Giovannini, Massimo

    2009-01-01

    The temperature and polarization inhomogeneities of the Cosmic Microwave Background might bear the mark of pre-decoupling magnetism. The parameters of a putative magnetized background are hereby estimated from the observed temperature autocorrelation as well as from the measured temperature-polarization cross-correlation.

  19. Cryocooler applications for high-temperature superconductor magnetic bearings

    International Nuclear Information System (INIS)

    Niemann, R. C.

    1998-01-01

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping

  20. Growth characteristics of Listeria monocytogenes as affected by a native microflora in cooked ham under refrigerated and temperature abuse conditions.

    Science.gov (United States)

    Hwang, Cheng-An; Sheen, Shiowshuh

    2011-05-01

    This study examined the growth characteristics of Listeria monocytogenes as affected by a native microflora in cooked ham at refrigerated and abuse temperatures. A five-strain mixture of L. monocytogenes and a native microflora, consisting of Brochothrix spp., isolated from cooked meat were inoculated alone (monocultured) or co-inoculated (co-cultured) onto cooked ham slices. The growth characteristics, lag phase duration (LPD, h), growth rate (GR, log(10) cfu/h), and maximum population density (MPD, log(10) cfu/g), of L. monocytogenes and the native microflora in vacuum-packed ham slices stored at 4, 6, 8, 10, and 12 °C for up to 5 weeks were determined. At 4-12 °C, the LPDs of co-cultured L. monocytogenes were not significantly different from those of monocultured L. monocytogenes in ham, indicating the LPDs of L. monocytogenes at 4-12 °C were not influenced by the presence of the native microflora. At 4-8 °C, the GRs of co-cultured L. monocytogenes (0.0114-0.0130 log(10) cfu/h) were statistically but marginally lower than those of monocultured L. monocytogenes (0.0132-0.0145 log(10) cfu/h), indicating the GRs of L. monocytogenes at 4-8 °C were reduced by the presence of the native microflora. The GRs of L. monocytogenes were reduced by 8-7% with the presence of the native microflora at 4-8 °C, whereas there was less influence of the native microflora on the GRs of L. monocytogenes at 10 and 12 °C. The MPDs of L. monocytogenes at 4-8 °C were also reduced by the presence of the native microflora. Data from this study provide additional information regarding the growth suppression of L. monocytogenes by the native microflora for assessing the survival and growth of L. monocytogenes in ready-to-eat meat products. Published by Elsevier Ltd.

  1. Numerical Simulation of Magnetic Field Effect on Cryocooler Regenerators: Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar

    2017-01-01

    Full Text Available Regenerative types of cryogenic refrigerators (or cryocoolers employ magnetic intermetallic compounds of 3d and 4f elements to work well below 10 K. This paper presents the analysis of temperature distribution in regenerators of such cryocoolers under the influence of magnetic fields of 1 T, 3 T, and 4.3 T. Commercial code of finite element analysis (FEA package, ANSYS (APDL 14.5, is used to investigate the temperature distribution under above-mentioned fields. Er3Ni is selected as regenerator material and the criteria for its selection are discussed in detail. The cold end temperature is varied from 4.2 K to 10 K and hot end temperature is fixed at 20 K. The values obtained from FEA clearly show that the ineffectiveness of Er3Ni is at 8 K and 10 K at 3 T and 4.3 T.

  2. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    International Nuclear Information System (INIS)

    Guo, Peng; Feng, Jiafeng; Wei, Hongxiang; Han, Xiufeng; Fang, Bin; Zhang, Baoshun; Zeng, Zhongming

    2015-01-01

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed

  3. Temperature dependence of magnetic descriptors of Magnetic Adaptive Testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 46, č. 2 (2010), s. 509-512 ISSN 0018-9464 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.052, year: 2010

  4. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  5. A Histological Analysis of Visceral Organs to Evaluate the Effect of Duration of Heating From Refrigeration to Core Body Temperature for Ballistics Investigations.

    Science.gov (United States)

    Humphrey, Caitlin; Kumaratilake, Jaliya

    2017-12-01

    Animal organs have been used in ballistics research to investigate the effects on human organs. Such organs are refrigerated until the investigation to minimize autolytic degradation and at times have been reheated to the human core body temperature to simulate the in situ environment. The aim of this investigation was to study the microstructural changes that may occur in fresh chilled visceral organs of the thorax and abdomen (ie, heart, lung, liver, and kidney) during the period of reheating to 37°C. Fifty-millimeter cubes of porcine heart, lung, liver, and kidney were taken rapidly after slaughter, chilled overnight, and the next morning were reheated to core body temperature (37°C). Histological changes occurring in the tissues during the reheating phase were investigated. The findings indicated that no cytoplasmic or nuclear changes occurred in any of the tissues during the period of reheating. Therefore, reheating of animal organs to the human core body temperature is not necessary, if the organs are refrigerated.

  6. Effect of substrate temperature on electrical and magnetic properties ...

    Indian Academy of Sciences (India)

    . Figure 1. The temperature dependence of resistivity for LPMO films grown at different substrate temperatures (solid and open circles are the data in zero and 1 T magnetic field). The inset shows the variation of magnetoresistance with ...

  7. Design and component testing of a low-temperature waste heat driven refrigeration system. Phases I and II. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hynek, S.; Borhanian, H.; Krepchin, I.; Walker, D.; Mariano, C.; Fuller, H.; Lee, K.

    1982-03-01

    The design and the component testing of a 20-ton refrigeration system powered by 140/sup 0/F waste heat have been completed. A major advantage of such a system is that essentially all operating power comes from the waste heat with only minor injections of auxiliary power. This Rankine-Rankine system uses R-22 for both power and refrigeration cycles. A single semi-hermetic housing contains the expander, compressor, feed pump, and motor/generator. The integral induction motor/generator acts as a starter, makes up shaft power deficits, absorbs shaft power surpluses, and provides overspeed protection. Experiments determined that 0.0015 in. is the optimum axial clearance for the gerotor R-22 evaporator feed pump to minimize both friction and backleakage, that oil injection to the pump had no effect on either friction or backleage, and that a centrifugal inducer was needed to prevent cavitation under certain operating conditions. Two cylinders of a standard four-cylinder York refrigeration compressor were transformed into expanders to power the remaining two compressor cylinders. Rotary expander valves were used in lieu of conventional poppet valves to lower breathing losses. Testing demonstrated a 75% mechanical efficiency, an 83% isentropic efficiency, and the necessity to support both the rotary valve and the expander wristpins with rolling contact bearings. Fabrication of the 20-ton experimental system is nearing completion and experimental tests are being planned.

  8. Cryogen free high magnetic field and low temperature sample environments for neutron scattering - latest developments

    International Nuclear Information System (INIS)

    Burgoyne, John

    2016-01-01

    Continuous progress has been made over many years now in the provision of low- and ultra-low temperature sample environments, together with new high-field superconducting magnets and increased convenience for both the user and the neutron research facility via new cooling technologies. Within Oxford Instrument's experience, this has been achieved in many cases through close collaboration with neutron scientists, and with the neutron facilities' sample environment leaders in particular. Superconducting magnet designs ranging from compact Small Angle (SANS) systems up to custom-engineered wide-angle scattering systems have been continuously developed. Recondensing, or 'zero boil-off' (ZBO), systems are well established for situations in which a high field magnet is not conducive to totally cryogen free cooling solutions, and offer a reliable route with the best trade-offs of maximum system capability versus running costs and user convenience. Fully cryogen free solutions for cryostats, dilution refrigerators, and medium-field magnets are readily available. Here we will present the latest technology developments in these options, describing the state-of-the art, the relative advantages of each, and the opportunities they offer to the neutron science community. (author)

  9. Performance Variation of Ferrite Magnet PMBLDC Motor with Temperature

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    The price fluctuations of rare earth metals and the uncertainty in their availability has generated an increased interest in ferrite magnet machines. The influence of temperature on BH characteristics of the ferrite magnet differ considerably from that of the rare earth magnet and hence, requires...

  10. Magnetic memory effects in high temperature superconductors

    International Nuclear Information System (INIS)

    Rockenbauer, A.

    1989-01-01

    Microwave absorption of high temperature oxide superconductors MBa 2 Cu 3 O 7 (M = Y, Er, Dy, Ho, Lu, Tm, Gd) at 77 K have been studied by ESR. In granular samples diamagnetic zero-field resonance and strong ESR baseline hysteresis have been observed: for increasing field sweep - a high, for decreasing one - a low, while in constant field the baseline approaches the middle position with kinetics typical of spin-glasses. The hysteresis amplitude, i.e. the deviation of high and low baselines, possesses maximum at zero field if the sample is cooled down in zero field. In case of field cooling both the diamagnetic resonance and hysteresis maximum are shifted as a function of relative direction of the fields where the samples are cooled and measured, respectively. The shift is caused by the remanent diamagnetism of trapped fluxons. The hysteresis critically depends on the modulation amplitude of magnetic field, and no hysteresis can be observed if the microwave absorption is detected without field modulation. By applying saw-tooth sweep the spin-glass can be driven between two extreme hysteresis states, and the ESR response is rectangular for large saw-tooth amplitude and linear - for small one, while for intermediate amplitudes the recording shows characteristic memory effects. The hysteresis memory is explained in terms of loop distribution of fluxons. In the single crystal the fluxon absorptions are also detected and the separation of fluxon lines can be related to the hysteresis in granular samples. (author)

  11. Overall performance of the duplex Stirling refrigerator

    International Nuclear Information System (INIS)

    Erbay, L. Berrin; Ozturk, M. Mete; Doğan, Bahadır

    2017-01-01

    Highlights: • Overall performance coefficient of duplex Stirling refrigerator was investigated. • A definite region for the coefficient of performance of the refrigerator in duplex Stirling is identified. • A definite region for the thermal efficiency of the heat engine in duplex Stirling is identified. • Benchmark values and design bounds of the duplex Stirling refrigerator were obtained. - Abstract: The duplex Stirling refrigerator is an integrated refrigerator consists of Stirling cycle engine and Stirling cycle refrigerator used for cooling. The equality of the work generation of the heat engine to the work consumption of the refrigerator is the primary constraint of the duplex Stirling. The duplex Stirling refrigerator is investigated thermodynamically by considering the effects of constructional and operational parameters which are namely the temperature ratios for heat engine and refrigerator, and the compression ratios for both sides. The primary concern is given to the parametric effects on the overall coefficient of performance of the duplex Stirling refrigerator. The given diagrams provide a design bounds and benchmark results that allows seeing the big picture about the cooling load and heat input relation. Moreover they ease to determine the corresponding work rate to the target cooling load. As regard to the obtained results, a definite region for coefficient of performance of the refrigerator and a definite region for the thermal efficiency of the heat engine of the duplex Stirling are identified.

  12. On-chip broadband magnetic resonance spectroscopy down to ultralow temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, Conrad

    2014-12-03

    This thesis presents a novel technical realization to perform electron paramagnetic resonance (EPR) based on superconducting coplanar waveguides (CPWs) and superconducting CPW resonators. This technique allows for the investigation of magnetic properties of the material under study at basically any arbitrary frequency. The compact design radically facilitates the implementation into dilution refrigerators to probe the samples at temperatures in the milli Kelvin regime. The working principle of the devices is explained and further substantiated by analytical calculations and 3D-electromagnetic (EM) simulations of the microwave EM fields of the given chip structures. The proof of principle was demonstrated on an organic radical with spin 1/2 and on a ruby single crystal with S=3/2, as a more complex spin system. The technique was then utilized to characterize a Gd-based single-ion magnet and to investigate the magnetic properties of the ground states of a heavy-fermion metal. Both materials were studied in detail at temperatures as low as 40 mK, far below the typical low-temperature limit of conventional EPR equipment at around 1 K. The results of the heavy-fermion compound reveal intriguing behavior of the spin-relaxation mechanisms and local magnetic fields at the lowest achievable temperatures and at the phase transitions and crossover regimes of the phase diagram. The thesis is a pioneering work outlining the great potential regarding the range of applicability of the introduced technique and provides a starting point for future improvements and further functional enhancements.

  13. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  14. A novel magnetic valve using room temperature magnetocaloric materials

    DEFF Research Database (Denmark)

    Eriksen, Dan; Bahl, Christian; Pryds, Nini

    2012-01-01

    changes. This is made possible by the strong temperature dependence of the magnetization close to the Curie temperature of the magnetocaloric materials. Different compositions of both La0.67(Ca,Sr)0.33MnO3 and La(Fe,Co,Si)13 have been considered for use in prototype valves. Based on measured magnetization...

  15. New experimental perspectives for soft x-ray absorption spectroscopies at ultra-low temperatures below 50 mK and in high magnetic fields up to 7 T

    International Nuclear Information System (INIS)

    Beeck, T.; Baev, I.; Gieschen, S.; Meyer, H.; Meyer, S.; Palutke, S.; Martins, M.; Feulner, P.; Uhlig, K.; Wurth, W.

    2016-01-01

    A new ultra-low temperature experiment including a superconducting vector magnet has been developed for soft x-ray absorption spectroscopy experiments at third generation synchrotron light sources. The sample is cooled below 50 mK by a cryogen free "3He-"4He dilution refrigerator. At the same time, magnetic fields of up to ±7 T in the horizontal direction and ±0.5 T in the vertical direction can be applied by a superconducting vector magnet. The setup allows to study ex situ and in situ prepared samples, offered by an attached UHV preparation chamber with load lock. The transfer of the prepared samples between the preparation section and the dilution refrigerator is carried out under cryogenic temperatures. First commissioning studies have been carried out at the Variable Polarization XUV Beamline P04 at PETRA III and the influence of the incident photon beam to the sample temperature has been studied.

  16. Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids

    International Nuclear Information System (INIS)

    Pu Shengli; Bai Xuekun; Wang Lunwei

    2011-01-01

    The influence mechanisms of temperature on the band gap properties of the magnetic fluids based photonic crystals are elaborated. A method has been developed to obtain the temperature-dependent structure information (A sol /A) from the existing experimental data and then two critical parameters, i.e. the structure ratio (d/a) and the refractive index contrast (Δn) of the magnetic fluids photonic crystals are deduced for band diagram calculations. The temperature-dependent band gaps are gained for z-even and z-odd modes. Band diagram calculations display that the mid frequencies and positions of the existing forbidden bands are not very sensitive to the temperature, while the number of the forbidden bands at certain strengths of magnetic field may change with the temperature variation. The results presented in this work give a guideline for designing the potential photonic devices based on the temperature characteristics of the magnetic fluids based photonic crystals and are helpful for improving their quality. - Highlights: → Mechanisms of temperature dependence of magnetic fluids based photonic crystals are elaborated. → Properties of existing forbidden bands have relatively fine temperature stability. → Disappearance of existing forbidden band is found for some magnetic fields. → Emergence of new forbidden band with temperature is found for some magnetic fields.

  17. Characterization of the indigenous microflora in raw and pasteurized buffalo milk during storage at refrigeration temperature by high-throughput sequencing.

    Science.gov (United States)

    Li, Ling; Renye, John A; Feng, Ling; Zeng, Qingkun; Tang, Yan; Huang, Li; Ren, Daxi; Yang, Pan

    2016-09-01

    The effect of refrigeration on bacterial communities within raw and pasteurized buffalo milk was studied using high-throughput sequencing. High-quality samples of raw buffalo milk were obtained from 3 dairy farms in the Guangxi province in southern China. Five liters of each milk sample were pasteurized (72°C; 15 s); and both raw and pasteurized milks were stored at refrigeration temperature (1-4°C) for various times with their microbial communities characterized using the Illumina Miseq platform (Novogene, Beijing, China). Results showed that both raw and pasteurized milks contained a diverse microbial population and that the populations changed over time during storage. In raw buffalo milk, Lactococcus and Streptococcus dominated the population within the first 24h; however, when stored for up to 72h the dominant bacteria were members of the Pseudomonas and Acinetobacter genera, totaling more than 60% of the community. In pasteurized buffalo milk, the microbial population shifted from a Lactococcus-dominated community (7d), to one containing more than 84% Paenibacillus by 21d of storage. To increase the shelf-life of buffalo milk and its products, raw milk needs to be refrigerated immediately after milking and throughout transport, and should be monitored for the presence of Paenibacillus. Results from this study suggest pasteurization should be performed within 24h of raw milk collection, when the number of psychrotrophic bacteria are low; however, as Paenibacillus spores are resistant to pasteurization, additional antimicrobial treatments may be required to extend shelf-life. The findings from this study are expected to aid in improving the quality and safety of raw and pasteurized buffalo milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Concurrent transition of ferroelectric and magnetic ordering near room temperature.

    Science.gov (United States)

    Ko, Kyung-Tae; Jung, Min Hwa; He, Qing; Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Seidel, Jan; Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon; Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao; Jeong, Yoon Hee; Ramesh, Ramamoorthy; Park, Jae-Hoon; Yang, Chan-Ho

    2011-11-29

    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.

  19. Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy

    KAUST Repository

    Hou, Zhipeng; Ren, Weijun; Ding, Bei; Xu, Guizhou; Wang, Yue; Yang, Bing; Zhang, Qiang; Zhang, Ying; Liu, Enke; Xu, Feng; Wang, Wenhong; Wu, Guangheng; Zhang, Xixiang; Shen, Baogen; Zhang, Zhidong

    2017-01-01

    to various external stimuli acting as information carriers in spintronic devices. Here, the first observation of skyrmionic magnetic bubbles with variable topological spin textures formed at room temperature in a frustrated kagome Fe3 Sn2 magnet with uniaxial

  20. Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK

    International Nuclear Information System (INIS)

    Haan, A. M. J. den; Wijts, G. H. C. J.; Galli, F.; Oosterkamp, T. H.; Usenko, O.; Baarle, G. J. C. van; Zalm, D. J. van der

    2014-01-01

    Pulse tube refrigerators are becoming more common, because they are cost efficient and demand less handling than conventional (wet) refrigerators. However, a downside of a pulse tube system is the vibration level at the cold-head, which is in most designs several micrometers. We implemented vibration isolation techniques which significantly reduced vibration levels at the experiment. These optimizations were necessary for the vibration sensitive magnetic resonance force microscopy experiments at milli-kelvin temperatures for which the cryostat is intended. With these modifications we show atomic resolution scanning tunneling microscopy on graphite. This is promising for scanning probe microscopy applications at very low temperatures

  1. Fluoride-bridged {GdIII3MIII2} (M=Cr, Fe, Ga) molecular magnetic refrigerants

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Lorusso, Giulia; Morales, Juan José

    2014-01-01

    -complexes as precursors for 3d-4f systems. Molecular geometry enforces weak exchange interactions, which is rationalized computationally. This, in conjunction with a lightweight ligand sphere, gives rise to large magnetic entropy changes of 38.3 J kg-1 K-1 (1) and 33.1 J kg-1 K-1 (2) for the field change 7 T→0 T......-lying excited states for successful design of molecular refrigerants. Molecular coolers: Even labile fluoride complexes (see picture; Gd purple, Cr/Fe/Ga orange, F green, O red) are useful precursors for polynuclear, fluoride-bridged 3d-4f systems. Molecular geometry enforces weak exchange interactions, which....... Interestingly, the entropy change, and the magnetocaloric effect, are smaller in 2 than in 1 despite the larger spin ground state of the former secured by intramolecular Fe-Gd ferromagnetic interactions. This observation underlines the necessity of controlling not only the ground state but also close...

  2. Suppression of aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, S., E-mail: fujieda@tagen.tohoku.ac.jp; Fukamichi, K.; Suzuki, S.

    2014-07-05

    Highlights: • The aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration.

  3. Refrigeration generation using expander-generator units

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  4. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  5. Helium refrigerator-liquefier system for MHD generator

    International Nuclear Information System (INIS)

    Akiyama, Y.; Ishii, H.; Mori, Y.; Yamamoto, M.; Wada, R.; Ando, M.

    1974-01-01

    MHD power generators have been investigated in the Electro-Technical Laboratory as one of the National Research and Development Programmes. A helium refrigerator-liquefier system has been developed to cool the superconducting magnet for a 1000 kW class MHD power generator. The turboexpander with low temperature gas bearings and an alternator had been developed for the MHD project at the Electro-Technical Laboratory previously. The liquefaction capacity is 250 iota/h and the refrigeration power is 2.9 kW at 20 K. The superconducting magnet is 50 tons and the cryostat has a liquid helium volume of 2700 iota. The evaporation rate is 60 to 80 iota/h. It takes, in all 2 to 3 weeks to fill the cryostat with liquid helium. (author)

  6. Energy performance of supermarket refrigeration and air conditioning integrated systems working with natural refrigerants

    International Nuclear Information System (INIS)

    Cecchinato, Luca; Corradi, Marco; Minetto, Silvia

    2012-01-01

    The current trends in commercial refrigeration aim at reducing the synthetic refrigerant charge, either by minimising the internal volume of the circuit or by utilising natural refrigerants, and at energy saving. The energy efficiency of supermarkets can be improved by optimising components design, recovering thermal and refrigerating energy, adopting innovative technology solutions, integrating the HVAC system with medium temperature and low temperature refrigeration plants and, finally, reducing thermal loads on refrigerated cases. This study aims at investigating the performance of different lay-out and technological solutions where only natural refrigerants are used and at finding the potential for improving energy efficiency over the traditional systems in different climates. In the analysis, chillers and heat pumps working with ammonia or propane, medium temperature systems working with ammonia or propane and carbon dioxide as heat transfer fluid or with carbon dioxide as the refrigerant and low temperature systems working with carbon dioxide are considered and benchmarked with a state-of-the-art HFCs based plant. The most efficient investigated solution enables an annual energy saving higher than 15% with respect to the baseline solution for all the considered climates. - Highlights: ► Different natural refrigerants supermarket HVAC and R integrated systems are analysed. ► Some of the proposed solutions offer a significant benefit over the baseline one. ► Up to 18.7% energy saving is achieved in the considered climates. ► The refrigeration unit condensation by the AC chiller offers the poorest results.

