WorldWideScience

Sample records for temperature induction method

  1. High temperature sealing method : induction brazing for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Y.H.; Lee, S.B.; Song, R.H.; Shin, D.R. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of); Lim, T.H. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Advanced Fuel Cell Research Center

    2009-07-01

    This study examined the use of induction brazing as a high temperature sealing method for solid oxide fuel cells (SOFCs). Nickel-based brazing alloys were modified using reactive titanium-hydride (TiH2). The gas sealing properties of the induction brazing process on anode-supported tubular SOFCs and ferritic stainless steel were evaluated. Brazing alloys BNi-2 and BNi-4 were not wetted in a yttria-silica-zircon (YSZ) electrolyte. The brazing alloy with added TiH2 showed good wettability with the YSZ electrolyte as a result of the formation of a TiOX layer. Only the BNi-4 alloy joined with the YSZ electrolyte. An open circuit voltage (OCV) value was used to estimate the gas tightness of the brazed cell. It was concluded that the BNi-4 TiH2 modified alloy is a suitable sealing material for SOFCs operating in temperatures up to 750 degrees C.

  2. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    Science.gov (United States)

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

  3. High resolution switching mode inductance-to-frequency converter with temperature compensation.

    Science.gov (United States)

    Matko, Vojko; Milanović, Miro

    2014-10-16

    This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85-100 µH to 2-560 kHz.

  4. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensation

    Directory of Open Access Journals (Sweden)

    Vojko Matko

    2014-10-01

    Full Text Available This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal’s natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 µH to 2–560 kHz.

  5. A novel induction motor starting method using superconduction

    International Nuclear Information System (INIS)

    Silva, F.B.B.; Orlando, M.T.D.; Fardin, J.F.; Simonetti, D.S.; Baldan, C.A.

    2014-01-01

    Highlights: • Alternative method for starting up induction motor. • Based on using a high-temperature superconductor. • A prototype of the limiter was constructed with a 2G-YBCO tape. • Prototype was tested with a 55-kW industrial induction motor in a 440-V/60-Hz. • Offers reduced current waveform distortion compared to the soft starter method. - Abstract: In this paper, an alternative method for starting up induction motors is proposed, taking into account experimental measurements. The new starting current limitation method is based on using a high-temperature superconductor. A prototype of the superconducting starting current limiter was constructed with a commercially available second-generation high-temperature superconductor YBCO tape, and this was tested with a 55-kW industrial induction motor in a 440-V/60-Hz three-phase power grid. Performance evaluations of the superconducting limiter method (applied to startup of the induction motor) were performed and were compared with a direct-on-line starter and an electronic soft starter. In addition, a computational model was developed and used for electromagnetic torque analysis of the system. As significant characteristics, our method offers the ability to limit the starting current of the induction motor with greater electromagnetic torque, reduced current waveform distortion and therefore lower harmonic pollution during startup when compared to the soft starter method

  6. A novel induction motor starting method using superconduction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.B.B., E-mail: flaviobarcelos@ifes.edu.br [Ifes – Federal Institute of Espírito Santo, Dept. of Industrial Automation, Serra, ES 29173087 (Brazil); UFES – Federal University of Espírito Santo, Dept. of Electrical Engineering, Vitória, ES (Brazil); Orlando, M.T.D. [UFES – Federal University of Espírito Santo, Dept. of Physics, Vitória, ES (Brazil); Fardin, J.F.; Simonetti, D.S. [UFES – Federal University of Espírito Santo, Dept. of Electrical Engineering, Vitória, ES (Brazil); Baldan, C.A. [EEL/USP – Engineering School from Lorena/University of São Paulo, SP (Brazil)

    2014-12-15

    Highlights: • Alternative method for starting up induction motor. • Based on using a high-temperature superconductor. • A prototype of the limiter was constructed with a 2G-YBCO tape. • Prototype was tested with a 55-kW industrial induction motor in a 440-V/60-Hz. • Offers reduced current waveform distortion compared to the soft starter method. - Abstract: In this paper, an alternative method for starting up induction motors is proposed, taking into account experimental measurements. The new starting current limitation method is based on using a high-temperature superconductor. A prototype of the superconducting starting current limiter was constructed with a commercially available second-generation high-temperature superconductor YBCO tape, and this was tested with a 55-kW industrial induction motor in a 440-V/60-Hz three-phase power grid. Performance evaluations of the superconducting limiter method (applied to startup of the induction motor) were performed and were compared with a direct-on-line starter and an electronic soft starter. In addition, a computational model was developed and used for electromagnetic torque analysis of the system. As significant characteristics, our method offers the ability to limit the starting current of the induction motor with greater electromagnetic torque, reduced current waveform distortion and therefore lower harmonic pollution during startup when compared to the soft starter method.

  7. NdFeB magnets with zero temperature coefficient of induction

    International Nuclear Information System (INIS)

    Ma, B.M.; Narasimhan, K.S.V.L.; Hurt, J.C.

    1986-01-01

    Temperature compensation for the induction of NdFeB type magnets has been investigated. A computer assisted alloy selection method was adopted to identify composition of zero temperature coefficient of induction over -50 to 200 0 C. Selected alloys were processed into magnet by the conventional powder metallurgy method. The experimental temperature coefficient on the sintered magnet correlated with the prediction satisfactory. Holmium is an essential ingredient required for temperature compensation of NdFeB magnets. A magnet, (Nd/sub 0.23/Ho/sub 0.64/Dy/sub 0.13/)/sub 15/Fe/sub 79/B/sub 6/ with B/sub r/ of 7,700 Gauss, H/sub c/ of 7,700 Oe, H/sub ci/ of 20,600 Oe, Bh/sub max/ of 14.8 MGOe and temperature coefficient of -0.029% per 0 C over -50 to +150 was obtained

  8. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions. (author)

  9. Prediction of windings temperature rise in induction motors supplied with distorted voltage

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2008-01-01

    One of the features of ship power systems is a different level and intensity of disturbances appearing during routine operation - the rms voltage value and frequency deviation, voltage unbalance and waveform voltage distortion. As a result, marine induction machines are exposed to overheating due to the lowered voltage quality. This paper is devoted to windings temperature rise prediction in marine induction cage machines supplied with distorted voltage, which means real voltage conditions. The proposed method of prediction does not require detailed knowledge of the thermal properties of a machine. Although the method was developed for marine induction motors, it is applicable for industry machines supplied with distorted voltage. It can also be generalized and used for estimation of the steady state windings temperature rise of any electrical machinery in various work conditions

  10. Effect of power quality on windings temperature of marine induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Str. 83, 81-225 Gdynia (Poland)], E-mail: piotrg@am.gdynia.pl

    2009-10-15

    Marine induction machines are exposed to various power quality disturbances appearing simultaneously in ship power systems: frequency and voltage rms value deviation, voltage unbalance and voltage waveform distortions. As a result, marine induction motors can be seriously overheated due to lowered supply voltage quality. Improvement of the protection of marine induction machines requires an appropriate method of power quality assessment and modification of the power quality regulations of ship classification societies. This paper presents an analytical model of an induction cage machine supplied with voltage of lowered quality, used in part II of the work (effect of power quality on windings temperature of marine induction motors. Part II. Results of investigations and recommendations for related regulations) for power quality assessment in ship power systems, and for justification of the new power quality regulations proposal. The presented model is suitable for implementation in an on-line measurement system.

  11. The effect of temperature on photosynthetic induction under fluctuating light in Chrysanthemum morifolium

    DEFF Research Database (Denmark)

    Öztürk, Isik; Ottosen, Carl-Otto; Ritz, Christian

    2013-01-01

    for photosynthetic induction. Gas exchange measurements were used to investigate the rate of induction and the opening of stomata. It was determined that induction equilibrium for C. morifolium at varying temperatures under dynamic light conditions was reached within 15 to 45 minutes except at saturating light...... intensity. For the same photon irradiance, the momentary state of induction equilibrated was higher approximately at 30° C and it decreased as temperature increased. The interaction effect of irradiance and temperature on induction equilibrium was not significant. The rate of photosynthetic induction...... and the time that it reached its 90% value (t90) was influenced by irradiance significantly. The light history of a leaf had a significant effect on t90, which indicated that an equilibrium state of induction will not always be reached within the same time. The effect of temperature on photosynthetic induction...

  12. Fuzzy Logic Temperature Control System For The Induction Furnace

    Directory of Open Access Journals (Sweden)

    Lei Lei Hnin

    2015-08-01

    Full Text Available This research paper describes the fuzzy logic temperature control system of the induction furnace. Temperature requirement of the heating system varies during the heating process. In the conventional control schemes the switching losses increase with the change in the load. A closed loop control is required to have a smooth control on the system. In this system pulse width modulation based power control scheme for the induction heating system is developed using the fuzzy logic controller. The induction furnace requires a good voltage regulation to have efficient response. The controller controls the temperature depending upon weight of meat water and time. This control system is implemented in hardware system using microcontroller. Here the fuzzy logic controller is designed and simulated in MATLAB to get the desire condition.

  13. Resistivity measurements using a direct current induction method (1963); Mesure de resistivite par la methode d'induction en courant continu (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Delaplace, J; Hillairet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The conventional methods for measuring electrical resistivities necessitate the fixing of electrical contacts on the sample either mechanically or by soldering. Furthermore it is also necessary to carry,out the measurements on low cross-section samples which are not always easy to obtain. Our direct-current induction method on the other hand requires no contacts and can easily be applied to samples of large cross-section. The sample is placed in a uniform magnetic field; at the moment when the current is cut, eddy currents appear in the sample which tend to oppose the disappearance of the field. The way in which the magnetic flux decreases in the sample makes it possible to determine the resistivity of the material. This method has been applied to samples having diameters of between 1 and 30 mm in the case of metals which are good conductors. It gives a value for the local resistivity and makes it possible to detect any variation along a sample. The measurements can be carried out at all temperature from a few degrees absolute to 500 deg. C. We have used the induction method to follow the purification of beryllium by zone-melting; it is in effect possible to estimate the purity of a material by resistivity measurements. We have measured the resistivity along each bar treated by the zone-melting technique and have thus, localised the purest section. High temperature measurements have been carried out on uranium carbide and on iron-aluminium alloys. This method constitutes an interesting means of investigation the resistivity of solid materials. Its accuracy and rapidity make it particularly adapted both to fundamental research and to production control. (authors) [French] Les methodes classiques de mesure de resistivite electrique imposent la realisation sur l'echantillon de contacts electriques obtenus soit mecaniquement, soit par soudure. En outre, elles demandent, le plus souvent, d'effectuer les mesures sur des echantillons de faible section qu'il n'est pas

  14. An Analog-Digital Mixed Measurement Method of Inductive Proximity Sensor

    Directory of Open Access Journals (Sweden)

    Yi-Xin Guo

    2015-12-01

    Full Text Available Inductive proximity sensors (IPSs are widely used in position detection given their unique advantages. To address the problem of temperature drift, this paper presents an analog-digital mixed measurement method based on the two-dimensional look-up table. The inductance and resistance components can be separated by processing the measurement data, thus reducing temperature drift and generating quantitative outputs. This study establishes and implements a two-dimensional look-up table that reduces the online computational complexity through structural modeling and by conducting an IPS operating principle analysis. This table is effectively compressed by considering the distribution characteristics of the sample data, thus simplifying the processing circuit. Moreover, power consumption is reduced. A real-time, built-in self-test (BIST function is also designed and achieved by analyzing abnormal sample data. Experiment results show that the proposed method obtains the advantages of both analog and digital measurements, which are stable, reliable, and taken in real time, without the use of floating-point arithmetic and process-control-based components. The quantitative output of displacement measurement accelerates and stabilizes the system control and detection process. The method is particularly suitable for meeting the high-performance requirements of the aviation and aerospace fields.

  15. Effect of power quality on windings temperature of marine induction motors. Part I: Machine model

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime Univ., Dept. of Ship Electrical Power Engineering, Morska Str. 83, 81-225 Gdynia (Poland)

    2009-10-15

    Marine induction machines are exposed to various power quality disturbances appearing simultaneously in ship power systems: frequency and voltage rms value deviation, voltage unbalance and voltage waveform distortions. As a result, marine induction motors can be seriously overheated due to lowered supply voltage quality. Improvement of the protection of marine induction machines requires an appropriate method of power quality assessment and modification of the power quality regulations of ship classification societies. This paper presents an analytical model of an induction cage machine supplied with voltage of lowered quality, used in part II of the work (effect of power quality on windings temperature of marine induction motors. Part II. Results of investigations and recommendations for related regulations) for power quality assessment in ship power systems, and for justification of the new power quality regulations proposal. The presented model is suitable for implementation in an on-line measurement system. (author)

  16. Resistivity measurements using a direct current induction method (1963)

    International Nuclear Information System (INIS)

    Delaplace, J.; Hillairet, J.

    1964-01-01

    The conventional methods for measuring electrical resistivities necessitate the fixing of electrical contacts on the sample either mechanically or by soldering. Furthermore it is also necessary to carry,out the measurements on low cross-section samples which are not always easy to obtain. Our direct-current induction method on the other hand requires no contacts and can easily be applied to samples of large cross-section. The sample is placed in a uniform magnetic field; at the moment when the current is cut, eddy currents appear in the sample which tend to oppose the disappearance of the field. The way in which the magnetic flux decreases in the sample makes it possible to determine the resistivity of the material. This method has been applied to samples having diameters of between 1 and 30 mm in the case of metals which are good conductors. It gives a value for the local resistivity and makes it possible to detect any variation along a sample. The measurements can be carried out at all temperature from a few degrees absolute to 500 deg. C. We have used the induction method to follow the purification of beryllium by zone-melting; it is in effect possible to estimate the purity of a material by resistivity measurements. We have measured the resistivity along each bar treated by the zone-melting technique and have thus, localised the purest section. High temperature measurements have been carried out on uranium carbide and on iron-aluminium alloys. This method constitutes an interesting means of investigation the resistivity of solid materials. Its accuracy and rapidity make it particularly adapted both to fundamental research and to production control. (authors) [fr

  17. A miniature inductive temperature sensor to monitor temperature noise in the coolant of an LMFBR

    International Nuclear Information System (INIS)

    Dean, S.A.; Sandham, C.W.

    1980-01-01

    A description is given of the design and performance of miniature inductive sensors developed to monitor fast temperature fluctuations in the sodium coolant above the core of a LMFBR. These instruments, designed to be installed within existing thermocouple containment thimbles, also provide a steady-state temperature indication for reactor control purposes. (author)

  18. Enhanced Temperature Control Method Using ANFIS with FPGA

    Directory of Open Access Journals (Sweden)

    Chiung-Wei Huang

    2014-01-01

    Full Text Available Temperature control in etching process is important for semiconductor manufacturing technology. However, pressure variations in vacuum chamber results in a change in temperature, worsening the accuracy of the temperature of the wafer and the speed and quality of the etching process. This work develops an adaptive network-based fuzzy inference system (ANFIS using a field-programmable gate array (FPGA to improve the effectiveness. The proposed method adjusts every membership function to keep the temperature in the chamber stable. The improvement of the proposed algorithm is confirmed using a medium vacuum (MV inductively-coupled plasma- (ICP- type etcher.

  19. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 37 0 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  20. The Inductive Method of Teaching Visual Art Criticism.

    Science.gov (United States)

    Clements, Robert D.

    1979-01-01

    The author describes how the true principles of the scientific inductive method are not opposed to the principles of teaching visual art criticism, and suggests that the inductive method of teaching visual art criticism strips it of its mystique in order to make clear its vital role in intellectual development. (KC)

  1. Digital inductive teaching method of strabismus

    OpenAIRE

    Zhao-Jiang Du; Peng Li; Li Wang

    2015-01-01

    AIM: To reform the traditional teaching modes of strabismus by using digital induction to enhance logic in teaching process.METHODS: The study was performed in the group of 20 eight-year program clinical undergraduates from the class of 2009 and 198 five-year program clinical undergraduates from the class of 2010. These students were divided into two groups receiving traditional and digital induction teaching over the same period respectively. After classes, questionnaire survey and classroom...

  2. Stochastic Estimation Methods for Induction Motor Transient Thermal Monitoring Under Non Linear Condition

    Directory of Open Access Journals (Sweden)

    Mellah HACEN

    2012-08-01

    Full Text Available The induction machine, because of its robustness and low-cost, is commonly used in the industry. Nevertheless, as every type of electrical machine, this machine suffers of some limitations. The most important one is the working temperature which is the dimensioning parameter for the definition of the nominal working point and the machine lifetime. Due to a strong demand concerning thermal monitoring methods appeared in the industry sector. In this context, the adding of temperature sensors is not acceptable and the studied methods tend to use sensorless approaches such as observators or parameters estimators like the extended Kalman Filter (EKF. Then the important criteria are reliability, computational cost ad real time implementation.

  3. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    Science.gov (United States)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  4. Temperature estimation of induction machines based on wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2018-04-01

    Full Text Available In this paper, a fourth-order Kalman filter (KF algorithm is implemented in the wireless sensor node to estimate the temperatures of the stator winding, the rotor cage and the stator core in the induction machine. Three separate wireless sensor nodes are used as the data acquisition systems for different input signals. Six Hall sensors are used to acquire the three-phase stator currents and voltages of the induction machine. All of them are processed to root mean square (rms in ampere and volt. A rotary encoder is mounted for the rotor speed and Pt-1000 is used for the temperature of the coolant air. The processed signals in the physical unit are transmitted wirelessly to the host wireless sensor node, where the KF is implemented with fixed-point arithmetic in Contiki OS. Time-division multiple access (TDMA is used to make the wireless transmission more stable. Compared to the floating-point implementation, the fixed-point implementation has the same estimation accuracy at only about one-fifth of the computation time. The temperature estimation system can work under any work condition as long as there are currents through the machine. It can also be rebooted for estimation even when wireless transmission has collapsed or packages are missing.

  5. Effectiveness of Inductive and Deductive Methods in Teaching Grammar

    Directory of Open Access Journals (Sweden)

    Mohammad Akram Alzu’bi

    2015-04-01

    • What is the effect of inductive method on grammar achievement compared with deductive method at elementary stage? To answer the questions of the study, the researcher prepares two programs based on inductive and deductive methods for each level based on its syllabus. The sample consists 180 students; eighty at the 1st year level in English departments at university level and one hundred at the elementary stage. The participants of the study consisted of four assigned sections. Firstly, at the university level, two colleges are randomly selected out of the eighteen faculties of Albalqa' Applied University; two sections are randomly selected; one group is randomly assigned as the 1st experimental group (by using inductive method and the second experimental group (by using deductive method. Similar process is adopted in the case of school students at the elementary stage.  The relevant pre-tests are administered to the students of both groups at each stage (university and school to make sure that the groups are equivalent at the time of starting the experiment. The researcher designs two grammar achievement tests as the instruments of this study (one for the elementary stage and one for university level. The instrument of each stage consists of two achievement tests (pre- test and post-test. At the end of the treatment period, relevant post-tests are administered to the students of both the groups. The results of the study revealed that there were significant statistical differences at (α≤0.09 among the grammar performance means of both groups at both levels due to inductive method. Keywords: Inductive method, Deductive method, Elementary stage, University level, Academic achievement

  6. Phase-Inductance-Based Position Estimation Method for Interior Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Xin Qiu

    2017-12-01

    Full Text Available This paper presents a phase-inductance-based position estimation method for interior permanent magnet synchronous motors (IPMSMs. According to the characteristics of phase induction of IPMSMs, the corresponding relationship of the rotor position and the phase inductance is obtained. In order to eliminate the effect of the zero-sequence component of phase inductance and reduce the rotor position estimation error, the phase inductance difference is employed. With the iterative computation of inductance vectors, the position plane is further subdivided, and the rotor position is extracted by comparing the amplitudes of inductance vectors. To decrease the consumption of computer resources and increase the practicability, a simplified implementation is also investigated. In this method, the rotor position information is achieved easily, with several basic math operations and logical comparisons of phase inductances, without any coordinate transformation or trigonometric function calculation. Based on this position estimation method, the field orientated control (FOC strategy is established, and the detailed implementation is also provided. A series of experiment results from a prototype demonstrate the correctness and feasibility of the proposed method.

  7. Ammonia synthesis using magnetic induction method (MIM)

    Science.gov (United States)

    Puspitasari, P.; Razak, J. Abd; Yahya, N.

    2012-09-01

    The most challenging issues for ammonia synthesis is to get the high yield. New approach of ammonia synthesis by using Magnetic Induction Method (MIM) and the Helmholtz Coils has been proposed. The ammonia detection was done by using Kjeldahl Method and FTIR. The system was designed by using Autocad software. The magnetic field of MIM was vary from 100mT-200mT and the magnetic field for the Helmholtz coils was 14mT. The FTIR result shows that ammonia has been successfully formed at stretching peaks 1097,1119,1162,1236, 1377, and 1464 cm-1. UV-VIS result shows the ammonia bond at 195nm of wavelength. The ammonia yield was increase to 244.72μmole/g.h by using the MIM and six pairs of Helmholtz coils. Therefore this new method will be a new promising method to achieve the high yield ammonia at ambient condition (at 25δC and 1atm), under the Magnetic Induction Method (MIM).

  8. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas

    International Nuclear Information System (INIS)

    Chen Zhipeng; Li Hong; Liu Qiuyan; Luo Chen; Xie Jinlin; Liu Wandong

    2011-01-01

    A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications. (low temperature plasma)

  9. A new method for determining the Curie temperature using a dilatometer

    International Nuclear Information System (INIS)

    Verma, A; Sundararaman, M; Singh, J B; Nalawade, S A

    2010-01-01

    Dilatometry is a tool used for the study of dimensional changes in materials as a function of temperature and also to identify phase transformations including magnetic transformations. In this paper, we describe two new methods that can be employed in an inductively heated dilatometer to determine the Curie temperature in metallic ferromagnetic materials. These methods are based on the fundamental magnetic properties of materials such as hysteresis loss and anomalous thermal conductivity changes near the Curie point. These methods have been used to determine the Curie point in nickel, iron and Co–5 at% Ni alloy. The values obtained match well with those reported in the literature. The effects of the geometry of the specimen and of the push-rod material on the measurement sensitivity of the transition temperature have been discussed

  10. An Induction Heating Method with Traveling Magnetic Field for Long Structure Metal

    Science.gov (United States)

    Sekine, Takamitsu; Tomita, Hideo; Obata, Shuji; Saito, Yukio

    A novel dismantlable adhesion method for recycling operation of interior materials is proposed. This method is applied a high frequency induction heating and a thermoplastic adhesive. For an adhesion of interior material to long steel stud, a conventional spiral coil as like IH cooking heater gives inadequateness for uniform heating to the stud. Therefore, we have proposed an induction heating method with traveling magnetic field for perfect long structures bonding. In this paper, we describe on the new adhesion method using the 20kHz, three-phase 200V inverter and linear induction coil. From induction heating characteristics to thin steel plates and long studs, the method is cleared the usefulness for uniform heating to long structures.

  11. Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller

    Science.gov (United States)

    Wang, Wei-Cheng; Tai, Cheng-Chi

    2017-07-01

    The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.

  12. The classification of explosion-proof protected induction motor into adequate temperature and efficiency class

    Science.gov (United States)

    Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem

    2017-07-01

    This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.

  13. Artificial Inductance Concept to Compensate Nonlinear Inductance Effects in the Back EMF-Based Sensorless Control Method for PMSM

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Lei, Xiao; Blaabjerg, Frede

    2013-01-01

    The back EMF-based sensorless control method is very popular for permanent magnet synchronous machines (PMSMs) in the medium- to high-speed operation range due to its simple structure. In this speed range, the accuracy of the estimated position is mainly affected by the inductance, which varies...... at different loading conditions due to saturation effects. In this paper, a new concept of using a constant artificial inductance to replace the actual varying machine inductance for position estimation is introduced. This facilitates greatly the analysis of the influence of inductance variation...

  14. Steam Distillation with Induction Heating System: Analysis of Kaffir Lime Oil Compound and Production Yield at Various Temperatures

    International Nuclear Information System (INIS)

    Zuraida Muhammad; Zakiah Mohd Yusoff; Mohd Noor Nasriq Nordin

    2013-01-01

    The steam temperature during the extraction process has a great influence on the essential oil quality. .This study was conducted to analyze the compound of kaffir-lime oil during extracting at different steam temperature using GC-MS analysis. The extraction was carried out by using steam distillation based on induction heating system at different extraction temperature such as 90, 95 and 100 degree Celsius, the power of the induction heating system is fixed at 1.6 kW. Increment of the steam temperature will increase the oil yield. In terms of oil composition, extraction at lower temperature resulted high concentration for four marker compounds of kaffir-lime oil which are α-pinene, sabinene, limonene, β-pinene. (author)

  15. An induction/synchronous motor with high temperature superconductor/normal conductor hybrid double-cage rotor windings

    International Nuclear Information System (INIS)

    Nakamura, T; Nagao, K; Nishimura, T; Matsumura, K

    2009-01-01

    We propose hybrid double-cage rotor windings that consist of a high temperature superconductor (HTS) and a normal conductor, which are introduced into an HTS induction/synchronous motor (HTS-ISM). The motor rotates as a conventional induction motor when the operating temperature of the hybrid rotor is above the critical temperature of the HTS bars, i.e., in the normal conducting state. On the other hand, the HTS-ISM rotates as a synchronous motor when the temperature is below the critical temperature, i.e., in the superconducting (zero resistance) state. In other words, we do not always need to take care of the cooling conditions, if the HTS-ISM is automatically, as well as appropriately, controlled, depending upon the rotation mode. Namely, the above-mentioned hybrid double-cage HTS-ISM is possibly a breakthrough in solving the cooling problems of HTS rotating machines, especially for industrial applications. The experimental results of the aforementioned motor are reported. An example of an operation flowchart of the motor is also presented and discussed.

  16. Considering induction factor using BEM method in wind farm layout optimization

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Dehghan, M.; Torabi, F.

    2014-01-01

    For wind farm layout optimization process, a simple linear model has been mostly used for considering the wake effect of a wind turbine on its downstream turbines. In this model, the wind velocity in the wake behind a turbine is obtained as a function of turbine induction factor which...... was considered to be 0.324 almost in all the previous studies. However, it is obviously evident that this factor is a strong function of turbine blade geometry and operational conditions. In the present study, a new method is introduced by which the induction factor for wind turbines can be calculated based...... on the method of Blade Element Momentum theory. By this method, the effect of blade profile, wind speed and angular velocity of wind turbine on the induction factor can be easily taken into account. The results show that for different blade profiles and operational conditions, the induction factor differs from...

