WorldWideScience

Sample records for temperature ltt welding

  1. Transformation behaviour and residual stresses in welding of new LTT filler materials; Umwandlungsverhalten und Eigenspannungen beim Schweissen neuartiger LTT-Zusatzwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Kromm, Arne

    2011-07-06

    It has long been recognized that phase transformation plays a prominent part in the evolution of welding residual stresses in high-strength steel. But thus far, no approaches have been available to practically utilize this effect for welding residual stress control. Innovative Low Transformation Temperature (LTT) alloys featuring a characteristic chemical composition open up the possibility for joining high strength steels on their own strength level. Furthermore, martensitic phase transformation is supposed to permit deliberate adjustment of the welding residual stresses. Even though numerous investigations can be found in the literature on this issue, they provide only little insight into the interaction between phase transformation and resulting welding residual stresses. In order to clarify the problem presented, a matrix of LTT alloys was defined based on evaluated literature. The alloys were characterized with respect to their microstructure, mechanical properties and transformation temperature. Furthermore, it was possible within the scope of this study to realize in-situ experiments during welding using energy-dispersive diffraction methods. The new design and implementation of a welding setup specifically for use at synchrotron beamlines enabled the in-situ diffraction analysis of transformation processes. In the course of these experiments it could be managed to determine the transformation temperatures prevailing in the LTT weld metal. In addition the transformation kinetics of these alloys could be analyzed. The effects of the transformation behavior were analyzed based on the residual stress distributions at the surface of varying specimen geometries. The results illustrate on the one hand that the desired residual stress control by using LTT alloys is actually feasible. This is particularly found in cases with largely free shrinkage of the weld. With increasing shrinkage restraint, however, a shift of the residual stress level into the area of tension

  2. In-situ-phase analysis using synchrotron radiation of low transformation temperature (LTT welding material Análise "In-Situ" de fases com radiação sincrótona de materiais de soldagem de baixa temperatura de transformação

    Directory of Open Access Journals (Sweden)

    Arne Kromm

    2009-03-01

    Full Text Available Cold cracking resistance is a relevant evaluation criterion for welded joints and affected by residual stresses which result from the welding procedure. Compressive residual stresses can thereby have a positive influence on preventing cracking. A unique possibility of generating compressive residual stresses already during the welding procedure is offered by the so-called Low Transformation Temperature (LTT filler wires. Compared to conventional wires, these materials show decreased phase transformation temperatures which can work against the cooling-specific contraction. In consequence, distinct compressive residual stresses can be observed within the weld and adjacent areas. The strength of these fillers makes them potentially applicable to high-strength steel welding. Investigations were carried out to determine the phase transformation behaviour of different LTT-filler materials. Transformation temperatures were identified using Single Sensor Differential Thermal Analysis (SS-DTA. Additionally Synchrotron radiation was used to measure the transformation kinetics of all involved crystalline phases during heating and cooling of a simulated weld thermal cycle.Fissuração a frio é um critério de avaliação relevante para juntas soldadas, sendo afetada pelas tensões residuais resultantes da soldagem. Neste contexto, tensões residuais de compressão podem ter uma influência positiva no sentido de prevenir a fissuração. Uma possibilidade única de já gerar tensões residuais de compressão já durante a execução da soldagem é oferecida pelos materiais de adição conhecidos como de "baixa temperatura de transformação" (BTT. Comparados com metais de adição convencionais, esses apresentam uma temperatura de transformação de fase inferior a qual pode contrapor a contração térmica do material durante o seu resfriamento. Como resultado, claras tensões residuais compressivas podem ser observadas na soldas e áreas adjacentes. A

  3. Chemically reacting fluid flow induced by an exponentially accelerated infinite vertical plate in a magnetic field and variable temperature via LTT and FEM

    Directory of Open Access Journals (Sweden)

    Srinivasa Raju R.

    2016-01-01

    Full Text Available In this research paper, we found both numerical and analytical solutions for the effect of chemical reaction on unsteady, incompressible, viscous fluid flow past an exponentially accelerated vertical plate with heat absorption and variable temperature in a magnetic field. The flow problem is governed by a system of coupled non-linear partial differential equations with suitable boundary conditions. We have solved the governing equations by an efficient, accurate, powerful finite element method (FEM as well as Laplace transform technique (LTT. The evaluation of the numerical results are performed and graphical results for the velocity, temperature and concentration profiles within the boundary layer are discussed. Also, the expressions for the skin-friction, Nusselt number and the Sherwood number coefficients have been derived and discussed through graphs and tabular forms for different values of the governing parameters.

  4. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  5. Unstable Temperature Distribution in Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Sadiq Aziz Hussein

    2014-01-01

    Full Text Available In the friction stir welding process, a nonuniform and high generated temperature is undesirable. Unstable temperature and distribution affect thermal and residual stresses along the welding line, thus necessitating mitigation. This paper presents a simple method to prevent significant temperature difference along the welding line and also to help nullifying some defect types associated with this welding, such as end-hole, initial unwelded line, and deformed areas. In the experimental investigation, a heat and force thermocouple and dynamometer were utilized while couple-field thermomechanical models were used to evaluate temperature and its distribution, plastic strain, and material displacement. The suggested method generated uniform temperature distributions. Measurement results are discussed, showing a good correlation with predictions.

  6. Estimation of weld nugget temperature by thermography method in resistance projection welding process

    International Nuclear Information System (INIS)

    Setty, D.S.; Rameswara Roa, A.; Hemantha Rao, G.V.S.; Jaya Raj, R.N.

    2008-01-01

    In the Pressurized Heavy Water Reactor (PHWR) fuel manufacturing, zirconium alloy appendages like spacer and bearing pads are welded to the thin wall zirconium alloy fuel tubes by using resistance projection welding process. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. In the fuel assembly, spacer pads are used to get the required inter-element spacing and Bearing pads are used to get the required load-bearing surface for the fuel assembly. Performance of the fuel assembly in the reactor is greatly influenced by these weld joint's quality. Phase transformation from α to β phase is not acceptable while welding these tiny appendages. At present only destructive metallography test is available for this purpose. This can also be achieved by measuring weld nugget temperature where in the phase transformation temperature for zirconium alloy material is 853 o C. The temperature distribution during resistance welding of tiny parts cannot be measured by conventional methods due to very small space and short weld times involved in the process. Shear strength, dimensional accuracy and weld microstructures are some of the key parameters used to measure the quality of appendage weld joints. Weld parameters were optimized with the help of industrial experimentation methodology. Individual projection welding by split electrode concept, and during welding on empty tube firm support is achieved on inner side of the tube by using expandable pneumatic mandrel. In the present paper, an attempt was made to measure the weld nugget temperature by thermography technique and is correlated with standard microstructures of zirconium alloy material. The temperature profiles in the welding process are presented for different welding conditions. This technique has helped in measuring the weld nugget temperature more accurately. It was observed that in the present appendage welding

  7. Brazing, high temperature brazing and diffusion welding

    International Nuclear Information System (INIS)

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  8. Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints

    Directory of Open Access Journals (Sweden)

    J Nóbrega

    2016-10-01

    Full Text Available Many are the metallurgical changes suffered by materials when subjected to welding thermal cycle, promoting a considerable influence on the welded structures thermo mechanical properties. In project phase, one alternative for evaluating the welding cycle variable, would be the employment of computational methods through simulation. So, this paper presents an evaluation of the temperature field in a multipass welding of API 5L X80 steel used for oil and gas transportation, using the ABAQUS ® software, based on Finite Elements Method (FEM. During the simulation complex phenomena are considerable including: Variation in physical and mechanical properties of materials as a function of temperature, welding speed and the different mechanisms of heat exchange with the environment (convection and radiation were used. These considerations allow a more robust mathematical modeling for the welding process. An analytical heat source proposed by Goldak, to model the heat input in order to characterize the multipass welding through the GTAW (Gas Tungsten Arc Welding process on root and the SMAW (Shielded Metal Arc Welding process for the filling passes were used. So, it was possible to evaluate the effect of each welding pass on the welded joint temperature field, through the temperature peaks and cooling rates values during the welding process.

  9. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  10. Simulation of Temperature Field in HDPE Pipe Thermal Welding

    Directory of Open Access Journals (Sweden)

    LIU Li-jun

    2017-04-01

    Full Text Available For high density polyethylene pipe connection,welding technology is the key of the high density engineering plastic pressure pipe safety. And the temperature distribution in the welding process has a very important influence on the welding quality. Polyethylene pipe weld joints of one dimensional unsteady overall heat transfer model is established by MARC software and simulates temperature field and stress field distribution of the welding process,and the thermocouple temperature automatic acquisition system of welding temperature field changes were detected,and compared by simulation and experiment .The results show that,at the end of the heating,the temperature of the pipe does not reach the maximum,but reached the maximum at 300 s,which indicates that the latent heat of phase change in the process of pressure welding. In the process of pressure welding, the axial stress of the pipe is gradually changed from tensile stress to compressive stress.

  11. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  12. Measurement of Laser Weld Temperatures for 3D Model Input

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  13. Low temperature impact testing of welded structural wrought iron

    Science.gov (United States)

    Rogers, Zachary

    During the second half of the 19th century, structural wrought iron was commonly used in construction of bridges and other structures. Today, these remaining structures are still actively in use and may fall under the protection of historic preservation agencies. Continued use and protection leads to the need for inspection, maintenance, and repair of the wrought iron within these structures. Welding can be useful to achieve the appropriate repair, rehabilitation, or replacement of wrought iron members. There is currently very little published on modern welding techniques for historic wrought iron. There is also no pre-qualified method for this welding. The demand for welding in the repair of historic structural wrought iron has led to a line of research investigating shielded metal arc welding (SMAW) of historic wrought iron at the University of Colorado Denver. This prior research selected the weld type and other weld specifications to try and achieve a recognized specific welding procedure using modern SMAW technology and techniques. This thesis continues investigating SMAW of historic wrought iron. Specifically, this thesis addresses the toughness of these welds from analysis of the data collected from performing Charpy V-Notch (CVN) Impact Tests. Temperature was varied to observe the material response of the welds at low temperature. The wrought iron used in testing was from a historic vehicle bridge in Minnesota, USA. This area, and many other areas with wrought iron structures, can experience sustained or fluctuating temperatures far below freezing. Investigating the toughness of welds in historic wrought iron at these temperatures is necessary to fully understand material responses of the existing structures in need of maintenance and repair. It was shown that welded wrought iron is tougher and more ductile than non-welded wrought iron. In regards to toughness, welding is an acceptable repair method. Information on wrought iron, low temperature failure

  14. On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: • FSWs for 6063-T4 AA are done at different process parameters and sheet thicknesses. • Weld nugget zone and heat affected zone temperatures are monitored for each case. • Microstructural and mechanical characterisation of welds is done in all cases. • Weld ductility is found to be particularly sensitive to weld zone temperatures. • Strong correlation is found between WNZ and HAZ temperatures and weld properties. - Abstract: 6063-T4 aluminium alloy sheets of 3 and 6 mm thicknesses were friction stir butt welded using a square tool pin at a wide range of tool rotational speeds. Properties of obtained welds were characterised using tensile tests, optical micrographs, X-ray diffraction, and transmission electron microscopy. Shape, size, and distribution of precipitates in weld zones, and strength and ductility of welds were seen to directly correlate with peak temperatures in weld nugget and heat affected zones, independent of sheet thickness. In addition, fluctuations in measured temperature profiles, for 3 mm sheets, were seen to correlate with an increase in scatter of weld nugget zone properties for 3 mm sheets. Optimal weld strength and ductility were obtained for peak weld nugget zone temperatures of around 450 °C and corresponding peak heat affected zone temperatures of around 360–380 °C. Results obtained suggest that, at least for naturally aged aluminium alloys, nature of temperature evolution and magnitudes of peak temperatures in weld nugget and heat affected zones provide information on uniformity of properties in weld zones, overaging of heat affected zones, and formation of tunnel defects from improper material mixing at low weld zone temperatures

  15. Welding stainless steels for structures operating at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  16. Welding stainless steels for structures operating at liquid helium temperature

    International Nuclear Information System (INIS)

    Witherell, C.E.

    1980-01-01

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2 0 K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2 0 K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness

  17. High temperature corrosion studies on friction-welded dissimilar metals

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2006-01-01

    Understanding the behaviour of weldment at elevated temperatures and especially their corrosion behaviour has become an object of scientific investigation recently. Investigation has been carried out on friction-welded AISI 4140 and AISI 304 under molten salt of Na 2 SO 4 + V 2 O 5 (60%) environment at 500 and 550 deg. C under cyclic condition. The influences of welding parameters on the hot corrosion have been discussed. The resulting oxide scales in the weldment have been characterized systematically using surface analytical techniques. Scale thickness on low alloy steel side was found to be more and was prone to spalling. Weld region has been found to be more prone to degradation than base metals due to inter diffusion of element across the interface and the formation of intermetallic compound

  18. High temperature corrosion studies on friction-welded dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Arivazhagan, N. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India)]. E-mail: arivadmt@iitr.ernet.in; Singh, Surendra [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India); Prakash, Satya [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India); Reddy, G.M. [Defense Metallurgical and Research Laboratory, Hyderabad (India)

    2006-07-25

    Understanding the behaviour of weldment at elevated temperatures and especially their corrosion behaviour has become an object of scientific investigation recently. Investigation has been carried out on friction-welded AISI 4140 and AISI 304 under molten salt of Na{sub 2}SO{sub 4} + V{sub 2}O{sub 5} (60%) environment at 500 and 550 deg. C under cyclic condition. The influences of welding parameters on the hot corrosion have been discussed. The resulting oxide scales in the weldment have been characterized systematically using surface analytical techniques. Scale thickness on low alloy steel side was found to be more and was prone to spalling. Weld region has been found to be more prone to degradation than base metals due to inter diffusion of element across the interface and the formation of intermetallic compound.

  19. Effect of welding structure and δ-ferrite on fatigue properties for TIG welded austenitic stainless steels at cryogenic temperatures

    Science.gov (United States)

    Yuri, Tetsumi; Ogata, Toshio; Saito, Masahiro; Hirayama, Yoshiaki

    2000-04-01

    High-cycle and low-cycle fatigue properties of base and weld metals for SUS304L and SUS316L and the effects of welding structure and δ-ferrite on fatigue properties were investigated at cryogenic temperatures in order to evaluate the long-life reliability of the structural materials to be used in liquid hydrogen supertankers and storage tanks and to develop a welding process for these applications. The S-N curves of the base and weld metals shifted towards higher levels, i.e., the longer life side, with decreasing test temperatures. High-cycle fatigue tests demonstrated the ratios of fatigue strength at 10 6 cycles to tensile strength of the weld metals to be 0.35-0.7, falling below those of base metals with decreasing test temperatures. Fatigue crack initiation sites in SUS304L weld metals were mostly at blowholes with diameters of 200-700 μm, and those of SUS316L weld metals were at weld pass interface boundaries. Low-cycle fatigue tests revealed the fatigue lives of the weld metals to be somewhat lower than those of the base metals. Although δ-ferrite reduces the toughness of austenitic stainless steels at cryogenic temperatures, the effects of δ-ferrite on high-cycle and low-cycle fatigue properties are not clear or significant.

  20. Modelling of the temperature field that accompanies friction stir welding

    Directory of Open Access Journals (Sweden)

    Nosal Przemysław

    2017-01-01

    Full Text Available The thermal modelling of the Friction Stir Welding process allows for better recognition and understanding of phenomena occurring during the joining process of different materials. It is of particular importance considering the possibilities of process technology parameters, optimization and the mechanical properties of the joint. This work demonstrates the numerical modelling of temperature distribution accompanying the process of friction stir welding. The axisymmetric problem described by Fourier’s type equation with internal heat source is considered. In order to solve the diffusive initial value problem a fully implicit scheme of the finite difference method is applied. The example under consideration deals with the friction stir welding of a plate (0.7 cm thick made of Al 6082-T6 by use of a tool made of tungsten alloy, whereas the material subjected to welding was TiC powder. Obtained results confirm both quantitatively and qualitatively experimental observations that the superior temperature corresponds to the zone where the pin joints the shoulder.

  1. Distribution of temperature and deformations during resistance butt welding of uranium rods with titanium

    International Nuclear Information System (INIS)

    Tatarinov, V.R.; Krasnorutskij, V.S.

    1977-01-01

    Results are described on studying time-temperature and deformation parameters for resistance welding of uranium rods with titanium. It is shown that in the first period of welding (approximately 2/3 tsub(wel.)) the maxima of weld temperature and weld deformation deviate to titanium, and in the final period uranium deformation reaches the level of maximum lateral deformation of titanium. For faying surfaces with minimum weld deformation the joint cleaning of contaminants and oxides is insufficient, which results in lower weld quality

  2. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components

    Science.gov (United States)

    Tsirkas, S. A.

    2018-03-01

    The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.

  3. Infrared temperature measurement and interference analysis of magnesium alloys in hybrid laser-TIG welding process

    International Nuclear Information System (INIS)

    Huang, R.-S.; Liu, L.-M.; Song, G.

    2007-01-01

    Infrared (IR) temperature measurement, as a convenient, non-contact method for making temperature field measurements, has been widely used in the fields of welding, but the problem of interference from radiant reflection is a complicating factor in applying IR temperature sensing to welding. The object of this research is to make a deep understand about the formation of interference, explore a new method to eliminate the interfering radiation during laser-TIG hybrid welding of magnesium alloys and to obtain the distribution of temperature field accurately. The experimental results showed that the interferences caused by radiant specular reflection of arc light, ceramic nozzle, electrode and laser nozzle were transferred out of welding seam while the IR thermography system was placed perpendicularly to welding seam. And the welding temperature distribution captured by IR termography system which had been calibrated by thermocouple was reliable by using this method in hybrid laser-TIG welding process of AZ31B magnesium alloy

  4. Structural behaviour of a welded superalloy cylinder with internal pressure in a high temperature environment

    International Nuclear Information System (INIS)

    Udoguchi, T.; Nakanishi, T.

    1981-01-01

    Steady and cyclic creep tests with internal pressure were performed at temperatures of 800 to 1000 0 C on Hastelloy X cylinders with and without a circumferential Tungsten Inert Gas (TIG) welding technique. The creep rupture strength of the TIG welded cylinders was much lower than that of the non-welded cylinders whilst creep rupture strength reduction by the TIG technique was not observed in uniaxial creep tests. The reason for the low creep strength of welded cylinders is discussed and it is noted that the creep ductility of weld metal plays an essentially important role. In order to improve the creep strength of the TIG welded cylinder, various welding procedures with assorted weld metals were investigated. Some improvements were obtained by using welding techniques which had either Incoloy 800 or a modified Hastelloy X material as the filler metal. (U.K.)

  5. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  6. Low temperature corneal laser welding investigated by atomic force microscopy

    Science.gov (United States)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-02-01

    The structural modifications in the stromal matrix induced by low-temperature corneal laser welding were investigated by atomic force microscopy (AFM). This procedure consists of staining the wound with Indocyanine Green (ICG), followed by irradiation with a near-infrared laser operated at low-power densities. This induces a local heating in the 55-65 °C range. In welded tissue, extracellular components undergo heat-induced structural modifications, resulting in a joining effect between the cut edges. However, the exact mechanism generating the welding, to date, is not completely understood. Full-thickness cuts, 3.5 mm in length, were made in fresh porcine cornea samples, and these were then subjected to laser welding operated at 16.7 W/cm2 power density. AFM imaging was performed on resin-embedded semi-thin slices once they had been cleared by chemical etching, in order to expose the stromal bulk of the tissue within the section. We then carried out a morphological analysis of characteristic fibrillar features in the laser-treated and control samples. AFM images of control stromal regions highlighted well-organized collagen fibrils (36.2 +/- 8.7 nm in size) running parallel to each other as in a typical lamellar domain. The fibrils exhibited a beaded pattern with a 22-39 nm axial periodicity. Laser-treated corneal regions were characterized by a significant disorganization of the intralamellar architecture. At the weld site, groups of interwoven fibrils joined the cut edges, showing structural properties that were fully comparable with those of control regions. This suggested that fibrillar collagen is not denatured by low-temperature laser welding, confirming previous transmission electron microscopy (TEM) observations, and thus it is probably not involved in the closure mechanism of corneal cuts. The loss of fibrillar organization may be related to some structural modifications in some interfibrillar substance as proteoglycans or collagen VI. Furthermore, AFM

  7. Influence of the welding temperature and the welding speed on the mechanical properties of friction stir welds in EN AW-2219-T87

    Science.gov (United States)

    Bachmann, A.; Krutzlinger, M.; Zaeh, M. F.

    2018-06-01

    Friction Stir Welding (FSW) is an innovative joining technique, which has proven to produce high quality joints in high strength aluminum alloys. Consequently, it is commonly used to manufacture lightweight aerospace structures with stringent requirements. For these structures, it is necessary to ensure a high ultimate tensile strength (UTS). Various studies have reported that the UTS is significantly influenced by the welding parameters. Samples welded with different parameter sets showed a considerably different UTS, despite being free from detectable welding defects (e.g. tunnel defect, voids, or lack of penetration). Based on the observations in the literature, a hypothesis was posed. The welding temperature along with the welding speed determine the UTS of the weld. This study aims to prove this hypothesis experimentally by using temperature-controlled FSW to join plates of EN AW-2219-T87 in butt joint configuration. The welded samples were examined using visual inspection, metallography, X-ray imaging, and uniaxial tensile tests. Finally, a statistical analysis was conducted. Hereby, the hypothesis was confirmed.

  8. Numerical estimation of temperature field in a laser welded butt joint made of dissimilar materials

    Directory of Open Access Journals (Sweden)

    Saternus Zbigniew

    2018-01-01

    Full Text Available The paper concerns numerical analysis of thermal phenomena occurring in the butt welding of two different materials by a laser beam welding. The temperature distribution for the welded butt-joint is obtained on the basis of numerical simulations performed in the ABAQUS program. Numerical analysis takes into account the thermophysical properties of welded plate made of two different materials. Temperature distribution in analysed joints is obtained on the basis of numerical simulation in Abaqus/Standard solver, which allowed the determination of the geometry of laser welded butt-joint.

  9. Effect of Thermal Aging and Test Temperatures on Fracture Toughness of SS 316(N) Welds

    Science.gov (United States)

    Dutt, B. Shashank; Babu, M. Nani; Shanthi, G.; Moitra, A.; Sasikala, G.

    2018-03-01

    The effect of thermal aging and test temperatures on fracture toughness (J 0.2) of SS 316(N) weld material has been studied based on J-R curve evaluations. The aging of the welds was carried out at temperatures 370, 475 and 550 °C and for durations varying from 1000 to 20,000 h. The fracture toughness (J-R curve) tests were carried out at 380 and 550 °C for specimens after all aging conditions, including as-weld condition. The initiation fracture toughness (J 0.2) of the SS 316(N) weld material has shown degradation after 20,000-h aging durations and is reflected in all the test temperatures and aging temperatures. The fracture toughness after different aging conditions and test temperatures, including as-weld condition, was higher than the minimum specified value for this class of welds.

  10. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    Science.gov (United States)

    2016-10-12

    Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 2. O. Grong, Metallurgical Modelling of Welding , 2ed., Materials Modelling...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6394--16-9690 Validation of Temperature Histories for Structural Steel Welds Using...PAGES 17. LIMITATION OF ABSTRACT Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges S.G. Lambrakos

  11. Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple Constraints

    Science.gov (United States)

    2015-12-10

    Laboratory (Ret.), private communication. 33. S. Kou, Welding Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 34. J. K...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple

  12. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz

    International Nuclear Information System (INIS)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-01-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  13. Study on factors affecting the droplet temperature in plasma MIG welding process

    Science.gov (United States)

    Mamat, Sarizam Bin; Tashiro, Shinichi; Tanaka, Manabu; Yusoff, Mahani

    2018-04-01

    In the present study, the mechanism to control droplet temperature in the plasma MIG welding was discussed based on the measurements of the droplet temperature for a wide range of MIG currents with different plasma electrode diameters. The measurements of the droplet temperatures were conducted using a two color temperature measurement method. The droplet temperatures in the plasma MIG welding were then compared with those in the conventional MIG welding. As a result, the droplet temperature in the plasma MIG welding was found to be reduced in comparison with the conventional MIG welding under the same MIG current. Especially when the small plasma electrode diameter was used, the decrease in the droplet temperature reached maximally 500 K. Also, for a particular WFS, the droplet temperatures in the plasma MIG welding were lower than those in the conventional MIG welding. It is suggested that the use of plasma contributes to reducing the local heat input into the base metal by the droplet. The presence of the plasma surrounding the wire is considered to increase the electron density in its vicinity, resulting in the arc attachment expanding upwards along the wire surface to disperse the MIG current. This dispersion of MIG current causes a decrease in current density on the droplet surface, lowering the droplet temperature. Furthermore, dispersed MIG current also weakens the electromagnetic pinch force acting on the neck of the wire above the droplet. This leads to a larger droplet diameter with increased surface area through lower frequency of droplet detachment to decrease the MIG current density on the droplet surface, as compared to the conventional MIG welding at the same MIG current. Thus, the lower droplet temperature is caused by the reduction of heat flux into the droplet. Consequently, the mechanism to control droplet temperature in the plasma MIG welding was clarified.

  14. The effect of welding speed and molten metal peak temperature on ...

    African Journals Online (AJOL)

    The effect of welding speed and molten metal peak temperature on thermal history of an arch - welded steel plate by numerical methods. SM Adedayo. Abstract. No Abstract. Journal of Applied Science, Engineering and Technology Vol. 1(1) 2001: 1-16. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL ...

  15. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  16. Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, H., E-mail: huwdawson@gmail.com [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Serrano, M.; Hernandez, R. [Structural Materials Division, Technology Department, CIEMAT, Avda de la Complutense 40, 28040 Madrid (Spain); Cater, S. [Friction and Forge Processes Department, Joining Technologies Group, TWI Technology Centre (Yorkshire), Advanced Manufacturing Park, Wallis Way, Catcliffe, Rotherham S60 5TZ (United Kingdom); Jimenez-Melero, E. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-05-02

    We have assessed the microstructure and the temperature-dependent mechanical behaviour of five bead-on-plate friction stir welds of Oxide Dispersion Strengthened (ODS) steel, produced using systematic changes to the tool rotation and traverse speed. Friction stir welding can potentially retain the fine dispersion of nanoparticles, and therefore also the high-temperature strength and radiation damage resistance of these materials. Tensile testing was carried out on the MA956 base material at a range of temperatures, from room temperature up to 750 °C. The mechanical properties of the welds were investigated via tensile testing at room temperature and at 500 °C, together with micro-hardness testing. The welds exhibited similar strength and ductility to the base material at both testing temperatures as welding caused a partial loss of particle strengthening, alongside an increase in grain boundary strengthening due to a greatly refined grain size in the stir zones. The micro-hardness data revealed a trend of increasing hardness with increasing tool traverse speed or decreasing rotation speed. This was attributed to the smaller grain size and lower nanoparticle number density in the welds created with these parameters. At 500 °C, the yield stress and ultimate tensile stress of the base material and the welds decreased, due to a progressive reduction in both the Orowan-type particle strengthening and the grain boundary strengthening.

  17. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    Science.gov (United States)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-03-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  18. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    Science.gov (United States)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-07-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  19. Transition temperature of embrittlement of steel 11 474.1 welded joint

    International Nuclear Information System (INIS)

    Petrikova, A.; Cocher, M.

    1987-01-01

    The results are presented of tests of notch toughness in dependence on temperature for steel 11 474.1 used for the manufacture of steam separators, in the area of a joint welded using an automatic submerged-arc welding machine with pre-heating at 200 to 250 degC. After welding, the welded joints were annealed for reduced stress for 160 minutes at a temperature of 600 to 650 degC and left to cool off in the furnace. The obtained results show that: (1) critical embrittlement temperature for the welded joint and the given welding technology ranges within -20 and -13 degC; (2) critical embrittlement temperature following heat ageing is shifted to positive temperature values; (3) pressure tests of the steam separator jacket made of steel 11 474.1 may in the process of production be carried out at a minimal wall temperature of 17 degC; (4) in case a pressure test has to be made after the equipment has been in operation for a certain period of time the test will probably have to be made at temperatures higher than 20 degC; (5) further tests will have to be made at temperatures higher than 20 degC in order to determine critical embrittlement temperatures after ageing. (J.B.). 7 figs., 2 tabs., 5 refs

  20. Creep strength of hastelloy X TIG-welded cylinder under internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Udoguchi, Teruyoshi; Indo, Hirosato; Isomura, Kazuyuki; Kobatake, Kiyokazu; Nakanishi, Tsuneo.

    1981-01-01

    Creep tests on circumferentially TIG-welded Hastelloy x cylinders were carried out under internal pressure for the investigation of structural behavior of welded components in high temperature environment. The creep rupture strength of TIG-welded cylinders was much lower than that of non-welded cylinders, while such reduction was not found in uniaxial creep tests on TIG-welded bars. It was deduced that the reduction was due to the low ductility (ranging from 1 to 5%) of the weld metal to which enhanced creep was induced by the adjacent base metal whose creep strain rate was much higher than that of the weld metal. Therefore, uniaxial creep tests on bar specimens is not sufficient for proper assessment of the creep rupture strength of welded components. Both creep strain rate and creep ductility should be concerned for the assessment. Creep tests by using components such as cylinder under internal pressure are recommendable for the confirmation of creep strength of welded structures and components. (author)

  1. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  2. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  3. Evaluating location specific strain rates, temperatures, and accumulated strains in friction welds through microstructure modeling

    Directory of Open Access Journals (Sweden)

    Javed Akram

    2018-04-01

    Full Text Available A microstructural simulation method is adopted to predict the location specific strain rates, temperatures, grain evolution, and accumulated strains in the Inconel 718 friction welds. Cellular automata based 2D microstructure model was developed for Inconel 718 alloy using theoretical aspects of dynamic recrystallization. Flow curves were simulated and compared with experimental results using hot deformation parameter obtained from literature work. Using validated model, simulations were performed for friction welds of Inconel 718 alloy generated at three rotational speed i.e., 1200, 1500, and 1500 RPM. Results showed the increase in strain rates with increasing rotational speed. These simulated strain rates were found to match with the analytical results. Temperature difference of 150 K was noticed from center to edge of the weld. At all the rotational speeds, the temperature was identical implying steady state temperature (0.89Tm attainment. Keywords: Microstructure modeling, Dynamic recrystallization, Friction welding, Inconel 718, EBSD, Hot deformation, Strain map

  4. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  5. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  6. Pressure Resistance Welding of High Temperature Metallic Materials

    International Nuclear Information System (INIS)

    Jerred, N.; Zirker, L.; Charit, I.; Cole, J.; Frary, M.; Butt, D.; Meyer, M.; Murty, K.L.

    2010-01-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400 C has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  7. Friction Stir Welding of Copper Canisters Using Power and Temperature Control

    International Nuclear Information System (INIS)

    Cederqvist, Lars

    2011-01-01

    This thesis presents the development to reliably seal 50 mm thick copper canisters containing the Swedish nuclear waste using friction stir welding. To avoid defects and welding tool fractures, it is important to control the tool temperature within a process window of approximately 790 to 910 deg C. The welding procedure requires variable power input throughout the 45 minute long weld cycle to keep the tool temperature within its process window. This is due to variable thermal boundary conditions throughout the weld cycle. The tool rotation rate is the input parameter used to control the power input and tool temperature, since studies have shown that it is the most influential parameter, which makes sense since the product of tool rotation rate and spindle torque is power input. In addition to the derived control method, the reliability of the welding procedure was optimized by other improvements. The weld cycle starts in the lid above the joint line between the lid and the canister to be able to abort a weld during the initial phase without rejecting the canister. The tool shoulder geometry was modified to a convex scroll design that has shown a self-stabilizing effect on the power input. The use of argon shielding gas reduced power input fluctuations i.e. process disturbances, and the tool probe was strengthened against fracture by adding surface treatment and reducing stress concentrations through geometry adjustments. In the study, a clear relationship was shown between power input and tool temperature. This relationship can be used to more accurately control the process within the process window, not only for this application but for other applications where a slow responding tool temperature needs to be kept within a specified range. Similarly, the potential of the convex scroll shoulder geometry in force-controlled welding mode for use in applications with other metals and thicknesses is evident. The variable thermal boundary conditions throughout the weld

  8. Research on weld cracking of TP321H stainless steel pipeline under elevated temperature

    International Nuclear Information System (INIS)

    Pan, Jian-hua; Fan, Zhi-cao; Zong, Ning-sheng

    2016-01-01

    The failure of pipeline which adopted material type TP321H austenitic stainless steel and occurred cracking after servicing at elevated temperature for less than two years had been investigated. The cracks were appeared repeatedly although they had been repaired for several times. The pipeline stress analysis was conducted to determine stress levels of cracking positions by finite element analysis software ABAQUS. The mechanical properties of base metals and welds including tensile and charpy impact tests were carried out. The test results showed that ductility of welds cut from the serviced pipeline was very poor. The microstructure investigations suggested that it was intergranular crack located in the HAZ near fusion line. It could be determined that it was reheat cracking based on some other works such as metallographic inspection, SEM, X-ray diffraction, etc. Welds analysis results showed that the welding of pipeline had not been in accord with right qualification of welding procedure leading to poor welding quality. The cracking reasons and preventive measures were discussed. Several suggestions were proposed to help extend service lifetime of the stainless steel pipeline under elevated temperature condition. - Highlights: • The pipeline is calculated by finite element analysis software ABAQUS. • Various tests are made, such as mechanical property, SEM, EDS, X-ray diffraction. • It is reheat cracking or stress relief cracking for the pipeline failure. • The stress levels of pipeline should be as low as possible. • The lifetime of pipeline would be shorten obviously due to poor weld quality.

  9. Finite element analysis of spot laser of steel welding temperature history

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2009-01-01

    Full Text Available Laser welding process reduces the heat input to the work-piece which is the main goal in aerospace and electronics industries. A finite element model for axi-symmetric transient heat conduction has been used to predict temperature distribution through a steel cylinder subjected to CW laser beam of rectangular beam profile. Many numerical improvements had been used to reduce time of calculation and size of the program so as to achieve the task with minimum time required. An experimental determined absorptivity has been used to determine heat induced when laser interact with material. The heat affected zone and welding zone have been estimated to determine the effect of welding on material. The ratio of depth to width of the welding zone can be changed by proper selection of beam power to meet the specific production requirement. The temperature history obtained numerically has been compared with experimental data indicating good agreement.

  10. Effect of the crack-starter weld condition on the nil-ductility transition temperature

    International Nuclear Information System (INIS)

    Satoh, Masanobu; Funada, Tatsuo; Tomimatsu, Minoru

    1985-01-01

    In ASME Code Sec. III, the value of the reference nil-ductility temperature RT sub(EDT) has an important significance to determine the result of the fracture mechanics evaluation. While in the standard both the drop-weight test and Charpy impact test are required to determine the RT sub(NDT), in practice it is normally determined only by the nil-ductility transition temperature (T sub(EDT)) obtained by the drop-weight test. The cases of data scatter in T sub(NDT) were investigated to establish appropriate conditions of crack-starter bead welding. Drop-weight tests were carried out for nuclear vessel steels by changing welding conditions to examine the effects of welding amperage and shapes of welding table on T sub(NDT). The results show that the preparation of crack-starter bead by small welding amperage should not be allowed, because it makes the measured T sub(NDT) non-conservative, and that it is important to use a welding table which increases the cooling rate of specimen. Furthermore, the authors proposed methods for estimating T sub(NDT) of nuclear vessel steels by using Charpy transition temperatures. (author)

  11. Advances in stainless steel welding for elevated temperature service

    International Nuclear Information System (INIS)

    Goodwin, G.M.; Cole, N.C.; King, R.T.; Slaughter, G.M.

    1975-10-01

    An extensive program to characterize the microstructures and determine the mechanical properties of stainless steel welds is described. The amount, size, shape, and general distribution of ferrite in the weld metal was studied. The effects of electrode coatings on creep-rupture properties were determined as were the influences of slight differences in analyzed contents of carbon, silicon, phosphorus, sulfur, and boron. Using the above information, a superior commercially produced electrode was formulated which took advantage of chemical control over boron, titanium, and phosphorus. This electrode produced deposits exhibiting superior mechanical properties and it was successfully utilized to fabricate a large nuclear reactor vessel

  12. Numerical simulation on temperature field of TIG welding for 0Cr18Ni10Ti steel cladding and experimental verification

    International Nuclear Information System (INIS)

    Luo Hongyi; Tang Xian; Luo Zhifu

    2015-01-01

    Aiming at tungsten inert gas (TIG) for 0Cr18Ni10Ti stainless steel cladding for radioactive source, the numerical calculation of welding pool temperature field was carried out through adopting ANSYS software. The numerical model of non-steady TIG welding pool shape was established, the heat enthalpy and Gaussian electric arc heat source model of surface distribution were introduced, and the effects of welding current and welding speed to temperature field distribution were calculated. Comparing the experimental data and the calculation results under different welding currents and speeds, the reliability and correctness of the model were proved. The welding technological parameters of 0Cr18Ni10Ti stainless steel were optimized based on the calculation results and the welding procedure was established. (authors)

  13. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles

    International Nuclear Information System (INIS)

    Choo, R.T.C.; Szekely, J.; David, S.A.

    1992-01-01

    By combining a mathematical model of the welding arc and of the weld pool, calculations are presented here to describe the free surface temperature of weld pools for spot welding operations. The novel aspects of the treatment include the calculation of the heat and current fluxes falling on the free weld pool surface from first principles, a realistic allowance for heat losses due to vaporization, and a realistic allowance for the temperature dependence of the surface tension. The most important finding reported in this article is that the free surface temperature of weld pools appears to be limited by Marangoni convection, rather than heat losses due to vaporization. Furthermore, it was found that once thermocapillary flow can produce high enough surface velocities (>25 cm/s), the precise nature of the relationship between temperature and surface tension will become less important

  14. Temperature based validation of the analytical model for the estimation of the amount of heat generated during friction stir welding

    Directory of Open Access Journals (Sweden)

    Milčić Dragan S.

    2012-01-01

    Full Text Available Friction stir welding is a solid-state welding technique that utilizes thermomechanical influence of the rotating welding tool on parent material resulting in a monolith joint - weld. On the contact of welding tool and parent material, significant stirring and deformation of parent material appears, and during this process, mechanical energy is partially transformed into heat. Generated heat affects the temperature of the welding tool and parent material, thus the proposed analytical model for the estimation of the amount of generated heat can be verified by temperature: analytically determined heat is used for numerical estimation of the temperature of parent material and this temperature is compared to the experimentally determined temperature. Numerical solution is estimated using the finite difference method - explicit scheme with adaptive grid, considering influence of temperature on material's conductivity, contact conditions between welding tool and parent material, material flow around welding tool, etc. The analytical model shows that 60-100% of mechanical power given to the welding tool is transformed into heat, while the comparison of results shows the maximal relative difference between the analytical and experimental temperature of about 10%.

  15. In temperature forming of friction stir lap welds in aluminium alloys

    Science.gov (United States)

    Bruni, Carlo; Cabibbo, Marcello; Greco, Luciano; Pieralisi, Massimiliano

    2018-05-01

    The objective of such investigation is the study in depth of the forming phase of welds realized on three sheet metal blanks in aluminium alloys by friction stir lap welding. Such forming phase was performed by upsetting at different constant forming temperatures varying from 200°C to 350°C with constant ram velocities of 0.01 and 0.1 mm/s. The temperature values were obtained by the use of heating strips applied on the upper tool and on the lower tool. It was observed an increase in the friction factor, acting at the upsetting tool-workpiece interface, with increasing temperature that is very useful in producing the required localized deformation with which to improve the weld. It was also confirmed that the forming phase allows to realize a required thickness in the weld area allowing to neglect the surficial perturbation produced by the friction stir welding tool shoulder. The obtained thickness could be subjected to springback when too low temperatures are considered.