  7. Temperature compensation of NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Kim, S.H.; Doose, C.

    1997-01-01

    Permanent magnet blocks of NdFeB have a relatively high maximum energy product. Because of its relatively low Curie temperature, however, NdFeB has a large temperature coefficient for its residual induction. The temperature coefficients of the relative magnetic fields (ΔB/B)/ΔT in the air gap of NdFeB dipole magnets were reduced from -1.1 x 10 -3 /c to less than 2 x 10 -5 /degree C under operating temperatures of ± 6 C. This was achieved passively by using 1.25-mm-thick strips of 30%-Ni-Fe alloy as flux shunts for the NdFeB blocks. The magnets with soft-steel poles and flux-return yokes were assembled and measured in a temperature-controlled environment

  8. Low temperature magnetic structure of MnSe

    Indian Academy of Sciences (India)

    Abstract. In this paper we report low temperature neutron diffraction studies on MnSe in order to understand the anomalous behaviour of their magnetic and transport prop- erties. Our study indicates that at low temperatures MnSe has two coexisting crystal structures, high temperature NaCl and hexagonal NiAs. NiAs phase ...

  9. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    Science.gov (United States)

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  10. Magnetic properties of Mn3-xFexSn compounds with tuneable Curie temperature by Fe content for thermomagnetic motors

    Science.gov (United States)

    Felez, Marissol R.; Coelho, Adelino A.; Gama, Sergio

    2017-12-01

    Mn3-xFexSn system (0.00 ≤ x ≤ 3.00 with Δx = 0.25) alloys present the Curie temperature (TC) or transition temperature (TT) tuneable by the Fe content. A piece-wise linear profile for TC,T as a function of x is observed in a two wide temperature ranges, between 155 K up to 759 K and 259 K up to 155 K. Their equations are TC,T = (59 ± 15) + (240 ± 7)·x and TC,T = (257 ± 1) - (206 ± 4)·x, respectively. The alloys are low cost and easy manufacturing, rare earth free, with second order magnetic transition (SOMT), and have good magnetic properties. These features suggest an immediate application of the material in cascade thermomagnetic motors that operate with a large temperature range between hot and cold sources. Furthermore, SOMT Mn-Fe-Sn system materials are also reported with advantages that could make alloys of the Mn3-xFexSn system, (0.88 ≤ x ≤ 1.20), promising candidate for magnetic refrigeration. The typical ferromagnetic behaviour is achieved only by samples with x ≥ 1. The samples with x between 0.00 and 0.75 do not show the saturation magnetization even using fields up to 13 T.

  11. Temperature and pressure control in the discharge of refrigeration systems cooled by shell and tube condensers; Control de presion y temperatura de descarga en sistemas de refrigeracion enfriados por condensadores de casco y tubo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Martinez, R. [Asociacion de Ingenieros Egresados de la Universidad Autonoma Metropolitana, Mexico D. F. (Mexico)

    1995-12-31

    In the selection of a refrigeration equipment, the evaporator and condenser load conditions must be perfectly known, that is, the amount of heat energy that we have to reject from our space to cool in base to the temperature and mass to refrigerate. This situation carries on to the selection of the adequate compressor. But nevertheless the temperature conditions of the environment play an important roll in the behavior of the entire refrigeration system, altering in many cases the working conditions of each one of the components and therefore the functioning of the refrigeration system. This paper presents a method for controlling the behavior of each one of the components of the refrigeration system that perform in accordance with their design characteristics. [Espanol] En la seleccion de un equipo de refrigeracion, se deben conocer perfectamente las condiciones de carga del evaporador y del condensador, es decir la cantidad de calor que debemos de eliminar de nuestro medio a refrigerar, en base a la temperatura y masa a refrigerar. Esta situacion conlleva a la eleccion del compresor adecuado. Mas sin embargo, las condiciones de temperatura ambiente, juegan un papel importante en el comportamiento de todo el sistema de refrigeracion, alterando en muchos casos las condiciones de trabajo de cada uno de los componentes y por ende el funcionamiento del sistema de refrigeracion. El presente trabajo presenta un metodo para controlar el comportamiento de cada uno de los componentes dentro del sistema de refrigeracion para que trabajen de acuerdo a su diseno.

  12. Temperature and pressure control in the discharge of refrigeration systems cooled by shell and tube condensers; Control de presion y temperatura de descarga en sistemas de refrigeracion enfriados por condensadores de casco y tubo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Martinez, R [Asociacion de Ingenieros Egresados de la Universidad Autonoma Metropolitana, Mexico D. F. (Mexico)

    1996-12-31

    In the selection of a refrigeration equipment, the evaporator and condenser load conditions must be perfectly known, that is, the amount of heat energy that we have to reject from our space to cool in base to the temperature and mass to refrigerate. This situation carries on to the selection of the adequate compressor. But nevertheless the temperature conditions of the environment play an important roll in the behavior of the entire refrigeration system, altering in many cases the working conditions of each one of the components and therefore the functioning of the refrigeration system. This paper presents a method for controlling the behavior of each one of the components of the refrigeration system that perform in accordance with their design characteristics. [Espanol] En la seleccion de un equipo de refrigeracion, se deben conocer perfectamente las condiciones de carga del evaporador y del condensador, es decir la cantidad de calor que debemos de eliminar de nuestro medio a refrigerar, en base a la temperatura y masa a refrigerar. Esta situacion conlleva a la eleccion del compresor adecuado. Mas sin embargo, las condiciones de temperatura ambiente, juegan un papel importante en el comportamiento de todo el sistema de refrigeracion, alterando en muchos casos las condiciones de trabajo de cada uno de los componentes y por ende el funcionamiento del sistema de refrigeracion. El presente trabajo presenta un metodo para controlar el comportamiento de cada uno de los componentes dentro del sistema de refrigeracion para que trabajen de acuerdo a su diseno.

  13. Development of a low-temperature refrigerant on the basis of carbon dioxide; Entwicklung eines Tieftemperaturkaeltemittels auf Basis von Kohlendioxid

    Energy Technology Data Exchange (ETDEWEB)

    Goepfert, Tobias; Hesse, Ullrich [Technische Univ. Dresden (Germany). Bitzer-Stiftungsprofessur fuer Kaelte-, Kryo- und Kompressorentechnik

    2014-07-01

    With the help of known substance properties and derived calculation correlations the mixtures were identified on the basis of R744, which are suitable as a cryogenic refrigerant in the range -50 to -100 degrees Celsius. A prediction and assessment of the suitability of the mixtures is made and the still unknown material properties are shown, which are required for detailed evaluation. [German] Mit Hilfe von bekannten Stoffeigenschaften und abgeleiteten Berechnungskorrelationen wurden Gemische auf der Basis von R744 identifiziert, welche sich als Tieftemperaturkaeltemittel im Bereich von -50 bis -100 Grad Celsius eigenen. Es wird eine Prognose und Abschaetzung der Eignung der Stoffgemische vorgenommen und es werden die noch unbekannten Stoffeigenschaften dargestellt, die zur genauen Bewertung benoetigt werden.

  14. Quantum-Circuit Refrigerator

    Science.gov (United States)

    MöTtöNen, Mikko; Tan, Kuan Y.; Masuda, Shumpei; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Silveri, Matti; Grabert, Hermann

    Quantum technology holds great potential in providing revolutionizing practical applications. However, fast and precise cooling of the functional quantum degrees of freedom on demand remains a major challenge in many solid-state implementations, such as superconducting circuits. We demonstrate direct cooling of a superconducting resonator mode using voltage-controllable quantum tunneling of electrons in a nanoscale refrigerator. In our first experiments on this type of a quantum-circuit refrigerator, we measure the drop in the mode temperature by electron thermometry at a resistor which is coupled to the resonator mode through ohmic losses. To eliminate unwanted dissipation, we remove the probe resistor and directly observe the power spectrum of the resonator output in agreement with the so-called P(E) theory. We also demonstrate in microwave reflection experiments that the internal quality factor of the resonator can be tuned by orders of magnitude. In the future, our refrigerator can be integrated with different quantum electric devices, potentially enhancing their performance. For example, it may prove useful in the initialization of superconducting quantum bits and in dissipation-assisted quantum annealing. We acknowledge European Research Council Grant SINGLEOUT (278117) and QUESS (681311) for funding.

  15. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Science.gov (United States)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  16. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...

  17. High temperature magnetic properties of nanocrystalline Sn0 ...

    Indian Academy of Sciences (India)

    Administrator

    hysteresis loop at 300 K temperature, which reflects its ferromagnetic behaviour. We confirmed ... obtained by doping magnetic transition elements such as. Mn, Fe and .... factor to account for particle shapes, λ = 1⋅5406 Å the wavelength of ...

  18. Inorganic Nanostructured High-Temperature Magnet Wires, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a high-temperature tolerant electrically-insulating coating for magnet wires. The Phase I program will result in a flexible, inorganic...

  19. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1998-03-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to thermophysical properties, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air conditioning and refrigeration equipment. It also references documents addressing compatibility of refrigerants and lubricants with other materials.

  20. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...

  1. Low-temperature magnetic modification of sensitive biological materials

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 142, mar (2015), s. 184-188 ISSN 0167-577X R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : magnetic iron oxides particles * microwave-assisted synthesis * low-temperature magnetic modification * immobilized enzymes Subject RIV: BO - Biophysics Impact factor: 2.437, year: 2015

  2. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  3. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  4. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  5. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  6. Low-temperature susceptibility of concentrated magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander F.; Lebedev, Alexander V.

    2004-09-01

    The initial susceptibility of concentrated magnetic fluids (ferrocolloids) has been experimentally investigated at low temperatures. The results obtained indicate that the interparticle dipole-dipole interactions can increase the susceptibility by several times as compared to the Langevin value. It is shown that good agreement between recent theoretical models and experimental observations can be achieved by introducing a correction for coefficients in the series expansion of susceptibility in powers of density and aggregation parameter. A modified equation for equilibrium susceptibility is offered to sum over corrections made by Kalikmanov (Statistical Physics of Fluids, Springer-Verlag, Berlin, 2001) and by B. Huke and M. Lücke (Phys. Rev. E 67, 051403, 2003). The equation gives good quantitative agreement with the experimental data in the wide range of temperature and magnetic particles concentration. It has been found that in some cases the magnetic fluid solidification occurs at temperature several tens of kelvins higher than the crystallization temperature of the carrier liquid. The solidification temperature of magnetic fluids is independent of particle concentration (i.e., magneto-dipole interparticle interactions) and dependent on the surfactant type and carrier liquid. This finding allows us to suggest that molecular interactions and generation of some large-scale structure from colloidal particles in magnetic fluids are responsible for magnetic fluid solidification. If the magnetic fluid contains the particles with the Brownian relaxation mechanism of the magnetic moment, the solidification manifests itself as the peak on the "susceptibility-temperature" curve. This fact proves the dynamic nature of the observed peak: it arises from blocking the Brownian mechanism of the magnetization relaxation.

  7. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  8. Novel High Temperature Magnetic Bearings for Space Vehicle Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  9. Novel High Temperature Magnetic Bearings for Space Vehicle Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  10. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle

    International Nuclear Information System (INIS)

    Lin, G.; Tegus, O.; Zhang, L.; Brueck, E.

    2004-01-01

    A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general performance characteristics of the ferromagnetic Stirling refrigeration cycle are investigated and the effects of some key irreversibilities on the performance of the cycle are revealed. By using the optimal-control theory, the optimal relation between the coefficient of performance and the cooling rate is derived and some important performance bounds, e.g., the maximum cooling rate, the maximum coefficient of performance, are determined. Moreover, the optimal operating regions for cooling rate, coefficient of performance and the optimal operating temperatures of a cyclic working substance in the two heat-transfer processes are obtained. Furthermore, the influences of magnetization and magnetic field on the performance characteristics of the cycle are discussed. The results obtained here have general significance and can be deduced to the related ones of the Stirling refrigeration cycle using paramagnetic salt as a cyclic working substance

  11. Magnetic properties of the austenitic stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tsuchiya, K.; Itoh, K.; Kobayashi, S.

    2002-01-01

    The magnetization was measured for the austenitic stainless steel of SUS304, SUS304L, SUS316, and SUS316L with the temperature from 5K to 300K and the magnetic field from 0T to 10T. The field dependences of the magnetizations changed at about 0.7T and 4T. The dependence was analyzed with ranges of 0-0.5T, 1-3T, and 5-10T. There was not so much difference between those stainless steels for the usage at small fields and 300 K. The SUS316 and SUS316L samples showed large non-linearity at high fields and 5K. Therefore, SUS304 was recommended for usage at high fields and low temperatures to design superconducting magnets with the linear approximation of the field dependence of magnetization

  12. Gravitational collapse of a magnetized fermion gas with finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)

    2013-07-15

    We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)

  13. Anisotropic temperature relaxation of plasmas in an external magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1977-01-01

    The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)

  14. Procurement and commissioning of the CHL refrigerator at CEBAF

    International Nuclear Information System (INIS)

    Chronis, W.C.; Arenius, D.M.; Bevins, B.S.; Ganni, V.; Kashy, D.H.; Keesee, M.M.; Reid, T.R.; Wilson, J.D.

    1996-01-01

    The CEBAF Central Helium Liquefier (CHL) provides 2K refrigeration to the 338 superconducting niobium cavities in two 400 MeV linacs and one 45 MeV injector. The CHL consists of three first stage and three second stage compressors, a 4.5K cold box, a 2K cold box, liquid and gaseous helium storage, liquid nitrogen storage, and transfer lines. Figure 1 presents a block diagram of the CHL refrigerator. The system was designed to provide 4.8 kW of primary refrigeration at 2K, 12 kW of shield refrigeration at 45K for the linac cryomodules, and 10 g/s of liquid flow for the end stations. In April 1994, stable 2K operation of the previously uncommissioned cold compressors was achieved. The cold compressors are a cold vacuum pump with an inlet temperature of circa 3.0K. These compressors operate on magnetic bearing,s and therefore eliminate the possibility of contamination due to any air leaks into the system. Operational data and commissioning experience as they relate to the warm gaseous helium compressors, turbines, instrumentation and control, and the cold compressors are presented

  15. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    International Nuclear Information System (INIS)

    Green, Michael A.

    2000-01-01

    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enabling technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given

  16. Micromagnetism and the microstructure of high-temperature permanent magnets

    International Nuclear Information System (INIS)

    Goll, D.; Kronmueller, H.; Stadelmaier, H.H.

    2004-01-01

    Sm 2 (Co,Cu,Fe,Zr) 17 permanent magnets with their three-phase precipitation structure (cells, cell walls, and lamellae) show two characteristic features which so far are difficult to interpret but which are the prerequisites for high-temperature applications: (1) The hard magnetic properties only develop during the final step of the three-step annealing procedure consisting of homogenization, isothermal aging, and cooling. (2) Depending on the composition and on the annealing parameters, the temperature dependence of the coercivity can be easily changed from the conventional monotonic to the recent nonmonotonic behavior showing coercivities up to 1 T even at 500 K. The magnetic hardening during cooling is due to the fact that the cell walls order chemically and structurally during the cooling process. From an analysis of electron diffraction patterns of the superimposed structures existing before and after cooling it could be proven that a phase transition from a phase mixture of defective phases 2:17, 2:7, and 5:19 to the ordered 1:5 phase takes place in the cell walls during cooling. The nonmonotonic temperature dependence of the coercivity is narrowly related to the magnetic hardening mechanism which can be either pinning or nucleation and results from the magnetic and microstructural properties of the cell walls. These properties have been determined quantitatively from hysteresis loop measurements and from high-resolution transmission electron microscopy and energy dispersive x-ray analysis. Due to the temperature dependence of the intrinsic magnetic properties, the nonmonotonic temperature dependence of the coercivity is found to be determined by repulsive pinning of domain walls at the cell walls at low temperatures, by attractive pinning of domain walls in the cell walls at intermediate temperatures, and by nucleation at high temperatures. This complex temperature behavior is also reflected in characteristic changes of the angular dependence of the

  17. Low temperature behavior of magnetic domains observed using a magnetic force microscope

    International Nuclear Information System (INIS)

    Chung, S. H.; Shinde, S. R.; Ogale, S. B.; Venkatesan, T.; Greene, R. L.; Dreyer, M.; Gomez, R. D.

    2001-01-01

    A commercial atomic force microscope/magnetic force microscope (MFM) was modified to cool magnetic samples down to around 100 K under a high vacuum while maintaining its routine imaging functionality. MFM images of a 120 nm thick La 0.7 Ca 0.3 MnO 3 film on a LaAlO 3 substrate at low temperature show the paramagnetic-to-ferromagnetic phase transition. Evolution of magnetic domains and magnetic ripples with decreasing temperature are also observed near the edge of a 20 nm thick patterned Co film on a Si substrate. [copyright] 2001 American Institute of Physics

  18. Magnet/cryocooler integration for thermal stability in conduction-cooled systems

    Science.gov (United States)

    Chang, H.-M.; Kwon, K. B.

    2002-05-01

    The stability conditions that take into accounts the size of superconducting magnets and the refrigeration capacity of cryocoolers are investigated for the conduction-cooled systems without liquid cryogens. The worst scenario in the superconducting systems is that the heat generation in the resistive state exceeds the refrigeration, causing a rise in the temperature of the magnet winding and leading to burnout. It is shown by an analytical solution that in the continuously resistive state, the temperature may increase indefinitely or a stable steady state may be reached, depending upon the relative size of the magnet with respect to the refrigeration capacity of the cryocooler. The stability criteria include the temperature-dependent properties of the magnet materials and the refrigeration characteristics of the cryocooler. A useful graphical scheme is presented and the design of the stable magnet/cryocooler interface is demonstrated.

  19. Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa

    International Nuclear Information System (INIS)

    Tan, Yingying; Wang, Lin; Liang, Kunfeng

    2015-01-01

    In this paper, an auto-cascade ejector refrigeration cycle (ACERC) is proposed to obtain lower refrigeration temperature based on conventional ejector refrigeration and auto-cascade refrigeration principle. The thermodynamic performance of ACERC is investigated theoretically. The zeotropic refrigerant mixture R32 + R236fa is used as its working fluid. A parametric analysis is conducted to evaluate the effects of some thermodynamic parameters on the cycle performance. The study shows that refrigerant mixture composition, condenser outlet temperature and evaporation pressure have effects on performance of ACERC. The theoretical results also indicate that the ACERC can achieve the lowest refrigeration temperature at the temperature level of −30 °C. The application of zeotropic refrigerant mixture auto-cascade refrigeration in the ejector refrigeration cycle can provide a new way to obtain lower refrigeration temperature utilizing low-grade thermal energy. - Highlights: • An auto-cascade ejector refrigerator with R32 + R236fa mixed refrigerant is proposed. • The cycle can obtain a refrigeration temperature at −30 °C temperature range. • The effects of some thermodynamic parameters on the cycle performance are evaluated

  20. Millimeter wavelength ultralow temperature magnetic radiospectrometer

    International Nuclear Information System (INIS)

    Vertij, A.A.; Zvyagina, G.A.; Ivanchenko, I.V.

    1986-01-01

    The paper deals with the superlowtemperature radiospectrometric complex designed for investigation of substances in the temperature range from 4.2 to 0.3 K. The obtaining of superlow temperatures - 0.3 K is carried out in the circulation regime of 3 He. As resonance spectrometer cells it is suggested and investigated some variants allowing to obtain high sensitivity and resolution of the spectrometer, as well as minimum heat flow into the working chamber. The absorption spectra have been obtained of the HMBACrV substance designed for polarized nuclear targets at the frequencies of 75 and 150 GHz in the temperature ranges from 4.2 to 0.7 K

  1. Dual stage active magnetic regenerator and method

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gschneidner, Jr., Karl A.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl.sub.2 or (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen.