  17. Purification and growth of LiF by induction heating furnace with electronic temperature control

    International Nuclear Information System (INIS)

    Faria Junior, R.N. de

    1985-01-01

    An eletronic power control system for a radio frequency generator and a quartz vacuum furnace heated by induction were developed. This furnace was employed for the growth of single crystals and purification of starting materials. A lithium fluoride single crystal was grown by the Czochralski technique in order to test the temperature control and the quartz furnace. An X-ray diffraction analysis of the crystal revealed the monocrystallinity high optical quality of the crystal obtained. Lithium fluoride of 95% purity prepared by Nuclemon starting material was purified by a vertical Bridgmann method. The emission spectrographic analysis of the purified crystal demonstrated the segregation of impurities. This study showed that the purification by this method of starting materials produced by local industry resulted in a crystal 99.9% pure in the first crystallization. (Author) [pt

  18. Two Undergraduate Process Modeling Courses Taught Using Inductive Learning Methods

    Science.gov (United States)

    Soroush, Masoud; Weinberger, Charles B.

    2010-01-01

    This manuscript presents a successful application of inductive learning in process modeling. It describes two process modeling courses that use inductive learning methods such as inquiry learning and problem-based learning, among others. The courses include a novel collection of multi-disciplinary complementary process modeling examples. They were…

  19. Inductance and resistance measurement method for vessel detection and coil powering in all-surface inductive heating systems composed of outer squircle coils

    Science.gov (United States)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2017-05-01

    In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.

  20. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-12-01

    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  1. Research on deep electromagnetic induction methods (Fy 1985)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Hiroshi; Uchida, Toshihiro; Tanaka, Shin' ichi

    1987-06-01

    Geological Survey of Japan started from FY 1984 a research of deep electomagnetic induction methods as a part of the research on deep geothermal resources prospecting technology, the Sunshine Project. This article is the report of its second fiscal year. These methods are a generic term of the methods to survey specific resistance structure in the deep part of the earth by utilizing the technique of the electromagnetic induction method and the time domain CSMT method aiming to survey about estimated depth of 5Km as well as the CA method to estimate the general structure of the earth of the depth of 5Km or more are now being developed. This article reports the respective methods separately. Concerning the former, the reception of useful signals were successfully made during the FY 1984 field experiment and based on this, field experiments in a geothermal area were conducted in FY 1985 verifying its effectivenss. With regard to the latter, following FY 1984, CA observations were conducted in the northern part of Tohoku Region and the deep specific resistance structure in a wide area was surveyed. (43 figs, 1 tab, 11 refs)

  2. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  3. Advanced evaluation of asphalt mortar for induction healing purposes

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; Kasbergen, C.; van de Ven, M.F.C.

    2016-01-01

    Induction heating technique is an innovative asphalt pavement maintenance method that is applied to inductive asphalt concrete mixes in order to prevent the formation of macro-cracks by increasing locally the temperature of asphalt. The development of asphalt mixes with improved electrical and

  4. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  5. Electron temperatures of inductively coupled Cl2-Ar plasmas

    International Nuclear Information System (INIS)

    Fuller, N.C.M.; Donnelly, Vincent M.; Herman, Irving P.

    2002-01-01

    Trace rare gases optical emission spectroscopy has been used to measure the electron temperature, T e , in a high-density inductively coupled Cl 2 -Ar plasma at 18 mTorr as function of the 13.56 MHz radio frequency power and Ar fraction. Only the Kr and Xe emission lines were used to determine T e , because of evidence of radiation trapping when the Ar emission lines were also used for larger Ar fractions. At 600 W (10.6 W cm-2), T e increases from ∼4.0±0.5 eV to ∼6.0±2.0 eV as the Ar fraction increases from 1% to 96%. In the H (inductive, bright) mode, T e , for a 'neat' chlorine plasma (including 1% of each He/Ne/Ar/Kr/Xe) increases only slightly from ∼3.8 to 4.0 eV as power increases from 450 to 750 W. This increase is much larger for larger Ar fractions, such as from ∼4.0 to 7.3 eV for 78% Ar. Most of these effects can be understood using the fundamental particle balance equation

  6. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    International Nuclear Information System (INIS)

    Powell, J.; Reich, M.; Barletta, R.

    1996-01-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small (∼1 m 3 ) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ''secondary.'' The induced current in the ''secondary'' heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., ∼1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature

  7. High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter.

    Science.gov (United States)

    Matko, Vojko; Milanović, Miro

    2016-06-28

    A new method for the automated measurement of the hysteresis of the temperature-compensated inductance-to-frequency converter with a single quartz crystal is proposed. The new idea behind this method is a converter with two programmable analog switches enabling the automated measurement of the converter hysteresis, as well as the temperature compensation of the quartz crystal and any other circuit element. Also used is the programmable timing control device that allows the selection of different oscillating frequencies. In the proposed programmable method two different inductances connected in series to the quartz crystal are switched in a short time sequence, compensating the crystal's natural temperature characteristics (in the temperature range between 0 and 50 °C). The procedure allows for the measurement of the converter hysteresis at various values of capacitance connected in parallel with the quartz crystal for the converter sensitivity setting at selected inductance. It, furthermore, enables the measurement of hysteresis at various values of inductance at selected parallel capacitance (sensitivity) connected to the quartz crystal. The article shows that the proposed hysteresis measurement of the converter, which converts the inductance in the range between 95 and 100 μH to a frequency in the range between 1 and 200 kHz, has only 7 × 10(-13) frequency instability (during the temperature change between 0 and 50 °C) with a maximum 1 × 10(-11) hysteresis frequency difference.

  8. High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter

    Directory of Open Access Journals (Sweden)

    Vojko Matko

    2016-06-01

    Full Text Available A new method for the automated measurement of the hysteresis of the temperature-compensated inductance-to-frequency converter with a single quartz crystal is proposed. The new idea behind this method is a converter with two programmable analog switches enabling the automated measurement of the converter hysteresis, as well as the temperature compensation of the quartz crystal and any other circuit element. Also used is the programmable timing control device that allows the selection of different oscillating frequencies. In the proposed programmable method two different inductances connected in series to the quartz crystal are switched in a short time sequence, compensating the crystal’s natural temperature characteristics (in the temperature range between 0 and 50 °C. The procedure allows for the measurement of the converter hysteresis at various values of capacitance connected in parallel with the quartz crystal for the converter sensitivity setting at selected inductance. It, furthermore, enables the measurement of hysteresis at various values of inductance at selected parallel capacitance (sensitivity connected to the quartz crystal. The article shows that the proposed hysteresis measurement of the converter, which converts the inductance in the range between 95 and 100 μH to a frequency in the range between 1 and 200 kHz, has only 7 × 10−13 frequency instability (during the temperature change between 0 and 50 °C with a maximum 1 × 10−11 hysteresis frequency difference.

  9. Effects of photoperiod and temperature on the induction and termination of reproductive resting stage in the freshwater amphipod Hyalella azteca (Saussure)

    Energy Technology Data Exchange (ETDEWEB)

    deMarch, B.G.E.

    1977-10-01

    Three experiments, one on the induction of reproductive resting stage and two on its termination, were performed to determine the effects of various combinations of temperature and photoperiod on the induction and termination of reproduction in Hyallella azteca. These showed that only photoperiod determined whether reproduction was continued or discontinued but that temperature influenced the rate of all changes. The 12L--12D photoperiod terminated reproduction for at least 4 months at temperatures between 12 and 25/sup 0/C in animals previously reproducing at a 16L--8D photoperiod. The 12L--12D photoperiod also induced reproduction at temperatures between 16 and 26/sup 0/C in animals previously held in a reproductive resting stage in dim light. In contrast, the 16L--8D photoperiod induced and maintained reproduction consistently, and the 8L--16D photoperiod halted reproduction and maintained a reproductive resting stage consistently. The induction of reproduction occurred faster at higher temperatures. It is believed that although photoperiod is the main cue in the induction and termination of reproduction, active reproduction takes place when environmental temperatures are 20 to 26/sup 0/C, since optimum reproduction and growth rates occur in this range. The adaptive advantage and the biogeographic variability of the photoperiodic response are discussed.

  10. Effect of power quality on windings temperature of marine induction motors. Part II: Results of investigations and recommendations for related regulations

    International Nuclear Information System (INIS)

    Gnacinski, P.; Mindykowski, J.; Tarasiuk, T.

    2009-01-01

    This paper deals with the effect of lowered voltage quality in ship power systems on windings temperature of low-power induction cage machines. The results of investigations carried out with experimental and analytical methods are presented. The thermal impact of power quality disturbances permitted by ship classification societies is discussed. A proposal of new power quality regulations for ship classification societies is made.

  11. Neutron methods for the direct determination of the magnetic induction in thick films

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S.V., E-mail: kozhevn@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Ott, F. [CEA, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); Radu, F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, D-12489 Berlin (Germany)

    2016-03-15

    We review different neutron methods which allow extracting directly the value of the magnetic induction in thick films: Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. Resulting parameters obtained by the neutron methods and standard magnetometry technique are presented and compared. The possibilities and specificities of the neutron methods are discussed. - Highlights: • We present neutron methods for investigations of the thick magnetic films. • It is the methods for the direct determination of the magnetic induction. • Magnetic induction in bulk, at single interface and in a single domain. • It is Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. • These methods are complementary to polarized neutron reflectometry.

  12. Method for the Field-oriented Control of an Induction Motor

    DEFF Research Database (Denmark)

    2000-01-01

    A method for the field-oriented control of an induction motor by means of a frequency contverter is dislosed, in which method a transformation angle is determined by estimation and is corrected in dependence on a rotational speed of a rotor flux vector or of the induction motor and/or in dependence...... on a delay time. In this connection it is desirable to improve the control behavior. To that end, the transformation angle is corrected a second time to compensate for a phase shift in the frequency converter....

  13. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  14. Control of surface temperature of an aluminum alloy billet by air flow during a heating process at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young [KITECH, Cheonan (Korea, Republic of); Park, Joon Hong [Dong-A University, Busan (Korea, Republic of)

    2016-06-15

    The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of the billet during thixoforging process with forced surface cooling has been performed to obtain more uniform distribution of temperature, microstructure and shape of the billet. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. Microscopic and macroscopic aspects of the billets were discussed according to location of the measuring points. By this new induction heating method, not only temperature distributions over the whole billet become uniform, but also control of temperature distribution between inside and outside part of the billet is possible as user's experimental intentions,.

  15. HTS axial flux induction motor with analytic and FEA modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, S., E-mail: alexlee.zn@gmail.com; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-11-15

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.

  16. HTS axial flux induction motor with analytic and FEA modeling

    International Nuclear Information System (INIS)

    Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-01-01

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested

  17. Time-dependent two-temperature chemically non-equilibrium modelling of high-power Ar-N2 pulse-modulated inductively coupled plasmas at atmospheric pressure

    International Nuclear Information System (INIS)

    Tanaka, Yasunori

    2006-01-01

    A time-dependent, two-dimensional, two-temperature and chemical non-equilibrium model was developed for high-power Ar-N 2 pulse-modulated inductively coupled plasmas (PMICPs) at atmospheric pressure. The high-power PMICP is a new technique for sustaining high-power induction plasmas. It can control the plasma temperature and radical densities in the time domain. The PMICP promotes non-equilibrium effects by a sudden application of electric field, even in the high-power density plasmas. The developed model accounts separately for the time-dependent energy conservation equations of electrons and heavy particles. This model also considers reaction heat effects and energy transfer between electrons and heavy particles as well as enthalpy flow resulting from diffusion caused by the particle density gradient. Chemical non-equilibrium effects are also taken into account by solving time-dependent mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from 30 chemical reactions. Transport and thermodynamic properties of Ar-N 2 plasmas are calculated self-consistently using the first order approximation of the Chapman-Enskog method at each position and iteration using the local particle composition, heavy particle temperature and electron temperature. This model is useful to discuss time evolution in temperature, gas flow fields and distribution of chemical species

  18. Effect of power quality on windings temperature of marine induction motors. Part II: Results of investigations and recommendations for related regulations

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P.; Mindykowski, J.; Tarasiuk, T. [Gdynia Maritime Univ., Dept. of Ship Electrical Power Engineering, Morska Str. 83, 81-225 Gdynia (Poland)

    2009-10-15

    This paper deals with the effect of lowered voltage quality in ship power systems on windings temperature of low-power induction cage machines. The results of investigations carried out with experimental and analytical methods are presented. The thermal impact of power quality disturbances permitted by ship classification societies is discussed. A proposal of new power quality regulations for ship classification societies is made. (author)

  19. Prediction and Optimization of Phase Transformation Region After Spot Continual Induction Hardening Process Using Response Surface Method

    Science.gov (United States)

    Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Chen, Xuliang; Wang, Zhou

    2017-09-01

    The spot continual induction hardening (SCIH) process, which is a modified induction hardening, can be assembled to a five-axis cooperating computer numerical control machine tool to strengthen more than one small area or relatively large area on complicated component surface. In this study, a response surface method was presented to optimize phase transformation region after the SCIH process. The effects of five process parameters including feed velocity, input power, gap, curvature and flow rate on temperature, microstructure, microhardness and phase transformation geometry were investigated. Central composition design, a second-order response surface design, was employed to systematically estimate the empirical models of temperature and phase transformation geometry. The analysis results indicated that feed velocity has a dominant effect on the uniformity of microstructure and microhardness, domain size, oxidized track width, phase transformation width and height in the SCIH process while curvature has the largest effect on center temperature in the design space. The optimum operating conditions with 0.817, 0.845 and 0.773 of desirability values are expected to be able to minimize ratio (tempering region) and maximize phase transformation width for concave, flat and convex surface workpieces, respectively. The verification result indicated that the process parameters obtained by the model were reliable.

  20. Sodium flow rate measurement method of annular linear induction pumps

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  1. Coupling of electromagnetic and thermal codes. Induction heating; Couplage des codes electromagnetique et thermique. Le chauffage par induction

    Energy Technology Data Exchange (ETDEWEB)

    Colombani, M. [CEDRAT, (France)

    1997-12-31

    The development and adjustment of induction heating systems is quite delicate because two different subjects of physics are involved: magnetism (Foucault currents) and thermal engineering. Moreover, the magnetic and electrical properties depends on the temperature and the dissipated power depends on the magnetic and electrical properties and on the electrical excitation sources (geometry, intensity, frequency). The CEDRAT company has been involved since several years in the development of modeling softwares which allow to analyze these kind of problems. The most used is the FLUX2D software, developed by CEDRAT RECHERCHE in collaboration with the LEG (CNRS-INPG) and EdF, and which is used in several domains of applications (electric motors, actuators, high-voltage devices, magnetic recording, induction heating etc..). This software is based on a finite-element calculation method and, in the case of induction heating, it can perform different types of modeling: magnetic, thermal, temperature-dependant properties, weak and strong coupling, coupling with the electric circuit equations etc.. (J.S.)

  2. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  3. A High Frequency (HF) Inductive Power Transfer Circuit for High Temperature Applications Using SiC Schottky Diodes

    Science.gov (United States)

    Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.

    2018-01-01

    Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.

  4. Sodium flow rate measurement method of annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  5. The effects of three methods of synchronization on estrus induction ...

    African Journals Online (AJOL)

    The effects of three methods of synchronization on estrus induction and ... Due to the importances of estrus synchronization in sheep reproduction and fertility, the ... sponges (medroxyprogesterone) and controlled intravaginal drug-releasing ...

  6. Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik

    1993-01-01

    Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....

  7. Method for the mechanical axis alignment of the linear induction accelerator

    International Nuclear Information System (INIS)

    Li Hong; China Academy of Engineering Physics, Mianyang; Yao Jin; Liu Yunlong; Zhang Linwen; Deng Jianjun

    2004-01-01

    Accurate mechanical axis alignment is a basic requirement for assembling a linear induction accelerator (LIA). The total length of an LIA is usually over thirty or fifty meters, and it consists of many induction cells. By using a laser tracker a new method of mechanical axis alignment for LIA is established to achieve the high accuracy. This paper introduces the method and gives implementation step and point position measure errors of the mechanical axis alignment. During the alignment process a 55 m-long alignment control survey net is built, and the theoretic revision of the coordinate of the control survey net is presented. (authors)

  8. Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis

    Science.gov (United States)

    Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf

    2015-01-01

    Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034

  9. Comparison of two inductive learning methods: A case study in failed fuel identification

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J. [Argonne National Lab., IL (United States); Lee, J.C. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1992-05-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure.

  10. Comparison of two inductive learning methods: A case study in failed fuel identification

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J. (Argonne National Lab., IL (United States)); Lee, J.C. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering)

    1992-01-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure.

  11. Comparison of two inductive learning methods: A case study in failed fuel identification

    International Nuclear Information System (INIS)

    Reifman, J.; Lee, J.C.

    1992-01-01

    Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for systematically and automatically constructing the knowledge base of expert systems. Both inductive learning methods are general-purpose and use information entropy as a discriminatory measure in order to group objects of a common class. ID3 constructs a knowledge base by building decision trees that discriminate objects of a data set as a function of their class. Rg constructs a knowledge base by grouping objects of the same class into patterns or clusters. The two inductive methods are applied to the construction of a knowledge base for failed fuel identification in the Experimental Breeder Reactor II. Through analysis of the knowledge bases generated, the ID3 and Rg algorithms are compared for their knowledge representation, data overfitting, feature space partition, feature selection, and search procedure

  12. A Position Sensorless Control Method for SRM Based on Variation of Phase Inductance

    Science.gov (United States)

    Komatsuzaki, Akitomo; Miki, Ichiro

    Switched reluctance motor (SRM) drives are suitable for variable speed industrial applications because of the simple structure and high-speed capability. However, it is necessary to detect the rotor position with a position sensor attached to the motor shaft. The use of the sensor increases the cost of the drive system and machine size, and furthermore the reliability of the system is reduced. Therefore, several approaches to eliminate the position sensor have already been reported. In this paper, a position sensorless control method based on the variation of the phase inductance is described. The phase inductance regularly varies with the rotor position. The SRM is controlled without the position sensor using the de-fluxing period and the phase inductance. The turn-off timing is determined by computing the difference of angle between the sampling point and the aligned point and the variation of angle during the de-fluxing period. In the magnetic saturation region, the phase inductance at the current when the effect of the saturation starts is computed and the sensorless control can be carried out using this inductance. Experimental results show that the SRM is well controlled without the position sensor using the proposed method.

  13. ANALYSIS OF INDUCTION MOTOR WITH BROKEN BARS AND CONSTANT SPEED USING CIRCUIT-FIELD COUPLED METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2015-07-01

    Full Text Available The paper presents the use of the two-dimensional finite element method for modeling the three-phase squirrel-cage induction motor by using circuit coupled method. In order to analyze the machine performances, the voltage source is considered. The Ansys magnetic analysis software is used for calculating the magnetic field of an induction motor having a cage fault. The experimental results prove that the proposed approach constitutes a useful tool for the study and diagnostics of induction motors.

  14. Disassembly Properties of Cementitious Finish Joints Using an Induction Heating Method

    Science.gov (United States)

    Ahn, Jaecheol; Noguchi, Takafumi; Kitagaki, Ryoma

    2015-01-01

    Efficient maintenance and upgrading of a building during its lifecycle are difficult because a cementitious finish uses materials and parts with low disassembly properties. Additionally, the reuse and recycling processes during building demolition also present numerous problems from the perspective of environmental technology. In this study, an induction heating (IH) method was used to disassemble cementitious finish joints, which are widely used to join building members and materials. The IH rapidly and selectively heated and weakened these joints. The temperature elevation characteristics of the cementitious joint materials were measured as a function of several resistor types, including wire meshes and punching metals, which are usually used for cementitious finishing. The disassembly properties were evaluated through various tests using conductive resistors in cementitious joints such as mortar. When steel fiber, punching metal, and wire mesh were used as conductive resistors, the cementitious modifiers could be weakened within 30 s. Cementitious joints with conductive resistors also showed complete disassembly with little residual bond strength.

  15. Room temperature inductively coupled plasma etching of InAs/InSb in BCl 3/Cl 2/Ar

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen

    2012-01-01

    Inductively coupled plasma (ICP) etching of InAs and InSb at room temperature has been investigated using BCl 3/Cl 2/Ar plasma. Specifically, the etch rate and post-etching surface morphology were investigated as functions of the gas composition

  16. Relationship between the induction frequency and LTE in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Mostaghimi, J.; Boulos, M.I.

    1990-01-01

    In this paper, the effect of the induction frequency on the local thermodynamic equilibrium (LTE) conditions in an inductively coupled plasma is investigated. Using generators with frequencies ranging from 5 to 56 MHz, a previous study investigated demonstrated the importance of this effect. Their measurements of the excitation temperatures of the iron atomic lines showed a sharp decrease in this temperature as a result of the increase in frequency. Another conclusion was that, all other parameters constant, increase in frequency will help the promotion of non-LTE effects

  17. On the validity of neutral gas temperature by N{sub 2} rovibrational spectroscopy in low-pressure inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, J-S; Berube, P-M; Munoz, J; Margot, J; Stafford, L [Departement de Physique, Universite de Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec, H3C 3J7 (Canada); Chaker, M [INRS-EMT, 1650 Boulevard Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada)

    2011-06-15

    Measurement of the rotational temperature of the second positive system of N{sub 2} was used as a diagnostic of the gas temperature in low-pressure inductively coupled Ar, Kr and N{sub 2} plasmas. The rotational temperatures determined from the rovibrational bands ({nu}', {nu}'') = (0, 0), (1, 0), (0, 2) and (4, 2) of the N{sub 2} C {sup 3{Pi}}{sub u} {yields} B {sup 3{Pi}}{sub g} system differ by about 300 K depending on the operating gas pressure in the 0.4-20 mTorr range. Important discrepancies exist between the temperatures found from each of the rovibrational bands of N{sub 2}. This shows that the method has important intrinsic uncertainty that may be due either to errors in the transition probabilities of N{sub 2} C {sup 3{Pi}}{sub u} {yields} B {sup 3{Pi}}{sub g} or to inefficient thermal coupling between translational and rotational temperatures. In the case of argon, the population of the emitting C {sup 3{Pi}}{sub u} states by energy transfer from Ar {sup 3}P{sub 0,2} metastable atoms is also considered as a possible factor influencing the rotational structure of some rovibrational bands. Based on these measurements, it is shown that, in the range of experimental conditions studied herein, the uncertainty of the method should be carefully accounted before considering one of the rotational temperatures of the N{sub 2} second positive system equal to the gas temperature.

  18. Determination of gas temperature and thermometric species in inductively coupled plasmas by emission and diode laser absorption

    International Nuclear Information System (INIS)

    Bol'shakov, Alexander A; Cruden, Brett A; Sharma, Surendra P

    2004-01-01

    A vertical cavity surface-emitting laser diode (VCSEL) was used as a spectrally tunable emission source for measurements of the radial-integrated gas temperature inside an inductively coupled plasma reactor. The data were obtained by profiling the Doppler-broadened absorption of metastable Ar atoms at 763.51 nm in argon and argon/nitrogen plasmas (3%, 45%, and 90% N 2 in Ar) at pressures of 0.5-70 Pa and inductive powers of 100 and 300 W. The results were compared to the rotational temperature derived from the N 2 emission at the (0,0) vibrational transition of the C 3 Π u -B 3 Π g system. The differences in integrated rotational and Doppler temperatures were attributed to non-uniform spatial distributions of both temperature and thermometric species (Ar * and N 2 *) that varied depending on the conditions. A two-dimensional, three-temperature fluid plasma simulation was employed to explain these differences. This work should facilitate further development of a miniature sensor for non-intrusive acquisition of data (temperature and densities of multiple plasma species) during micro- and nano-fabrication plasma processing, thus enabling diagnostic-assisted continuous optimization and advanced control over the processes. Such sensors would also enable us to track the origins and pathways of damaging contaminants, thereby providing real-time feedback for adjustment of processes. Our work serves as an example of how two line-of-sight integrated temperatures derived from different thermometric species make it possible to characterize the radial non-uniformity of the plasma

  19. Determination of gas temperature and thermometric species in inductively coupled plasmas by emission and diode laser absorption

    Energy Technology Data Exchange (ETDEWEB)

    Bol' shakov, Alexander A; Cruden, Brett A; Sharma, Surendra P [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2004-11-01

    A vertical cavity surface-emitting laser diode (VCSEL) was used as a spectrally tunable emission source for measurements of the radial-integrated gas temperature inside an inductively coupled plasma reactor. The data were obtained by profiling the Doppler-broadened absorption of metastable Ar atoms at 763.51 nm in argon and argon/nitrogen plasmas (3%, 45%, and 90% N{sub 2} in Ar) at pressures of 0.5-70 Pa and inductive powers of 100 and 300 W. The results were compared to the rotational temperature derived from the N{sub 2} emission at the (0,0) vibrational transition of the C {sup 3}{pi}{sub u}-B {sup 3}{pi} {sub g} system. The differences in integrated rotational and Doppler temperatures were attributed to non-uniform spatial distributions of both temperature and thermometric species (Ar{sup *} and N{sub 2}*) that varied depending on the conditions. A two-dimensional, three-temperature fluid plasma simulation was employed to explain these differences. This work should facilitate further development of a miniature sensor for non-intrusive acquisition of data (temperature and densities of multiple plasma species) during micro- and nano-fabrication plasma processing, thus enabling diagnostic-assisted continuous optimization and advanced control over the processes. Such sensors would also enable us to track the origins and pathways of damaging contaminants, thereby providing real-time feedback for adjustment of processes. Our work serves as an example of how two line-of-sight integrated temperatures derived from different thermometric species make it possible to characterize the radial non-uniformity of the plasma.

  20. Influence of Sintering Temperature on the Microstructure and Mechanical Properties of In Situ Reinforced Titanium Composites by Inductive Hot Pressing

    Directory of Open Access Journals (Sweden)

    Cristina Arévalo

    2016-11-01

    Full Text Available This research is focused on the influence of processing temperature on titanium matrix composites reinforced through Ti, Al, and B4C reactions. In order to investigate the effect of Ti-Al based intermetallic compounds on the properties of the composites, aluminum powder was incorporated into the starting materials. In this way, in situ TixAly were expected to form as well as TiB and TiC. The specimens were fabricated by the powder metallurgy technique known as inductive hot pressing (iHP, using a temperature range between 900 °C and 1400 °C, at 40 MPa for 5 min. Raising the inductive hot pressing temperature may affect the microstructure and properties of the composites. Consequently, the variations of the reinforcing phases were investigated. X-ray diffraction, microstructural analysis, and mechanical properties (Young’s modulus and hardness of the specimens were carried out to evaluate and determine the significant influence of the processing temperature on the behavior of the composites.

  1. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed......, including the non-linear temperature dependent magnetic data described by a three-parameter modified Frohlich equation fitted to the magnetic saturation curve, and solved with an iterative procedure. The numerical calculations are compared with experiments conducted with two types of induction coils, built...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

  2. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    Science.gov (United States)

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Phase Method of Invariant Measurement of Active-Inductive Measuring Two-Pole Parameters

    Directory of Open Access Journals (Sweden)

    Boris MAMIKONYAN

    2017-04-01

    Full Text Available There has been given the solution of the technical problem of separate measurement of parameters of inductance coils and inductive primary converters on alternating current without application of potential-current signals. As a measuring circuit the scheme of voltage divider with active-inductive two-pole is used, and as an output signal there has been used the angle of phase shift between two output voltages of the measuring circuit. For forming the output signal temporal separation of measurement channel is used. The advantages of phase method are mostly due to capacity of using microcontrollers. In the technical solutions under consideration the microcontroller regulates the measuring process and develops the measurement results.