  16. Experimental and analytical evaluation of preheating temperature during multipass repair welding

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2017-01-01

    Full Text Available Experimental measurement and analytical calculation of preheating, i. e. interpass temperature during multi-pass repair welding has been presented. Analytical calculation is based on heat transfer analysis, whereas measurements have been performed by thermovision camera. Repair welding was performed on crane wheels in the Steelworks Smederevo. Comparison of results indicated that analytical calculation is good enough as the first approximation, but it needs further elaboration, e. g. taking into account the radiation component of heat dissipation and/or temperature dependence of material thermomechanical properties.

  17. Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties

    Science.gov (United States)

    Leo, P.; D'Ostuni, S.; Casalino, G.

    2018-03-01

    This paper presents the effects of the post welding heat treatments (PWHT) performed at 350 °C and 450 °C on the microstructure evolution and mechanical properties of AA5754 and Ti6Al4V dissimilar laser welds. The microstructure and tensile properties of the welds before and after low temperature treatment were analyzed. The off-set welding technique was applied to limit the formation of brittle intermetallic compounds during the welding process. The laser beam was directed onto the titanium side at a small distance from the aluminum edge. The keyhole formed and the full penetration was reached in the titanium side of the weld. Thereafter, the aluminum side melted as the heat that formed the keyhole transferred from the titanium fused zone. Two different energy lines (32 J/mm and 76 J/mm) were used. In this manner, a fused and a heat affected zones was revealed on both sides of the weld. Several intermetallic compounds formed in the intermetallic layer between the two metals. The thickness and the composition of the intermetallic layer depended on the welding parameters and the post welding heat treatment. The hardness and tensile properties of the welds before and after the post welding heat treatment were measured and analyzed.

  18. Development of Micro-welding Technology of Cladding Tube with Temperature Sensor for Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Lee, C. Y.; Kim, W. K.; Lee, J. W.; Lee, D. Y

    2006-01-15

    Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-laser welding is one of the key technology to be developed to fabricate precise products of fuel irradiation test. We have to secure laser welding technology to perform various instrumentations for fuel irradiation test. The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15mm. The soundness of weld area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various applications in the industry.

  19. [Calculation and analysis of arc temperature field of pulsed TIG welding based on Fowler-Milne method].

    Science.gov (United States)

    Xiao, Xiao; Hua, Xue-Ming; Wu, Yi-Xiong; Li, Fang

    2012-09-01

    Pulsed TIG welding is widely used in industry due to its superior properties, and the measurement of arc temperature is important to analysis of welding process. The relationship between particle densities of Ar and temperature was calculated based on the theory of spectrum, the relationship between emission coefficient of spectra line at 794.8 nm and temperature was calculated, arc image of spectra line at 794.8 nm was captured by high speed camera, and both the Abel inversion and Fowler-Milne method were used to calculate the temperature distribution of pulsed TIG welding.

  20. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    Directory of Open Access Journals (Sweden)

    Mohammed Al Hajri

    2015-04-01

    Full Text Available Dissimilar metal weld (DMW joint between alloyed steel (AS and stainless steel (SS failed at one of intermediate temperature superheater (ITSH tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results of the investigation point out the limitation of Carbides precipitation at the alloyed steel/welding interface. This is synonym of creep stage I involvement in the failure of ITSH. Improper post-welding operation and bending moment are considered as root causes of the premature failure.

  1. In-situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; Brown, D.W.; Clausen, B.; An, Ke; Choo, Hahn; Hubbard, Camden R.; David, Stan A.

    2007-01-01

    The evolution of temperature and thermal stresses during friction stir welding of Al6061-T6 was investigated by means of in-situ, time-resolved neutron diffraction technique. A method is developed to deconvolute the temperature and stress from the lattice spacing changes measured by neutron diffraction. The deep penetration capability of neutrons made it possible for the first time to obtain the temperature and thermal stresses inside a friction stir weld

  2. Design rule for fatigue of welded joints in elevated-temperature nuclear components

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Corum, J.M.

    1986-01-01

    Elevated-temperature weldment fatigue failures have occurred in several operating liquid-metal reactor plants. Yet, ASME Code Case N-47, which governs the design of such plants in the United States, does not currently address the Code Subgroup on Elevated Temperature Design recently proposed a fatigue strength reduction factor for austenitic and ferritic steel weldments. The factor is based on a variety of weld metal and weldment fatigue data generated in the United States, Europe, and Japan. This paper describes the factor and its bases, and it presents the results of confirmatory fatigue tests conducted at Oak Ridge National Laboratory on 316 stainless steel tubes with axial and circumferential welds of 16-8-2 filler metal. These test results confirm the suitability of the design factor, and they support the premise that the metallurgical notch effect produced by yield strength variations across a weldment is largely responsible for the observed elevated-temperature fatigue strength reduction

  3. A Comparative Study of Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds

    Science.gov (United States)

    Aviles Santillana, I.; Boyer, C.; Fernandez Pison, P.; Foussat, A.; Langeslag, S. A. E.; Perez Fontenla, A. T.; Ruiz Navas, E. M.; Sgobba, S.

    2018-03-01

    The ITER magnet system is based on the "cable-in-conduit" conductor (CICC) concept, which consists of stainless steel jackets filled with superconducting strands. The jackets provide high strength, limited fatigue crack growth rate and fracture toughness properties to counteract the high stress imposed by, among others, electromagnetic loads at cryogenic temperature. Austenitic nitrogen-strengthened stainless steels have been chosen as base material for the jackets of the central solenoid and the toroidal field system, for which an extensive set of cryogenic mechanical property data are readily available. However, little is published for their welded joints, and their specific performance when considering different combinations of parent and filler metals. Moreover, the impact of post-weld heat treatments that are required for Nb3Sn formation is not extensively treated. Welds are frequently responsible for cracks initiated and propagated by fatigue during service, causing structural failure. It becomes thus essential to select the most suitable combination of parent and filler material and to assess their performance in terms of strength and crack propagation at operation conditions. An extensive test campaign has been conducted at 7 K comparing tungsten inert gas (TIG) welds using two fillers adapted to cryogenic service, EN 1.4453 and JK2LB, applied to two different base metals, AISI 316L and 316LN. A large set of fracture toughness data are presented, and the detrimental effect on fracture toughness of post-weld heat treatments (unavoidable for some of the components) is demonstrated. In this study, austenitic stainless steel TIG welds with various filler metals have undergone a comprehensive fracture mechanics characterization at 7 K. These results are directly exploitable and contribute to the cryogenic fracture mechanics properties database of the ITER magnet system. Additionally, a correlation between the impact in fracture toughness and microstructure

  4. Parameter study of temperature distribution in a work-piece during dry hyperbaric GTA-welding

    International Nuclear Information System (INIS)

    Fulfs, H.

    1989-01-01

    In a sensitivity study the influence of initial and boundary welding parameters upon the spatial and temporal temperature distribution in a work-piece during dry hyperbaric GTA-welding is investigated. It will be shown that at constant arc current a variation of pressure (1-60 bar), arc length (3-10 mm), welding speed (1-2.5 mm/s) or the initial temperature (20-200deg C) of the work-piece to some extend significantly influences the size of melt and heat affected zone as well as the maximum temperature and cooling behaviour of the work-piece; compared to this no mentionable effects of shielding gas temperature (20-300deg C) or flow rate (10-500 dm N 3 /min) on the thermal condition of the work-piece can be recognized. The discovered relationships have been approximated by simple correlations, which can be used for parameter optimization and process control. (orig.) With 33 figs., 4 tabs [de

  5. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    OpenAIRE

    Al Hajri, Mohammed; Malik, Anees U.; Meroufel, Abdelkader; Al-Muaili, Fahd

    2015-01-01

    Dissimilar metal weld (DMW) joint between alloyed steel (AS) and stainless steel (SS) failed at one of intermediate temperature superheater (ITSH) tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years) where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results o...

  6. Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Welded Joints at Room Temperature and 850 .deg. C for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dew, Rando T. [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Min Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Low cycle fatigue (LCF) is an important design consideration for high temperature IHX components. Moreover, some of the components are joined by welding techniques and therefore the welded joints are unavoidable in the construction of mechanical structures. Since Alloy 617 was introduced in early 1970s, many attempts have been made in the past two decades to evaluate the LCF and creep-fatigue behavior in Alloy 617 base metal at room temperature and high temperature. However, little research has focused on the evaluation and characterization of the Alloy 617 welded joints. butt-welded joint specimens was performed at room temperature and 850 .deg. C. Fatigue lives of GTAW welded joint specimens were lower than those of base metal specimens. LCF cracking and failure in welded specimens initiated in the weld metal zone and followed transgranluar dendritic paths for both at RT and 850 .deg. C.

  7. Numerical Simulation of Temperature Distribution and Material Flow During Friction Stir Welding 2017A Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Mimouni Oussama

    2016-01-01

    Full Text Available This study describes the use of fluid dynamic code, FLUENT to model the flow of metal in the AA2017A case around the welding tool pin (FSW. A standard threaded tool profile is used for the analysis of phenomena during welding such as heat generation and flow of the material are included. The main objective is to gain a better understanding of the flow of material around a tool. The model showed a large number of phenomena similar to those of the real process. The model has also generated a sufficient amount of heat, which leads to a good estimate of the junction temperature. These results were obtained using a viscosity which is near the solidus softening.

  8. Metallurgical and Mechanical Characterization of High Temperature Titanium Alloys Joined by Friction Stir Welding

    Science.gov (United States)

    Gangwar, Kapil Dev

    In the world of joining, riveting and additive manufacturing, weight reduction, and omission of defects (at both macro and micro level) remain of paramount. Therefore, in the wake of ubiquitous fusion welding (FW) and widely accepted approach of riveting using Inconel bolts to resist corrosion at higher temperature, friction stir welding (FSW) has emerged as a novice jewel in friction based additive manufacturing industry. With advancements in automation of welding process and tool material, FSW of materials with higher work hardening such as steel and titanium has also become probable. Process and property relations associated with FSW are inevitable in case of dissimilar titanium alloys, due to presence of heterogeneity (whether atrocious or advantageous) in and around the weld nugget. These process property relationships are needed to be studied and addressed properly in order to optimize the processing window for improved mechanical and metallurgical properties. In this study FSWed similar and dissimilar butt joints of α+β, and near α titanium, alloys have been produced for varying processing conditions in order to study the effect of rotation speed (rpm) and traverse speed (TS; mm-min-1). The aim of this study is to assess the effect of tool geometry, tool rpm, TS on microstructure and mechanical properties of most widely used α+β titanium alloy, Ti-6Al-4V (Ti-64), standard grain and fine grain in addition to α+β,Ti-5Al-4V (T-54M), standard grain, and near α, Ti-6Al-2Mo-4Zr-2Sn (Ti-6242), standard grain (SG) and fine grain (FG). During FSW, a unique α+β fine-grained microstructure has been formed depending on whether or not the peak temperature in the weld nugget (WN) reached above or below β transus temperature. The resulting microstructure consists of acicular α+β, emanating from the prior β grain boundary as the weld cools off. The changes in the microstructure are observed by optical microscopy (OM). Later, a detailed analysis of material

  9. Full Scale Test of SSP 34m blade, edgewise loading LTT

    DEFF Research Database (Denmark)

    Nielsen, Magda; Jensen, Find Mølholt; Nielsen, Per Hørlyk

    This report is a part of the research project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The applied load is 60......% of an unrealistic extreme event, corresponding to 75% of a certificated extreme load. This report describes the background, the test set up, the tests and the results. For this project, a new solution has been used for the load application and the solution for the load application is described in this report...... as well. The blade has been submitted to thorough examination. More areas have been examined with DIC, both global and local deflections have been measured, and also 378 strain gauge measurements have been performed. Furthermore Acoustic Emission has been used in order to detect damage while testing new...

  10. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    Science.gov (United States)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  11. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Eder Paduan Alves

    2012-03-01

    Full Text Available The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materials: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained using a system called Thermocouple Data-Logger, which allowed monitoring and recording data in real-time operation. In the graph temperature versus time obtained, the heating rates, cooling were analyzed, and the maximum temperature was determined that occurred during welding, and characterized every phases of the process. The efficiency of this system demonstrated by experimental tests and the knowledge of the temperature at the bonding interface open new lines of research to understand the process of friction welding.

  12. Friction Stir Welding of Low-Carbon AISI 1006 Steel: Room and High-Temperature Mechanical Properties

    Science.gov (United States)

    Shunmugasamy, Vasanth C.; Mansoor, Bilal; Ayoub, Georges; Hamade, Ramsey

    2018-03-01

    Friction stir welding (FSW) is an ecologically benign solid-state joining process. In this work, FSW of low-carbon AISI 1006 steel was carried out to study the microstructure and mechanical properties of the resulting joints at both room temperature (RT) and 200 °C. In the parameter space investigated here, a rotational tool speed and translation feed combination of 1200 rpm and 60 mm/min produced a defect-free weld with balanced mechanical properties and a superior Vickers microhardness profile compared to all other conditions and to base metal (BM). At faster translation feeds (100 and 150 mm/min), wormhole defects were observed in the weld microstructure and were attributed to higher strain rate experienced by the weld zone. Under tensile loading, welded material exhibited yield strength that was up to 86 and 91% of the BM at RT and 200 °C, respectively. On the other hand, tensile strength of welded material was nearly similar to that of the base metal at both RT and 200 °C. However, at both temperatures the tensile ductility of the welded joints was observed to be significantly lower than the BM. Annealing of the 1200 rpm and 60 mm/min FSW specimen resulted in tensile strength of 102% compared to base material and 47% increase in the strain at failure compared to the as-welded specimen. The Charpy impact values revealed up to 62 and 53% increase in the specific impact energy for the 1200 rpm and 60 mm/min welded joints as compared with the BM.

  13. SCC crack propagation behavior in 316L weld metal under high temperature water

    International Nuclear Information System (INIS)

    Nakade, Katsuyuki; Hirasaki, Toshifumi; Suzuki, Shunichi; Takamori, Kenro; Kumagai, Katsuhiko; Tanaka, Yoshihiko; Umeoka, Kuniyoshi

    2008-01-01

    Intergranular stress corrosion cracking (SCC) of 316L weld metal is of concern to the BWR plants. PLR pipes in commercial BWR plants have shown SCC in almost HAZ area in high temperature water, whereas, SCC has been arrested around fusion boundary for long time in the actual PLR pipe. The SCC behavior could be characterized in terms of dendrite direction, which was defined as the angle between dendrite growth direction and macro-SCC direction. In this study, the relationship between dendrite growth direction and macro-SCC direction was clearly showed on the fracture surface. The relative large difference of SCC susceptibility of 316L HAZ and weld metal was observed on the fracture surface. In the case of 0 degree, SCC has rapidly propagated into the weld metal parallel to the dendrite structure. In the case of more than 30 degree SCC direction, SCC was arrested around fusion area, and 60 degree SCC was drastically arrested around the fusion area. The large inclined dendrite structure for SCC is highly resistant to SCC. (author)

  14. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  15. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  16. High Temperature Analysis of Aluminum-Lithium 2195 Alloy to Aid in the Design of Improved Welding Techniques

    Science.gov (United States)

    Talia, George E.; Widener, Christian

    1996-01-01

    Aluminum-lithium alloys have extraordinary properties. The addition of lithium to an aluminum alloy decreases its density, while making large increases in its strength and hardness. The down side is that they are unstable at higher temperatures, and are subsequently difficult to weld or even manufacture. Martin Marietta, though, developed an aluminum-lithium alloy 2195 that was reported to have exceptional properties and good weldability. Thus, it was chosen as the alloy for the space shuttles super light external tank. Unfortunately, welding 2195 has turned out to be much more of a challenge than anticipated. Thus, research has been undergone in order to understand the mechanisms that are causing the welding problems. Gas reactions have been observed to be detrimental to weld strength. Water vapor has often been identified as having a significant role in these reactions. Nitrogen, however, has also been shown to have a direct correlation to porosity. These reactions were suspected as being complex and responsible for the two main problems of welding 2195. One, the initial welds of 2195 are much weaker than the parent metal. Second, each subsequent welding pass increases the size and number of cracks and porosity, yielding significant reductions in strength. Consequently, the objective of this research was to characterize the high-temperature reactions of 2195 in order to understand the mechanisms for crack growth and the formation of porosity in welds. In order to accomplish that goal, an optical hot-stage microscope, HSM, was used to observe those reactions as they occurred. Surface reactions of 2195 were observed in a variety of environments, such as air, vacuum, nitrogen and helium. For comparison, some samples of Al-2219 were also observed. Some of the reacted surfaces were then analyzed on a scanning electron microscope, SEM. Additionally, a gas chromatograph was used to analyze the gaseous products of the high temperature reactions.

  17. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue.

    Science.gov (United States)

    Matteini, Paolo; Rossi, Francesca; Menabuoni, Luca; Pini, Roberto

    2007-08-01

    Laser welding of corneal tissue that employs diode lasers (810 nm) at low power densities (12-20 W/cm(2)) in association with Indocyanine Green staining of the wound is a technique proposed as an alternative to conventional suturing procedures. The aim of this study is to evaluate, by means of light (LM) and transmission electron microscopy (TEM) analyses, the structural modifications induced in laser-welded corneal stroma. Experiments were carried out in 20 freshly enucleated pig eyes. A 3.5 mm in length full-thickness cut was produced in the cornea, and was then closed by laser welding. Birefringence modifications in samples stained with picrosirius red dye were analyzed by polarized LM to assess heat damage. TEM analysis was performed on ultra-thin slices, contrasted with uranyl acetate and lead citrate, in order to assess organization and size of type I collagen fibrils after laser welding. LM evidenced bridges of collagen bundles between the wound edges, with a loss of regular lamellar organization at the welded site. Polarized LM indicated that birefringence properties were mostly preserved after laser treatment. TEM examinations revealed the presence of quasi-ordered groups of fibrils across the wound edges preserving their interfibrillar spacing. These fibrils appeared morphologically comparable to those in the control tissue, indicating that type I collagen was not denatured during the diode laser corneal welding. The preservation of substantially intact, undenatured collagen fibrils in laser-welded corneal wounds supported the thermodynamic studies that we carried out recently, which indicated temperatures below 66 degrees C at the weld site under laser irradiation. This observation enabled us to hypothesize that the mechanism, proposed in the literature, of unwinding of collagen triple helixes followed by fibrils "interdigitation" is not likely to occur in the welding process that we set up for the corneal suturing.

  18. High temperature strength analysis of welded joint of RAF's by small punch test

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T. [Muroran Institute of Technology, Dept. of Materials Science and Engineeering, Hokkaido (Japan); Komazaki, S.; Kohno, Y. [Muroran Institute of Technology, Muroran (Japan); Tanigawa, H. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Kohyama, A. [Kyoto Univ., Institute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: Nucleation and growth of microvoids and/or small cracks in fine-grained heat affected zone (HAZ) after long-term service operation, which is recognized as Type IV creep damage, has recently been a worldwide issue for high Cr ferritic steels. In our group, a small punch (SP) creep test has been successfully applied to evaluate this damage of low alloy ferritic steel. However, the HAZ of fusion reactor material welded by electron-beam (EB) welding is so narrow that it is not easy to evaluate its mechanical properties by conventional tests including the SP creep test with a plate-type specimen (10 x 10 x 0.5 mm{sup 3}). In this study, the SP creep test using a further miniaturized specimen was developed and applied to the welded joint of reduced activation ferritic steels (RAFs), F82H-IEA (Fe-8Cr-2W-0.2V-0.02Ta), for measuring creep properties of the HAZ. For the SP creep test, TEM disk-type samples (diam. 3.0 x 0.30 mm) were removed from the base metal (BM), weld metal (WM) and HAZ, respectively. The specimen surfaces were polished up to a 0.05 {mu}m alumina powder finish and the specimen's thickness was finally adjusted to 0.25 mm. The SP creep tests were performed at temperatures of 823{approx}973 K and under loads ranging from 20 to 200 N. A constant load was applied to the center of the specimen through the Si{sub 3}N{sub 4} bail (diam. 1.0 mm) using the electric servo motor. The central deflection of the specimen was monitored by measuring the displacement of the compression rod. The tests were carried out in an argon gas atmosphere and the gas was continuously passed through during the test to prevent severe oxidation of the specimen. The differences in SP creep properties such as rupture time and minimum creep rate between the BM, WM and HAZ were discussed in terms of microstructural changes during welding thermal cycles. In addition, the result obtained from the BM was correlated with those of uniaxial creep test

  19. Low-temperature cyclic cracking resistance of Fe-Cr-Ni and Fe-Cr-Mn steels welded joints

    International Nuclear Information System (INIS)

    Ostash, O.P.; Zhmur-Klimenko, V.T.; Yarema, S.Ya.; Yushchenko, K.A.; Strok, L.P.; Belotserkovets, V.I.

    1983-01-01

    Results of further investigations into regularities of development of low-temperature fatigue fracture of welded oints in 07Kh13G20AN4 steel are presented, they are compared with analogous data traditional cryogenic 0Kh18N10T and 03Kh13AG19 steels. Welded joints have been prepared by means of automatic V-like level arc Welding of plates; 0Kh18N10T and 07Kh13G20AN4 steels have been welded by means of sv-04Kh19N9 wire, 03Kh13AG19 steel-by means of sv-07Kh13AG19 wire. Tests at almost zero (asymmetry coefficient R=0.05) cycle of extension at 15-20 Hz frequency have been conducted on 5 mm thick disk samples at 20 deg C and - 160 deg C according to the given methods. It is shown that by cyclic crack resistance of welded joint zones of 0Kh18N10T steel and chromium-manganese steels at normal temperature the 07Kh13G20AN4 steel exceeds 0Kh18N10T steel, at low temperature it yields to 0Kh18N10T only by fracture toughness of heat affected zones HAZ and weld metal (ne). 07Kh13G20AN4 steel and its welded joints as most hardened and cheap may be a good substituent for 0Kh18N10T steel. Optimization of WM alloying for increase of its cyclic fracture toughness at cryogenic temperatures is necessary

  20. Effect of Low-Temperature Sensitization on the Corrosion Behavior of AISI Type 304L SS Weld Metal in Simulated Groundwater

    Science.gov (United States)

    Suresh, Girija; Nandakumar, T.; Viswanath, A.

    2018-05-01

    The manuscript presents the investigations carried out on the effect of low-temperature sensitization (LTS) of 304L SS weld metal on its corrosion behavior in simulated groundwater, for its application as a canister material for long-term storage of nuclear vitrified high-level waste in geological repositories. AISI type 304L SS weld pad was fabricated by multipass gas tungsten arc welding process using 308L SS filler wire. The as-welded specimens were subsequently subjected to carbide nucleation and further to LTS at 500 °C for 11 days to simulate a temperature of 300 °C for 100-year life of the canister in geological repositories. Delta ferrite ( δ-ferrite) content of the 304L SS weld metal substantially decreased on carbide nucleation treatment and further only a marginal decrease occurred on LTS treatment. The microstructure of the as-welded consisted of δ-ferrite as a minor phase distributed in austenite matrix. The δ-ferrite appeared fragmented in the carbide-nucleated and LTS-treated weld metal. The degree of sensitization measured by double-loop electrochemical potentokinetic reactivation method indicated an increase in carbide nucleation treatment when compared to the as-welded specimens, and further increase occurred on LTS treatment. Potentiodynamic anodic polarization investigations in simulated groundwater indicated a substantial decrease in the localized corrosion resistance of the carbide-nucleated and LTS 304L SS weld metals, when compared to the as-welded specimens. Post-experimental micrographs indicated pitting as the primary mode of attack in the as-welded, while pitting and intergranular corrosion (IGC) occurred in the carbide-nucleated weld metal. LTS-treated weld metal predominantly underwent IGC attack. The decrease in the localized corrosion resistance of the weld metal after LTS treatment was found to have a direct correlation with the degree of sensitization and the weld microstructure. The results are detailed in the manuscript.

  1. Effect of Low-Temperature Sensitization on the Corrosion Behavior of AISI Type 304L SS Weld Metal in Simulated Groundwater

    Science.gov (United States)

    Suresh, Girija; Nandakumar, T.; Viswanath, A.

    2018-04-01

    The manuscript presents the investigations carried out on the effect of low-temperature sensitization (LTS) of 304L SS weld metal on its corrosion behavior in simulated groundwater, for its application as a canister material for long-term storage of nuclear vitrified high-level waste in geological repositories. AISI type 304L SS weld pad was fabricated by multipass gas tungsten arc welding process using 308L SS filler wire. The as-welded specimens were subsequently subjected to carbide nucleation and further to LTS at 500 °C for 11 days to simulate a temperature of 300 °C for 100-year life of the canister in geological repositories. Delta ferrite (δ-ferrite) content of the 304L SS weld metal substantially decreased on carbide nucleation treatment and further only a marginal decrease occurred on LTS treatment. The microstructure of the as-welded consisted of δ-ferrite as a minor phase distributed in austenite matrix. The δ-ferrite appeared fragmented in the carbide-nucleated and LTS-treated weld metal. The degree of sensitization measured by double-loop electrochemical potentokinetic reactivation method indicated an increase in carbide nucleation treatment when compared to the as-welded specimens, and further increase occurred on LTS treatment. Potentiodynamic anodic polarization investigations in simulated groundwater indicated a substantial decrease in the localized corrosion resistance of the carbide-nucleated and LTS 304L SS weld metals, when compared to the as-welded specimens. Post-experimental micrographs indicated pitting as the primary mode of attack in the as-welded, while pitting and intergranular corrosion (IGC) occurred in the carbide-nucleated weld metal. LTS-treated weld metal predominantly underwent IGC attack. The decrease in the localized corrosion resistance of the weld metal after LTS treatment was found to have a direct correlation with the degree of sensitization and the weld microstructure. The results are detailed in the manuscript.

  2. On the anomalous temperature dependency of fatigue crack growth of SS 316(N) weld

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Nani; Dutt, B. Shashank; Venugopal, S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sasikala, G., E-mail: gsasi@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Bhaduri, A.K.; Jayakumar, T.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2010-07-25

    Fatigue crack growth behaviour of a nuclear grade SS 316(N) weld metal was examined in the Paris and threshold regimes in the as-welded condition, at 300, 573 and 823 K. The {Delta}K{sub th} values were 11.2, 7.5, and 9.5 MPa {radical}m, respectively. These values were corrected for closure effects and the corresponding {Delta}K{sub th,eff} were found to be 7.7, 5.8 and 3.5 MPa {radical}m, respectively. The anomalous behaviour, i.e., the high value of {Delta}K{sub th} at 823 K has been explained based on crack closure effect which is roughness induced at 300 K and oxide induced at 823 K, with both these insignificant at 573 K. The effect of temperature on crack growth mechanism and the associated closure mechanisms are discussed. The stress shielding at the crack tip due to closure is accounted for and the effective stress intensity factor experienced by the crack tip, {Delta}K{sub eff,tip} is determined. It is demonstrated that {Delta}K{sub eff,tip} qualifies as a more appropriate parameter as the driving force for the temperature-dependent crack growth in the near-threshold and Paris regimes.

  3. Properties of simulated welded joints of Cr-Mo steel following heat treatment in intercritical temperature range

    International Nuclear Information System (INIS)

    Sabun, L.B.; Vornovitskij, I.N.; Lukicheva, S.V.; Melamed, S.Eh.

    1975-01-01

    The parameters are determined of the welded joints heat treatment which permit to shorten the holp-up period due to the accelerating the process of the weld-stress release and the diffusion of carbon and alloying elements resulting in the equilibration of the weld metal chemical composition. The properties of an imitated welded joint of the 15KHM steel have been studied after various modes of heat treatment. The critical points are 740 and 875 deg C. The mechanical properties determination and the study of the strain hardening process are carried out with a high-temperature metallography plant. The modes of a low-temperature tempering and incomplete annealing are investigated within an intercritical range at temperatures of 750 to 780 deg C and a hold-up periods of to five minutes with a consecutive cooling in air or with the furnace respectively. The results of the studies have shown that with the decrease in the heat treatment temperature the strength, plasticity and also hardness of the welded joint zones prove to be to the standard of a sample treated conforming to the high tempering mode. In case of an incomplete annealing (770 to 780 deg C) the strength of the welded joint is maintained to the standard of the strength obtained at the high tempering, and the relative elongation value increases considerably at all the hold-up periods investigated. The strain-hardening process for the low-temperature normalizing and high tempering proceeds approximately equally. The fracture occurs at the deformation of 30 to 35% in microvolume, the relative elongation in that case being 12 to 13%

  4. Atomic force microscopy and transmission electron microscopy analyses of low-temperature laser welding of the cornea.

    Science.gov (United States)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-07-01

    Low-temperature laser welding of the cornea is a technique used to facilitate the closure of corneal cuts. The procedure consists of staining the wound with a chromophore (indocyanine green), followed by continuous wave irradiation with an 810 nm diode laser operated at low power densities (12-16 W/cm(2)), which induces local heating in the 55-65 degrees C range. In this study, we aimed to investigate the ultrastructural modifications in the extracellular matrix following laser welding of corneal wounds by means of atomic force microscopy and transmission electron microscopy. The results evidenced marked disorganization of the normal fibrillar assembly, although collagen appeared not to be denatured under the operating conditions we employed. The mechanism of low-temperature laser welding may be related to some structural modifications of the nonfibrillar extracellular components of the corneal stroma.

  5. Influence of Temperature and Chloride Concentration on Passivation Mechanism and Corrosion of a DSS2209 Welded Joint

    Science.gov (United States)

    Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine

    2016-10-01

    The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.

  6. Structure evolution of multilayer materials of heat-resistant intermetallic compounds under the influence of temperature in the process of diffusion welding under pressure and their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valeriy P.; Karpov, Michael I.; Prokhorov, Dmitriy V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2013-07-01

    Multilayer materials of high-resistant intermetallic compounds of some transition metals with aluminum and silicon were obtained by diffusion welding of packages, collected from a large number of the respective foils, such as niobium and aluminum. Materials of intermetallics with silicon were obtained by the welding of packages built from metal foils with Si-coating. The change in the structure according to the temperature of the welding was studied, and the high-temperature bending strength was determined. Key words: multilayer composite, high-resistant material, intermetallic compound, diffusion welding, package rolling, layered structure, bending strength.

  7. Full Scale Test of SSP 34m blade, edgewise loading LTT. Data Report 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Jensen, Find M.; Nielsen, Per H. (and others)

    2010-01-15

    This report is a part of a research project where a 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The applied load is 60% of an unrealistic extreme event, corresponding to 75% of a certificated extreme load. This report describes the background, the test set up, the tests and the results. For this project, a new solution has been used for the load application and the solution for the load application is described in this report as well. The blade has been submitted to thorough examination. More areas have been examined with DIC, both global and local deflections have been measured, and also 378 strain gauge measurements have been performed. Furthermore Acoustic Emission has been used in order to detect damage while testing new load areas. The global deflection is compared with results from a previous test and results from FEM analyses in order to validate the solution as to how the gravity load on the blade was handled. Furthermore, the DIC measurement and the displacement sensors measurements are compared in order to validate the results from the DIC measurements. The report includes the results from the test and a description of the measurement equipment and the data acquisition. (author)

  8. In vitro infrared thermography assessment of temperature peaks during the intra-oral welding of titanium abutments

    Science.gov (United States)

    Degidi, Marco; Nardi, Diego; Sighinolfi, Gianluca; Merla, Arcangelo; Piattelli, Adriano

    2012-07-01

    Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.

  9. Low temperature fatigue crack propagation in neutron irradiated Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Walls, J.D.; Gravenor, J.

    1981-02-01

    The fast cycling fatigue crack propagation characteristics of Type 316 steel and weld metal have been investigated at 380 0 C after irradiation to 1.72-1.92x10 20 n/cm 2 (E>1MeV) and 2.03x10 21 n/cm 2 (E>1MeV) at the same temperature. With mill-annealed Type 316 steel, modest decreases in the rates of crack propagation were observed for both dose levels considered, whereas for cold-worked Type 316 steel irradiation to 2.03x10 21 n/cm 2 (E>1MeV) caused increases in the rate of crack propagation. For Type 316 weld metal, increases in the rate of crack propagation were observed for both dose levels considered. The diverse influences of irradiation upon fatigue crack propagation in these materials are explained by considering a simple continuum mechanics model of crack propagation together with the results of control tensile experiments made on similarly irradiated materials. (author)

  10. Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment

    International Nuclear Information System (INIS)

    Chandra, K.; Kain, Vivekanand; Raja, V.S.; Tewari, R.; Dey, G.K.

    2012-01-01

    Highlights: ► Embrittlement study of austenitic stainless steel welds after ageing up to 20,000 h. ► Spinodal decomposition and G-phase precipitation in ferrite at 400 °C. ► Spinodal decomposition of ferrite at 335 and 365 °C. ► Large decrease in corrosion resistance due to G-phase precipitation. ► Good correlation between electrochemical properties and the degree of embrittlement. - Abstract: The low temperature thermal ageing embrittlement of austenitic stainless steel welds is investigated after ageing up to 20,000 h at 335, 365 and 400 °C. Spinodal decomposition and G-phase precipitation after thermal ageing were identified by transmission electron microscopy. Ageing led to increase in hardness of the ferrite phase while there was no change in the hardness of austenite. The degree of embrittlement was evaluated by non-destructive methods, e.g., double-loop and single-loop electrochemical potentiokinetic reactivation tests. A good correlation was obtained between the electrochemical properties and hardening of the ferrite phase of the aged materials.

  11. Correlation Between Microstructure and Low-Temperature Impact Toughness of Simulated Reheated Zones in the Multi-pass Weld Metal of High-Strength Steel

    Science.gov (United States)

    Kang, Yongjoon; Park, Gitae; Jeong, Seonghoon; Lee, Changhee

    2018-01-01

    A large fraction of reheated weld metal is formed during multi-pass welding, which significantly affects the mechanical properties (especially toughness) of welded structures. In this study, the low-temperature toughness of the simulated reheated zone in multi-pass weld metal was evaluated and compared to that of the as-deposited zone using microstructural analyses. Two kinds of high-strength steel welds with different hardenabilities were produced by single-pass, bead-in-groove welding, and both welds were thermally cycled to peak temperatures above Ac3 using a Gleeble simulator. When the weld metals were reheated, their toughness deteriorated in response to the increase in the fraction of detrimental microstructural components, i.e., grain boundary ferrite and coalesced bainite in the weld metals with low and high hardenabilities, respectively. In addition, toughness deterioration occurred in conjunction with an increase in the effective grain size, which was attributed to the decrease in nucleation probability of acicular ferrite; the main cause for this decrease changed depending on the hardenability of the weld metal.

  12. Progress report on the influence of higher interpass temperatures on the integrity of austenitic stainless steel welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Yarmuch, M.; Choi, L. [Alberta Research Council, Edmonton, AB (Canada); Armstrong, K.; Radu, I. [PCL Industrial Constructors Inc., Nisku, AB (Canada)

    2008-07-01

    This report discussed the progress of the Welding Productivity Group (TWPG) interpass temperature assessment project (ITAP). The project was initiated to evaluate the influence of interpass temperatures on the metallurgical, corrosive, and mechanical properties of austenitic stainless steel, carbon steel, and low-alloy pressure weldments. To date, the project has conducted experiments to determine if interpass temperatures in austenitic stainless steel weldments are higher than temperatures recommended by API requirements. Elevated interpass temperatures for various base materials have been evaluated. Preliminary metallurgical, mechanical, and laboratory corrosion data from 3 experiments with 304/304L and 316/316L stainless steel weldment test specimens has shown that no significant changes occur as a result of elevated interpass temperatures. Results from side bend specimens have demonstrated that elevated interpass temperatures produce acceptable weldment ductility. No intergranular cracking was observed during oxalic acid etch tests conducted for the 316/316L samples. Huey tests performed on the 304/304L specimens indicated that elevated interpass temperatures did not adversely affect the intergranular corrosion resistance of weldments with less than 3 weld passes. Huey tests performed on the 316 specimens showed a marked increase in corrosion rates and normalized weight losses. It was concluded that rates of attack correlate with the maximum interpass temperature and not the average weld metal ferrite number. 22 refs., 11 tabs., 12 figs.

  13. The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal

    International Nuclear Information System (INIS)

    Xing, Xixue; Di, Xinjie; Wang, Baosen

    2014-01-01

    Highlights: • Post-weld heat treatment effects on microstructure of deposited metal are studied. • Coarsening of γ′ phase at different post-weld heat treatment temperature is revealed. • Formation of δ phase in deposited metal is a bainite-like transformation process. - Abstract: The effect of post-weld heat treatment (PWHT) temperatures on the microstructure of Inconel 625 deposited metal (DM) was examined using an optical microscope (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The transformation mechanism of the γ ″ → δ phase and the grain growth kinetics of the γ′ phase during PWHT were revealed. The results indicate that the microstructure of as-welded DM is composed of columnar grains of different sizes, of which the average grain size is approximately 160 μm. Certain precipitates, such as the dispersed γ′ phase, blocky MC-type carbide and irregular shape Laves phase, precipitate in the microstructure of the as-welded DM. Compared with as-welded DM, the microstructure of DM after PWHT at 650 °C for 4 h shows minimal variation. With an increase in PWHT temperature, a large number of body-centered tetragonal γ ″ phases precipitate at interdendrite regions in the microstructure of DM after PWHT at 750 °C for 4 h. When the PWHT temperature increases to 850 °C, the metastable γ ″ phase directly transforms into a stable δ phase in shear mode, which exhibits a similar chemical composition but a different crystal structure than the γ ″ phase. At 950 °C, the γ ″ phase and the δ phase disappear, whereas certain M 6 C-type carbides precipitate at the grain boundaries. Alloying elements such as Nb, Mo, Si, Al and Fe in the microstructure of as-welded DM exhibit segregation behavior. Due to an increasing PWHT temperature, the segregation behavior constantly weakens with minimal evolution to the temperature of 750 °C. Above this temperature, partition coefficients tend toward 1, and

  14. The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Xixue [Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072 (China); Di, Xinjie, E-mail: dixinjie@tju.edu.cn [Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072 (China); Wang, Baosen [Baosteel Research Institute, Baoshan Iron and Steel Co., Ltd., Baoshan District, Shanghai 200431 (China)

    2014-04-01

    Highlights: • Post-weld heat treatment effects on microstructure of deposited metal are studied. • Coarsening of γ′ phase at different post-weld heat treatment temperature is revealed. • Formation of δ phase in deposited metal is a bainite-like transformation process. - Abstract: The effect of post-weld heat treatment (PWHT) temperatures on the microstructure of Inconel 625 deposited metal (DM) was examined using an optical microscope (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The transformation mechanism of the γ{sup ″} → δ phase and the grain growth kinetics of the γ′ phase during PWHT were revealed. The results indicate that the microstructure of as-welded DM is composed of columnar grains of different sizes, of which the average grain size is approximately 160 μm. Certain precipitates, such as the dispersed γ′ phase, blocky MC-type carbide and irregular shape Laves phase, precipitate in the microstructure of the as-welded DM. Compared with as-welded DM, the microstructure of DM after PWHT at 650 °C for 4 h shows minimal variation. With an increase in PWHT temperature, a large number of body-centered tetragonal γ{sup ″} phases precipitate at interdendrite regions in the microstructure of DM after PWHT at 750 °C for 4 h. When the PWHT temperature increases to 850 °C, the metastable γ{sup ″} phase directly transforms into a stable δ phase in shear mode, which exhibits a similar chemical composition but a different crystal structure than the γ{sup ″} phase. At 950 °C, the γ{sup ″} phase and the δ phase disappear, whereas certain M{sub 6}C-type carbides precipitate at the grain boundaries. Alloying elements such as Nb, Mo, Si, Al and Fe in the microstructure of as-welded DM exhibit segregation behavior. Due to an increasing PWHT temperature, the segregation behavior constantly weakens with minimal evolution to the temperature of 750 °C. Above this temperature, partition coefficients

  15. Detecting flaws in welds

    International Nuclear Information System (INIS)

    Woodacre, A.; Lawton, H.