  2. Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler

    Science.gov (United States)

    Bodnaruk, Andrii V.; Brunhuber, Alexander; Kalita, Viktor M.; Kulyk, Mykola M.; Snarskii, Andrei A.; Lozenko, Albert F.; Ryabchenko, Sergey M.; Shamonin, Mikhail

    2018-03-01

    The magnetic properties of a magnetoactive elastomer (MAE) filled with μm-sized soft-magnetic iron particles have been experimentally studied in the temperature range between 150 K and 310 K. By changing the temperature, the elastic modulus of the elastomer matrix was modified, and it was possible to obtain magnetization curves for an invariable arrangement of particles in the sample and in the case when the particles were able to change their position within the MAE under the influence of magnetic forces. At low (less than 220 K) temperatures, when the matrix becomes rigid, the magnetization of the MAE does not show a hysteresis behavior, and it is characterized by a negative value of the Rayleigh constant. At room temperature, when the polymer matrix is compliant, a magnetic hysteresis exists where the dependence of the differential magnetic susceptibility on the magnetic field exhibits local maxima. The appearance of these maxima is explained by the elastic resistance of the matrix to the displacement of particles under the action of magnetic forces.

  3. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    Science.gov (United States)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  4. Method and refrigerants for replacing existing refrigerants in centrifugal compressors

    International Nuclear Information System (INIS)

    Kopko, W.L.

    1991-01-01

    This patent describes a method for replacing an existing refrigerant in a centrifugal compressor. It comprises selecting a desired impeller Mach number for the centrifugal compressor; selecting a base refrigerant constituent; combining at least one additive refrigerant constituent with the base refrigerant constituent to form a replacement refrigerant having at least one physical or chemical property different from the existing refrigerant and substantially providing the desired impeller Mach number in the centrifugal compressor; and replacing the existing refrigerant with the replacement refrigerant

  5. Stability of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the

  6. Numerical approach to solar ejector-compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2016-01-01

    Full Text Available A model was established for solar ejector-compression refrigeration system. The influence of generator temperature, middle-temperature, and evaporator temperature on the performance of the refrigerant system was analyzed. An optimal generator temperature is found for maximal energy efficiency ratio and minimal power consumption.

  7. Performance characteristics of a quantum Diesel refrigeration cycle

    International Nuclear Information System (INIS)

    He Jizhou; Wang Hao; Liu Sanqiu

    2009-01-01

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed

  8. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive and it is import......Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive...... traditionally are a pressure and a temperature sensor. In this thesis, a novel maximum slope-seeking (MSS) control method is developed. This has resulted in a control implementation, which successfully has been able to control the evaporator superheat in four widely different refrigeration system test...... problems. The method utilizes the qualitative nonlinearity in the system and harmonic analysis of a perturbation signal to reach an unknown, but suitable, operating point. Another important control task in refrigeration systems is to maintain the temperature of the refrigerated space or foodstuff within...

  9. Magnetic properties of high temperature superconductors and their interaction with high energy permanent magnets

    International Nuclear Information System (INIS)

    Agarwala, A.K.

    1990-01-01

    Magnetic properties of sintered samples of YBCO ceramic superconductors at various temperatures were measured using a vibrating sample magnetometer (VSM). Also, measurements of forces experienced by a well characterized rare earth-transition metal (RE-TM) permanent magnet (PM) interacting with the superconducting YBCO sample cooled in liquid nitrogen, were performed. Based upon the observed hysteretic magnetization properties of these high temperature superconductors (HTS), the HTS-PM interaction force at liquid nitrogen temperature was calculated from first principle, and finally correlated to the force measurement results. With this analysis, magnetic forces between the same HTS and PM system including the levitation as well as suspension effects at liquid-helium temperature are predicted

  10. Magnetic entropy of the mixed and sintered compound of the RAl/sub 2/ system

    International Nuclear Information System (INIS)

    Kuzuhara, T.; Wakabayashi, H.; Matsumoto, K.; Hashimoto, T.; Sahashi, M.; Inomata, K.; Tomokiyo, A.; Yayama, H.

    1986-01-01

    The magnetic refrigerant for the Ericsson type magnetic refrigerator should have a constant magnetic entropy difference ΔS/sub J/ between two constant magnetic field processes. However, the magnetic entropy change of an homogeneous ferromagnet exhibits a sharp peak at the Curie temperature. In the present investigation the authors succeeded to make the layer structural sintered composite composed of several kinds of RAl/sub 2/ compounds having large entropy change near their Curie temperatures and made clear that this composite has the constant πS/sub J/ in the wide temperature range suitable for the Ericsson cycle

  11. Effects of anomalous magnetic moment and temperature on pair production in an external magnetic field

    International Nuclear Information System (INIS)

    Dittrich, W.; Bauhoff, W.

    1981-01-01

    It is re-examined the problem of spontaneous pair creation in an external magnetic field. In contrast to earlier findings, it is shown that pair production does not occur due to the anomalous magnetic moment interaction. However, pairs may be observed in a situation of thermodynamic equilibrium at finite temperatures. (author)

  12. Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics

    International Nuclear Information System (INIS)

    Borkar, Hitesh; Singh, V N; Kumar, Ashok; Choudhary, R J; Tomar, M; Gupta, Vinay

    2015-01-01

    Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr 0.52 Ti 0.48 ) 0.60 (Fe 0.67 W 0.33 ) .40 ]O 3 ] 0.80 –[CoFe 2 O 4 ] 0.20 (PZTFW–CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4–350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (∼0.4–0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (T B ). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite. (paper)

  13. Experimental investigation of optical fiber temperature sensors at cryogenic temperature and in high magnetic fields

    International Nuclear Information System (INIS)

    Tanaka, Y.; Ogata, M.; Nagashima, K.; Agawa, H.; Matsuura, S.; Kumagai, Y.

    2010-01-01

    If it is possible to monitor the conditions in the cryogenic equipments including the super-conducting magnets, the indication of failure can be detected beforehand and the reliability in the operation can improve. Optical fiber temperature sensing is an advantageous method in terms of heat invasion, electric insulation, etc. Therefore, the experiments which confirm the characteristics of optical fiber temperature sensors at cryogenic temperatures and in high magnetic fields were performed, and the possibility of measuring under these conditions was confirmed. However, since the resolution of temperature was a problem, the method of analysis that predicts the measurements was contrived, and the method to improve the problem was examined.

  14. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  15. Transition to New Refrigerants

    Science.gov (United States)

    Overview page provides information on the refrigerants that motor vehicle air conditioners have used over time, with information on environmental impacts, refrigerant fitting sizes, label colors, and alternatives to ozone-depleting substances.

  16. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  17. Application of Cascade Refrigeration System with Mixing Refrigerant in Cold Air Cutting

    Science.gov (United States)

    Yang, Y.; Tong, M. W.; Yang, G.; Wang, X. P.

    In the mechanical cutting process, the replacement of traditional cutting solution with cold air can avoid the pollution of environment. In order to high efficient the refrigerating device and flexible adjust the temperature of cold air, it is necessary to use cascade refrigeration system to supply cool quantity for the compressed air. The introduction of a two-component non-azeotropic mixing refrigerant into the cryogenic part of the cascade system, can effectively solve the problems of the system working at too high pressure and the volume expanding of refrigerant in case of the cascade refrigeration sets closed down. However, the filling ratio of mixing refrigerants impact on the relationships among the closing down pressure, refrigerating output and refrigerating efficiency. On the basis of computing and experiment, the optimal mixing ratio of refrigerant R22/R13 and a low temperature of -60° were obtained in this study. A cold air injecting device possessing high efficiency in energy saving has also been designed and manufactured. The cold air, generated from this cascade system and employed in a cutting process, takes good comprehensive effects on machining and cutting.

  18. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  19. Presence of Salmonella Spp and Escherichia Coli O157:H7 in Raw Meat, in São Paulo City, Brazil and Evaluation of Low Temperature (Refrigeration and Freezing) Resistance of these Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jakabi, M.; Gelli, D. S.; Ristori, C. A.; De Paula, A. M.R.; Sakuma, H.; Lopez, G. I.S. [Seção de Microbiologia Alimentar (Brazil); Fernandes, S. A. [Seção de Bacteriologia Médica (Brazil); Luchesi, R. B. [Seção de Meios de Cultura (Brazil); Instituto Adolfo Lutz, São Paulo (Brazil)

    2005-01-15

    A total of 253 samples of raw meat (bovine, swine and poultry) were collected in local supermarkets in Sao Paulo, Brazil, and analysed for Salmonella and E. coli 0157:H7, in order to determine their microbiological quality and compliance with the established standards for these two bacteria. Additionally, samples of ground beef were artificially contaminated with S. enteritidis and E. coli 0157:H7, in order to determine the effect of refrigeration and freezing temperature during the storage period (4ºC for 5 days, and - 18ºC for 90 days, respectively). Twenty-three samples (9.1%) were positive to Salmonella and seven different serotypes were isolated, S. enteritidis being the most common serotype founded (34,8%). The results of the artificially contaminated samples showed that E. coli 0157:H7 was sensitive to refrigeration as well as freezing temperature. S. enteritidis was only affected by freezing temperature during the storage time. (author)

  20. Suitability criterion for a refrigerant for use in solar operated sorption refrigerator

    International Nuclear Information System (INIS)

    Tabassum, S.A.; Mir, M.S.

    1996-01-01

    The thermodynamics of a sorption refrigeration cycle has been discussed representing the cycle on a clapeyron digram. The minimum generation temperature required has been determined using the 'd-a' equation which represents the sorption equilibrium of the pair, and Gibbs free energy relation. The mathematical relation developed provides a totally new basis for determination of suitability of a particular refrigerant. (author)

  1. Suitability criterion for a refrigerant for use in solar operated sorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, S A; Mir, M S [University of Engineering and Technology, Lahore (Pakistan). Dept. of Mechanical Engineering

    1996-06-01

    The thermodynamics of a sorption refrigeration cycle has been discussed representing the cycle on a clapeyron digram. The minimum generation temperature required has been determined using the `d-a` equation which represents the sorption equilibrium of the pair, and Gibbs free energy relation. The mathematical relation developed provides a totally new basis for determination of suitability of a particular refrigerant. (author).

  2. High-temperature magnetoresistance study of a magnetic tunnel junction

    International Nuclear Information System (INIS)

    Chen, D.C.; Yao, Y.D.; Chen, C.M.; Hung, James; Chen, Y.S.; Wang, W.H.; Chen, W.C.; Kao, M.J.

    2006-01-01

    The thermal stability and the spin transportation phenomenon at room temperature and 140 deg. C of a series of magnetic tunneling junctions with the structure of bottom electrode/PtMn/Pinned layer/ AlO x /CoFe/NiFe/top electrode have been investigated. The MR ratio decreases from 33.5% at room temperature to 29% at 140 deg. C. The MR ratio at room temperature increases roughly 0.8% after thermal treatment at temperatures above 60 deg. C. This is related to the thermal relaxation of the strains existing in the samples

  3. Threshold heating temperature for magnetic hyperthermia: Controlling the heat exchange with the blocking temperature of magnetic nanoparticles

    Science.gov (United States)

    Pimentel, B.; Caraballo-Vivas, R. J.; Checca, N. R.; Zverev, V. I.; Salakhova, R. T.; Makarova, L. A.; Pyatakov, A. P.; Perov, N. S.; Tishin, A. M.; Shtil, A. A.; Rossi, A. L.; Reis, M. S.

    2018-04-01

    La0.75Sr0.25MnO3 nanoparticles with average diameter close to 20.9 nm were synthesized using a sol-gel method. Measurements showed that the heating process stops at the blocking temperaturesignificantly below the Curie temperature. Measurements of Specific Absorption Rate (SAR) as a function of AC magnetic field revealed a superquadratic power law, indicating that, in addition to usual Néel and Brown relaxation, the hysteresis also plays an important role in the mechanism of heating. The ability to control the threshold heating temperature, a low remanent magnetization and a low field needed to achieve the magnetic saturation are the advantages of this material for therapeutic magnetic hyperthermia.

  4. Active Magnetic Regenerative Liquefier

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, John A. [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Oseen-Send, Kathryn [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ferguson, Luke [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Pouresfandiary, Jamshid [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Cousins, Anand [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ralph, Heather [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Hampto, Tom [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States)

    2016-01-12

    This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designs indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature

  5. Design, construction and start up by Air Liquide of two 18 kW at 45 K helium refrigerators for the new CERN accelerator (LHC)

    CERN Document Server

    Dauguet, P; Delcayre, F; Ghisolfi, A; Gistau-Baguer, Guy M; Guerin, C A; Hilbert, B; Marot, G; Monneret, E

    2004-01-01

    CERN in Switzerland is presently building a new particle accelerator labeled as the LHC. This 27 km accelerator will, for the first time at such a large scale, operate at cryogenic temperatures with superconducting magnets and radio-frequency cavities. For that purpose, Air Liquide has designed, constructed and started up two custom designed refrigerators. The cryogenic power of each of these refrigerators is equivalent to 18 kW at 4.5 K. In order to produce the cryogenic power requested by the LHC accelerator at the different temperature levels with a very high efficiency, a custom design thermodynamic cycle has been chosen. This cycle, the major components of the refrigerators and the results obtained during the reception tests of the refrigerators are presented in this paper.

  6. Transient Analysis of a Magnetic Heat Pump

    Science.gov (United States)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  7. Influence of temperature on magnetic properties of silicon steel lamination

    Directory of Open Access Journals (Sweden)

    Junquan Chen

    2017-05-01

    Full Text Available In this paper, we studied the influence of thermal effect on the iron loss components by DC and AC magnetic measurement. The measured result shows that iron loss of nonoriented silicon steel is more influenced by temperature than grain oriented one. Based on loss separation model, we have found a suitable iron loss expression for nonoriented and grain oriented steels. Then a temperature dependent iron loss model is proposed, where temperature coefficient k is introduced to consider thermal effect on dynamic loss. The iron loss model is validated by all series of silicon steel stripe made by WISCO. The relative error of the model is about 11% in a wide range of 20∼400Hz, 20∼200°C, 0∼2T. The proposed model can be applicable to other types of magnetic materials as long as their resistivity rate exhibits approximately linear thermal dependence within a temperature range of 20∼200°C.

  8. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  9. Functional Analysis of the Distribution Box of the KSTAR Helium Refrigerator

    International Nuclear Information System (INIS)

    Chang, H. S.; Kim, Y. S.; Bak, J. S.

    2005-01-01

    KSTAR (Korea Superconducting Tokamak Advanced Research) is a tokamak device with 30 superconducting (SC) magnet coils. The main duty of the KSTAR helium refrigerator is to keep all cold components of KSTAR (SC magnet coils, magnet structures, SC bus-lines, current lead system, and thermal shields) at suitable temperatures in order to operate the SC magnet coils consistent with the operation scenario of KSTAR. A distribution box (D/B) which is equipped with helium-property-measuring sensors, cryogenic valves (CV's), cryogenic circulators, and heat exchangers (HX's) submerged in a huge liquid helium (LHe) bath (thermal damper), intervenes the cryogenic helium via cryogenic transfer lines (TL's) between the refrigerator cold box (C/B) and the KSTAR cold components. The major functions of the D/B can be classified as listed below: i) Supplying the proper cryogen to the respective cold components of KSTAR during various operation modes (including the idle mode). ii) Cool/re-cool down of the KSTAR cold components from any temperature down to their operating cryogenic temperature within the constraints of time and temperature difference between the components. iii) Protection of the KSTAR cold components and refrigerator from damaging in case of probable abnormal events. iv) Simulation of the temporal variation of the thermal load and pressure drops occurring in the KSTAR cold components to pre-commission the refrigerator and test the cryogenic circulators. v) SC coil/bus-line cable-in-conduit conductor (CICC) cleaning. Since the helium flow in the thermal shields (TS's) is rather routine and the current lead (CL) system has its own helium distribution system, in this proceeding mainly the supercritical helium (SHe) circuits of the SC magnets and bus-lines will be discussed

  10. Self-propagating high temperature synthesis and magnetic ...

    Indian Academy of Sciences (India)

    Unknown

    phase composition, microstructure and magnetic properties of the combustion products. The effect ... The size and shapes of the ... Figure 3 shows the effect of combustion temperature on ... ducts at 1200°C are too hard to be ground easily and.

  11. Self-propagating high temperature synthesis and magnetic

    Indian Academy of Sciences (India)

    Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction, TEM and vibrating sample magnetometry (VSM) were used to characterize the phase composition, microstructure and magnetic properties of the combustion products. The effect of the combustion ...

  12. Neutron studies of nuclear magnetism at ultralow temperature

    DEFF Research Database (Denmark)

    Siemensmeyer, K.; Clausen, K.N.; Lefmann, K.

    1997-01-01

    Nuclear magnetic order in copper and silver has been investigated by neutron diffraction. Antiferromagnetic order is observed in these simple, diamagnetic metals at temperatures below 50 nK and 560 pK, respectively. Both crystallize in the FCC-symmetry which is fully frustrated for nearest...

  13. Physicochemical Changes and Resistant-Starch Content of Extruded Cornstarch with and without Storage at Refrigerator Temperatures

    Directory of Open Access Journals (Sweden)

    David Neder-Suárez

    2016-08-01

    Full Text Available Effects of extrusion cooking and low-temperature storage on the physicochemical changes and resistant starch (RS content in cornstarch were evaluated. The cornstarch was conditioned at 20%–40% moisture contents and extruded in the range 90–130 °C and at screw speeds in the range 200–360 rpm. The extrudates were stored at 4 °C for 120 h and then at room temperature. The water absorption, solubility index, RS content, viscoelastic, thermal, and microstructural properties of the extrudates were evaluated before and after storage. The extrusion temperature and moisture content significantly affected the physicochemical properties of the extrudates before and after storage. The RS content increased with increasing moisture content and extrusion temperature, and the viscoelastic and thermal properties showed related behaviors. Microscopic analysis showed that extrusion cooking damaged the native starch structure, producing gelatinization and retrogradation and forming RS. The starch containing 35% moisture and extruded at 120 °C and 320 rpm produced the most RS (1.13 g/100 g after to storage at low temperature. Although the RS formation was low, the results suggest that extrusion cooking could be advantageous for RS production and application in the food industry since it is a pollution less, continuous process requiring only a short residence time.

  14. Design prospect of remountable high-temperature superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Hidetoshi, E-mail: hidetoshi.hashizume@qse.tohoku.ac.jp; Ito, Satoshi

    2014-10-15

    The remountable (mountable and demountable repeatedly) high-temperature superconducting (HTS) magnet has been proposed for huge and complex superconducting magnets in future fusion reactors to fabricate and repair easily the magnet and access inner structural components. This paper summarizes progress in R and D activities of mechanical joints of HTS conductors in terms of the electrical resistance and heat transfer performance at the joint region. The latest experimental results show the low joint resistance, 4 nΩ under 70 kA current condition using REBCO HTS conductor with mechanical lap joint system, and for the cooling system the maximum heat flux of 0.4 MW/m{sup 2} is removed by using bronze sintered porous media with sub-cooled liquid nitrogen. These values indicate that there is large possibility to design the remountable HTS magnet for fusion reactors.

  15. Low temperature magnetic behaviour of glass-covered magnetic microwires with gradient nanocrystalline microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I. G.; Hernando, A.; Marín, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155 las Rozas, Madrid 28230 (Spain)

    2014-01-21

    Slow nanocrystallization driving dynamics can be affected by the combination of two factors: sample residual stresses and sample geometry. This effect is evidenced at the initial stages of nanocrystallization of amorphous CoFeSiBCuNb magnetic microwires. Transmission electron microscopy observations indicate how crystallization at temperatures between 730 and 780 K results in a graded microstructure where the crystallization at the surface skin of the microwire, which remains almost amorphous, differs from that of the middle, where elongated grains are observed, and inner regions. However, samples annealed at higher temperatures present a homogeneous microstructure. The effect of gradient microstructure on magnetic properties has been also analyzed and a loss of bistable magnetic behaviour at low temperatures, from that obtained in the amorphous and fully nanocrystallized sample, has been observed and ascribed to changes in sign of magnetostriction for measuring temperatures below 100 K.