  4. Deposition of silicon oxynitride at room temperature by Inductively Coupled Plasma-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Zambom, Luis da Silva [MPCE-Faculdade de Tecnologia de Sao Paulo - CEETEPS, Pca Coronel Fernando Prestes, 30, Sao Paulo - CEP 01124-060 (Brazil)]. E-mail: zambom@lsi.usp.br; Verdonck, Patrick [PSI-LSI-Escola Politecnica da Universidade de Sao Paulo (Brazil)]. E-mail: patrick@lsi.usp.br

    2006-10-25

    Oxynitride thin films are used in important optical applications and as gate dielectric for MOS devices. Their traditional deposition processes have the drawbacks that high temperatures are needed, high mechanical stresses are induced and the deposition rate is low. Plasma assisted processes may alleviate these problems. In this study, oxynitride films were deposited at room temperature through the chemical reaction of silane, nitrogen and nitrous oxide (N{sub 2}O), in a conventional LPCVD furnace, which was modified into a high density Inductively Coupled Plasma (ICP) reactor. Deposition rates increased with applied coil power and were never lower than 10 nm/min, quite high for room temperature depositions. The films' refractive indexes and FTIR spectra indicate that for processes with low N{sub 2}O gas concentrations, when mixed together with N{sub 2} and SiH{sub 4}, nitrogen was incorporated in the film. This incorporation increased the resistivity, which was up to 70 G{omega} cm, increased the refractive index, from approximately 1.47 to approximately 1.50, and decreased the dielectric constant of these films, which varied in the 4-14 range. These characteristics are adequate for electric applications e.g. for TFT fabrication on glass or polymers which can not stand high temperature steps.

  5. Crack repair of asphalt concrete with induction energy

    NARCIS (Netherlands)

    García, A.; Schlangen, E.; Ven, M. van de; Vliet, D. van

    2011-01-01

    It is well known that the healing rates of asphalt courses increase with the temperature. A new method, induction heating, is used in this paper to increase the lifetime of asphalt concrete pavements. Mastic will be first made electrically conductive by the addition of conductive fibers. Then it

  6. Measurement of excitation, ionization, and electron temperatures and positive ion concentrations in a 144 MHz inductively coupled radiofrequency plasma

    International Nuclear Information System (INIS)

    Walters, P.E.; Chester, T.L.; Winefordner, J.D.

    1977-01-01

    Diagnostic measurements of 144 MHz radiofrequency inductively coupled plasmas at pressures between 0.5 and 14 Torr have been made. Other variables studied included the gas type (Ar or Ne) and material in plasma (Ti or Tl). Parameters measured included excitation temperatures via the atomic Boltzmann plot and the two-line method, ionization electric probes. Excitation temperatures increased as the pressure of Ar or Ne plasmas decreased and reached a maximum of approx.9000 degreeK in the latter case and approx.6700 degreeK in the former case; Tl in the Ar plasma resulted in in a smaller rate of decrease of excitation temperature with increase of pressure of Ar. The ionization temperatures were lower than the excitation temperatures and were similar for both the Ar and Ne plasmas. Electron temperatures were about 10 times higher than the excitation temperatures indicating non-LTE behavior. Again, the electron temperatures indicating in Ne were considerably higher than in Ar. With the presence of metals, the electron temperatures with a metal in the Ar plasma were higher than in the absence. Positive ion concentrations were also measured for the various plasmas and were found to be similar (approx.10 18 m -3 ) in both the Ar and Ne plasmas. The presence of metals caused significant increase in the positive ion concentrations. From the results obtained, the optimum Ar pressure for Tl electrodeless discharge lamps operated at 144 MHz would be between 2 and 4 Torr

  7. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors.

    Science.gov (United States)

    Schormans, Matthew; Valente, Virgilio; Demosthenous, Andreas

    2016-08-04

    Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a number of link parameters, including coil distance, alignment, shape, and load conditions. The optimum drive frequency of an inductive link varies depending on the coil spacing and load. This paper presents an optimum frequency tracking (OFT) method, in which an inductive power link is driven at a frequency that is maintained at an optimum value to ensure that the link is working at resonance, and the output voltage is maximised. The method is shown to provide significant improvements in maintained secondary voltage and system efficiency for a range of loads when the link is overcoupled. The OFT method does not require the use of variable capacitors or inductors. When tested at frequencies around a nominal frequency of 5 MHz, the OFT method provides up to a twofold efficiency improvement compared to a fixed frequency drive. The system can be readily interfaced with passive implants or implantable biosensors, and lends itself to interfacing with designs such as distributed implanted sensor networks, where each implant is operating at a different frequency.

  8. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors

    Directory of Open Access Journals (Sweden)

    Matthew Schormans

    2016-08-01

    Full Text Available Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a number of link parameters, including coil distance, alignment, shape, and load conditions. The optimum drive frequency of an inductive link varies depending on the coil spacing and load. This paper presents an optimum frequency tracking (OFT method, in which an inductive power link is driven at a frequency that is maintained at an optimum value to ensure that the link is working at resonance, and the output voltage is maximised. The method is shown to provide significant improvements in maintained secondary voltage and system efficiency for a range of loads when the link is overcoupled. The OFT method does not require the use of variable capacitors or inductors. When tested at frequencies around a nominal frequency of 5 MHz, the OFT method provides up to a twofold efficiency improvement compared to a fixed frequency drive. The system can be readily interfaced with passive implants or implantable biosensors, and lends itself to interfacing with designs such as distributed implanted sensor networks, where each implant is operating at a different frequency.

  9. Mass spectra and ionization temperatures in an argon-nitrogen inductively coupled plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Montaser, A.; Fassel, V.A.

    1983-01-01

    Positive ions were extracted from the axial channel of an inductively coupled plasma (ICP) in which the outer gas flow was Ar, N 2 , or a mixture of Ar and N 2 . Addition of N 2 to the outer gas decreases the electron number density (n/sub e/) in the axial channel. Ar +2 , O 2 + , and ArH + react with N-containing species in the plasma and/or during the ion extraction process. Ar + remains abundant even if there is no Ar in the outer gas, which indicates the probable occurrence of charge transfer reactions between N 2 + and Ar. The present work corroborates two general concepts upon which several theories of theorigin of suprathermal ionization in ICPs are based: (a) species are physically transported from the induction region to the axial channel; and (b) these species may react with a ionize neutral species in the axial channel. Ionization temperatures (T/sub ion/) measured from the ratio Cd + /I + were 5750 to 6700 K for a N 2 outer flow ICP a forward power of 1.2 kW. This T/sub ion/ range is significantly below that obtained for an Ar outer gas ICP under otherwise similar operating parameters

  10. Interactive knowledge discovery from marketing questionnarie using simulated breeding and inductive learning methods

    Energy Technology Data Exchange (ETDEWEB)

    Terano, Takao [Univ. of Tsukuba, Tokyo (Japan); Ishino, Yoko [Univ. of Tokyo (Japan)

    1996-12-31

    This paper describes a novel method to acquire efficient decision rules from questionnaire data using both simulated breeding and inductive learning techniques. The basic ideas of the method are that simulated breeding is used to get the effective features from the questionnaire data and that inductive learning is used to acquire simple decision rules from the data. The simulated breeding is one of the Genetic Algorithm (GA) based techniques to subjectively or interactively evaluate the qualities of offspring generated by genetic operations. In this paper, we show a basic interactive version of the method and two variations: the one with semi-automated GA phases and the one with the relatively evaluation phase via the Analytic Hierarchy Process (AHP). The proposed method has been qualitatively and quantitatively validated by a case study on consumer product questionnaire data.

  11. Antibody induction versus corticosteroid induction for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, André; Wilson, Colin H

    2014-01-01

    BACKGROUND: Liver transplantation is an established treatment option for end-stage liver failure. To date, no consensus has been reached on the use of immunosuppressive T-cell specific antibody induction compared with corticosteroid induction of immunosuppression after liver transplantation....... OBJECTIVES: To assess the benefits and harms of T-cell specific antibody induction versus corticosteroid induction for prevention of acute rejection in liver transplant recipients. SEARCH METHODS: We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register...... to identify additional trials. SELECTION CRITERIA: We included all randomised clinical trials assessing immunosuppression with T-cell specific antibody induction versus corticosteroid induction in liver transplant recipients. Our inclusion criteria stated that participants within each included trial should...

  12. Improving Performance and Operational Stability of Porcine Interferon-α Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding.

    Science.gov (United States)

    Gao, Min-Jie; Zhan, Xiao-Bei; Gao, Peng; Zhang, Xu; Dong, Shi-Juan; Li, Zhen; Shi, Zhong-Ping; Lin, Chi-Chung

    2015-05-01

    Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.

  13. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2006-10-01

    Full Text Available We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS. This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  14. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    Science.gov (United States)

    Vanhamäki, H.; Amm, O.; Viljanen, A.

    2006-10-01

    We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  15. The GMD Method for Inductance Calculation Applied to Conductors with Skin Effect

    Directory of Open Access Journals (Sweden)

    H. A. Aebischer

    2017-09-01

    Full Text Available The GMD method (geometric mean distance to calculate inductance offers undoubted advantages over other methods. But so far it seemed to be limited to the case where the current is uniformly distributed over the cross section of the conductor, i.e. to DC (direct current. In this paper, the definition of the GMD is extended to include cases of nonuniform distribution observed at higher frequencies as the result of skin effect. An exact relation between the GMD and the internal inductance per unit length for infinitely long conductors of circularly symmetric cross section is derived. It enables much simpler derivations of Maxwell’s analytical expressions for the GMD of circular and annular disks than were known before. Its salient application, however, is the derivation of exact expressions for the GMD of infinitely long round wires and tubular conductors with skin effect. These expressions are then used to verify the consistency of the extended definition of the GMD. Further, approximate formulae for the GMD of round wires with skin effect based on elementary functions are discussed. Total inductances calculated with the help of the derived formulae for the GMD with and without skin effect are compared to measurement results from the literature. For conductors of square cross section, an analytical approximation for the GMD with skin effect based on elementary functions is presented. It is shown that it allows to calculate the total inductance of such conductors for frequencies from DC up to 25 GHz to a precision of better than 1 %.

  16. Dual reference point temperature interrogating method for distributed temperature sensor

    International Nuclear Information System (INIS)

    Ma, Xin; Ju, Fang; Chang, Jun; Wang, Weijie; Wang, Zongliang

    2013-01-01

    A novel method based on dual temperature reference points is presented to interrogate the temperature in a distributed temperature sensing (DTS) system. This new method is suitable to overcome deficiencies due to the impact of DC offsets and the gain difference in the two signal channels of the sensing system during temperature interrogation. Moreover, this method can in most cases avoid the need to calibrate the gain and DC offsets in the receiver, data acquisition and conversion. An improved temperature interrogation formula is presented and the experimental results show that this method can efficiently estimate the channel amplification and system DC offset, thus improving the system accuracy. (letter)

  17. Some Temperature Effects on AISI-304 Nitriding in an Inductively Coupled RF Plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.; Munoz-Castro, A. E.; Piedad-Beneitez, A. de la; Rosa-Vazquez, J. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.

    2006-01-01

    Some recent results obtained from nitriding AISI 304 stainless steel samples, 1.2 cm in diameter and 0.5 cm thick are reported here in the case of an 85% hydrogen and 15% nitrogen mixture work gas. The process was carried out from 300 to 400 W for (13.56 MHz) inductively coupled plasma within a 60 cm long pyrex glass tube 3.5 cm in diameter where the samples were biased up to -300 V with respect to earth. The resulting hardness appears to be a function of the substrate temperature which varied from 200 deg. C at a 0 V bias to 550 deg. C at -300 V. The plasma density at 400 W reached 3x1010 cm-3 with a 4 eV electron temperature. Prior to nitriding, all the samples were polished with 0.05 μm diamond paste, leading to a 30 nm average roughness (Ra). After nitriding at -300 V, the Ra rose until ∼400 nm while hardness values of 1500 HV under 300 g loads were measured. X ray diffraction indicates that the extended phase amplitude (γN), Fe and Cr nitride depends on the substrate temperature

  18. Engineering method of calculation and choice of main parameters of the linear induction accelerator inductors

    Directory of Open Access Journals (Sweden)

    В.Т. Чемерис

    2006-04-01

    Full Text Available  There is a method of simplified calculation and design parameters choice elaborated in this article with corresponding basing for the induction system of electron-beam sterilizer on the base of linear induction accelerator taking into account the parameters of magnetic material for production of cores and parameters of pulsed voltage.

  19. Inductance position sensor for pneumatic cylinder

    Science.gov (United States)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  20. Effect of different methods of pulse width modulation on power losses in an induction motor

    Science.gov (United States)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  1. A High-Performance Control Method of Constant V/f-Controlled Induction Motor Drives for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Long Chen

    2014-01-01

    Full Text Available A three-phase induction motor used as a propulsion system for the electric vehicle (EV is a nonlinear, multi-input multi-output, and strong coupling system. For such a complicated model system with unmeasured and unavoidable disturbances, as well as parameter variations, the conventional vector control method cannot meet the demands of high-performance control. Therefore, a novel control strategy named least squares support vector machines (LSSVM inverse control is presented in the paper. Invertibility of the induction motor in the constant V/f control mode is proved to confirm its feasibility. The LSSVM inverse is composed of an LSSVM approximating the nonlinear mapping of the induction motor and two integrators. The inverse model of the constant V/f-controlled induction motor drive is obtained by using LSSVM, and then the optimal parameters of LSSVM are determined automatically by applying a modified particle swarm optimization (MPSO. Cascading the LSSVM inverse with the induction motor drive system, the pseudolinear system can be obtained. Thus, it is easy to design the closed-loop linear regulator. The simulation results verify the effectiveness of the proposed method.

  2. Modeling of Self-Excited Isolated Permanent Magnet Induction Generator Using Iterative Numerical Method

    Directory of Open Access Journals (Sweden)

    Mohamed Mostafa R.

    2016-01-01

    Full Text Available Self-Excited Permanent Magnet Induction Generator (PMIG is commonly used in wind energy generation systems. The difficulty of Self-Excited Permanent Magnet Induction Generator (SEPMIG modeling is the circuit parameters of the generator vary at each load conditions due to the a change in the frequency and stator voltage. The paper introduces a new modeling for SEPMIG using Gauss-sidle relaxation method. The SEPMIG characteristics using the proposed method are studied at different load conditions according to the wind speed variation, load impedance changes and different shunted capacitor values. The system modeling is investigated due to the magnetizing current variation, the efficiency variation, the power variation and power factor variation. The proposed modeling system satisfies high degree of simplicity and accuracy.

  3. Calculation of temperature fields formed in induction annealing of closing welded joint of jacket of steam generator for WWER 440 type nuclear power plant using ICL 2960 computer

    International Nuclear Information System (INIS)

    Sajnar, P.; Fiala, J.

    1983-01-01

    The problems are discussed of the mathematical description and simulation of temperature fields in annealing the closing weld of the steam generator jacket of the WWER 440 nuclear power plant. The basic principles are given of induction annealing, the method of calculating temperature fields is indicated and the mathematical description is given of boundary conditions on the outer and inner surfaces of the steam generator jacket for the computation of temperature fields arising during annealing. Also described are the methods of determining the temperature of exposed parts of heat exchange tubes inside the steam generator and the technical possibilities are assessed of the annealing equipment from the point of view of its computer simulation. Five alternatives are given for the computation of temperature fields in the area around the weld for different boundary conditions. The values are given of maximum differences in the temperatures of the metal in the annealed part of the steam generator jacket which allow the assessment of individual computation variants, this mainly from the point of view of observing the course of annealing temperature in the required width of the annealed jacket of the steam generator along both sides of the closing weld. (B.S.)

  4. Inductance position sensor for pneumatic cylinder

    Directory of Open Access Journals (Sweden)

    Pavel Ripka

    2018-04-01

    Full Text Available The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  5. Magnetic induction heating of FeCr nanocrystalline alloys

    International Nuclear Information System (INIS)

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J.I.; Pastor, J.M.; Olivera, J.; Soto-Armañanzas, J.

    2012-01-01

    In this work the thermal effects of magnetic induction heating in (FeCr) 73.5 Si 13.5 Cu 1 B 9 Nb 3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia. - Highlights: ► Amorphous and nanocrystalline Fe based alloys with tailored Curie temperature of the amorphous phase. ► Induction heating effects under the action of a ac magnetic field. ► Self-regulated characteristics based on the control of the Curie temperature. ► Dominant role of the eddy-current losses in the self-heating phenomena.

  6. Investigation of the Performance of an Inductive Seawater Conductivity Sensor

    Directory of Open Access Journals (Sweden)

    WU Sheng

    2015-03-01

    Full Text Available As one of the factors in marine hydrographic survey, seawater salinity plays an important role in marine scientific research, marine exploitation and military defense. In practical measurement, the salinity is always presented indirectly by seawater conductivity value. Compared with the electrode conductivity sensors, inductive conductivity sensors have an advantage of anti-biofouling, and that is very interested in long term ocean observation device. From the principle point of view, this paper discus the different methods to improve inductive sensor output signal, which is confirmed by the relative experimental results. The basic working system of inductive sensor is described here as well as a calibration in standard seawater. From a wide range of temperature, measurement absolute error and stability are close to those of actual electrode conductivity sensors. Furthermore, in the 1000 meters deep sea experiment, our inductive sensor presents a perfect similarity of conductivity profile like sea- bird sensor, even for some small variations. The performance of our inductive sensor can compete with that of commercially available electrode conductivity sensors.

  7. A Method for Solving the Voltage and Torque Equations of the Split-Phase Induction Machines

    Directory of Open Access Journals (Sweden)

    G. A. Olarinoye

    2013-06-01

    Full Text Available Single phase induction machines have been the subject of many researches in recent times. The voltage and torque equations which describe the dynamic characteristics of these machines have been quoted in many papers, including the papers that present the simulation results of these model equations. The way and manner in which these equations are solved is not common in literature. This paper presents a detailed procedure of how these equations are to be solved with respect to the splitphase induction machine which is one of the different types of the single phase induction machines available in the market. In addition, these equations have been used to simulate the start-up response of the split phase induction motor on no-load. The free acceleration characteristics of the motor voltages, currents and electromagnetic torque have been plotted and discussed. The simulation results presented include the instantaneous torque-speed characteristics of the Split phase Induction machine. A block diagram of the method for the solution of the machine equations has also been presented.

  8. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  9. Evaluation of inductive heating energy of sub-size improved DPC-C conductor by calorimetric method

    International Nuclear Information System (INIS)

    Ito, Toshinobu; Koizumi, Norikiyo; Wakabayashi, Hiroshi; Miura, Yuushi; Fujisaki, Hiroshi; Matsui, Kunihiro; Takahashi, Yoshikazu; Tsuji, Hiroshi

    1996-08-01

    The improved DPC-U conductor consisting of 648 chrome plated NbTi strands was fabricated and its stability has been investigated using 1/24 sub-size conductor. In the stability experiment, the inductive heating method was applied to originate initial normal zone. Since it is difficult to calculate the inductive heating energy deposited on the conductor because of complicate geometry of the twisted multi-strand cable, inductive heating energy had to be experimentally evaluated using calorimetric method. The heating energy is in proportion to integration of square of an applied sinusoidal wave pulsed current over the heating period. The experimental result shows the proportional constants for the conductor and conduit are 2.062 x 10 -3 [J/A 2 s] and 0.771 x 10 -3 [J/A 2 s], respectively. The coupling between the eddy currents in the strands and conduit might take effect on the heating energy put in the strands. It was shown this effect was however small in this experiment. Consequently, the inductive heating energy applied in the strands was estimated to be the proportional constant of 1.291 x 10 -3 [J/A 2 s] from the difference of the heat energies in the conductor and conduit. (author)

  10. Determination of Ar metastable atom densities in Ar and Ar/H2 inductively coupled low-temperature plasmas

    International Nuclear Information System (INIS)

    Fox-Lyon, N; Knoll, A J; Oehrlein, G S; Franek, J; Demidov, V; Koepke, M; Godyak, V

    2013-01-01

    Ar metastable atoms are important energy carriers and surface interacting species in low-temperature plasmas that are difficult to quantify. Ar metastable atom densities (N Ar,m ) in inductively coupled Ar and Ar/H 2 plasmas were obtained using a model combining electrical probe measurements of electron density (N e ) and temperature (T e ), with analysis of spectrally resolved Ar plasma optical emission based on 3p → 1s optical emission ratios of the 419.8 nm line to the 420.1 nm line. We present the variation of N Ar,m as the Ar pressure and the addition of H 2 to Ar are changed comparatively to recent adsorption spectroscopy measurements. (paper)

  11. Closed loop control of the induction heating process using miniature magnetic sensors

    Science.gov (United States)

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  12. Research Of The Efficiency Of The Wireless Power Transfer With The Employment Of DD Inductance Coils

    Directory of Open Access Journals (Sweden)

    Krainyukov Alexander

    2015-12-01

    Full Text Available The paper is devoted to using of DD inductance coils for the wireless power transfer. The aim of the given research is to determine influence of the parameters of resonance transformer on the efficiency of the wireless power transfer with the use of the DD inductance coils. Experimental installation of the wireless power transfer by a resonance inductive method was constructed. Experiments were performed with it help. Research results show influence of the distance between the coils of inductance, of the resonance transformer frequency, of the storage source voltage and of the temperature conditions on the efficiency of the wireless power transfer.

  13. Energy saving work of frequency controlled induction cage machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Str. 8, 81-225 Gdynia (Poland)]. E-mail: piotrg@am.gdynia.pl

    2007-03-15

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor.

  14. Energy saving work of frequency controlled induction cage machine

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2007-01-01

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor

  15. Fuzzy logic estimator of rotor time constant in induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Alminoja, J. [Tampere University of Technology (Finland). Control Engineering Laboratory; Koivo, H. [Helsinki University of Technology, Otaniemi (Finland). Control Engineering Laboratory

    1997-12-31

    Vector control of AC machines is a well-known and widely used technique in induction machine control. It offers an exact method for speed control of induction motors, but it is also sensitive to the changes in machine parameters. E.g. rotor time constant has a strong dependence on temperature. In this paper a fuzzy logic estimator is developed, with which the rotor time constant can be estimated when the machine has a load. It is more simple than the estimators proposed in the literature. The fuzzy estimator is tested by simulation when step-wise abrupt changes and slow drifting occurs. (orig.) 7 refs.

  16. Thermal loss of life and load-carrying capacity of marine induction motors

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2014-01-01

    Highlights: • The effect of voltage quality on induction motors is investigated. • Power quality significantly affects machine lifetime and load-carrying capacity. • Permissible load levels for induction motors are proposed. - Abstract: This work deals with the effect of a lowered voltage quality on the thermal loss of life and load-carrying capacity of marine induction cage machines. Results of experimental investigations and computer calculations are presented for two low power induction motors with different properties. One of them has a comparatively strongly-saturated magnetic circuit and is especially exposed to the risk of overheating under overvoltage. The other machine has a comparatively weakly-saturated magnetic circuit, and is especially sensitive to undervoltage. The induction motor lifetime expectancy is also estimated on the basis of the temperature coefficient of power quality, whose value is proportional to the windings temperature rise in induction motors especially sensitive to various power quality disturbances. The dependence of the temperature coefficient of power quality and permissible loads for induction motors supplied with voltages of lowered quality is proposed

  17. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  18. Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature

    International Nuclear Information System (INIS)

    Choi, Dong Hyuck; Park, Jung Eun; Park, Eun Duck

    2015-01-01

    The effect of preparation method on the catalytic activities of the Ni/Al 2 O 3 catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K 2 CO 3 , and NH 4 OH were compared. The prepared catalysts were characterized by using N 2 physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, pulsed H 2 chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH or K 2 CO 3 as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature

  19. Influence of inductance induced noise in an YBa2Cu3O7 dc-SQUID at high operation temperatures

    DEFF Research Database (Denmark)

    Nilsson, P. Å.; Claeson, T.; Hansen, J. B.

    1994-01-01

    The voltage modulation depth of a high T(c) dc-SQUID was measured at temperatures close to T(c) and compared to a model by Enpuku et al. where the flux noise from the SQUID inductance is taken into account. The device was an YBa2Cu3O7 dc-SQUID made on a bicrystal substrate of SrTiO3. The design w...

  20. process controller for induction vacuum brazing

    International Nuclear Information System (INIS)

    Aldea, A.

    2016-01-01

    A brazing operation involves joining two parts made of different materials, using a filler material that has a melting temperature lower than the base materials used. The temperature of the process must be carefully controlled, sometimes with an accuracy of about 1°C, because overshooting the prescribed temperature results in detrimental metallurgic phenomena and joints of poor quality. The brazing system is composed of an operating cabinet, a mid-frequency generator, a vacuum chamber with an induction coil inside and the parts that have to be brazed. Until now, to operate this system two operators were required: one to continuously read the temperature with an optical pyrometer and another to manually adjust the current in the induction coil according to his intuition and prediction gained only by experience. The improvement that we made to the system involved creating an automatic temperature control unit, using a PID closed loop controller that reads the temperature of the parts and adjusts automatically the current in the coil. Using the PID controller, the brazing engineer can implement a certain temperature slope for the current brazing process. (authors)

  1. Casing layer and effect of primordia induction in the production of Agaricus subrufescens mushroom

    Directory of Open Access Journals (Sweden)

    Emerson Tokuda Martos

    2017-08-01

    Full Text Available Agaricus subrufescens growers have faced difficulties in standardizing and maintaining optimal production yield, even when they produce or acquire quality substrate, as cultivation success is also related to the quality of the casing layer and the production environment. The production of A. subrufescens was evaluated using different casing layers and methods for primordia induction. Three experiments were carried out: 1 to evaluate the effect of dolomitic limestone in the casing layer; 2 to evaluate the effect of different combinations of mineral and organic materials used as the casing layer; and 3 to evaluate the effect of temperature in primordia induction with two commercial strains. The results demonstrated that an increase in the limestone concentration in the casing resulted in a superior yield (16.7%. Casing layer combinations using organic substrate + sand (proportion 1:1, volume to volume resulted in a greater yield (19.2%. Temperature did not affect primordia induction.

  2. induction motor, unbalance, electrical loss, finite element method.

    Directory of Open Access Journals (Sweden)

    Camilo Andrés Cortés

    2008-09-01

    Full Text Available This paper shows the pattern of a 7.5 kW squirrel-cage induction motor’s electrical loss in balanced and unbalanced conditions, modelling the motor using the finite element method and comparing the results with experimental data obtained in the laboratory for the selected motor. Magnetic flux density variation was analysed at four places in the machine. The results so obtained sho- wed that the undervoltage unbalanced condition was the most critical from the motor’s total loss point of view. Regarding varia- tion of loss in parts of the motor, a constant iron loss pattern was found when the load was changed for each type of voltage supply and that the place where the loss had the largest rise was in the machine’s rotor.