    1979-01-01

    An apparatus and a method for detecting flaws in welds in a workpiece, the portion of the workpiece containing the weld is maintained at a constant temperature and the weld is scanned by an infra red detector. The weld is then scanned again with the workpiece in contact with a cooling probe to produce a steeper temperature gradient across the weld. Comparison of the signals produced by each scan reveals the existence of defects in the welds. The signals may be displayed on an oscilloscope and the display may be observed by a TV camera and recorded on videotape. (UK)

  16. The study of development of welded compact plate heat exchanger for high temperature and pressure

    International Nuclear Information System (INIS)

    Park, Jae Hong; Lim, Hyug; Kim, Jung Kyu; Cho, Sung Youl; Kwon, Oh Boong

    2009-01-01

    In view of space saving, the design of more compact heat exchangers is relatively important. Also, to meet the demand for saving energy and resources today, manufacturers are trying to enhance efficiency and reduce the size and weight of heat exchangers. Over the past decade, there has been tremendous advancement in the manufacturing technology of high efficiency heat exchangers. This has allowed the use of smaller and high performance heat exchangers. Consequently, the use of smaller and high performance heat exchanger becomes popular in the design of heat exchangers. Welded compact plate heat exchanger is used in high temperature and pressure. In the design of heat exchanger, it is necessary to understand the heat transfer characteristics, so performance data are provided to help design of this type heat exchanger.

  17. Thermal aging effects of VVER-1000 weld metal under operation temperature

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Kuleshova, E.A.; Gurovich, B.A.; Erak, D.Y.; Zabusov, O.O.; Maltsev, D.A.; Zhurko, D.A.; Papina, V.B.; Skundin, M.A.

    2015-01-01

    The VVER-1000 thermal aging surveillance specimen sets are located in the reactor pressure vessel (RPV) under real operation conditions. Thermal aging surveillance specimens data are the most reliable source of the information about changing of VVER-1000 RPV materials properties because of long-term (hundred thousand hours) exposure at operation temperature. A revision of database of VVER-1000 weld metal thermal aging surveillance specimens has been done. The reassessment of transition temperature (T t ) for all tested groups of specimens has been performed. The duration of thermal exposure and phosphorus contents have been defined more precisely. The analysis of thermal aging effects has been done. The yield strength data, study of carbides evolution show absence of hardening effects due to thermal aging under 310-320 C degrees. Measurements of phosphorus content in grain boundaries segregation in different states have been performed. The correlation between intergranular fracture mode in Charpy specimens and transition temperature shift under thermal aging at temperature 310-320 C degrees has been revealed. All these data allow developing the model of thermal aging. (authors)

  18. Low temperature sensitization behavior in the weld metal of austenitic stainless steel. Study on low temperature sensitization in weldments of austenitic stainless steels and its improvement by laser surface melting treatment. 1

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Nishimoto, Kazutoshi; Nakao, Yoshikuni

    1996-01-01

    Low temperature sensitization (LTS) behavior in the weld metal of Type308 stainless steel was investigated in this study. Three kinds of Type308 stainless steels, of which carbon contents were 0.04%, 0.06% and 0.08%, were used for this study. TIG welding method was adopted to make the weld metals. Weld metals were subjected to the sensitizing heat treatment in the temperature range between 773 K and 1073 K. The degree of sensitization were examined by the EPR method and the Strauss test. Chromium carbide was absorbed to precipitate at δ/γ grain boundaries in the as-welded weld metals Corrosion test results have shown that the higher carbon content in the weld metal is, the earlier sensitization yields in it. Sensitization in weld metals is found to occur faster than in those solution heat-treated at 1273 K prior to sensitizing heat-treatment. This fact suggests that preexisted chromium carbides have an effect to accelerate sensitization. That is, it is apparent that LTS phenomenon occur even in the weld metal. Moreover, sensitization in the weld metal has occurred in much shorter time than in HAZ, which is attributed to the preferential precipitation of chromium carbide at δ/γ grain boundaries in the weld metals. (author)

  19. Study of susceptibility to hydrogen embrittlement of welded joints of large WWER reactor vessels at different temperatures

    International Nuclear Information System (INIS)

    Mazel', R.E.; Kuznetsova, T.P.; Grinenko, V.G.; Sapronova, M.N.

    1977-01-01

    The effect is studied of hydrogen and a coolant of WWER on the susceptibility to brittle fracture of welded joints from steels 15Kh2MFA and 15Kh2NMFA obtained by automatic submerged arc welding with the use of the welding materials of different purity. The effect of hydrogen (concentration range 0.5-7.5 cm 3 /100 g, testing temperatures 20, 70 and 325 deg C) and the coolant (pressures up to 120 atm, temperatures 20-350 deg C) have been estimated by the fracture work during static bending tests. It is shown that the purification of the welding materials enhances the fracture properties by about a factor of 2. Hydrogenation results in a sharp drop (by about a factor of 3) of the fracture work. The increased testing temperature (up to 325 deg C) is accompanied by disappearance of the effect of hydrogen embrittlement, which is explained by an increase in the diffusion mobility of atomic hydrogen. Under the action of the coolant the fracture work shows a two-fold decrease, while the pressure being increased up to 100 atm leads to greater fracture work decrease

  20. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    Science.gov (United States)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  1. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    OpenAIRE

    Alves, Eder Paduan; Piorino Neto, Francisco; An, Chen Ying; Silva, Euclides Castorino da

    2012-01-01

    Abstract: The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materiais: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained...

  2. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    Science.gov (United States)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  3. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    Science.gov (United States)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  4. [111In-DOTA]LTT-SS28, a first pansomatostatin radioligand for in vivo targeting of somatostatin receptor-positive tumors.

    Science.gov (United States)

    Maina, Theodosia; Cescato, Renzo; Waser, Beatrice; Tatsi, Aikaterini; Kaloudi, Aikaterini; Krenning, Eric P; de Jong, Marion; Nock, Berthold A; Reubi, Jean Claude

    2014-08-14

    Radiolabeled pansomatostatin-like analogues are expected to enhance the diagnostic sensitivity and to expand the clinical indications of currently applied sst2-specific radioligands. In this study, we present the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]LTT-SS28 exhibited a pansomatostatin-like profile binding with high affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower nanomolar range). Furthermore, [DOTA]LTT-SS28 behaved as an agonist at hsst2, hsst3, and hsst5, efficiently stimulating internalization of the three receptor subtypes. Radioligand [111In-DOTA]LTT-SS28 showed good stability in the mouse bloodstream. It displayed strong and specific uptake in AR42J tumors 4 h postinjection (9.3±1.6% ID/g vs 0.3±0.0% ID/g during sst2 blockade) in mice. Significant and specific uptake was also observed in HEK293-hsst2-, HEK293-hsst3-, and HEK293-hsst5-expressing tumors (4.43±1.5, 4.88±1.1, and DOTA]LTT-SS28 specifically localizes in sst2-, sst3-, and sst5-expressing xenografts in mice showing promise for multi-sst1-sst5 targeted tumor imaging.

  5. Mechanical properties of electron beam welds of 316LN austenitic steels at low temperature for ITER gravity support system

    International Nuclear Information System (INIS)

    Lee, P.Y.; Huo, B.L.; Kuai, K.W.

    2007-01-01

    The gravity support system in ITER not only sustains magnet system, the vacuum vessel and in-vessel components, but also endures several large forces, such as electromagnetic force, thermal load and seismic loads. Based on the ITER design report, the maximum displacement of the gravity support system is estimated to be 32 mm in radial direction at the top flange of the flexible plates during the TF coil cool down from room temperature to 80 k. Welds are located in the peak stress region and subject to cyclic loads in the top flange is a potential problem. Therefore, the mechanical properties of the welds are extremely important for this system. 316LN austenitic stainless steel has been selected as the gravity support structure materials. However, there is still lack of the related mechanical data of the welding components of 316LN stainless steel at present. In this study, we are systematically investigated the mechanical properties of the welding components at low temperature. (authors)

  6. Influence of shoulder diameter on Temperature and Z-parameter during friction stir welding of Al 6082 alloy

    Science.gov (United States)

    Kishore Mugada, Krishna; Adepu, Kumar

    2018-03-01

    In this research article, the effect of increasing shoulder diameter on temperature and Zener Holloman (Z)-parameter for friction stir butt welded AA6082-T6 was studied. The temperature at the Advancing side (AS) of weld was measured using the K-Type thermocouple at four different equidistant locations. The developed analytical model is utilized to predict the maximum temperature (Tpeak) during the welding. The strain, strain rate, Z- Parameter for all the shoulders at four distinct locations were evaluated. The temperature increases with increase in shoulder diameter and the maximum temperature was recorded for 24mm shoulder diameter. The computed log Z values are compared with the available process map and results shows that the values are in stable flow region and near to stir zone the values are in Dynamic recrystallization region (DRX). The axial load (Fz) and total tool torque (N-m) are found to be higher for shoulder diameter of 21 mm i.e., 6.3 kN and 56.5 N-m respectively.

  7. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  8. Creep properties of base metal and welded joint of Hastelloy XR produced for High-Temperature Engineering Test Reactor in simulated primary coolant helium

    International Nuclear Information System (INIS)

    Kurata, Yuji; Tsuji, Hirokazu; Shindo, Masami; Suzuki, Tomio; Tanabe, Tatsuhiko; Mutoh, Isao; Hiraga, Kenjiro

    1999-01-01

    Creep tests of base metal, weld metal and welded joint of Hastelloy XR, which had the same chemical composition as Hastelloy XR produced for an intermediate heat exchanger of the High-Temperature Engineering Test Reactor, were conducted in simulated primary coolant helium. The weld metal and welded joint showed almost equal to or longer rupture time than the base metal of Hastelloy XR at 850 and 900degC, although they gave shorter rupture time at 950degC under low stress and at 1,000degC. The welded joint of Hastelloy XR ruptured at the base metal region at 850 and 900degC. On the other hand, it ruptured at the weld metal region at 950 and 1,000degC. The steady-state creep rate of weld metal of Hastelloy XR was lower than that of base metal at 850, 900 and 950degC. The creep rupture strengths of base metal, weld metal and welded joint of Hastelloy XR obtained in this study were confirmed to be much higher than the design allowable creep-rupture stress (S R ) of the Design Allowable Limits below 950degC. (author)

  9. An investigation on high temperature fatigue properties of tempered nuclear-grade deposited weld metals

    Science.gov (United States)

    Cao, X. Y.; Zhu, P.; Yong, Q.; Liu, T. G.; Lu, Y. H.; Zhao, J. C.; Jiang, Y.; Shoji, T.

    2018-02-01

    Effect of tempering on low cycle fatigue (LCF) behaviors of nuclear-grade deposited weld metal was investigated, and The LCF tests were performed at 350 °C with strain amplitudes ranging from 0.2% to 0.6%. The results showed that at a low strain amplitude, deposited weld metal tempered for 1 h had a high fatigue resistance due to high yield strength, while at a high strain amplitude, the one tempered for 24 h had a superior fatigue resistance due to high ductility. Deposited weld metal tempered for 1 h exhibited cyclic hardening at the tested strain amplitudes. Deposited weld metal tempered for 24 h exhibited cyclic hardening at a low strain amplitude but cyclic softening at a high strain amplitude. Existence and decomposition of martensite-austenite (M-A) islands as well as dislocations activities contributed to fatigue property discrepancy among the two tempered deposited weld metal.

  10. Modelling of Strains During SAW Surfacing Taking into Heat of the Weld in Temperature Field Description and Phase Transformations

    Science.gov (United States)

    Winczek, J.; Makles, K.; Gucwa, M.; Gnatowska, R.; Hatala, M.

    2017-08-01

    In the paper, the model of the thermal and structural strain calculation in a steel element during single-pass SAW surfacing is presented. The temperature field is described analytically assuming a bimodal volumetric model of heat source and a semi-infinite body model of the surfaced (rebuilt) workpiece. The electric arc is treated physically as one heat source. Part of the heat is transferred by the direct impact of the electric arc, while another part of the heat is transferred to the weld by the melted material of the electrode. Kinetics of phase transformations during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagramand JMA-K law for diffusive transformations, and K-M law for martensitic transformation. Totalstrains equal to the sum ofthermaland structuralstrainsinduced by phasetransformationsin weldingcycle.

  11. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure: application to solar cell interconnect welding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.E.; Ianno, N.J.; Ahmed, A.U.

    1985-01-01

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO/sub 2/ laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained. 18 references, 13 figures.

  12. Effect of the Preheating Temperature on Process Time in Friction Stir Welding of Al 6061-T6

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    2013-01-01

    This paper presents the results obtained and the deductions made from an analytical modeling involving friction stir welding of Al 6061-T6. A new database was developed to simulate the contact temperature between the tool and the workpiece. A second-order equation is proposed for simulating...... the temperature in the contact boundary and the thermal history during the plunge phase. The effect of the preheating temperature on the process time was investigated with the proposed model. The results show that an increase of the preheating time leads to a decrease in the process time up to the plunge...

  13. The reliability of the repair weld joints of aged high temperature components in fossil power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Ohtani, Ryuichi [Kyoto Univ. (Japan); Fujii, Kazuya [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Yokoyama, Tomomitsu; Nishimura, Nobuhiko [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Suzuki, Komei [Japan Steel Works Ltd., Tokyo (Japan)

    1998-11-01

    It is of fundamental engineering importance to be able to give reliable assessments of the effective service life of the critical components used within fossil power plants, particularly for those operating for prolonged periods. It is common practice for such assessments to have been estimated using destructive tests, typically the stress rupture test, this having been recognized as one of the most reliable evaluation methods available. Its only drawback is that it often does not permit the component to be in use following the sampling of the test specimen without repairing. The current piece of work focuses on the reliability of the repair welds of components for specimens taken from fossil power plants, having been in service for prolonged periods. Several such repairs to welds have been made to an old power boiler, in particular to a superheater header which is fabricated from 2.25Cr-1Mo steel. Under close examination the repairs to the girth weldment showed susceptibilities of weld cracking, similar to that observed in as-manufactured material. Within the repaired region of the welded joint the microstructure, tensile properties and toughness seemed to be unaffected. The hardness attained its minimum value within the heat affected zone, HAZ of the repair weld, overlapping that of original girth weld HAZ. Furthermore, the stress rupture strength achieved its minimum value at the same position taking on the same value as the strength associated with the aged girth welded joint. (orig.)

  14. Creep behaviour of austenitic stainless steels, base and weld metals used in liquid metal fast breeder reactors, during temperature variations

    International Nuclear Information System (INIS)

    Felsen, M.F.

    1982-07-01

    Creep rupture and deformation during temperature variations have been studied for 316 austenitic steel, base and weld metals. Loaded specimens were heated to 900 0 C or 1000 0 C and maintained at this temperature for different durations. The heating rate to these temperatures was between 5 and 50 0 C h -1 , whilst the cooling rate was between 5 and 20 0 C h -1 . The above tests were coupled with short time creep and tensile tests (straining rate 10 -2 h -1 to 10 3 h -1 ) at constant temperature. These tests were used for predicting the creep behaviour of the materials under changing temperature condition. The predictions were in good agreement with the changing temperature and creep experimental results. In addition, a correlation between certains tensile properties, such as the rupture time as a function of stress was observed at high temperature

  15. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingjun [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Fenggui, E-mail: Lfg119@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Cui, Haichao [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Yuming; Liu, Xia [Shanghai Turbine Plant of Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240 (China); Gao, Yulai, E-mail: ylgao@shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China)

    2014-10-06

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10{sup 7} cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature.

  16. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    International Nuclear Information System (INIS)

    Wu, Qingjun; Lu, Fenggui; Cui, Haichao; Ding, Yuming; Liu, Xia; Gao, Yulai

    2014-01-01

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10 7 cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature

  17. Fatigue strength of welds and welded materials of high-temperature steels resistant to pressurized hydrogen of the type 2.25% Cr/1% Mo

    International Nuclear Information System (INIS)

    Burlat, J.; Cheviet, A.; Million, A.

    1986-01-01

    The aim of the study is to examine systematically the creep strength of welded joints (base material, heat influence zone and welded seam) and of pure welding materials of the type 2 1/4-3% Cr/1% Mo. According to the AD standard rules, the rule which stipulates that the creep strength of welded seams under full stress be calculated with the strength characteristic value reduced by 20% applies to all heat-resistant steels, if no rupture stress values for the welded joints are available. Manufacturers of steel and weld fillers together with the Union of Technical Control Associations (VdTUeV) have prepared a test programme according to which on the one hand welded joints are tested at right angles to their seams, and on the other pure welding material is tested with respect to its creep strength. The development of the testes and their results have been described. The first results are available as VdTUeV material performance sheets, for 2 materials, and as provisional VdTUeV specification sheets, for 3 weld fillers. With the tested materials, it becomes practically feasible to reduce the creep strength of longitudinally welded pressure-bearing components by about 20% of wall thickness. (orig.) [de

  18. The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a "molecular welding" effect.

    Science.gov (United States)

    Taniguchi, Shohei; Green, Mark; Lim, Teck

    2011-03-16

    The room-temperature chemical transformation of spherical CdTe nanoparticles into anisotropic alloyed CdHgTe particles using mercury bromide in a toluene/methanol system at room temperature has been investigated. The resulting materials readily dissolved in toluene and exhibited a significant red-shift in the optical properties toward the infrared region. Structural transformations were observed, with electron microscopy showing that the CdTe nanoparticles were chemically attached ('welded') to other CdTe nanoparticles, creating highly complex anisotropic heterostructures which also incorporated mercury.

  19. Metallic-packaging fiber Bragg grating sensor based on ultrasonic welding for strain-insensitive temperature measurement

    Science.gov (United States)

    Zhu, Lianqing; Yang, Runtao; Zhang, Yumin; Dong, Mingli; Lou, Xiaoping

    2018-04-01

    In this paper, a metallic-packaging fiber Bragg grating temperature sensor characterized by a strain insensitive design is demonstrated. The sensor is fabricated by the one-step ultrasonic welding technique using type-II fiber Bragg grating combined with an aluminum alloy substrate. Finite element analysis is used to perform theoretical evaluation. The result of the experiment illustrates that the metallic-packaging temperature sensor is insensitive to longitudinal strain. The sensor's temperature sensitivity is 36 pm/°C over the range of 50-110 °C, with the correlation coefficient (R2) being 0.999. The sensor's temporal response is 40 s at a sudden temperature change from 21 °C to 100 °C. The proposed sensor can be applied on reliable and precise temperature measurement.

  20. Method for biological tissue temperature measuring in the area of laser radiation exposure with a small size beam profile during laser welding

    Science.gov (United States)

    Ryabkin, Dmitrii I.

    2018-04-01

    Connection is not strong enough In case of insufficient or excessive temperature of the laser welding. As a result, the temperature measurement in laser welding is an important problem. Measurement area surface is small (3.12 mm2) and measurements shall be carried out by a Non-contact method, which makes them challenging. Method of temperature measurement by an infrared sensor in two positions has been offered. This method allows you to measure the temperature at a distance of up to 5 cm from the measured area with an accuracy of 8%.

  1. Full Scale Test SSP 34m blade, edgewise loading LTT. Extreme load and PoC_InvE Data report

    DEFF Research Database (Denmark)

    Nielsen, Magda; Roczek-Sieradzan, Agnieszka; Jensen, Find Mølholt

    This report is the second report covering the research and demonstration project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last”, supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested...... in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risø load, where 80% Risø load corresponds to 100...... stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risø load and the results applicable for the investigation of the influence of the invention on the profile...

  2. Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds

    International Nuclear Information System (INIS)

    Lee, H.A.; Chien, P.S.J.

    1982-10-01

    Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups

  3. High temperature creep properties and microstructural examinations of P92 welds

    Energy Technology Data Exchange (ETDEWEB)

    Kalck, Charlotte; Giroux, Pierre-Francois [CEA Saclay, DEN/DANS/DMN/SRMA, Gif-sur-Yvette (France); MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; Fournier, Benjamin; Barcelo, Francoise; Dalle, France; Ivan, Tournie [CEA Saclay, DEN/DANS/DMN/SRMA, Gif-sur-Yvette (France); Laurent, Forest [CEA Saclay, DEN/DANS/DM2S/LTA, Gif-sur-Yvette (France); Gourgues-Lorenzon, Anne-Francoise [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux

    2010-07-01

    The present study deals with the creep properties of welded joints made of P92 steels. The purpose is to determine the weakest zone at 550 C under various load levels (160-240 MPa) and to investigate the evolution of the microstructure during creep. The study of the fracture surfaces and the microstructural examination of welded joints prior to and after creep tests allow to investigate damage development. Ductile fracture occurs in the heat affected zone, more precisely, in the intercritical area, together with pronounced necking. Observation of the necking area shows many cavities and cracks. (orig.)

  4. Mechanical and structural characteristics in high temperature of stainless steel welded joint

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Carvalho Mota, A.F. de

    1980-01-01

    The mechanical behavior at 600 0 C of weldments made of type 304 stainless as base metal and niobium containing type 347 stainless as weld metal has been investigated. This was done through tensile and creep tests. Heat treatments at 600 0 C and up to 6000 hours permited a simultaneous follow up of the mechanical and microstructural changes. It was observed that the exposure at 600 0 C under load contributes, from the begining, to the strengthening of the weld. This is due to the acceleration of the second phase precipitation hardening. (Author) [pt

  5. Assessing mechanical properties of the dissimilar metal welding between P92 steels and alloy 617 at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Hwang, J. H.; Park, Y. S.; Kim, T. M.; Bae, D. H. [Sungkyunkwan University, Suwon (Korea, Republic of); Seo, W. B. [Institute of Mechanical Engineering, Yeungnam University, Daegu (Korea, Republic of); Han, J. W. [School of Mechanical Engineering, Hoseo University, Cheonan (Korea, Republic of)

    2016-10-15

    In this study, a new welding technology of dissimilar materials, Cr-based P92 steels and Ni-based Alloy 617 is introduced and demonstrated to investigate its reliability. Firstly, multi-pass dissimilar metal welding between P92 steel and Alloy 617 was performed using DCEN TIG welding technology, buttering welding technique and a narrow gap groove. After welding, in order to understand characteristics of the dissimilar metal welds, metallurgical micro-structures analysis by optical observation and static tensile strength assessment of the dissimilar welded joints were conducted at 700°C.

  6. Comparison of microstructural and mechanical properties of joints developed by high temperature brazing, GTAW and laser welding methods on AISI 316 L stainless steel for specific applications in nuclear components

    International Nuclear Information System (INIS)

    Venkatesu, Sadu; Saxena, Rajesh; Ravi Kumar, R.; Chaurasia, P.K; Murugan, S.; Venugopal, S.

    2016-01-01

    Fabrication of instrumented irradiation capsule for evaluating the irradiation performance of fuel and structural materials in a nuclear reactor requires development of thin wall joints capable of withstanding high temperature and/or internal pressure. Thin wall joints for high temperature (∼550℃) applications can be made by laser beam welding (LBW), gas tungsten Arc welding (GTAW) and High Temperature Brazing (HLT) method

  7. Room-temperature cold-welding of gold nanoparticles for enhancing the electrooxidation of carbon monoxide.

    Science.gov (United States)

    Liu, Cai; Li, Yong-Jun; Sun, Shi-Gang; Yeung, Edward S

    2011-04-21

    A cold-welding strategy is proposed to rapidly join together Au nanoparticles (AuNPs) into two-dimensional continuous structures for enhancing the electrooxidation of carbon monoxide by injecting a mixture of ethanol and tolulene into the bottom of a AuNP solution. © The Royal Society of Chemistry 2011

  8. Experimental and theoretical investigations on temperature distribution at the joint interface for copper joints using ultrasonic welding

    Directory of Open Access Journals (Sweden)

    Elangovan Sooriya

    2014-01-01

    Full Text Available Ultrasonic welding is a solid-state joining process that produces joints by the application of high frequency vibratory energy in the work pieces held together under pressure without melting. Copper and its alloys are extensively used in electrical and electronic industry because of its excellent electrical and thermal properties. This paper mainly focused on temperature distribution and the influence of process parameters at the joint interface while joining copper sheets using ultrasonic welding process. Experiments are carried out using Cu sheets (0.2 mm and 0.3 mm thickness and the interface temperature is measured using Data Acquisition (DAQ System (thermocouple and thermal imager. Numerical and finite element based model for temperature distribution at the interface are developed and solved the same using Finite Difference Method (FDM and Finite Element Analysis (FEA. The results obtained from FDM and FEA model shows similar trend with experimental results and are found to be in good agreement.

  9. Influence of Step Annealing Temperature on the Microstructure and Pitting Corrosion Resistance of SDSS UNS S32760 Welds

    Science.gov (United States)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2011-12-01

    In the present work, the influence of step annealing heat treatment on the microstructure and pitting corrosion resistance of super duplex stainless steel UNS S32760 welds have been investigated. The pitting corrosion resistance in chloride solution was evaluated by potentiostatic measurements. The results showed that step annealing treatments in the temperature ranging from 550 to 1000 °C resulted in a precipitation of sigma phase and Cr2N along the ferrite/austenite and ferrite/ferrite boundaries. At this temperature range, the metastable pits mainly nucleated around the precipitates formed in the grain boundary and ferrite phase. Above 1050 °C, the microstructure contains only austenite and ferrite phases. At this condition, the critical pitting temperature of samples successfully arrived to the highest value obtained in this study.

  10. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  11. Austenitic stainless steel-to-ferritic steel transition joint welding for elevated temperature service

    International Nuclear Information System (INIS)

    King, J.F.; Goodwin, G.M.; Slaughter, G.M.

    1978-01-01

    Transition weld joints between ferritic steels and austenitic stainless steels are required for fossil-fired power plants and proposed nuclear plants. The experience with these dissimilar-metal transition joints has been generally satisfactory, but an increasing number of failures of these joints is occurring prematurely in service. These concerns with transition joint service history prompted a program to develop more reliable joints for application in proposed nuclear power plants

  12. Reactive Fusion Welding for Ultra-High Temperature Ceramic Composite Joining

    Science.gov (United States)

    2015-03-16

    istribution un lim it ed 13. SUPPLEMENTARY NOTES 14. ABSTRACT Plasm a and pulsed plasma arc w eld ing (PAW and PPAW) processes w ere used to fusion...were analyzed using scanning electron microscopy. 3.4 Microscopy Weldment specimens were cut perpendicular to the welding direction using a manual...Nikon; Epiphot 200; Tokyo, Japan) and scanning electron microscopy (Hitachi; S- 570; Tokyo, Japan). ZrB2 grain sizes in the parent material and heat

  13. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  14. The Effect of Temperature and Rotational Speed on Structure and Mechanical Properties of Cast Cu Base Alloy (Cu-Al-Si-Fe) Welded by Semisolid Stir Joining Method

    Science.gov (United States)

    Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak

    2015-12-01

    Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.

  15. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz; Soldadura T.I.G. de acero inoxidable. Modelo numerico para el calculo de temperaturas en la ZAT

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-07-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  16. Thermo-mechanical modelling of high temperature crack growth in electron beam welding of a CuCrZr alloy

    International Nuclear Information System (INIS)

    Wisniewski, J.

    2009-03-01

    The aim of this research thesis is to find out which crack initiation criteria can be applied in the case of electron beam welding of CuCrZr alloy components. After a literature survey on the high temperature cracking phenomenon, the author describes its microscopic origins and presents the main high temperature crack growth criteria. He reports metallurgical, thermal and mechanical characterizations of the studied alloy performed by optical, scanning electronic and transmission electronic microscopy, crystallographic analysis, residual stress determination using the hole method, mechanical testing at room and high temperature (from room temperature to 1000 C), determination of solidification route and of thermal conductivity, and thermal expansion measurements. He describes electron beam weldability tests performed on the alloy. As these tests are performed on simple geometry samples, they allow the high temperature crack growth to be observed. These experiments are then modelled using two finite element codes, Castem and Calcosoft. Then, after a presentation of the main hypotheses used in these numerical models, the author applies the high temperature crack growth criteria. Results obtained for theses criteria are then analysed and discussed

  17. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  18. Comparative study on the high-temperature tensile and creep properties of Alloy 617 base and weld metals

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Hong, Sung Deok; Kim, Yong Wan; Kim, Seon Jin; Park, Jae Young; Ekaputra, I. M. W.

    2013-01-01

    This paper presents a comparative investigation on the high-temperature tensile and creep properties of Alloy 617 base metal (BM) and weld metal (WM) fabricated by a gas tungsten arc weld process. The WM had higher yield strength and lower ultimate tensile strength than the BM does; however, its elongation was significantly lower than that of the BM. The creep curve of the BM and WM was somewhat different from that of typical heat-resistance steel, and did not show a textbook creep. The WM exhibited a longer creep rupture life, lower creep rate, and lower rupture ductility than the BM. However, as the creep rupture time reached approximately 36,800 h, the creep life of the WM was expected to be almost similar to that of the BM; and after 36,800 h, its creep life was expected to be worse than the BM. Loner creep tests is needed to investigate the long-term creep life of the WM. The creep failure mode of the BM and WM was obviously an intergranular cracking of the cavity formation and growth mechanisms, although it was more evident in the WM. The BM had a more ductile fracture surface than the WM

  19. Comparison of CFD simulations to non-rotating MEXICO blades experiment in the LTT wind tunnel of TUDelft

    International Nuclear Information System (INIS)

    Zhang, Ye; Van Zuijlen, Alexander; Van Bussel, Gerard

    2014-01-01

    In this paper, three dimensional flow over non-rotating MEXICO blades is simulated by CFD methods. The numerical results are compared with the latest MEXICO wind turbine blades measurements obtained in the low speed low turbulence (LTT) wind tunnel of Delft University of Technology. This study aims to validate CFD codes by using these experimental data measured in well controlled conditions. In order to avoid use of wind tunnel corrections, both the blades and the wind tunnel test section are modelled in the simulations. The ability of Menter's k – ω shear stress transport (SST) turbulence model is investigated at both attached flow and massively separated flow cases. Steady state Reynolds averaged Navier Stokes (RANS) equations are solved in these computations. The pressure distribution at three measured sections are compared under the conditions of different inflow velocities and a range of angles of attack. The comparison shows that at attached flow condition, good agreement can be obtained for all three airfoil sections. Even with massively separated flow, still fairly good pressure distribution comparison can be found for the DU and NACA airfoil sections, although the RISØ section shows poor comparison. At the near stall case, considerable deviations exists on the forward half part of the upper surface for all three sections

  20. Mechanical behaviour of Astm A 297 grade Hp joints welded using different processes

    International Nuclear Information System (INIS)

    Emygdio, Paulo Roberto Oliveira; Zeemann, Annelise; Almeida, Luiz Henrique de

    1996-01-01

    The influence of different arc welding processes on mechanical behaviour was studied for cast heat resistant stainless steel welded joints, in the as welded conditions. ASTM A 297 grade HP with niobium and niobium/titanium additions were welded following three different welding procedures, using shielded metal arc welding gas tungsten arc welding and plasma arc welding, in six welded joints. The welded joint mechanical behaviour was evaluated by ambient temperature and 870 deg C tensile tests; and creep tests at 900 deg C and 50 MPa. Mechanical test results showed that the welding procedure qualification following welding codes is not suitable for high temperature service applications. (author)

  1. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  2. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  3. Tensile properties and impact toughness of S30408 stainless steel and its welded joints at cryogenic temperatures

    Science.gov (United States)

    Ding, Huiming; Wu, Yingzhe; Lu, Qunjie; Xu, Ping; Zheng, Jinyang; Wei, Lijun

    2018-06-01

    Designing a cryogenic pressure vessel based on the mechanical properties of the austenitic stainless steel (ASS) at its cryogenic operating temperature fully utilizes the potential of the material at low temperatures, resulting in lightweight and compact products. A series of tensile tests and impact tests were carried out in a wide range of 77-293 K, to investigate the mechanical properties of S30408 base metal (BM) and welded joints (WJ) at cryogenic temperatures. As the temperature decreases, yield stress (Rp0.2) and ultimate tensile stress (Rm) increase significantly thanks to the low-temperature strengthening effects. To estimate strengths at cryogenic temperatures, quadratic polynomial model was used to accurately predict the variations of Rp0.2 and Rm from 77 K to 293 K. As an important phase in the WJ, ferrite presents a radial pattern and an inhomogeneity in the WJ's cross-section. Due to the formation of ferrite in the WJ, the WJ has higher Rp0.2 and lower Rm , Charpy absorbed energy and lateral expansion compared with the BM. Strain-induced martensite transformation is an important role influencing the deformation of ASS at low temperatures. In this study, less martensite amount was measured in the weldment zone with higher Nickel equivalents which stabilize the austenite phase at cryogenic temperatures. Additionally, due to higher ferrite content and more precipitates forming, the SAW joints has lower Rm and impact toughness than PAW + GTAW joints. To ensure the structural integrity and safety, the PAW + GTAW method should be chosen and ferrite content be controlled.

  4. Interfacial failure in dissimilar weld joint of high boron 9% chromium steel and nickel-based alloy under high-temperature creep condition

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Tetsuya, E-mail: MATSUNAGA.Tetsuya@nims.go.jp; Hongo, Hiromichi, E-mail: HONGO.Hiromichi@nims.go.jp; Tabuchi, Masaaki, E-mail: TABUCHI.Masaaki@nims.go.jp

    2017-05-17

    The advanced ultra-supercritical (A-USC) power generation system is expected to become the next-generation base-load power station in Japan. Dissimilar weld joints between high-Cr heat-resistant steels and nickel-based alloys with a nickel-based filler metal (Alloy 82) will need to be adopted for this purpose. However, interfacial failure between the steels and weld metal has been observed under high-temperature creep conditions. Fractography and microstructure observations showed the failure initiated in a brittle manner by an oxide notch at the bottom of the U-groove. The fracture then proceeded along the bond line in a ductile manner with shallow dimples, where micro-Vickers hardness tests showed remarkable softening in the steel next to the bond line. In addition, the steel showed a much larger total elongation and reduction of area than the weld metal at low stresses under long-term creep conditions, leading to mismatch deformation at the interface. According to the results, it can be concluded that the interfacial failure between the 9Cr steels and Alloy 82 weld metal is initiated by an oxide notch and promoted by softening and the difference in the plasticity of the steels and weld metal.

  5. Weldability and weld performance of a special grade Hastelloy-X modified for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Shimizu, S.; Mutoh, Y.

    1984-01-01

    The characteristics of weld defects in the electron beam (EB) welding and the tungsten inert gas (TIG) arc welding for Hastelloy-XR, a modified version of Hastelloy-X, are clarified through the bead-on-plate test and the Trans-Varestraint test. Based on the results, weldabilities on EB and TIG weldings for Hastelloy-XR are discussed and found to be almost the same as Hastelloy-X. The creep rupture behaviors of the welded joints are evaluated by employing data on creep properties of the base and the weld metals. According to the evaluation, the creep rupture strength of the EB-welded joint may be superior to that of the TIG-welded joint. The corrosion test in helium containing certain impurities is conducted for the weld metals. There is no significant difference of such corrosion characteristics as weight gain, internal oxidation, depleted zone, and so on between the base and the weld metals. Those are superior to Hastelloy-X

  6. Calculation of temperature fields formed in induction annealing of closing welded joint of jacket of steam generator for WWER 440 type nuclear power plant using ICL 2960 computer

    International Nuclear Information System (INIS)

    Sajnar, P.; Fiala, J.

    1983-01-01

    The problems are discussed of the mathematical description and simulation of temperature fields in annealing the closing weld of the steam generator jacket of the WWER 440 nuclear power plant. The basic principles are given of induction annealing, the method of calculating temperature fields is indicated and the mathematical description is given of boundary conditions on the outer and inner surfaces of the steam generator jacket for the computation of temperature fields arising during annealing. Also described are the methods of determining the temperature of exposed parts of heat exchange tubes inside the steam generator and the technical possibilities are assessed of the annealing equipment from the point of view of its computer simulation. Five alternatives are given for the computation of temperature fields in the area around the weld for different boundary conditions. The values are given of maximum differences in the temperatures of the metal in the annealed part of the steam generator jacket which allow the assessment of individual computation variants, this mainly from the point of view of observing the course of annealing temperature in the required width of the annealed jacket of the steam generator along both sides of the closing weld. (B.S.)

  7. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-08-01

    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  8. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  9. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    International Nuclear Information System (INIS)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  10. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  11. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  12. Method for welding beryllium

    Science.gov (United States)

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  13. Method for welding beryllium

    International Nuclear Information System (INIS)

    Dixon, R.D.; Smith, F.M.; O'Leary, R.F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs

  14. The effects of welded joint characteristics on its properties in HDPE thermal fusion welding

    Science.gov (United States)

    Dai, Hongbin; Peng, Jun

    2017-05-01

    In this paper, PE100 pipes with the diameter of 200 mm and the thickness of 11.9 mm were used as material. The welded joints were obtained in different welding pressures with the optimal welding temperature of 220∘C. Reheating process on the welded joints with the temperature of 130∘C was carried out. The joints exhibited X-type, and the cause of X-type joints was discussed. The temperature field in the forming process of welded joints was measured, and tensile and bending tests on welded joints were carried out. The fracture surface of welded joints was observed by scanning electron microscopy (SEM), and crystallinity calculation was taken by X-ray diffraction (XRD). The mechanism of X-type weld profile effects on welded joints properties was analyzed. It was concluded that the mechanical properties of welded joints decrease with the reduced X distance between lines.

  15. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  16. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  17. Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding

    International Nuclear Information System (INIS)

    Wang, Guilong; Zhao, Guoqun; Wang, Xiaoxin

    2013-01-01

    Highlights: ► Higher cavity surface temperature reduces tensile strength of non-weldline part. ► Higher cavity surface temperature increases weldline tensile strength for PS and PP. ► Higher cavity surface temperature reduces weldline tensile strength for ABS, ABS/PMMA, ABS/PMMA/nano-C a CO 3 and FRPP. ► Tensile strength is reduced more by the weldline than impact strength. ► FRPP has the lowest weld line factor than other plastics without reinforced fibers. - Abstract: Rapid heat cycle molding (RHCM) is a recently developed injection molding technology to enhance surface esthetic of the parts. By rapid heating and cooling of mold cavity surfaces in molding process, it can greatly alleviate or even eliminate the surface defects such as flow mark, weld line, glass fiber rich surface, silver mark, jetting mark, and swirl mark, and also improve gloss finish and dimensional accuracy without prolonging the molding cycle. Besides surface esthetic, mechanical property is also a very import issue for the molded plastic part. The aim of this study is focusing on the effects of the cavity surface temperature just before filling, T cs , in RHCM on the mechanical strength of the specimen with and without weld line. Six kinds of typical plastics including polystyrene (PS), polypropylene (PP), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/polymethylmethacrylate (ABS/PMMA), ABS/PMMA/nano-C a CO 3 and glass fiber reinforced polypropylene (FRPP) are used in experiments. The specimens with and without a weld line are produced with the different T cs on the developed electric-heating RHCM system. Tensile tests and notched Izod impact tests are conducted to characterize the mechanical strength of the specimens molded with different cavity surface temperatures. Simulations, differential scanning calorimetry (DSC), scanning electron microscope (SEM) and optical microscope are implemented to explain the impact mechanism of T cs on mechanical properties

  18. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    International Nuclear Information System (INIS)

    Yousef, Adel K. M.; Taha, Ziad A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied.Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  19. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water

    International Nuclear Information System (INIS)

    Lu Zhanpeng; Shoji, Tetsuo; Meng Fanjiang; Xue He; Qiu Yubing; Takeda, Yoichi; Negishi, Koji

    2011-01-01

    Research highlights: → Away from the fusion line, kernel average misorientation and hardness decrease. → Away from the fusion line, the fraction of Σ3 boundaries increases. → Crack growth in high temperature water correlates to kernel average misorientation and hardness. → SCC along random boundaries as well as extensive intergranular branching near the fusion line. - Abstract: Microstructure and local deformation in 316NG weld heat-affected zones were measured by electron-back scattering diffraction and hardness measurements. With increasing the distance from the fusion line, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Stress corrosion cracking growth rates in high temperature water were measured at different locations in the heat-affected zones that correspond to different levels of strain-hardening represented by kernel average misorientation and hardness distribution. Intergranular cracking along random boundaries as well as extensive intergranular crack branching is observed in the heat-affected zone near the weld fusion line.