  16. High temperature structural and magnetic properties of cobalt nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ait Atmane, Kahina [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Zighem, Fatih [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Soumare, Yaghoub [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Ibrahim, Mona; Boubekri, Rym [Universite de Toulouse, LPCNO, INSA CNRS UMR 5215, 135 av. de Rangueil, 31077 Toulouse Cedex 4 (France); Maurer, Thomas [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Margueritat, Jeremie [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Piquemal, Jean-Yves, E-mail: jean-yves.piquemal@univ-paris-diderot.fr [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Ott, Frederic; Chaboussant, Gregory [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Schoenstein, Frederic; Jouini, Noureddine [LSPM, CNRS UPR 9001, Universite Paris XIII, Institut Galilee, 99 av. J.-B. Clement, 93430 Villetaneuse (France); Viau, Guillaume, E-mail: gviau@insa-toulouse.fr [Universite de Toulouse, LPCNO, INSA CNRS UMR 5215, 135 av. de Rangueil, 31077 Toulouse Cedex 4 (France)

    2013-01-15

    We present in this paper the structural and magnetic properties of high aspect ratio Co nanoparticles ({approx}10) at high temperatures (up to 623 K) using in-situ X ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. The coercivity can be modelled by {mu}{sub 0}H{sub C}=2(K{sub MC}+K{sub shape})/M{sub S} with K{sub MC} the magnetocrystalline anisotropy constant, K{sub shape} the shape anisotropy constant and M{sub S} the saturation magnetization. H{sub C} decreases linearly when the temperature is increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 500 K, 50% of the room temperature coercivity is preserved corresponding to the shape anisotropy contribution only. We show that the coercivity drop is reversible in the range 300-500 K in good agreement with the absence of particle alteration. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. - Graphical abstract: We present in this paper the structural and magnetic properties of high aspect ratio Co nanorods ({approx}10) at high temperatures (up to 623 K) using in-situ X-ray diffraction and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. Highlights: Black-Right-Pointing-Pointer Ferromagnetic Co nanorods are prepared using the polyol process. Black-Right-Pointing-Pointer The structural and texture properties of the Co nanorods are preserved up to 500 K. Black-Right-Pointing-Pointer The magnetic properties of the Co nanorods are irreversibly altered above 525 K.

  17. Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy

    KAUST Repository

    Hou, Zhipeng

    2017-06-07

    The quest for materials hosting topologically protected skyrmionic spin textures continues to be fueled by the promise of novel devices. Although many materials have demonstrated the existence of such spin textures, major challenges remain to be addressed before devices based on magnetic skyrmions can be realized. For example, being able to create and manipulate skyrmionic spin textures at room temperature is of great importance for further technological applications because they can adapt to various external stimuli acting as information carriers in spintronic devices. Here, the first observation of skyrmionic magnetic bubbles with variable topological spin textures formed at room temperature in a frustrated kagome Fe3 Sn2 magnet with uniaxial magnetic anisotropy is reported. The magnetization dynamics are investigated using in situ Lorentz transmission electron microscopy, revealing that the transformation between different magnetic bubbles and domains is via the motion of Bloch lines driven by an applied external magnetic field. These results demonstrate that Fe3 Sn2 facilitates a unique magnetic control of topological spin textures at room temperature, making it a promising candidate for further skyrmion-based spintronic devices.

  18. Refrigerating liquid prototype for LED's thermal management

    International Nuclear Information System (INIS)

    Faranda, Roberto; Guzzetti, Stefania; Lazaroiu, George Cristian; Leva, Sonia

    2012-01-01

    The heat management is the critical factor for high performance operation of LED. A new heat management application of refrigerating liquid integrated within a fabricated prototype is proposed and investigated. A series of experiments considering different heights of liquid level were performed to evaluate the heat dissipation performance and optical characteristics of the refrigerating liquid based prototype. The results reveal that the junction temperature decreases as the level of refrigerating liquid increases. The experimental results report that the refrigerating liquid reduces the junction temperature, and can positively influence the luminous radiation performances. An optimization investigation of the proposed solution was carried out to find an optimum thermal performance. The experiments indicated that refrigerating liquid cooling is a powerful way for heat dissipation of high power LEDs, and the fabrication of prototype was feasible and useful. - Highlights: ► New heat management application of refrigerating liquid on a fabricated LED prototype. ► Thermal models setup and comparison between the classical and the new solutions. ► The impact of refrigerating liquid level on LED thermal and luminous performances. ► The relationship between different levels of liquid with LED prototype performances.

  19. Analysis of energy saving performance for household refrigerator with thermal storage of condenser and evaporator

    International Nuclear Information System (INIS)

    Cheng, Wen-long; Ding, Miao; Yuan, Xu-dong; Han, Bing-Chuan

    2017-01-01

    Highlights: • A novel refrigerator with both HSC and CSE is proposed. • The operational characteristics of novel refrigerator is analyzed. • The comparison of CSE, HSC and DES refrigerators is analyzed. • DES refrigerator has a largest off-time to on-time ratio of 4.3. • DES refrigerator has the best electrical energy saving performance (32%). - Abstract: The heat transfer performances of evaporators and condensers significantly affect the efficiency of household refrigerators. For enhancing heat transfer of the condensers and evaporators, a novel dual energy storage (DES) refrigerator with both heat storage condenser (HSC) and cold storage evaporator (CSE) is proposed. The performance comparison of three kinds of energy storage refrigerators: HSC refrigerator, CSE refrigerator and DES refrigerator is analyzed by establishing dynamic simulation models. According to the simulation results, the DES refrigerator combines the advantage of HSC refrigerator and CSE refrigerator, it has more balanced operational cycle and higher evaporation pressure and temperature. The DES refrigerator shows a best energy saving performance among the three energy storage refrigerators with largest off-time to on-time ratio of 4.3 and the electrical consumption saving can reach 32%, which is greater than the sum (28%) of the other two kinds of energy storage refrigerators.

  20. Performance measurement of a mini thermoacoustic refrigerator and associated drivers

    OpenAIRE

    Petrina, Denys E.

    2002-01-01

    Approved for public release; distribution is unlimited A miniature Thermoacoustic refrigerator is being developed to cool integrated circuits - which must sometimes operate at high temperatures nearing the upper threshold of their tolerance - to temperature spans more within the circuits' tolerable limits, without the need of the chemicals of a traditional refrigerating system. The development of an electrically powered acoustic driver that powers the thermoacoustic refrigerator is describ...

  1. Temperature-dependent magnetic EXAFS investigation of Gd

    CERN Document Server

    Wende, H; Poulopoulos, P N; Rogalev, A; Goulon, J; Schlagel, D L; Lograsso, T A; Baberschke, K

    2001-01-01

    Magnetic EXAFS (MEXAFS) is the helicity-dependent counterpart of the well-established EXAFS technique. By means of MEXAFS it is possible not only to analyze the local magnetic structure but also to learn about magnetic fluctuations. Here we present the MEXAFS of a Gd single crystal at the L sub 3 sub , sub 2 -edges in the temperature range of 10-250 K. For the first time MEXAFS was probed over a large range in reduced temperature of 0.04<=T/T sub C<=0.85 with T sub C =293 K. We show that the vibrational damping described by means of a Debye temperature of theta sub D =160 K must be taken into account for the spin-dependent MEXAFS before analyzing magnetic fluctuations. For a detailed analysis of the MEXAFS and the EXAFS, the experimental data are compared to ab initio calculations. This enables us to separate the individual single- from the multiple-scattering contributions. The MEXAFS data have been recorded at the ID 12A beamline of the European Synchrotron Radiation Facility (ESRF). To ensure that th...

  2. Determination of magnetic characteristics of nanoparticles by low-temperature calorimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ugulava, A.; Toklikishvili, Z. [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Chkhaidze, S., E-mail: simon.chkhaidze@tsu.ge [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Kekutia, Sh. [V. Chavchanidze Institute of Cybernetics, at the Technical State University, S. Euli str. 5, 0186 Tbilisi, Georgia (United States)

    2017-05-15

    At low temperatures, the heat capacity of a superparamagnetic “ideal gas” determined by magnetic degrees of freedom can greatly exceed the lattice heat capacity. It is shown that in the presence of an external magnetic field, the temperature dependence of the magnetic part of the heat capacity has two maxima. The relations between the temperature at which these maxima are achieved, the magnetic moment of the nanoparticles and the magnetic anisotropy constant have been obtained. Measuring the heat capacity maxima temperatures by low-temperature calorimetry methods and using the obtained relations, we can obtain the numerical values both of the magnetic moment of nanoparticles and the magnetic anisotropy constants.

  3. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1996-04-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates. Citations in this report are divided into the following topics: thermophysical properties; materials compatibility; lubricants and tribology; application data; safety; test and analysis methods; impacts; regulatory actions; substitute refrigerants; identification; absorption and adsorption; research programs; and miscellaneous documents. Information is also presented on ordering instructions for the computerized version.

  4. How systems of single-molecule magnets magnetize at low temperatures

    Science.gov (United States)

    Fernández, Julio F.; Alonso, Juan J.

    2004-01-01

    We model magnetization processes that take place through tunneling in crystals of single-molecule magnets, such as Mn12 and Fe8. These processes take place when a field H is applied after quenching to very low temperatures. Magnetic dipolar interactions and spin-flipping rules are essential ingredients of the model. The results obtained follow from Monte Carlo simulations and from the stochastic model we propose for dipole field diffusion. Correlations established before quenching are shown to later drive the magnetization process. We also show that in simple cubic lattices, m∝√(t) at time t after H is applied, as observed in Fe8, but only for 1+2log10(hd/hw) time decades, where hd is some near-neighbor magnetic dipolar field, and a spin reversal can occur only if the magnetic field acting on it is within some field window (-hw,hw). However, the √(t) behavior is not universal. For bcc and fcc lattices, m∝tp, but p≃0.7. An expression for p in terms of lattice parameters is derived. At later times the magnetization levels off to a constant value. All these processes take place at approximately constant magnetic energy if the annealing energy ɛa is larger than the tunneling window’s energy width (i.e., if ɛa≳gμBhwS). Thermal processes come in only later on to drive further magnetization growth.

  5. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  6. Magnetocaloric effect and H gradient in bulk La(Fe,Si)13Hy magnetic refrigerants obtained by HDSH

    DEFF Research Database (Denmark)

    Neves Bez, Henrique; Eggert, Bruno G.F.; Lozano, Jaime

    2015-01-01

    the conventional ingot homogenization heat treatment of 7 days. The samples produced by HDSH showed higher amounts of hydrogen than the parts hydrogenated by the conventional method of thermal homogenization (20 h at 1423 K), milling to fine powder and subsequent hydrogenation. Hydrogenation parameters play...... an important role for the stability of the desired La(Fe,Si)13 phase during the process. Hydrogen desorption was seen to occur at two temperature ranges as a result of internal gradients. Dissimilar amounts of α-Fe were precipitated for different hydrogenation times. As a result, parts produced via HDSH with 2...

  7. Cryogen-free dilution refrigerators

    International Nuclear Information System (INIS)

    Uhlig, K

    2012-01-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4 He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4 He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  8. Cryogen-free dilution refrigerators

    Science.gov (United States)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  9. Optimization of a Two Stage Pulse Tube Refrigerator for the Integrated Current Lead System

    Science.gov (United States)

    Maekawa, R.; Matsubara, Y.; Okada, A.; Takami, S.; Konno, M.; Tomioka, A.; Imayoshi, T.; Hayashi, H.; Mito, T.

    2008-03-01

    Implementation of a conventional current lead with a pulse tube refrigerator has been validated to be working as an Integrated Current Lead (ICL) system for the Superconducting Magnetic Energy Storage (SMES). Realization of the system is primarily accounted for the flexibility of a pulse tube refrigerator, which does not posses any mechanical piston and/or displacer. As for an ultimate version of the ICL system, a High Temperature Superconducting (HTS) lead links a superconducting coil with a conventional copper lead. To ensure the minimization of heat loads to the superconducting coil, a pulse tube refrigerator has been upgraded to have a second cooling stage. This arrangement reduces not only the heat loads to the superconducting coil but also the operating cost for a SMES system. A prototype two-stage pulse tube refrigerator, series connected arrangement, was designed and fabricated to satisfy the requirements for the ICL system. Operation of the first stage refrigerator is a four-valve mode, while the second stage utilizes a double inlet configuration to ensure its confined geometry. The paper discusses the optimization of second stage cooling to validate the conceptual design

  10. Electronic response of rare-earth magnetic-refrigeration compounds GdX2 (X = Fe and Co)

    Science.gov (United States)

    Bhatt, Samir; Ahuja, Ushma; Kumar, Kishor; Heda, N. L.

    2018-05-01

    We present the Compton profiles (CPs) of rare-earth-transition metal compounds GdX2 (X = Fe and Co) using 740 GBq 137Cs Compton spectrometer. To compare the experimental momentum densities, we have also computed the CPs, electronic band structure, density of states (DOS) and Mulliken population (MP) using linear combination of atomic orbitals (LCAO) method. Local density and generalized gradient approximations within density functional theory (DFT) along with the hybridization of Hartree-Fock and DFT (B3LYP and PBE0) have been considered under the framework of LCAO scheme. It is seen that the LCAO-B3LYP based momentum densities give a better agreement with the experimental data for both the compounds. The energy bands and DOS for both the spin-up and spin-down states show metallic like character of the reported intermetallic compounds. The localization of 3d electrons of Co and Fe has also been discussed in terms of equally normalized CPs and MP data. Discussion on magnetization using LCAO method is also included.

  11. Improvement of a thermoelectric and vapour compression hybrid refrigerator

    International Nuclear Information System (INIS)

    Astrain, D.; Martínez, A.; Rodríguez, A.

    2012-01-01

    This paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decreases by 95% and 20% respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and −4 °C, the oscillation of this temperature is always lower than 0.4 °C, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations. - Highlights: ► Optimization of a vapour compression and thermoelectric hybrid refrigerator. ► Two prototypes built and tested. Computational model for the whole refrigerator. ► Electric power consumption of the modules and the refrigerator 95% and 20% lower. ► New compartment refrigerated with thermoelectric technology. ► Inner temperature adjustable from 0 to −4 °C. Oscillations lower than ±0.2 °C.

  12. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures.

    Science.gov (United States)

    Carlin, F; Peck, M W

    1996-01-01

    Seven strains of nonproteolytic Clostridium botulinum (types B, E, and F) were each inoculated into a range of anaerobic cooked puréed vegetables. After incubation at 10 degrees C for 15 to 60 days, all seven strains formed toxin in mushrooms, five did so in broccoli, four did so in cauliflower, three did so in asparagus, and one did so in kale. Growth kinetics of nonproteolytic C. botulinum type B in cooked mushrooms, cauliflower, and potatoes were determined at 16, 10, 8, and 5 degrees C. Growth and toxin production occurred in cooked cauliflower and mushrooms at all temperatures and in potatoes at 16 and 8 degrees C. The C. botulinum neurotoxin was detected within 3 to 5 days at 16 degrees C, 11 to 13 days at 10 degrees C, 10 to 34 days at 8 degrees C, and 17 to 20 days at 5 degrees C. PMID:8702303

  13. Superconductors with low critical temperature for electro-magnets

    International Nuclear Information System (INIS)

    Devred, A.

    2002-07-01

    Among the superconductors with low critical temperature that are used to build magnets, NbTi has reached a development state that allows a massive production for big equipment of physics and an industrial production in the domain of medicine imaging. The material that might challenge the supremacy of NbTi is Nb 3 Sn but some technical difficulties have yet to be overcome. This report begins with a review of the different industrial processes used to produce superconducting wires based on the NbTi and Nb 3 Sn materials. The transition from the superconducting state to the resistive normal state is described for both materials, the magnetizing of multi-wire superconducting cables is also presented. The author details the different patterns of wires in cables and proposes a formulary that allows the determination, in some simple cases,of energy losses that are generated in a superconducting cable by a variable magnetic field. (A.C.)

  14. Low temperature magnetic characterization of EuO1-x

    Science.gov (United States)

    Rimal, Gaurab; Tang, Jinke

    EuO is a widely studied magnetic semiconductor. It is an ideal case of a Heisenberg ferromagnet as well as a model magnetic polaron system. The interesting aspect of this material is the existance of magnetic polarons in the low temperature region. We study the properties of oxygen deficient EuO prepared by pulsed laser deposition. Besides normal ferromagnetic transitions near 70K and 140K, we observe a different transition at 16K. We also observe a shift in the coercivity for field cooling versus zero field cooling. Possible mechanisms driving these behaviors will be discussed. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DEFG02-10ER46728) and by the School of Energy Resources of the University of Wyoming.

  15. Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances

    Directory of Open Access Journals (Sweden)

    E. V. Blagin

    2014-01-01

    Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.

  16. Thermal flow regulator of refrigerant

    International Nuclear Information System (INIS)

    Dubinskij, S.I.; Savchenko, A.G.; Suplin, V.Z.

    1988-01-01

    A thermal flow regulator of refrigerant for helium flow-type temperature-controlled cryostats based on controlling the channel hydraulic resistance due to variation of the flow density and viscosity during liquid helium transformation into the gaseous state. Behind the regulator both two-phase flow and a heated gas can be produced. The regulator resolution is (7-15)x10 -4 l/mW of liquid helium

  17. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    Science.gov (United States)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  18. Quasispin model of itinerant magnetism: High-temperature theory

    International Nuclear Information System (INIS)

    Liu, S.H.

    1977-01-01

    The high-temperature properties of itinerant magnetic systems are examined by using the coherent-potential approximation. We assume a local moment on each atom so that at elevated temperatures there is a number of reversed spins. The coherent potential is solved, and from that the moment on each atom is determined self-consistently. It is found that when the condition for ferromagnetic ordering is satisfied, the local moments persist even above the critical temperature. Conversely, if local moments do not exist at high temperatures, the system can at most condense into a spin-density-wave state. Furthermore, spin-flip scatterings of the conduction electrons from the local moments give rise to additional correlation not treated in the coherent-potential approximation. This correlation energy is an important part of the coupling energy of the local moments. The relations between our work and the theories of Friedel, Hubbard, and others are discussed

  19. Use of high temperature superconductors for future fusion magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W H [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Celentano, G; Della Corte, A [Superconductivity Division, ENEA - Frascati Research Center, Frascati (Italy); Goldacker, W; Heller, R; Komarek, P; Kotzyba, G; Nast, R; Obst, B; Schlachter, S I; Schmidt, C; Zahn, G [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Pasztor, G; Wesche, R [Centre de Recherches en Physique des Plasmas, Villingen (Switzerland); Salpietro, E; Vostner, A [European Fusion Development Agreement, Close Support Unit, Garching (Germany)

    2005-01-01

    With the construction of ITER the feasibility of a fusion machine will be demonstrated. To commercialize fusion it is essential to keep losses as small as possible in future fusion power plants. One major component where losses can be strongly reduced is the cooling system. For example in ITER where efficiency is not a major goal, a cooling power of 64 kW at 4.4 K is foreseen taking more than 20 MW electric power. Considering the size of future commercial fusion machines this consumption of electric power for cooling will even be higher. With a magnet system working at 20 K a fusion machine would work more efficient by a factor of 5-10 with respect to electric power consumption for cryogenics. Even better than that, would be a machine with a magnet system operating at 65 K to 77 K. In this case liquid nitrogen could be used as coolant saving money for investment and operation costs. Such an increase in the operating temperature of the magnet system can be achieved by the use of High- Temperature Superconductors (HTS). In addition the use of HTS would allow much smaller efforts for thermal shielding and alternative thermal insulation concepts may be possible, e.g. for an HTS bus bar system. This contribution will give an overview about status, promises and challenges of HTS conductors on the way to an HTS fusion magnet system beyond ITER. (author)

  20. High temperature superconductors for fusion magnets -influence of neutron irradiation

    International Nuclear Information System (INIS)

    Chudy, M.; Eisterer, M.; Weber, H. W.

    2010-01-01

    In this work authors present the results of study of influence of neutron irradiation of high temperature superconductors for fusion magnets. High temperature superconductors (type of YBCO (Yttrium-Barium-Copper-Oxygen)) are strong candidates to be applied in the next step of fusion devices. Defects induced by fast neutrons are effective pinning centres, which can significantly improve critical current densities and reduce J c anisotropy. Due to induced lattice disorder, T c is reduced. Requirements for ITER (DEMO) are partially achieved at 64 K.

  1. Postmortem magnetic resonance imaging dealing with low temperature objects

    International Nuclear Information System (INIS)

    Kobayashi, Tomoya; Shiotani, Seiji; Isobe, Tomonori

    2010-01-01

    In Japan, the medical examiner system is not widespread, the rate of autopsy is low, and many medical institutions therefore perform postmortem imaging using clinical equipment. Postmortem imaging is performed to clarify cause of death, select candidates for autopsy, make a guide map for autopsy, or provide additional information for autopsy. Findings are classified into 3 categories: cause of death and associated changes, changes induced by cardiopulmonary resuscitation, and postmortem changes. Postmortem magnetic resonance imaging shows characteristic changes in signal intensity related to low body temperature after death; they are low temperature images. (author)

  2. Temperature Variation of the Magnetic Structure of HoSb

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Kjems, Jørgen; Vogt, O.

    1980-01-01

    Neutron diffraction has been used to show that the magnetic moment vector in the antiferromagnet HoSb changes direction as a function of temperature below TN=5.7K. The experimental results are in qualitative agreement with a recent theoretical prediction by Jensen et al. (1980) which ascribe the ...... the changing directions to a competition between the crystal fields and the dipolar interactions....

  3. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  4. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  5. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  6. Development of high temperature superconductors for magnetic field applications

    International Nuclear Information System (INIS)

    Larbalestier, D.C.