  3. Investigation into Methods for Predicting Connection Temperatures

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2009-01-01

    Full Text Available The mechanical response of connections in fire is largely based on material strength degradation and the interactions between the various components of the connection. In order to predict connection performance in fire, temperature profiles must initially be established in order to evaluate the material strength degradation over time. This paper examines two current methods for predicting connection temperatures: The percentage method, where connection temperatures are calculated as a percentage of the adjacent beam lower-flange, mid-span temperatures; and the lumped capacitance method, based on the lumped mass of the connection. Results from the percentage method do not correlate well with experimental results, whereas the lumped capacitance method shows much better agreement with average connection temperatures. A 3D finite element heat transfer model was also created in Abaqus, and showed good correlation with experimental results. 

  4. Electromagnetic and thermal modelling of induction motors, by accounting for space harmonics; Modelisation electromagnetique et thermique des moteurs a induction, en tenant compte des harmoniques d'espace

    Energy Technology Data Exchange (ETDEWEB)

    Mezani, S.

    2004-07-15

    This work is interested in the study of the electromagnetic and thermal behaviors of the induction motor. A state of the art is initially drawn up, where we have presented and discussed the current methods dealing with electromagnetic and thermal modeling of induction motors. An electromagnetic model, that uses the 2D complex finite element method to solve the field equations, is developed. The rotor movement is accounted for by coupling the air gap field, for each space harmonic, using the double air gap method. The superposition principle permits the determination of the final solution. To deal with non linear problems, an approach that introduces equivalent reluctivities, is proposed. We have assumed that the saturation is only due to the first space harmonic. A thermal model is elaborated by using the nodal method. The machine is cut up into 11 cylindrical lumped elements, the thermal model represents the juxtaposition of these lumped elements. The electromagnetic and thermal models are, weakly, coupled together for a more precise determination of the temperature distribution inside the motor. In the validation phase of our work, we have designed a test bench that allows specific torque and temperature measurements. The comparison of the calculations and the measurements is satisfactory. (author)

  5. Induction surface hardening of hard coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, K.; Kessler, O.; Hoffann, F.; Mayr, P. [Stiftung Inst. fuer Werkstofftechnik, Bremen (Germany)

    1999-11-01

    The properties of hard coatings deposited using CVD processes are usually excellent. However, high deposition temperatures negatively influence the substrate properties, especially in the case of low alloyed steels. Therefore, a subsequent heat treatment is necessary to restore the properties of steel substrates. Here, induction surface hardening is used as a method of heat treatment after the deposition of TiN hard coatings on AISI 4140 (DIN42CrMo4) substrates. The influences of the heat treatment on both the coating and the substrate properties are discussed in relation to the parameters of induction heating. Thereby, the heating time, heating atmosphere and the power input into the coating-substrate compounds are varied. As a result of induction surface hardening, the properties of the substrates are improved without losing good coating properties. High hardness values in the substrate near the interface allow the AISI 4140 substrates to support TiN hard coatings very well. Consequently, higher critical loads are measured in scratch tests after the heat treatment. Also, compressive residual stresses in the substrate are generated. In addition, only a very low distortion appears. (orig.)

  6. Hyperthermia studies using inductive and ultrasound methods on E. coli bacteria and mouse glioma cells

    International Nuclear Information System (INIS)

    Cabral–Prieto, A.; López-Callejas, R.; Rodríguez-Méndez, B. G.; Santos-Cuevas, C. L.; Celis-Almazán, J.; Olea-Mejía, O.; Gómez-Morales, J. L.; Peña-Eguiluz, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Muñoz-Castro, A. E.; García-Santibañez, F.

    2017-01-01

    The survival of Escherichia coli bacteria and mouse glioma cells were studied under different temperatures using direct heating in water, ultrasound, and magnetic fluid hyperthermia. The survival of these microorganisms depended on whether the heating mode was continuous or discontinuous, surviving more in the former than in the discontinuous heating mode. Whereas Escherichia coli bacteria did not survive at temperatures ≥50"∘C, the mouse glioma cells did not survive at temperatures ≥48"∘C. The survival of both these microorganisms was independent of the presence or absence of the magnetic nanoparticles of magnetite, suggesting that these, having mean particle sizes of 9.5, 8.5 and 5, did not show any apparent cytotoxicity effect. Present results also showed that the inductive heating system which used a radiofrequency of 13.56 MHz, providing a maximum magnetic field strength of 160 A/m, the electric rather than magnetic heating predominated.

  7. A new inductive method for measuring the RRR-value of niobium

    International Nuclear Information System (INIS)

    Bolore, M.; Bonin, B.; Boudigou, Y.; Heuveline, S.; Jacques, E.; Jaidane, S.; Koechlin, F.; Safa, H.

    1996-01-01

    A new method for measuring the RRR-value of niobium is presented. The principle of the measurement uses low frequency induction in a niobium sheet placed close to a pair of coils. In contrast with the usual resistive method, the present one gives information on the local value of the RRR, with a spatial resolution of the order of 1 cm. In addition, it is non destructive, thus opening the way to mapping RRR measurements on cavities. This tool will permit the measure of RRR inhomogeneities in cavities due to sheet forming or heat treatments, and the systematic check of the quality of weld seams. (author)

  8. Use of miniature magnetic sensors for real-time control of the induction heating process

    Science.gov (United States)

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  9. INFLUENCE OF BROKEN ROTOR BARS LOCATION IN THE SQUIRREL CAGE INDUCTION MOTOR USING FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2013-06-01

    Full Text Available It is well known that the number of broken bars and varying load affect on the amplitudes of specific harmonic components in the process analysis of induction motors under broken rotor bars. The location of broken bars is an important factor which affects the diagnosis of the broken bars defect. In this paper the simulation is determinate for different cases for distribution of broken bars under induction motor pole in order to show the impact of broken bars location upon the amplitude of harmonic fault. The simulation results are obtained by using time stepping finite elements (TSFE method. The geometrical characteristics of motor, the effects of slotting and the magnetic saturation of lamination core are included in induction motor model.

  10. INFLUENCE OF BROKEN ROTOR BARS LOCATION IN THE SQUIRREL CAGE INDUCTION MOTOR USING FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2015-07-01

    Full Text Available It is well known that the number of broken bars and varying load affect on the amplitudes of specific harmonic components  in the process analysis of induction motors under broken rotor bars. The location of broken bars is an important factor which affects the diagnosis of the broken bars defect. In this paper the simulation is determinate for different cases for distribution of broken bars under induction motor pole in order to show the impact of broken bars location upon the amplitude of harmonic fault. The simulation results are obtained by using time stepping finite elements (TSFE method. The geometrical characteristics of motor, the effects of slotting and the magnetic saturation of lamination core are included in induction motor model.

  11. A Feasibility Study on UO2/ZrO2 Mixture Melting using Induction Skull Melting Method

    International Nuclear Information System (INIS)

    Hong, S. W.; Kim, J. H.; Kim, H. D.

    1998-01-01

    Using ISM(Induction Skull Melting) method, which is usually used for the crystallization of refractory materials, a feasibility study on melting of the UO 2 /ZrO 2 mixture(w/o 8:2) is carried out. Frequency, one of main design parameters for ISM, is determined from electrical resistance of UO 2 /ZrO 2 mixture. Heat loss from the crucible for UO 2 /ZrO 2 20kg melting is predicted by comparison with the existing experimental data for UO , ZrO 2 , and ThO 2 . The analysis shows that melting and superheating of the UO 2 /ZrO 2 mixture using induction skull melting method is possible. To attain the superheat of 300K for 20 kg of UO 2 /ZrO 2 , 100kHz, 100 kW power input for induction coil, and 570L/min coolant flow rate are found to be required. The results of this feasibility study will be adopted for designing UO 2 /ZrO 2 furnace using actual corium material at KAERI

  12. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Nielsen, Kaspar Kirstein

    2016-01-01

    , comparison of the induction heating and filling of the cavity is compared and validated with simulations. Two polymer materials ABS and HVPC were utilized during the injection molding experiments carried out in this work. A nonlinear electromagnetic model was employed to establish an effective linear......Using elevated mold temperature is known to have a positive influence of final injection molded parts. Induction heating is a method that allow obtaining a rapid thermal cycle, so the overall molding cycle time is not increased. In the present research work, an integrated multi-turn induction...... heating coil has been developed and assembled into an injection molding tool provided with a glass window, so the effect of induction heating can directly be captured by a high speed camera. In addition, thermocouples and pressure sensors are also installed, and together with the high speed videos...

  13. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Chandrasekaran, Abinaya; Avci, Hasan X; Ochalek, Anna; Rösingh, Lone N; Molnár, Kinga; László, Lajos; Bellák, Tamás; Téglási, Annamária; Pesti, Krisztina; Mike, Arpad; Phanthong, Phetcharat; Bíró, Orsolya; Hall, Vanessa; Kitiyanant, Narisorn; Krause, Karl-Heinz; Kobolák, Julianna; Dinnyés, András

    2017-12-01

    Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells and the derived neurons exhibited longer neurites. In contrast, 2D neural induction resulted in more SOX1 positive cells. While 2D monolayer induction resulted in slightly less mature neurons, at an early stage of differentiation, the patch clamp analysis failed to reveal any significant differences between the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6 + /NESTIN + cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural induction, independent of iPSCs' genetic background. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Hyperthermia studies using inductive and ultrasound methods on E. coli bacteria and mouse glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cabral–Prieto, A., E-mail: agustin.cabral@inin.gob.mx; López-Callejas, R., E-mail: regulo.lopez@inin.gob.mx; Rodríguez-Méndez, B. G., E-mail: benjamin.rodriguez@inin.gob.mx; Santos-Cuevas, C. L., E-mail: clara.cuevas@inin.gob.mx [Carretera México-Toluca s/n, La Marquesa, Instituto Nacional de Investigaciones Nucleares (Mexico); Celis-Almazán, J., E-mail: jony-jac-5@hotmail.com; Olea-Mejía, O., E-mail: oleaoscar@yahoo.com.mx [Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable (Mexico); Gómez-Morales, J. L. [Universidad Autónoma del Estado de México, Campus El Cerrillo, Facultad de Ciencias (Mexico); Peña-Eguiluz, R., E-mail: rosendo.eguiluz@inin.gob.mx; Valencia-Alvarado, R., E-mail: raul.valencia@inin.gob.mx; Mercado-Cabrera, A., E-mail: antonio.mercado@inin.gob.mx; Muñoz-Castro, A. E., E-mail: arturo.munoz@inin.gob.mx [Carretera México-Toluca s/n, La Marquesa, Instituto Nacional de Investigaciones Nucleares (Mexico); García-Santibañez, F., E-mail: fegasa2@yahoo.com.mx [Universidad Autónoma del Estado de México, Campus El Cerrillo, Facultad de Ciencias (Mexico)

    2017-11-15

    The survival of Escherichia coli bacteria and mouse glioma cells were studied under different temperatures using direct heating in water, ultrasound, and magnetic fluid hyperthermia. The survival of these microorganisms depended on whether the heating mode was continuous or discontinuous, surviving more in the former than in the discontinuous heating mode. Whereas Escherichia coli bacteria did not survive at temperatures ≥50{sup ∘}C, the mouse glioma cells did not survive at temperatures ≥48{sup ∘}C. The survival of both these microorganisms was independent of the presence or absence of the magnetic nanoparticles of magnetite, suggesting that these, having mean particle sizes of 9.5, 8.5 and 5, did not show any apparent cytotoxicity effect. Present results also showed that the inductive heating system which used a radiofrequency of 13.56 MHz, providing a maximum magnetic field strength of 160 A/m, the electric rather than magnetic heating predominated.

  15. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  16. Impulse method for temperature measurement of silicon detectors

    International Nuclear Information System (INIS)

    Kushpil, V.V.; Kushpil, S.A.; Petracek, V.

    1999-01-01

    A new impulse method of temperature measurement based on switching characteristic of the P-N junction is described. Temperature of silicon detector can be determined, due to the strong temperature dependence of minority carrier lifetime, from the charge registered during the switching-off process. The method has been tested in temperature range 25 - 60 deg C. Advantages, drawbacks and precision of this method are discussed

  17. Temperature scaling method for Markov chains.

    Science.gov (United States)

    Crosby, Lonnie D; Windus, Theresa L

    2009-01-22

    The use of ab initio potentials in Monte Carlo simulations aimed at investigating the nucleation kinetics of water clusters is complicated by the computational expense of the potential energy determinations. Furthermore, the common desire to investigate the temperature dependence of kinetic properties leads to an urgent need to reduce the expense of performing simulations at many different temperatures. A method is detailed that allows a Markov chain (obtained via Monte Carlo) at one temperature to be scaled to other temperatures of interest without the need to perform additional large simulations. This Markov chain temperature-scaling (TeS) can be generally applied to simulations geared for numerous applications. This paper shows the quality of results which can be obtained by TeS and the possible quantities which may be extracted from scaled Markov chains. Results are obtained for a 1-D analytical potential for which the exact solutions are known. Also, this method is applied to water clusters consisting of between 2 and 5 monomers, using Dynamical Nucleation Theory to determine the evaporation rate constant for monomer loss. Although ab initio potentials are not utilized in this paper, the benefit of this method is made apparent by using the Dang-Chang polarizable classical potential for water to obtain statistical properties at various temperatures.

  18. Berkeley research program on ion-induction linacs for inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Rosenblum, S.S.

    1982-03-01

    The following areas of research are described: (1) driver studies, (2) induction linac technology, (3) core materials, (4) insulators, (5) modulator-switches and pulse forming network, (6) induction linac accelerators and prototype modules, and (7) a high-temperature experiment

  19. Fault Diagnosis of Three Phase Induction Motor Using Current Signal, MSAF-Ratio15 and Selected Classifiers

    Directory of Open Access Journals (Sweden)

    Glowacz A.

    2017-12-01

    Full Text Available A degradation of metallurgical equipment is normal process depended on time. Some factors such as: operation process, friction, high temperature can accelerate the degradation process of metallurgical equipment. In this paper the authors analyzed three phase induction motors. These motors are common used in the metallurgy industry, for example in conveyor belt. The diagnostics of such motors is essential. An early detection of faults prevents financial loss and downtimes. The authors proposed a technique of fault diagnosis based on recognition of currents. The authors analyzed 4 states of three phase induction motor: healthy three phase induction motor, three phase induction motor with 1 faulty rotor bar, three phase induction motor with 2 faulty rotor bars, three phase induction motor with faulty ring of squirrel-cage. An analysis was carried out for original method of feature extraction called MSAF-RATIO15 (Method of Selection of Amplitudes of Frequencies – Ratio 15% of maximum of amplitude. A classification of feature vectors was performed by Bayes classifier, Linear Discriminant Analysis (LDA and Nearest Neighbour classifier. The proposed technique of fault diagnosis can be used for protection of three phase induction motors and other rotating electrical machines. In the near future the authors will analyze other motors and faults. There is also idea to use thermal, acoustic, electrical, vibration signal together.

  20. Evaluation of inductive heating energy of a PF insert coil conductor by the calorimetric method (Contract research)

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Nabara, Yoshihiro; Nunoya, Yoshihiko; Koizumi, Norikiyo; Okuno, Kiyoshi

    2009-02-01

    The PF Insert Coil is a single layer solenoid coil using a superconducting conductor designed for ITER, housed in a Poloidal field coil and installed in the bore of the CS Model Coil. A stability test of the conductor will be performed in a magnetic field generated by the CS Model Coil. In this test, the inductive heat of an inductive heater attached to the conductor will be applied to initiate a normal zone in the conductor. Since the conductor for the PF Insert Coil is a cable-in-conduit conductor, it is quite difficult to estimate inductive heating energy theoretically. Thus, the inductive heating energy is measured experimentally by the calorimetric method. The heating energy is in proportion to a constant multiplied by the integrated square of an applied sinusoidal current wave over the heating period. Experimental results show that the proportional constants of the conductor, cable, conduit and dummy conductor are 0.138 [J/A 2 s], 0.028 [J/A 2 s], 0.118 [J/A 2 s] and 0.009 [J/A 2 s], respectively. The first three denote not only the inductive heating but also the joule heating of the inductive heater. The final value denotes joule heating only. Therefore, subtracting the first three constants by the last one, the proportional constants of inductive heating generated in the conductor, cable and conduit are estimated to be 0.129 [J/A 2 s], 0.019 [J/A 2 s] and 0.109 [J/A 2 s], respectively. (author)

  1. A susceptor heating structure in MOVPE reactor by induction heating

    International Nuclear Information System (INIS)

    Li, Zhiming; Li, Hailing; Zhang, Jincheng; Li, Jinping; Jiang, Haiying; Fu, Xiaoqian; Han, Yanbin; Xia, Yingjie; Huang, Yimei; Yin, Jianqin; Zhang, Lejuan; Hu, Shigang

    2014-01-01

    A novel susceptor with a revolutionary V-shaped slot of solid of revolution form is proposed in the metalorganic vapor phase epitaxy (MOVPE) reactor by induction heating. This slot changes the heat transfer rate as the generated heat is transferred from the high temperature region of the susceptor to the substrate, which improves the uniformity of the substrate temperature distribution. By using finite element method (FEM), the susceptor with this structure for heating the substrate of six inches in diameter is optimized. It is observed that this optimized susceptor with the V-shaped slot makes the uniformity of the substrate temperature distribution improve more than 80%, which can be beneficial to the film growth. - Highlights: •A novel susceptor with V-shaped slot in MOVPE reactor is proposed. •Temperature in the substrate is optimized. •Great temperature uniformity of the substrate is obtained

  2. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    Science.gov (United States)

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  3. Characteristics of DC electrical braking method of the gas circulator to limit the temperature rise at the heat transfer pipes in the HTTR

    International Nuclear Information System (INIS)

    Kawasaki, K.; Saito, K.; Iyoku, T.

    2001-01-01

    In the safety evaluation of a High Temperature Engineering Test Reactor (HTTR), it must be confirmed that the core has no chance to be damaged and the barrier against the FP release is designed properly not to be affecting the influence of radiation around the reactor site. Especially the maximum temperature of the reactor pressure boundary such as the heat transfer pipes of pressurized water cooler (PWC) must not exceed the permissible values under an anticipated accident such as pipe of rupture in PWC. A requirement for the gas circulator which circulates helium gas in the primary cooling line and the secondary cooling line, is to be braked within 10 seconds by an electrical braking method after the HTTR reactor has scrammed under the accident in PWC. The reason is that the temperature rise of the heat transfer pipe at PWC has to be suppressed when the gas circulator has stopped, the revolution of the gas circulator decreases like the free coast down so that it takes about 90 seconds to be zero and the temperature rise of the pipe in the PWC exceeds the permissible value. By braking within 10 secs., the temperature of the pipe in the PWC reaches about 368 deg. C, less than the permissible value. Using a simplified equivalent circuit of an induction motor, braking time analysis was performed with obtained electrical resistance and inductance. The obtained braking time is about 10 secs., showing close agreement with analysis values. (author)

  4. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  5. Standard guide for mutual inductance bridge applications for wall thickness determinations in boiler tubing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes a procedure for obtaining relative wall thickness indications in ferromagnetic and non-ferromagnetic steels using the mutual inductance bridge method. The procedure is intended for use with instruments capable of inducing two substantially identical magnetic fields and noting the change in inductance resulting from differing amounts of steel. It is used to distinguish acceptable wall thickness conditions from those which could place tubular vessels or piping at risk of bursting under high temperature and pressure conditions. 1.2 This guide is intended to satisfy two general needs for users of industrial Mutual Inductance Bridge (MIB) equipment: (1) the need for a tutorial guide addressing the general principles of Mutual Inductance Bridges as they apply to industrial piping; and (2) the need for a consistent set of MIB performance parameter definitions, including how these performance parameters relate to MIB system specifications. Potential users and buyers, as well as experienced M...

  6. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Chandrasekaran, Abinaya; Avci, Hasan; Ochalek, Anna

    2017-01-01

    Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency......), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells...... the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6+/NESTIN+ cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural...

  7. Induction methods and formation process of experimental myopia in guinea pigs

    Directory of Open Access Journals (Sweden)

    Mi-Duo Chen

    2016-03-01

    Full Text Available Myopia, especially high myopia, is one of the most important eye diseases in the world. For many years the researchers established a variety of animal models and animal experiments to explore the mechanism of development of myopia. Guinea pig is one of the most commonly used myopia models in recent years. It has obvious advantages in many aspects, and it is a kind of experimental animals which is worth to be further applied to different kinds of myopic experiments and to be studied thoroughly. This article reviews the induction methods and the forming process of the guinea pig myopia model.

  8. Influence of time presetting procedure for rapid local heat;.ng on brazing temperature conditions

    International Nuclear Information System (INIS)

    Lezhnin, G.P.; Tul'skikh, V.E.

    1985-01-01

    Correlation of known and suggested presetting procedures for heating period during induction brazing was conducted. It is shown that brazing time must be established considering heat propagation during heating in order to obtain the assigned joint temperature regardless of heating rate change. Methods for temperature calculation in assigned zones of the joint are suggested. The suggested presetting procedure for heating time was applied for induction vacuum brazing of a tube of 12Kh18N10T steel to a pipe connection of VT20 alloy

  9. Induction melter apparatus

    Science.gov (United States)

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  10. The Moral Dignity of Inductive Method and the Reconciliation of Science and Faith in Adam Sedgwick's Discourse

    Science.gov (United States)

    Bellon, Richard

    2012-07-01

    Science's inductive method required patient, humble and self-controlled behavior; Christian revelation demanded the same virtues. The discoveries of science and the truths of scripture would always harmonize as long as both men of science and men of faith conducted themselves in scrupulous accordance with their duty. So ran a central argument in A Discourse on the studies of the university (1833; 5th ed, 1850) by Adam Sedgwick (1785-1873), the longtime professor of geology at the University of Cambridge. This sanctification of the inductive method provided the foundation for a theistic science which (in theory) did not subordinate scientific theory to religious doctrine. This vision provided the foundation for Sedgwick's lifelong crusade against all forms of evolutionary theory. Evolution's impiety, he insisted, resulted from (and exacerbated) a failure to behave inductively. The fact that Sedgwick (in principle if not always in practice) elevated norms of behavior above systems of belief had an important and paradoxical consequence. Even though his personal hatred of evolution never cooled, his Discourse nonetheless provided a dominant model for younger theists to reconcile faith with Charles Darwin's evolutionary theory.

  11. Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Qiang Si

    2016-12-01

    Full Text Available In this paper we proposed the novel air-conditioning system which combined induction ventilation and radiant air-conditioning. The indoor terminal device is the radiant induction-unit (RIDU. The RIDU is the induction unit combined with the pore radiant panel on which the copper pipes with rigid aluminum diffusion fins are installed. The two-stage evaporator chiller with the non-azeotropic mixture refrigerant is utilized in the system to reduce the initial investment in equipment. With the performance test and the steady state heat transfer model based on the theory of radiative heat transfer, the relationship between the induction ratio of the RIDU and the characteristic of the air supply was studied. Based on this, it is verified that the RIDU has a lower dew-point temperature and better anti-condensation performance than a traditional plate-type radiant panel. The characteristics of the radiation and convection heat transfer of the RIDU were studied. The total heat exchange of the RIDU can be 16.5% greater than that of the traditional plate-type radiant terminal.

  12. Modeling of Lossy Inductance in Moving-Coil Loudspeakers

    DEFF Research Database (Denmark)

    Kong, Xiao-Peng; Agerkvist, Finn T.; Zeng, Xin-Wu

    2015-01-01

    The electrical impedance of moving-coil loudspeakers is dominated by the lossy inductance in high frequency range. Using the equivalent electrical circuit method, a new model for the lossy inductance based on separate functions for the magnitude and phase of the impedance is presented. The electr......The electrical impedance of moving-coil loudspeakers is dominated by the lossy inductance in high frequency range. Using the equivalent electrical circuit method, a new model for the lossy inductance based on separate functions for the magnitude and phase of the impedance is presented...

  13. Phenomenological modeling of the thermal dynamics of a rotating cylinder heated by electromagnetic induction; Modelisation phenomenologique de la dynamique thermique d'un cylindre rotatoire chauffe par induction electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Perez, S. [Universidad de Carabobo, Facultad de Ingenieria, Valencia (Venezuela); Therien, N.; Broadbent, A.D. [Sherbrooke Univ., Faculte de Genie, Quebec (Canada)

    2001-07-01

    This work concerns the development of a phenomenological model describing the temperature dynamics of a metal cylinder heated by electric induction. The model used takes into consideration in an explicit way the different mechanisms of energy transfer from the cylinder towards the environment, in particular the convection and radiant heat transfers. The conduction process, which takes place inside the cylinder as a response to the temperature gradient at the periphery of the cylinder, has been characterized too. The process of energy induction inside the cylinder has been characterized in a precise way. The experiments show that the induction is localized in the part of the cylinder facing the inductors and that the induction presents a distributed feature in the induction section. The model proposed is based on the concept of substantial derivative. It calculates the response of the process with respect to these disturbances and with respect to the rotation speed of the cylinder and to the electric power supplied to the system. (J.S.)

  14. Numerical Simulation of the Moving Induction Heating Process with Magnetic Flux Concentrator

    Directory of Open Access Journals (Sweden)

    Feng Li

    2013-01-01

    Full Text Available The induction heating with ferromagnetic metal powder bonded magnetic flux concentrator (MPB-MFC demonstrates more advantages in surface heating treatments of metal. However, the moving heating application is mostly applied in the industrial production. Therefore, the analytical understanding of the mechanism, efficiency, and controllability of the moving induction heating process becomes necessary for process design and optimization. This paper studies the mechanism of the moving induction heating with magnetic flux concentrator. The MPB-MFC assisted moving induction heating for Inconel 718 alloy is studied by establishing the finite element simulation model. The temperature field distribution is analyzed, and the factors influencing the temperature are studied. The conclusion demonstrates that the velocity of the workpiece should be controlled properly and the heat transfer coefficient (HTC has little impact on the temperature development, compared with other input parameters. In addition, the validity of the static numerical model is verified by comparing the finite element simulation with experimental results on AISI 1045 steel. The numerical model established in this work can provide comprehensive understanding for the process control in production.