  20. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  1. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  2. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  3. Half bead welding technique

    International Nuclear Information System (INIS)

    Canonico, D.A.; Holz, P.P.

    1978-05-01

    The ORNL has employed the Section XI half-bead procedure for six repair welds. Table 2 identifies the repairs and the components upon which they were accomplished. The weld repairs were performed to permit us to evaluate material properties, residual stresses, weld repair procedures, and structural behavior of repaired pressure vessels. As a consequence of our study we concluded that when the half bead procedure is correctly applied: (1) there is no metallurgical degradation of the base material, (2) residual stresses of yield point magnitude will be present, and (3) the structural integrity of the pressure vessel is not impaired at Charpy V-notch upper shelf temperatures

  4. Attachment of lead wires to thin film thermocouples mounted on high temperature materials using the parallel gap welding process

    Science.gov (United States)

    Holanda, Raymond; Kim, Walter S.; Pencil, Eric; Groth, Mary; Danzey, Gerald A.

    1990-01-01

    Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C.

  5. Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G., E-mail: fieldkg@ornl.gov; Gussev, Maxim N., E-mail: gussevmn@ornl.gov; Yamamoto, Yukinori, E-mail: yamamotoy@ornl.gov; Snead, Lance L., E-mail: sneadll@ornl.gov

    2014-11-15

    Ferritic-structured Fe–Cr–Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe–(13–17.5)Cr–(3–4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  6. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  7. Physical bases for diffusion welding processes optimization

    International Nuclear Information System (INIS)

    Bulygina, S.M.; Berber, N.N.; Mukhambetov, D.G.

    1999-01-01

    One of wide-spread method of different materials joint is diffusion welding. It has being brought off at the expense of mutual diffusion of atoms of contacting surfaces under long-duration curing at its heating and compression. Welding regime in dependence from properties of welding details is defining of three parameters: temperature, pressure, time. Problem of diffusion welding optimization concludes in determination less values of these parameters, complying with requirements for quality of welded joint. In the work experiments on diffusion welding for calculated temperature and for given surface's roughness were carried out. Tests conduct on samples of iron and iron-nickel alloy with size 1·1·1 cm 3 . Optimal regime of diffusion welding of examined samples in vacuum is defined. It includes compression of welding samples, heating, isothermal holding at temperature 650 deg C during 0.5 h and affords the required homogeneity of joint

  8. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  9. High temperature corrosion studies on friction welded low alloy steel and stainless steel in air and molten salt environment at 650 oC

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Narayanan, S.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2012-01-01

    Highlights: → Thermogravimetric analysis on friction welded AISI 304 with AISI 4140 exposed in air and molten salt environment. → Comparative study on friction welded AISI 4140 with AISI 304 exposed in air, Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. → SEM/EDAX, XRD analysis on corroded dissimilar AISI 304 and AISI 4140 materials. -- Abstract: The investigation on high-temperature corrosion resistance of the weldments is necessary for prolonged service lifetime of the components used in corrosive environments. This paper reports on the performance of friction welded low alloy steel AISI 4140 and stainless steel AISI 304 in air as well as molten salt environment of Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. This paper reports several studies carried out for characterizing the weldments corrosion behavior. Initially thermogravimetric technique was used to establish the kinetics of corrosion. For analyzing the corrosion products, X-ray diffraction, scanning electron microscopy/energy-dispersive analysis and electron probe micro analysis techniques were used. From the results of the experiments, it is observed that the weldments suffered accelerated corrosion in NaCl-Na 2 SO 4 environment and showed spalling/sputtering of the oxide scale. Furthermore, corrosion resistance of weld interface was found to be lower than that of parent metals in molten salt environment. Weight gain kinetics in air oxidation studies reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. Moreover NaCl is the main corrosive species in high temperature corrosion, involving mixtures of NaCl and Na 2 SO 4 which is responsible for formation of internal attack.

  10. Effects of tempering temperature on microstructural evolution and mechanical properties of high-strength low-alloy D6AC plasma arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Ming, E-mail: chunming@ntut.edu.tw [Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Lu, Chi-Hao [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10673, Taiwan (China)

    2016-10-31

    This study prepared high-strength low-alloy (HSLA) D6AC weldments using a plasma arc welding (PAW) process. The PAW weldments were then tempered at temperatures of 300 °C, 450 °C, and 600 °C for 1000 min. Microstructural characteristics of the weld in as-welded HSLA-D6AC, tempered D6AC, and tensile-tested D6AC were observed via optical microscopy (OM). We also investigated the hardness, tensile strength, and V-notched tensile strength (NTS) of the tempered specimens using a Vickers hardness tester and a universal testing machine. The fracture surfaces of the specimens were observed using a scanning electron microscope (SEM). Our results show that the mechanical properties and microstructural features of the HSLA weldments are strongly dependent on tempering temperature. An increase in tempering temperature led to a decrease in the hardness and tensile strength of the weldments but led to an increase in ductility. These effects can be attributed to the transformation of the microstructure and its effect on fracture characteristics. The specimens tempered at 300 °C and 450 °C failed in a ductile-brittle manner due to the presence of inter-lath austenite in the microstructure. After tempering at a higher temperature of 600 °C, martensite embrittlement did not occur, such that specimens failure was predominantly in a ductile manner. In the NTS specimens, an increase in tempering temperature led to a reduction in tensile strength due to notch embrittlement and the effects of grain boundary thickening and sliding. Our findings provide a valuable reference for the application of HSLA-D6AC steel in engineering and other fields.

  11. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  12. Low-cycle fatigue and cyclic deformation behavior of Type 16-8-2 weld metal at elevated temperature

    International Nuclear Information System (INIS)

    Raske, D.T.

    1977-01-01

    The low-cycle fatigue behavior of Type 16-8-2 stainless steel ASA weld metal at 593 0 C was investigated, and the results are compared with existing data for Type 316 stainless steel base metal. Tests were conducted under axial strain control and at a constant axial strain rate of 4 x 10 -3 s -1 for continuous cyclic loadings as well as hold times at peak tensile strain. Uniform-gauge specimens were machined longitudinally from the surface and root areas of 25.4-mm-thick welded plate and tested in the as-welded condition. Results indicate that the low-cycle fatigue resistance of this weld metal is somewhat better than that of the base metal for continuous-cycling conditions and significantly better for tension hold-time tests. This is attributed to the fine duplex delta ferrite-austenite microstructure in the weld metal. The initial monotonic tensile properties and the cyclic stress-strain behavior of this material were also determined. Because the cyclic changes in mechanical properties are strain-history dependent, a unique cyclic stress-strain curve does not exist for this material

  13. Galvanic corrosion of beryllium welds

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl - solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed

  14. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  15. Automatic monitoring of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  16. 46 CFR 154.665 - Welding procedures.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design temperature...

  17. Corrosion of carbon steel welds

    International Nuclear Information System (INIS)

    Daniel, B.

    1988-09-01

    This report assesses the factors which cause preferential attack to occur in carbon steel fusion welds. It was concluded that the main factors were: the inclusion content of the weld metal, the potential of the weld metal being less noble than that of the parent, and the presence of low-temperature transformation products in the heat-affected zone of the weld. These factors should be minimized or eliminated as appropriate so that the corrosion allowances determined for carbon steel waste drums is also adequate for the welds. An experimental/theoretical approach is recommended to evaluate the relative corrosion resistance of welds prepared from BS 4360 grade 43A steel to that of the parent material. (author)

  18. Determination of the primary technical parameters of the test bench for controlling the temperature of rails and rail bars of continuous welded rail

    Directory of Open Access Journals (Sweden)

    Tertychnyi Vitalii

    2017-01-01

    Full Text Available One of the most important factors determining the reliability and safety of operation of the continuous welded rail track is the temperature of the rails. All conditions of laying, repair and maintenance of the track during the entire cycle of rails operation depend on it. The existing rail temperature monitoring method does not take into account a few significant factors and that leads to significant errors in determining the actual temperature of the rail bar. The authors propose a new rail temperature measurement method on a special test bench which maximally simulates possible environmental operating conditions for the rail bars, the profile of the roadway (embankment or cut, as well as the actual spatial latitude and meridian location of the rail slabs. At the bench, the studied rails are fastened with the help of rail braces on half ties, in the ballast bed, with sizes in accordance with the existing reference documents. At the first stage, the most common KB-65 intermediate fastener for the continuous welded rail in Ukraine will be used, while in subsequent stages KPP-5 fastening will be used.

  19. High-Temperature Tensile Behaviors of Base Metal and Electron Beam-Welded Joints of Ni-20Cr-9Mo-4Nb Superalloy

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Sukumaran, Arjun; Kumar, Vinod

    2018-05-01

    Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s-1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of 90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent `n' of the base metal and weldment was 0.519. Activation energy `Q' of base metal and EB weldments were 420 to 535 kJ mol-1 determined through isothermal tensile tests and 625 to 662 kJ mol-1 through jump-temperature tensile tests. Strain rate sensitivity `m' was low ( 775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.

  20. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  1. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  2. Preventing hydrogen-including cracking after welding of pressure vessel steels by use of low temperature postweld heat treatments

    International Nuclear Information System (INIS)

    Schulze, G.

    1977-01-01

    Based on extensive literature evaluations and an experimental programme, the possibilities and limits of avoiding hydrogen-induced cracking in welded joints through heat treatment are presented. The author refers to a report by J.S. Caplan and E. Landerman, published in 1976. (orig./IHOE) [de

  3. Low-Temperature Aging of Delta-Ferrite in 316L SS Welds; Changes in Mechanical Properties and Etching Properties

    Science.gov (United States)

    Abe, Hiroshi; Shimizu, Keita; Watanabe, Yutaka

    Thermal aging embrittlement of LWR components made of stainless cast (e.g. CF-8 and CF-8M) is a potential degradation issue, and careful attention has been paid on it. Although welds of austenitic stainless steels (SSs) have γ-δ duplex microstructure, which is similar to that of the stainless cast, examination on thermal aging characteristics of the SS welds is very limited. In order to evaluate thermal aging behavior of weld metal of austenitic stainless steel, the 316L SS weld metal has been prepared and changes in mechanical properties and in etching properties at isothermal aging at 335°C have been investigated. The hardness of the ferrite phase has increased with aging, while the hardness of austenite phase has stayed same. It has been suggested that spinodal decomposition has occurred in δ-ferrite by the 335°C aging. The etching rates of δ-ferrite at immersion test in 5wt% hydrochloric acid solution have been also investigated using an AFM technique. The etching rate of ferrite phase has decreased consistently with the increase in hardness of ferrite phase. It has been thought that this characteristic is also caused by spinodal decomposition of ferrite into chromium-rich (α') and iron-rich (α).

  4. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  5. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  6. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    Mills, W.J.

    1985-11-01

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  7. Arc modeling for welding analysis

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-04-01

    A one-dimensional model of the welding arc that considers heat generation by the Joule effect and heat losses by radiation and conduction has been used to study the effects of various gases and gas mixtures currently employed for welding applications. Minor additions of low ionization potential impurities to these gases are shown to significantly perturb the electrical properties of the parent gas causing gross changes in the radial temperature distribution of the arc discharge. Such changes are reflected in the current density distribution and ultimately in the input energy distribution to the weldment. The result is observed as a variation in weld penetration. Recently published experiments and analyses of welding arcs are also evaluated and shown to contain erroneous data and results. Contrary to previous beliefs, the inclusion of a radiation loss term in the basic energy balance equation is important and cannot be considered as negligible in an argon arc at temperatures as low as 10,000 0 K. The one-dimensional analysis of the welding arc as well as the evaluation of these earlier published reports helps to explain the effects of various gases used for welding, improves our understanding of the physics of the welding arc, and provides a stepping stone for a more elaborate model which can be applied to help optimize welding parameters

  8. Simplified welding distortion analysis for fillet welding using composite shell elements

    Directory of Open Access Journals (Sweden)

    Mingyu Kim

    2015-05-01

    Full Text Available This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  9. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  10. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  11. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    International Nuclear Information System (INIS)

    Zirker, Larry; Jerred, Nathan; Charit, Indrajit; Cole, James

    2012-01-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  12. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  13. Thermal Stresses in Welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær

    1998-01-01

    Studies of the transient temperature fields and the hereby induced deformations and stressses in a butt-welded mild steel plate modelledrespectively in 2D plane stress state (as well as plane strain state) and in full 3D have been done. The model has been implemented in the generalpurpose FE...

  14. Modelling of microstructural creep damage in welded joints of 316L stainless steel; Modelisation de l'endommagement a haute temperature dans le metal d'apport des joints soudes d'acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Bouche, G

    2000-07-01

    Welded joints of 316L stainless steel under service conditions at elevated temperature are known to be preferential sites of creep damage, as compared to the base material. This damage results in the formation of cavities and the development of creep cracks which can lead to a premature failure of welded components. The complex two-phase microstructure of 316L welds was simulated by manually filling a mould with longitudinal deposited weld beads. The moulded material was then aged during 2000 hours at 600 deg. C. High resolution Scanning Electron Microscopy was largely used to examine the microstructure of the simulated material before and after ageing. Smooth and notched creep specimens were cut from the mould and tested at 600 deg. C under various stress levels. A comparison of the lifetime versus nominal stress curves for the base and welded materials shows a greater dependence of the welded material to creep phenomena. Observation and EBSD analysis show that damage is preferentially located along the austenite grain boundaries. The stress and strain fields in the notched specimens were calculated by finite element method. A correlation of this field to the observed damage was made in order to propose a predictive law relating the creep damage to the mechanical conditions applied locally. Further mechanical tests and simulation on CT specimens and mode II tubular specimens allowed validating the model under various multiaxial loading conditions. (author)

  15. Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach.

    Science.gov (United States)

    Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen

    2016-08-09

    A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design.

  16. Joining of Cu-Mg-Mn Aluminum Alloy with Linear Friction Welding

    OpenAIRE

    A. Medvedev; V. Bychkov; A. Selivanov; Yu. J. Ershova; B. Bolshakov; I.V. Alexаndrov; F. F. Musin

    2014-01-01

    Al-Cu-Mg-Mn alloy samples were joined together with linear friction welding in two conditions, as is, without pretreatment, and after etching the welding interface. The effect of the welding interface condition was evaluated based on microstructure analysis, microhardness and tensile testing at room temperature. Also, the temperature distribution during welding was estimated with an analytical one-dimensional heat conduction model of the welding process and welding process data

  17. Welding development for LMFBR applications

    International Nuclear Information System (INIS)

    Slaughter, G.M.; Edmonds, D.P.; Goodwin, G.M.; King, J.F.; Moorhead, A.J.

    1976-01-01

    High-quality welds with suitable properties for long-time elevated-temperature nuclear service are among the most critical needs in today's welding technology. Safe, reliable, and economic generation of future power depends on welded construction in systems such as Liquid Metal Fast Breeder Reactors (LMFBRs). Rapid thermal transients in LMFBR systems at coolant temperatures around 590 to 650 0 C (1000 to 1200 0 F) could cause creep and creep-fatigue damage that is not encountered in lower temperature reactor systems. The undesirable consequences of interaction between the two working fluids - sodium and steam - in the steam generators are also of major concern. Thus sound welds that have excellent reliability over a 30-year service life are essential. Several programs are actively underway at ORNL to satisfy this critical need and selected portions of three of these programs are discussed briefly

  18. Welding abilities of UFG metals

    Science.gov (United States)

    Morawiński, Łukasz; Chmielewski, Tomasz; Olejnik, Lech; Buffa, Gianluca; Campanella, Davide; Fratini, Livan

    2018-05-01

    Ultrafine Grained (UFG) metals are characterized by an average grain size of welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone. Therefore, the possibility of obtaining UFG materials joints with different shearing plane (SP) positions by means of friction welded processes, which do not exceed the melting temperature during the process, should be investigated. The article focuses on the Linear Friction Welding (LFW) method, which belongs to innovative welding processes based on mixing of the friction-heated material in the solid state. LFW is a welding process used to joint bulk components. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. Character and range of recrystallization can be controlled by changing LFW parameters. Experimental study on the welded UFG 1070 aluminum alloy by means of FLW method, indicates the possibility of reducing the UFG structure degradation in the obtained joint. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency.

  19. Riittääkö rahat? – Korkeakouluopiskelijoiden näkemyksiä välttämättömästä kulutuksesta pääkaupunkiseudulla

    OpenAIRE

    Nurminen, Hanna

    2015-01-01

    Tutkielmassa tarkastellaan korkeakouluopiskelijoiden välttämätöntä kulutusta pääkaupunkiseudulla. Tutkimuksessa on hyödynnetty konsensuaalisella eli kuluttajalähtöisellä menetelmällä rakennettuja viitebudjetteja, joissa opiskelijat osallistuvat viitebudjettien laadintaan. Tutkimusaineisto on kerätty neljässä ryhmähaastattelussa, joihin osallistui yhteensä 19 korkeakouluopiskelijaa. Ryhmähaastatteluiden pohjalta olen rakentanut korkeakouluopiskelijoille kohtuullisen minimin mukaisen viitebudje...

  20. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  1. Welding process

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    For the final chapter of this book, there is basic introduction on welding process. The good radiography must know somehow on welding process so that they can know what kind of welding that must rejected or not. All of the exposure technique that mention in earlier chapter almost applicable in this field because welding process is critical problem if there is no inspection will be done. So, for this chapter, all the discontinuity that usually appeared will be discussed and there is another discontinuity maybe not to important and do not give big impact if found it, do not described here. On top of that, the decision to accept or reject based on code, standard and specification that agreed by both to make sure that decision that agreed is corrected and more meaningful.

  2. The tensile properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    1985-01-01

    Elevated temperature tensile data on Mo containing and Mo free austenitic weld metals have been collected from French, German and UK sources and the results analysed. In the as welded condition the proof strength is significantly higher than that of wrought material and Mo containing weld metal is stronger than Mo free weld metal. The differences in UTS values are not so marked, and on average at temperatures above 400 0 the weld metal UTS is slightly lower than that of wrought material. The ductility of weld metal is significantly lower than that for wrought material. 7 refs, 2 tables, 20 figs

  3. Welding processes and ocular hazards and protection.

    Science.gov (United States)

    Pabley, A S; Keeney, A H

    1981-07-01

    There are approximately 60 different forms of welding, but only six of these are commonly used. Shielded metal-arc or stick welding, gas metal-arc welding, and oxyacetylene welding are the most frequently used. All produce ultraviolet, visible, and infrared radiation at damaging levels. Conventional glass welding shields contain ultraviolet, visible, and infrared absorbers. Infrared absorbers, however, cause heating and secondary re-radiation. New polycarbonate lenses offer greater impact resistance, and have less tendency to welding spatter. Early abrasion-resistant and reflective coatings on plastics were ineffective. Thin layers of gold with proprietary coatings provide cool reflection and surface resistance. Thermal monitoring of welding indicated that these new shields reduce temperature rises above the ambient by 150% to 175% compared to green glass filter plates without interfering with the welder's vision.

  4. Advances in solar cell welding technology

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, L.G.; Lott, D.R.

    1982-09-01

    In addition to developing the rigid substrate welded conventional cell panels for an earlier U.S. flight program, LMSC recently demonstrated a welded lightweight array system using both 2 x 4 and 5.9 x 5.9 cm wraparound solar cells. This weld system uses infrared sensing of weld joint temperature at the cell contact metalization interface to precisely control weld energy on each joint. Modules fabricated using this weld control system survived lowearth-orbit simulated 5-year tests (over 30,000 cycles) without joint failure. The data from these specifically configured modules, printed circuit substrate with copper interconnect and dielectric wraparound solar cells, can be used as a basis for developing weld schedules for additional cell array panel types.

  5. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  6. Investigation on various welding consumables on properties of ...

    Indian Academy of Sciences (India)

    Pritesh Prajapati

    2017-08-28

    Aug 28, 2017 ... Department of Mechanical Engineering, School of Technology, Pandit Deendayal ... was studied by automatic gas metal arc welding under constant voltage mode. ..... During welding, the temperature measurements were car-.

  7. Full scale test SSP 34m blade, edgewise loading LTT. Extreme load and PoC{sub I}nvE Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Roczek-Sieradzan, A.; Jensen, Find M. (and others)

    2010-09-15

    This report is the second report covering the research and demonstration project 'Experimental blade research: Structural mechanisms in current and future large blades under combined loading', supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risoe load, where 80% Risoe load corresponds to 100% certification load. These pulls at 80% Risoe load were repeated and the results from these pulls were compared. The blade was reinforced according to a Risoe DTU invention, where the trailing edge panels are coupled. The coupling is implemented to prevent the out of plane deformations and to reduce peeling stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risoe load and the results applicable for the investigation of the influence of the invention on the profile deformation. (Author)

  8. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    International Nuclear Information System (INIS)

    Liang, G.L.; Zhou, G.; Yuan, S.Q.

    2009-01-01

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure

  9. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Liang, G.L. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)], E-mail: guoliliang@sohu.com; Zhou, G. [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, S.Q. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)

    2009-01-15

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure.

  10. Investigation on Mechanical Properties of Austenitic Stainless-Steel Pipes Welded by TIG Method

    Directory of Open Access Journals (Sweden)

    Mushtaq Albdiry

    2017-11-01

    Full Text Available This paper investigates the mechanical properties of austenitic stainless steel (type 204 pipes welded by Tungsten Inert Gas (TIG welding process. Testing of hardness (HRC, tensile strength and bending strength was performed for the steel pipes welded at two different welding temperatures (700 °C and 900 °C with and without using the weld filler wire. The microstructure of the welding regions was examined by using an optical microscopy. The properties showed that the steel pipes welded by 900 °C with using the weld filler obtained the highest tensile strength and bending strength versus these welded by 700 °C without the use of the weld filler. This is attributed to the weld filler heated and melt at sufficient temperature (900 °C and compensate losing in the Ni metal occurred in the base steel metal during the welding process.

  11. Effect of Trailing Intensive Cooling on Residual Stress and Welding Distortion of Friction Stir Welded 2060 Al-Li Alloy

    Science.gov (United States)

    Ji, Shude; Yang, Zhanpeng; Wen, Quan; Yue, Yumei; Zhang, Liguo

    2018-04-01

    Trailing intensive cooling with liquid nitrogen has successfully applied to friction stir welding of 2 mm thick 2060 Al-Li alloy. Welding temperature, plastic strain, residual stress and distortion of 2060 Al-Li alloy butt-joint are compared and discussed between conventional cooling and trailing intensive cooling using experimental and numerical simulation methods. The results reveal that trailing intensive cooling is beneficial to shrink high temperature area, reduce peak temperature and decrease plastic strain during friction stir welding process. In addition, the reduction degree of plastic strain outside weld is smaller than that inside weld. Welding distortion presents an anti-saddle shape. Compared with conventional cooling, the reductions of welding distortion and longitudinal residual stresses of welding joint under intense cooling reach 47.7 % and 23.8 %, respectively.

  12. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    International Nuclear Information System (INIS)

    Toropchin, A; Frolov, V; Pipa, A V; Kozakov, R; Uhrlandt, D

    2014-01-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results

  13. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    Science.gov (United States)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  14. Role of heat equation in lap joint for welding process

    Science.gov (United States)

    Kumar, P.; Rohit, Sooraj

    2017-07-01

    Welding is predominantly used in industrial purposes and growth in their industry, which gives exact welding and more efficient. The major advantage of using this welding technique at initial stage it takes very low heat to weld the portion and gives a good result of low distortion in modules. In this context, two dissimilar metals copper and nickel are chosen for analysis in tungsten inert gas welding (TIG) in which length is 300 mm and breadth is 100 mm thickness 15 mm welded at room temperature a welded portion zone is formed simulation analysis has done on CATIA® and ANSYS®and MATLAB® code is generated for calculating temperatures at each node to calculate temperature at each node a new technique is used tri-diagonal matrix algorithm is used (TDMA) Steady state one dimension heat is calculated results compared between simulation analysis and analytical analysis temperature at each node is calculated both the temperatures are equal with error.

  15. In-situ X-ray residual stress measurement on a peened alloy 600 weld metal at elevated temperature under tensile load

    International Nuclear Information System (INIS)

    Yunomura, Tomoaki; Maeguchi, Takaharu; Kurimura, Takayuki

    2014-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) on surface of alloy 600 weld metal (alloy 132) was investigated by in-situ X-ray residual stress measurement under thermal aging and stress condition considered for actual plant operation. Surface residual stress change was observed at the early stage of thermal aging at 360°C, but no significant further stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. For the X-ray residual stress measurement, X-ray stress constant at room temperature for alloy 600 was determined experimentally with several surface treatment and existence of applied strain. The X-ray stress constant at elevated temperatures were extrapolated theoretically based on the X-ray stress constant at room temperature for alloy 600. (author)

  16. Weld residual stress according to the ways of heat input in the simulation of weld process using finite element analysis

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    This paper is to discuss distribution of welding residual stresses of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two Dimensional (2D) thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed and fabrication data. On performing the welding analysis generally, the characteristics on the heat input and heat transfer of weld are affected on the weld residual stress analyses. Thermal analyses in the welding heat cycle process is very important process in weld residual stress analyses. Therefore, heat is rapidly input to the weld pass material, using internal volumetric heat generation, at a rate which raises the peak weld metal temperature to 2200 .deg. C and the base metal adjacent to the weld to about 1400 .deg. C. These are approximately the temperature that the weld metal and surrounding base materials reach during welding. Also, According to the various ways of applying the weld heat source, the predicted residual stress results are compared with measured axial, hoop and radial through-wall profiles in the heat affected zone of test component. Also, those results are compared with those of full 3-dimensional simulation

  17. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; King, J.F.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  18. Welding template

    International Nuclear Information System (INIS)

    Ben Venue, R.J. of.

    1976-01-01

    A welding template is described which is used to weld strip material into a cellular grid structure for the accommodation of fuel elements in a nuclear reactor. On a base plate the template carries a multitude of cylindrical pins whose upper half is narrower than the bottom half and only one of which is attached to the base plate. The others are arrested in a hexagonal array by oblong webs clamped together by chuck jaws which can be secured by means of screws. The parts are ground very accurately. The template according to the invention is very easy to make. (UWI) [de

  19. Creep properties of EB welded joint on Hastelloy X

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Susei, Shuzo; Shimizu, Shigeki; Satoh, Keisuke; Nagai, Hiroyoshi.

    1980-01-01

    In order to clarify the creep properties of EB welds on Hastelloy X which is one of the candidate alloys for components of VHTR, creep tests on EB weld metal and welded joint were carried out. The results were discussed in comparison with those of base metal and TIG welds. Further, EB welds were evaluated from the standpoint of high temperature structural design. The results obtained are summarized as follows. 1) Both creep rupture strengths of EB weld metal and EB welded joint are almost equal to that of base metal, but those of TIG welds are lower than base metal. As for the secondary creep rate, EB weld metal is higher and TIG weld metal is lower than base metal. As for the time to onset of tertiary creep, no remarkable difference among base metal, EB weld metal and TIG weld metal is observed. 2) In case of EB weld metal, although anisotropy is slightly observed, the ductility is same or more as compared with base metal. In case of TIG weld metal, on the contrary, anisotropy is not observed and the ductility is essentially low. 3) Such rupture morphology of EB weld metal as appears to have resulted from interconnection of voids which occurred at grain boundary is similar to base metal. In case of TIG weld metal, however, many cracks with sharp tips are observed at grain boundary, and the rupture appears to have occurred in brittle by propagation and connection of the cracks. 4) It can be said from the standpoint of high temperature structural design that EB welding is very suitable to welding for structure where creep effects are significant, because both of the creep ductility and the rupture strength are almost equal to those of base metal. (author)

  20. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Welding procedure. 154.180... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests for contiguous hull structure designed for a temperature colder than −18 °C (0 °F) must meet § 54.05-15 and...

  1. Thermal analysis of laser welding for ITER correction coil case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C., E-mail: fangchao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Y.T.; Wu, W.Y.; Wei, J.; Xin, J.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Wu, H.P.; Salminen, A. [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2015-11-15

    Highlights: • Morphology of simulated heat source is found to be close to the welded joint sample. • The FEA temperature distribution shows good agreement with experimental measurements. • Laser welding process used on ITER correction coil case will not harm the winding pack. - Abstract: This paper presents the simulation results of 3D finite element analysis (FEA) of laser welding processes for the ITER correction coil case welding; predicts the temperature distribution and compares it with the experimental result to evaluate the impact to the properties of winding pack during the welding process. A specimen of coil case was modeled and simulated by using specialized welding simulation software SYSWELD, Modeling used austenitic stainless steel 316LN as the specimen material and a 3D Conical Gaussian was used as a heat source model. A plate sample was welded before the FE modeling in order to obtain the laser welding parameters and the Gaussian parameters of molten pool. To verify the simulation results, a coil case sample was welded using laser welding with welding parameters that matched the model, and the corresponding temperature values were measured using thermocouples. Compared with the FEA results, it was found that the FEA temperature distribution shows good agreement with the experimental measurements and the laser welding process will not harm the winding pack.

  2. Weld repair of creep damaged steels

    International Nuclear Information System (INIS)

    Croker, A.B.L.; Harrison, R.P.; Moss, C.J.

    1995-01-01

    A cooperative research centre project 'Welding of Thermally Modified Structures' was commenced in June 1993 with support from ANSTO, CSIRO, BHP, University of Wollongong and the CRC for Materials, Welding and Joining. The main aims of the project are to quantify the effects of performing repair welds on materials which have operated for extended periods at elevated temperature. Welding is an increasingly used method for performing repairs, replacements, retrofits and modifications to elevated temperature plant, however, the effects of these repairs on the ultimate life of a component are poorly understood. This paper presents details of the three ex-service materials chosen for the project, a carbon steel and two alloy steels. Work is also presented on development of new methods of assessing materials and components both destructively, along with new methods of modelling welded components in high temperature service. 6 figs, 3 tabs

  3. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    Science.gov (United States)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  4. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    International Nuclear Information System (INIS)

    Boudreault, E; Hazel, B; Côté, J; Godin, S

    2014-01-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated C A6NM . This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named S compi . This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions

  5. The characteristics of welded joints for air conditioning application

    Science.gov (United States)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  6. Study of the temperature distribution on welded thin plates of duplex steel to be used for the external clad of a cask for transportation of radiopharmaceuticals products

    International Nuclear Information System (INIS)

    Betini, Evandro G.; Ceoni, Francisco C.; Mucsi, Cristiano S.; Politano, Rodolfo; Rossi, Jesualdo L.; Orlando, Marcos T.D.

    2015-01-01

    The clad material for a proprietary transport device for radiopharmaceutical products is the main focus of the present work. The production of 99 Mo- 99m Tc transport cask requires a receptacle or cask where the UNS S32304 duplex steel sheet has shown that it meets high demands as the required mechanical strength and the spread of impact or shock waves mitigation. This work reports the experimental efforts in recording the thermal distribution on autogenous thin plates of UNS S32304 steel during welding. The UNS S32304 duplex steel is the most probable candidate for the external clad of the containment package for the transport of radioactive substances so it is highly relevant the understanding of all its physical parameters and its behavior under the thermal cycle imposed by a welding process. For the welding of the UNS S32304 autogenous plates the GTAW (gas tungsten arc welding) process was used with a pure argon arc protection atmosphere in order to simulate a butt joint weld on a thin duplex steel plate without filler metal. The thermal cycles were recorded by means of K-type thermocouples embedded by electrical spot welding near the weld region and connected to a multi-channel data acquisition system. The obtained results validate the reliability of the experimental apparatus for the future complete analysis of the welding experiment and further comparison to numerical analysis. (author)

  7. Mechanical behaviour of dissimilar metal welds

    International Nuclear Information System (INIS)

    Escaravage, C.

    1990-01-01

    This report addresses the problems of dissimilar metal welds connecting an austenitic stainless steel component to a ferritic steel component. In LMFBRs such welds appear at the junction of the austenitic stainless steel vessel with the ferritic steel roof and in sodium and water or steam pipes. The latter are exposed to high temperatures in the creep range. A wide range of austenitic stainless steels and ferritic steels (carbon steels, low allow steels and alloy steels) are covered; the study encompasses more than 20 different weld metals (austenitic stainless steels and nickel base alloys). The report begins with a presentation of the materials, geometries and welding procedures treated in the study, followed by a review of service experience from examinations of dissimilar metal welds after elevated temperature service, in particular failed welds. Results of laboratory tests performed for reproducing service failures are then discussed. A further section is devoted to a review of test results on fatigue behaviour and impact toughness for dissimilar metal welded joints when creep is not significant. Finally, the problem of residual life assessment is addressed. A set of recommendations concludes the report. They concern the material selection, welding procedure, life prediction and testing of dissimilar metal welds. 84 refs

  8. Improving fatigue performance of rail thermite welds

    Science.gov (United States)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  9. Sensor controlled robotic welding for nuclear power plant operations

    International Nuclear Information System (INIS)

    Chin, B.A.

    1989-01-01

    The objective of the proposed research is to apply real time monitoring, artificial intelligence and on-line correction to dynamically control the depth of weld penetration and weld integrity during the welding process. Welding is a major technique used in the fabrication, construction and maintenance of power generating and energy conversion systems. In the welding process, fluctuations in process variables lead to weld defects such as lack of penetration, cracks, porosity and undesirable metallurgical structures. This research will apply advanced infrared sensing techniques which have been successfully used in seam tracking to the equally complex problem of weld defect and weld puddle penetration control. Thermal temperature distributions of plates being welded will be dynamically measured during welding using infrared techniques. These temperature distributions will be used to interpret changes in the size and shape of the molten metal pool and the presence of conditions that may lead to defects in the solidified weld. The ultimate result of this research will be the development of machines which are capable of sensing and altering process variables to eliminate defective welds and increase the productivity of the welding process. Successful completion of this proposed research will lead to potential major improvements in the fabrication, construction and maintenance of advanced nuclear reactors and promote increased safety and reliability while decreasing construction costs. 47 refs., 50 figs

  10. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  11. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  12. WELDABILITY, WELDING METALLURGY, WELDING CHEMISTRY

    OpenAIRE

    Sarjito Jokosisworo

    2012-01-01

    Sambungan las merupakan bagian penting dari stuktur/bangunan yang dilas, dan kunci dari logam induk yang baik adalah kemampuan las (weld ability). Kemampuan las yang baik dan kemudahan dalam fabrikasi dari suatu logam merupakan pertimbangan dalam memilih suatu logam untuk konstruksi.

  13. Effect of heat treatment on carbon steel pipe welds

    International Nuclear Information System (INIS)

    Mohamad Harun.

    1987-01-01

    The heat treatment to improve the altered properties of carbon steel pipe welds is described. Pipe critical components in oil, gasification and nuclear reactor plants require adequate room temperature toughness and high strength at both room and moderately elevated temperatures. Microstructure and microhardness across the welds were changed markedly by the welding process and heat treatment. The presentation of hardness fluctuation in the welds can produce premature failure. A number of heat treatments are suggested to improve the properties of the welds. (author) 8 figs., 5 refs

  14. Tubes of stainless steel - Welding of fuel elements for nuclear industry

    International Nuclear Information System (INIS)

    Bittencourt, M.S.Q.; Carvalho Perdigao, S. de

    1984-01-01

    Aiming at welding fuel elements of 316 AISI alloy steel by the TIG self generating process, the welding parameters which could provide. The major total penetration / width of welded fillet relation, were selected. Tensile tests at room temperature and at 650 0 C were done in the obtained welds. (M.C.K.) [pt

  15. INTERWELD - European project to determine irradiation induced material changes in the heat affected zones of austenitic stainless steel welds that influence the stress corrosion behaviour in high-temperature water

    International Nuclear Information System (INIS)

    Roth, A.; Schaaf, Bob van der; Castano, M.L.; Ohms, C.; Gavillet, D.; Dyck, S. van

    2003-01-01

    PWR and BWR RPV internals have experienced stress corrosion cracking in service. The objective of the INTERWELD project is to determine the radiation induced material changes that promote stress corrosion cracking in the heat affected zone of austenitic stainless steel welds. To achieve this goal, welds in austenitic stainless steel types AISI 304/347 have been fabricated, respectively. Stress-relief annealing was applied optionally. The pre-characterisation of both the as-welded and stress relieved material conditions comprises the examination of the weld residual stresses by the ring-core-technique and neutron diffraction, the degree of sensitisation by EPR, and the stress corrosion behaviour by SSRT testing in high-temperature water. The weldments will be irratiated to 2 neutron fluence levels and a postirradiation examination will determine micromechanical, microchemical and microstructural changes in the materials. In detail, the evolution of the residual stress levels and the stress corrosion behaviour after irradiation will be determined. Neutron diffraction will be utilized for the first time with respect to neutron irradiated material. In this paper, the current state of the project will be described and discussed. (orig.)

  16. Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.

    2017-12-01

    9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.

  17. Investigation of the Temperature Sensors Accuracy in the Temperature Monitoring System for the Welded Joints of the Industrial Power Supply Main Busways

    Science.gov (United States)

    Grivennaya, N. V.; Bazhenov, A. V.; Bondareva, G. A.; Malygin, S. V.; Knyaginin, A. A.

    2018-01-01

    The article is devoted to the substantiation of the technical solution of the remote monitoring system for the temperature changes of main and branch busways of power supply to industrial enterprises of increased environmental danger. When monitoring the temperature of trunk buses of AC mains up to 1000 V, heated by an electric current, errors occur due to various factors. Studies have been carried out to evaluate the effect of temperature of surrounding objects (including neighboring busbars) on the accuracy of temperature measurements. Conclusions are made about the possibility of using alternative versions of temperature sensors as the basis of the monitoring system.

  18. Effect of weld morphology on mechanical response and failure of friction stir welds in a naturally aged aluminium alloy

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: ► Friction stir welds of AA 6063-T4 are obtained using three tool pin profiles. ► Signature of weld defects in mechanical response of welds is investigated. ► Correlation between peak temperatures in HAZs and their hardness is studied. ► Reasons for strengthening of WNZ and softening of HAZs are found using TEM and XRD. ► A FEM model for the weld zone is developed and validated. -- Abstract: Friction stir butt welds in 6063-T4 aluminium alloy were obtained using square and two tapered tool pin profiles. Tensile tests at 0°, 45°, and 90° to the weld line, hardness contours in the weld cross-section, temperatures in the heat affected zones, cross-sectional macrographs, transmission electron micrographs, and X-ray diffraction studies were used to characterize the welds. In transverse weld specimen, tunnel defects appearing at higher weld speeds for tapered pin profiles, were found to result in mechanical instabilities, i.e. sharp drops in load–displacement curves, much before macroscopic necking occured. Further, in comparison to the base metal, a marked reduction in ductility was observed even in transverse specimen with defect free welds. Hardness contours in the weld cross-section suggest that loss in ductility is due to significant softening in heat affected zone on the retreating side. Transmission electron microscopy images demonstrate that while recovery and overaging are responsible for softening in the heat affected zone, grain size refinement from dynamic recrystallization is responsible for strengthening of the weld nugget zone. X-ray diffraction studies in the three weld zones: weld nugget zone, heat affected zone, and the base metal corroborate these findings. A weld zone model, for use in forming simulations on friction stir welded plates of naturally aged aluminium alloys, was proposed based on mechanical characterization tests. The model was validated using finite element analysis.

  19. Design and Manufacture of Pin Tools for Friction Stir Welding of Temperature-Resistant Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this SBIR Phase I project is to advance the development of low-cost, functionally graded laser additive manufactured high temperature refractory...

  20. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  1. Residual stresses and their mechanisms of production at circumferential weld by heat-sink welding

    International Nuclear Information System (INIS)

    Ueda, Yukio; Nakacho, Keiji; Ohkubo, Katsumi; Shimizu, Tsubasa.