    1991-01-01

    The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbations to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development

  7. Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption–compression hybrid refrigeration cycle

    International Nuclear Information System (INIS)

    Zheng Danxing; Meng Xuelin

    2012-01-01

    Highlights: ► Two novel fundamental concepts of the absorption refrigeration cycle were proposed. ► The interaction mechanism of compressor pressure increasing with other key-parameters was investigated. ► A set of optimal operating condition of hybrid refrigeration cycle was found. ► A simulation and investigation for R134a-DMF hybrid refrigeration cycle was performed. - Abstract: The absorption–compression hybrid refrigeration cycle has been considered as an effective approach to reduce the mechanical work consumption by using low-grade heat, such as solar energy. This work aims at studying the thermodynamic mechanism of the hybrid refrigeration cycle. Two fundamental concepts have been proposed, which are the ultimate refrigerating temperature (or the ultimate temperature lift) and the behavior turning. On the basis of that, the interaction mechanism of compressor pressure increasing with other key-parameters and the impact of compressor pressure increasing on the cycle performance have been investigated. The key-parameters include the concentration difference, the circulation ratio of working fluid, etc. The work points out that the hybrid refrigeration cycle performance varies with the change of compressor outlet pressure and depends on which one achieves dominance in the hybrid refrigeration cycle, the absorption sub-system or the compression sub-system. The behavior turning point during parameters changing corresponds to a maximum value of the heat powered coefficient of performance. In this case, the hybrid refrigeration cycle performance is optimal because the low-grade heat utilization is the most effective. In addition, to validate the theoretical analysis, a solar hybrid refrigeration cycle with R134a–DMF as working pair was simulated. The Peng–Robinson equation of state was adopted to calculate thermophysical properties when the reliability assessment of the prediction models on the available literature data of R134a–DMF system had been

  8. Analysis of cooldown performance for Isabelle helium refrigerator

    International Nuclear Information System (INIS)

    Wu, K.C.; Brown, D.P.; Moore, R.W.

    1982-01-01

    The cooldown performance for the ISABELLE Helium refrigerator is analyzed in terms of the relationship between refrigerator and its load. The flow diagram for ISABELLE with its redundant turbines and heat exchangers is given. Cycle description and procedure for cooldown is described with the relationship between a refrigerator and its load illustrated. Pressure vs. temperature for ISABELLE load and the efficiency for a turbine are illustrated. The procedure for modeling the refrigerator and the concepts of maximizing the cooldown capacity are described. The results and discussion are accompanied with T-S diagrams for initial stage of cooldown and refrigerator characteristic at various return temperatures. The ISABELLE refrigerator with its reduncant expanders properly used achieves cooldown capacity well beyond its steady-state capacity. The cooldown rate at this stage relies on the design safety margin, which for the ISABELLE is 50%

  9. Auto-refrigerating cascade for superconducting applications

    International Nuclear Information System (INIS)

    Forrest, S.M.; Hall, P.H.; Missimer, D.J.

    1987-01-01

    Extremely low temperatures, in the range of 230 to 90 K, are achieved in a single circuit compression refrigeration system operated by a conventional compressor. The system relies upon a series of intermediate cooling stages. The refrigerant is a mixture and the system employs fractional condensation, distillation, phase separation and intermediate heat transfer. Each stage includes the steps of withdrawing a portion of the liquid condensate from the compressed vapor-liquid refrigerant mixture which enters the stage. The withdrawn condensate is then throttled to a lower pressure and is mixed with the refrigerant being recycled to the compressor from the final evaporator. Evaporating the throttled condensate absorbs heat from and at least partially condenses the compressed uncondensed vapor in the compressed mixture

  10. Research for Actively Reducing Infrared Radiation by Thermoelectric Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hoon; Kim, Kyomin; Kim, Woochul [Yonsei Univ., Seoul (Korea, Republic of)

    2017-03-15

    We introduced a technology for reducing infrared radiation through the active cooling of hot surfaces by using a thermoelectric refrigerator. Certain surfaces were heated by aerodynamic heating, and the heat generation processes are proposed here. We calculated the temperatures and radiations from surfaces, while using thermoelectric refrigerators to cool the surfaces. The results showed that the contrast between the radiations of certain surfaces and the ambient environments can be removed using thermoelectric refrigerators.

  11. Cryogenic mixed refrigerant processes

    CERN Document Server

    Venkatarathnam, Gadhiraju

    2010-01-01

    Teaches the need for refrigerant mixtures, the type of mixtures that can be used for different refrigeration and liquefaction applications, the different processes that can be used and the methods to be adopted for choosing the components of a mixture and their concentration for different applications.

  12. Computer model of the refrigeration system of an ice rink

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, G.; Zmeureanu, R. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Giguere, D. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2008-07-01

    This paper presented a refrigeration system model of an existing ice rink using a component approach. The chillers, the ice-concrete slab and the controller were the 3 main components used in the simulations which were performed using both open and closed loop systems. The simulated ice rink refrigeration system was based on measurements taken in an existing indoor ice rink located in Montreal, Quebec. Measurements of the refrigeration system included electricity demand; heat flux on the ice sheet; exterior air temperature; ice temperature; return brine temperature; brine temperature at the pump; brine temperature at both evaporator exits; and refrigerant temperature and pressure at the expansion and condenser valve exits. Simulation results and measurements were found to be in good agreement. A computer model of the refrigeration system was developed using the TRNSYS 16 program. The refrigeration system was composed of 2 chillers using refrigerant R-22. The impact of heat recovery from the condensers on the energy demand for sanitary water heating was also estimated. The potential reduction of equivalent carbon dioxide emissions was calculated using the total equivalent warming impact (TEWI) criterion in an effort to estimate the refrigeration impact on global warming. 12 refs., 4 tabs., 12 figs.

  13. Low temperature X-ray imaging of magnetic flux patterns in high temperature superconductors

    Science.gov (United States)

    Stahl, Claudia; Ruoß, Stephen; Weigand, Markus; Bechtel, Michael; Schütz, Gisela; Albrecht, Joachim

    2015-05-01

    We present X-ray magnetic circular dichroism (XMCD) microscopy results obtained at liquid nitrogen temperatures on the high-Tc superconductor YBCO (YBa2Cu3O7-δ). The magnetic flux distribution arising from electric currents in the superconductor is detected and visualized using soft-magnetic Co40Fe40B20 (CoFeB) as sensor layer and XMCD as contrast mechanism. It has been shown that the XMCD contrast in the sensor layer directly corresponds to magnetic flux distribution of the superconductor and hence can be used to image magnetic structures in superconductors [Stahl et al., Phys. Rev. B 90, 104515 (2014)]. The existing scanning UHV X-ray microscopy setup MAXYMUS at the synchrotron BESSY II in Berlin has been upgraded for that purpose: we use a nitrogen based MMR Micro Miniature Joule-Thompson Cryostat with temperature range from 75 K to 580 K. The capability of the method is demonstrated on two different superconducting samples, an optimally doped thin film and a melt-textured block.

  14. Refrigerants and environment

    Science.gov (United States)

    Tsvetkov, O. B.; Laptev, Yu A.

    2017-11-01

    The refrigeration and air-conditioning industries are important sectors of the economy and represents about 15 % of global electricity consumptions. The chlorofluorocarbons also called CFCs are a class of refrigerants containing the halogens chlorine and/or fluorine on a carbon skeleton. Because of their environmental impact the Montreal Protocol was negotiated in 1987 to limit the production of certain CFCs and hydrochlirofluorocarbons (HCFCs) in developed and developing countries. The halogenated refrigerants are depleting the ozone layer also major contribution to the greenhouse effect. To be acceptable as a refrigerant a fluid must satisfy a variety of thermodynamic criteria and should be environment friendly with zero Ozone Depletion Potential and low Global Warming Potential. The perspective of a future phase down of HFCs is considered in this report taking into account a strategy for the phase out of HCFCs and perspective of choosing of various refrigerant followed by safety issues.

  15. Efficiency analysis of alternative refrigerants for ejector cooling cycles

    International Nuclear Information System (INIS)

    Gil, Bartosz; Kasperski, Jacek

    2015-01-01

    Highlights: • Advantages of using alternative refrigerants as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of primary vapor for each working fluid was calculated. - Abstract: Computer software, basing on the theoretical model of Huang et al. with thermodynamic properties of selected refrigerants, was prepared. Investigation was focused on alternative refrigerants that belong to two groups of substances: common solvents (acetone, benzene, cyclopentane, cyclohexane and toluene) and non-flammable synthetic refrigerants applied in Organic Rankine Cycle (ORC) (R236ea, R236fa, R245ca, R245fa, R365mfc and RC318). Refrigerants were selected to detect a possibility to use them in ejector cooling system powered by a high-temperature heat source. A series of calculations were carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Investigation revealed that there is no single refrigerant that ensures efficient operation of the system in the investigated temperature range of primary vapor. Each substance has its own maximum entrainment ratio and COP at its individual temperature of the optimum. The use of non-flammable synthetic refrigerants allows obtaining higher COP in the low primary vapor temperature range. R236fa was the most beneficial among the non-flammable synthetic refrigerants tested. The use of organic solvents can be justified only for high values of motive steam temperature. Among the solvents, the highest values of entrainment ratio and COP throughout the range of motive temperature were noted for cyclopentane. Toluene was found to be an unattractive refrigerant from the ejector cooling point of view

  16. Characterization of the indigenous microflora in raw and pasteurized buffalo milk during storage at refrigeration temperature by high-throughput sequencing

    Science.gov (United States)

    The effect of refrigeration on bacterial communities within raw and pasteurized buffalo milk was studied using high-throughput sequencing. High quality samples of raw buffalo milk were obtained from five dairy farms in the Guangxi province of China. A sample of each milk was pasteurized, and both r...

  17. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Vineyard, Edward Allan [ORNL

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  18. Magnetic resonance studies of atomic hydrogen gas at low temperatures

    International Nuclear Information System (INIS)

    Hardy, W.N.; Morrow, M.; Jochemsen, R.; Statt, B.W.; Kubik, P.R.; Marsolais, R.M.; Berlinsky, A.J.; Landesman, A.

    1980-01-01

    Using a pulsed low temperature discharge in a closed cell containing H 2 and 4 He, we have been able to store a low density (approximately 10 12 atoms/cc) gas of atomic hydrogen for periods of order one hour in zero magnetic field and T=1 K. Pulsed magnetic resonance at the 1420 MHz hyperfine transition has been used to study a number of the properties of the gas, including the recombination rate H + H + 4 He→H 2 + 4 He, the hydrogen spin-exchange relaxation rates, the diffusion coefficient of H in 4 He gas and the pressure shift of the hyperfine frequency due to the 4 He buffer gas. Here we discuss the application of hyperfine frequency shifts as a probe of the H-He potential, and as a means for determining the binding energy of H on liquid helium

  19. Eco-Friendly Alternative Refrigeration Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 10. Eco-Friendly Alternative Refrigeration Systems - Magnetic and ... Author Affiliations. S S Verma1. Deptartment of Physics, Sant Longowal Institute of Engineering and Technology Longowal, District Sangrur, Punjab 148 106, India.

  20. Refrigeration system with clearance seals

    International Nuclear Information System (INIS)

    Holland, N. J.

    1985-01-01

    In a refrigeration system such as a split Stirling system, fluid seals associated with the reciprocating displacer are virtually dragless clearance seals. Movement of the displacer relative to the pressure variations in the working volume of gas is retarded by a discrete braking element. Because it is not necessary that the brake providing any sealing action, the brake can be designed for greater durability and less dependence on ambient and operating temperatures. Similarly, the clearance seal can be formed of elements having low thermal expansion such that the seal is not temperature dependent. In the primary embodiments the braking element is a split friction brake

  1. Analysis of Refrigeration Cycle Performance with an Ejector

    Directory of Open Access Journals (Sweden)

    Wani J. R.

    2016-01-01

    Full Text Available A conventional refrigeration cycle uses expansion device between the condenser and the evaporator which has losses during the expansion process. A refrigeration cycle with ejector is a promising modification to improve the performance of conventional refrigeration cycle. The ejector is used to recover some of the available work so that the compressor suction pressure increases. To investigate the enhancement a model with R134a refrigerant was developed. To solve the set of equations and simulate the cycle performance a subroutine was written on engineering equation solver (EES environment. At specific conditions, the refrigerant properties are obtained from EES. At the design conditions the ejector refrigeration cycle achieved 5.141 COP compared to 4.609 COP of the conventional refrigeration cycle. This means that ejector refrigeration cycle offers better COP with 10.35% improvement compared to conventional refrigeration cycle. Parametric analysis of ejector refrigeration cycle indicated that COP was influenced significantly by evaporator and condenser temperatures, entrainment ratio and diffuser efficiency.

  2. Performance Analysis of Multipurpose Refrigeration System (MRS on Fishing Vessel

    Directory of Open Access Journals (Sweden)

    Ust Y.

    2016-04-01

    Full Text Available The use of efficient refrigerator/freezers helps considerably to reduce the amount of the emitted greenhouse gas. A two-circuit refrigerator-freezer cycle (RF reveals a higher energy saving potential than a conventional cycle with a single loop of serial evaporators, owing to pressure drop in each evaporator during refrigeration operation and low compression ratio. Therefore, several industrial applications and fish storage systems have been utilized by using multipurpose refrigeration cycle. That is why a theoretical performance analysis based on the exergetic performance coefficient, coefficient of performance (COP, exergy efficiency and exergy destruction ratio criteria, has been carried out for a multipurpose refrigeration system by using different refrigerants in serial and parallel operation conditions. The exergetic performance coefficient criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability. According to the results of the study, the refrigerant R32 shows the best performance in terms of exergetic performance coefficient, COP, exergy efficiency, and exergy destruction ratio from among the other refrigerants (R1234yf, R1234ze, R404A, R407C, R410A, R143A and R502. The effects of the condenser, freezer-evaporator and refrigerator-evaporator temperatures on the exergetic performance coefficient, COP, exergy efficiency and exergy destruction ratios have been fully analyzed for the refrigerant R32.

  3. MAGCOOL: the production cooling facility for ISABELLE magnets

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Afrashteh, M.; Brown, D.P.; Schneider, W.J.; Sondericker, J.H.; Wu, K.C.

    1981-01-01

    The ISABELLE proton accelerator uses over one thousand superconducting magnets to guide the particle beams in two circular rings, 3.8 km in circumference. Prior to their installation in the tunnel all magnets must be tested and measured at their 3.8 K operating temperature. This paper describes the refrigeration system, called MAGCOOL, to accomplish this task

  4. Numerical Modeling of Multi-Material Active Magnetic Regeneration

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden

    2009-01-01

    and the specific heat as a function of temperature at constant magnetic field. A 2.5-dimensional numerical model of an active magnetic regenerative (AMR) refrigerator device is presented. The experimental AMR located at Risø DTU has been equipped with a parallel-plate based regenerator made of the two materials...

  5. Magnetism and thermodynamic properties of a spin-1/2 ferrimagnetic diamond XY chain in magnetic fields at finite temperatures

    International Nuclear Information System (INIS)

    Cheng, Tai-Min; Ma, Yan-Ming; Ge, Chong-Yuan; Sun, Shu-Sheng; Jia, Wei-Ye; Li, Qing-Yun; Shi, Xiao-Fei; Li, Lin; Zhu, Lin

    2013-01-01

    The elementary excitation spectra of a one-dimensional ferrimagnetic diamond chain in the spin-1/2 XY model at low temperatures have been calculated by using an invariant eigen-operator (IEO) method, the energies of elementary excitations in different specific cases are discussed, and the analytic solutions of three critical magnetic field intensities (H C1 , H C2 , and H peak ) are given. The magnetization versus external magnetic field curve displays a 1/3 magnetization plateau at low temperatures, in which H C1 is the critical magnetic field intensity from the disappearance of the 1/3 magnetization plateau to spin-flop states, H C2 is the critical magnetic field intensity from spin-flop states to the saturation magnetization, and H peak is the critical magnetic field intensity when the temperature magnetization shows a peak in the external magnetic field. The temperature dependences of the magnetic susceptibility and the specific heat show a double peak structure. The entropy and the magnetic susceptibility versus external magnetic field curves also exhibit a double peak structure, and the positions of the two peaks correspond to H C1 and H C2 , respectively. This derives from the competition among different types of energies: the temperature-dependent thermal disorder energy, the potential energy of the spin magnetic moment, the ferromagnetic exchange interaction energy, and the anti-ferromagnetic exchange interaction energy. However at low temperatures, the specific heat as a function of external magnetic field curve exhibits minima at the above two critical points (H C1 and H C2 ). The origins of the above phenomena are discussed in detail.

  6. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    CERN Document Server

    Ferlin, G; Claudet, S; Pezzetti, M

    2015-01-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  7. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    Science.gov (United States)

    Ferlin, G.; Tavian, L.; Claudet, S.; Pezzetti, M.

    2015-12-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  8. Computer modeling of commercial refrigerated warehouse facilities

    International Nuclear Information System (INIS)

    Nicoulin, C.V.; Jacobs, P.C.; Tory, S.

    1997-01-01

    The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented

  9. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  10. The correlation between superparamagnetic blocking temperatures and peak temperatures obtained from ac magnetization measurements

    International Nuclear Information System (INIS)

    Madsen, Daniel Esmarch; Moerup, Steen; Hansen, Mikkel Fougt

    2008-01-01

    We study the correlation between the superparamagnetic blocking temperature T B and the peak positions T p observed in ac magnetization measurements for nanoparticles of different classes of magnetic materials. In general, T p = α+βT B . The parameters α and β are different for the in-phase (χ') and out-of-phase (χ'') components and depend on the width σ V of the log-normal volume distribution and the class of magnetic material (ferromagnetic/antiferromagnetic). Consequently, knowledge of both α and β is required if the anisotropy energy barrier KV and the attempt time τ 0 are to be reliably obtained from an analysis based solely on the peak positions

  11. Prediction of thermodynamic properties of refrigerants using data mining

    International Nuclear Information System (INIS)

    Kuecueksille, Ecir Ugur; Selbas, Resat; Sencan, Arzu

    2011-01-01

    The analysis of vapor compression refrigeration systems requires the availability of simple and efficient mathematical formulations for the determination of thermodynamic properties of refrigerants. The aim of this study is to determine thermodynamic properties as enthalpy, entropy and specific volume of alternative refrigerants using data mining method. Alternative refrigerants used in the study are R134a, R404a, R407c and R410a. The results obtained from data mining have been compared to actual data from the literature. The study shows that the data mining methodology is successfully applicable to determine enthalpy, entropy and specific volume values for any temperature and pressure of refrigerants. Therefore, computation time reduces and simulation of vapor compression refrigeration systems is fairly facilitated.

  12. Compatibility of refrigerants and lubricants with elastomers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, G.R.; Seiple, R.H.; Taikum, Orawan

    1994-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. In part I of the program the swell behavior in the test fluids has been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed fro the refrigerant test fluids and 24 hours after removal from the lubricants. Part II of the testing program includes the evaluation of tensile strength, hardness, weight, and dimensional changes after immersion aging in refrigerant/lubricant mixtures of selected elastomer formulations at elevated temperature and pressure.

  13. Reasearch and Evaluation of Electromagnetic Fields of Refrigerators

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2013-12-01

    Full Text Available The use of refrigerators causes the occurence of electromagnetic fields that are invisible and intangible, which therefore makes difficulties in protecting ourselves from them. A refrigerator is an irreplaceable item in domestic household and thus can be hardly ignored by a modern way of human life. In order to preserve the characteristics of products, the refrigerator must operate continuously (24 hrs a day, regardless of the time of the year. This results in a huge increase in electricity consumption, which leads to energy consumption related pollution of the environment emitting CO2 gas. On these grounds, it is necessary to assess electromagnetic fields created by the refrigerator. Studies on electromagnetic fields produced by refrigerators were conducted in domestic premises where people spent a significant part of the day. For comparison purposes, five different power refrigerators were chosen (1 – 0.20 kW; 2 – 0.25 kW; 3 – 0.30 kW; 4 – 0.35 kW; 5 – 0.40 kW. The obtained results, according to the parameters of their electromagnetic fields, were presented in graphs and charts and showed that the values of electric and magnetic intensity of refrigerators depended on the distance and the power of the refrigerator. The conducted research also disclosed that none of tested refrigerators exceeded the permissible limits of electromagnetic fields.Article in Lithuanian

  14. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  15. Dilution refrigeration with multiple mixing chambers

    International Nuclear Information System (INIS)

    Coops, G.M.

    1981-01-01

    A dilution refrigerator is an instrument to reach temperatures in the mK region in a continuous way. The temperature range can be extended and the cooling power can be enlarged by adding an extra mixing chamber. In this way we obtain a double mixing chamber system. In this thesis the theory of the multiple mixing chamber is presented and tested on its validity by comparison with the measurements. Measurements on a dilution refrigerator with a circulation rate up to 2.5 mmol/s are also reported. (Auth.)