  15. Temperature sensitive surfaces and methods of making same

    Science.gov (United States)

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  16. Application of forgetful analgesia induction in induction period in patients with obstructive jaundice

    Directory of Open Access Journals (Sweden)

    Wei DU

    2014-03-01

    Full Text Available Objective To observe the effect of forgetful analgesia induction and tracheal intubation on the hemodynamic changes in induction period in patients with obstructive jaundice, and explore a safe method for anesthesia induction and tracheal intubation. Methods Sixty patients with obstructive jaundice undergoing elective abdominal operation in General Hospital of PLA from February, 2013 to August, 2013 were involved in the present study. Participants included 36 male and 24 female patients, aging 19-65 years (mean 42±5 years, weighing 47-73 kg (mean 54±6 kg, with ASA Ⅰ-Ⅱ. These 60 patients were randomly divided into forgetful analgesia induction-tracheal intubation group (group A, n=30 and rapid induction-tracheal intubation group (group B, n=30. The heart rate (HR, mean arterial pressure (MAP, pulse oxygen saturation (SpO2 at the time point of before induction (T0, before intubation (T1, at the moment of intubation (T2 and 3 min after intubation (T3 were determined in both groups. Administration times of ephedrine hydrochloride and atropine was recorded in both groups. Results There was no significant difference in HR, MAP, SpO2 before and after induction in group A. In the patients of group B, the HR increased and MAP decreased after induction compared with those before induction (P<0.05, and the change of SpO2 was not significant. Ephedrine hydrochloride and atropine were administrated in both groups, and the cases and times of ephedrine hydrochloride administration were more in group B than in group A (P<0.05. Conclusion The forgetful analgesia induction-tracheal intubation could effectively control the stress response and reduce the fluctuation in hemodynamics during induction of anesthesia in patients with obstructive jaundice. DOI: 10.11855/j.issn.0577-7402.2014.02.15

  17. Development of metal-carbon eutectic cells for application as high temperature reference points in nuclear reactor severe accident tests: Results on the Fe-C, Co-C, Ti-C and Ru-C alloys' melting/freezing transformation temperature under electromagnetic induction heating

    International Nuclear Information System (INIS)

    Parga, Clemente J.; Journeau, Christophe; Parga, Clemente J.; Tokuhiro, Akira

    2012-01-01

    With the aim of reducing the high temperature measurement uncertainty of nuclear reactor severe accident experimental tests at the PLINIUS platform in Cadarache Research Centre, France, a variety of graphite cells containing a metal-carbon eutectic mix have been tested to assess the melting/freezing temperature reproducibility and their feasibility as calibration cells for thermometers. The eutectic cells have been thermally cycled in an induction furnace to assess the effect of heating/cooling rate, metal purity, graphite crucible design, and binary system constituents on the eutectic transformation temperature. A bi-chromatic pyrometer was used to perform temperature measurements in the graphite cell black cavity containing the metal-carbon eutectic mix. The eutectic points analyzed are all over 1100 C and cover an almost thousand degree span, i.e. from the Fe-Fe 3 C to the Ru-C eutectic. The induction heating permitted the attainment of heating and cooling rates of over 200 C/min under an inert atmosphere. The conducted tests allowed the determination of general trends and peculiarities of the solid. liquid transformation temperature under non-equilibrium and non-steady-state conditions of a variety of eutectic alloys (Fe-C, Co-C, Ti-C and Ru-C binary systems). (authors)

  18. Cluster temperature. Methods for its measurement and stabilization

    International Nuclear Information System (INIS)

    Makarov, G N

    2008-01-01

    Cluster temperature is an important material parameter essential to many physical and chemical processes involving clusters and cluster beams. Because of the diverse methods by which clusters can be produced, excited, and stabilized, and also because of the widely ranging values of atomic and molecular binding energies (approximately from 10 -5 to 10 eV) and numerous energy relaxation channels in clusters, cluster temperature (internal energy) ranges from 10 -3 to about 10 8 K. This paper reviews research on cluster temperature and describes methods for its measurement and stabilization. The role of cluster temperature in and its influence on physical and chemical processes is discussed. Results on the temperature dependence of cluster properties are presented. The way in which cluster temperature relates to cluster structure and to atomic and molecular interaction potentials in clusters is addressed. Methods for strong excitation of clusters and channels for their energy relaxation are discussed. Some applications of clusters and cluster beams are considered. (reviews of topical problems)

  19. Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)

    2007-05-15

    In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.

  20. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    , or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...... presents a combined numerical and experimental method for determination of appropriate/optimiged coil geometry and position in induction brazing tube-to-plate joints of different ratios between tube and plate thickness and different combinations of the materials stainless steel, brass and copper....... The method has proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel. A new design of an adjustable flux concentrator for induction heating tube-to-plate joints is proposed and tested on a variety...

  1. Ventilation Structure Improvement of Induction Motor Using Multiphysics Simulations

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2012-09-01

    Full Text Available Temperature rise analysis has significant impact in the design of air-cooled asynchronous induction motor. However, the affection cannot be accurately evaluated by using traditional empirical curves method due to the complexity of the inductor architecture. Considering Joules losses in stator windings and the induced eddy current in squirrel cages, and heat dissipation by air convection and solid conduction, in this paper a 3-D coupled-field finite-element method (FEM is investigated to demonstrate the temperature distribution. The Joules losses calculated by 3-D eddy- current field analysis are used as the input for the thermal field analysis, which is deeply dependent on accurate air fluid field analysis. A novel multi-component fluid model is employed to deal with the influence of rotor rotation upon the air convection. The simulation results show the fatal influence of the ventilation structure and the effectiveness of the proposed cooling improvement way.

  2. An analysis of the temperature distribution in the pipe bending using high frequency induction heating

    International Nuclear Information System (INIS)

    Fukue, Hisayoshi; Mochizuki, Yoji; Nakamura, Harushige; Kobo, Hiroshi; Nitta, Tetsuo; Kawakami, Kiyoshi

    1986-01-01

    A pipe bending apparatus has recently been developed by applying high frequency induction heating. However, the smaller the radius of pipe bending, the greater becomes the reduction in wall thickness and the ovality of the pipe form. This makes it impossible to manufacture pipe bending which will meet the nuclear pipe design code. In order to solve this problem it is crucial to obtain a temperature distributions in a pipe which is moving. It is calculated by giving the following boundary conditions : distribution of the heat generation rate, and that of heat transfer of cooling water. In the process of analyzing these distributions, the following results were obtained. (1) The distribution of the heat generation rate is determined by the sink of energy flux of Poynting vectors. The coil efficiency thus calculated was sixty percent. This figure accords with the test data. (2) The distribution of heat transfer coefficient of cooling water is mainly determined by the rate of liquid film heat transfer, but departure from nucleate boiling and dryout has to be taken into consideration. (3) TRUMP CODE is modified so that the temperature distribution in moving pipes can be calculated by taking the boundary conditions into account. The calculated results were in accordance with the test data. (author)

  3. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-02-01

    Full Text Available A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC, and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  4. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    Science.gov (United States)

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  5. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  6. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  7. Genetic variability induction in the size of the size of rice plantules by combined irradiation and temperature treatments

    International Nuclear Information System (INIS)

    Garcia, D.; Gonzalez, L.M.; Gumberra, R.

    1993-01-01

    Induced variability in the size of rice plantules was determined using the heritability calculation in a narrow sense, by means of the progenitor-descendant regression. Progenitor stands for the original variety, whereas descendant stands for plant population from CO6 0 gamma-rays irradiated seeds (at 100-600 Gy doses), treated at different temperatures. Results obtained: show the possibility to increase efficiency in variability induction by a combined course of action of both factors. In this experience, the best combination turned out to be 300 Gy-0 celsius grated, which of all the changes that it caused, some 75 percent was of a genetic nature

  8. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...

  9. Measurement of the D0 WAMUS magnet inductance

    International Nuclear Information System (INIS)

    Kristalinski, A.; Hance, R.; Jaskierny, W.

    1994-12-01

    Historically, the term inductance, as it relates to magnets, has been relatively obscure at Fermilab. Confusion resulted from the typical engineering approach to the matter, whereby distinction may not have been made between analytical and beam line magnets; and distribution transformers. The latter always have a laminated core to reduce eddy currents which makes their inductance in a transitional state very close to that in a steady state. This is true only if the core material is not in saturation, which is once again the case for transformers; but not for magnets, especially the analytical ones. Based on the traditional ''transformer'' thinking, an incorrect method to measure magnet inductance was initially employed. The characteristics of a tank circuit including the magnet under test were observed. Then based on the resonant frequency and quality factor, the inductance was calculated. This method represents a very valuable tool for magnet testing where you can compare newly built magnets to a reference magnet and see if there is any difference. Although electrically correct, this method unfortunately does not reveal any valuable information which could be used to anticipate the magnet behavior under the normal working conditions. Another method of measuring inductance, based on a freewheeling discharge of the magnet, is also widely used in the Lab. To measure the inductance, a magnet is powered from a small power supply for up to 100 A to 200 A, then the power is turned off and the current decay in the magnet is recorded. Based on the dc resistance measurements and the magnet current decay data, one can determine the magnet inductance. In order to do so, the inductance is assumed to be constant and current decay is assumed to be exponential. To find out how well the effective inductance represents the real process taking place in the magnet was one of the purposes of the experiment

  10. Microcontroller based Stator Winding Resistance Determination of Induction Motor Drive on Temperature Variations

    OpenAIRE

    Siraj Ahmed T; Sukhdeo Sao; K.S.R Anjaneyulu

    2014-01-01

    In this paper an experiment has been conducted to determine the online stator winding resistance of an induction motor, in industries as well as domestic purpose induction motors is largely utilized, as it has both applications of variable and constant torque operation nature. The major requirement of an electric drive system is its independent control of torque and speed; this is achieved in DC motor Drive but has more disadvantages. With the help of fast acting switching devices it is possi...

  11. Electro‐Quasistatic Analysis of an Electrostatic Induction Micromotor Using the Cell Method

    Directory of Open Access Journals (Sweden)

    José Miguel Monzón-Verona

    2010-10-01

    Full Text Available An electro-quasistatic analysis of an induction micromotor has been realized by using the Cell Method. We employed the direct Finite Formulation (FF of the electromagnetic laws, hence, avoiding a further discretization. The Cell Method (CM is used for solving the field equations at the entire domain (2D space of the micromotor. We have reformulated the field laws in a direct FF and analyzed physical quantities to make explicit the relationship between magnitudes and laws. We applied a primal-dual barycentric discretization of the 2D space. The electric potential has been calculated on each node of the primal mesh using CM. For verification purpose, an analytical electric potential equation is introduced as reference. In frequency domain, results demonstrate the error in calculating potential quantity is neglected (

  12. Métodos para indução do parto Methods for labor induction

    Directory of Open Access Journals (Sweden)

    Olímpio Barbosa de Moraes Filho

    2005-08-01

    choice for labor induction and thus collaborate with the reduction in cesarean section rates, it is necessary that an accessible, cheap, safe, effective, easy to be used method with good acceptability is available. Although several methods of labor induction reported in medical literature do exist, it is known that there is no ideal method. However, among them, two are highlighted. The first is oxytocin, which has the advantages of promoting physiologic uterine contractions of labor and reverting uterine hypercontractility when suspended. The other method is misoprostol, nowadays the most used, which ripens the uterine cervix and induces uterine contractions of labor. However, there are still some controversies regarding its ideal dose, route and safety.

  13. Stochastic Approach to Determine CO2 Hydrate Induction Time in Clay Mineral Suspensions

    Science.gov (United States)

    Lee, K.; Lee, S.; Lee, W.

    2008-12-01

    A large number of induction time data for carbon dioxide hydrate formation were obtained from a batch reactor consisting of four independent reaction cells. Using resistance temperature detector(RTD)s and a digital microscope, we successfully monitored the whole process of hydrate formation (i.e., nucleation and crystal growth) and detected the induction time. The experiments were carried out in kaolinite and montmorillonite suspensions at temperatures between 274 and 277 K and pressures ranging from 3.0 to 4.0 MPa. Each set of data was analyzed beforehand whether to be treated by stochastic manner or not. Geochemical factors potentially influencing the hydrate induction time under different experimental conditions were investigated by stochastic analyses. We observed that clay mineral type, pressure, and temperature significantly affect the stochastic behavior of the induction times for CO2 hydrate formation in this study. The hydrate formation kinetics along with stochastic analyses can provide basic understanding for CO2 hydrate storage in deep-sea sediment and geologic formation, securing its stability under the environments.

  14. CALCULATION OF INDUCTANCE OF THE INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    Phyong Le Ngo

    2017-01-01

    Full Text Available Interior permanent magnet synchronous motor (IPMSM refers to salient-pole synchronous motors, characterized by inequality of inductances of longitudinal (d and transverse (q axes. Electromagnetic torque of IPMSM consists of two components: active torque and reactive torque; the latter depends on inductances of d and q axes. An analytical method to calculate own inductances and mutual inductances of a three-phase IPMSM is presented. Distributed windings of the stator are substituted by equivalent sine distributed windings. An interior permanent magnets rotor is substituted by an equivalent salient-pole rotor. Sections of a magnetic circuit comprising interior permanent magnets, air barriers and steel bridges are substituted by equivalent air-gap. The expressions of the magnetic induction created by current of the stator windings at each point of the air gap as well as of magnetic flux linkage of the stator windings have been obtained. The equations of the self-inductances of phases A, B, C, and of inductance of mutual induction are determined from magnetic flux linkage. The inductance of the d and q axes have been obtained as a result of transformation of the axes abc–dq. The results obtained with the use of the proposed analytical method and the finite element method are presented in the form of a graph; the calculations that have been obtained by these two methods were compared. 

  15. Derating of an induction machine under voltage unbalance combined with over or undervoltages

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2009-01-01

    This work deals with the load carrying capacity of an induction cage machine under voltage unbalance combined with over- or undervoltage. The effect of complex voltage unbalance factor (CVUF) angle on the derating factor is taken into consideration. The derating curves obtained with two different methods are compared. The machine efficiency, stator currents and temperature-rise distribution after applying the required derating factor are discussed. The results of experimental investigations and computer calculations are presented for two low-power induction motors of opposite properties. One of them has a comparatively weakly saturated magnetic circuit and is especially exposed to the risk of overheating for undervoltage. The other investigated machine has a comparatively strongly saturated magnetic circuit and is especially exposed to overheating in the conditions of overvoltage

  16. Initial verification of an induction heating set-up for injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2013-01-01

    Molding of thin and long parts by injection molding leads to special requirements for the mold in order to ensure proper filling and acceptable cycle time. This paper investigates the applicability of embedded induction heating for the improvement of the filling of thin long parts. The object...... selected for the investigation is a thin spiral. For the complete molding of the component, elevated mold temperatures are required. For this propose a new injection molding set-up was developed, which allows rapid heating of the cavity wall by an induction heating system. The temperature was measured...

  17. Room temperature inductively coupled plasma etching of InAs/InSb in BCl 3/Cl 2/Ar

    KAUST Repository

    Sun, Jian

    2012-10-01

    Inductively coupled plasma (ICP) etching of InAs and InSb at room temperature has been investigated using BCl 3/Cl 2/Ar plasma. Specifically, the etch rate and post-etching surface morphology were investigated as functions of the gas composition, ICP power, process pressure, and RF chuck power. An optimized process has been developed, yielding anisotropic etching and very smooth surfaces with roughnesses of 0.25 nm for InAs, and 0.57 nm for InSb, which is comparable with the surface of epi-ready polished wafers. The process provides moderate etching rates of 820 /min for InAs and 2800 /min for InSb, and the micro-masking effect is largely avoided. © 2012 Elsevier B.V. All rights reserved.

  18. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  19. The myth of induction in qualitative nursing research.

    Science.gov (United States)

    Bergdahl, Elisabeth; Berterö, Carina M

    2015-04-01

    In nursing today, it remains unclear what constitutes a good foundation for qualitative scientific inquiry. There is a tendency to define qualitative research as a form of inductive inquiry; deductive practice is seldom discussed, and when it is, this usually occurs in the context of data analysis. We will look at how the terms 'induction' and 'deduction' are used in qualitative nursing science and by qualitative research theorists, and relate these uses to the traditional definitions of these terms by Popper and other philosophers of science. We will also question the assertion that qualitative research is or should be inductive. The position we defend here is that qualitative research should use deductive methods. We also see a need to understand the difference between the creative process needed to create theory and the justification of a theory. Our position is that misunderstandings regarding the philosophy of science and the role of inductive and deductive logic and science are still harming the development of nursing theory and science. The purpose of this article is to discuss and reflect upon inductive and deductive views of science as well as inductive and deductive analyses in qualitative research. We start by describing inductive and deductive methods and logic from a philosophy of science perspective, and we examine how the concepts of induction and deduction are often described and used in qualitative methods and nursing research. Finally, we attempt to provide a theoretical perspective that reconciles the misunderstandings regarding induction and deduction. Our conclusion is that openness towards deductive thinking and testing hypotheses is needed in qualitative nursing research. We must also realize that strict induction will not create theory; to generate theory, a creative leap is needed. © 2014 John Wiley & Sons Ltd.

  20. Economic implications of labor induction.

    Science.gov (United States)

    Garcia-Simon, Raquel; Montañes, Antonio; Clemente, Jesús; Del Pino, María D; Romero, Manuel A; Fabre, Ernesto; Oros, Daniel

    2016-04-01

    To assess health service costs associated with labor induction according to different clinical situations in a tertiary-level hospital. In a prospective study, individual patient cost data were assessed for women admitted for induction of labor at a tertiary hospital in Spain between November 1, 2012, and August 31, 2013. The costs of labor induction were estimated according to maternal and neonatal outcomes, method of delivery, cervical condition at admission, and obstetric indication. Direct costs including professional fees, epidural, maternal stay, consumables, and drugs were calculated. Overall, 412 women were included in the final cost analysis. The mean total cost of labor induction was €3589.87 (95% confidence interval [CI] 3475.13-3704.61). Cesarean delivery after labor induction (€4830.45, 95% CI 4623.13-5037.58) was significantly more expensive than spontaneous delivery (€3037.45, 95% CI 2966.91-3179.99) and instrumental vaginal delivery (€3344.31, 95%CI 3151.69-3536.93). The total cost for patients with a very unfavorable cervix (Bishop score Labor induction for hypertensive disorders of pregnancy was the most expensive obstetric indication for induction of labor (€4347.32, 95% CI 3890.45-4804.18). Following the induction of labor, a number of patient- and treatment-related factors influence costs associated with delivery. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Hypnosis for induction of labour.

    Science.gov (United States)

    Nishi, Daisuke; Shirakawa, Miyako N; Ota, Erika; Hanada, Nobutsugu; Mori, Rintaro

    2014-08-14

    Induction of labour using pharmacological and mechanical methods can increase complications. Complementary and alternative medicine methods including hypnosis may have the potential to provide a safe alternative option for the induction of labour. However, the effectiveness of hypnosis for inducing labour has not yet been fully evaluated. To assess the effect of hypnosis for induction of labour compared with no intervention or any other interventions. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 January 2014), handsearched relevant conference proceedings, contacted key personnel and organisations in the field for published and unpublished references. All published and unpublished randomised controlled trials (RCTs) and cluster-RCTs of acceptable quality comparing hypnosis with no intervention or any other interventions, in which the primary outcome is to assess whether labour was induced. Two review authors assessed the one trial report that was identified (but was subsequently excluded). No RCTs or cluster-RCTs were identified from the search strategy. There was no evidence available from RCTs to assess the effect of hypnosis for induction of labour. Evidence from RCTs is required to evaluate the effectiveness and safety of this intervention for labour induction. As hypnosis may delay standard care (in case standard care is withheld during hypnosis), its use in induction of labour should be considered on a case-by-case basis.Future RCTs are required to examine the effectiveness and safety of hypnotic relaxation for induction of labour among pregnant women who have anxiety above a certain level. The length and timing of the intervention, as well as the staff training required, should be taken into consideration. Moreover, the views and experiences of women and staff should also be included in future RCTs.

  2. Electrical-thermal coupling of induction machine for improved ...

    African Journals Online (AJOL)

    Electrical-thermal coupling of induction machine for improved thermal performance. ... Nigerian Journal of Technology ... The interaction of its electrical and mechanical parts leads to an increase in temperature which if not properly monitored ...

  3. Method for enrichment by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1977-01-01

    In dual temperature systems utilizing different fluid materials in liquid and gas phases separable from each other (for example H 2 O and H 2 S), the phases are contacted with each other at a relatively hot temperature. Herein combinations of method and means are provided by which the gas is conditioned by raising its temperature and humidity principally by heat derived from the cooling and dehumidification of said gas. Special provisions are made in the combinations for transferring said heat and for the conditioning of the gas with high efficiency; and for economically controlling the temperature of the condensate resulting from the dehumidification of the gas to adapt it for particular uses in the system. Method and means are provided for such liquid gas contacting systems for efficiently stripping or separating dissolved gas from the effluent liquid and returning one of the so separated materials to the system

  4. Diagnosis of the three-phase induction motor using thermal imaging

    Science.gov (United States)

    Glowacz, Adam; Glowacz, Zygfryd

    2017-03-01

    Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.

  5. Non-monotonic behavior of electron temperature in argon inductively coupled plasma and its analysis via novel electron mean energy equation

    Science.gov (United States)

    Zhao, Shu-Xia

    2018-03-01

    In this work, the behavior of electron temperature against the power in argon inductively coupled plasma is investigated by a fluid model. The model properly reproduces the non-monotonic variation of temperature with power observed in experiments. By means of a novel electron mean energy equation proposed for the first time in this article, this electron temperature behavior is interpreted. In the overall considered power range, the skin effect of radio frequency electric field results in localized deposited power density, responsible for an increase of electron temperature with power by means of one parameter defined as power density divided by electron density. At low powers, the rate fraction of multistep and Penning ionizations of metastables that consume electron energy two times significantly increases with power, which dominates over the skin effect and consequently leads to the decrease of temperature with power. In the middle power regime, a transition region of temperature is given by the competition between the ionizing effect of metastables and the skin effect of electric field. The power location where the temperature alters its trend moves to the low power end as increasing the pressure due to the lack of metastables. The non-monotonic curve of temperature is asymmetric at the short chamber due to the weak role of skin effect in increasing the temperature and tends symmetric when axially prolonging the chamber. Still, the validity of the fluid model in this prediction is estimated and the role of neutral gas heating is guessed. This finding is helpful for people understanding the different trends of temperature with power in the literature.

  6. Recruiting Unmotivated Smokers into a Smoking Induction Trial

    Science.gov (United States)

    Harris, Kari Jo; Bradley-Ewing, Andrea; Goggin, Kathy; Richter, Kimber P.; Patten, Christi; Williams, Karen; Lee, Hyoung S.; Staggs, Vincent S.; Catley, Delwyn

    2016-01-01

    Little is known about effective methods to recruit unmotivated smokers into cessation induction trials, the reasons unmotivated smokers agree to participate, and the impact of those reasons on study outcomes. A mixed-method approach was used to examine recruitment data from a randomized controlled cessation induction trial that enrolled 255 adult…

  7. Analytical method for determining the channel-temperature distribution

    International Nuclear Information System (INIS)

    Kurbatov, I.M.

    1992-01-01

    The distribution of the predicted temperature over the volume or cross section of the active zone is important for thermal calculations of reactors taking into account random deviations. This requires a laborious calculation which includes the following steps: separation of the nominal temperature field, within the temperature range, into intervals, in each of which the temperature is set equal to its average value in the interval; determination of the number of channels whose temperature falls within each interval; construction of the channel-temperature distribution in each interval in accordance with the weighted error function; and summation of the number of channels with the same temperature over all intervals. This procedure can be greatly simplified with the help of methods which eliminate numerous variant calculations when the nominal temperature field is open-quotes refinedclose quotes up to the optimal field according to different criteria. In the present paper a universal analytical method is proposed for determining, by changing the coefficients in the channel-temperature distribution function, the form of this function that reflects all conditions of operation of the elements in the active zone. The problem is solved for the temperature of the coolant at the outlet from the reactor channels

  8. Noise thermometry - a new temperature measuring method

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Rittinghaus, K.F.

    1975-01-01

    The thermal Johnson-Niquist noise is the basis of noise thermometry. This temperature measuring method is, e.g., of interest insofar as the noise thermometer gives absolute values as a primary thermometer and is in principle extensively independent of environmental influences and material properties. The resistance values of the measuring probe are about 10 Ohm to a few kOhm. The demands of electronics are high, the self-noise of the measuring apparatus must be as small as possible; a comparative measuring method is advantageous. 1 to 2,500 K are given as a possible temperature range. An accuracy of 0.1% could be achieved in laboratory measurements. Temperature measurements to be used in operation in a few nuclear reactors are mentioned. (HP/LH) [de

  9. Effect of environmental conditions on flower induction of marian plum (Bouea burmanica Griff

    Directory of Open Access Journals (Sweden)

    Vusie L. Mavuso

    2017-08-01

    Full Text Available Marian plum flowering naturally occurs during the cool, dry season so Thailand farmers usually withdraw irrigation a month before flowering. However, irregular flowering continues to be a serious problem. This study investigated the effects of environmental conditions (air temperature, soil moisture and relative humidity on flower induction of marian plum. Daily weather data were collected using weather stations in three orchards where flowering was also recorded. Thirty representative trees per orchard were randomly selected for data collection. The results showed that trees from all orchards flowered in response to low temperature (below 18 °C despite different levels of water stress and relative humidity. These results indicated that soil moisture content and relative humidity had no influence on marian plum flower induction but enhanced flower bud development. Night temperatures of 18 °C or lower are essential for marian plum flower induction.

  10. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...... the laser beam as close as possible. After welding, the samples were quality assessed according to ISO 13.919-1 and tested for hardness. The metallurgical phases are analysed and briefly described. A comparison between purely laser welded samples and induction heat-treated laser welded samples is made......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...

  11. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    Science.gov (United States)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  12. Studies of tolerance induction through mixed chimerism in cynomolgus monkeys. Method for detection of chimeric cells and effect of thymic irradiation on induction of tolerance

    International Nuclear Information System (INIS)

    Hoshino, Tomoaki; Kawai, Tatsuo; Ota, Kazuo

    1996-01-01

    To establish the method for the detection of chimerism in cynomologus monkeys, we tested cross reactivity of various anti-HLA monoclonal antibodies (mAb) to cynomolgus monkeys. In 29 mAb we tested, only three monoclonal anti-HLA antibodies crossreacted with lymphocytes of monkeys. With these mAb, chimeric cell can be detected up to 1% by flow cytometric analysis (study 1). Utilizing the method we developed in study 1, we applied the regimen that induces mixed chimerism and skin graft tolerance in mice to renal allotransplantation of cynomolgus monkey. Regimen A includes non-lethal dose of total body irradiation (TBI), administration of anti-thymocyte globulin (ATG) for 3 days, donor bone marrow infusion and 45 days course of cyclosporine (CYA) administration. We added 7 Gy of thymic irradiation on day-6 in regimen B and on day-1 in regimen C. Although all monkeys in regimen A and B consistently developed chimerism, they rejected kidney allografts soon after stopping CYA. In contrast, 4 monkeys out of 5 failed to develop chimerism in regimen C, but renal allograft tolerance was induced in one monkey who developed chimerism in regimen C. In conclusion, the induction of chimerism is considered necessary but not sufficient for tolerance induction. (author)

  13. Studies of tolerance induction through mixed chimerism in cynomolgus monkeys. Method for detection of chimeric cells and effect of thymic irradiation on induction of tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tomoaki; Kawai, Tatsuo; Ota, Kazuo [Tokyo Women`s Medical Coll. (Japan)

    1996-12-01

    To establish the method for the detection of chimerism in cynomologus monkeys, we tested cross reactivity of various anti-HLA monoclonal antibodies (mAb) to cynomolgus monkeys. In 29 mAb we tested, only three monoclonal anti-HLA antibodies crossreacted with lymphocytes of monkeys. With these mAb, chimeric cell can be detected up to 1% by flow cytometric analysis (study 1). Utilizing the method we developed in study 1, we applied the regimen that induces mixed chimerism and skin graft tolerance in mice to renal allotransplantation of cynomolgus monkey. Regimen A includes non-lethal dose of total body irradiation (TBI), administration of anti-thymocyte globulin (ATG) for 3 days, donor bone marrow infusion and 45 days course of cyclosporine (CYA) administration. We added 7 Gy of thymic irradiation on day-6 in regimen B and on day-1 in regimen C. Although all monkeys in regimen A and B consistently developed chimerism, they rejected kidney allografts soon after stopping CYA. In contrast, 4 monkeys out of 5 failed to develop chimerism in regimen C, but renal allograft tolerance was induced in one monkey who developed chimerism in regimen C. In conclusion, the induction of chimerism is considered necessary but not sufficient for tolerance induction. (author)

  14. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  15. Standstill Estimation of Electrical Parameters in Induction Motors Using an Optimal Input Signal

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Vadstrup, P.