    1983-01-01

    In the previous report, the authors showed effectiveness of the heat-sink welding (water cooling) to accomplish this end by conducting theoretical analysis and an experiment on residual stresses in the 4B pipe of SUS 304 by the conventional welding and the heat-sink welding at a certain standard heat-input condition. In this research, different pipe sizes and varied heat-input are applied. The welding residual stresses by the conventional welding and the heat-sink welding are obtained by the theoretical analysis and their production mechanisms are clarified. Hence the influence of the above changes of conditions on effectiveness of the heat-sink welding is investigated. The main results are summarized as follow. (1) In case of this pipes such as 2B and 4B pipes, it is important to minimize heat-input per one pass (especially for latter half passes) in order to improve the effectiveness of the heat-sink welding. The effectiveness can be predicted either by theoretical analysis of the temperature distribution history with consideration of the characteristic of heat transfer under spray-watering or by experimental measurement. (2) In case of 24B pipes, thick pipes, it is desirable to minimize heat-input for the first half passes, by which the heat-sink welding becomes more effective. In addition, no matter whether the conventional welding or the heat-sink welding, it is important to prevent angular distorsion which produces tensile axial stresses on the inner surface of the pipe in the weld zone. Possible measures to meet these requirements are to apply restraining jigs, to minimize the section area of the groove (ex. application of the narrow gap arc welding), and to change continuous welding to skip one. (J.P.N.)

  2. High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Tran Hung Tra

    2016-12-01

    Full Text Available A hybrid element has been fabricated by friction welding, joining two superalloys Inconel 718 and Mar-M247. The high cycle fatigue behavior of this welded element was investigated at 500 °C and 700 °C. The fabrication could obtain excellent fatigue strength in which the fracture is located in the base metal Mar-M247 side and takes place outside the welded zone. The behavior of the joint under loadings is discussed through a simulation by the numerical finite element method.

  3. Influences of Cr content and PWHT on microstructure and oxidation behavior of stainless steel weld overlay cladding materials in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X.Y.; Ding, X.F. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Lu, Y.H., E-mail: lu_yonghao@mater.ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Zhu, P. [Suzhou Nuclear Power Research Institute Co. Ltd., 1788 Xihuan Road, 215004 Suzhou (China); Shoji, T. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Fracture and Reliability Research Institute, Tohoku University, 6-6-01 Aramaki Aoba, Aoba-ku, Sendai City 980-8579 (Japan)

    2015-12-15

    Influences of Cr content and post weld heat treatment (PWHT) on microstructure and oxidation behavior of stainless steel cladding materials in high temperature water were investigated. The amounts of metal oxidized and dissolved were estimated to compare the oxidation behaviors of cladding materials with different Cr contents and PWHT. The results indicated that higher Cr content led to formation of more ferrite content, and carbides were found along δ/γ phase interface after PWHT. Higher Cr content enhanced the pitting resistance and compactness of the oxide film to reduce metal amount oxidized and dissolved, which mitigated the weight changes and the formation of Fe-rich oxides. PWHT promoted more and deeper pitting holes along the δ/γ phase interface due to formation of carbides, which resulted in an increase in metal amount oxidized and dissolved, and were also responsible for more Fe-rich oxides and higher weight changes. - Highlights: • The amounts of metal oxidized and metal dissolved were estimated. • Higher Cr content increased ferrite content and PWHT led to formation of carbides. • PWHT promoted more and deeper pitting holes along the δ/γ phase interface. • Lower Cr content and PWHT promoted the metal amounts oxidized and dissolved. • Lower Cr content and PWHT increased weight changes and Fe-rich film formation.

  4. Numerical modelling of steel arc welding

    International Nuclear Information System (INIS)

    Hamide, M.

    2008-07-01

    Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)

  5. Welding of the A1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Becka, J.

    1975-01-01

    As concerns welding, the A-1 reactor pressure vessel represents a geometrically complex unit containing 1492 welded joints. The length of welded sections varies between 10 and 620 mm. At an operating temperature of 120 degC and a pressure of 650 N/cm 2 the welded joints in the reactor core are exposed to an integral dose of 3x10 18 n/cm 2 . The chemical composition is shown for pressure vessel steel as specified by CSN 413090.9 modified by Ni, Ti and Al additions, and for the welding electrodes used. The requirements are also shown for the mechanical properties of the base and the weld metals. The technique and conditions of welding are described. No defects were found in ultrasonic testing of welded joints. (J.B.)

  6. Determination of Elements and Carbon Content of Stainless Steel Welded Pipeline

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2016-01-01

    Full Text Available Find out defects or problems of welds are not so simple from time to time. Specially, if weld has been made in rough environmental conditions like high temperature, dusty wind and humidity. It is important to assure have good conditions to realize basic step of welding. For welding, have been used welding procedures specification and procedure qualification record. However, difficult conditions, documentations rightness or human errors are always here. Common weld defects like cracks, porosity, lack of penetration and distortion can compromise the strength of the base metal, as well as the integrity of the weld. According of site inspection, there were suspicion of inclusions, leaker or segregation in root of weld. Surface treatment after welding and keep the intervals between single welds to not overheat the pipes. To recognize those suspicions, mechanical testing around weld joint, determination of carbon content and inductively coupled plasma atomic emission spectroscopy will be done.

  7. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  8. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  9. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  10. Influence of shielding gas composition on weld profile in pulsed Nd:YAG laser welding of low carbon steel

    Directory of Open Access Journals (Sweden)

    M Jokar

    2014-12-01

    Full Text Available Weld area and weld depth/width ratio can be considered to be of the most important geometrical factors in pulsed laser welding. The effects of carbon dioxide and oxygen additions to the argon shielding gas on the weld properties in pulsed laser welding of low carbon steel is investigated. Presence of carbon dioxide and oxygen up to 10 and 15 percent respectively decreases the weld geometrical factors. But, at higher levels of additions, the weld geometrical factors will increase. It is observed that the plasma plume temperature decreases from 6000K to 5500K with the addition of 15% carbon dioxide but increases to 7700K with 25% carbon dioxide addition. Increase in laser absorption coefficient, laser energy absorption, formation of oxide layer on the work-piece surface, exothermic reactions and their competitive effects can be considered as the competing phenomena involved in such a behavior in the weld profile

  11. Characterization of microstructure of A508III/309L/308L weld and oxide films formed in deaerated high-temperature water

    Science.gov (United States)

    Xiong, Qi; Li, Hongjuan; Lu, Zhanpeng; Chen, Junjie; Xiao, Qian; Ma, Jiarong; Ru, Xiangkun

    2018-01-01

    The microstructure of A508III/309L/308L weld clad and the properties of the oxide films formed in simulated pressurized water reactor primary water at 290 °C were characterized. The A508III heat-affected zone (HAZ) consisted primarily of a decarburization zone with ferrite near the fusion line and a following pearlite structure with fine grains. A high hardness region in the HAZ could be the result of C-enrichment. M23C6 and M7C3 precipitates were observed in element transition zone. 308L stainless steel (SS) containing ∼ 12% ferrites exhibited both ferritic-austenitic solidification mode (FA mode, δ→γ) and austenitic-ferritic solidification mode (AF mode, γ→δ), whereas 309L SS containing ∼ 9% ferrites exhibited only FA mode. The A508III surface oxide film was mainly Fe3O4 in deaerated high-temperature water. The coarse grain zone covered with few oxide particles was different from other types of film on the other region of HAZ and the bulk zone. More pitting appears on 309L SS after immersion in deaerated high-temperature water due to the dissolution of inclusions. SS surface oxide films consisted primarily of spinels. The oxide film on SS was divided into two layers. Ni was concentrated mainly at the oxide/substrate interface. The oxide film formed on 309L was thicker than that on the 308L. The ferrite in the stainless steel could improve the oxidation resistance.

  12. Friction weld ductility and toughness as influenced by inclusion morphology

    International Nuclear Information System (INIS)

    Eberhard, B.J.; Schaaf, B.W. Jr.; Wilson, A.D.

    1983-01-01

    Friction welding consistently provides high strength, freedom from fusion defects, and high productivity. However, friction welds in carbon steel exhibit impact toughness and bend ductility that are significantly lower than that of the base metal. The inclusion content and morphology were suspected to be major contributors to the reduction in weld ductility. For this reason, four electric furnace steels - three types of ASTM A516 Grade 70, and an ASTM A737 Grade B steel - were investigated. Friction welds were made by both the inertia and direct drive process variations and the welds evaluated. It was shown that friction welds of inclusion-controlled steels exhibited much improved toughness and bend ductility were demonstrated. Upper shelf impact energy was equivalent to or greater than that of the base metal in the short transverse direction. The transition temperature range for all four materials was shifted to higher temperatures for both types of friction welds. Under the conditions of this test, the direct drive friction welds showed a greater shift than the inertia friction welds. The ductility and toughness of welds in A737 Grade B steel were superior to welds in A516 Grade 70 steels, reflecting the superior properties of the base metal. Welds of the A737 material had usable Charpy V-notch impact toughness of 20 to 30 ft-lb (27 to 41 J) at temperatures as low as -40 0 F (-40 0 C). All the welds had an acicular structure. The differences in properties between the inertia and direct drive friction welds appear associated with microstructural variations. These variations resulted from the different heat inputs and cooling rates of the two process variations were demonstrated. The beneficial effects of inclusion control on toughness and ductility. In addition, it also indicates that additional improvements may be attainable through control of the as-welded microstructure by process manipulation

  13. A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes

    Science.gov (United States)

    Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram

    2017-08-01

    Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.

  14. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  15. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  16. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  17. Optical sensor for real-time weld defect detection

    Science.gov (United States)

    Ancona, Antonio; Maggipinto, Tommaso; Spagnolo, Vincenzo; Ferrara, Michele; Lugara, Pietro M.

    2002-04-01

    In this work we present an innovative optical sensor for on- line and non-intrusive welding process monitoring. It is based on the spectroscopic analysis of the optical VIS emission of the welding plasma plume generated in the laser- metal interaction zone. Plasma electron temperature has been measured for different chemical species composing the plume. Temperature signal evolution has been recorded and analyzed during several CO2-laser welding processes, under variable operating conditions. We have developed a suitable software able to real time detect a wide range of weld defects like crater formation, lack of fusion, excessive penetration, seam oxidation. The same spectroscopic approach has been applied for electric arc welding process monitoring. We assembled our optical sensor in a torch for manual Gas Tungsten Arc Welding procedures and tested the prototype in a manufacturing industry production line. Even in this case we found a clear correlation between the signal behavior and the welded joint quality.

  18. Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao; Qi, Wu [Dalian University of Technology, Dalian (China)

    2015-10-15

    Fully coupled thermo-mechanical model is used to obtain the true strain components. The sizes of the TMAZ and the SZ are predicted according to the different behaviors of the traced material particles. The strain rate and the temperature histories are used to calculate the Zener-Hollomon parameter and then the grain size in the SZ. Results indicate that the contribution from the temperatures is much more important than the one from the deformations. The strain rates at the advancing side are higher than the ones at the retreating side on the top surface but become symmetrical on the bottom surface. The widths of the TMAZ and the SZ become narrower in smaller shoulder diameter. Smaller shoulder can lead to smaller grain size in the SZ.

  19. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    Basile, G.

    1979-12-01

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis [fr

  20. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  1. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2017-10-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  2. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  3. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  4. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...... the laser beam as close as possible. After welding, the samples were quality assessed according to ISO 13.919-1 and tested for hardness. The metallurgical phases are analysed and briefly described. A comparison between purely laser welded samples and induction heat-treated laser welded samples is made......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...

  5. Thermomechanical Modelling of Friction Stir Welding

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Schmidt, Henrik Nikolaj Blicher; Tutum, Cem Celal

    2009-01-01

    Friction Stir Welding (FSW) is a fully coupled thermomechanical process and should in general be modelled as such. Basically, there are two major application areas of thermomechanical models in the investigation of the FSW process: i) Analysis of the thermomechanical conditions such as e.g. heat...... generation and local material deformation (often referred to as flow) during the welding process itself. ii) Prediction of the residual stresses that will be present in the joint structure post to welding. While the former in general will call for a fully-coupled thermomechanical procedure, however...... for the FSW process at hand, the heat generation must either be prescribed analytically or based on a fully coupled analysis of the welding process itself. Along this line, a recently proposed thermal-pseudo-mechanical model is presented in which the temperature dependent yield stress of the weld material...

  6. Nuclear welding, application for an LMFBR

    International Nuclear Information System (INIS)

    Patriarca, P.; Goodwin, G.M.

    1975-01-01

    Fabrication of an LMFBR system is discussed, with emphasis on areas where joint welding innovations have been introduced. Each major component of the system, including reactor vessel, intermediate heat exchanger, steam generator, and sodium-containment piping, is treated separately. Developmet of special filler metals to avoid the low elevated-temperature creep ductility obtained with conventional austenitic stainless steel weldments is reported. Bore-side welding of steam generator tube-to-tubesheet joints with and without filler metal is desirable to improve inspectability and eliminate the crevice inherent with face-side weld design, thus minimizing corrosion problems. Automated welding methods for sodium-containment piping are summarized which iminimize and control distortion and ensure welds of high integrity. Selection of materials for the various components is discussed for plants presently under construction, and materials predictions are made for future concepts. (U.S.)

  7. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    Science.gov (United States)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  8. An Investigation into Stress Corrosion Cracking of Dissimilar Metal Welds with 304L Stainless Steel and Alloy 82 in High Temperature Pure Water

    Science.gov (United States)

    Yeh, Tsung-Kuang; Huang, Guan-Ru; Tsai, Chuen-Horng; Wang, Mei-Ya

    For a better understanding toward stress corrosion cracking (SCC) in dissimilar metal welds with 304L stainless steel and Alloy 82, the SCC growth behavior in the transition regions of weld joints was investigated via slow strain rate tensile (SSRT) tests in 280 oC pure water with a dissolve oxygen level of 300 ppb. Prior to the SSRT tests, samples with dissimilar metal welds were prepared and underwent various pretreatments, including post-weld heat treatment (PWHT), shot peening, solution annealing, and mechanical grinding. In addition to the SSRT tests, measurements of degree of sensitization and micro-hardness on the transition regions of the metal welds were also conducted. According to the test results, the samples having undergone PWHTs exhibited relatively high degrees of sensitization. Distinct decreases in hardness were observed in the heat-affected zones of the base metals in all samples. Furthermore, the fracture planes of all samples after the SSRT tests were located at the stainless steel sides and were in parallel with the fusion lines. Among the treating conditions investigated in this study, a PWHT would pose a detrimental effect on the samples in the aspects of mechanical property and degree of SCC. Solution annealing would lead to the greatest improvement in ductility and SCC retardation, and shot peening would provide the treated samples with a positive improvement in ductility and corrosion retardation, but not to a great extent.

  9. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  10. Residual stresses in zircaloy welds

    International Nuclear Information System (INIS)

    Santisteban, J. R.; Fernandez, L; Vizcaino, P.; Banchik, A.D.; Samper, R; Martinez, R. L; Almer, J; Motta, A.T.; Colas, K.B; Kerr, M.; Daymond, M.R

    2009-01-01

    Welds in Zirconium-based alloys are susceptible to hydrogen embrittlement, as H enters the material due to dissociation of water. The yield strain for hydride cracking has a complex dependence on H concentration, stress state and texture. The large thermal gradients produced by the applied heat; drastically changes the texture of the material in the heat affected zone, enhancing the susceptibility to delayed hydride cracking. Normally hydrides tend to form as platelets that are parallel to the normal direction, but when welding plates, hydride platelets may form on cooling with their planes parallel to the weld and through the thickness of the plates. If, in addition to this there are significant tensile stresses, the susceptibility of the heat affected zone to delayed hydride cracking will be increased. Here we have measured the macroscopic and microscopic residual stressed that appear after PLASMA welding of two 6mm thick Zircaloy-4 plates. The measurements were based on neutron and synchrotron diffraction experiments performed at the Isis Facility, UK, and at Advanced Photon Source, USA, respectively. The experiments allowed assessing the effect of a post-weld heat treatment consisting of a steady increase in temperature from room temperature to 450oC over a period of 4.5 hours; followed by cooling with an equivalent cooling rate. Peak tensile stresses of (175± 10) MPa along the longitudinal direction were found in the as-welded specimen, which were moderately reduced to (150±10) MPa after the heat-treatment. The parent material showed intergranular stresses of (56±4) MPa, which disappeared on entering the heat-affected zone. In-situ experiments during themal cyclong of the material showed that these intergranular stresses result from the anisotropy of the thermal expansion coefficient of the hexagonal crystal lattice. [es

  11. Selected Welding Techniques, Part 2

    National Research Council Canada - National Science Library

    1964-01-01

    Partial contents: CONVENTIONAL WELD JOINTS VERSUS BUTT JOINTS IN 1-INCH ALUMINUM PLATE, SPECIAL WELD JOINT PREPARATION, UPSET METAL EDGES FOR INCREASED WELD JOINT STRENGTH, OUT-OF-POSITION WELDING OF HEAVY GAGE...

  12. The fracture toughness of Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Picker, C.

    This paper describes the results of fracture toughness tests on Type 316 steel and Manual Metal Arc (MMA) weld metal over a range of temperatures from 20 deg. C to 550 deg. C, and includes the effects on toughness of specimen size, post weld heat treatment and thermal ageing. The conclusions reached are that Type 316 steel possesses a superior toughness to the weld metal in the as-welded or stress relieved conditions but the toughness of the steel is degraded to a level similar to that of the weld metal following thermal ageing at temperatures over 600 deg. C. Relatively short term thermal ageing in the temperature range 370 deg. C to 450 deg. C does not appear to affect the toughness of either Type 316 steel or weld metal. (author)

  13. Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers

    Science.gov (United States)

    Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart

    Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influence of the green wavelength on energy coupling during heat conduction welding and deep penetration welding as well as the influence on the weld shape has been investigated.

  14. Some studies on weld bead geometries for laser spot welding process using finite element analysis

    International Nuclear Information System (INIS)

    Siva Shanmugam, N.; Buvanashekaran, G.; Sankaranarayanasamy, K.

    2012-01-01

    Highlights: → In this study, a 2 kW Nd:YAG laser welding system is used to conduct laser spot welding trials. → The size and shape of the laser spot weld is predicted using finite element simulation. → The heat input is assumed to be a three-dimensional conical Gaussian heat source. → The result highlights the effect of beam incident angle on laser spot welds. → The achieved results of numerical simulation are almost identical with a real weldment. -- Abstract: Nd:YAG laser beam welding is a high power density welding process which has the capability to focus the beam to a very small spot diameter of about 0.4 mm. It has favorable characteristics namely, low heat input, narrow heat affected zone and lower distortions, as compared to conventional welding processes. In this study, finite element method (FEM) is applied for predicting the weld bead geometry i.e. bead length (BL), bead width (BW) and depth of penetration (DP) in laser spot welding of AISI 304 stainless steel sheet of thickness 2.5 mm. The input parameters of laser spot welding such as beam power, incident angle of the beam and beam exposure time are varied for conducting experimental trials and numerical simulations. Temperature-dependent thermal properties of AISI 304 stainless steel, the effect of latent heat of fusion, and the convective and radiative aspects of boundary conditions are considered while developing the finite element model. The heat input to the developed model is assumed to be a three-dimensional conical Gaussian heat source. Finite-element simulations of laser spot welding were carried out by using Ansys Parametric Design Language (APDL) available in finite-element code, ANSYS. The results of the numerical analysis provide the shape of the weld beads for different ranges of laser input parameters that are subsequently compared with the results obtained through experimentation and it is found that they are in good agreement.

  15. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  16. Residual Stress Evaluation of Weld Inlay Process on Reactor Vessel Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kihyun; Cho, Hong Seok [KEPCO KPS, Naju (Korea, Republic of)

    2015-10-15

    Weld overlay, weld inlay and stress improvement are mitigation technologies for butt joints. Weld overlay is done on pressurizer nozzles which are the highest potential locations occurring PWSCC due to high temperature in Korea. Reactor vessel nozzles are other big safety concerns for butt joints. Weld overlay and stress improvement should be so difficult to apply to those locations because space is too limited. Weld inlay should be one of the solutions. KEPCO KPS has developed laser welding system and process for reactor nozzles. Welding residual stress analysis is necessary for flaw evaluation. United States nuclear regulatory commission has calculated GTAW(Gas Tungsten Arc Welding) residual stress using ABAQUS. To confirm effectiveness of weld inlay process, welding residual stress analysis was performed. and difference between GTAW and LASER welding process was compared. Evaluation of weld inlay process using ANSYS and ABAQUS is performed. All of the both results are similar. The residual stress generated after weld inlay was on range of 450-500 MPa. Welding residual stresses are differently generated by GTAW and LASER welding. But regardless of welding process type, residual tensile stress is generated on inside surface.

  17. MM99.81 Projection welding of complex geometries

    DEFF Research Database (Denmark)

    Kristensen, Lars

    The objective of this work has been to establish a profound knowledge about design rules for projection welding geometries dependent of the actual material combination.Design rules and recommendations for geometries and projections in projection welding given in literature is summarised...... and these are catalogued into geometry-classes. A simulation software, SORPAS, based on the finite element method (FEM) is chosen as tool to investigate projection weld quality. SORPAS needs input of the material flow stress as function of strain, strain rate and temperature. Flow stress experiments are performed using...... been investigated.Two different welding geometries, disc with triangular ring projection welded to ring and hat welded to inside hole in ring, are both experimentally and numerically used to investigate the influence of different geometric parameters (thicknesses and angles) on weldability and weld...

  18. Evaluating mechanical properties of hybrid laser arc girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L. N.; Begg, D.; Holdstock, R.; Jodoin, A. [BMT Fleet Technology Ltd Techonology, Kanata, ON, (Canada); Ligh, K.; Rondeau, D. [Appliead Thermal Sciences Inc., Sanford, ME, (United States); Hansen, E. [ESAB, Florence, SC, (United States)

    2010-07-01

    Hybrid laser arc welding (HLAW) is a promising new process for making girth welds on steel pipelines. This study investigated the mechanical properties of overmatched X80 and X100 pipeline steel girth welds made using the HLAW process. The testing of this process was conducted on NPS36 pipes of 10.4 mm and 14.3 mm thickness, respectively. Various weld positions were produced on X80 and X100 pipes. Laser inspection data were collected during the whole welding process. Also standard tests for girth welds, Charpy V-notch impact tests, CTOD tests, all weld metal (AWM) tension tests, were carried out. The results showed that the fracture transition temperature is higher at the 3 and 9 o'clock positions than at the 9 and 12 o'clock positions. The effect of clock position on fracture toughness is currently being explored; a modified CTOD has been developed to reduce the possibility of crack deviation.

  19. Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling

    International Nuclear Information System (INIS)

    Wang, Xinxin; Huang, Jiankang; Huang, Yong; Fan, Ding; Guo, Yanning

    2017-01-01

    Highlights: • The heat input to the anode and subsequent thermal efficiency is almost equal for TIG and A-TIG welding. • Dominant effect heat convection and reversion of molten metal flow in weld pool causes significant increase in weld penetration. - Abstract: Heat transfer and fluid flow of arc plasma and weld pool in tungsten inert gas (TIG) welding and activated flux tungsten inert gas (A-TIG) welding of SUS 304 stainless steel are investigated comparatively though a 3D unified model. The model differs from the previous ones in that it considers the arc length more realistic for welding production. Tungsten electrode, anode (work piece) and arc plasma are all included. The effects of buoyance, plasma drag force, Lorentz force and Marangoni force on the weld pool flow are taken into account. By solving the conservation equations of mass, momentum, energy as well as Maxwell equations, the distributions of temperature and velocity of arc plasma and weld pool are obtained for TIG and A-TIG welding. The heat flux, current density and shear stress at the weld pool are presented. Dimensionless numbers are employed to compare the relative importance of the driven forces and that of convection and conduction in heat transfer of the weld pool. It is demonstrated that there is no significant difference in the heat flux at the weld pool, and total heat input to the anode and thermal efficiency is almost equal for TIG and A-TIG welding. The current density and the heat flux at the weld pool are more concentrated in more realistic welding condition. As a result, both of the temperature of the weld pool for TIG welding and A-TIG welding increases, while the latter is more significant. Marangoni force ranges from zero to 100 Pa and dominant the weld pool flow. Compared with the conventional TIG welding, the reversion of the Marangoni force results in inward flow and thus causes inward heat convection in weld pool of A-TIG welding. Heat convection was the main mechanism of

  20. Automatic welding of fuel elements

    International Nuclear Information System (INIS)

    Briola, J.

    1958-01-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [fr

  1. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  2. Twin-Wire Pulsed Tandem Gas Metal Arc Welding of API X80 Steel Linepipe

    Directory of Open Access Journals (Sweden)

    Wenhao Wu

    2018-01-01

    Full Text Available Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.

  3. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  4. TRANSIENT FINITE ELEMENT SIMULATION AND MICROSTRUCTURE EVOLUTION OF AA2219 WELD JOINT USING GAS TUNGSTEN ARC WELDING PROCESS

    Directory of Open Access Journals (Sweden)

    Sivaraman Arunkumar

    2016-09-01

    Full Text Available In this study we focus on finite element simulation of gas tungsten arc welding (GTAW of AA2219 aluminum alloy and the behavioral of the microstructure before and after weld. The simulations were performed using commercial COMSOL Multiphysics software. The thermal history of the weld region was studied by initially developed mathematical model. A sweep type meshing was used and transient analysis was performed for one welding cycle. The highest temperature noted was 3568 °C during welding. The welding operation was performed on 200×100×25 mm plates. Through metallurgical characterization, it was observed that a fair copper rich cellular (CRC network existed in the weld region. A small amount of intermetallic compounds like Al2Cu is observed through the XRD pattern.

  5. Laser welding of Ti-Ni type shape memory alloy

    International Nuclear Information System (INIS)

    Hirose, Akio; Araki, Takao; Uchihara, Masato; Honda, Keizoh; Kondoh, Mitsuaki.

    1990-01-01

    The present study was undertaken to apply the laser welding to the joining of a shape memory alloy. Butt welding of a Ti-Ni type shape memory alloy was performed using 10 kW CO 2 laser. The laser welded specimens showed successfully the shape memory effect and super elasticity. These properties were approximately identical with those of the base metal. The change in super elasticity of the welded specimen during tension cycling was investigated. Significant changes in stress-strain curves and residual strain were not observed in the laser welded specimen after the 50-time cyclic test. The weld metal exhibited the celler dendrite. It was revealed by electron diffraction analysis that the phase of the weld metal was the TiNi phase of B2 structure which is the same as the parent phase of base metal and oxide inclusions crystallized at the dendrite boundary. However, oxygen contamination in the weld metal by laser welding did not occur because there was almost no difference in oxygen content between the base metal and the weld metal. The transformation temperatures of the weld metal were almost the same as those of the base metal. From these results, laser welding is applicable to the joining of the Ti-Ni type shape memory alloy. As the application of laser welding to new shape memory devices, the multiplex shape memory device of welded Ti-50.5 at % Ni and Ti-51.0 at % Ni was produced. The device showed two-stage shape memory effects due to the difference in transformation temperature between the two shape memory alloys. (author)

  6. Analysis of weld-cracking and improvement of the weld-repair process of superplastic forming tools

    International Nuclear Information System (INIS)

    Duchosal, A.; Deschaux-Beaume, F.; Lours, P.; Haro, S.; Fras, G.

    2013-01-01

    Highlights: ► Characterisation of the microstructure of a heat-resistant austenitic cast steel. ► Failure analysis using in situ tensile tests and isothermal fatigue tests. ► Analyses of weld cracking mechanism during shielded metal arc welding process. ► Improvement of weld-repair method by re-melting of the base material surface with GTAW process. - Abstract: Superplastic forming (SPF) dies are generally made of using heat resistant cast steels, which are very sensitive to weld cracking. In order to improve the weld-repair process of such dies to prevent weld-cracking, the microstructure and the mechanical behaviour of a typical heat-resistant cast steel was first studied, using isothermal low-cycle fatigue tests and in situ tensile tests. The welding behaviour of such steel was also investigated, using a shielded metal arc welding (SMAW) process and welding conditions similar to those employed for weld repair industrial dies. The comparison of the aspect of weld-cracking with the fracture mechanisms observed at room temperature or during isothermal low-cycle fatigue tests suggests a similar brittle failure mechanism, due to the presence of large interdendritic carbides in the cast steel. The melting of the cast steel surface using a gas tungsten arc welding (GTAW) process allowed to refine the primary carbides, and then to reduce the weld-cracking sensitivity. The refining method with GTAW before welding has been successfully tested to weld-repair a sample representative of SPF dies, and is recommended for subsequent repairs of such dies

  7. 3D modeling of material flow and temperature in Friction Stir Welding Modelagem 3D do fluxo de material e da temperatura na soldagem "Friction Stir"

    Directory of Open Access Journals (Sweden)

    Diego Santiago

    2009-09-01

    Full Text Available The process of Friction Stir Welding (FSW is a welding method developed by the "The Welding Institute" (TWI of England in 1991. The welding equipment consists of a tool that rotates and progresses along the joint of two restrained sheets. The joint is produced by frictional heating which causes the softening of both components into a viscous-plastic condition and also by the resultant flow between the sheets to be joined. Numerical Modeling of the process can provide realistic prediction of the main variables of the process, reducing the number of experimental tests, thus accelerating the design processes while reducing costs and optimizing the involved technological variables. In this study the friction stir welding process is modeled using a general purpose finite element based program, reproducing the material thermal map and the corresponding mass flow. Numerical thermal results are compared against experimental thermographic maps and numerical material flow results are compared with material flow visualization techniques, with acceptable concordance.O processo denominado "Friction Stir Welding" (FSW é um método de soldagem desenvolvido pelo "The Welding Institute" (TWI na Inglaterra em 1991. O equipamento de soldagem consiste de uma ferramenta que gira e avança ao longo da interface entre duas chapas fixas. A junção é produzida pelo calor gerado por fricção o qual causa o amolecimento de ambos os componentes atingindo uma condição visco-plástica e também pelo escoamento resultante entre as laminas a ser unidas. A modelagem numérica do processo pode fornecer uma predição real das principais variáveis do processo, reduzindo o número de testes experimentais, acelerando, portanto os processos de projeto ao mesmo tempo em que reduz custos e permite a otimização das variáveis tecnológicas envolvidas. Neste trabalho, o processo de soldagem por fricção é modelado empregando um programa de propósito geral baseado no m

  8. Friction stir spot welding of dissimilar aluminium alloys

    International Nuclear Information System (INIS)

    Bozkurt, Yahya

    2016-01-01

    Friction stir spot welding (FSSW) has been proposed as an effective technology to spot weld the so-called “difficult to be welded” metal alloys such as thin sheets aluminum alloys and dissimilar materials. FSSW is derived from friction stir welding technology, its principle benefit being low cost joining, lower welding temperature and shorter welding time than conventional welding methods. In this study, dissimilar AlMg 3 and AlCu 4 Mg 1 aluminium alloy plates were FSSWed by offsetting the low strength sheet on upper side of the weld. The effects of tool rotation speed on the microstructure, lap shear fracture load (LSFL), microhardness and fracture features of the weld are investigated by constant welding parameters. The maximum LSFL was obtained by increasing the tool rotational speed. However, the joints exhibited pull-out nugget fracture mode under lap shear tensile testing conditions. The largest completely bonded zone was observed as 5.86 mm which was narrower at the opposite position of the joint. Key words: friction stir spot welding, aluminium alloys, mechanical properties, dissimilar joint, welding parameters

  9. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  10. Thermal modelling of friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    The objective of the present work is to present the basic elements of the thermal modelling of friction stir welding as well as to clarify some of the uncertainties in the literature regarding the different contributions to the heat generation. Some results from a new thermal pseudomechanical model...... in which the temperature-dependent yield stress of the weld material controls the heat generation are also presented....

  11. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  12. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  13. Fundamental studies on electron-beam welding of heat-resistant superalloys for nuclear plants: Report 4. Mechanical properties of welded joints

    International Nuclear Information System (INIS)

    Susei, S.; Shimizu, S.; Aota, T.

    1982-04-01

    In this report, electron-beam (EB) welded joints and TIG welded joints of various superalloys to be used for nuclear plants, such as Hastelloy-type, Inconel-type and Incoloy-type, are systematically evaluated in terms of tensile properties, low-cycle fatigue properties at elevated temperatures, creep and creep-rupture properties. It was fully confirmed as conclusion that the EB welded joints are superior to the TIG welded ones in mechanical properties, especially at high temperature. In the evaluation of creep properties, ductility is one of the most important criteria to represent the resistance against fracture due to creep deformation, and this criterion is very useful in evaluating the properties of welded joints. Therefore, the more comparable to the base metal the electron beam welded joint becomes in terms of ductility, the more resistant is it against fracture. From this point of view, the electron beam welded joint is considerably superior to the TIG welded joint [fr

  14. Microstructure and mechanical properties in TIG welding of CLAM steel

    International Nuclear Information System (INIS)

    Zhu Qiang; Lei Yucheng; Chen Xizhang; Ren Wenjie; Ju Xin; Ye Yimin

    2011-01-01

    Tungsten insert gas (TIG) welding on China low activation martensitic (CLAM) steel under identical conditions was performed. Microhardness test, tensile test, Charpy impact test and microstructure measurements were carried out on TIG welded joints after post weld heat-treatment. Hardening at WM and softening in HAZ is detected in the TIG weld joint. Microhardness in WM decreased when the temperature of PWHT increased. The ultimate tensile stress of weld metal is higher than that of HAZ and BM. Absorbed energy increased with PWHT temperature rising, until PWHT was done at 760 deg. C/30 min, the specimen ductile fractured in local area. The microstructure of the weld metal for every specimen was found to be tempered martensite with a little of delta ferrite. M 23 C 6 particles are the predominant type of carbides. Oxide precipitate phases appeared in WM, which are the primary crack initiation sites and it is critically important minimize their formation.

  15. Welding processes for Inconel 718- A brief review

    Science.gov (United States)

    Tharappel, Jose Tom; Babu, Jalumedi

    2018-03-01

    Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.

  16. Thermal-deformation effect of welding on A 1 reactor pressure vessel weld joints properties and state of stress

    International Nuclear Information System (INIS)

    Becka, J.; Kupka, I.

    1976-01-01

    The methods are compared of electroslag welding and of arc welding with a view to their possible application in welding the Bohunice A-1 reactor pressure vessel. Considered are the thermal deformation effects of welding on the physical properties and the stress present in welded joints. For testing, plates were used having the dimensions of 1100x2300x200 mm and rings with 4820 mm outer diameter, 1800 mm height and 170 mm thickness made of steel CSN 413O30 modified with Ni, Al+Ti. The deformation effect of welding on the residual surface and triaxial stress, the specific stored energy, the initiation temperature of brittle crack and the critical size of the initiation defect corresponding to the thermal deformation effect of welding were determined. It was found that for electroslag welding, there is a low probability of crack formation in the joints, a low level of residual stress and a low level of specific stored energy in a relatively wide joint zone. For arc welding there is a considerable probability of defect formation in the vicinity of the sharp boundary of the joint, a high level of the triaxial state of stress in the tensile region, and a high level of specific stored energy concentrated in the narrow zone of weld joints. The recommended thermal process is given for welding pressure vessels made of the CSN 413030 steel modified with Ni, Al+Ti, and 150 to 200 mm in thickness. (J.P.)

  17. Nondestructive testing: welding industry

    International Nuclear Information System (INIS)

    Raj, Baldev; Subramanian, C.V.

    1992-01-01

    This chapter highlights various conventional and advanced nondestructive testing (NDT) techniques that have been used for weld evaluation. Welding Codes and Standards of International and National organisations that have been followed in India for various weld evaluation purposes are also included. The chapter also emphasises the importance of NDT by way of a few case studies that have been carried out on important critical welded components. (author). 12 refs., 17 figs., 1 appendix

  18. Development of laser welding techniques for vanadium alloys

    International Nuclear Information System (INIS)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-01-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO 2 laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m 3 /s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to ∼180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000 degrees C for 1 h in vacuum reduced the DBTT to <-25 degrees C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study

  19. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  20. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    Science.gov (United States)

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  2. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  3. Underwater welding of steel

    International Nuclear Information System (INIS)

    Ibarra, S.; Olson, D.L.

    1992-01-01

    A fundamental basis to understand the behavior of wet underwater welding of steel is introduced. Both the pyrometallurgical and physical metallurgy concepts are discussed. Modifications of welding consumables and practice are suggested. This chapter promotes further contributions of meatllurgical research to improve and promote wet underwater welding. (orig.)

  4. Welding Over Paint Primer

    National Research Council Canada - National Science Library

    Johnson, Kevin S; Liu, Stephen; Olson, David L

    1998-01-01

    .... According to the hydrogen-oxygen and }hydrogen-fluorine equilibrium considerations, an increase in the partial pressure of oxygen or fluorine could decrease the partial pressure of hydrogen within the welding arc. Consequently, a welding consumable that contains chemical ingredients of high oxygen and fluorine potential would be capable of minimizing hydrogen pick-up in the weld pool.

  5. Fundamental studies on electron beam welding on heat resistant superalloys for nuclear plants, 6

    International Nuclear Information System (INIS)

    Susei, Syuzo; Shimizu, Sigeki; Nagai, Hiroyoshi; Aota, Toshikazu; Satoh, Keisuke

    1980-01-01

    In this report, base metal of superalloys for nuclear plants, its electron beam and TIG weld joints were compared with each other in the mechanical properties. Obtained conclusions are summarized as follows: 1) TIG weld joint is superior to electron beam weld joint and base metal in 0.2% proof stress irrespective of the material, and electron beam weld joint is also superior to base metal. There is an appreciable difference in tensile stress between base metal and weld joint regardless of the materials. Meanwhile, electron beam weld joint is superior to TIG weld joint in both elongation and reduction of area. 2) Electron beam weld joint has considerably higher low-cycle fatigue properties at elevated temperatures than TIG weld joint, and it is usually as high as base metal. 3) In the secondary creep rate, base metal of Hastelloy X (HAEM) has higher one than its weld joints. However, electron beam weld joint is nearly comparable to the base metal. 4) There is hardly any appreciable difference between base metal and weld joint in the creep rupture strength without distinction of the material. In the ductility, base metal is much superior and is followed by electron beam weld joint and TIG weld joint in the order of high ductility. However, electron beam weld joint is rather comparable to base metal. 5) In consideration of welded pipe with a circumferential joint, the weld joint should be evaluated in terms of secondary creep rate, elongation and rupture strength. As the weld joint of high creep rupture strength approaches the base metal in the secondary creep rate and the elongation, it seems to be more resistant against the fracture due to creep deformation. In this point of view, electron beam weld joint is far superior to TIG weld joint and nearly comparable to the base metal. (author)

  6. Tensile properties of four types of austenitic stainless steel welded joints

    International Nuclear Information System (INIS)

    Balladon, P.

    1990-01-01

    In the field of an LMFBR research programme on austenitic stainless steel welds in a Shared Cost Action Safety, Research Area 8, coordinated by JRC-Ispra, four cooperating laboratories (ECN, IKE/MPA, the Welding Institute and UNIREC) have been involved in the fabrication and extensive characterization of welded joints made from one plate of ICL 167 stainless steel. The materials included parent metal, four vacuum electron beam welds, one non vacuum electron beam weld, one submerged arc weld, one gas metal arc weld and one manual metal arc weld. This report summarizes the 106 tensile tests performed at room temperature and 550 0 C, including the influence of strain rate, specimen orientation and welding procedure. Main results are that electron beam welds have tensile properties close to those of parent metal with higher values of yield strength in longitudinal orientation and lower values of total elongation in transverse orientation but with a similar reduction of area, that filler metal welds own the highest values of yield strength and lowest values of ductility. Most of the welds properties are higher than the minimum specified for parent metal, except for some values of total elongation, mainly in transverse orientation. In view of using electron beam welding for production of components used in LMFBR, results obtained show that tensile properties of electron beam welds compare well to those of classical welds. (author)

  7. Quantification of Microtexture at Weld Nugget of Friction Stir-Welded Carbon Steel

    Science.gov (United States)

    Husain, Md M.; Sarkar, R.; Pal, T. K.; Ghosh, M.; Prabhu, N.