  16. RESEARCH OF REFRIGERATION SYSTEMS FAILURES IN POLISH FISHING VESSELS

    Directory of Open Access Journals (Sweden)

    Waldemar KOSTRZEWA

    2013-07-01

    Full Text Available Temperature is a basic climatic parameter deciding about the quality change of fishing products. Time, after which qualitative changes of caught fish don’t exceed established, acceptable range, is above all the temperature function. Temperature reduction by refrigeration system of the cargo hold is a basic technical method, which allows extend transport time. Failures of refrigeration systems in fishing vessels have a negative impact on the environment in relation to harmful refrigerants emission. The paper presents the statistical analysis of failures occurred in the refrigeration systems of Polish fishing vessels in 2007‐2011 years. Analysis results described in the paper can be a base to draw up guidelines, both for designers as well as operators of the marine refrigeration systems.

  17. Public Refrigerated Warehouses

    Data.gov (United States)

    Department of Homeland Security — The International Association of Refrigerated Warehouses (IARW) came into existence in 1891 when a number of conventional warehousemen took on the demands of storing...

  18. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per

    2000-07-01

    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  19. Refrigeration systems and applications

    CERN Document Server

    Dincer, Ibrahim

    2010-01-01

    Refrigeration Systems and Applications, 2nd edition offers a comprehensive treatise that addresses real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and the practical applications of refrigeration technology. New and unique analysis techniques (including exergy as a potential tool), models, correlations, procedures and applications are covered, and recent developments in the field are included - many of which are taken from the author's own research activities in this area. The book also includes so

  20. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  1. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  2. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    Directory of Open Access Journals (Sweden)

    M. Tokaç

    2017-11-01

    Full Text Available Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001 substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  3. Development of a temperature-variable magnetic resonance imaging system using a 1.0T yokeless permanent magnet.

    Science.gov (United States)

    Terada, Y; Tamada, D; Kose, K

    2011-10-01

    A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5°C to 45°C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Applicability of ASST-A helium refrigeration system for JLab End Station Refrigerator

    Science.gov (United States)

    Hasan, N.; Knudsen, P.; Ganni, V.

    2017-12-01

    The MØLLER experiment at Jefferson Lab (JLab) is a high power (5 kW) liquid hydrogen target scheduled to be operational in the 12 GeV-era. At present, cryogenic loads and targets at three of JLab’s four experimental halls are supported by the End Station Refrigerator (ESR) - a CTI/Helix 1.5 kW 4.5 K refrigerator. It is not capable of supporting the high power target load and a capacity upgrade of the ESR cryogenic system is essential. The ASST-A helium refrigeration system is a 4 kW 4.5 K refrigerator. It was designed and used for the Superconducting Super Collider Lab (SSCL) magnet string test and later obtained by JLab after the cancellation of that project. The modified ASST-A refrigeration system, which will be called ESR-II along with a support flow from JLab’s Central Helium Liquefier (CHL) is considered as an option for the End Station Refrigerator capacity upgrade. The applicability of this system for ESR-II under varying load conditions is investigated. The present paper outlines the findings of this process study.

  5. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko

    2006-01-01

    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  6. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L

    1997-01-01

    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  7. Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field

    Science.gov (United States)

    Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser

    2018-02-01

    Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

  8. TRANSPORT PROPERTIES FOR REFRIGERANT MIXTURES

    Directory of Open Access Journals (Sweden)

    V. Geller

    2014-06-01

    Full Text Available A set of models to predict viscosity and thermal conductivity of refrigerant mixtures is developed. A general model for viscosity and thermal conductivity use the three contributions sum form (the dilute-gas terms, the residual terms, and the liquid terms. The corresponding states model is recommended to predict the dense gas transport properties over a range of reduced density from 0 to 2. It is shown that the RHS model provides the most reliable results for the saturated-liquid and the compressed-liquid transport properties over a range of given temperatures from 0,5 to 0,95.

  9. A miniaturized plastic dilution refrigerator

    International Nuclear Information System (INIS)

    Bindilatti, V.; Oliveira, N.F.Jr.; Martin, R.V.; Frossati, G.

    1996-01-01

    We have built and tested a miniaturized dilution refrigerator, completely contained (still, heat exchanger and mixing chamber) inside a plastic (PVC) tube of 10 mm diameter and 170 mm length. With a 25 cm 2 CuNi heat exchanger, it reached temperatures below 50 mK, for circulation rates below 70 μmol/s. The cooling power at 100 mK and 63 μmol/s was 45 μW. The experimental space could accommodate samples up to 6 mm in diameter. (author)

  10. Low temperature anomaly of light stimulated magnetization and heat capacity of the 1D diluted magnetic semiconductors

    Science.gov (United States)

    Geffe, Chernet Amente

    2018-03-01

    This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.

  11. Low temperature anomaly of light stimulated magnetization and heat capacity of the 1D diluted magnetic semiconductors

    Directory of Open Access Journals (Sweden)

    Chernet Amente Geffe

    2018-03-01

    Full Text Available This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.

  12. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.

    Science.gov (United States)

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-03-01

    Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synthesis, characterization and magnetic properties of room-temperature nanofluid ferromagnetic graphite

    OpenAIRE

    Souza, N. S.; Sergeenkov, S.; Speglich, C.; Rivera, V. A. G.; Cardoso, C. A.; Pardo, H.; Mombru, A. W.; Rodrigues, A. D.; de Lima, O. F.; Araujo-Moreira, F. M.

    2009-01-01

    We report the chemical synthesis route, structural characterization, and physical properties of nanofluid magnetic graphite (NFMG) obtained from the previously synthesized bulk organic magnetic graphite (MG) by stabilizing the aqueous ferrofluid suspension with an addition of active cationic surfactant. The measured magnetization-field hysteresis curves along with the temperature dependence of magnetization confirmed room-temperature ferromagnetism in both MG and NFMG samples. (C) 2009 Americ...

  14. Refrigerated Warehouse Demand Response Strategy Guide

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Doug [VaCom Technologies, San Luis Obispo, CA (United States); Castillo, Rafael [VaCom Technologies, San Luis Obispo, CA (United States); Larson, Kyle [VaCom Technologies, San Luis Obispo, CA (United States); Dobbs, Brian [VaCom Technologies, San Luis Obispo, CA (United States); Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  15. Temperature dependent magnetic properties of the GaAs substrate of spin-LEDs

    International Nuclear Information System (INIS)

    Ney, A; Harris, J S Jr; Parkin, S S P

    2006-01-01

    The temperature dependence of the magnetization of a light emitting diode having a ferromagnetic contact (spin-LED) is measured from 2 to 300 K in magnetic fields from 30 to 70 kOe and it is found that it originates from the GaAs substrate. The magnetization of GaAs comprises a van Vleck-type paramagnetic contribution to the susceptibility which scales inversely with the band gap of the semiconductor. Thus, the temperature dependence of the band gap of GaAs accounts for the non-linear temperature dependent magnetic susceptibility of GaAs and thus, at large magnetic fields, for the spin-LED

  16. The Absorption Refrigerator as a Thermal Transformer

    Science.gov (United States)

    Herrmann, F.

    2009-01-01

    The absorption refrigerator can be considered a thermal transformer, that is, a device that is analogous to the electric transformer. The analogy is based on the correspondence between the extensive quantities, entropy and electric charge and the intensive variables, temperature and electric potential. (Contains 1 footnote and 6 figures.)

  17. The absoption refrigerator as a thermal transformer

    OpenAIRE

    Herrmann, Friedrich

    2008-01-01

    The absorption refrigerator can be considered a thermal transformer, i.e. a device that is analogous to the electric transformer. The analogy is based on a correspondence between the extensive quantities entropy and electric charge and that of the intensive variables temperature and electric potential.

  18. The absorption refrigerator as a thermal transformer

    International Nuclear Information System (INIS)

    Herrmann, F

    2009-01-01

    The absorption refrigerator can be considered a thermal transformer, that is, a device that is analogous to the electric transformer. The analogy is based on the correspondence between the extensive quantities, entropy and electric charge and the intensive variables, temperature and electric potential

  19. Cooling of high temperature superconductors below 60 K by means of a two-stage cryogenic mixed refrigerant cascade; Kuehlung von Hochtemperatursupraleitern unterhalb von 60 K mittels einer zweistufigen Gemischkaeltekaskade

    Energy Technology Data Exchange (ETDEWEB)

    Kochenburger, T.M. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Thermodynamik und Kaeltetechnik (ITTK); Grohmann, S. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Thermodynamik und Kaeltetechnik (ITTK); Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Technische Physik (ITEP)

    2015-07-01

    High temperature superconductors enable the efficient transmission of electrical energy in urban and industrial networks. It is the availability of simple, reliable and at the same time efficient cooling methods prerequisite for the application of this technology. At operating temperatures 65-80 K is the cooling currently mostly implemented by liquid nitrogen, large-scale turbo-Brayton plants or batteries of regenerative cryocooler; however, all these options for applications in the range of a few kW of required cooling capacity have thermodynamic, economic and practical limitations. In addition, a further lowering the cooling temperature below 60 K is desirable to increase the current density in the superconductors. Two-stage cryogenic mixed refrigerant cascade offer the potential for a reliable and easily scalable alternative for refrigeration in this temperature range. The first stage of the considered process consists of a classic mixture refrigeration cycle to pre-cool to 120 K. The second stage operates in the low temperature range up to 55 K with a mixture of nitrogen, oxygen and neon at high pressures. This paper compares on the basis of experimental data, the performance of combustible and non-combustible mixtures in the precooling level. The applicability of various equations of state for modeling of phase behavior of mixtures is discussed. [German] Hochtemperatursupraleiter ermoeglichen den effizienten Transport elektrischer Energie in urbanen und industriellen Netzen. Dabei ist die Verfuegbarkeit von einfachen, zuverlaessigen und gleichzeitig effizienten Kuehlmethoden Voraussetzung fuer die Anwendung dieser Technologie. Bei Betriebstemperaturen von 65 - 80 K wird die Kuehlung derzeit meist durch Fluessigstickstoff, grossskalige Turbo-Brayton-Anlagen oder Batterien regenerativer Kleinkuehler realisiert; jedoch haben alle diese Optionen fuer Anwendungen im Bereich von einigen kW an erforderlicher Kaelteleistung thermodynamische, oekonomische und

  20. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  1. Magnetization jumps in nanostructured Nd–Fe–B alloy at low temperatures

    International Nuclear Information System (INIS)

    Neznakhin, D.S.; Bolyachkin, A.S.; Volegov, A.S.; Markin, P.E.; Andreev, S.V.; Kudrevatykh, N.V.

    2015-01-01

    Magnetic properties of the nanostructured isotropic alloy on the base of Nd 2 Fe 14 B type phase were investigated at low temperatures. The evaluated average grain size of this phase was much smaller than its critical single domain diameter. Hence the magnetization and demagnetization processes were expected to be performed by coherent magnetization rotation. For such coercivity type system magnetization jumps were revealed on the demagnetization hysteresis loop branch in the vicinity of the coercive force at temperatures below 4 K. It was shown that magnetization jumps have a stochastic behavior and their number strongly depends on the temperature and the mass of measured samples. High temperature spikes corresponding to magnetization discontinuities were observed. All these results allowed to propose that magnetization jumps in nanostructured magnetics with magnetization rotation reversal processes comply with the local heating model. - Highlights: • Magnetization reversals of the nanostructured Nd–Fe–B-type alloy were obtained below 4 K. • Magnetization jumps were first observed for magnetization rotation coercivity type magnets. • Staircase magnetization reversal was explained within the framework of the local heating model

  2. Energy analysis of a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    From 1995 to 1998, an energy test method for supermarket refrigeration systems was developed in a project financed by the Danish Energy Agency. The purpose of the energy test method is to provide the means for evaluating the energy efficiency of these systems. The test method requires measurements...... of air temperatures and energy consumption to be carried out on the selected supermarket refrigeration system. In addition to the measurements required by the method, more measurements of individual energy consumptions have been carried in the case described in this paper. The purpose of the additional...

  3. Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Chimres, Nares

    2005-01-01

    This work presents an experimental study on the application of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator. The hydrocarbons investigated are propane (R290), butane (R600) and isobutane (R600a). A refrigerator designed to work with HFC-134a with a gross capacity of 239 l is used in the experiment. The consumed energy, compressor power and refrigerant temperature and pressure at the inlet and outlet of the compressor are recorded and analysed as well as the distributions of temperature at various positions in the refrigerator. The refrigerant mixtures used are divided into three groups: the mixture of three hydrocarbons, the mixture of two hydrocarbons and the mixture of two hydrocarbons and HFC-134a. The experiments are conducted with the refrigerants under the same no load condition at a surrounding temperature of 25 deg. C. The results show that propane/butane 60%/40% is the most appropriate alternative refrigerant to HFC-134a

  4. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between

  5. Load leveling on industrial refrigeration systems

    Science.gov (United States)

    Bierenbaum, H. S.; Kraus, A. D.

    1982-01-01

    A computer model was constructed of a brewery with a 2000 horsepower compressor/refrigeration system. The various conservation and load management options were simulated using the validated model. The savings available for implementing the most promising options were verified by trials in the brewery. Result show that an optimized methodology for implementing load leveling and energy conservation consisted of: (1) adjusting (or tuning) refrigeration systems controller variables to minimize unnecessary compressor starts, (2) The primary refrigeration system operating parameters, compressor suction pressure, and discharge pressure are carefully controlled (modulated) to satisfy product quality constraints (as well as in-process material cooling rates and temperature levels) and energy evaluating the energy cost savings associated with reject heat recovery, and (4) a decision is made to implement the reject heat recovery system based on a cost/benefits analysis.

  6. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J.M. (Calm (James M.), Great Falls, VA (United States))

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  7. Superconductors with low critical temperature for electro-magnets; Supraconducteurs a basse temperature critique pour electroaimants

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A

    2002-07-01

    Among the superconductors with low critical temperature that are used to build magnets, NbTi has reached a development state that allows a massive production for big equipment of physics and an industrial production in the domain of medicine imaging. The material that might challenge the supremacy of NbTi is Nb{sub 3}Sn but some technical difficulties have yet to be overcome. This report begins with a review of the different industrial processes used to produce superconducting wires based on the NbTi and Nb{sub 3}Sn materials. The transition from the superconducting state to the resistive normal state is described for both materials, the magnetizing of multi-wire superconducting cables is also presented. The author details the different patterns of wires in cables and proposes a formulary that allows the determination, in some simple cases,of energy losses that are generated in a superconducting cable by a variable magnetic field. (A.C.)

  8. Air liquide 1.8 K refrigeration units for CERN LHC project

    International Nuclear Information System (INIS)

    Hilbert, Benoit; Gistau-Baguer, Guy M.; Caillaud, Aurelie

    2002-01-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K, these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given

  9. Air liquide 1.8 K refrigeration units for CERN LHC project

    Science.gov (United States)

    Hilbert, Benoît; Gistau-Baguer, Guy M.; Caillaud, Aurélie

    2002-05-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K [1, 2]. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K [3], these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given.

  10. Air-Liquide 1.8 K refrigeration units for CERN LHC project

    CERN Document Server

    Hilbert, B; Caillaud, A

    2002-01-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K, these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN- preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given. (5 refs).

  11. Automatic control study of the icing research tunnel refrigeration system

    Science.gov (United States)

    Kieffer, Arthur W.; Soeder, Ronald H.

    1991-01-01

    The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.

  12. A conceptual design of high-temperature superconducting isochronous cyclotron magnet

    International Nuclear Information System (INIS)

    Jiao, F.; Tang, Y.; Li, J.; Ren, L.; Shi, J.

    2011-01-01

    A design of High-temperature superconducting (HTS) isochronous cyclotron magnet is proposed. The maximum magnetic field of cyclotron main magnet reaches 3 T. Laying the HTS coil aboard the magnetic pole will raise the availability of the magnetic Field. Super-iron structure can provide a high uniformity and high gradient magnetic field. Super-iron structure can raise the availability of the HTS materials. Along with the development of High-temperature superconducting (HTS) materials, the technology of HTS magnet is becoming increasingly important in the Cyclotron, which catches growing numbers of scholars' attentions. Based on the analysis of the problems met in the process of marrying superconducting materials with ferromagnetic materials, this article proposes a design of HTS isochronous cyclotron magnet. The process of optimization of magnet and the methods of realizing target parameters are introduced after taking finite element software as analyzing tools.

  13. Indirect refrigeration systems with natural refrigerants

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Christensen, Kim Gardø; Jensen, Per Henrik

    1998-01-01

    Heat transfer for boiling and condensing carbon dioxide has been investigated.Heat transfer for carbon dioxide evaporating inside pipe has been measured and compared with Shah's correlation. The measured heat transfer coefficient is much higher than the value determined with the correlation.A shell......-and-tube heat exchanger with carbon dioxide on the shell side and flow ice inside the tubes has been used to investigate the heat transfer for condensing carbon dioxide.At leats is mentioned results obtained with a frozen food display case using carbone dioxide as refrigerant....

  14. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  15. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    Science.gov (United States)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  16. Effect of Carbon Doping on the Structure and Magnetic Phase Transition in (Mn,Fe

    NARCIS (Netherlands)

    Nguyên, V.T.; Yibole, -.; Miao, X.F.; Goubitz, K.; van Eijck, L.; van Dijk, N.H.; Brück, E.H.

    2017-01-01

    Given the potential applications of (Mn,Fe2(P,Si))-based materials for room-temperature magnetic refrigeration, several research groups have carried out fundamental studies aimed at understanding the role of the magneto-elastic coupling in the first-order magnetic transition and

  17. A New Tool for Separating the Magnetic Mineralogy of Complex Mineral Assemblages from Low Temperature Magnetic Behavior

    Directory of Open Access Journals (Sweden)

    France Lagroix

    2017-07-01

    Full Text Available One timeless challenge in rock magnetic studies, inclusive of paleomagnetism and environmental magnetism, is decomposing a sample's bulk magnetic behavior into its individual magnetic mineral components. We present a method permitting to decompose the magnetic behavior of a bulk sample experimentally and at low temperature avoiding any ambiguities in data interpretation due to heating-induced alteration. A single instrument is used to measure the temperature dependence of remanent magnetizations and to apply an isothermal demagnetization step at any temperature between 2 and 400 K. The experimental method is validated on synthetic mixtures of magnetite, hematite, goethite as well as on natural loess samples where the contributions of magnetite, goethite, hematite and maghemite are successfully isolated. The experimental protocol can be adapted to target other iron bearing minerals relevant to the rock or sediment under study. One limitation rests on the fact that the method is based on remanent magnetizations. Consequently, a quantitative decomposition of absolute concentration of individual components remains unachievable without assumptions. Nonetheless, semi-quantitative magnetic mineral concentrations were determined on synthetic and natural loess/paleosol samples in order to validate and test the method as a semi-quantitative tool in environmental magnetism studies.

  18. Refrigeration a history

    CERN Document Server

    Gantz, Carroll

    2015-01-01

    For thousands of years, humans coped with heat by harvesting and storing natural ice and devising natural cooling systems that utilized ventilation and evaporation. By the mid 1800s, people began developing huge refrigeration machines to manufacture ice. By the early 1900s, engineers developed electric domestic refrigerators, which by 1927 were affordable convenient household appliances. By then, an increasingly sophisticated public demanded more modern-looking appliances than engineers could produce, and a new breed of designers entered the manufacturing world to provide them. During the Depr

  19. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  20. Enhanced nuclear magnetic resonance in a non-magnetic cubic doublet

    International Nuclear Information System (INIS)

    Veenendaal, E.J.

    1982-01-01

    In this thesis two lanthanide compounds are studied which show enhanced nuclear magnetism at low temperatures: Rb 2 NaHoF 6 and CsNaHoF 6 . Chapter II gives a description of the 4 He-circulating refrigerator, which was built to provide the low temperatures required for the polarization of the enhanced nuclear moments. This type of dilution refrigerator was chosen because of its simple design and large cooling power. Chapter III is devoted to a comparison of the different types of dilution refrigerators. A theoretical discussion is given of their performance, starting from the differential equations, which govern the temperature distribution in the refrigerator. In chapter IV the actual performance of the refrigerator, described in chapter II is discussed. In chapter V a description of the NMR-apparatus, developed for very-low-temperature NMR experiments is given. In chapter VI experimental results on the compound Rb 2 NaHoF 6 are presented. The CEF-ground state of this compound is probably the non-magnetic doublet GAMMA 3 , but at a temperature of 170 K a structural phase transition lowers the crystal symmetry from cubic to tetragonal and the doublet is split into two singlets. In chapter VII specific heat, (enhanced) nuclear magnetic resonance and magnetization measurements on the compound Cs 2 NaHoF 6 are presented which also has a GAMMA 3 -doublet ground state. In zero magnetic field the degeneracy of the doublet is removed at a temperature of 393 mK, where a phase transition is induced by quadrupolar interactions. (Auth.)