    1995-01-01

    The paper suggest a simple off-line method to obtain accurate estimates of the resistances and inductances of the induction motor.......The paper suggest a simple off-line method to obtain accurate estimates of the resistances and inductances of the induction motor....

  16. Derating of an induction machine under voltage unbalance combined with over or undervoltages

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska St. 83, 81-225 Gdynia (Poland)

    2009-04-15

    This work deals with the load carrying capacity of an induction cage machine under voltage unbalance combined with over- or undervoltage. The effect of complex voltage unbalance factor (CVUF) angle on the derating factor is taken into consideration. The derating curves obtained with two different methods are compared. The machine efficiency, stator currents and temperature-rise distribution after applying the required derating factor are discussed. The results of experimental investigations and computer calculations are presented for two low-power induction motors of opposite properties. One of them has a comparatively weakly saturated magnetic circuit and is especially exposed to the risk of overheating for undervoltage. The other investigated machine has a comparatively strongly saturated magnetic circuit and is especially exposed to overheating in the conditions of overvoltage. (author)

  17. Method of determining coking temperature of coke. [Experimental method of determining final coking temperature using a small sample and calibration graph

    Energy Technology Data Exchange (ETDEWEB)

    Mel' nichuk, A.Yu.; Bondarenko, A.K.; Fialkov, B.S.; Khegay, L.U.; Khvan, L.A.; Muzyzhuk, V.D.; Zakharov, A.G.; Zelenskiy, V.P.

    1985-01-01

    The coking temperature of coke should be determined from the magnitude of the ionization current of the medium during heating (3/sup 0//min) of a coke sample (2 g, fraction < 0.2 mm) in an oxidation medium with air supply (1 1/min). The coking temperature is determined from the maximum magnitude of current using a graduated graph constructed during analysis of coke samples obtained with different final coking temperatures. The discrepancy between the established coking temperature and that defined from the proposed method is 8-19/sup 0/, and that defined from electrical resistance of coke is 26-43/sup 0/. In addition to high accuracy, this method reduces the time outlays for making the analysis.

  18. Power Quality Improvement and LVRT Capability Enhancement of Wind Farms by Means of an Inductive Filtering Method

    Directory of Open Access Journals (Sweden)

    Yanjian Peng

    2016-04-01

    Full Text Available Unlike the traditional method for power quality improvement and low-voltage ride through (LVRT capability enhancement of wind farms, this paper proposes a new wind power integrated system by means of an inductive filtering method, especially if it contains a grid-connected transformer, a static synchronous compensator (STATCOM and fully-tuned (FT branches. First, the main circuit topology of the new wind power integrated system is presented. Then, the mathematical model is established to reveal the mechanism of harmonic suppression and the reactive compensation of the proposed wind power integrated system, and then the realization conditions of the inductive filtering method is obtained. Further, the control strategy of STATCOM is introduced. Based on the measured data for a real wind farm, the simulation studies are carried out to illustrate the performance of the proposed new wind power integrated system. The results indicate that the new system can not only enhance the LVRT capability of wind farms, but also prevent harmonic components flowing into the primary (grid winding of the grid-connected transformer. Moreover, since the new method can compensate for reactive power in a wind farm, the power factor at the grid side can be improved effectively.

  19. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  20. Review of induction linac studies

    International Nuclear Information System (INIS)

    Keefe, Denis

    1984-01-01

    The major emphasis of the U.S. program in Heavy Ion Fusion Accelerator Research is on developing and understanding induction-linac systems that employ multiple beams of high-current heavy ions. The culmination of the plan lies in building the High Temperature Experiment (HTE) which will involve an ion induction linac to deliver multiple high current beams, that can be focussed and overlapped on a two-millimeter diameter spot. A sequence of three major experimental activities are as follows. In the Single-Beam Transport Experiment (SBTE), the stability or otherwise transport of a high-current Cs +1 beam over a long distance is tested. In the Multiple-Beam Experiment (MBE), the experiment is designed to simulate on a small scale as many as possible of the features to be encountered in the HTE. (Mori, K.)

  1. Kinetics of the melting front movement in process of centrifugal induction surfacing of powder material with nanoscale modificaters

    Science.gov (United States)

    Sasnouski, I.; Kurylionak, A.

    2018-03-01

    For solving the problem of improving the powder coatings modified by nanostructure components obtained by induction surfacing method tribological characteristics it is necessary to study the kinetics of the powdered layer melting and define the minimum time of melting. For powdered layer predetermined temperature maintenance at sintering mode stage it is required to determine the temperature difference through blank thickness of the for one hundred-day of the define the warm-up swing on of the stocking up by solving the thermal conductivity stationary problem for quill (hollow) cylinder with internal heat source. Herewith, since in practice thickness of the cylinder wall is much less then its diameter and the temperature difference is comparatively small, the thermal conductivity dependence upon the temperature can be treated as negligible. As it was shown by our previous studies, in the induction heating process under powdered material centrifugal surfacing (i.e. before achieving the melting temperature) the temperature distribution in powdered layer thickness may be considered even. Hereinafter, considering the blank part induction heating process quasi-stationarity under Fo big values, it is possible to consider its internal surface heating as developing with constant velocity. As a result of development the melting front movement mathematical model in a powdered material with nanostructure modifiers the minimum surfacing time is defined. It allows to minimize negative impact of thermal influence on formation of applied coating structure, to raise productivity of the process, to lower power inputs and to ensure saving of nonferrous and high alloys by reducing the allowance for machining. The difference of developed mathematical model of melting front movement from previously known is that the surface temperature from which the heat transfer occures is a variable and varies with a time after the linear law.

  2. Electro-quasistatic analysis of an electrostatic induction micromotor using the cell method.

    Science.gov (United States)

    Monzón-Verona, José Miguel; Santana-Martín, Francisco Jorge; García-Alonso, Santiago; Montiel-Nelson, Juan Antonio

    2010-01-01

    An electro-quasistatic analysis of an induction micromotor has been realized by using the Cell Method. We employed the direct Finite Formulation (FF) of the electromagnetic laws, hence, avoiding a further discretization. The Cell Method (CM) is used for solving the field equations at the entire domain (2D space) of the micromotor. We have reformulated the field laws in a direct FF and analyzed physical quantities to make explicit the relationship between magnitudes and laws. We applied a primal-dual barycentric discretization of the 2D space. The electric potential has been calculated on each node of the primal mesh using CM. For verification purpose, an analytical electric potential equation is introduced as reference. In frequency domain, results demonstrate the error in calculating potential quantity is neglected (<3‰). In time domain, the potential value in transient state tends to the steady state value.

  3. Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method

    Energy Technology Data Exchange (ETDEWEB)

    Seiz, Julie Burger [Union College, Schenectady, NY (United States)

    1997-04-01

    This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.

  4. Automated general temperature correction method for dielectric soil moisture sensors

    Science.gov (United States)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a

  5. Efficient speed control of induction motor using RBF based model reference adaptive control method

    OpenAIRE

    Kilic, Erdal; Ozcalik, Hasan Riza; Yilmaz, Saban

    2017-01-01

    This paper proposes a model reference adaptive speed controller based on artificial neural network for induction motor drives. The performance of traditional feedback controllers has been insufficient in speed control of induction motors due to nonlinear structure of the system, changing environmental conditions, and disturbance input effects. A successful speed control of induction motor requires a nonlinear control system. On the other hand, in recent years, it has been demonstrated that ar...

  6. Induction of labor in a contemporary obstetric cohort.

    Science.gov (United States)

    Laughon, S Katherine; Zhang, Jun; Grewal, Jagteshwar; Sundaram, Rajeshwari; Beaver, Julie; Reddy, Uma M

    2012-06-01

    We sought to describe details of labor induction, including precursors and methods, and associated vaginal delivery rates. This was a retrospective cohort study of 208,695 electronic medical records from 19 hospitals across the United States, 2002 through 2008. Induction occurred in 42.9% of nulliparas and 31.8% of multiparas and elective or no recorded indication for induction at term occurred in 35.5% and 44.1%, respectively. Elective induction at term in multiparas was highly successful (vaginal delivery 97%) compared to nulliparas (76.2%). For all precursors, cesarean delivery was more common in nulliparas in the latent compared to active phase of labor. Regardless of method, vaginal delivery rates were higher with a ripe vs unripe cervix, particularly for multiparas (86.6-100%). Induction of labor was a common obstetric intervention. Selecting appropriate candidates and waiting longer for labor to progress into the active phase would make an impact on decreasing the national cesarean delivery rate. Published by Mosby, Inc.

  7. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  8. X-ray fluorescence determination of composition of the high temperature superconductors by the fundamental parameter method

    International Nuclear Information System (INIS)

    Mao Zhenwei; Shi Lei; Chen Shuyu; Zhou Guien

    2001-01-01

    Y, Pr, Ba and Cu compositions of the series of the Y 1-x Pr x Ba 2 Cu 3 O y samples have been determined by using X-ray fluorescence (XRF) fundamental parameter method in a non-destruction state. The composition is given by an atomic fraction. The determined compositions of the samples show a difference from their nominal compositions. One of the reasons why the exact shape of T c vs x varies is different from group to group, as reported, is the difference of the real and the nominal compositions. The relation of T c vs x is not a simple quadric curve. The results agree well with those obtained by the inductively coupled plasma atomic emission spectrometer (ICP-AES), which indicates that the method is appropriate for the determination of the compositions of the high temperature superconductors. In addition, the influence of oxygen on analytical elements is discussed. The fraction of the matrix total mass absorption, which is associated with oxygen for each analytical line, is less than 3.41%

  9. A Novel Detection Method for Underwater Moving Targets by Measuring Their ELF Emissions with Inductive Sensors

    Directory of Open Access Journals (Sweden)

    Jinhong Wang

    2017-07-01

    Full Text Available In this article, we propose a novel detection method for underwater moving targets by detecting their extremely low frequency (ELF emissions with inductive sensors. The ELF field source of the targets is modeled by a horizontal electric dipole at distances more than several times of the targets’ length. The formulas for the fields produced in air are derived with a three-layer model (air, seawater and seafloor and are evaluated with a complementary numerical integration technique. A proof of concept measurement is presented. The ELF emissions from a surface ship were detected by inductive electronic and magnetic sensors as the ship was leaving a harbor. ELF signals are of substantial strength and have typical characteristic of harmonic line spectrum, and the fundamental frequency has a direct relationship with the ship’s speed. Due to the high sensitivity and low noise level of our sensors, it is capable of resolving weak ELF signals at long distance. In our experiment, a detection distance of 1300 m from the surface ship above the sea surface was realized, which shows that this method would be an appealing complement to the usual acoustic detection and magnetic anomaly detection capability.

  10. Inductive sensors for blade tip-timing in gas turbines

    Directory of Open Access Journals (Sweden)

    Przysowa Radosław

    2015-12-01

    Full Text Available The paper reviews features and applications of the upgraded inductive sensor for BTT, which is able to operate in contact with exhaust gases of temperature even as high as 1200 K. The new design includes metal-ceramic housing ensuring proper heat transfer, magnetic circuit containing set of permanent magnets with various magnetic field values and Curie temperatures, completely redesigned windings and current/voltage converter used instead of an electromotive force amplifier. Its principle of operation is based on electro-dynamical interaction and therefore it may be referred as a passive eddy-current sensor. The sensor technique has been demonstrated on four stages of a surplus military turbofan including the high pressure turbine as part of the engine health monitoring system. We present signal samples and review methods used for online processing of time-of-arrival signals when only a limited number of sensors is available.

  11. Glass manufacturing through induction

    International Nuclear Information System (INIS)

    Boen, R.; Paya, B.; Roscini, M.; Fautrelle, Y.; Tuaz, F.; Delage, D.

    1991-01-01

    Oxides and glasses are electrical and thermal insulators, but show the characteristic of being weakly conductors of electricity when they are melt. It is then possible to heat them through HF induction. This interesting property allows the development of a melting process in cold crucible induction furnace. The process is being studied and developed by a consortium made up of CFEI, CEA Marcoule, ELECTRICITE DE FRANCE and MADYLAM laboratory. The studies include 2 parts: a) One experimental part to develop the technology and research for satisfying configurations, through a small size platform (10 to 30 kg/h). The long run continuous pouring melting tests made on different kinds of glass allow to go-on with industrial range units. b) One theoretical part to understand the magneto-thermo-hydraulic phenomenon hardly in relation with the heavy dependence of the physical characteristics (electrical and heat conductivities, viscosity) according to temperature. 6 refs., 4 figs [fr

  12. Load forecasting method considering temperature effect for distribution network

    Directory of Open Access Journals (Sweden)

    Meng Xiao Fang

    2016-01-01

    Full Text Available To improve the accuracy of load forecasting, the temperature factor was introduced into the load forecasting in this paper. This paper analyzed the characteristics of power load variation, and researched the rule of the load with the temperature change. Based on the linear regression analysis, the mathematical model of load forecasting was presented with considering the temperature effect, and the steps of load forecasting were given. Used MATLAB, the temperature regression coefficient was calculated. Using the load forecasting model, the full-day load forecasting and time-sharing load forecasting were carried out. By comparing and analyzing the forecast error, the results showed that the error of time-sharing load forecasting method was small in this paper. The forecasting method is an effective method to improve the accuracy of load forecasting.

  13. Design methods for high temperature power plant structures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1984-01-01

    The subject is discussed under the headings: introduction (scope of paper - reviews of design methods and design criteria currently in use for both nuclear and fossil fuelled power plant; examples chosen are (a) BS 1113, representative of design codes employed for power station boiler plant; (b) ASME Code Case N47, which is being developed for high temperature nuclear reactors, especially the liquid metal fast breeder reactor); design codes for power station boilers; Code Case N47 (design in the absence of thermal shock and thermal fatigue; design against cyclic loading at high temperature; further research in support of high temperature design methods and criteria for LMFBRs); concluding remarks. (U.K.)

  14. Inductive reasoning.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  15. In Vitro Methods for Comparing Target Binding and CDC Induction Between Therapeutic Antibodies: Applications in Biosimilarity Analysis.

    Science.gov (United States)

    Salinas-Jazmín, Nohemi; González-González, Edith; Vásquez-Bochm, Luz X; Pérez-Tapia, Sonia M; Velasco-Velázquez, Marco A

    2017-05-04

    Therapeutic monoclonal antibodies (mAbs) are relevant to the treatment of different pathologies, including cancers. The development of biosimilar mAbs by pharmaceutical companies is a market opportunity, but it is also a strategy to increase drug accessibility and reduce therapy-associated costs. The protocols detailed here describe the evaluation of target binding and CDC induction by rituximab in Daudi cells. These two functions require different structural regions of the antibody and are relevant to the clinical effect induced by rituximab. The protocols allow the side-to-side comparison of a reference rituximab and a marketed rituximab biosimilar. The evaluated products showed differences both in target binding and CDC induction, suggesting that there are underlying physicochemical differences and highlighting the need to analyze the impact of those differences in the clinical setting. The methods reported here constitute simple and inexpensive in vitro models for the evaluation of the activity of rituximab biosimilars. Thus, they can be useful during biosimilar development, as well as for quality control in biosimilar production. Furthermore, the presented methods can be extrapolated to other therapeutic mAbs.

  16. A Logic Programming Testbed for Inductive Thought and Specification.

    Science.gov (United States)

    Neff, Norman D.

    This paper describes applications of logic programming technology to the teaching of the inductive method in computer science and mathematics. It discusses the nature of inductive thought and its place in those fields of inquiry, arguing that a complete logic programming system for supporting inductive inference is not only feasible but necessary.…

  17. Investigation of the fuel temperature evaluation method at BOL

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Asaga, Takeo; Nemoto, Junichi

    1999-06-01

    It is one of the major subjects in the improvement of the design method for determining the thermal conditions of the solid type Mixed - Oxide (MOX) fuels in FBR to evaluate the fuel temperature at BOL as precisely as possible. Therefore, we have planned to modify the fuel temperature evaluation method 'FEVER', which was developed by JNC in 1988, as one of the investigation for the establishment of the precise fuel temperature evaluation method. And, we also have planned to use the modified FEVER, named FEVER-M', for estimation of the irradiation conditions of the PTM test in Joyo, called 'B10 test', planning to perform in 2000. In this work, the following results were obtained; 1) As a result of the modification, the uncertainty in the fuel temperature evaluation of 'FEVER-M' is reduced to about ±60 K. 2) Estimating the irradiation conditions of 'B10' test using the method 'FEVER-M', it is found that the appropriate maximum linear heat rate for the test is 620 W/cm. The detail plans of the 'B10' test were also determined based on the results. 3) Based on the results of this work, it is found that one of the effective procedure for the improvement of the accuracy of the fuel temperature evaluation method seems to calculate the fuel temperature taking the pellet relocation phenomena into account. In future, although there are a lot of matters to be discussed in this phenomena, the design method for the thermal conditions of the MOX fuels in FBR should be performed with taking the pellet relocation phenomena into account. (author)

  18. Electrical description of a magnetic pole enhanced inductively coupled plasma source: Refinement of the transformer model by reverse electromagnetic modeling

    International Nuclear Information System (INIS)

    Meziani, T.; Colpo, P.; Rossi, F.

    2006-01-01

    The magnetic pole enhanced inductively coupled source (MaPE-ICP) is an innovative low-pressure plasma source that allows for high plasma density and high plasma uniformity, as well as large-area plasma generation. This article presents an electrical characterization of this source, and the experimental measurements are compared to the results obtained after modeling the source by the equivalent circuit of the transformer. In particular, the method applied consists in performing a reverse electromagnetic modeling of the source by providing the measured plasma parameters such as plasma density and electron temperature as an input, and computing the total impedance seen at the primary of the transformer. The impedance results given by the model are compared to the experimental results. This approach allows for a more comprehensive refinement of the electrical model in order to obtain a better fitting of the results. The electrical characteristics of the system, and in particular the total impedance, were measured at the inductive coil antenna (primary of the transformer). The source was modeled electrically by a finite element method, treating the plasma as a conductive load and taking into account the complex plasma conductivity, the value of which was calculated from the electron density and electron temperature measurements carried out previously. The electrical characterization of the inductive excitation source itself versus frequency showed that the source cannot be treated as purely inductive and that the effect of parasitic capacitances must be taken into account in the model. Finally, considerations on the effect of the magnetic core addition on the capacitive component of the coupling are made

  19. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes

    Science.gov (United States)

    Chabowska-Kita, Agnieszka; Trabczynska, Anna; Korytko, Agnieszka; Kaczmarek, Monika M.; Kozak, Leslie P.

    2015-01-01

    The brown adipocyte phenotype (BAP) in white adipose tissue (WAT) is transiently induced in adult mammals in response to reduced ambient temperature. Since it is unknown whether a cold challenge can permanently induce brown adipocytes (BAs), we reared C57BL/6J (B6) and AxB8/PgJ (AxB8) mice at 17 or 29°C from birth to weaning, to assess the BAP in young and adult mice. Energy balance measurements showed that 17°C reduced fat mass in the preweaning mice by increasing energy expenditure and suppressed diet-induced obesity in adults. Microarray analysis of global gene expression of inguinal fat (ING) from 10-day-old (D) mice indicates that expression at 17°C vs. 29°C was not different. Between 10 and 21 days of age, the BAP was induced coincident with morphologic remodeling of ING and marked changes in expression of neural development genes (e.g., Akap 12 and Ngfr). Analyses of Ucp1 mRNA and protein showed that 17°C transiently increased the BAP in ING from 21D mice; however, BAs were unexpectedly present in mice reared at 29°C. The involution of the BAP in WAT occurred after weaning in mice reared at 23°C. Therefore, the capacity to stimulate thermogenically competent BAs in WAT is set by a temperature-independent, genetically controlled program between birth and weaning.—Chabowska-Kita, A., Trabczynska, A., Korytko, A., Kaczmarek, M. M., Kozak, L. P. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. PMID:25896784

  20. Numerical study of some operating characteristics for argon induction plasmas

    International Nuclear Information System (INIS)

    Ebihara, K.

    1978-01-01

    Some operating characteristics of argon induction plasmas at atmospheric pressure were obtained numerically by using magnetohydrodynamic equations. From these characteristics we can estimate the general dependency of plasma temperatures on operating conditions for induction plasmas. Calculated relationships between the sustaining electric field strength at the plasma surface and the electric power input show the existence of a minimum value of the field strength, the reason for which is revealed by detailed investigation of the calculated radial temperature distributions. Further, it was found that the minimum increases almost linearly with increasing frequency. In addition, characteristics of the Poynting vector and heat conduction loss at the plasma surface were obtained. Some characteristics obtained here give practical information on the electromagnetic field which is necessary to maintain the steady plasmas

  1. About Eddy Currents in Induction Melting Processes

    Directory of Open Access Journals (Sweden)

    Gafiţa Nicolae-Bogdan

    2008-05-01

    Full Text Available In this paper we present a method forcomputing the eddy currents in induction meltingprocesses for non-ferrous alloys. We take intoconsideration the situation when only the crucible ismoving, inside the coils. This fact makes differentialcomputation methods to be hard to apply, because isnecessary to generate a new mesh and a new systemmatrix for every for every new position of the cruciblerelated to the coils. Integral methods cancel thisdrawback because the mesh is generated only for thedomains with eddy currents. For integral methods, themesh and the inductance matrix remain unchangedduring the movement of the crucible; only the free termsof the equation system will change.

  2. Induction healing of asphalt mixes with steel slag

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Wang, H.; van de Ven, M.F.C.; Scarpas, Athanasios

    2018-01-01

    Asphaltic mixes are self-healing materials since they have the capacity to close internal microcracks at higher temperatures or under external force. To trigger their self-healing, asphalt mixes modified with inductive agents can be heated and in that way healed through applying alternating magnetic

  3. Micro Injection Molding of Thin Walled Geometries with Induction Heating System

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness...... and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper a new embedded induction heating system is proposed and validated. An experimental investigation was performed based on a test geometry integrating different aspect ratios...... of small structures. ABS was used as material and different combinations of injection velocity, pressure and mold temperature were tested. The replicated test objects were measured by means of an optical CMM machine. On the basis of the experimental investigation the efficacy of the embedded induction...

  4. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  5. Field protocol for induction of triploidy in Clarias gariepinus | Nwafili ...

    African Journals Online (AJOL)

    A simple field protocol for induction of triploidy in Clarias gariepinus using cold shock was developed. The quantity of ice needed to bring temperature of water down to desired temperature was first calculated. Fertilized eggs were then exposed to 5 ºC or 10 ºC at different times. Percentage hatchability for 5 ºC fertilized ...

  6. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  7. Robust Parameter and Signal Estimation in Induction Motors

    DEFF Research Database (Denmark)

    Børsting, H.

    This thesis deals with theories and methods for robust parameter and signal estimation in induction motors. The project originates in industrial interests concerning sensor-less control of electrical drives. During the work, some general problems concerning estimation of signals and parameters...... in nonlinear systems, have been exposed. The main objectives of this project are: - analysis and application of theories and methods for robust estimation of parameters in a model structure, obtained from knowledge of the physics of the induction motor. - analysis and application of theories and methods...... for robust estimation of the rotor speed and driving torque of the induction motor based only on measurements of stator voltages and currents. Only contimuous-time models have been used, which means that physical related signals and parameters are estimated directly and not indirectly by some discrete...

  8. Global temperature stability by rule induction: An interdisciplinary bridge

    International Nuclear Information System (INIS)

    Gunn, J.D.; Grzymala-Busse, J.W.

    1994-01-01

    Rules incorporating influences on global temperature, an estimate of radiation balance, were induced from astronomical, geophysical, and anthropogenic variables. During periods of intermediate global temperatures (generally like the present century), the influences assume canceling roles; influences cancel the effects of extreme states potentially imposed by other influences because they are, in aggregate, most likely to be assuming opposite values. This imparts an overall stability to the global temperature. To achieve cold or hot global temperature, influences assume reinforcing roles. CO 2 is an active influence on global temperature. By virtue of its constancy in the atmosphere, it can be expected to sponsor frequent hot years in combination with the other influences as they cycle through their periods. If measures were implemented to maintain warm or cool global temperatures, it could retain the status quo of present global agricultural regions. They are probably more productive than hot world regions would be because of narrow storm tracks

  9. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Svec, H.J.; Fassel, V.A.

    1981-01-01

    Mass spectra have been obtained of species in the axial channel of an inductively coupled argon plasma by extracting ions from the inductively coupled plasma into a vacuum system housing a quadrupole mass spectrometer. Ionization temperatures (T/sub ion/) are obtained from relative count rates of m/z-resolved ions according to two general types of ionization equilibrium considerations: (a) the radio of doubly/singly charged ions of the same element, and (b) the ratio of singly charged ions from two elements of different ionization energy. The T/sub ion/ values derived from measurement of Ar +2 /Ar + , Ba +2 /Ba + , Sr +2 /Sr + , and Cd + /I + are all greater than those expected from excitation temperatures measured by other workers. The latter three values for T/sub ion/ are in reasonable agreement with values obtained by optical spectrometry for a variety of argon inductively coupled plasmas

  10. Two-Stage Design Method for Enhanced Inductive Energy Transmission with Q-Constrained Planar Square Loops.

    Directory of Open Access Journals (Sweden)

    Akaa Agbaeze Eteng

    Full Text Available Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.