    2017-05-01

    Friction stir welding of C-Mn steel was carried out under 800-1400 rpm tool rotation. Tool traversing speed of 50 mm/min remained same for all joints. Effect of thermal state and deformation on texture and microstructure at weld nugget was investigated. Weld nugget consisted of ferrite + bainite/Widmanstatten ferrite with different matrix grain sizes depending on peak temperature. A texture around ( ϕ 2 = 0°, φ = 30°, ϕ 2 = 45°) was developed at weld nugget. Grain boundary misorientation at weld nugget indicated that continuous dynamic recrystallization influenced the development of fine equiaxed grain structure. Pole figures and orientation distribution function were used to determine crystallographic texture at weld nugget and base metal. Shear texture components D1, D2 and F were present at weld nugget. D1 shear texture was more prominent among all. Large number of high-angle grain boundaries ( 60-70%) was observed at weld nugget and was the resultant of accumulation of high amount of dislocation, followed by subgrain formation.

  8. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  9. Application of Taguchi approach to optimize friction stir welding parameters of polyethylene

    Directory of Open Access Journals (Sweden)

    Bejaoui S.

    2010-06-01

    Full Text Available This paper presents experimental and numerical results of butt friction stir welding of high density polyethylene. The FSW designed tool insulates the welded samples and preserves the heat gained from friction thus avoiding the appearance of blisters and splits after welding. The experimental tests, conducted according to combinations of process factors such as rotation speed, welding speed, pin diameter and hold time at beginning welding, were carried out according the Taguchi orthogonal table L27 in randomized way. Temperatures in the joint during the welding operation and flow stresses from the tensile tests of welded samples were measured and variances were analyzed. Identified models were used to simulate, by finite elements, the tensile tests performed on specimens having a weld cordon in their active area. The results show coherence between the numerical predictions and experimental observations in different cases of weld cordon mechanical behaviour.

  10. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet

    International Nuclear Information System (INIS)

    Bakavos, D.; Prangnell, P.B.

    2010-01-01

    Resistance spot welding (RSW) is difficult to apply to aluminium automotive alloys. High power ultrasonic spot welding (HP-USW) is a new alternative method which is extremely efficient, using ∼2% of the energy of RSW. However, to date there have been few studies of the mechanisms of bond formation and the material interactions that take place with this process. Here, we report on a detailed investigation where we have used X-ray tomography, high resolution SEM, and EBSD, and dissimilar alloy welds, to track the interface position and characterise the stages of weld formation, and microstructure evolution, as a function of welding energy. Under optimum conditions high quality welds are produced, showing few defects. Welding proceeds by the development and spread of microwelds, until extensive plastic deformation occurs within the weld zone, where the temperature reaches ∼380 deg. C. The origin of the weld interface 'flow features' characteristic of HP-USW are discussed.

  11. Orbital welding technique

    International Nuclear Information System (INIS)

    Hoeschen, W.

    2003-01-01

    The TIG (Tungsten-inert gas) orbital welding technique is applied in all areas of pipe welding. The process is mainly used for austenitic and ferritic materials but also for materials like aluminium, nickel, and titanium alloys are commonly welded according to this technique. Thin-walled as well as thick-walled pipes are welded economically. The application of orbital welding is of particular interest in the area of maintenance of thick-walled pipes that is described in this article. (orig.) [de

  12. Effectiveness of amorphous silica encapsulation technology on welding fume particles and its impact on mechanical properties of welds

    International Nuclear Information System (INIS)

    Wang, Jun; Wu, Chang-Yu; Franke, Gene

    2014-01-01

    Highlights: • A novel welding shielding gas containing a silica precursor. • Up to 76% of the welding fume particles encapsulated in an amorphous silica layer. • No statistical difference between different types of welds in mechanical tests. • Can potentially reduce the toxicity of welding fume particles. - Abstract: Stainless steel welding generates nano-sized fume particles containing toxic metals which may cause serious health effects upon inhalation. The objective of this study was to investigate the effectiveness of an amorphous silica encapsulation (ASE) technology by evaluating its silica coating efficiency (SCE), particle morphology, and its impact on the weld’s mechanical properties. Tetramethylsilane (TMS) added to the welding shielding gas decomposed at the high-temperature arc zone to enable the silica coating. Collected welding fume particles were digested by two acid mixtures with different degrees of silica solubility, and the measured mass differences in the digests were used to determine the SCE. The SCEs were around 48–64% at the low and medium primary shielding gas flow rates. The highest SCE of 76% occurred at the high shielding gas flow rate (30 Lpm) with a TMS carrier gas flow of 0.64 Lpm. Transmission electron microscopy (TEM) images confirmed the amorphous silica layer on the welding fume particles at most gas flow rates, as well as abundant stand-alone silica particles formed at the high gas flow rate. Metallography showed that welds from the baseline and from the ASE technology were similar except for a tiny crack found in one particular weld made with the ASE technology. Tensile tests showed no statistical difference between the baseline and the ASE welds. All the above test results confirm that welding equipment retrofitted with the ASE technology has the potential to effectively address the toxicity problem of welding fume particles without affecting the mechanical properties of the welds

  13. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  14. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  15. On the shakedown analysis of welded pipes

    International Nuclear Information System (INIS)

    Li Tianbai; Chen Haofeng; Chen Weihang; Ure, James

    2011-01-01

    This paper presents the shakedown analysis of welded pipes subjected to a constant internal pressure and a varying thermal load. The Linear Matching Method (LMM) is applied to investigate the upper and lower bound shakedown limits of the pipes. Individual effects of i) geometry of weld metal, ii) ratio of inner radius to wall thickness and iii) all material properties of Weld Metal (WM), Heat Affected Zone (HAZ) and Parent Material (PM) on shakedown limits are investigated. The ranges of these variables are chosen to cover the majority of common pipe configurations. Corresponding individual influence functions on the shakedown limits are generated. These are then combined to allow the creation of a safety shakedown envelope, which can be used for the design of any welded pipes within the specified ranges. The effect of temperature-dependent yield stress (in PM, HAZ and WM) on these shakedown limits is also investigated.

  16. A mathematical approach based on finite differences method for analyzing the temperature field in arc welding of stainless steel thin sheets; Desarrollo de un modelo matematico de diferencias finitas para el analisis del campo de temperaturas en la soldadura por arco de chapas finas de acero inoxidable

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E.J.; Estrems, M.; Miguel, V.

    2010-07-01

    This work develops a finite difference method to evaluate the temperature field in the heat affected zone in butt welding applied to AISI 304 stainless steel thin sheet by GTAW process. A computer program has been developed and implemented by Visual Basic for Applications (VBA) in MS-Excel spreadsheet. The results that are obtained using the numerical application foresee the thermal behaviour of arc welding processes. An experimental methodology has been developed to validate the mathematical model that allows to measure the temperature in several points close to the weld bead. The methodology is applied to a stainless steel sheet with a thickness lower than 3 mm, although may be used for other steels and welding processes as MIG/MAG and SMAW. The data which has been obtained from the experimental procedure have been used to validate the results that have been calculated by the finite differences numerical method. The mathematical model adjustment has been carried out taking into account the experimental results. The differences found between the experimental and theoretical approaches are due to the convection and radiation heat losses, which have not been considered in the simulation model.With this simple model, the designer will be able to calculate the thermal cycles that take place in the process as well as to predict the temperature field in the proximity of the weld bead. (Author). 18 refs.

  17. Appropriate welding conditions of temper bead weld repair for SQV2A pressure vessel steel

    International Nuclear Information System (INIS)

    Mizuno, R.; Matsuda, F.; Brziak, P.; Lomozik, M.

    2004-01-01

    Temper bead welding technique is one of the most important repair welding methods for large structures for which it is difficult to perform the specified post weld heat treatment. In this study, appropriate temper bead welding conditions to improve the characteristics of heat affected zone (HAZ) are studied using pressure vessel steel SQV2A corresponding to ASTM A533 Type B Class 1. Thermal/mechanical simulator is employed to give specimens welding thermal cycles from single to quadruple cycle. Charpy absorbed energy and hardness of simulated CGHAZ by first cycle were degraded as compared with base metal. Improvability of these degradations by subsequent cycles is discussed and appropriate temper bead thermal cycles are clarified. When the peak temperature lower than Ac1 and near Ac1 in the second thermal cycle is applied to CGAHZ by first thermal cycle, the characteristics of CGHAZ improve enough. When the other peak temperatures (that is, higher than Ac1) in the second thermal cycle are applied to the CGHAZ, third or more thermal cycle temper bead process should be applied to improve the properties. Appropriate weld condition ranges are selected based on the above results. The validity of the selected ranges is verified by the temper bead welding test. (orig.)

  18. Qualification of final closure for disposal container I - applicability of TIG and EBW for overpack welding

    International Nuclear Information System (INIS)

    Asano, H.; Kawahara, K.; Ishii, J.; Shige, T.

    2002-01-01

    Regarding the final sealing technique of the overpack using carbon steel, one of the candidate materials for the disposal container in the geological disposal of high-level radioactive waste in Japan, welding tests were conducted using TIG (GTAW), a typical arc welding process, and electron beam welding (EBW), a high-energy beam welding process. The purpose of the tests was to evaluate the applicability, the scope of the applications and the conditions for the application of the existing techniques; while also examining the welding conditions and the weld quality. Regarding TIG, the optimum welding conditions (the conditions pertaining to the welding procedures and the groove geometry) were checked by using a specimen with a plate thickness of 50 mm, and then circumferential welding tests were conducted for cylindrical specimens with a groove depth of 100 mm and 150 mm. Radiographic testing showed that there was no significant weld defect in the weld and that the welding characteristics were satisfactory. The results of the test of the mechanical properties of the joint were also satisfactory. Measurement of the temperature distribution and the residual stress distribution at the time of the welding was conducted for an evaluation of the residual stress caused by the welding, and an appropriate residual stress analysis method was developed, which confirmed the generation of tensile stress along the circumferential direction of the weld. Then it was pointed out that a necessity of further consideration of how to reduce the stress and to examine the influence that residual stress has on corrosion property. The goal in the EBW test was to achieve a one-pass full penetration welding process for 190 mm while conducting a partial penetration welding test for a welding depth of 80 mm. Subsequent radiographic testing confirmed that there was no significant weld defect. (orig.)

  19. 3D finite element simulation of TIG weld pool

    Science.gov (United States)

    Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.

    2012-07-01

    The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.

  20. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  1. The stress rupture properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    Elevated temperature stress rupture data on Mo containing and Mo free austenitic weld metals have been collected from French, Dutch, German and UK sources and the results analysed. The stress rupture strength of Mo containing weld metal is significantly higher than that of Mo free weld metal. At 10,000h the rupture strength of Mo containing weld metal is higher than that of Type 316 steel whereas the Mo free weld metal is about 20% lower than that of Type 304 steel. Austenitic weld metal can give low stress rupture ductility values. It is concluded that there are insufficient data to permit reliable extrapolations to long times and it is recommended that long term tests are performed to overcome this situation

  2. Mechanical and Microstructural Evaluation of DMAG Welding of Structural Steel

    Directory of Open Access Journals (Sweden)

    Tolga Mert

    2015-01-01

    Full Text Available Double channel torch, which allows concentric flow of two different shielding gases, was designed and manufactured in order to pursue double channel torch gas metal arc welding of unalloyed structural steel S235JR (EN 10025-2 with fourteen passes. Tensile and Charpy V-notch tests were realized and the results were compared with those of conventional gas metal arc welding. In order to evaluate mechanical testing results, microstructural analyses were conducted. It was found that the increase with double channel gas metal arc welding process in yield and tensile strengths as well as in toughness tests, especially in subzero temperatures, compared with conventional gas metal arc welding was due to longer columnar grains and finer tempered zone grain structure between passes and due to solidification and less dendritic structure formation in all-weld metal in double channel gas metal arc welding.

  3. Friction stir welding of Aluminium matrix composites – A Review

    Directory of Open Access Journals (Sweden)

    Subramanya Prabhu

    2018-01-01

    Full Text Available Friction stir welding (FSW is established as one of the prominent welding techniques to join aluminium matrix composites (AMCs. It is a solid state welding process, takes place well below the melting temperature of the material, eliminates the detrimental effects of conventional fusion welding process. Although the process is capable to join AMCs, challenges are still open that need to be fulfill to widen its applications. This paper gives the outline of the friction stir welding technique used to join AMCs. Effect of process variables on the microstructure and mechanical properties of the joints, behavior of reinforcing materials during welding, effect of tool profiles on the joint strength are discussed in detail. Few improvements and direction for future research are also proposed.

  4. Evaluation of welding by MIG in martensitic stainless steel

    International Nuclear Information System (INIS)

    Fernandes, M.A.; Mariano, N.A.; Marinho, D.H.C. Marinho

    2010-01-01

    This work evaluated structure's characterization and mechanical properties after the welding process of the stainless steel CA6NM. The employed welding process was the metal active gas with tubular wire. The control of the thermal cycle in the welding process has fundamental importance regarding the properties of the welded joint, particularly in the thermally affected zone. The mechanical properties were appraised through impact resistance tests and the hardness and microstructure through metallographic characterization and Ray-X diffraction. The parameters and the process of welding used promoted the hardness and toughness appropriate to the applications of the steel. Welding energy's control becomes an essential factor that can affect the temperature of carbide precipitation and the nucleation of the retained austenite in the in the region of the in the thermally affected zone. (author)

  5. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  6. Feasibility of correlating V-Cr-Ti alloy weld strength with weld chemistry. CRADA final report

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Odom, R.W.

    1998-06-01

    The mechanical properties of refractory metals such as vanadium are determined to a large extent by the interstitial impurities in the alloy. In the case of welding, interstitial impurities are introduced in the welding process from the atmosphere and by dissolution of existing precipitates in the alloy itself. Because of the necessity of having an ultra-pure atmosphere, a vacuum chamber or a glove box is necessary. In the V-Cr-Ti system, the titanium serves as a getter to control the concentration of oxygen and nitrogen in solid solution in the alloy. In this project the secondary ion mass spectrometry (SIMS) technique was used to detect, measure, and map the spacial distribution of impurity elements in welds in the alloy V-4Cr-4Ti. An attempt was then made to correlate the concentrations and distributions of the impurities with mechanical properties of the welds. Mechanical integrity of the welds was determined by Charpy V-notch testing. Welds were prepared by the gas-tungsten-arc (GTA) method. Charpy testing established a correlation between weld impurity concentration and the ductile to brittle transition temperature (DBTT). Higher concentrations of oxygen resulted in a higher DBTT. An exception was noted in the case of a low-oxygen weld which had a high hydrogen concentration resulting in a brittle weld. The concentrations and distributions of the impurities determined by SIMS could not be correlated with the mechanical properties of the welds. This research supports efforts to develop fusion reactor first wall and blanket structural materials

  7. Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-10-01

    Full Text Available Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets were joined using resistance spot welding, and the weld nugget formation, mechanical properties (including tensile strength and hardness, and microstructure features of the resistance spot-welded joints were analyzed and evaluated. The visible indentations on the weld nugget surfaces caused by the electrode force and the surface expulsion were severe due to the high welding current. The weld nugget width at the sheets’ faying surface was mainly affected by the welding current and welding time, and the welded joint height at weld nugget center was chiefly associated with electrode force. The maximum tensile load of welded joint was up to 14.3 kN in the pullout failure mode. The hardness of the weld nugget was the highest because of the coarse acicular α′ structure, and the hardness of the heat-affected zone increased in comparison to the base metal due to the transformation of the β phase to some fine acicular α′ phase.

  8. Finite element simulation of laser transmission welding of dissimilar ...

    African Journals Online (AJOL)

    user

    materials between polyvinylidene fluoride and titanium ... finite element (FE) thermal model is developed to simulate the laser ... Keywords: Laser transmission welding, Temperature field, Weld dimension, Finite element analysis, Thermal modeling. 1. .... 4) The heating phenomena due to the phase changes are neglected.

  9. Quantification of Residual Stresses in External Attachment Welding Applications

    DEFF Research Database (Denmark)

    Alhajri, R.; Liu, S.; Yu, Z.

    2017-01-01

    welding (GMAW) process to deposit single beadonplate welds with ER70S6 wire on ASTM516 grade 70 pressure vessel steel plates of 6.3, 12.7, and 19 mm thicknesses. Microstructural analysis, temperature, and distortion measurements of weldments were performed to qualify the FEA modeling results. In addition...

  10. Study of creep crack growth behavior of 316LN welds

    International Nuclear Information System (INIS)

    Venugopal, S.; Kumar, Yatindra; Sasikala, G.

    2016-01-01

    Creep crack growth (CCG) behavior plays an important role in the assessment of structural integrity of components operating at elevated temperature under load/stress condition. Integrity of the welded components is decided primarily by that of the weld. Creep crack growth behavior of 316LN welds prepared using consumables developed indigenously for welding the 316L(N) SS components for the Prototype Fast Breeder Reactor has been studied. The composition of the consumable is tailored to ensure about 5 FN (ferrite number) of δ ferrite in the weld deposit. Constant load CCG tests were carried out as per ASTM E1457 at different applied loads at temperatures in the range 823-923 K on CT specimens fabricated from 'V-type' weld joints with notch in the weld centre. The creep crack growth rate (α) is commonly correlated to a time dependent fracture mechanics parameter known as C*. The α3-C* correlations (α=D(C*) φ ) were established in the temperature range 823-923 K. The crack growth rates at different temperature have been compared with that given in RCC-MR. Extensive microstructural and fractographic studies using optical and scanning electron microscopy were carried out on the CCG tested specimens to understand the effect of transformation of delta ferrite on the creep damage and fracture mechanisms associated with CCG in the weld metal at different test conditions. (author)

  11. A Rotating Plug Model of Friction Stir Welding Heat Transfer

    Science.gov (United States)

    Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.

    2006-01-01

    A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.

  12. Friction Stir Weld Restart+Reweld Repair Allowables

    Science.gov (United States)

    Clifton, Andrew

    2008-01-01

    A friction stir weld (FSW) repair method has been developed and successfully implemented on Al 2195 plate material for the Space Shuttle External Fuel Tank (ET). The method includes restarting the friction stir weld in the termination hole of the original weld followed by two reweld passes. Room temperature and cryogenic temperature mechanical properties exceeded minimum FSW design strength and compared well with the development data. Simulated service test results also compared closely to historical data for initial FSW, confirming no change to the critical flaw size or inspection requirements for the repaired weld. Testing of VPPA fusion/FSW intersection weld specimens exhibited acceptable strength and exceeded the minimum design value. Porosity, when present at the intersection was on the root side toe of the fusion weld, the "worst case" being 0.7 inch long. While such porosity may be removed by sanding, this "worst case" porosity condition was tested "as is" and demonstrated that porosity did not negatively affect the strength of the intersection weld. Large, 15-inch "wide panels" FSW repair welds were tested to demonstrate strength and evaluate residual stresses using photo stress analysis. All results exceeded design minimums, and photo stress analysis showed no significant stress gradients due to the presence of the restart and multi-pass FSW repair weld.

  13. Corrosion behaviour of welds and Ta in liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, A., E-mail: Annette.heinzel@kit.edu; Müller, G.; Weisenburger, A.

    2016-02-15

    Four specimens, P91 welded by friction stir welding with and without post heat treatment, P91 electromagnetic pulse welded (EMP) and 14Cr ODS (explosive welding) were exposed at 550 °C for up to 2131 h to Pb containing 10{sup −6} wt% oxygen. After the exposure none of the samples showed dissolution attack, all were protected by an oxide layer at the surface. Nearly no effect on the oxidation due to welding was found in both friction stir welded specimens. Severe deformation and partial melting during explosive welding result in a slower oxide layer growth within the welding zone. The EMP sample was tested as delivered without post-heat treatment. No Pb penetrated into the tiny gap between the welded parts. After the test, the gap is filled up with oxides. Additionally, Ta, discussed as a pump impeller material, was exposed to Pb and PbBi at different temperatures (400–900 °C) and oxygen concentrations in liquid metal (saturated, 10{sup −6} wt%, 10{sup −8} wt% and reduced (<<10{sup −8} wt%). Only the Ta specimens exposed to Pb with highly reduced oxygen content showed nearly no attack. All the others exhibited oxide scale formation that becomes severe above 400 °C test temperature.

  14. Mechanical properties of TIG and EB weld joints of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takanori, E-mail: hirose.takanori@jaea.go.jp; Sakasegawa, Hideo; Nakajima, Motoki; Tanigawa, Hiroyasu

    2015-10-15

    Highlights: • Narrow groove TIG minimized volume of F82H weld. • Mechanical properties of TIG and EB welds of F82H have been characterized. • Post weld heat treatment successfully moderate the toughness of weld metal without softening the base metal. - Abstract: This work investigates mechanical properties of weld joints of a reduced activation ferritic/martensitic steel, F82H and effects of post weld heat treatment on the welds. Vickers hardness, tensile and Charpy impact tests were conducted on F82H weld joints prepared using tungsten-inert-gas and electron beam after various heat treatments. Although narrow groove tungsten-inert-gas welding reduced volume of weld bead, significant embrittlement was observed in a heat affected zone transformed due to heat input. Post weld heat treatment above 993 K successfully moderated the brittle transformed region. The hardness of the brittle region strongly depends on the heat treatment temperature. Meanwhile, strength of base metal was slightly reduced by the treatment at temperature ranging from 993 to 1053 K. Moreover, softening due to double welding was observed only in the weld metal, but negligible in base metal.

  15. Fracture toughness of welded joints of a high strength low alloy steel

    International Nuclear Information System (INIS)

    Veiga, S.M.B. da; Bastian, F.L.; Pope, A.M.

    1985-10-01

    The fracture toughness of the different regions of welded joints of a high strength low alloy steel, Niocor 2, was evaluated at different temperatures and compared with the toughness of the base metal. The studied regions were: the weld metal, fusion boundary and heat affected zone. The welding process used was the manual metal arc. It is shown that the weld metal region has the highest toughness values. (Author) [pt

  16. Welding skate with computerized controls

    Science.gov (United States)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  17. Influence of Processing Parameters on the Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, J. A.; Nunes, A. C., Jr.

    2006-01-01

    Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.

  18. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  19. Automatization of welding

    International Nuclear Information System (INIS)

    Iwabuchi, Masashi; Tomita, Jinji; Nishihara, Katsunori.

    1978-01-01

    Automatization of welding is one of the effective measures for securing high degree of quality of nuclear power equipment, as well as for correspondence to the environment at the site of plant. As the latest ones of the automatic welders practically used for welding of nuclear power apparatuses in factories of Toshiba and IHI, those for pipes and lining tanks are described here. The pipe welder performs the battering welding on the inside of pipe end as the so-called IGSCC countermeasure and the succeeding butt welding through the same controller. The lining tank welder is able to perform simultaneous welding of two parallel weld lines on a large thin plate lining tank. Both types of the welders are demonstrating excellent performance at the shops as well as at the plant site. (author)

  20. Extending ITER materials design to welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [DMN/Dir, CEA/Saclay, Commissariat a l' Energie Atomique, 91191 Gif sur Yvette cedex (France)]. E-mail: tavassoli@cea.fr

    2007-08-01

    This paper extends the ITER materials properties documentation to weld metals and incorporates the needs of Test Blanket Modules for higher temperature materials properties. Since the main structural material selected for ITER is type 316L(N)-IG, the paper is focused on weld metals and joining techniques for this steel. Materials properties data are analysed according to the French design and construction rules for nuclear components (RCC-MR) and design allowables are equally derived using the same rules. Particular attention is paid to the type of weld metal, to the type and position of welding and their influence on the materials properties data and design allowables. The primary goal of this work, starting with 19-12-2 weld metal, is to produce comprehensive materials properties documentations that when combined with codification and inspection documents would satisfy ITER licensing needs. As a result, structural stability and capability of welded joints during manufacturing of ITER components and their subsequent service, including the effects of irradiation and eventual incidental or accidental situations, are also covered.

  1. A continuum based fem model for friction stir welding-model development

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, G. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States) and Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: g.buffa@dtpm.unipa.it; Hua, J. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States)]. E-mail: hua.14@osu.edu; Shivpuri, R. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States)]. E-mail: shivpuri.1@osu.edu; Fratini, L. [Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: abaqus@dtpm.unipa.it

    2006-03-15

    Although friction stir welding (FSW) has been successfully used to join materials that are difficult-to-weld or unweldeable by fusion welding methods, it is still in its early development stage and, therefore, a scientific knowledge based predictive model is of significant help for thorough understanding of FSW process. In this paper, a continuum based FEM model for friction stir welding process is proposed, that is 3D Lagrangian implicit, coupled, rigid-viscoplastic. This model is calibrated by comparing with experimental results of force and temperature distribution, then is used to investigate the distribution of temperature and strain in heat affect zone and the weld nugget. The model correctly predicts the non-symmetric nature of FSW process, and the relationships between the tool forces and the variation in the process parameters. It is found that the effective strain distribution is non-symmetric about the weld line while the temperature profile is almost symmetric in the weld zone.

  2. A continuum based fem model for friction stir welding-model development

    International Nuclear Information System (INIS)

    Buffa, G.; Hua, J.; Shivpuri, R.; Fratini, L.

    2006-01-01

    Although friction stir welding (FSW) has been successfully used to join materials that are difficult-to-weld or unweldeable by fusion welding methods, it is still in its early development stage and, therefore, a scientific knowledge based predictive model is of significant help for thorough understanding of FSW process. In this paper, a continuum based FEM model for friction stir welding process is proposed, that is 3D Lagrangian implicit, coupled, rigid-viscoplastic. This model is calibrated by comparing with experimental results of force and temperature distribution, then is used to investigate the distribution of temperature and strain in heat affect zone and the weld nugget. The model correctly predicts the non-symmetric nature of FSW process, and the relationships between the tool forces and the variation in the process parameters. It is found that the effective strain distribution is non-symmetric about the weld line while the temperature profile is almost symmetric in the weld zone

  3. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  4. Electric arc welding gun

    Science.gov (United States)

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  5. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  6. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  7. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  8. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  9. Welding of zircalloy-2 and zircalloy-4 by CO2 laser and by TIG

    International Nuclear Information System (INIS)

    Ram, V.

    1990-01-01

    This study deals with the welding of zircaloy-2 and zircaloy-4 by means of two techniqes, namely tungsten inert gas welding and CO 2 laser welding. Suitable devices and jigs were developed and manufactured to allow the welding of flat specimens and cylindrical specimens. The optimal welding parameters for the two welding methods were determined. The quality of the welds was determined by tensile strength tests at room temperature and by determining the corrosion resistance to steam at temprature of 450 deg C, 550 deg C, and at 650 deg C. The influence of the weld on the microstructure of the material, on its composition and its crystallographic structure was investigated. Analysis of fracture surfaces of the tensile specimens was carried out with a scanning electron microscope. (author)

  10. Microstructure and Porosity of Laser-welded Dissimilar Material Joints of HR-2 and J75

    Science.gov (United States)

    Shen, Xianfeng; Teng, Wenhua; Zhao, Shuming; He, Wenpei

    Dissimilar laser welding of HR-2 and J75 has a wide range of applications in high-and low-temperature hydrogen storage. The porosity distributions of the welded joints were investigated at different line energies, penetration status, and welding positions (1G, 2G, and 3G). The effect of the welding position on the welding appearance was evident only at high line energies because of the essential effect of gravity of the larger and longer dwelling molten pool. The porosity of the welded joints between the solutionised and aged J75 and HR-2 at the 3G position and partial penetration was located at the weld centre line, while the porosity at the 2G position with full penetration was distributed at the weld edges, which is consistent with the distribution of floating slag. Full keyhole penetration resulted in minimum porosity, partial penetration resulted in moderate porosity, and periodic molten pool penetration resulted in maximum porosity.

  11. Computational simulation of weld microstructure and distortion by considering process mechanics

    Science.gov (United States)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  12. Impression creep behaviour of Mod. 9Cr-1Mo steel weld joints

    International Nuclear Information System (INIS)

    Ridhin Raj, V.R.; Kottda, Ravi Sankar; Kamaraj, M.; Maduraimuthu, V.M.; Vasudevan, M.

    2016-01-01

    P91 steel (9Cr-1Mo) steel is extensively used in power plants for super heater coils, headers and steam piping. The aim of the present work is to study the creep behaviour of different zones of A-TIG weld joint using impression creep technique and compare it with that of the TIG weld joint. P91 steel weld joints were made by A-TIG welding without using any filler material and multi-pass TIG welding is done using ER90S-B9 filler rods. Welds were subjected to post-weld heat treatment (PWHT). Impression creep tests were carried out at 650 °C on the base metal, weld metal and HAZ regions. Optical Microscope and TEM were used to correlate microstructures with observed creep rates. The FGHAZ showed significantly higher impression creep rate compared to that of the base metal and weld metal. Fine grain size and relatively coarser M 23 C 6 carbide particles are responsible for higher creep rate. The impression creep rate of A-TIG weld metal and coarse grain HAZ was found to be lower than that of base metal. This is attributed to the higher grain size in weld metal and coarse HAZ attributed to the higher grain size in weld metal and to the higher peak temperature observed during A-TIG welding. (author)

  13. DEVELOPING AND QUANTIFYING PARAMETERS FOR CLOSURE WELDING OVERPACKS CONTAINING RESEARCH REACTOR SPENT NUCLEAR FUEL AT HANFORD

    International Nuclear Information System (INIS)

    CANNELL GR

    2007-01-01

    Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leaktight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). . A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leaktight for the duration of the storage term

  14. Numerical analysis of laser welding with consideration analytical methods of determining phase transformations and mechanical properties of welded joint

    Directory of Open Access Journals (Sweden)

    Piekarska Wiesława

    2018-01-01

    Full Text Available The numerical analysis of laser welding process with consideration analytical methods determining phase transformations and mechanical properties of welded joints are presents in this paper. The analytical CCT diagram and final structural composition of S355 steel are presented. The empirical relations presents in paper are determined by chemical compositions investigated steel and cooling rate between temperatures 800-500°C (t8/5. Phase composition and mechanical properties each of structures of steel in weld and heat affected zone (HAZ are determined on the basis of analytical methods. Laser welded flat is used in numerical simulations in ABAQUS. Mathematical modes of volumetric welding source are used in the calculations. Temperature fields, shape and size of melting zone for selected points in the cross-section of the joint are determined on the basis of thermal cycles obtained numerical.

  15. A Parametric Study on Welding Process Simulation for Multi-pass welds in a Plate

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Bahn, Chi Bum; Kim, Ji Hun [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    EPRI (MRP-316, 317) (1,2) and USNRC (NUREG-2162)(3) have performed related studies for FEA models to predict the weld residual stress distribution. In this work, a systematic parametric study was performed to find out how major assumptions and conditions used in the simulation could affect the weld residual stress distribution. 2- dimensional simulation was conducted by using commercial FEA software, ABAQUS(4) , for multi-pass Alloy 82 welds performed in a stainless steel plate (EPRI MRP-316, P-4, phase 1). From the previous results, we could make the following conclusions. 1. The method of applying power density is more realistic than predefined temperature. 2. It seems that annealing effect reduces the transverse direction weld residual stress (S33). However more detailed analyses for annealing effect are needed.

  16. Welding Current Distribution in the Work-piece and Pool in Arc Welding

    Directory of Open Access Journals (Sweden)

    A. M. Rybachuk

    2015-01-01

    Full Text Available In order to select the optimal configuration of controlling magnetic fields and build rational construction of magnetic systems, we need to know the distribution of welding current in the molten metal of the weld pool. So the objective of the work is to establish the calculated methods for determining current density in the weld pool during arc welding. The distribution of welding current in the pool depends on the field of the electrical resistance, which is determined by the deformed temperature field while arc moves with the welding speed. The previous works have shown experimentally and by simulation on the conductive paper that deformation of temperature field defines deformation of electric field. On the basis thereof, under certain boundary conditions the problem has been solved to give a general solution of differential equation, which relates the potential distribution to the temperature in the product during arc welding. This solution is obtained under the following boundary conditions: 1 metal is homogeneous; 2 input and output surfaces of heat flux and electric current coincide; 3 input and output surfaces of heat flux and electric current are insulated and equipotential; 4 other (lateral surfaces are adiabatic boundaries. Therefore, this paper pays basic attention to obtaining the analytical solution of a general differential equation, which relates distribution of potential to the temperature in the product. It considers the temperature field of the heat source, which moves at a welding speed with normal-circular distribution of the heat flow at a certain concentration factor. The distribution of current density is calculated on the assumption that the welding current is introduced through the same surface as the heat flux and the distribution of current density corresponds to the normally circular at a certain concentration factor. As a result, we get an expression that allows us to calculate the current density from the known

  17. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  18. Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper

    International Nuclear Information System (INIS)

    Zhang, Jingqing; Shen, Yifu; Yao, Xin; Xu, Haisheng; Li, Bo

    2014-01-01

    Highlights: • 6061-T6 Al and pure Cu were successfully underwater friction stir lap welded. • The underwater weld was analyzed via comparing with the classical weld. • The oxidation of Cu was prevented via the external water. • The amount of Al–Cu intermetallic was decreased by the external water. • The thickness of Al–Cu diffusion interlayer was decreased by the external water. - Abstract: Friction stir welding (classical FSW) is considered to offer advantages over the traditional fusion welding techniques in terms of dissimilar welding. However, some challenges still exist in the dissimilar friction stir lap welding of the aluminum/copper (Al/Cu) metallic couple, among which the formation of the Al–Cu intermetallic compounds is the major problem. In the present research, due to the fact that the formation and growth of the intermetallic are significantly controlled by the thermal history, the underwater friction stir welding (underwater FSW) was employed for fabricating the weld, and the weld obtained by underwater FSW (underwater weld) was analyzed via comparing with the weld obtained under same parameters by classical FSW (classical weld). In order to investigate the effect of the external water on the thermal history, the K-type thermocouple was utilized to measure the weld temperature, and it is found that the water could decrease the peak temperature and shorten the thermal cycle time. The XRD results illustrate that the interface of the welds mainly consist of the Al–Cu intermetallic compounds such as CuAl 2 and Cu 9 Al 4 together with some amounts of Al and Cu, and it is also found that the amount of the intermetallic in the underwater weld is obvious less than in the classical weld. The SEM images and the EDS line scan results also illustrate that the Al–Cu diffusion interlayer at the Al–Cu interface of the underwater weld was obviously thinner than that of the classical weld

  19. Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior

    Science.gov (United States)

    Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.

    2015-06-01

    The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.

  20. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    International Nuclear Information System (INIS)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-01-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated

  1. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    Science.gov (United States)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-05-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.

  2. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  3. Butt-welding technology for double walled Polyethylene pipe

    International Nuclear Information System (INIS)

    Lee, Bo-Young; Kim, Jae-Seong; Lee, Sang-Yul; Kim, Yeong K.

    2012-01-01

    Highlights: ► We developed a butt welding apparatus for doubled walled Polyethylene pipe. ► We design the welding process by analyzing thermal behaviors of the material. ► We performed the welding and tested the welded structural performances. ► We also applied the same technology to PVC pipes. ► We verified the butt welding was successful and effective for the pipes with irregular sections. -- Abstract: In this study, mechanical analyses of a butt welding technology for joining Polyethylene pipe are presented. The pipe had unique structure with double wall, and its section topology was not flat. For an effective repair of leakage and replacements of the pipe, the butt welding technology was developed and tested. For the material characterizations, thermodynamic analyses such as thermal gravimetric analysis and differential scanning calorimetry were performed. Based on the test results, the process temperature and time were determined to ensure safe joining of the pipes using a hot plate apparatus. The welding process was carefully monitored by measuring the temperature. Then, the joined pipes were tested by various methods to evaluate the quality. The analyses results showed the detail process mechanism during the joining process, and the test results demonstrated the successful application of the technology to the sewage pipe repairs.

  4. Hybrid Welding of 45 mm High Strength Steel Sections

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  5. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  6. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  7. TIG welding method and TIG welding device

    International Nuclear Information System (INIS)

    Yoneda, Eishi

    1998-01-01

    The present invention provides a method of TIG welding for members having different heat capacities including a cladding tube and an end plug of a fuel rod to be used, for example, in a reactor, and a device therefor. Namely, in the TIG welding method, the flow rate of a sealed gas to the side of a member having smaller heat capacity is made greater than that on the side of the member having greater heat capacity bordered on the top end of a welding electrode. Since the sealed gas is jetted being localized relative to the welding electrode, arc is restricted in a region of the member having smaller heat capacity and is increased at a region having a larger heat capacity. As a result, the arc is localized, so that the heat input amount to the region having a large heat capacity is increased, and then a plurality of members at the abutting portion are melted uniformly thereby capable of obtaining a uniform molten pool. A bead is formed at the abutting portion thereby capable of obtaining a welded portion with less unevenness and having large strength. (I.S.)

  8. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  9. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  10. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  11. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  12. TEM observations of HT-9 as-welded weldment microstructures

    International Nuclear Information System (INIS)

    Foulds, J.R.; Lechtenberg, T.A.

    1984-01-01

    TEM studies of different locations in an HT-9 weldment indicated delta-ferrite (delta) occurrence, M 23 C 6 precipitation at delta-martensite interfaces, fine carbide precipitation at prior austenite grain boundaries, and martensite lath and lath packet size to be the distinguishable microstructure features observed. Furthermore, retained austenite films were observed in the weld metal and the HAZ adjacent to the weld metal that reached the highest temperature during joining. The microstructures correlate well with the observed room temperature microhardness except for the fusion boundary in weld metal which exhibited a hardness drop and an unexpected minimum amount of delta-ferrite

  13. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  14. Characterization of friction welding for IN713LC and AISI 4140 steel

    International Nuclear Information System (INIS)

    Yeom, J.T.; Park, N.K.; Park, J.H.; Lee, J.W.

    2004-01-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  15. Characterization of friction welding for IN713LC and AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, J.T.; Park, N.K. [Dept. of Materials Processing, Korea Inst. of Machinery and Materials, Kyungnam (Korea); Park, J.H.; Lee, J.W. [ENPACO Co., Changwon (Korea)

    2004-07-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  16. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  17. Effect of Local Post Weld Heat Treatment on Tensile Properties in Friction Stir Welded 2219-O Al Alloy

    Science.gov (United States)

    Chu, Guannan; Sun, Lei; Lin, Caiyuan; Lin, Yanli

    2017-11-01

    To improve the formability of the aluminum alloy welds and overcome the size limitation of the bulk post weld heat treatment (BPWHT) on large size friction stir welded joints, a local post weld heat treatment method (LPWHT) was proposed. In this method, the resistance heating as the moving heat source is adopted to only heat the weld seam. The temperature field of LPWHT and its influence on the mechanical properties and formability of FSW 2219-O Al alloy joints was investigated. The evaluation of the tensile properties of FSW samples was also examined by mapping the global and local strain distribution using the digital image correlation methodology. The results indicated that the formability was improved greatly after LPWHT, while the hardness distribution of the FSW joint was homogenized. The maximum elongation can reach 1.4 times that of as-welded joints with increase the strength and the strain of the nugget zone increased from 3 to 8% when annealing at 300 °C. The heterogeneity on the tensile deformation of the as-welded joints was improved by the nugget zone showing large local strain value and the reason was given according to the dimple fracture characteristics at different annealing temperatures. The tensile strength and elongation of LPWHT can reach 93.3 and 96.1% of the BPWHT, respectively. Thus, the LPWHT can be advantageous compared to the BPWHT for large size welds.

  18. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    Science.gov (United States)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  19. Grinding Parts For Automatic Welding

    Science.gov (United States)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  20. Buckling analysis of continuous welded rail track

    NARCIS (Netherlands)

    Van, M.A.