  1. Industrial applications of refrigeration. General considerations; Applications industrielles du froid. Generalites

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, Ch. [Ecole Centrale de Lyon, 69 - Ecully (France); Groupement pour la Recherche sur les Echangeurs Thermiques, GRETh (France)

    2001-10-01

    The refrigeration process consists in the lowering of the temperature of a product or of a process below the ambient temperature. Thus, the refrigeration process implies a heat absorption process for the production of coldness. Two ways of coldness production are considered: the mechanical refrigeration using compression or absorption cycle machineries, and the cryogenic refrigeration which requires the use of industrial fluids like liquid nitrogen, helium or CO{sub 2}. This article presents the different functions of refrigeration in industrial processes and the effects of temperature on inert or living matter (influence of temperature on the physical properties, thermodynamic state, and physico-chemical transformations of solids, bodies and substances, influence of temperature on the transformation processes of food products, mechanical refrigeration and mastery of fermentation). (J.S.)

  2. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  3. Superconducting permanent magnets for high-temperature operation

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Muralidhar, M.

    2004-01-01

    Roč. 54, Suppl. D (2004), D441-D444 ISSN 0011-4626. [Czech and Slovak Conference on Magnetism. Košice, 12.07.2004-15.07.2004] Institutional research plan: CEZ:AV0Z1010914 Keywords : superconducting magnets * ternary LRE-123 compounds * mesoscopic defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.292, year: 2004

  4. Selective electrochemical extraction of REEs from NdFeB magnet waste at room temperature

    NARCIS (Netherlands)

    Venkatesan, P.; Vander Hoogerstraete, Tom; Hennebel, Tom; Binnemans, Koen; Sietsma, J.; Yang, Y.

    2018-01-01

    NdFeB magnet waste is one of the important secondary resources from which rare-earth elements (REEs) can be recovered. Herein we present an electrochemical route to selectively extract REEs from the magnet waste at room temperature. First, the magnet waste was partially leached with HCl. The

  5. Tunable Curie temperature around room temperature and magnetocaloric effect in ternary Ce–Fe–B amorphous ribbons

    International Nuclear Information System (INIS)

    Li, Zhu-bai; Zhang, Le-le; Zhang, Xue-feng; Li, Yong-feng; Zhao, Qian; Zhao, Tong-yun; Shen, Bao-gen

    2017-01-01

    Ce 13−x Fe 81+x B 6 ( x   =  0, 0.5, 1, 1.5, and 2) amorphous magnets were prepared by melt-spinning method. These magnets are magnetically soft at low temperature, and undergo a second-order phase transition from ferromagnetic to paramagnetic state near room temperature with a broad temperature span. The phase-transition temperature is tunable by the variation of the Ce/Fe atomic ratio, which is mainly due to the change of the coordination number of Fe atoms in these ternary Ce–Fe–B amorphous magnets. Though the entropy change is low, the refrigeration capacities are in the ranges of 116–150 J kg −1 and 319–420 J kg −1 , respectively, for the magnetic field changes of 0–2 T and 0–5 T, which is comparable with those of conventional magnetic materials for room-temperature refrigeration. Given the low cost of Fe and Ce, Ce–Fe–B amorphous magnets are attractive magnetic refrigerant candidates. (paper)

  6. Practical and efficient magnetic heat pump

    Science.gov (United States)

    Brown, G. V.

    1978-01-01

    Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.

  7. Magnetic domain structure of MnAs thin films as a function of temperature

    International Nuclear Information System (INIS)

    Mizuguchi, Masaki; Manago, Takashi; Akinaga, Hiroyuki; Kuramochi, Hiromi; Okabayashi, Jun

    2003-01-01

    We have investigate magnetic domain structures of MnAs thin films grown on GaAs substrates by a magnetic force microscope. We observed, by an atomic force microscope, rectangular defects along GaAs [110] direction which disperse randomly on the surface of MnAs/GaAs(001). The Curie temperature of MnAs is 45degC, and it is successfully confirmed directly by the variable temperature magnetic force microscope observation. We also investigated magnetic domain structures of MnAs/GaAs(111)B, and no apparent relation was observed between the topographic structure and the magnetic domain structure. (author)

  8. Temperature- and field-induced structural transitions in magnetic colloidal clusters

    Science.gov (United States)

    Hernández-Rojas, J.; Calvo, F.

    2018-02-01

    Magnetic colloidal clusters can form chain, ring, and more compact structures depending on their size. In the present investigation we examine the combined effects of temperature and external magnetic field on these configurations by means of extensive Monte Carlo simulations and a dedicated analysis based on inherent structures. Various thermodynamical, geometric, and magnetic properties are calculated and altogether provide evidence for possibly multiple structural transitions at low external magnetic field. Temperature effects are found to overcome the ordering effect of the external field, the melted stated being associated with low magnetization and a greater compactness. Tentative phase diagrams are proposed for selected sizes.

  9. Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors

    Science.gov (United States)

    Du, B. Y.

    2016-10-01

    Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.

  10. Properties of plasma sheath with ion temperature in magnetic fusion devices

    International Nuclear Information System (INIS)

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  11. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    Science.gov (United States)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  12. Effects of gamma irradiation on the survival of Listeria monocytogenes and on its growth at refrigeration temperature in poultry and red meat

    International Nuclear Information System (INIS)

    Gursel, B.; Gurakan, G.C.

    1997-01-01

    Gamma irradiation sensitivity of a strain of Listeria monocytogenes was determined in trypticase soy broth supplemented with yeast extract (TSB-YE), in a slurry of chicken breast meat and in raw ground beef. D10 values in these different media were 0.364, 0.599, and 0.699 kGy, respectively. This organism appeared most sensitive in TSB-YE, more resistant in minced fresh chicken breast meat, and most resistant in fresh minced beef. It was found that irradiation at 2.5 kGy prior to refrigeration is an efficient way for the preservation of meat products contaminated at 10(3) to 10(4) per gram initial load of L. monocytogenes for about 7 d. However, with this initial load, the injured cells might repair themselves and cause a health hazard during storage at 4 C in the presence of air after 7 d

  13. The maintenance record of the KSTAR helium refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Moon, K. M.; Joo, J. J.; Kim, N. W. [National Fusion Research Institute, Daejeon (Korea, Republic of); and others

    2013-12-15

    Korea Superconducting Tokamak Advanced Research (KSTAR) has a helium refrigeration system (HRS) with the cooling capacity of 9 kW at 4.5 K. Main cold components are composed of 300 tons of superconducting (SC) magnets, main cryostat thermal shields, and SC current feeder system. The HRS comprises six gas storage tanks, a liquid nitrogen tank, the room temperature compression sector, the cold box (C/B), the 1st stage helium distribution box (DB no.1), the PLC base local control system interconnected to central control tower and so on. Between HRS and cold components, there is another distribution box (DB#2) nearby the KSTAR device. The entire KSTAR device was constructed in 2007 and has been operated since 2008. This paper will present the maintenance result of the KSTAR HRS during the campaign and discuss the operation record and maintenance history of the KSTAR HRS.

  14. Relationship between Magnetic Anisotropy below Pseudogap Temperature and Short-Range Antiferromagnetic Order in High-Temperature Cuprate Superconductor

    Science.gov (United States)

    Morinari, Takao

    2018-06-01

    The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., 10.1038/nphys4205" xlink:type="simple">Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.

  15. Helium refrigeration system for BNL colliding beam accelerator

    International Nuclear Information System (INIS)

    Brown, D.P.; Farah, Y.; Gibbs, R.J.; Schlafke, A.P.; Schneider, W.J.; Sondericker, J.H.; Wu, K.C.

    1983-01-01

    A Helium Refrigeration System which will supply the cooling required for the Colliding Beam Accelerator at Brookhaven National Laboratory is under construction. Testing of the compressor system is scheduled for late 1983 and will be followed by refrigerator acceptance tests in 1984. The refrigerator has a design capacity of 24.8 kW at a temperature level near 4K while simultaneously producing 55 kW for heat shield loads at 55K. When completed, the helium refrigerator will be the world's largest. Twenty-five oil-injected screw compressors with an installed total of 23,250 horsepower will supply the gas required. One of the unique features of the cycle is the application of three centrifugal compressors used at liquid helium temperature to produce the low temperatures (2.5K) and high flow rates (4154 g/s) required for this service

  16. Helium dilution refrigerator

    International Nuclear Information System (INIS)

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  17. NdFeB magnets with zero temperature coefficient of induction

    International Nuclear Information System (INIS)

    Ma, B.M.; Narasimhan, K.S.V.L.; Hurt, J.C.

    1986-01-01

    Temperature compensation for the induction of NdFeB type magnets has been investigated. A computer assisted alloy selection method was adopted to identify composition of zero temperature coefficient of induction over -50 to 200 0 C. Selected alloys were processed into magnet by the conventional powder metallurgy method. The experimental temperature coefficient on the sintered magnet correlated with the prediction satisfactory. Holmium is an essential ingredient required for temperature compensation of NdFeB magnets. A magnet, (Nd/sub 0.23/Ho/sub 0.64/Dy/sub 0.13/)/sub 15/Fe/sub 79/B/sub 6/ with B/sub r/ of 7,700 Gauss, H/sub c/ of 7,700 Oe, H/sub ci/ of 20,600 Oe, Bh/sub max/ of 14.8 MGOe and temperature coefficient of -0.029% per 0 C over -50 to +150 was obtained

  18. Low-temperature magnetism of alabandite: Crucial role of surface oxidation

    Czech Academy of Sciences Publication Activity Database

    Čuda, J.; Kohout, Tomáš; Filip, J.; Tuček, J.; Kosterov, A.; Haloda, J.; Skála, Roman; Santala, E.; Medřík, I.; Zbořil, R.

    2013-01-01

    Roč. 98, 8/9 (2013), s. 1550-1556 ISSN 0003-004X R&D Projects: GA AV ČR KJB300130903 Institutional support: RVO:67985831 Keywords : alabandite (MnS) * hausmannite (Mn3O4) * magnetism * troilite (FeS) * crystallization * experimental mineralogy * ferromanganese deposit * hysteresis * low temperature * magnetic anomaly * magnetic field * manganese deposit * oxidation * remanent magnetization * stoichiometry * sulfide Subject RIV: DD - Geochemistry Impact factor: 2.059, year: 2013

  19. The supermarket of the future saves energy. Shop links food refrigeration to room temperature control, and supplements artificial lighting with daylight; Supermarkt der Zukunft spart Energie. Laden koppelt Lebensmittelkuehlung mit Raumtemperierung und ergaenzt die Beleuchtung durch Tageslicht

    Energy Technology Data Exchange (ETDEWEB)

    Gintars, Dorothee

    2013-07-01

    The energy savings division at the discount store Aldi Sued in Rastatt should in the future only need two-thirds of the primary energy usually required for refrigeration, heating, ventilation, air conditioning and lighting. A compressor pack with carbon dioxide as a coolant which has been developed in-house, and which is coupled to borehole heat exchangers, not only cools food, but also provides temperature control for indoor areas. The energy concept, which has been developed at the ISE Fraunhofer Institute for Solar Energy Systems, is rounded off by a well insulated building envelope, the use of daylight and efficient ventilation. In the third year of operation, the amount of energy consumed is coming close to the ambitious target levels. (orig.)

  20. New hybrid magnet system for structure research at highest magnetic fields and temperatures in the millikelvin region

    International Nuclear Information System (INIS)

    Smeibidl, Peter; Ehmler, Hartmut; Tennant, Alan; Bird, Mark

    2012-01-01

    The Helmholtz Centre Berlin (HZB) is a user facility for the study of structure and dynamics with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. At HZB a dedicated instrument for neutron scattering at extreme magnetic fields and low temperatures is under construction, the Extreme Environment Diffractometer ExED. It is projected according to the time-of-flight principle for elastic and inelastic neutron scattering and for the special geometric constraints of analysing samples in a high field magnet. The new hybrid magnet will not only allow for novel experiments, it will be at the forefront of development in magnet technology itself. With a set of superconducting and resistive coils a maximum field above 30 T will be possible. To compromise between the needs of the magnet design for highest fields and the concept of the neutron instrument, the magnetic field will be generated by means of a coned, resistive inner solenoid and a superconducting outer solenoid with horizontal field orientation. To allow for experiments down to Millikelvin Temperatures the installation of a 3 He or a dilution cryostat with a closed cycle precooling stage is foreseen.

  1. Temperature dependence of magnetopolarons in a parabolic quantum dot in arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-10-01

    The temperature and the size dependence of a magnetopolaron in a harmonic quantum dot with an external magnetic field normal to the plane of the quantum dot are investigated theoretically. For a weak magnetic field (ω c LO ), both the cyclotron mass m * c+ and the cyclotron mass m * c- are the increasing functions of temperature, whereas for strong magnetic fields (ω c > ω LO ), the cyclotron mass m * c+ is the decreasing function of temperature, while the cyclotron mass m * c- is the increasing function of temperature. (author). 27 refs, 2 figs

  2. Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays

    International Nuclear Information System (INIS)

    Kazakova, Olga; Erts, Donats; Crowley, Timothy A.; Kulkarni, Jaideep S.; Holmes, Justin D.

    2005-01-01

    In this paper, we investigate the magnetization reversal of cobalt and magnetite nanowires, 4 nm in diameter, synthesized within the pores of mesoporous silica thin films. A SQUID magnetometer was used to study the magnetic properties of the nanowire arrays over a broad temperature interval, T=1.8-300 K. The magnetization reversal process was found to be strongly temperature dependent. While a coherent rotation may occur at room temperature, a process involving the formation of domain structures takes place as the temperature decreases down to 1.8 K

  3. Superconducting magnets for HERA

    International Nuclear Information System (INIS)

    Wolff, S.

    1987-01-01

    The Hadron-Electron-Ring Accelerator (HERA) presently under construction at DESY, Hamburg, consists of an electron storage ring of 30 GeV and a proton storage ring of 820 GeV. Superconducting magnets are used for the proton ring. There are 416 superconducting bending magnets of 4.698 T central field and 8.824 m magnetic length, 224 superconducting quadrupoles of 91.2 T/m central gradient and many superconducting correction dipoles, quadrupoles and sextupoles. The main dipoles and quadrupoles consist of two-layer coils of 75 mm inner diameter clammed with aluminium (for the dipoles) or stainless steel laminations (for the quadrupoles). The collared coils are surrounded by a laminated cold iron yoke and supported inside a low loss cryostat. The protection system uses cold diodes to bypass the current around a quenching magnet. The magnets are cooled with one phase helium supplied by a 3 block central refrigeration system of 20 kW refrigeration power at 4.3 K. Two helium is returned through the magnets in good thermal contact with the one phase helium in the dipoles for temperature control. This paper describes the magnet system and gives the results obtained for prototype magnets

  4. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition

    International Nuclear Information System (INIS)

    Levin, E.M.; Gschneidner, K.A.; Pecharsky, V.K.

    2001-01-01

    The temperature (from 5 to 300 K) and DC magnetic field (from 0 to 90 kOe) dependencies of the DC magnetization and magnetic susceptibility, and the temperature (from 5 to 350 K) dependency of the AC magnetic susceptibility of Gd 5 (Si 1.5 Ge 2.5 ) have been studied. The temperature and/or magnetic field induced magnetic phase transition in Gd 5 (Si 1.5 Ge 2.5 ) is a first order ferromagnet-paramagnet transition. The temperature of the magnetic transition in low AC magnetic field is 206 and 217 K for cooling and heating, respectively. The DC magnetic field increases the transition temperature by ∼0.36 K/kOe indicating that the paramagnetic phase can be reversibly transformed into the ferromagnetic phase. When the magnetic field is removed, the ferromagnetic phase transforms into the paramagnetic phase showing a large remanence-free hysteresis. The magnetic phase diagram based on the isothermal magnetic field dependence of the DC magnetization at various temperatures for Gd 5 (Si 1.5 Ge 2.5 ) is proposed. The magnetic field dependence of the magnetization in the vicinity of the first order phase transition shows evidence for the formation of a magnetically heterogeneous system in the volume of Gd 5 (Si 1.5 Ge 2.5 ) specimen where the magnetically ordered (ferromagnetic) and disordered (paramagnetic) phases co-exist

  5. Radiation Shielding Utilizing A High Temperature Superconducting Magnet

    Data.gov (United States)

    National Aeronautics and Space Administration — Project objective is to evaluate human radiation protection and architecture utilizing existing superconducting magnet technology while attempting to significantly...

  6. Temperature-dependent magnetic properties of individual glass spherules, Apollo 11, 12, and 14 lunar samples.

    Science.gov (United States)

    Thorpe, A. N.; Sullivan, S.; Alexander, C. C.; Senftle, F. E.; Dwornik, E. J.

    1972-01-01

    Magnetic susceptibility of 11 glass spherules from the Apollo 14 lunar fines have been measured from room temperature to 4 K. Data taken at room temperature, 77 K, and 4.2 K, show that the soft saturation magnetization was temperature independent. In the temperature range 300 to 77 K the temperature-dependent component of the magnetic susceptibility obeys the Curie law. Susceptibility measurements on these same specimens and in addition 14 similar spherules from the Apollo 11 and 12 mission show a Curie-Weiss relation at temperatures less than 77 K with a Weiss temperature of 3-7 degrees in contrast to 2-3 degrees found for tektites and synthetic glasses of tektite composition. A proposed model and a theoretical expression closely predict the variation of the susceptibility of the glass spherules with temperature.

  7. Temperature dependence of shot noise in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Niu, Jiasen; Liu, Liang; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.; Wei, Jian

    2018-03-01

    Shot noise reveals spin dependent transport properties in a magnetic tunnel junction. We report measurement of shot noise in CoFeB/MgO/CoFeB/MgO/CoFeB double barrier magnetic tunnel junctions, which shows a strong temperature dependence. The Fano factor used to characterize shot noise increases with decreasing temperature. A sequential tunneling model can be used to account for these results, in which a larger Fano factor results from larger spin relaxation length at lower temperatures.

  8. Magnetic ordering at low temperatures in some random superconducting and insulating compounds

    International Nuclear Information System (INIS)

    Hueser, D.

    1985-01-01

    This thesis presents the results of some investigations on the magnetic ordering phenomena in some random superconducting and insulating materials. The results are described of an investigation of the coexistence of superconductivity and random magnetic freezing in (Th,Nd)Ru 2 . On the basis of various measurements as function of temperature and external magnetic field the author found that spin glass-like freezing can occur far below the superconductivity and even that a sample may re-enter the superconducting state below a freezing temperature. Associated with the isothermal remanent magnetization of a random magnetic material he observed strong anomalies in the critical field versus temperature curves. Also a magnetic field memory effect has been found. (Auth.)

  9. Combination closed-cycle refrigerator/liquid-He4 cryostat for e- damage of bulk samples

    International Nuclear Information System (INIS)

    Johnson, E.C.

    1987-01-01

    A closed-cycle refrigerator/cryostat system for use in ultrasonic studies of electron irradiation damaged bulk specimens is described. The closed-cycle refrigerator provides a convenient means for long-term (several days) sample irradiation at low temperatures. A neon filled ''thermal diode'' is employed to permit efficient cooling, via liquid helium, of the sample below the base temperature of the refrigerator

  10. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle

    International Nuclear Information System (INIS)

    Selbas, Resat; Kizilkan, Onder; Sencan, Arzu

    2006-01-01

    An exergy-based thermoeconomic optimization application is applied to a subcooled and superheated vapor compression refrigeration system. The advantage of using the exergy method of thermoeconomic optimization is that various elements of the system-i.e., condenser, evaporator, subcooling and superheating heat exchangers-can be optimized on their own. The application consists of determining the optimum heat exchanger areas with the corresponding optimum subcooling and superheating temperatures. A cost function is specified for the optimum conditions. All calculations are made for three refrigerants: R22, R134a, and R407c. Thermodynamic properties of refrigerants are formulated using the Artificial Neural Network methodology

  11. An experimental study of magnetic-field and temperature dependence on magnetic fluid’s heating power

    International Nuclear Information System (INIS)

    Beković, Miloš; Trlep, Mladen; Jesenik, Marko; Goričan, Viktor; Hamler, Anton

    2013-01-01

    This paper firstly presents a measurement system for determining the magnetic properties of magnetic fluids, based on three pickup coils. The accuracy of the system was tested on known samples and then used for the characterization of magnetic losses (heating power P) on the magnetic fluid sample using two different methods. The first method is based on determining the hysteresis loop area and the second on determining the complex susceptibility; and showed that both methods are equivalent. The aim of this paper was to identify the heating power of the liquid at a known value for the magnetic field, and the arbitrary temperature. Thus, we explored the actual reduction in the heating power due to the heating of the sample, which cannot be achieved without the temperature regulated heat bath using established calorimetric methods. -- Highlights: ► A new measurement system was tested with numerous samples, and results were promising. ► Magnetic fluid heating power was determined using a system of J-compensated coil. ► Complex susceptibility method results equal losses as hysteresis loops approach. ► Temperature dependent heating power was explored without the heath-bath . ► For larger magnetic fields a linear H dependence of heating power is revealed

  12. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    Science.gov (United States)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  13. Flow-synchronous field motion refrigeration

    Science.gov (United States)

    Hassen, Charles N.