  11. A method for calibrating coil constants by using the free induction decay of noble gases

    Directory of Open Access Journals (Sweden)

    Linlin Chen

    2017-07-01

    Full Text Available We propose a precise method to calibrate the coil constants of spin-precession gyroscopes and optical atomic magnetometers. This method is based on measuring the initial amplitude of Free Induction Decay (FID of noble gases, from which the π/2 pulse duration can be calculated, since it is inversely proportional to the amplitude of the π/2 pulse. Therefore, the coil constants can be calibrated by measuring the π/2 pulse duration. Compared with the method based on the Larmor precession frequency of atoms, our method can avoid the effect of the pump and probe powers. We experimentally validated the method in a Nuclear Magnetic Resonance Gyroscope (NMRG, and the experimental results show that the coil constants are 436.63±0.04 nT/mA and 428.94±0.02 nT/mA in the x and y directions, respectively.

  12. Inductance-dependent characteristics of HTS dc-SQUID amplifiers

    International Nuclear Information System (INIS)

    Mitchell, E.E.; Tilbrook, D.L.; Foley, C.P.; MacFarlane, J.

    2002-01-01

    Full text: We have experimentally determined the transfer function V Φ and noise S Φ of several high temperature superconducting (HTS) dc SQUIDs of increasing loop size, while they were operated (without input flux transformer) in a small-signal-amplifier (open-loop) mode. A primary aim of our investigation was to provide reliable inductance data to aid our design of subsequent magnetometer devices. Flux was induced by means of current injection via a well-defined stripline directly into the SQUID loop. The loop size was systematically incremented in a range of otherwise similar SQUIDs. For each SQUID, the ratio between the induced flux and the injection current (which we define as the coupling inductance of the device, L c ) was measured as a function of the injection path length and the SQUID loop dimensions. Both L c and the derived SQUID self-inductance, L sq , were then compared with theoretical values, and contributions due to kinetic inductance and junction inductance were estimated. Correlations between the inductance data and our measured values of transfer function V Φ and noise S Φ were compared with previous results. Guidelines for optimisation of gradiometer SQUIDs were established, and in particular, the importance of achieving a large value transfer function together with a relatively small inductance was demonstrated. The strong influence of an enhanced transfer function was further emphasised when an order-of-magnitude reduction in noise was achieved by subjecting one of our SQUIDs to an in-house 'ion-beam trimming' process

  13. Antibody induction versus placebo, no induction, or another type of antibody induction for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, André; Wilson, Colin H

    2014-01-01

    . All 19 trials were with high risk of bias. Of the 19 trials, 16 trials were two-arm trials, and three trials were three-arm trials. Hence, we found 25 trial comparisons with antibody induction agents: interleukin-2 receptor antagonist (IL-2 RA) versus no induction (10 trials with 1454 participants....... Furthermore, serum creatinine was statistically significantly higher when T-cell specific antibody induction was compared with no induction (MD 3.77 μmol/L, 95% CI 0.33 to 7.21; low-quality evidence), as well as when polyclonal T-cell specific antibody induction was compared with no induction, but this small...... T-cell specific antibody induction, drug-related adverse events were less common among participants treated with interleukin-2 receptor antagonists (RR 0.23, 95% CI 0.09 to 0.63; low-quality evidence), but this was caused by the results from one trial, and trial sequential analysis could not exclude...

  14. Standard test method for determining elements in waste streams by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the specimen. Waste streams from manufacturing processes of nuclear and nonnuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable to process control within waste treatment facilities. This test method is applicable only to waste streams that contain radioactivity levels which do not require special personnel or environmental protection. A list of the elements determined in waste streams and the corresponding lower reporting limit is included

  15. Induction of heat shock-like proteins in Vigna sinensis seedlings growing under ultraviolet-B (280-320 nm) enhanced radiation

    International Nuclear Information System (INIS)

    Nedunchezhian, N.; Annamalainathan, K.; Kulandaivelu, G.

    1992-01-01

    The effect of ultraviolet-B (UV-B) enhanced fluorescent radiation on protein profile and protein synthesis has been investigated in Vigna sinensis L. cv. Walp seedlings growing at various temperatures. In seedlings growing at 30°C, UV-B radiation decreased the level of several proteins as seen in Coomassie brilliant blue stained gel. However, fluorography of the same gel indicates induction of three sets of proteins in the range of 70. 53 and 16 k Da. Such induction under UV-B enhanced radiation resembled that found after heat shock treatments. In seedlings at 10 and 20°C, induction of such proteins varied both qualitatively and quantitatively. At 40°C. UV-B enhanced radiation caused a cumulative effect with temperature. Strong induction of specific proteins by UV-B radiation in seedlings growing under normal temperature indicates a possible protective role

  16. Electromagnetic induction phenomena in plasma systems

    International Nuclear Information System (INIS)

    Karlovitz, B.

    1982-01-01

    The phenomenon of electromagnetic induction is considered in complex high temperature plasma systems. Thermal energy of such fully ionized plasma is really energy of the magnetic vortex fields surrounding the randomly moving ions and electrons. In an expanding plasma stream, moving across the containing magnetic field, random thermal motion of the ions and electrons is converted into ordered motion and thereby random magnetic energy of the plasma into magnetic energy of an ordered field. Consequently, in contrast to simple systems consisting of coils and magnets only, an expanding plasma stream can maintain net outflow of ordered magnetic energy from a closed volume for an indefinite length of time. Conversion of thermal energy of plasma into ordered magnetic energy by the thermodynamic expansion process leads to the expectation of a new induction phenomenon: the generation of a unidirectional induced electromotive force of unlimited duration, measured in a closed loop at rest relative to the magnetic field, by the expansion work of the plasma stream. No change is required in the differential form of Maxwell's equations for the existence of this induction phenomenon, only the definition of the concept of rate of change of magnetic flux needs to be modified in the macroscopic equations to correspond to the rate of flow of magnetic energy across a closed surface. An experimental test of the predicted induction phenomenon is proposed

  17. Propensity score method for analyzing the effect of labor induction in prolonged pregnancy.

    Science.gov (United States)

    Pyykönen, Aura; Tapper, Anna-Maija; Gissler, Mika; Haukka, Jari; Petäjä, Jari; Lehtonen, Lasse

    2018-04-01

    There is an ongoing debate on the optimal time of labor induction to reduce the risks associated with prolonged pregnancy. Registry-based study of 212 716 term, singleton cephalic deliveries between 2006 and 2012 in Finland comparing the outcomes of labor induction with those of expectant management in five, three-day gestational age periods between 40 and 42 weeks (group 1: 40 +0 -40 +2 ; group 2: 40 +3 -40 +5 ; group 3: 40 +6 -41 +1 ; group 4: 41 +2 -41 +4 ; group 5: 41 +5 -42 +0 ). Using Poisson regression, induced deliveries in each of the gestational age periods were compared with all ongoing pregnancies. Propensity score matching was applied to reduce confounding by indication. In the gestational age groups 1 and 2, labor induction significantly decreased the risk of meconium aspiration syndrome [relative risk (RR) 0.40, 95% confidence interval (CI) 0.18-0.91 (group 1), RR 0.44, 95% CI 0.21-0.91 (group 2)] but increased the risk for prolonged hospitalization of a neonate [RR 1.30, 95% CI 1.10-1.54 (group 1) and RR 1.23, 95% CI 1.03-1.47 (group 2)]. In groups 3 and 4, labor induction significantly increased the risk for emergency cesarean section [RR 1.17, 95% CI 1.06-1.28 (group 3) and RR 1.19, 95% CI 1.09-1.29 (group 4)] but still reduced the risk for meconium aspiration syndrome. In group 5, labor induction did not affect the risk for any of the studied outcomes (operative delivery, obstetric trauma, neonatal mortality, respirator treatment, Apgar <7). Propensity score matching is a novel approach to studying the effect of labor induction. It highlighted the conflicting maternal and neonatal risks and benefits of the intervention, and supported expectant management as a valid option, at least until close to 42 weeks. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  18. VIBROCASTING CRUCIBLES OF DIFFERENT COMPOSITION FOR FRYING INDUCTION MELTING ALLOYS

    OpenAIRE

    V. V. Primachenko; V. V. Martynenko; I. G. Szulik; S. V. Chaplyanko; L. V. Gritsyuk; L. P. Tkachenko

    2012-01-01

    It is shown that PSC «UKRNIIO them. A.S.Berezhnogo  has developed technologies for a wide range of induction melting temperature alloys and started commercial production of crucibles of different composition.

  19. New method of noncontact temperature measurement in on-line textile production

    Science.gov (United States)

    Cheng, Xianping; Song, Xing-Li; Deng, Xing-Zhong

    1993-09-01

    Based on the condition of textile production the method of infrared non-contact temperature measurement is adcpted in the heat-setting and drying heat-treatment process . This method is used to monitor the moving cloth. The temperature of the cloth is displayed rapidly and exactly. The principle of the temperature measurement is analysed theoretically in this paper. Mathematical analysis and calculation are used for introducing signal transmitting method. Adopted method of combining software with hardware the temperature is corrected and compensated with the aid of a single-chip microcomputer. The results of test indicate that the application of temperature measurement instrument provides reliable parameters in the quality control. And it is an important measure on improving the quality of products.

  20. An efficient method for in vitro callus induction in Myrciaria dubia (Kunth Mc Vaugh "Camu Camu"

    Directory of Open Access Journals (Sweden)

    Ana M. Córdova

    2014-03-01

    Full Text Available Due to the high variability in vitamin C production in Myrciaria dubia "camu camu", biotechnological procedures are necessary for mass clonal propagation of promising genotypes of this species. The aim was to establish an efficient method for in vitro callus induction from explants of M. dubia. Leaf and knot sex plants were obtained from branches grown in the laboratory and from fruit pulp collected in the field. These were desinfected and sown on Murashige-Skoog (1962 medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, benzylaminopurine (BAP and kinetin(Kin. The cultures were maintained at 25±2°C in darkness for 2 weeks and subsequently with a photoperiod of 16 hours in light and 8 hours in dark for 6 weeks. Treatment with 2 mg/L 2,4-D and 0.1 mg/L BAP allowed major callus formation in the three types of explants. Calluswere generated from the first week (knots, fourth week (leaves and sixth week (pulp and these were friable (leaves and nodes and non-friable (pulp. In conclusion, the described method is efficient for in vitro callus induction in leaves, knots and pulp of M. dubia, been leaves and knots explants more suitable for callus obtention

  1. Critical temperature: A quantitative method of assessing cold tolerance

    Science.gov (United States)

    D.H. DeHayes; M.W., Jr. Williams

    1989-01-01

    Critical temperature (Tc), defined as the highest temperature at which freezing injury to plant tissues can be detected, provides a biologically meaningful and statistically defined assessment of the relative cold tolerance of plant tissues. A method is described for calculating critical temperatures in laboratory freezing studies that use...

  2. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells.

    Science.gov (United States)

    Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko

    2015-01-20

    Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

  3. Performance of a Folded-Strip Toroidally Wound Induction Machine

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.

    2011-01-01

    This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...... shorter stator end-windings than conventionally wound induction machines, and hence that a toroidally wound induction machine can have lower losses and a higher efficiency. The paper also presents the employed construction method, which emphasizes manufacturability, and highlights the advantages...

  4. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  5. Plasma-particle interaction effects in induction plasma modelling under dense loading conditions

    International Nuclear Information System (INIS)

    Proulx, P.; Mostaghimi, J.; Boulos, M.

    1983-07-01

    The injection of solid particles or aerosol droplets in the fire-ball of an inductively coupled plasma can substantially perturb the plasma and even quench it under high loading conditions. This can be mainly attributed to the local cooling of the plasma by the particles or their vapour cloud, combined with the possible change of the thermodynamic and transport properties of the plasma in the presence of the particle vapour. This paper reports the state-of-the-art in the mathematical modelling of the induction plasma. A particle-in-cell model is used in order to combine the continuum approach for the calculation of the flow, temperature and concentration fields in the plasma, with the stochastic single particle approach, for the calculation of the particle trajectories and temperature histories. Results are given for an argon induction plasma under atmospheric pressure in which fine copper particles are centrally injected in the coil region of the discharge

  6. Temperature profiles of different cooling methods in porcine pancreas procurement.

    Science.gov (United States)

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  7. VIBROCASTING CRUCIBLES OF DIFFERENT COMPOSITION FOR FRYING INDUCTION MELTING ALLOYS

    Directory of Open Access Journals (Sweden)

    V. V. Primachenko

    2012-01-01

    Full Text Available It is shown that PSC «UKRNIIO them. A.S.Berezhnogo  has developed technologies for a wide range of induction melting temperature alloys and started commercial production of crucibles of different composition.

  8. Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems

    Science.gov (United States)

    Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2016-03-01

    A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.

  9. Noninvasive inductive stent heating: alternative approach to prevent instent restenosis?

    Science.gov (United States)

    Floren, Michael G; Günther, Rolf W; Schmitz-Rode, Thomas

    2004-05-01

    extensive necrosis area around the stent. Treatment time and stent temperature were optimized in further tests. Selective noninvasive energy transfer to coronary stainless steel stents by inductive heating is possible within a wide range of power. By thermal conduction, vital cells close to the stent struts can be affected. The frequency of 200 kHz turned out to be favorable. There is still room for further optimization of energy dosage with regard to material and stent design, to induce controlled cell death. The method has potential to serve as an alternative approach for prevention of instent restenosis.

  10. Modeling and identification of induction micromachines in microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, S.E. [Purdue University at Indianapolis (United States). Dept. of Electrical and Computer Engineering

    2002-11-01

    Microelectromechanical systems (MEMS), which integrate motion microstructures, radiating energy microdevices, controlling and signal processing integrated circuits (ICs), are widely used. Rotational and translational electromagnetic based micromachines are used in MEMS as actuators and sensors. Brushless high performance micromachines are the preferable choice in different MEMS applications, and therefore, synchronous and induction micromachines are the best candidates. Affordability, good performance characteristics (efficiency, controllability, robustness, reliability, power and torque densities etc.) and expanded operating envelopes result in a strong interest in the application of induction micromachines. In addition, induction micromachines can be easily fabricated using surface micromachining and high aspect ratio fabrication technologies. Thus, it is anticipated that induction micromachines, controlled using different control algorithms implemented using ICs, will be widely used in MEMS. Controllers can be implemented using specifically designed ICs to attain superior performance, maximize efficiency and controllability, minimize losses and electromagnetic interference, reduce noise and vibration, etc. In order to design controllers, the induction micromachine must be modeled, and its mathematical model parameters must be identified. Using microelectromechanics, nonlinear mathematical models are derived. This paper illustrates the application of nonlinear identification methods as applied to identify the unknown parameters of three phase induction micromachines. Two identification methods are studied. In particular, nonlinear error mapping technique and least squares identification are researched. Analytical and numerical results, as well as practical capabilities and effectiveness, are illustrated, identifying the unknown parameters of a three phase brushless induction micromotor. Experimental results fully support the identification methods. (author)

  11. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  12. Development of a method for estimating oesophageal temperature by multi-locational temperature measurement inside the external auditory canal

    Science.gov (United States)

    Nakada, Hirofumi; Horie, Seichi; Kawanami, Shoko; Inoue, Jinro; Iijima, Yoshinori; Sato, Kiyoharu; Abe, Takeshi

    2017-09-01

    We aimed to develop a practical method to estimate oesophageal temperature by measuring multi-locational auditory canal temperatures. This method can be applied to prevent heatstroke by simultaneously and continuously monitoring the core temperatures of people working under hot environments. We asked 11 healthy male volunteers to exercise, generating 80 W for 45 min in a climatic chamber set at 24, 32 and 40 °C, at 50% relative humidity. We also exposed the participants to radiation at 32 °C. We continuously measured temperatures at the oesophagus, rectum and three different locations along the external auditory canal. We developed equations for estimating oesophageal temperatures from auditory canal temperatures and compared their fitness and errors. The rectal temperature increased or decreased faster than oesophageal temperature at the start or end of exercise in all conditions. Estimated temperature showed good similarity with oesophageal temperature, and the square of the correlation coefficient of the best fitting model reached 0.904. We observed intermediate values between rectal and oesophageal temperatures during the rest phase. Even under the condition with radiation, estimated oesophageal temperature demonstrated concordant movement with oesophageal temperature at around 0.1 °C overestimation. Our method measured temperatures at three different locations along the external auditory canal. We confirmed that the approach can credibly estimate the oesophageal temperature from 24 to 40 °C for people performing exercise in the same place in a windless environment.

  13. Nonlinear Control of Induction Motors: A Performance Study

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1998-01-01

    A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the...... for the field amplitude and the motor torque. The method is compared with the traditional Rotor Field Oriented Control method as regards variations in rotor resistance an magnetizing inductance......A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers...

  14. Study on Induction Heating Coil for Uniform Mold Cavity Surface Heating

    OpenAIRE

    Yu-Ting Sung; Sheng-Jye Hwang; Huei-Huang Lee; Durn-Yuan Huang

    2014-01-01

    Recently, energy saving is one of the important issues for polymer processing industry. Electromagnetic induction heating has many advantages such as fast heating and low energy consumption. Previous studies using electromagnetic induction heating for rapid tool heating have indicated that the temperature uniformity on a cavity surface is not easy to be achieved. In this paper, two different coils were used for heating uniform 7 mm thick hot work tool steel (JIS SKD61) surface. One is a four-...

  15. Diagnosis of voltage collapse due to induction motor stalling using static analysis

    International Nuclear Information System (INIS)

    Karbalaei, F.; Kalantar, M.; Kazemi, A.

    2008-01-01

    Induction motor stalling is one of the important reasons for voltage collapse. This paper presents that, for induction motor stalling diagnosis, it is not necessary to use a third or first order dynamic model of induction motors. Instead, a method is presented based on algebraic calculations for which the steady state model of the induction motor considering different kinds of mechanical loads (constant and variable torque) is added to the power flow equations. Simulation results for a simple system confirm the correctness of the proposed method as compared to dynamic simulation results

  16. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Deans, Cameron; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk; Hussain, Sarah; Renzoni, Ferruccio [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-03-07

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  17. How effective is amniotomy as a means of induction of labour?

    LENUS (Irish Health Repository)

    Cooley, S M

    2012-02-01

    BACKGROUND: Amniotomy or artificial rupture of membranes is routinely used for induction of labour. AIMS: To assess the efficacy of amniotomy alone for induction. METHODS: A retrospective descriptive study of 3,586 cases of amniotomy for induction of labour between July 1996 and December 1999. RESULTS: In total, 26,670 women delivered in the National Maternity Hospital during the study period. Of these 4,928 women required induction of labour and 72.8% of these (n = 3,586) underwent amniotomy only for induction of labour. Spontaneous labour occurred in 90.1% of the women who underwent amniotomy within 24 h. Oxytocin as an induction agent was employed in 9.8% of cases. Overall, 80.5% of the women had a spontaneous delivery, 7.3% had a ventouse delivery, 4.3% had a forceps delivery, and 7.9% underwent a caesarean section. In total, 90.5% of multips and 63.4% of primips had a spontaneous vaginal delivery. CONCLUSIONS: Amniotomy is a simple, safe and effective method of induction of labour.

  18. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  19. Radiation-induced double-strand breaks in mammalian DNA: influence of temperature and DMSO.

    Science.gov (United States)

    Elmroth, K; Nygren, J; Erkell, L J; Hultborn, R

    2000-11-01

    To investigate the effects of subphysiological irradiation temperature (2 28 degrees C) and the influence of the radical scavenger DMSO on the induction of double-strand breaks (DSB) in chromosomal DNA from a human breast cancer cell line (MCF-7) as well as in intact cells. The rejoining of DSB in cells irradiated at 2 degrees C or 37 degrees C was also investigated. Agarose plugs with [14C]thymidine labelled MCF-7 cells were lysed in EDTA-NLS-proteinase-K buffer. The plugs containing chromosomal DNA were irradiated with X-rays under different temperatures and scavenging conditions. Intact MCF-7 cells were irradiated in Petri dishes and plugs were made. The cells were then lysed in EDTA-NLS-proteinase-K buffer. The induction of DSB was studied by constant field gel electrophoresis and expressed as DSB/100/Mbp, calculated from the fraction of activity released into the gel. The induction of DSB in chromosomal DNA was reduced by a decrease in temperature. This protective effect of low temperature was inhibited when the DNA was irradiated in the presence of DMSO. No difference was found when intact cells were irradiated at different temperatures. However, the rapid phase of rejoining was slower in cells irradiated at 37 degrees C than at 2 degrees C. The induction of DSB in naked DNA was reduced by hypothermic irradiation. The temperature had no influence on the induction of DSB in the presence of a high concentration of DMSO, indicating that the temperature effect is mediated via the indirect effects of ionizing radiation. Results are difficult to interpret in intact cells. Rejoining during irradiation at the higher temperature may counteract an increased induction. The difference in rejoining may be interpreted in terms of qualitative differences between breaks induced at the two temperatures.

  20. Acupuncture and/or sweeping of the fetal membranes before induction of labor

    DEFF Research Database (Denmark)

    Andersen, Bodil Birgitte; Knudsen, Birthe; Lyndrup, Jens

    2013-01-01

    To evaluate the efficacy of acupuncture, and sweeping of the fetal membranes, as methods for induction of labor.......To evaluate the efficacy of acupuncture, and sweeping of the fetal membranes, as methods for induction of labor....

  1. Study on modes of energy action in laser-induction hybrid cladding

    International Nuclear Information System (INIS)

    Huang Yongjun; Zeng Xiaoyan

    2009-01-01

    The shape and microstructure in laser-induction hybrid cladding were investigated, in which the cladding material was provided by means of three different methods including the powder feeding, cold pre-placed coating (CPPC) and thermal pre-placed coating (TPPC). Moreover, the modes of energy action in laser-induction hybrid cladding were also studied. The results indicate that the cladding material supplying method has an important influence on the shape and microstructure of coating. The influence is decided by the mode of energy action in laser-induction hybrid cladding. During the TPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating. During the CPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating and substrate surface, respectively. In powder feeding hybrid cladding, a part of laser is absorbed by the powder particles directly, while the other part of laser penetrating powder cloud radiates on the molten pool. Meanwhile, the induction heating is entirely performed on the substrate. In addition, the wetting property on the interface is improved and the metallurgical bond between the coating and substrate is much easier to form. Therefore, the powder feeding laser-induction hybrid cladding has the highest cladding efficiency and the best bond property among three hybrid cladding methods.

  2. Inverse method for temperature and stress monitoring in complex-shaped bodies

    International Nuclear Information System (INIS)

    Duda, Piotr; Taler, Jan E- mail: aler@ss5.mech.pk.edu.pl; Roos, Eberhard

    2004-01-01

    The purpose of this work is to formulate a space marching method, which an be used to solve inverse multidimensional heat conduction problems. The method is designed to reconstruct the transient temperature distribution in a hole construction element based on measured temperatures taken at selected points on the outer surface of the construction element. Next, the Finite element Method is used to calculate thermal stresses and stresses caused by other loads such as, for instance, internal pressure. The developed method or solving temperature and total stress distribution is tested using the measured temperatures generated from a direct solution. Transient temperature nd total stress distributions obtained from the method presented below are compared with the values obtained from the direct solution. Finally, the resented method is experimentally verified during the cooling of a hick-walled cylindrical element. The model of a pressure vessel was reheated at 300 deg.C and then cooled by cold water injection. The comparison of results obtained from the inverse method with experimental data hows the high accuracy of the developed method. The presented method allows o optimize the power block's start-up and shut-down operations, contributes o the reduction of heat loss during these operations and to the extension of power block's life. The fatigue and creep usage factor can be computed in an n-line mode. The presented method herein can be applied to monitoring systems that work in conventional as well as in nuclear power plants

  3. METHOD OF ADAPTIVE MAGNETOTHERAPY

    OpenAIRE

    Rudyk, Valentine Yu.; Tereshchenko, Mykola F.; Rudyk, Tatiana A.

    2016-01-01

    Practical realization of adaptive control in magnetotherapy apparatus acquires an actual importance on the modern stage of development of magnetotherapy.The structural scheme of method of adaptive impulsive magnetotherapy and algorithm of adaptive control of feed-back signal during procedure of magnetotherapy is represented.A feed-back in magnetotherapy complex will be realized with control of magnetic induction and analysis of man's physiological indexes (temperature, pulse, blood prassure, ...

  4. Thermo-hydrodynamic and inductive modelling of a glass melt elaborated in cold inductive crucible

    International Nuclear Information System (INIS)

    Sauvage, E.

    2009-11-01

    Within the context of a search for a new vitrification process for nuclear wastes with a replacement of the presently used metallic pot by an inductive cold crucible, this research thesis deals with the numerical modelling of this technology. After having recalled the interest of nuclear waste vitrification, this report presents the new process based on the use of a cold crucible, describing principles and objectives of this method, and the characteristic physical phenomena associated with the flow and the thermodynamics of the glassy melt in such a crucible. It also recalls and comments the existing works on modelling. The main objective of this research is then to demonstrate the feasibility of 3D thermo-hydraulic and inductive simulations. He describes and analyses the glass physical properties (electrical properties, viscosity, thermal properties), the electromagnetic, hydrodynamic and thermal phenomena. He presents in detail the bubbling mixing modelling, reports 3D induction and fluid mechanical coupling calculations, and specific thermal investigations (radiating transfers, thermal limit conditions)

  5. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  6. Numerical renormalization group method for entanglement negativity at finite temperature

    Science.gov (United States)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  7. Evaluation Method for Low-Temperature Performance of Lithium Battery

    Science.gov (United States)

    Wang, H. W.; Ma, Q.; Fu, Y. L.; Tao, Z. Q.; Xiao, H. Q.; Bai, H.; Bai, H.

    2018-05-01

    In this paper, the evaluation method for low temperature performance of lithium battery is established. The low temperature performance level was set up to determine the best operating temperature range of the lithium battery using different cathode materials. Results are shared with the consumers for the proper use of lithium battery to make it have a longer service life and avoid the occurrence of early rejection.

  8. Magnetic field, inductance of circular coil and solenoids

    International Nuclear Information System (INIS)

    Ramirez Hoyos, P.; Barbero Garcia, A.J.; Mafe Matoses, S.

    1995-01-01

    The self-inductance of a current-carrying circular coil and the mutual inductances of the Helmholtz coils and coil-sole-noid systems have been measured and calculated theoretically. The experiments and the required equipment are suited to an undergraduate laboratory. The theoretical calculation involve the use of simple numerical integration methods for evaluating the magnetic field of the circular coil and the inductances. The calculated values agree with the measurements within the experimental error. The material presented can be proposed to the students as a laboratory project. (Author) 7 refs

  9. Validation of methods to measure uranium isotopes using magnetic sector mass spectrometry with inductively coupled plasma source

    International Nuclear Information System (INIS)

    Hernandez M, H.; Rios L, M. J.; Romero G, E. T.