    1996-01-01

    Continuous welded rail track, compared to jointed track not only reduces maintenance costs, but also increases life time of track components and the comfort of passengers. Since expansion of the rails is hardly possible in CWR-track, a temperature increase will result in high compressive stresses

  1. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  2. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  3. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.; Hadryś D.; Wszołek Ł.

    2017-01-01

    The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD) was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite) and low amount of MAC (self-tempered martensite, retained austenite, carbide) phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Mic...

  4. Simulation of the welding of irradiated materials

    International Nuclear Information System (INIS)

    Lin, Hua Tay

    1989-07-01

    Helium was uniformly implanted using the ''tritium trick'' technique to levels of 0.18, 2.5, 27, 105 and 256 atomic part per million (appm) for type 316 stainless steel, and 0.3 and 1 appm for Sandvik HT-9 (12 Cr-1MoVW). Both full penetration as well as partial penetration welds were then produced on control and helium-containing materials using the autogenous gas tungsten arc (GTA) welding process under full constraint conditions. For full penetration welds, both materials were successfully welded when they contained less than 0.3 appm helium. However, welds of both materials, when containing greater than 1 appm helium, were found to develop cracks during cooling of the weld. Transmission and scanning electron microscopy indicated that the HAZ cracking was caused by the growth and coalescence of grain boundary (GB) helium bubbles. This cracking occurred as a result of the combination of high temperatures and high shrinkage tensile stresses. The cracking in the fusion zone was found to result from the precipitation of helium along dendrite interfaces. A model based on the kinetics of diffusive cavity growth is presented to explain the observed results. The model proposes a helium bubble growth mechanism which leads to final intergranular rupture in the heat-affected zone. Results of the present study demonstrate that the use of conventional fusion welding techniques to repair materials degraded by exposure to irradiation environments may be difficult if the irradiation results in the generation of helium equal to or greater than 1 appm

  5. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  6. Numerical Simulation Of The Laser Welding

    Directory of Open Access Journals (Sweden)

    Aleksander Siwek

    2008-01-01

    Full Text Available The model takes into consideration thermophysical and metallurgical properties of theremelting steel, laser beam parameters and boundary conditions of the process. As a resultof heating the material, in the area of laser beam operation a weld pool is being created,whose shape and size depends on convection caused by the Marangoni force. The directionof the liquid stream depends on the temperature gradient on the surface and on the chemicalcomposition as well. The model created allows to predict the weld pool shape depending onmaterial properties, beam parameters, and boundary conditions of the sample.

  7. Welding Challenges in the nuclear context

    International Nuclear Information System (INIS)

    Delany, Fred; Raghunathan, Sayee; Rubir, Nicolas; Wiesner, Christoph

    2013-06-01

    Nuclear Power forms an essential part of the strategies deployed to provide the future global energy demands whilst meeting the obligations on CO 2 emission reduction targets. In the UK, plans across the political spectrum call for a substantial nuclear new-build (NNB) programme. This necessitates application of best practice design, fabrication and welding technology in the UK context as well as a consideration of current and future skill requirements. Existing nuclear technology covers a range of different designs, and many reactors have reached the end of their design life. The decommissioning of old plants and management of nuclear waste, especially high-level, long-life and spent fuel waste, therefore also requires ongoing attention. Welding is defined by ISO as a 'special process', as imperfections in welded/fabricated products, even after inspection, may become apparent only after the product is put in use or service. Thus, welding has a major influence on the quality and cost of the final product, as well as the operational and maintenance costs. Most current trends in welding process innovations focus on improving weld quality and productivity, or reducing the dependency on welder/operator skills. Materials research concentrates on improving the understanding of influence of the environment (irradiation, temperature, corrosion, fatigue) on long-term performance and on repair of existing plants or future designs that will require higher temperature materials. The ITER nuclear fusion and the Jules-Horowitz Research reactors also have unique demands on materials and welding processes. Through the Engineering the Future alliance, the UK has organised a review of the international lessons learnt during recent nuclear new-build projects, and welding has been identified as a critical area requiring particular attention for any future new-build activities. TWI chaired the group advising on welding issues resulting in recommendations for the UK NNB programme. Key

  8. Resistance Welding of Advanced Materials and Micro Components

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard

    With the use of the Finite Element Method it has become possible to analyse and better understand complex physical processes such as the resistance welding by numerical simulation. However, simulation of resistance welding is a very complex matter due to the strong interaction between mechanical......, thermal, electrical and metallurgical effects all signifcantly in uencing the process. Modelling is further complicated when down-scaling the process for welding micro components or when welding new advanced high strength steels in the automotive industry. The current project deals with three main themes...... aimed at improving the understanding of resistance welding for increasing the accuracy of numerical simulation of the process. Firstly methods for measuring and modelling mechanical and electrical properties at a wide range of temperatures is investigated, and especially the electrical contact...

  9. Laser tissue welding mediated with a protein solder

    Science.gov (United States)

    Small, Ward, IV; Heredia, Nicholas J.; Celliers, Peter M.; Da Silva, Luiz B.; Eder, David C.; Glinsky, Michael E.; London, Richard A.; Maitland, Duncan J.; Matthews, Dennis L.; Soltz, Barbara A.

    1996-05-01

    A study of laser tissue welding mediated with an indocyanine green dye-enhanced protein solder was performed. Freshly obtained sections of porcine artery were used for the experiments. Sample arterial wall thickness ranged from two to three millimeters. Incisions approximately four millimeters in length were treated using an 805 nanometer continuous- wave diode laser coupled to a one millimeter diameter fiber. Controlled parameters included the power delivered by the laser, the duration of the welding process, and the concentration of dye in the solder. A two-color infrared detection system was constructed to monitor the surface temperatures achieved at the weld site. Burst pressure measurements were made to quantify the strengths of the welds immediately following completion of the welding procedure.

  10. Welding techniques development of CLAM steel for Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunjing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China)], E-mail: lcj@ipp.ac.cn; Huang Qunying; Wu Qingsheng; Liu Shaojun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Lei Yucheng [Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Muroga, Takeo; Nagasaka, Takuya [National Institute for Fusion Science, Toki, Jifu, 509-5292 (Japan); Zhang Jianxun [Xi' an Jiaotong University, Xi' an, Shanxi, 710049 (China); Li Jinglong [Northwestern Polytechnical University, Xi' an, Shanxi, 710072 (China)

    2009-06-15

    Fabrication techniques for Test Blanket Module (TBM) with CLAM are being under development. Effect of surface preparation on the HIP diffusion bonding joints was studied and good joints with Charpy impact absorbed energy close to that of base metal have been obtained. The mechanical properties test showed that effect of HIP process on the mechanical properties of base metal was little. Uniaxial diffusion bonding experiments were carried out to study the effect of temperature on microstructure and mechanical properties. And preliminary experiments on Electron Beam Welding (EBW), Tungsten Inert Gas (TIG) Welding and Laser Beam Welding (LBW) were performed to find proper welding techniques to assemble the TBM. In addition, the thermal processes assessed with a Gleeble thermal-mechanical machine were carried out as well to assist the fusion welding research.

  11. Method for laser welding a fin and a tube

    Science.gov (United States)

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  12. Analysis and validation of laser spot weld-induced distortion

    Energy Technology Data Exchange (ETDEWEB)

    Knorovsky, G.A.; Kanouff, M.P.; Maccallum, D.O.; Fuerschbach, P.W.

    1999-12-09

    Laser spot welding is an ideal process for joining small parts with tight tolerances on weld size, location, and distortion, particularly those with near-by heat sensitive features. It is also key to understanding the overlapping laser spot seam welding process. Rather than attempting to simulate the laser beam-to-part coupling (particularly if a keyhole occurs), it was measured by calorimetry. This data was then used to calculate the thermal and structural response of a laser spot welded SS304 disk using the finite element method. Five combinations of process parameter values were studied. Calculations were compared to experimental data for temperature and distortion profiles measured by thermocouples and surface profiling. Results are discussed in terms of experimental and modeling factors. The authors then suggest appropriate parameters for laser spot welding.

  13. Weld oxide formation on lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Westin, E.M. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden)], E-mail: elin.westin@outokumpu.com; Olsson, C.-O.A. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden); Hertzman, S. [Outokumpu Stainless Research Foundation, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)

    2008-09-15

    Weld oxides have a strong influence on corrosion resistance, but have hitherto only been studied to a limited extent for duplex stainless steels. X-ray photoelectron spectroscopy (XPS) has here been used to study heat tint formed on gas tungsten arc (GTA) welds on the commercial duplex grades LDX 2101 (EN 1.4162/UNS S32101) and 2304 (EN 1.4362/UNS S32304) welded with and without nitrogen additions to the shielding gas. The process of heat tint formation is discussed in terms of transport phenomena to explain the effect of atmosphere, temperature and composition. The oxides formed were found to be enriched in manganese and corrosion testing shows that nitrogen has a strong influence on the weld oxide. A mechanism is proposed including evaporation from the weld pool and subsequent redeposition.

  14. Weld oxide formation on lean duplex stainless steel

    International Nuclear Information System (INIS)

    Westin, E.M.; Olsson, C.-O.A.; Hertzman, S.

    2008-01-01

    Weld oxides have a strong influence on corrosion resistance, but have hitherto only been studied to a limited extent for duplex stainless steels. X-ray photoelectron spectroscopy (XPS) has here been used to study heat tint formed on gas tungsten arc (GTA) welds on the commercial duplex grades LDX 2101 (EN 1.4162/UNS S32101) and 2304 (EN 1.4362/UNS S32304) welded with and without nitrogen additions to the shielding gas. The process of heat tint formation is discussed in terms of transport phenomena to explain the effect of atmosphere, temperature and composition. The oxides formed were found to be enriched in manganese and corrosion testing shows that nitrogen has a strong influence on the weld oxide. A mechanism is proposed including evaporation from the weld pool and subsequent redeposition

  15. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  16. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  17. Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers

    OpenAIRE

    Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart

    2011-01-01

    Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influen...

  18. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  19. Online quality monitoring of welding processes by means of plasma optical spectroscopy

    Science.gov (United States)

    Ferrara, Michele; Ancona, Antonio; Lugara, Pietro M.; Sibilano, Michele

    2000-02-01

    An optical monitoring system for the welding process has been developed; it is based on the study of the optical emission of the welding plasma plume, created during the welding of stainless steels and other iron-based materials. In the first approach a continuous wave CO2 laser of 2500-Watt maximum power, available at the INFM Research Unit labs in Bari University, has been used as welding source. A detailed spectroscopic study of the visible and UV welding plasma emission has been carried out; many transition lines corresponding to the elements composing the material to be welded have been found. By means of an appropriate selection of these lines and suitable algorithms, the electronic temperature of the plasma plume has been calculated and its evolution recorded as a function of several welding parameters. The behavior of the registered signal has resulted to be correlated to the welded joint quality. These findings have allowed to design and assemble a portable, non-intrusive and real-time welding quality optical sensor which has been successfully tested for laser welding of metals in different geometrical configurations; it has been capable of detecting a wide range of weld defects normally occurring during industrial laser metal-working. This sensor has also been tested in arc welding industrial processes (TIG) with promising results.

  20. Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

    International Nuclear Information System (INIS)

    Haddadi, Farid; Tsivoulas, Dimitrios

    2016-01-01

    High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in a thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.

  1. Performance of high molybdenum superaustenitic stainless steel welds in harsh chloride environments

    International Nuclear Information System (INIS)

    Stenvall, P.; Liljas, M.; Wallen, B.

    1996-01-01

    Superaustenitic steels are normally welded with nickel-based alloys as filler materials. To clarify the understanding of weld behavior in superaustenitic stainless steels this paper presents the development history of 6Mo and 7Mo steels, and results of laboratory tests and field tests on welds of UNS S31254 (6Mo) and UNS S32654 (7 Mo) in different types of chloride containing environments. The laboratory tests consisted of the well known ferric chloride test (ASTM G 48 Method A). Shielded metal arc welds, gas tungsten arc welds and submerged arc welds in both grades were tested. The critical pitting temperatures were determined and the locations of the attack were noted. Some specimens were sectioned at the position of the attack followed by studies using light optical microscopy. The critical pitting temperatures of the welds in S31254 and S32654 were at normal levels for both grades, i.e., 40--50 C for S31254 and 60--75 C for S32654. The locations of the attack differed depending on the welding process. In shielded metal arc welds the attack was mostly located in the weld metal. In gas tungsten arc welds the attack was predominantly located next to the fusion line. The field tests showed that the behavior of welds and parent metal of superaustenitic stainless steels, as well as of nickel-based alloys, is much dependent on the corrosive environment. In oxidizing chloride solutions, similar results to those of the ferric chloride test, are observed. However, crevice corrosion in the parent material is at a greater risk than pitting corrosion in the welds. In very oxidizing solutions of low chloride concentrations, welds made of nickel-based fillers may corrode faster than the stainless steel base metal due to transpassive uniform corrosion. The opposite situation exists when active uniform corrosion prevails, i.e., welds made of nickel-based fillers corrode less than the stainless steel parent material

  2. Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Farid, E-mail: farid.haddadi@gmail.com [Clemson University–International Center for Automotive Research (CU-ICAR), #347, 4 Research Drive, Greenville, SC 29607 (United States); School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Tsivoulas, Dimitrios, E-mail: dim.tsivoulas@gmail.com [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Clean Energy/Nuclear Services, Amec Foster Wheeler, 601 Faraday Street, Birchwood Park, Warrington WA3 6GN (United Kingdom)

    2016-08-15

    High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in a thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.

  3. Weld metal design data for 316L(N)

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.A.F. [Commissariat a l' Energie Atoique, CEA, Saclay (France)

    2007-07-01

    This paper extends the ITER materials properties documentations to weld metal types 316L, 19-12-2 and 16-8-2, used for welding of Type 316L(N), i.e. the structural material retained for manufacturing of ITER main components such as the vacuum vessel. The data presented include those of the low temperature (316L) and high temperature (19-12-2) grades, as well as, the more readily available grade (16-8-2). Weld metal properties data for all three grades are collected, sorted and analyzed according to the French design and construction rules for nuclear components (RCC-MR). Particular attention is paid to the type of weld metal (e.g. wire for TIG, covered electrode for manual arc, flux wire for automatic welding), and the type and the position of welding. Design allowables are derived for each category of weld and compared with those of the base metal. The data sheets established for each physical and mechanical properties follow the presentation established for the ITER Materials Properties Handbook (MPH). They are part of the documentation that when combined with codification and inspection documents should satisfy ITER licensing needs. In most cases, the analyses performed, go beyond conventional analyses required in present international codes and pay attention to specific needs of ITER. These include, possible effects of exposures to high temperatures during various manufacturing stages e.g. HIPing, and effects of irradiation at low and medium temperatures. In general, it is noticed that all three weld metals satisfy the RCC-MR requirements, provided compositions and types of welds used correspond to those specified in RCC-MR. (orig.)

  4. Creep behavior evaluation of welded joint

    International Nuclear Information System (INIS)

    Susei, Shuzo; Matsui, Shigetomo; Mori, Eisuke; Shimizu, Shigeki; Satoh, Keisuke.

    1980-01-01

    In the creep design of high temperature structural elements, it is necessary to grasp the creep performance of joints as a whole, paying attention to the essential lack of uniformity between the material qualities of parent metals and welds. In this study, the factors controlling the creep performance of butt welded joints were investigated theoretically, when they were subjected to lateral tension and longitudinal tension. It was clarified that the rupture time in the case of laterally pulled joints was determined by the ratio of the creep rupture times of weld metals and parent metals, and the rupture time in the case of longitudinally pulled joints was determined by the ratio of the creep rupture times and the ratio of the creep strain rates of weld metals and parent metals. Moreover, when the joints of the former ratio less than 1 and the latter ratio larger than 1 were investigated experimentally, the rupture time in the case of laterally pulled joints was affected by the relative thickness, and when the relative thickness was large, the theoretical and the experimental values coincided, but the relative thickness was small, the theoretical values gave the evaluation on safe side as compared with the experimental values due to the effect of restricting deformation. In the case of longitudinally pulled joints, the theoretical and the experimental values coincided relatively well. The diagram of classifying the creep performance of welded joints was proposed. (Kako, I.)

  5. An approach for optimizing arc welding applications

    International Nuclear Information System (INIS)

    Chapuis, Julien

    2011-01-01

    The dynamic and transport mechanisms involved in the arc plasma and the weld pool of arc welding operations are numerous and strongly coupled. They produce a medium the magnitudes of which exhibit rapid time variations and very marked gradients which make any experimental analysis complex in this disrupted environment. In this work, we study the TIG and MIG processes. An experimental platform was developed to allow synchronized measurement of various physical quantities associated with welding (process parameters, temperatures, clamping forces, metal transfer, etc.). Numerical libraries dedicated to applied studies in arc welding are developed. They enable the treatment of a large flow of data (signals, images) with a systematic and global method. The advantages of this approach for the enrichment of numerical simulation and arc process control are shown in different situations. Finally, this experimental approach is used in the context of the chosen application to obtain rich measurements to describe the dynamic behavior of the weld pool in P-GMAW. Dimensional analysis of these experimental measurements allows to identify the predominant mechanisms involved and to determine experimentally the characteristic times associated. This type of approach includes better description of the behavior of a macro-drop of molten metal or the phenomena occurring in the humping instabilities. (author)

  6. Prolegomena to the Study of Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2010-01-01

    The literature contains many approaches toward modeling of the friction stir welding (FSW) process with varying treatments of the weld metal properties. It is worthwhile to consider certain fundamental features of the process before attempting to interpret FSW phenomena: Because of the unique character of metal deformation (as opposed to, say, viscous deformation) a velocity "discontinuity" or shear surface occurs in FSW and determines much of the character of the welding mechanism. A shear surface may not always produce a sound bond. Balancing mechanical power input against conduction and convection heat losses yields a relation, a "temperature index", between spindle speed and travel speed to maintain constant weld temperature. But many process features are only weakly dependent upon temperature. Thus, unlike modeling of metal forming processes, it may be that modeling the FSW process independently of the material conditions has some merit.

  7. Cluster formation in in-service thermally aged pressurizer welds

    Science.gov (United States)

    Lindgren, Kristina; Boåsen, Magnus; Stiller, Krystyna; Efsing, Pål; Thuvander, Mattias

    2018-06-01

    Thermal aging of reactor pressure vessel steel welds at elevated temperatures may affect the ductile-to-brittle transition temperature. In this study, unique weld material from a pressurizer, with a composition similar to that of the reactor pressure vessel, that has been in operation for 28 years at 345 °C is examined. Despite the relatively low temperature, the weld becomes hardened during operation. This is attributed to nanometre sized Cu-rich clusters, mainly located at Mo- and C-enriched dislocation lines and on boundaries. The welds have been characterized using atom probe tomography, and the characteristics of the precipitates/clusters is related to the hardness increase, giving the best agreement for the Russell-Brown model.

  8. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  9. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  10. Review of Welding Terminology

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė

    2011-04-01

    Full Text Available The paper discusses welding terms in accordance with the Lithuanian standard LST EN 1792 „Welding. The multilingual list of welding terms and similar processes”, „The Russian–Lithuanian dictionary of the terms of mechanical engineering technology and welding“ and the examples from postgraduates‘ final works. It analyses the infringement of lexical, word-building and morphological rules. First-year students should already be familiar with the standardized terms of their speciality. More active propagation of the terms should help to avoid terminology mistakes in various scientific spheres.

  11. Evaluation of Distortion in Welding Unions of 304 Stainless Steel with Elliptic Trajectory Using a Welding Robot

    Science.gov (United States)

    Carrasco-González, L. A.; Hurtado-Delgado, E.; Reyes-Valdés, F. A.

    The aim of this investigation is to evaluate the distortions generated in welding unions of stainless steel 304 by effect of the welding temperature and the microestructural changes. The joint design is a 100 × 100 mm steel plate of 3 mm thickness. The plate was joined to a tube of 50 mm diameter and 2 mm thickness, which has a defined angular cut; therefore, the trajectory followed by the seam has an elliptic form. Temperature data acquisition was developed by type K thermocouples, placed in pairs at 0°, 90°, 180° and 270° along the welding trajectory and connected to a data acquisition device yo obtain the measures to generate time-temperature plots. The welding process was executed by a KUKA ®; KR16 welding robot with an integrated GMAW (Gas metal arc welding) process where the input parameters of voltage, wire feed and travel speed are set to constant. The distortion of the work piece was measured using a laser scanning technique that generates a point cloud with the VXelements TM software for comparison between the pre and post-weld condition. Microstructural evaluation was performed on transversal sections of the seam, at the mentioned angles for correlation.

  12. Advantages and successful use of TIG narrow-gap welding

    International Nuclear Information System (INIS)

    Loehberg, R.; Pellkofer, D.; Schmidt, J.

    1986-01-01

    Narrow-gap welding, an advancement of the mechanized TIG impulse welding process with conventional seam geometry (V-shaped and/or U-shaped welds), not only assures great economic efficiency on account of the low weld volume but also offers considerable benefits in terms of quality. Thanks to the low number of beads, the following advantages are gained: less axial and radial shrinkage which reduces the strain in the root area, total heat input and, thus, the dwell time in the critical temperature range from 500 to 800 0 C leading to a chromium depletion at the grain boundaries during the welding process is minimized which markedly reduces the sensitivity of non-stabilized steels to intercrystalline stress corrosion cracking, and a relatively favourable residual welding stress profile in the heat affected zone. The process was used successfully in the past for welds of ferritic and austenitic steel pipes in the construction of nuclear power plants and in the remote-controlled welding during the replacement of piping in plants already in operation. (orig.) [de

  13. Ultrasonic Welding of Thin Alumina and Aluminum Using Inserts

    Science.gov (United States)

    Ishikuro, Tomoaki; Matsuoka, Shin-Ichi

    This paper describes an experimental study of ultrasonic welding of thin ceramics and metals using inserts. Ultrasonic welding has enable the joining of various thick ceramics, such as Al2O3 and ZrO2, to aluminum at room temperature quickly and easily as compared to other welding methods. However, for thin ceramics, which are brittle, welding is difficult to perform without causing damage. In this study, aluminum anodized oxide with different anodizing time was used as thin alumina ceramic. Vapor deposition of aluminum alloys was used to create an effective binder layer for welding at a low pressure and within a short duration in order to prevent damage to the anodic oxide film formed with a short anodizing time. For example, ultrasonic welding of thin Al2O3/Al was accomplished under the following conditions: ultrasonic horn tip amplitude of 30µm, welding pressure of 5MPa, and required duration of 0.1s. However, since the vapor deposition film tends to exfoliate as observed in the anodic oxide film formed with a long anodizing time, welding was difficult.

  14. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensile specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.

  15. Socket weld integrity in nuclear piping under fatigue loading condition

    International Nuclear Information System (INIS)

    Choi, Young Hwan; Choi, Sun Yeong

    2007-01-01

    The purpose of this paper is to evaluate the integrity of socket weld in nuclear piping under the fatigue loading. The integrity of socket weld is regarded as a safety concern in nuclear power plants because many failures have been world-widely reported in the socket weld. Recently, socket weld failures in the chemical and volume control system (CVCS) and the primary sampling system (PSS) were reported in Korean nuclear power plants. The root causes of the socket weld failures were known as the fatigue due to the pressure and/or temperature loading transients and the vibration during the plant operation. The ASME boiler and pressure vessel (B and PV) Code Sec. III requires 1/16 in. gap between the pipe and fitting in the socket weld with the weld leg size of 1.09 x t 1 , where t 1 is the pipe wall thickness. Many failure cases, however, showed that the gap requirement was not satisfied. In addition, industry has demanded the reduction of weld leg size from 1.09 x t 1 to 0.75 x t 1 . In this paper, the socket weld integrity under the fatigue loading was evaluated using three-dimensional finite element analysis considering the requirements in the ASME Code. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P = 0 to 15.51 MPa, and the thermal transient ranging from T = 25 to 288 deg. C were considered. The results are as follows; (1) the socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) code. (2) The effect of pressure or temperature transient load on socket weld in CVCS and PSS is not significant owing to the low frequency of transient during plant operation. (3) 'No gap' is very risky to the socket weld integrity for the systems having the vibration condition to exceed the requirement specified in the ASME OM Code and/or the transient loading condition from P = 0 and T = 25 deg. C to P = 15.51 MPa and T = 288 deg. C. (4

  16. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  17. Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets

    International Nuclear Information System (INIS)

    Bilici, Mustafa Kemal; Yuekler, Ahmet Irfan

    2012-01-01

    Highlights: → All velding parameters and different tool geometries have demonstrated a different effects on weld strength. → Friction stir spot welding of polyethylene mechanical scission is very important. → Metric screw the tool has a great influence on the weld strength of FSSW. -- Abstract: The effect of important welding parameters and tool properties that are effective on static strength in friction stir spot welds of polyethylene sheets were studied. Six different tool pin profiles (straight cylindrical, tapered cylindrical, threaded cylindrical, triangular, square and hexagonal) with different shoulder geometries, different pin length, pin angle and concavity angle were used to fabricate the joints. The tool rotational speed, tool plunge depth and dwell time were determined welding parameters. All the welding operations were done at the room temperature. Welding force and welding zone material temperature measurements were also done. Lap-shear tests were carried out to find the weld static strength. Weld cross section appearance observations were also done. From the experiments, the effect of pin profile, pin length, pin angle, dwell time and tool rotational speed on friction stir spot welding formation and weld strength was determined.

  18. Recent developments in pipeline welding practice

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen chapters are included: overview of pipeline welding systems and quality assurance, CRC automatic welding system, H.C. Price Co. automatic welding system, semi-automatic MIG-welding process, partial penetration welding of steel pipes for gas distribution, construction procedures and quality control in offshore pipeline construction, welding in repair and maintenance of gas transmission pipelines, British Gas studies of welding on pressurized gas transmission pipelines, hot tapping pipelines, underwater welding for offshore pipelines and associated equipment, radial friction welding, material composition vs weld properties, review of NDT of pipeline welds, and safety assurance in pipeline construction. A bibliography of approximately 150 references is included, arranged according to subject and year.

  19. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  20. Residual stress improvement in multi-layer welded plates using water-shower cooling during welding process

    International Nuclear Information System (INIS)

    Yanagida, Nobuyoshi; Koide, Hiroo

    2006-01-01

    To reduce tensile residual stress in a welded region, we developed a new welding method that applies a water-shower behind the welding torch. When this method is applied to welding of austenitic stainless steel plates, cooling conditions mainly determine how much the residual stress can be reduced. To determine the conditions, we first used FEM to evaluate the effects of interpass temperature on the residual stress. And we found effective conditions for reducing tensile residual stress. To verify the validity of the conditions, specimens welded with or without water shower cooling were manufactured. Residual stresses of the specimens were experimentally measured. It was found that tensile residual stresses were generated on the surface of the welds and those were reduced in the case that the water-shower was applied. These measurement results agree well with the FEM analyses. It can therefore be concluded that the water-shower cooling during welding is appropriate for reducing tensile residual stress in austenitic stainless steel welding. (author)

  1. Heat source model for welding process

    International Nuclear Information System (INIS)

    Doan, D.D.

    2006-10-01

    One of the major industrial stakes of the welding simulation relates to the control of mechanical effects of the process (residual stress, distortions, fatigue strength... ). These effects are directly dependent on the temperature evolutions imposed during the welding process. To model this thermal loading, an original method is proposed instead of the usual methods like equivalent heat source approach or multi-physical approach. This method is based on the estimation of the weld pool shape together with the heat flux crossing the liquid/solid interface, from experimental data measured in the solid part. Its originality consists in solving an inverse Stefan problem specific to the welding process, and it is shown how to estimate the parameters of the weld pool shape. To solve the heat transfer problem, the interface liquid/solid is modeled by a Bezier curve ( 2-D) or a Bezier surface (3-D). This approach is well adapted to a wide diversity of weld pool shapes met for the majority of the current welding processes (TIG, MlG-MAG, Laser, FE, Hybrid). The number of parameters to be estimated is weak enough, according to the cases considered from 2 to 5 in 20 and 7 to 16 in 3D. A sensitivity study leads to specify the location of the sensors, their number and the set of measurements required to a good estimate. The application of the method on test results of welding TIG on thin stainless steel sheets in emerging and not emerging configurations, shows that only one measurement point is enough to estimate the various weld pool shapes in 20, and two points in 3D, whatever the penetration is full or not. In the last part of the work, a methodology is developed for the transient analysis. It is based on the Duvaut's transformation which overpasses the discontinuity of the liquid metal interface and therefore gives a continuous variable for the all spatial domain. Moreover, it allows to work on a fixed mesh grid and the new inverse problem is equivalent to identify a source

  2. Welding of refractory alloys

    International Nuclear Information System (INIS)

    Lessmann, G.G.

    1984-01-01

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  3. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  4. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  5. Underwater Welding Techniques

    OpenAIRE

    Esam F. Alajmi; Ahmad A. Alqenaei

    2017-01-01

    Welding demand in offshore and marine applications is increased with the increasing in oil and gas activities as well as increasing in the marine transportation and industrial applications. Applications of underwater welding well be increased in Kuwait in the coming years due to the strategic directive of the country toward starting the offshore oil and gas exploration and production, and the increase in marine transportation projects. Therefore, there is a need to understand the concept of u...

  6. Recommendations for joint fatigue coefficients for welded P91 junctions at 550 °C

    Energy Technology Data Exchange (ETDEWEB)

    Matheron, P., E-mail: philippe.matheron@cea.fr; Aiello, G.; Ancelet, O.; Forest, L.

    2016-04-15

    Modified 9Cr1Mo steels are potential candidates as structural materials of GEN-IV nuclear reactors. Since the design of structural components is influenced by the presence of the welds, their mechanical properties are also included in the design codes. In the European code RCC-MRx, a weld is considered as a homogeneous (base metal) component with a margin coefficient, called weld coefficient. Currently no values of joint fatigue coefficients for P91 junctions are given in RCC-MRx. After a recall of the weld design rules contained in the code, this work presents the experimental activities carried out to characterize the fatigue behaviour of TIG welded P91 junctions at high temperatures. Finite elements calculations were performed on the basis of the characterization of the base and weld metal. The results of the tests validate the numerical results. Values of the weld joint fatigue coefficients for P91 are proposed for possible inclusion in RCC-MRx.

  7. Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.

    Science.gov (United States)

    Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu

    In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.

  8. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2017-03-01

    Full Text Available The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite and low amount of MAC (self-tempered martensite, retained austenite, carbide phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Micro-jet cooling after welding can find serious application in automotive industry very soon. Until that moment only argon, helium and nitrogen were tested as micro-jet gases. In that paper first time various gas mixtures (gas mixtures Ar-CO2 were tested for micro-jet cooling after welding.

  9. Effect of tool geometry on friction stir spot welding of polypropylene sheets

    Directory of Open Access Journals (Sweden)

    M. K. Bilici

    2012-10-01

    Full Text Available The effects of tool geometry and properties on friction stir spot welding properties of polypropylene sheets were studied. Four different tool pin geometries, with varying pin angles, pin lengths, shoulder diameters and shoulder angles were used for friction stir spot welding. All the welding operations were done at the room temperature. Lap-shear tensile tests were carried out to find the weld static strength. Weld cross section appearance observations were also done. From the experiments the effect of tool geometry on friction stir spot weld formation and weld strength were determined. The optimum tool geometry for 4 mm thick polypropylene sheets were determined. The tapered cylindrical pin gave the biggest and the straight cylindrical pin gave the lowest lap-shear fracture load.

  10. Simplified method of calculating residual stress in circumferential welding of piping

    International Nuclear Information System (INIS)

    Umemoto, Tadahiro

    1984-01-01

    Many circumferential joints of piping are used in as-welded state, but in these welded joints, the residual stress as high as the yield stress of materials arises, and causes to accelerate stress corrosion cracking and corrosion fatigue. The experiment or the finite element method to clarify welding residual stress requires much time and labor, and is expensive, therefore, the author proposed the simplified method of calculation. The heating and cooling process of welding is very complex, and cannot be modeled as it is, therefore, it was assumed that in multiple layer welding, the welding condition of the last layer determines the residual stress, that material constants are invariable regardless of temperature, that the temperature distribution and residual stress are axisymmetric, and that there is repeated stress-strain relation in the vicinity of welded parts. The temperature distribution at the time of welding, thermal stress and welding residual stress are analyzed, and the material constants used for the calculation of residual stress are given. As the example of calculation, the effect of welding heat input and materials is shown. The extension of the method to a thick-walled pipe is discussed. (Kako, I.)

  11. Fracture toughness testing of pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Shen, G.; Gianetto, J.A.; Bouchard, R.; Bowker, J.T.; Tyson, W.R.

    2005-06-01

    This paper reviewed the fracture toughness test standards for pipeline girth welds outlined in CSA Z662-03, Annex K as well as the referenced testing standards BS 7448 and ASTM Standard E 1290. The requirements outlined in API 1104, appendix A were also reviewed given its application throughout the world. Crack tip opening displacement (CTOD) tests were conducted on a manual shielded-metal-arc weld (SMAW) that was prepared in a high strength X80 pipeline steel. Another girth weld test consisted of a mechanized gas metal arc weld (GMAW), but only the results for the SMAW were presented in this paper. Two tensile specimens were machined parallel to the pipe axis from the base metal of the X80 pipe used in preparing the pipeline girth welds. The tensile specimens from the pipe base metal and weld metal were tested at 20 degrees C. The yield strength at the CTOD test temperature was estimated by using the yield strength-temperature relationship given in BS 7448. The experimental results obtained by applying the two testing standards were compared. The intent was to identify the differences between these two standards and their influence on test results. The authors discussed critical issues for the fracture toughness tests, such as weld position and notch orientation, circumferential sampling location, residual stress and its modification, crack length measurement and the equations used to evaluate CTOD. The variation of strength and toughness with clock position around the circumference of the girth welds was also discussed. It was concluded that for a high-strength material, local compression may be needed to create a uniform fatigue crack front. For deep-cracked specimens, the maximum allowable difference of the measured fatigue crack length varies significantly between ASTM E 1290-02 and BS 7448 by a factor of about 1 to 3 for ASTM E 1290 and 3 to 15 for BS 7448. The CTOD calculated according to ASTM E 1290-02 and according to BS 7448 can also differ substantially

  12. Residual stresses associated with welds in austenitic steel

    International Nuclear Information System (INIS)

    Fidler, R.

    1978-01-01

    Two exploratory welds have been made with AISI 316 austenitic steel and Armex GT electrodes by the manual metal-arc process, and residual stress measurements made in the as-welded condition and after various periods of stress relief. The results show that substantial stress relief occurs at temperatures of 850 0 and 750 0 C after 1 hr, but is not complete. The stress distributions are compared with those obtained from ferritic welds and the effect of differences in thermal expansion coefficients is examined using finite element analysis. (author)

  13. Galvanic corrosion resistance of welded dissimilar nickel-base alloys

    International Nuclear Information System (INIS)

    Corbett, R.A.; Morrison, W.S.; Snyder, R.J.

    1986-01-01

    A program for evaluating the corrosion resistance of various dissimilar welded nickel-base alloy combinations is outlined. Alloy combinations included ALLCORR, Hastelloy C-276, Inconel 72 and Inconel 690. The GTAW welding process involved both high and minimum heat in-put conditions. Samples were evaluated in the as-welded condition, as well as after having been aged at various condtions of time and temperature. These were judged to be most representative of process upset conditions which might be expected. Corrosion testing evaluated resistance to an oxidizing acid and a severe service environment in which the alloy combinations might be used. Mechanical properties are also discussed

  14. Temperature and distortion transients in gas tungsten-arc weldments

    International Nuclear Information System (INIS)

    Glickstein, S.S.; Friedman, E.

    1979-10-01

    An analysis and test program to develop a fundamental understanding of the gas tungsten-arc welding process has been undertaken at the Bettis Atomic Power Laboratory to develop techniques to determine and control the various welding parameters and weldment conditions so as to result in optimum weld response characteristics. These response characteristics include depth of penetration, weld bead configuration, weld bead sink and roll, distortion, and cracking sensitivity. The results are documented of that part of the program devoted to analytical and experimental investigations of temperatures, weld bead dimensions, and distortions for moving gas tungsten-arc welds applied to Alloy 600 plates

  15. An Experimental Investigation on APR1400 Penetration Weld Failure by Metallic Melt

    International Nuclear Information System (INIS)

    An, Sang Mo; Ha, Kwang Soon; Kim, Hwan Yeol

    2014-01-01

    The penetrations are considered as the most vulnerable parts with respect to the reactor vessel failure when a core melt severe accident occurs and the corium reaches the lower head. Penetration tube failure modes can be divided into two categories; tube ejection out of the vessel lower head and rupture of the penetration tube outside the vessel. Tube ejection begins with degrading the penetration tube weld strength to zero as the weld is exposed to temperatures as high as the weld melting temperature, which is called weld failure, and then overcoming any binding force in the hole in the vessel wall that results from differential thermal expansion of the tube and vessel wall. Tube rupture assumes that the debris bed has melted the instrument tube inside the reactor and melt migrates down into the tube to a location outside the vessel wall where a pressure rupture can occur, thus breaching the pressure boundary. In the present paper, we have a focus on the tube ejection failure mode, specifically on the APR1400 weld failure by direct contact with a metallic melt. The objective is to investigate experimentally the ablation kinetics of an APR1400 penetration weld during the interactions with a metallic melt and to suggest the modification of the existing weld failure model. This paper involves the interaction experiments of two different metallic melts (metallic corium and stainless steel melts) with a weld specimen, and rough estimation of weld failure time. The interaction experiments between the metallic melts and an APR1400 penetration weld were performed to investigate the ablation kinetics of the penetration weld. Metallic corium and stainless steel melts were generated using an induction heating technique and interacted with a penetration weld specimen. The ablation rate of the weld specimen showed a range from 0.109 to 0..244 mm/s and thus the APR1400 penetration weld was estimated to be failed at hundreds of times after the interaction with the melt

  16. The effect of neutron irradiation on the mechanical properties of welded zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D G

    1962-07-15

    Zircaloy-2 tensile specimens, subsize impact bars and representative spigot welds were subjected to three NRX cycles in the X-5 loop. Average loop temperature was 260{sup o}C over the three cycles. One group of tensile specimens was heat-treated in vacuum at 900{sup o}C for 40 minutes, another group contained welded areas in the centre of the gauge length and a third group was hydrided after welding. Notches of the impact specimens were located in the fusion zone of the weld, Spigot welds were made on autoclaved and unautoclaved simulated production assemblies. The transition temperature of Zircaloy-2 increased appreciably upon welding. This was accompanied by a decrease in absorbed energy values for all temperatures between 0{sup o} and 300{sup o}C. Neutron irradiation had no effect on the impact properties of welded. Zircaloy-2. Welding decreased the uniform and total elongation at room temperature and at 260{sup o}C, and increased the 260{sup o}C PL, YS and UTS. Hydriding to a nominal 100 ppm hydrogen had no effect on the unirradiated tensile properties at either test temperature. The heat treatment decreased the strength properties but did not affect the ductility. Neutron irradiation increased the YS of the welded and hydrided material by 20% and the heat treated YS by 40%. Irradiation also increased the 260{sup o}C strength properties of the as-welded material. It was found that the unautoclaved spigot welds had a generally higher tensile strength than the autoclaved and welded specimens. For specimens welded in either condition, the outer welds of the 19-element bundle had a lower average breaking load than the inner welds. Neutron irradiation had no effect on the tensile strength of these welds. It was also demonstrated that a cup-and-cone type of fracture could be produced in a bend test. These fractures were similar to those observed in irradiated fuel bundles which had been damaged during transfer operations. A large amount of scatter rendered some

  17. Metallurgical Changes During Welding of Duplex Stainless Steel

    International Nuclear Information System (INIS)

    SLLam, Y.A.A.