    2017-08-22

    An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.

  14. Exchange interactions, spin waves, and transition temperatures in itinerant magnets

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav; Bruno, P.

    2003-01-01

    Roč. 1, č. 59 (2003), s. 112-147 R&D Projects: GA ČR GA106/02/0943; GA AV ČR IAA1010203 Institutional research plan: CEZ:AV0Z2041904 Keywords : exchange interactions * itinerant magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism http://psi-k.dl.ac.uk/psi-k/newsletters.html

  15. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy.

    Science.gov (United States)

    Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai

    2011-10-01

    The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.

  16. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Lee

    2017-06-01

    Full Text Available The interfacial perpendicular magnetic anisotropy in W/CoFeB (1.2 ∼ 3 nm/MgO thin film structures is strongly dependent on temperature, and is significantly reduced at high temperature. The interfacial magnetic anisotropy is generally proportional to the third power of magnetization, but an additional factor due to thermal expansion is required to explain the temperature dependence of the magnetic anisotropy of ultrathin CoFeB films. The reduction of the magnetic anisotropy is more prominent for the thinner films; as the temperature increases from 300 K to 400 K, the anisotropy is reduced ∼50% for the 1.2-nm-thick CoFeB, whereas the anisotropy is reduced ∼30% for the 1.7-nm-thick CoFeB. Such a substantial reduction of magnetic anisotropy at high temperature is problematic for data retention when incorporating W/CoFeB/MgO thin film structures into magneto-resistive random access memory devices. Alternative magnetic materials and structures are required to maintain large magnetic anisotropy at elevated temperatures.

  17. Effects of the thermal and magnetic paths on first order martensite transition of disordered Ni45Mn44Sn9In2 Heusler alloy exhibiting a giant magnetocaloric effect and magnetoresistance near room temperature

    Science.gov (United States)

    Chabri, T.; Ghosh, A.; Nair, Sunil; Awasthi, A. M.; Venimadhav, A.; Nath, T. K.

    2018-05-01

    The existence of a first order martensite transition in off-stoichiometric Ni45Mn44Sn9In2 ferromagnetic shape memory Heusler alloy has been clearly observed by thermal, magnetic, and magneto-transport measurements. Field and thermal path dependence of the change in large magnetic entropy and negative magnetoresistance are observed, which originate due to the sharp change in magnetization driven by metamagnetic transition from the weakly magnetic martensite phase to the ferromagnetic austenite phase in the vicinity of the martensite transition. The noticeable shift in the martensite transition with the application of a magnetic field is the most significant feature of the present study. This shift is due to the interplay of the austenite and martensite phase fraction in the alloy. The different aspects of the first order martensite transition, e.g. broadening of the martensite transition and the field induced arrest of the austenite phase are mainly related to the dynamics of coexisting phases in the vicinity of the martensite transition. The alloy also shows a second order ferromagnetic  →  paramagnetic transition near the Curie temperature of the austenite phase. A noticeably large change in magnetic entropy (ΔS M   =  24 J kg‑1 K‑1 at 298 K) and magnetoresistance (=  ‑33% at 295 K) has been observed for the change in 5 and 8 T magnetic fields, respectively. The change in adiabatic temperature for the change in a magnetic field of 5 T is found to be  ‑3.8 K at 299 K. The low cost of the ingredients and the large change in magnetic entropy very near to the room temperature makes Ni45Mn44Sn9In2 alloy a promising magnetic refrigerant for real technological application.

  18. Two-stage nuclear refrigeration with enhanced nuclear moments

    International Nuclear Information System (INIS)

    Hunik, R.

    1979-01-01

    Experiments are described in which an enhanced nuclear system is used as a precoolant for a nuclear demagnetisation stage. The results show the promising advantages of such a system in those circumstances for which a large cooling power is required at extremely low temperatures. A theoretical review of nuclear enhancement at the microscopic level and its macroscopic thermodynamical consequences is given. The experimental equipment for the implementation of the nuclear enhanced refrigeration method is described and the experiments on two-stage nuclear demagnetisation are discussed. With the nuclear enhanced system PrCu 6 the author could precool a nuclear stage of indium in a magnetic field of 6 T down to temperatures below 10 mK; this resulted in temperature below 1 mK after demagnetisation of the indium. It is demonstrated that the interaction energy between the nuclear moments in an enhanced nuclear system can exceed the nuclear dipolar interaction. Several experiments are described on pulsed nuclear magnetic resonance, as utilised for thermometry purposes. It is shown that platinum NMR-thermometry gives very satisfactory results around 1 mK. The results of experiments on nuclear orientation of radioactive nuclei, e.g. the brute force polarisation of 95 NbPt and 60 CoCu, are presented, some of which are of major importance for the thermometry in the milli-Kelvin region. (Auth.)

  19. The influence of the magnetic field on the performance of an active magnetic regenerator (AMR)

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Engelbrecht, Kurt

    2011-01-01

    The influence of the time variation of the magnetic field, termed the magnetic field profile, on the performance of a magnetocaloric refrigeration device using the active magnetic regeneration (AMR) cycle is studied for a number of process parameters for both a parallel plate and packed bed...... temperature span and the maximum cooling capacity of 20–40% for both parallel plate and packed bed regenerators. The maximum cooling capacity is shown to depend very weakly on the ramp rate of the magnetic field. Reducing the temporal width of the high field portion of the magnetic field profile by 10% leads...

  20. Refrigeration processes a practical handbook on the physical properties of refrigerants and their applications

    CERN Document Server

    Meacock, H M

    1979-01-01

    A comprehensive applications-oriented treatment of the subject in two parts. The first part forms a useful introduction to basic principles dealing with the definitions of the physical properties and outlines the method of their calculation. The second part is devoted to calculated data on a range of refrigerants by means of extensive tables and diagrams. The treatment takes the form of a data sheet, one for each of about thirty refrigerants; this data sheet gives the essential information from which close approximations of pressure, temperature, volume and enthalpy can be made for any predict

  1. Characterization of the magnetic properties of NdFeB thick films exposed to elevated temperatures

    Science.gov (United States)

    Fujiwara, Ryogen; Devillers, Thibaut; Givord, Dominique; Dempsey, Nora M.

    2018-05-01

    Hard magnetic films used in magnetic micro-systems may be exposed to elevated temperatures during film and system fabrication and also during use of the micro-system. In this work, we studied the influence of temperature on the magnetic properties of 10 μm thick out-of-plane textured NdFeB films fabricated by high rate triode sputtering. Out-of-plane hysteresis loops were measured in the range 300K - 650K to establish the temperature dependence of coercivity, magnetization at 7 T and remanent magnetization. Thermal demagnetization was measured and magnetization losses were recorded from 350K in films heated under zero or low (-0.1 T) external field and from 325 K for films heated under an external field of -0.5 T. The effect of thermal cycling under zero field on the remanent magnetization was also studied and it was found that cycling between room temperature and 323 K did not lead to any significant loss in remanence at room temperature, while a 4% drop is recorded when the sample is cycled between RT and 343K. Measurement of hysteresis loops at room temperature following exposure to elevated temperatures reveals that while remanent magnetisation is practically recovered in all cases, irreversible losses in coercivity occur (6.7 % following heating to 650K, and 1.3 % following heating to 343K). The relevance of these results is discussed in terms of system fabrication and use.

  2. Simultaneous measurement of magnetic field and temperature based on an etched TCFMI cascaded with an FBG

    Science.gov (United States)

    Yan, Guofeng; Zhang, Liang; He, Sailing

    2016-04-01

    In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic field and temperature responses of the packaged TCFMI were first investigated, which showed that the magnetic field sensitivity could be highly enhanced by decreasing of the TCF diameter and the temperature-cross sensitivities were up to 3-7 Oe/°C at 1550 nm. Then, the theoretical analysis and experimental demonstration of the proposed dual-parameter sensing scheme were conducted. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/°C, respectively, while the Bragg wavelength of the FBG is insensitive to magnetic field and has a temperature sensitivity of 13.23 pm/°C. Thus by using the sensing matrix method, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. In the on-off time response test, the fabricated sensor exhibited high repeatability and short response time of ∼19.4 s. Meanwhile the reflective sensing probe type is more compact and practical for applications in hard-to-reach conditions.

  3. PIPER Continuous Adiabatic Demagnetization Refrigerator

    Science.gov (United States)

    Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.

    2017-01-01

    We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.

  4. Design of refrigeration system using refrigerant R134a for macro compartment

    Science.gov (United States)

    Rani, M. F. H.; Razlan, Z. M.; Shahriman, A. B.; Yong, C. K.; Harun, A.; Hashim, M. S. M.; Faizi, M. K.; Ibrahim, I.; Kamarrudin, N. S.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    The main objective of this study is to analyse and design an optimum cooling system for macro compartment. Current product of the refrigerator is not specified for single function and not compact in size. Hence, a refrigeration system using refrigerant R134a is aimed to provide instant cooling in a macro compartment with sizing about 150 × 150 × 250 mm. The macro compartment is purposely designed to fit a bottle or drink can, which is then cooled to a desired drinking temperature of about 8°C within a period of 1 minute. The study is not only concerned with analysing of heat load of the macro compartment containing drink can, but also focused on determining suitable heat exchanger volume for both evaporator and condenser, calculating compressor displacement value and computing suitable resistance value of the expansion valve. Method of optimization is used to obtain the best solution of the problem. Mollier diagram is necessary in the process of developing the refrigeration system. Selection of blower is made properly to allow air circulation and to increase the flow rate for higher heat transfer rate. Property data are taken precisely from thermodynamic property tables. As the main four components, namely condenser, compressor, evaporator and expansion valve are fully developed, the refrigeration system is complete.

  5. Temperature dependence of magnetic anisotropies in ultrathin Fe film on vicinal Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Sheng; He, Wei; Ye, Jun; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Zhao-Hua, E-mail: zhcheng@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-01

    The temperature dependence of magnetic anisotropy of ultrathin Fe film with different thickness epitaxially grown on vicinal Si(111) substrate has been quantitatively investigated using the anisotropic magnetoresistance(AMR) measurements. Due to the effect of the vicinal substrate, the magnetic anisotropy is the superposition of a four-fold, a two-fold and a weakly six-fold contribution. It is found that the temperature dependence of the first-order magnetocrystalline anisotropies coefficient follows power laws of the reduced magnetization m(T)(=M(T)/M(0)) being consistent with the Callen and Callen's theory. However the temperature dependence of uniaxial magnetic anisotropy (UMA) shows novel behavior that decreases roughly as a function of temperature with different power law for samples with different thickness. We also found that the six-fold magnetocrystalline anisotropy is almost invariable over a wide temperature range. Possible mechanisms leading to the different exponents are discussed.

  6. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  7. Flammability Indices for Refrigerants

    Science.gov (United States)

    Kataoka, Osami

    This paper introduces a new index to classify flammable refrigerants. A question on flammability indices that ASHRAE employs arose from combustion test results of R152a and ammonia. Conventional methods of not only ASHRAE but also ISO and Japanese High-pressure gas safety law to classify the flammability of refrigerants are evaluated to show why these methods conflict with the test results. The key finding of this paper is that the ratio of stoichiometric concentration to LFL concentration (R factor) represents the test results most precisely. In addition, it has excellent correlation with other flammability parameters such as flame speed and pressure rise coefficient. Classification according to this index gives reasonable flammability order of substances including ammonia, R152a and carbon monoxide. Theoretical background why this index gives good correlation is also discussed as well as the insufficient part of this method.

  8. Energy savings with the effect of magnetic field using R290/600a mixture as substitute for CFC12 and HFC134a

    Directory of Open Access Journals (Sweden)

    Mani Kolandavel

    2008-01-01

    Full Text Available This paper presents an experimental study on the replacement of CFC12 and HFC134a by the new R290/R600a refrigerant mixture as drop-in replacement refrigerant with and without the effect of magnetic field. Without any modification to the system components drop-in experimental tests were performed on a vapour compression refrigeration system with a reciprocating compressor, which was originally designed to operate with CFC12.The test results with no magnets showed that the refrigerant R290/R600a had 19.9-50.1% higher refrigerating capacity than R12 and 28.6-87.2% than R134a. The mixture R290/R600a consumed 6.8- -17.4% more energy than R12. The coefficient of performance of R290/R600a mixture increases from 3.9-25.1% than R12 at lower evaporating temperatures and 11.8-17.6% at higher evaporating temperatures. The effect of magnetic field force reduced the compressor energy consumption by 1.5-2.5% than with no magnets. The coefficient of performance of the system was higher in the range 1.5-2.4% with the effect of magnetic field force. The R290/600a (68/32 by wt.% mixture can be considered as an excellent alternative refrigerant for CFC12 and HFC134a systems.

  9. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    Science.gov (United States)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  10. R-32 As An Alternative To Ammonia In Industrial Refrigeration

    OpenAIRE

    Pearson, Andy

    2016-01-01

    Ammonia is recognised to be the most commonly used refrigerant in industrial systems however it is limited in some applications by its toxicity. Â R-32 has similar flammability characteristics and a similar pressure-temperature relationship, and through its use as a blend component it has become widely used and readily available. Â This paper compares and contrasts ammonia and R-32 with specific reference to industrial applications. Â The analysis includes comparison of refrigerating effect, ...

  11. High-speed magnetization reversal near the compensation temperature of amorphous GdTbFe

    International Nuclear Information System (INIS)

    Aeschlimann, M.; Vaterlaus, A.; Lutz, M.; Stampanoni, M.; Meier, F.; Siegmann, H.C.; Klahn, S.; Hansen, P.

    1991-01-01

    Using spin-polarized photoemission with a pulsed laser as light source, it is shown that the time for a thermally induced magnetization reversal depends critically on the temperature of the sample. For amorphous GdTbFe the time is shorter (longer) than the duration of the 16 ns laser pulses if the initial temperature is below (above) the compensation temperature

  12. Elevated temperature study of Nd-Fe-B--based magnets with cobalt and dysprosium additions

    International Nuclear Information System (INIS)

    Gauder, D.R.; Froning, M.H.; White, R.J.; Ray, A.E.

    1988-01-01

    This paper discusses the elevated temperature performance of Nd-Fe-B magnets containing 0--15 wt. % cobalt substitutions for iron and 0--10 wt. % dysprosium substitutions for neodymium. Test samples were prepared using conventional powder metallurgy techniques. Elevated temperature hysteresis loop and open-circuit measurements were performed on the samples to investigate irreversible losses and long term aging losses at 150 0 C. Magnets with high amounts of both cobalt and dysprosium exhibited lower losses of coercivity and magnetization. Dysprosium had more influence on the elevated temperature performance of the material than did cobalt

  13. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong

    2013-11-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  14. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2013-01-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  15. A Definition of the Magnetic Transition Temperature Using Valence Bond Theory.

    Science.gov (United States)

    Jornet-Somoza, Joaquim; Deumal, Mercè; Borge, Juan; Robb, Michael A

    2018-03-01

    Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T C for magnetic systems is associated with a maximum in the energy-based heat capacity C p (T). Here a more broadly applicable definition of the magnetic transition temperature T C is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity C s (T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity C s (T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity C p (T). Differences between C s (T) and C p (T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with C s (T) and C p (T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity C s (T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.

  16. Stored energy in fusion magnet materials irradiated at low temperatures

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Kerchner, H.R.; Klabunde, C.E.; Coltman, R.R.

    1989-08-01

    During the power cycle of a fusion reactor, the radiation reaching the superconducting magnet system will produce an accumulation of immobile defects in the magnet materials. During a subsequent warm-up cycle of the magnet system, the defects will become mobile and interact to produce new defect configurations as well as some mutual defect annihilations which generate heat-the release of stored energy. This report presents a brief qualitative discussion of the mechanisms for the production and release of stored energy in irradiated materials, a theoretical analysis of the thermal response of irradiated materials, theoretical analysis of the thermal response of irradiated materials during warm-up, and a discussion of the possible impact of stored energy release on fusion magnet operation 20 refs

  17. Parametric optimization designs of a thermoelectric refrigeration device existing Zeeman and Coulomb effects

    International Nuclear Information System (INIS)

    Zhang, Guangping; Lin, Bihong; Wu, Guocan

    2017-01-01

    Highlights: • A new model of the quantum dot refrigeration devices is established. • The effects of the Zeeman and Coulomb effects on performance are discussed. • Maximum cooling rate and coefficient of performance are calculated. • Upper boundary of the optimal region of the device is discussed. • Optimum choice criteria of some important parameters are provided. - Abstract: A general class of quantum dot refrigeration devices, which is consisting of a single orbital interacting quantum dot and two metal leads with different temperatures and chemical potentials, is established. In the model, not only the Zeeman splitting of energy levels resulting from an external magnetic field but also the effect of a linear fade of the Coulomb energy caused by the splitting are taken into account simultaneously. Based on the quantum master equation, the occupation probabilities of quantum states for the electron are determined under the steady state condition. The general expressions of the particle fluxes, heat flows, power input, cooling rate and the coefficient of performance (COP) are derived. The influences of the energy level and external magnetic field on the performance of the refrigerator are discussed in detail. By applying numerical simulations, three-dimensional diagrams of the cooling rate and COP varying with the magnetic field and energy level are given. The maximum COP and the optimal values of corresponding parameters as well as the maximum cooling rate are obtained. The optimal regions of the magnetic field and the energy level are determined. The optimized scopes of the COP and cooling rate are provided. Some important conclusions in the previous literatures can be directly deduced from the current model under the different extreme conditions.

  18. A horizontal dilution refrigerator for polarized target

    International Nuclear Information System (INIS)

    Isagawa, S.; Ishimoto, S.; Masaike, A.; Morimoto, K.

    1978-01-01

    A horizontal dilution refrigerator was constructed with a view to the spin frozen target and the deuteron polarized target. High cooling power at high temperature such as 3.7 mW at 400 mK serves for overcoming a heat load of microwave to polarize the nuclear spins in the target material. The cooling power at 50 mK was 50 μW, which is sufficient to hold the high nuclear polarization for long time. The lowest temperature reached was 26 mK. The refrigerator has rather simple heat exchangers, a long stainless steel double tube heat exchanger and two coaxial type heat exchangers with sintered copper. The mixing chamber is made of polytetrafluoroethylene (TFE) and demountable so that the target material can be easily put into it. (Auth.)

  19. The estimation of energy efficiency for hybrid refrigeration system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Kozioł, Joachim

    2013-01-01

    Highlights: ► We present the experimental setup and the model of the hybrid cooling system. ► We examine impact of the operating parameters of the hybrid cooling system on the energy efficiency indicators. ► A comparison of the final and the primary energy use for a combination of the cooling systems is carried out. ► We explain the relationship between the COP and PER values for the analysed cooling systems. -- Abstract: The concept of the air blast-cryogenic freezing method (ABCF) is based on an innovative hybrid refrigeration system with one common cooling space. The hybrid cooling system consists of a vapor compression refrigeration system and a cryogenic refrigeration system. The prototype experimental setup for this method on the laboratory scale is discussed. The application of the results of experimental investigations and the theoretical–empirical model makes it possible to calculate the cooling capacity as well as the final and primary energy use in the hybrid system. The energetic analysis has been carried out for the operating modes of the refrigerating systems for the required temperatures inside the cooling chamber of −5 °C, −10 °C and −15 °C. For the estimation of the energy efficiency the coefficient of performance COP and the primary energy ratio PER for the hybrid refrigeration system are proposed. A comparison of these coefficients for the vapor compression refrigeration and the cryogenic refrigeration system has also been presented.

  20. Theoretical research on the performance of the transcritical ejector refrigeration cycle with various refrigerants

    International Nuclear Information System (INIS)

    Wang, F.; Li, D.Y.; Zhou, Y.

    2015-01-01

    The transcritical ejector refrigeration cycle (TERC), which has shown an attractive alternative to the ejector refrigeration systems, can better match large variable-temperature heat sources and yields higher COP. In this paper, in order to find a proper working fluid for the TERC, the performance of the TERC with CO_2 and various working fluids with low critical temperatures including R1270, R32, R143a, R125 and R115 are studied and compared. A thermodynamic model for ejector is set up to simulate the ejector by introducing the real properties of refrigerants. The results indicate that R1270 has the highest COP at the same heat source condition and medium working pressures, and is one of environment-friendly working fluids, hence R1270 is the most proper one. The COP of the transcritical cycle is higher than that of the subcritical cycle, and The effective performance coefficient COP_m of the transcritical cycle is also better. When the heater outlet temperature is increased, its system COP_m improves, but its system COP almost does not change. - Highlights: • A thermodynamic model is used to simulate the ejector with real properties. • The performance of the TERC with various refrigerants is compared. • The environment-friendly working fluid of R1270 shows the most proper one. • The COP of the transcritical cycle is higher than that of the subcritical cycle.