    2004-01-01

    The aim of this study is to investigate the influence of the cooling rates on the transformation behavior of a duplex stainless steel deposited weld metal, subjected to isothermal heat treatments in the temperature range between 400 C to 700 C, for different aging times. cooling rates (air cooling, furnace cooling, and water quenching) followed all heat treatments. the effect of aging time on the ferrite content, and hardness value of the weld metal samples, for these cooling rates, and aging temperatures were evaluated. the ferrite content decreased and hardness value increased by increasing aging time. the microstructure of the weld metal in both as welded and isothermally heat-treated conditions has been investigated using optical microscopy, and X-ray diffraction techniques

  18. Discrete element weld model, phase 2

    Science.gov (United States)

    Prakash, C.; Samonds, M.; Singhal, A. K.

    1987-01-01

    A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters.

  19. Comparison of pulsed Nd : YAG laser welding qualitative features with plasma plume thermal characteristics

    International Nuclear Information System (INIS)

    Sabbaghzadeh, J; Dadras, S; Torkamany, M J

    2007-01-01

    A spectroscopic approach was used to study the effects of different operating parameters on st14 sheet metal welding with a 400 W maximum average power pulsed Nd : YAG laser. The parameters included pulse duration and peak power and type and flow rate of the assist gas and welding speed. Weld quality, including penetration depth and melt width, has been compared with the FeI electron temperature obtained from spectroscopic observations of a plasma plume. A correlation between the standard deviation of the electron temperature and the quality of welding has also been found

  20. An assessment of creep strength reduction factors for 316L(N) SS welds

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Rao, K. Bhanu Sankara

    2007-01-01

    Nitrogen-alloyed type 316L stainless steel is the major structural material for the high temperature structural components of prototype fast breeder reactor. For the welding electrode, carbon in the normal range of 0.045-0.055 wt% and nitrogen in the range of 0.06-0.1 wt% are used to provide weld joints with adequate long term creep strength. Characterization of the creep properties of the base metal, weld metal and weld joint has been carried out at 873 and 923 K at stress levels of 100-325 MPa with rupture lives in the range of 100-33,000 h. Weld strength reduction factors (WSRFs) based on the weld metal, and weld joint have been evaluated, and compared with the codes. WSRFs for the weld joint were higher than the RCC-MR values. Base metal showed the highest rupture life at all the test conditions whereas the weld metal generally showed the lowest rupture life. All the weld joint specimens failed in the weld metal

  1. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    Science.gov (United States)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  2. Effects of multi-pass arc welding on mechanical properties of carbon steel C25 plate

    International Nuclear Information System (INIS)

    Adedayo, S.M.; Babatunde, A.S.

    2013-01-01

    The effects of multi-pass welding on mechanical properties of C25 carbon steel plate were examined. Mild steel plate workpieces of 90 x 55 mm 2 area and 10 mm thickness with a 30 degrees vee weld-grooves were subjected to single and multi-pass welding. Toughness, hardness and tensile tests of single and multi-pass welds were conducted. Toughness values of the welds under double pass welds were higher than both single pass and unwelded alloy, at respective maximum values of 2464, 2342 and 2170 kN/m. Hardness values were reduced under double pass relative to single pass welding with both being lower than the value for unwelded alloy; the values were 40.5, 43.2 and 48.5 Rs respectively at 12 mm from the weld line. The tensile strength of 347 N/mm 2 under multi-pass weld was higher than single pass weld with value of 314 N/mm 2 . Therefore, the temperature distribution and apparent pre-heating during multi-pass welding increased the toughness and tensile strength of the weldments, but reduced the hardness. (au)

  3. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  4. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  5. Heat input effect of friction stir welding on aluminum alloy AA 6061-T6 welded joint

    Czech Academy of Sciences Publication Activity Database

    Sedmak, A.; Kumar, R.; Chattopadhyaya, S.; Hloch, Sergej; Tadić, S.; Djurdjević, A. A.; Čeković, I. R.; Dončeva, E.

    2016-01-01

    Roč. 20, č. 2 (2016), s. 637-641 ISSN 0354-9836 Institutional support: RVO:68145535 Keywords : friction stir welding * defect * heat input * maximum temperature Subject RIV: JQ - Machines ; Tools Impact factor: 1.093, year: 2016 http://www.doiserbia.nb.rs/img/doi/0354-9836/2016/0354-98361500147D.pdf

  6. MINERVA, qualification of dissimilar welds for HTR-application

    International Nuclear Information System (INIS)

    Baumann, B.; Gnirss, G.; Neureuther, H.; Schneider, K.

    1989-01-01

    The component test ''MINERVA'' is part of an overall concept to qualify dissimilar welds in pipings of advanced gas-cooled high temperature reactors. ''MINERVA'' is designed for a testing time of 20000 h. The experiment started in January 1987. The paper describes the concept, the manufacuring parameters including the basis of selection of materials and welding procedures. The experiment MINERVA and the operating conditions are described. (orig.)

  7. Investigation of Thermal Stress Distribution in Laser Spot Welding Process

    OpenAIRE

    Osamah F. Abdulateef

    2009-01-01

    The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transf...

  8. Toughness of submerged arc weld metals of controlled rolled NB bearing steel

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Shiga, A.; Kamada, A.; Tsuboi, J.

    1982-01-01

    The toughness and the hardness of reheated weld metals depend on the maximum reheating temperature. When the maximum reheating temperature is 500 to 700 0 C, the hardness of single pass weld metal increases and the toughness decreases because of fine Nb- and V-carbonitride precipitation. When the maximum reheating temperature is over 800 0 C, the hardness and the toughness remain almost unchanged. The stress relieving treatment of single pass weld metal at 600 0 C for 1 up to about 100 hours causes the increase in hardness and then decreases the hardness gradually. It needs over 500 hours to obtain the same hardness value as that of as-welded metal. The addition of Ti to weld metal is very effective to improve the toughness, however excess Ti increases the hardness of stress relieved weld metal by precipitating as fine Ti-carbonitride. Therefore Ti addition should be restricted within the lowest limit required to improve as-welded metal toughness. The optimum Ti content is about 0.020% in the case of weld metal of which oxygen content is 350 ppM or so. In multipass welding, the hardness of weld metal affected by subsequent weld heat cycle varies from pass to pass, because Nb and V content change with the passes as the result of the change in dilution from base metal. The most hardened zone is observed in the reheated first pass weld metal, in which Nb and V content are the highest. Good weld metal toughness would be obtained by lowering dilution from base metal and taking advantage of grain refinement by subsequent passes

  9. Fatigue evaluation for the socket weld in nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Young Hwan; Choi, Sun Yeong; Huh, Nam Soo

    2004-01-01

    The operating experience showed that the fatigue is one of the major piping failure mechanisms in nuclear power plants (NPPs). The pressure and/or temperature loading transients, the vibration, and the mechanical cyclic loading during the plant operation may induce the fatigue failure in the nuclear piping. Recently, many fatigue piping failure occurred at the socket weld area have been widely reported. Many failure cases showed that the gap requirement between the pipe and fitting in the socket weld was not satisfied though the ASME Code Sec. Requires 1/16 inch gap in the socket weld. The ASME Code OM also limits the vibration level of the piping system, but some failure cases showed the limitation was not satisfied during the plant operation. In this paper, the fatigue behavior of the socket weld in the nuclear piping was estimated by using the three dimensional finite element method. The results are as follows. The socket weld is susceptible to the vibration if the vibration levels exceed the requirement in the ASME Code OM. The effect of the pressure or temperature transient load on the socket weld in NPPs is not significant because of the very low frequency of the transient during the plant lifetime operation. 'No gap' is very risky to the socket weld integrity for the specific systems having the vibration condition to exceed the requirement in the ASME OM Code and/or the transient loading condition. The reduction of the weld leg size from 1.09 * t 1 to 0.75 * t 1 can affect severely on the socket weld integrity

  10. Development and validation of predictive simulation model of multi-layer repair welding process by temper bead technique

    International Nuclear Information System (INIS)

    Okano, Shigetaka; Miyasaka, Fumikazu; Mochizuki, Masahito; Tanaka, Manabu

    2015-01-01

    Stress corrosion cracking (SCC) has recently been observed in the nickel base alloy weld metal of dissimilar pipe joint used in pressurized water reactor (PWR) . Temper bead technique has been developed as one of repair procedures against SCC applicable in case that post weld heat treatment (PWHT) is difficult to carry out. In this regard, however it is essential to pass the property and performance qualification test to confirm the effect of tempering on the mechanical properties at repair welds before temper bead technique is actually used in practice. Thus the appropriate welding procedure conditions in temper bead technique are determined on the basis of the property and performance qualification testing. It is necessary for certifying the structural soundness and reliability at repair welds but takes a lot of work and time in the present circumstances. Therefore it is desirable to establish the reasonable alternatives for qualifying the property and performance at repair welds. In this study, mathematical modeling and numerical simulation procedures were developed for predicting weld bead configuration and temperature distribution during multi-layer repair welding process by temper bead technique. In the developed simulation technique, characteristics of heat source in temper bead welding are calculated from weld heat input conditions through the arc plasma simulation and then weld bead configuration and temperature distribution during temper bead welding are calculated from characteristics of heat source obtained through the coupling analysis between bead surface shape and thermal conduction. The simulation results were compared with the experimental results under the same welding heat input conditions. As the results, the bead surface shape and temperature distribution, such as A cl lines, were in good agreement between simulation and experimental results. It was concluded that the developed simulation technique has the potential to become useful for

  11. Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al-Mg-Sc alloy plates

    International Nuclear Information System (INIS)

    Zhao, Juan; Jiang, Feng; Jian, Haigen; Wen, Kang; Jiang, Long; Chen, Xiaobo

    2010-01-01

    Al-Mg-Sc alloy plates were welded by FSW and TIG welding. The effect of welding processes on mechanical properties of Al-Mg-Sc welded joints was analyzed based on optical microscopy, transmission electron microscopy, tensile testing and Vickers microhardness measurements. The results show that the mechanical properties of FSW welded joint are much better than those of TIG welded joint; the strength coefficient of FSW joint is up to 94%. Moreover, tensile strength and yield strength of FSW joint are 19% and 31% higher than those of TIG joint, respectively, which are attributed to the preservation of cold working microstructures in the process of FSW. Due to the low welding temperature during FSW process and the excellent thermal stability of Al 3 (Sc, Zr) particles, the cold working microstructures can be well preserved. In addition, the FSW joint have asymmetric microstructures and mechanical properties, which are not observed in TIG welded joint.

  12. X-Ray diffraction technique applied to study of residual stresses after welding of duplex stainless steel plates

    International Nuclear Information System (INIS)

    Monin, Vladimir Ivanovitch; Assis, Joaquim Teixeira de; Lopes, Ricardo Tadeu; Turibus, Sergio Noleto; Payao Filho, Joao C.

    2014-01-01

    Duplex stainless steel is an example of composite material with approximately equal amounts of austenite and ferrite phases. Difference of physical and mechanical properties of component is additional factor that contributes appearance of residual stresses after welding of duplex steel plates. Measurements of stress distributions in weld region were made by X-ray diffraction method both in ferrite and austenite phases. Duplex Steel plates were joined by GTAW (Gas Tungsten Arc Welding) technology. There were studied longitudinal and transverse stress components in welded butt joint, in heat affected zone (HAZ) and in points of base metal 10 mm from the weld. Residual stresses measured in duplex steel plates jointed by welding are caused by temperature gradients between weld zone and base metal and by difference of thermal expansion coefficients of ferrite and austenite phases. Proposed analytical model allows evaluating of residual stress distribution over the cross section in the weld region. (author)

  13. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  14. Development of resistance welding process. 4. Preparation of pressuring enclosed creep test specimen of 7A material

    International Nuclear Information System (INIS)

    Endo, Hideo; Seki, Masayuki; Ishibashi, Fujio; Hirako, Kazuhito; Tsukada, Tatsuya

    2001-02-01

    Mechanical strength in the position welded by resistance welding system was examined in 1999. The test specimens were destroyed in the welding position in a shorter time than expected in the creep test. Therefore, test specimens were prepared to evaluate the cause of destruction. Inner-pressure enclosed creep test specimens were prepared by resistance welding method. Cladding material with low deviation of thickness and high re-crystallization rate was used. Heat treatment after resistance welding was performed to remove the influence of residual stress and the precipitation of carbides. (1) Before preparation of specimens, the welding condition was fixed. Three test specimens were prepared. Two specimens without heat treatment were transported to MMS in Oarai Engineering Center on Aug. 4, 2000. One specimen with heat treatment was transported to MMS after evaluating the residual stress to get optimum heat treatment condition. (2) Specimens were prepared with welding end plugs to both ends of ferritic ODS cladding. Enclosing sides were welded with highly strong Ferritic/Martensitic steel end plugs. The other sides were welded with ferritic ODS end plugs. (3) Some kinds of electrical wave data were obtained during performing welding. Welding position was evaluated with supersonic detector after performing welding. (4) Mechanical strength of welding position in high temperature 800degC was confirmed to be equal to or larger than that of cladding material. The highly qualified specimens in the present were successfully prepared. (author)

  15. Resistance Spot Welding of dissimilar Steels

    Directory of Open Access Journals (Sweden)

    Ladislav Kolařík

    2012-01-01

    Full Text Available This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA. Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.

  16. Heat transfer and fluid flow during laser spot welding of 304 stainless steel

    CERN Document Server

    He, X; Debroy, T

    2003-01-01

    The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...

  17. Numerical Simulation of Mechanical Property of Post Friction Stir Weld Artificial Ageing of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    WAN Zhenyu

    2017-08-01

    Full Text Available KWN model was used to establish the precipitation evolution model of friction stir welding of Al-Mg-Si alloy. The yield strength was divided into three parts:the contribution from grain size, the contribution from solid solution and the contribution from the precipitations. Based on this model, the yield strength and hardness of friction stir weld was predicted. The effect of post weld artificial ageing on mechanical properties of friction stir weld was further investigated. The results indicate that longer holding time can be beneficial to the recovery of mechanical properties in the stirring zone. Higher temperature can lead to quick recovery of mechanical properties in the stirring zone, but when the holding temperature is higher than 200℃, longer holding time can lead the base metal softened, which is harmful to the service of friction stir welds. The mechanical property in the heat affected zone cannot be improved by post weld artificial ageing.

  18. Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800

    International Nuclear Information System (INIS)

    Sireesha, M.; Sundaresan, S.

    2000-01-01

    For joining type 316LN austenitic stainless steel to modified 9Cr-1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316,16Cr-8Ni-2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16-8-2(16%Cr-8%Ni-2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service. (orig.)

  19. Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Athiroj, Athittaya; Wangyao, Panyawat; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2018-03-01

    GTD-111 precipitation-strengthened nickel-based superalloy is widely used in blades of gas turbine engines which operate at high temperature and in a hot localized corrosion atmosphere. After long-term exposure to high temperature, γ' precipitate is known to exhibit catastrophic changes in size and distribution which cause deterioration of its properties and failure of the component. In this study, a damaged blade removed from a land-based gas turbine generator was subjected to nonpre-heat-treated GTAW and laser welding repair with various welding powers in the range of 135 to 295 J x mm{sup -1}, followed by post-weld heat treatment (PWHT) at 1473 K for 7200 s and strain aging at 1118 K for 86 400 s. Results show no significant relationship between welding powers, size and area fraction of the γ' precipitate in the fcc γ matrix in both GTAW and laser-welded specimens. The final γ' precipitate size and distribution depend mainly on PWHT parameters as γ' precipitates in all GTAW and laser welded specimens showed similar size and area fraction independently of the heat input from welding. Unmixed zones are observed in all laser welding specimens which may cause preferential weld corrosion during service. Microcrack occurrence due to welding and PWHT processes is also discussed.

  20. Application of new GMAW welding methods used in prefabrication of P92 (X10CrWMoVNb9-2) pipe butt welds

    Energy Technology Data Exchange (ETDEWEB)

    Urzynicok, Michal [Boiler Elements Factory ' ZELKOT' , Koszecin (Poland); Kwiecinski, Krzysztof; Slania, Jacek [Instytut Spawalnictwa, Gliwice (Poland); Szubryt, Marian [TUEV Nord, Katowice (Poland)

    2010-07-01

    Welding of collector pipes, flat heads, dished ends and connector pipes performed with high temperature and creep-resistant steels most often has been performed using TIG process combined with MMA processes. Progress in MAG process and availability of high quality filler materials (solid wires) enables welding of the above connections also using this method. In order to prove its efficiency, this article presents the results of related tests. The range of tests was similar to that applied during the qualification of welding technology. The investigation also involved microscopic and fractographic examinations. The results reveal that welding with new methods such as GMAW is by no means inferior to a currently applied MMA method yet the time of the process is shorter by 50%. The article present the world's first known positive results in welding of P92 grade steel using GMAW welding method. (orig.)

  1. Effects of microplasma arc AISI 316L welds on the corrosion behaviour of pipelines in LiBr cooling systems

    International Nuclear Information System (INIS)

    Sánchez-Tovar, R.; Montañés, M.T.; García-Antón, J.

    2013-01-01

    Highlights: •SECM tests reveal differences in electrochemical activity of base and welded alloys. •The highest electrochemical activity is obtained for the welded alloy. •Microplasma arc welding process hinders passivation in lithium bromide. •Microplasma arc welding increases corrosion rate and susceptibility to pitting. •The galvanic pair between base and welded alloys in LiBr is weak. -- Abstract: The effect of microplasma arc welding (MPAW) on the electrochemical and corrosion behaviour of AISI 316L stainless steel tubes has been studied. Scanning electrochemical measurements were performed in sodium chloride to evaluate the difference in the electrochemical activity of base (non-welded) and welded samples. Oxygen reduction rates increase in AISI 316L due to the heat treatment effect induced by welding, indicating a higher electrochemical activity in the welded samples. Additionally, the use of MPA weldments in lithium bromide (LiBr) absorption machines was also analysed at typical operating temperatures and Reynolds numbers. The welding process increases corrosion rates, hinders passivation and increases the susceptibility to pitting attack in LiBr. However, zero-resistance ammeter and localization index measurements show that the galvanic pair generated between the base and welded alloys is weak, both electrodes being in their passive state. Temperature greatly affects the corrosion process

  2. Diffusion welding of ZrO2 solid electrolyte cells

    International Nuclear Information System (INIS)

    Schaefer, W.; Schmidberger, R.

    1980-01-01

    Zirconia based solid-electrolyte-cells can be applied as electrolysis-cells or fuel cells at high temperatures. Scaling up to technical aggregates must be realized by a gastight electrical series-connection of many tubular single cells. A suitable process for connecting single cells is diffusion welding. Starting materials were sintered zirconia-tubes (16 mm diameter, 10 mm length) and gastight interconnecting rings (16 mm diameter, 0.5-2mm length) from gold, platinum or electrically conducting mixed oxides. ZrO 2 -tubes and interconnecting rings were mounted in alternating sequence and diffusion welded under axial pressure at high temperatures. From economic reasons noble metals cannot be used for technical aggregates. The developments were therefore concentrated on the connection with mixed oxides. Optimized welding parameters are: 1400-1500 0 C welding temperature, 2 hours welding time and an axial pressure of approximately 1 Nmm 2 . Up to now gastight tubes consisting of 20 single cells were preparated by diffusion-welding in one step. The process will be further developed for the production of 50-cell-tubes with a total length of about 60 cm. (orig.) [de

  3. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  4. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  5. Welding. Performance Objectives. Basic Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  6. Pulsed TIG welding of pipes

    International Nuclear Information System (INIS)

    Killing, U.

    1989-01-01

    The present study investigates into the effects of impulse welding parameters on weld geometry in the joint welding of thin-walled sheets and pipes (d=2.5 mm), and it uses random samples of thick-walled sheets and pipes (d=10 mm), in fixed positions. (orig./MM) [de

  7. Friction welding method

    International Nuclear Information System (INIS)

    Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    A friction welding method for forming a lattice-shaped base and tie plate supporter for fuel elements is disclosed in which a plate formed with a concavity along its edge is pressure welded to a rotating member such as a boss by longitudinally contacting the projecting surfaces remaining on either side of the concavity with the rotating member during the high speed rotation thereof in the presence of an inert gas. Since only the two projecting surfaces of the plate are fused by friction to the rotary member, heat expansion is absorbed by the concavity to prevent distortion; moreover, a two point contact surface assures a stable fitting and promotes the construction of a rigid lattice in which a number of the abovementioned plates are friction welded between rotating members to form any desired complex arrangement. The inert has serves to protect the material quality of the contacting surfaces from air during the welding step. The present invention thus provides a method in which even Zircaloy may be friction welded in place of casting stainless steel in the construction of supporting lattices to thereby enhance neutron economy. (K. J. Owens)

  8. Multi-pass TIG welding process: simulating thermal SS304

    International Nuclear Information System (INIS)

    Harinadh, Vemanaboina; Akella, S.; Buddu, Ramesh Kumar; Edision, G.

    2015-01-01

    Welding is basic requirement in the construction of nuclear reactors, power plants and structural components development. A basic studies on various aspects of the welding is essential to ensure the stability and structural requirement conditions. The present study explored the thermo-mechanical analysis of the multipass welds of austenitic stainless steels which are widely used in fusion and fission reactor components development. A three-dimensional (3D) finite element model is developed to investigate thermally induced stress field during TIG welding process for SS304 material. The transient thermal analysis is performed to obtain the temperature history, which then is applied to the mechanical (stress) analysis. The present thermal analysis is conducted using element type DC3D8. This element type has a three dimensional thermal conduction capability and eight nodes. The 6 mm thick plated is welded with six numbers of passes. The geometry and meshed model with tetrahedral shape with volume sweep. The analysis is on TIG welding process using 3D-weld interface plug-in on ABAQUS-6.14. The results are reported in the present paper

  9. Thermal and molecular investigation of laser tissue welding

    Energy Technology Data Exchange (ETDEWEB)

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  10. Fracture toughness of a welded super duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pilhagen, Johan, E-mail: pilhagen@kth.se [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Sieurin, Henrik [Scania CV AB, Södertälje (Sweden); Sandström, Rolf [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden)

    2014-06-01

    Fracture toughness testing was conducted on standard single-edge notched bend bar specimens of base and weld metal. The material was the SAF 2906 super duplex stainless steel. The aim was to evaluate the susceptibility for brittle failure at sub-zero temperatures for the base and weld metal. The base metal was tested between −103 and −60 °C and was evaluated according to the crack-tip opening displacement method. The fracture event at and below −80 °C can be described as ductile until critical cleavage initiation occurs, which caused unstable failure of the specimen. The welding method used was submerged arc welding with a 7 wt% nickel filler metal. The welded specimens were post-weld heat treated (PWHT) at 1100 °C for 20 min and then quenched. Energy-dispersive X-ray spectroscopy analysis showed that during PWHT substitutional element partitioning occurred which resulted in decreased nickel content in the ferrite. The PWHT weld metal specimens were tested at −72 °C. The fracture sequence was critical cleavage fracture initiation after minor crack-tip blunting and ductile fracture.

  11. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  12. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    microstructure 4. A low near ambient temperature is reached. • All four factor must be simultaneously present 3 Mitigating HIC and Improving Weld Fatigue...Performance Through Weld Residual Stress Control UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master...title style 4 • Welding of Armor Steels favors all these conditions for HIC • Hydrogen Present in Sufficient Degree – Derived from moisture in the

  13. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Dmitriev, Andrey I., E-mail: dmitr@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G., E-mail: sp@ms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  14. Effect of process control mode on weld quality of friction stir welded plates

    Energy Technology Data Exchange (ETDEWEB)

    Shazly, Mostafa; Sorour, Sherif; Alian, Ahmed R. [Faculty of Engineering, The British University in Egypt, Cairo (Egypt)

    2016-01-15

    Friction stir welding (FSW) is a solid state welding process which requires no filler material where the heat input is generated by frictional energy between the tool and workpiece. The objective of the present work is to conduct a fully coupled thermomechanical finite element analysis based on Arbitrary Lagrangian Eulerian (ALE) formulation for both 'Force-Controlled' and 'Displacement-Controlled' FSW process to provide more detailed insight of their effect on the resulting joint quality. The developed finite element models use Johnson- Cook material model and temperature dependent physical properties for the welded plates. Efforts on proper modeling of the underlying process physics are done focusing on the heat generation of the tool/workpiece interface to overcome the shortcomings of previous investigations. Finite elements results show that 'Force-Controlled' FSW process provides better joint quality especially at higher traveling speed of the tool which comes to an agreement with published experimental results.

  15. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.

    2015-07-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  16. Alternative welding reconditioning solutions without post welding heat treatment of pressure vessel

    Science.gov (United States)

    Cicic, D. T.; Rontescu, C.; Bogatu, A. M.; Dijmărescu, M. C.

    2017-08-01

    In pressure vessels, working on high temperature and high pressure may appear some defects, cracks for example, which may lead to failure in operation. When these nonconformities are identified, after certain examination, testing and result interpretation, the decision taken is to repair or to replace the deteriorate component. In the current legislation it’s stipulated that any repair, alteration or modification to an item of pressurised equipment that was originally post-weld heat treated after welding (PWHT) should be post-weld heat treated again after repair, requirement that cannot always be respected. For that reason, worldwide, there were developed various welding repair techniques without PWHT, among we find the Half Bead Technique (HBT) and Controlled Deposition Technique (CDT). The paper presents the experimental results obtained by applying the welding reconditioning techniques HBT and CDT in order to restore as quickly as possible the pressure vessels made of 13CrMo4-5. The effects of these techniques upon the heat affected zone are analysed, the graphics of the hardness variation are drawn and the resulted structures are compared in the two cases.

  17. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    International Nuclear Information System (INIS)

    Mazumder, B.; Yu, X.; Edmondson, P.D.; Parish, C.M.; Miller, M.K.; Meyer, H.M.; Feng, Z.

    2016-01-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  18. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, B., E-mail: mazumderb@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Yu, X.; Edmondson, P.D.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Miller, M.K. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Meyer, H.M.; Feng, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-02-15

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  19. Plasma Processes of Cutting and Welding

    Science.gov (United States)

    1976-02-01

    TIG process. 2.2.2 Keyhole Welding In plasma arc welding , the term...Cutting 3 3 4 4 4 2.2 Plasma Arc Welding 5 2.2.1 Needle Arc Welding 2.2.2 Keyhole Welding 5 6 3. Applications 8 93.1 Economics 4. Environmental Aspects of...Arc Lengths III. Needle Arc Welding Conditions IV. Keyhole Welding Conditions v. Chemical Analyses of Plates Used - vii - 1. 2. 3. 4. 5. 6. 7. 8.

  20. Friction Stir Welding Process: A Green Technology

    OpenAIRE

    Esther T. Akinlabi; Stephen A. Akinlabi

    2012-01-01

    Friction Stir Welding (FSW) is a solid state welding process invented and patented by The Welding Institute (TWI) in the United Kingdom in 1991 for butt and lap welding of metals and plastics. This paper highlights the benefits of friction stir welding process as an energy efficient and a green technology process in the field of welding. Compared to the other conventional welding processes, its benefits, typical applications and its use in joining similar and dissimilar materia...

  1. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  2. Milestones in welding technology

    Science.gov (United States)

    Dolby, Richard E.

    2013-09-01

    Sir Alan's PhD thesis describes his research into cracking during arc welding of armour steels. Throughout his career, he had a strong interest in defects of all types, how they formed in metallic structures and how the larger ones could be detected and sized by non-destructive techniques. He was also vitally concerned with how defects impacted on the engineering integrity of welded structures, particularly the risk of fracture in nuclear plant. This study presents a view of some of the major milestones in global welding technology that took place over the 60 or more years of Sir Alan's career and highlights those where he had a personal and direct involvement.

  3. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  4. Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure

    International Nuclear Information System (INIS)

    Foulds, J.R.; Moteff, J.; Sikka, V.K.; McEnerney, J.W.

    1983-01-01

    Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25 0 C and 649 0 C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructure in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior

  5. Welding technologies for nuclear machinery and equipment

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  6. Mechanized hyperbaric welding by robots

    International Nuclear Information System (INIS)

    Aust, E.; Santos, J.F. dos; Bohm, K.H.; Hensel, H.D.

    1988-01-01

    At the GKSS-Forschungszentrum investigations are carried out on mechanized welded test plates produced under working pressure between 10 to 110 bar in breathable TRIMIX-5-atmosphere. The welds are performed by a modified industrial robot, which was adapted in its components to withstand these severe conditions. Variations on the welding parameters were made to maintain a stable arc as well as to provide on indication of the effect of the variables on the mechanical properties of the welded joint. During all tests the robot showed a very good function. Good reliable welds were achieved meeting the requirements according API II04 or BS 4515-1984. (orig.) [de

  7. Spot Welding of Honeycomb Structures

    Science.gov (United States)

    Cohal, V.

    2017-08-01

    Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.

  8. Understanding Friction Stir Welding

    Science.gov (United States)

    Nunes, A. C., Jr.

    2018-01-01

    This Technical Memorandum explains the friction stir welding process in terms of two basic concepts: the concentration of deformation in a shear surface enveloping the tool and the composition of the overall plastic flow field around the tool from simple flow field components. It is demonstrated how weld structure may be understood and torque, drag, and lateral tool forces may be estimated using these concepts. Some discrepancies between computations and accompanying empirical data are discussed in the text. This work is intended to be helpful to engineers in diagnosing problems and advancing technology.

  9. Heat input effect of friction stir welding on aluminium alloy AA 6061-T6 welded joint

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar

    2016-01-01

    Full Text Available This paper deals with the heat input and maximum temperature developed during friction stir welding with different parameters. Aluminium alloy (AA 6061-T6 has been used for experimental and numerical analysis. Experimental analysis is based on temperature measurements by using infrared camera, whereas numerical analysis was based on empirical expressions and finite element method. Different types of defects have been observed in respect to different levels of heat input.

  10. A study of the bio-accessibility of welding fumes.

    Science.gov (United States)

    Berlinger, Balázs; Ellingsen, Dag G; Náray, Miklós; Záray, Gyula; Thomassen, Yngvar

    2008-12-01

    The respiratory bio-accessibility of a substance is the fraction that is soluble in the respiratory environment and is available for absorption. In the case of respiratory exposure the amount of absorbed substance plays a main role in the biological effects. Extensive bio-accessibility studies have always been an essential requirement for a better understanding of the biological effects of different workplace aerosols, such as welding fumes. Fumes generated using three different welding techniques, manual metal arc (MMA) welding, metal inert gas (MIG) welding, and tungsten inert gas (TIG) welding were investigated in the present study. Each technique was used for stainless steel welding. Welding fumes were collected on PVC membrane filters in batches of 114 using a multiport air sampler. Three different fluids were applied for the solubility study: deionised water and two kinds of lung fluid simulants: lung epithelial lining fluid simulant (Gamble's solution) and artificial lung lining fluid simulant (Hatch's solution). In order to obtain sufficient data to study the tendencies in solubility change with time, seven different leaching periods were used (0.5, 1, 2, 4, 8, 16, 24 h), each of them with three replicates. The effect of dissolution temperature was also studied. The total amounts of selected metals in the three different welding fumes were determined after microwave-assisted digestion with the mixture of aqua regia and hydrofluoric acid. The most obvious observation yielded by the results is that the solubility of individual metals varies greatly depending on the welding technique, the composition of the leaching fluid and leaching time. This study shows that the most reasonable choice as a media for the bio-assessment of solubility might be Hatch's solution by a dissolution time of 24 h.

  11. Multipurpose ANSYS FE procedure for welding processes simulation

    Energy Technology Data Exchange (ETDEWEB)

    Capriccioli, Andrea [ENEA CR Frascati, Via Enrico Fermi 45, 00044 Frascati (Italy); Frosi, Paolo [ENEA CR Frascati, Via Enrico Fermi 45, 00044 Frascati (Italy)], E-mail: frosi@frascati.enea.it

    2009-06-15

    ANSYS FE procedures and 3D models for thermal and mechanical simulation of both Laser and TIG welding processes are presented. The special features are the applicability to a non uniform gap and the use of a fast iterative procedure that assures the constancy of the fixed maximum temperature along the single pass and between each pass and the following, apart from their shapes and sizes. All the thermal and mechanical material properties of both INCONEL 625 and AISI 316 are described till to liquid phase; convection and radiation effects are considered. The 3D ANSYS models use both brick and non linear contact elements and elastic and elastic-plastic materials. Two full simulation are presented: a laser welding test (taken from ENEA) and a TIG welding one (source W7-X) with the root seam plus 14 passes; thermal and mechanical results are reported in the two cases and for the latter an extensive sensitivity analysis, changing mesh size of the filling material, welding speed and material properties, is explained with results and comparisons. This large sensitivity analysis has been executed for TIG welding because in this case (multi-pass welding) the reduction of CPU time is a strong requirement; but some conclusions are helpful for laser welding too. The mechanical calculation results very sensitive to the mesh shape: this fact implies very fine and regular meshes. The specimens are first restrained and then welded with the foreseen welding procedure; after that it is released and the final linear and angular shrinkages are calculated. The ANSYS birth and death procedure is used and the CPU time was strongly reduced.

  12. Multipurpose ANSYS FE procedure for welding processes simulation

    International Nuclear Information System (INIS)

    Capriccioli, Andrea; Frosi, Paolo

    2009-01-01

    ANSYS FE procedures and 3D models for thermal and mechanical simulation of both Laser and TIG welding processes are presented. The special features are the applicability to a non uniform gap and the use of a fast iterative procedure that assures the constancy of the fixed maximum temperature along the single pass and between each pass and the following, apart from their shapes and sizes. All the thermal and mechanical material properties of both INCONEL 625 and AISI 316 are described till to liquid phase; convection and radiation effects are considered. The 3D ANSYS models use both brick and non linear contact elements and elastic and elastic-plastic materials. Two full simulation are presented: a laser welding test (taken from ENEA) and a TIG welding one (source W7-X) with the root seam plus 14 passes; thermal and mechanical results are reported in the two cases and for the latter an extensive sensitivity analysis, changing mesh size of the filling material, welding speed and material properties, is explained with results and comparisons. This large sensitivity analysis has been executed for TIG welding because in this case (multi-pass welding) the reduction of CPU time is a strong requirement; but some conclusions are helpful for laser welding too. The mechanical calculation results very sensitive to the mesh shape: this fact implies very fine and regular meshes. The specimens are first restrained and then welded with the foreseen welding procedure; after that it is released and the final linear and angular shrinkages are calculated. The ANSYS birth and death procedure is used and the CPU time was strongly reduced.

  13. Welding method by remote handling

    International Nuclear Information System (INIS)

    Hashinokuchi, Minoru.

    1994-01-01

    Water is charged into a pit (or a water reservoir) and an article to be welded is placed on a support in the pit by remote handling. A steel plate is disposed so as to cover the article to be welded by remote handling. The welding device is positioned to the portion to be welded and fixed in a state where the article to be welded is shielded from radiation by water and the steel plate. Water in the pit is drained till the portion to be welded is exposed to the atmosphere. Then, welding is conducted. After completion of the welding, water is charged again to the pit and the welding device and fixing jigs are decomposed in a state where the article to be welded is shielded again from radiation by water and the steel plate. Subsequently, the steel plate is removed by remote handling. Then, the article to be welded is returned from the pit to a temporary placing pool by remote handling. This can reduce operator's exposure. Further, since the amount of the shielding materials can be minimized, the amount of radioactive wastes can be decreased. (I.N.)

  14. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  15. Visualization of Spot- welding Resistance

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2016-01-01

    Full Text Available This contribution devotes to monitoring of processes running during joining of steel sheets by incadescent so called point welding using non-destructive trial method – acoustic emission (AE. The joining process is detailed described within experimental measuring from the point of view of metallurgic effects runnig during weld creation (records obtained by means of AE method. It takes into consideration quality of joined steels within welding data of steel producer. Steel welding (determined by chemical composition during mechanical verification and firmness of welds consider results of measurement AE and fracture effect of point joints. The measurement also demonstrates conclusion about connection of metallurgic processes with material wave effects (AE measurement and their impact on firmness of joint at steel with guaranteed welding, difficult welding and at their potential combination.

  16. Case study of successful weld repair of a storage tank

    International Nuclear Information System (INIS)

    Sinha, S; Ambrose, S.

    2012-01-01

    Weld repairs or modifications may be required for existing welded structures or components as a result of service damage or failure, or as a result of wear, corrosion or changed service condition. A case study of a repair to a large oil storage tank which failed in Australia by brittle fracture during modification is described to demonstrate the application of basic principles and good practice needed to produce successful repairs/modifications. Prevention of brittle fracture in welded steel structures requires consideration of the toughness at minimum temperature of the weld, the HAZ and the base material itself, applied and residual stress and 'equivalent crack' size. This case shows the importance of residual stress, repair planning and the care needed with old steels.

  17. Practical application of COD measurement in welded assemblies

    International Nuclear Information System (INIS)

    Beghe, S.

    1975-01-01

    Measurement of the COD makes it possible to evaluate sensitivity to brittle fracture initiation. This technique is ideal for welded structures, owing to the types of defect likely to affect them, and the magnitude of the residual stresses introduced. Moreover, the COD concept, based on thickness and temperature experiments on materials, enables evaluation of the critical defect size in these structures. However, its application to welded joints encounters certain problems. The presence of fatigue cracks in the molten zone of a welded joint is frequently disturbed by the residual stresses caused by welding. An additional difficulty is created by the problem of stable growth of the crack during the bending test. This discussion covers all these matters and suggests some solutions [fr

  18. Study of thermal stress in heat affected zones during welding

    International Nuclear Information System (INIS)

    Devaux, J.C.

    1979-01-01

    The importance of applications of welding in the nuclear industry leads to the study of the main problem concerning metal welding: sensibility to cracking. The development of computation methods allows the numerical simulation of welding effects. Due to the complexity of this problem, it is divided in three steps: thermal, metallurgical and mechanical calculus. Interactions between the 3 steps are examined. Mathematical models necessary to get residual stress (i.e. stress remaining when welding is completed and structure at ambient temperature) are described. Then parameters for metallurgical structure determination are given and compared to experiments. A508 and A533 type steels of primary coolant circuit of PWR reactors are taken as examples and the numerical simulation of a test is presented [fr

  19. Fracture toughness properties of similar and dissimilar electron beam welds

    International Nuclear Information System (INIS)

    Kocak, M.; Junghans, E.

    1994-01-01

    The weldability aspects, tensile and Crack Tip Opening Displacement (CTOD) toughness properties of 9Cr1MoNbV (P91) martensitic steel with austenitic 316L steel were evaluated for electron beam (EB) welds on 35 mm thick pates. The effects of mechanical heterogeneity (mis-matching) at the vicinity of the crack tip of dissimilar three point bend specimens on the CTOD fracture toughness values was also discussed. The CTOD tests were performed on similar and dissimilar EB welds of austenitic and tempered martensitic P91 steels at room temperature. Dilution of austenitic with martensitic steel resulted in predominantly martensitic EB weld metal, exhibiting rather high yield strength and hardness. Nevertheless, the weld metal produced high CTOD toughness values due to the beneficial effect of the lower strength austenitic steel part of the specimen in which crack deviation occured (mis-match effect). The coarse grained HAZ of the P91 steel side exhibits extremely poor CTOD toughness properties in the as-welded condition at room temperature. The CTOD values obtained are believed to be representing the intrinsic property of this zone since the distance of the crack tip to the weaker austenitic steel part of the SENB specimens was too large to cause an effective stress relaxation at the crack tip. Further post weld heat treatment at 750 C for two hours improved the CTOD toughness marginally. (orig.)

  20. Recent Corrosion Research Trends in Weld Joints

    International Nuclear Information System (INIS)

    Kim, Hwan Tae; Kil, Sang Cheol; Hwang, Woon Suk

    2007-01-01

    The increasing interest in the corrosion properties of weld joints in the corrosive environment is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency welding process to produce welds. Welding plays an important role in the fabrication of chemical plants, nuclear power plant, ship construction, and this has led to an increasing attention to the corrosion resistant weld joints. This paper covers recent technical trends of welding technologies for corrosion resistance properties including the COMPENDEX DB analysis of welding materials, welding process, and welding fabrications