    2017-10-01

    The mass spectrometry technique with inductively coupled plasma source (Icp-Ms) has been widely used to measure isotopic ratios of elements toxic to human health. Reason for which, in this work several measurement methods for the analysis of uranium isotopes in different matrices were implemented using magnetic sector mass spectrometry with inductively coupled plasma source (Icp-SFMS). Groundwater, sediment, soil and urine were the matrices analyzed, which were supplied by intercomparison tests conducted by the IAEA and Association for the Promotion of Quality Control of Medical Biology Analysis in Radio-toxicology. The procedures used in the treatment of soil, sediment and water samples were based on US EPA methods. In the case of the urine sample, the preparation was rapid (1:20 dilution). The average of the results obtained in yield of each matrix was 94, 71, 72 and 78% for water, urine, soil and sediment respectively. In addition, the precision in terms of standard relative deviation was less than 5% and the accuracy was less than 4%. In conclusion, the Icp-SFMS is a very sensitive technique for measuring isotopes of U in different matrices. However, careful tuning is necessary, especially in the mass regions of interest 234, 235 and 238 if an external quantification is considered using natural U solutions. (Author)

  10. Optimization of a Pain Model: Effects of Body Temperature and Anesthesia on Bladder Nociception in Mice

    Science.gov (United States)

    Sadler, Katelyn E.; Stratton, Jarred M.; DeBerry, Jennifer J.; Kolber, Benedict J.

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5

  11. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    Science.gov (United States)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  12. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    International Nuclear Information System (INIS)

    Boudreault, E; Hazel, B; Côté, J; Godin, S

    2014-01-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated C A6NM . This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named S compi . This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions

  13. High-temperature electronic structure with the Korringa-Kohn-Rostoker Green's function method

    Science.gov (United States)

    Starrett, C. E.

    2018-05-01

    Modeling high-temperature (tens or hundreds of eV), dense plasmas is challenging due to the multitude of non-negligible physical effects including significant partial ionization and multisite effects. These effects cause the breakdown or intractability of common methods and approximations used at low temperatures, such as pseudopotentials or plane-wave basis sets. Here we explore the Korringa-Kohn-Rostoker Green's function method at these high-temperature conditions. The method is all electron, does not rely on pseudopotentials, and uses a spherical harmonic basis set, and so avoids the aforementioned limitations. It is found to be accurate for solid density aluminum and iron plasmas when compared to a plane-wave method at low temperature, while being able to access high temperatures.

  14. Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors.

    Science.gov (United States)

    Lamas-Seco, José J; Castro, Paula M; Dapena, Adriana; Vazquez-Araujo, Francisco J

    2015-10-26

    Inductive Loop Detectors (ILDs) are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT) of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.

  15. Rotor Speed Estimation Method Used in Dynamic Control of the Induction Motor

    Directory of Open Access Journals (Sweden)

    CRĂCIUNAŞ Gabriela

    2013-10-01

    Full Text Available In this paper it is proposed an algorithm for rotor speed estimation calculated directly from the rotor flux. The flux required for speed computation is estimated using Gopinath reduced order robust adaptive observer. In order to determine the structure of the observer we started from the state equations of the induction motor using spatial vectors written in fixed coordinates towards stator and considering the rotor speed constant. Quality of speed and rotor fluxestimation was evaluated from the results obtained during different operation regimes. The proposed algorithm was then tested for its usability in the case of indirect field oriented control based on the rotor flux of the induction motor by the simulation inMATLAB/Simulink.

  16. Processing methods for temperature-dependent MCNP libraries

    International Nuclear Information System (INIS)

    Li Songyang; Wang Kan; Yu Ganglin

    2008-01-01

    In this paper,the processing method of NJOY which transfers ENDF files to ACE (A Compact ENDF) files (point-wise cross-Section file used for MCNP program) is discussed. Temperatures that cover the range for reactor design and operation are considered. Three benchmarks are used for testing the method: Jezebel Benchmark, 28 cm-thick Slab Core Benchmark and LWR Benchmark with Burnable Absorbers. The calculation results showed the precision of the neutron cross-section library and verified the correct processing methods in usage of NJOY. (authors)

  17. Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams

    International Nuclear Information System (INIS)

    Makarov, Grigorii N

    2011-01-01

    The temperature (internal energy) of clusters and nanoparticles is an important physical parameter which affects many of their properties and the character of processes they are involved in. At the same time, determining the temperature of free clusters and nanoparticles in molecular beams is a rather complicated problem because the temperature of small particles depends on their size. In this paper, recently developed kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams are reviewed. The definition of temperature in the present context is given, and how the temperature affects the properties of and the processes involving the particles is discussed. The temperature behavior of clusters and nanoparticles near a phase transition point is analyzed. Early methods for measuring the temperature of large clusters are briefly described. It is shown that, compared to other methods, new kinetic methods are more universal and applicable for determining the temperature of clusters and nanoparticles of practically any size and composition. The future development and applications of these methods are outlined. (reviews of topical problems)

  18. Standard test method for determining elements in waste Streams by inductively coupled plasma-atomic emission spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities. 1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection. 1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1. 1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The com...

  19. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  20. Armature design for coaxial induction launchers

    International Nuclear Information System (INIS)

    Andrews, J.A.; Devine, J.R.

    1991-01-01

    This paper reports on the armature design for a coaxial induction launcher that is influenced by a large set of highly coupled parameters. The simplifying assumptions often employed in coaxial accelerator analysis, such as a uniform or sinusoidal axial distribution of the azimuthal armature current, are unrealistic in induction launchers with monolithic single-turn armatures. In order to better understand the true dynamic behavior of coaxial accelerators, the Center for Electromechanics at The University of Texas at Austin (CEM-UT) has developed series of computer codes based on the current filament method. By utilizing these performance codes in conjunction with electromagnetic (EM) and mechanical finite element programs, it is now possible to design high performance induction launchers with armatures that can withstand the considerable mechanical and thermal loads inherent in a coaxial accelerator launch

  1. High temperature superconductors and method

    International Nuclear Information System (INIS)

    Ruvalds, J.J.

    1977-01-01

    This invention comprises a superconductive compound having the formula: Ni/sub 1-x/M/sub x/Z/sub y/ wherein M is a metal which will destroy the magnetic character of nickel (preferably copper, silver or gold); Z is hydrogen or deuterium; x is 0.1 to 0.9; and y, correspondingly, 0.9 to 0.1, and method of conducting electric current with no resistance at relatively high temperature of T>1 0 K comprising a conductor consisting essentially of the superconducting compound noted above

  2. COMPARATIVE ANALYSIS OF ELECTRICAL AND THERMAL CONTROL OF THE LINING STATE OF INDUCTION APPARATUS OF COPPER WIRE MANUFACTURE

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2018-02-01

    Full Text Available Aim. This article is intended to develop a technique for monitoring the lining state of induction channel furnaces for melting oxygen-free copper by monitoring changes in the distribution of thermal fields in their lining and carrying out a comparative analysis of the developed technique with the existing one that controls the electrical resistance of the melting channel of the furnaces. Technique. For carrying out the research, the theories of electromagnetic field, thermodynamics, mathematical physics, mathematical modeling based on the finite element method were used. Results. A technique for diagnosing the lining state of the induction channel furnaces for melting oxygen-free copper has been developed, which makes it possible to determine the dislocation and the size of the liquid metal leaks by analyzing the temperature distribution over the body surface both the inductor and the furnace. Scientific novelty. The connection between the temperature field distribution on the surface of the furnace body and the dislocation and dimensions of the liquid metal leaks in its lining is determined for the first time. Practical significance. Using the proposed technique will allow to conduct more accurate diagnostics of the lining conditions of the induction channel furnaces, as well as to determine the location and size of the liquid metal leaks, creating the basis for predicting the working life of the furnace.

  3. Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors

    Directory of Open Access Journals (Sweden)

    José J. Lamas-Seco

    2015-10-01

    Full Text Available Inductive Loop Detectors (ILDs are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.

  4. Premature rupture of membranes at term: immediate induction of ...

    African Journals Online (AJOL)

    Objective: To compare the maternal outcomes of immediate induction of labor with expectant management in women presenting with premature rupture of membranes (PROM) at term. Methods: One hundred and fifty two women with PROM at term were randomized into either immediate induction of labor with oxytocin or ...

  5. Direct and quadrature inductances measurement of the permanent magnetic linear synchronous machines

    International Nuclear Information System (INIS)

    Li Liyi; Hong Junjie; Wu Hongxing; Kou Baoquan; Liu Rizhong

    2011-01-01

    Research highlights: → The d- and q-axis inductances are derived theoretically. → The new measurement principle of the d- and q-axis inductances is analyzed. → A corresponding measuring circuit is developed. → Measurement results match those of the FEM well. -- Abstract: Permanent magnetic linear synchronous machines (PMLSMs) are playing a more important role either in transportation systems or magnetic launch systems, for the excellent advantages. It is indispensable to high performance controllers that some machine parameters are known such as the direct axis (d-axis) and quadrature axis (q-axis) inductances. In this paper, self and mutual inductances of the three-phase winding are deduced by basic electric machinery theory, and the measured inductances are analyzed since the mutual inductances and the corresponding terminals among three-phase windings are changing as different phase winding is concerned. The d- and q-axis inductances are measured with the designed circuit, and the experimental measurement method is validated by the comparison between the experimental and finite element method (FEM) results.

  6. Direct and quadrature inductances measurement of the permanent magnetic linear synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Li Liyi [Electrical Engineering Dept./Harbin Institute of Technology, Harbin 150000 (China); Hong Junjie, E-mail: wizard0663@126.co [School of Engineering/Sun Yat-Sen University, Guangzhou 510006 (China); Wu Hongxing; Kou Baoquan; Liu Rizhong [Electrical Engineering Dept./Harbin Institute of Technology, Harbin 150000 (China)

    2011-05-15

    Research highlights: {yields} The d- and q-axis inductances are derived theoretically. {yields} The new measurement principle of the d- and q-axis inductances is analyzed. {yields} A corresponding measuring circuit is developed. {yields} Measurement results match those of the FEM well. -- Abstract: Permanent magnetic linear synchronous machines (PMLSMs) are playing a more important role either in transportation systems or magnetic launch systems, for the excellent advantages. It is indispensable to high performance controllers that some machine parameters are known such as the direct axis (d-axis) and quadrature axis (q-axis) inductances. In this paper, self and mutual inductances of the three-phase winding are deduced by basic electric machinery theory, and the measured inductances are analyzed since the mutual inductances and the corresponding terminals among three-phase windings are changing as different phase winding is concerned. The d- and q-axis inductances are measured with the designed circuit, and the experimental measurement method is validated by the comparison between the experimental and finite element method (FEM) results.

  7. Kernel reconstruction methods for Doppler broadening — Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    International Nuclear Information System (INIS)

    Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord

    2017-01-01

    This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T_j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T_0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T_j). The choice of the L_2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T_j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T_m_i_n,T_m_a_x]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope "2"3"8U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of "2"3"8U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.

  8. Application and Perspectives of Multiphase Induction Motors

    Directory of Open Access Journals (Sweden)

    Benas Kundrotas

    2012-04-01

    Full Text Available The article considers the areas of applying multiphase induction motors. Their advantages against three phase motors have become the main reason for employing them in multiphase drives. The paper deals with the six-phase induction motor having two similar three phase windings in the stator shifted by 30 degrees in space and three phase windings in the rotor. Differential equations for this motor are presented and transformed to dq synchronous reference frame. The transformed equations are expressed in a matrix form and solved by MATLAB software using the Dormand-Prince (ode45 method. The transient characteristics of the torque, speed and current of the six-phase induction motor are calculated and discussed.Article in Lithuanian

  9. Induction Chemotherapy for p16 Positive Oropharyngeal Squamous Cell Carcinoma

    OpenAIRE

    Saito, Yuki; Ando, Mizuo; Omura, Go; Yasuhara, Kazuo; Yoshida, Masafumi; Takahashi, Wataru; Yamasoba, Tatsuya

    2016-01-01

    Objectives/Hypothesis We aimed to determine the effectiveness of induction chemotherapy for treating p16?positive oropharyngeal cancer in our department. Study Design This was a retrospective case series to assess treatment effectiveness. Methods We administered induction chemotherapy to patients with stage III to IV oropharyngeal p16?positive squamous cell carcinoma between 2008 and 2013. Induction chemotherapy was administered using combinations of docetaxel, cisplatin, and 5?fluorouracil. ...

  10. Temperature Calculation of Annular Fuel Pellet by Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.

  11. Supersonic induction plasma jet modeling

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  12. A novel method of temperature compensation for piezoresistive microcantilever-based sensors.

    Science.gov (United States)

    Han, Jianqiang; Wang, Xiaofei; Yan, Tianhong; Li, Yan; Song, Meixuan

    2012-03-01

    Microcantilever with integrated piezoresistor has been applied to in situ surface stress measurement in the field of biochemical sensors. It is well known that piezoresistive cantilever-based sensors are sensitive to ambient temperature changing due to highly temperature-dependent piezoresistive effect and mismatch in thermal expansion of composite materials. This paper proposes a novel method of temperature drift compensation for microcantilever-based sensors with a piezoresistive full Wheatstone bridge integrated at the clamped ends by subtracting the amplified output voltage of the reference cantilever from the output voltage of the sensing cantilever through a simple temperature compensating circuit. Experiments show that the temperature drift of microcantilever sensors can be significantly reduced by the method.

  13. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    Science.gov (United States)

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  14. Proposed torque optimized behavior for digital speed control of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B.; El-Shewy, H.M.; El-Kholy, M.M. [Zagazig Univ., Dept. of Electrical Engineering, Zagazig (Egypt); Abdel-Kader, F.E. [Menoufyia Univ., Dept. of Electrical Engineering, Menoufyia (Egypt)

    2002-09-01

    In this paper, a control strategy for speed control of induction motors with field orientation is proposed. The proposed method adjusts the output voltage and frequency of the converter to operate the motor at the desired speed with maximum torque per ampere at all load torques keeping the torque angle equal to 90 deg. A comparison between the performance characteristics of a 2 hp induction motor using three methods of speed control is presented. These methods are the proposed method, the direct torque control method and the constant V/f method. The comparison showed that better performance characteristics are obtained using the proposed speed control strategy. A computer program, based on this method, is developed. Starting from the motor parameters, the program calculates a data set for the stator voltage and frequency required to obtain maximum torque per ampere at any motor speed and load torque. This data set can be used by the digital speed control system of induction motors. (Author)

  15. Applications of rule-induction in the derivation of quantitative structure-activity relationships

    Science.gov (United States)

    A-Razzak, Mohammed; Glen, Robert C.

    1992-08-01

    Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.

  16. Low-temperature cooking of beef

    DEFF Research Database (Denmark)

    Mortensen, Louise Mørch

    . The third group showed a different behaviour; in this group time and temperature worked in different directions. Thus, the results showed three dominant behaviours in sensory properties. Two sensory properties, tenderness and juiciness, are very important in cooked meat according to both consumers and chefs......Molecular gastronomy is a new scientific field concerned with domestic and restaurant cooking, perception of food, and other factors relevant for cooking and meals. Most available gastronomic knowledge is based on experience and handed-down procedures from cookbooks and recipes. This inductive way......-time sous-vide-cooking of meat. This method is increasingly used, especially in high-end restaurants, where it receives much praise from leading chefs worldwide. Sous-vide-cooking uses vacuum-packaging of the meat and preparation in thermostated water-baths at temperatures between 54°C and 65°C for periods...

  17. The determination of transition probabilities with an inductively-coupled plasma discharge

    International Nuclear Information System (INIS)

    Nieuwoudt, G.

    1984-03-01

    The 27 MHz inductively-coupled plasma discharge (ICP) is used for the determination of relative transition probabilities of the 451, 459 and 470 nm argon spectral lines. The temperature of the argon plasma is determined with hydrogen as thermometric specie, because of the accurate transition probabilities ( approximately 1% uncertainty) there of. The relative transition probabilities of the specific argon spectral lines were determined by substitution of the measured spectral radiances thereof, together with the hydrogen temperature, in the two-line equation of temperature measurement

  18. Three-phase short circuit calculation method based on pre-computed surface for doubly fed induction generator

    Science.gov (United States)

    Ma, J.; Liu, Q.

    2018-02-01

    This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.

  19. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2001-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... without further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as experimentally on the actual induction motor, both in open-loop current control and when an outer...... speed control loop is closed around the current loop...

  20. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...... is closed around the current loop....

  1. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  2. Labor Induction

    Science.gov (United States)

    f AQ FREQUENTLY ASKED QUESTIONS FAQ154 LABOR, DELIVERY, AND POSTPARTUM CARE Labor Induction • What is labor induction? • Why is labor induced? • What is the Bishop score? • What is “ripening ...

  3. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona

    2016-01-01

    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer...... solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does...... not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both...

  4. Inductive reasoning 2.0.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan

    2018-05-01

    Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.

  5. ANALYSIS OF THE SPECIAL FEATURES OF THE THERMAL PROCESS IN AN INDUCTION GENERATOR AT HIGH SATURATION OF THE MAGNETIC SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Chenchevoi

    2017-06-01

    Full Text Available Purpose. Development of the method for the assessment of the thermal operation modes of an autonomous electrical power system with an induction motor, aiming at improvement of the reliability of electricity supply and the quality of electric energy. Methodology. Induction generator mathematical modeling taking into account the magnetic system saturation was used in the research. A heat model taking into account the excess of the temperature of the induction generator units in the mode of high saturation was developed. The obtained results were compared with the experimental data. Results. The paper contains the solution to the problem of improvement of the mathematical model sand methods for steel losses determination in there search of the operation modes of an autonomous uncontrolled induction generator taking into consideration the properties of the magnetic system in the mode of high saturation. The expression for determination of steel losses in the mode of high saturation is obtained. It enables the assessment of the induction generator thermal condition. Originality. The analytical dependence for the calculation of the steel losses in the mode of magnetic system saturation has been obtained for the first time. Practical value. The obtained expression for the calculation of the steel losses can be used for determination of the admissible time of generator operation at overload. It will allow avoiding broken winding insulation and complete use of the generator overload capacity. As a result, it will reduce possible irregularities of electricity supply due to the generator preliminary cutoff.

  6. Backstepping Strategy for Induction Motor Control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a s......Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping...... with a simple flux observer is used in the design. Assuming known motor parameters the design achieves stability with guaranteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....

  7. Thermal and vibration dynamic analysis of an induction motor using optical fiber Bragg gratings

    Science.gov (United States)

    Sousa, Kleiton d. M.; Dreyer, Uilian J.; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2015-09-01

    In this paper it is presented the results of temperature and vibration measurements in a Three-phase Induction Motor (TIM) running at no-load condition. Vibration and temperature analysis are the most successful techniques used for condition monitoring of induction motors. The vibration is measured using two FBGs installed inside of the motor between two subsequent stator teeth. The motor spectrum of vibration when power is at 60 Hz presents the frequencies 60 Hz, 120 Hz, 180 Hz, and 240 Hz as theoretically expected. For the temperature measurement two FBGs are encapsulated in an alumina tube fixed along the stator. The results show 0.9°C difference between the two FBG caused by the motor ventilation nearer of one FBG. These measurements can be used to determine TIM parameters and still be predictive maintenance tool.

  8. Online induction heating for determination of isotope composition of woody stem water with laser spectrometry: A methods assessment

    Science.gov (United States)

    Lazarus, Brynne E.; Germino, Matthew; Vander Veen, Jessica L.

    2016-01-01

    Application of stable isotopes of water to studies of plant–soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.

  9. Generation of sclerosant foams by mechanical methods increases the foam temperature.

    Science.gov (United States)

    Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh

    2017-08-01

    Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.

  10. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  11. An analysis of the electromagnetic field in multi-polar linear induction system

    International Nuclear Information System (INIS)

    Chervenkova, Todorka; Chervenkov, Atanas

    2002-01-01

    In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)

  12. Two methods to measure granular gas temperature

    Science.gov (United States)

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2017-07-01

    Grains are vibrated so as to achieve a granular gas, here regarded as an archetype of a dissipative non equilibrium steady state (NESS). We report on two distinct and concordant experimental measures of the system effective temperature. To do so, a blade fastened to the shaft of a small DC-motor, immersed in the grains, behaves as a driven 1D Brownian rotator, which is used as both actuator and sensor simultaneously. On the one hand, the Gallavotti-Cohen fluctuation theorem, which involves a measure of the asymmetry of the energy exchanges between the rotator and the NESS reservoir, provides a first effective temperature. On the other hand, the fluctuation-dissipation theorem, which involves the relation between the spontaneous fluctuations and the response to a weak perturbation, defines a second, independent, effective temperature. Both methods, even though they are based on drastically different ideas, give nicely concordant results.

  13. Method of controlling temperature of a thermoelectric generator in an exhaust system

    Science.gov (United States)

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  14. Oral misoprostol versus dinoprostone vaginal tablets for labor induction

    Directory of Open Access Journals (Sweden)

    Khaled Ibrahim Abu El aish

    2013-06-01

    Full Text Available Background: Induction of labour is common in obstetric practice. We conducted this study to find the appropriate and safe drug for labour induction and to compare the safety and efficacy of oral misoprostol and vaginal dinoprostone for labour induction. Methods: In a provisional, prospective and cross-sectional study, one hundred and fifty five singleton cephalic presentation full term pregnancies with medical or obstetric indication for labour induction were allocated in two groups. First group received oral 50 micrograms for nulliparas and low parity group (1-4, and 25micrograms for grand multiparas (≥ 5 misoprostol orally every 6 hours to a maximum of four doses daily. In the second group vaginal tablets of dinoprostone 3mg then 1.5mg for nulliparas and 1.5mg for low parity and grand multiparas groups were inserted in the posterior fornix, every 8 hours. Primary outcome measures were: induction success, induction-delivery interval and number of used doses. Secondary outcome measures included: maternal side effects, caesarean section rate, mode of delivery and neonatal outcome. Data was collected from patient case notes and analyzed using software SPSS (version 13.0 and p-value < 0.05 was used as statistical significance of differences. Results: In our study there were no significant differences in baseline parameters in the two groups nor in the indications for labor induction except misoprostol was used in premature rupture of membrane. Induction of labor succeeded in 123 (79.35% women without other interventions from other methods (80.26%misoprostol group versus 78.5% dinoprostone p=0.492. It was observed that there were no significant differences between the two groups in final outcomes nor in obstetrical complications. There was no significance in differences between misoprostol and dinoprostone groups in induction-delivery interval (15.2 ± 14.5 hours versus 16.4 ± 11.3 hours p=0.6 resp.. Conclusions: This study demonstrated that oral

  15. Induction melting of simulated transuranic waste

    International Nuclear Information System (INIS)

    Tenaglia, R.D.; McCall, J.L.

    1983-06-01

    Coreless induction melting was investigated as a method to melt and consolidate waste material representative of the transuranic waste (TRU) stored at the Idaho National Engineering Laboratory (INEL). Waste material was introduced onto the surface of a molten cast iron bath in a coreless induction furnace. Waste metallics were incorporated into the bath. Noncombustibles formed a slag which was poured or skimmed from the bath surface. Stack sampling was performed to characterize the off-gas and particulate matter evolved. Experimental melting tests were performed for a variety of types of wastes including metallics, chemical sludge, soil, concrete, and glass. Each test also included a representative level of combustible materials consisting of paper, wood, cloth, polyvinyl chloride and polyethylene. Metallic wastes were readily processed by induction melting with a minimum of slag production. Test waste consisting primarily of chemical sludge provided fluid slags which could be poured from the bath surface. Processing of wastes consisting of soil, concrete, or glass was limited by the inability to achieve fluid slags. It appears from test results that coreless induction melting is a feasible method to process INEL-type waste materials if two problems can be resolved. First, slag fluidity must be improved to facilitate the collection of slags formed from soil, concrete, or glass containing wastes. Secondly, refractory life must be further optimized to permit prolonged processing of the waste materials. The use of a chrome-bearing high-alumina refractory was found to resist slag line attach much better than a magnesia refractory, although some attack was still noted

  16. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    Science.gov (United States)

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  17. Inverse estimation of the temperature field within a gas-filled duct section by use of acoustic data

    International Nuclear Information System (INIS)

    Kim, Tae-Kyoon; Ih, Jeong-Guon

    2015-01-01

    Knowledge of the temperature distribution of an in-duct gaseous medium is essential in the monitoring of combustion status. To obtain the temperature distribution, an inverse relationship based on the Radon transform is formulated by using the measured time retardation data from a set of acoustic sensors and actuators. The entire spatial distribution can be obtained by interpolating the estimated discrete temperature data using either a path-based or spaced-based method. An interpolation method then determines the precision of the final imaging result. The characteristics and performance of two interpolation methods are investigated in a simulation study by reconstructing the temperature distribution of a rectangular cross-section. To calculate the temperature field, the path-based interpolation method adopts a direct expression of temperature variation along the propagation path, whereas the space-based interpolation method uses data obtained at predetermined points deployed inside the field. The average reconstruction accuracy of the space-based interpolation for temperature fields with 1 and 4 local maxima is 22% and 183% better than that of path-based interpolation, respectively. Also, the space-based interpolation method is more robust with regard to measurement noise than the path-based interpolation method. (paper)

  18. Modeling of rotational induction heating of nonmagnetic cylindrical billets

    Czech Academy of Sciences Publication Activity Database

    Karban, P.; Mach, F.; Doležel, Ivo

    2013-01-01

    Roč. 219, č. 13 (2013), s. 7170-7180 ISSN 0096-3003 Grant - others:GA ČR(CZ) GAP102/10/0216 Program:GA Institutional support: RVO:61388998 Keywords : induction heating * magnetic field * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.600, year: 2013 http://www.journals.elsevier.com/applied-mathematics- and -computation/

  19. Speed Estimation of Induction Motor Using Model Reference Adaptive System with Kalman Filter

    Directory of Open Access Journals (Sweden)

    Pavel Brandstetter

    2013-01-01

    Full Text Available The paper deals with a speed estimation of the induction motor using observer with Model Reference Adaptive System and Kalman Filter. For simulation, Hardware in Loop Simulation method is used. The first part of the paper includes the mathematical description of the observer for the speed estimation of the induction motor. The second part describes Kalman filter. The third part describes Hardware in Loop Simulation method and its realization using multifunction card MF 624. In the last section of the paper, simulation results are shown for different changes of the induction motor speed which confirm high dynamic properties of the induction motor drive with sensorless control.

  20. Retrofitting adjustable speed drives for large induction motors

    International Nuclear Information System (INIS)

    Wuestefeld, M.R.; Merriam, C.H.; Porter, N.S.

    2004-01-01

    Adjustable speed drives (ASDs) are used in many power plants to control process flow by varying the speed of synchronous and induction motors. In applications where the flow requirements vary significantly, ASDs reduce energy and maintenance requirements when compared with drag valves, dampers or other methods to control flow. Until recently, high horsepower ASDs were not available for induction motors. However, advances in power electronics technology have demonstrated the reliability and cost effectiveness of ASDs for large horsepower induction motors. Emphasis on reducing operation and maintenance costs and increasing the capacity factor of nuclear power plants has led some utilities to consider replacing flow control devices in systems powered by large induction motors with ASDs. ASDs provide a high degree of reliability and significant energy savings in situations where full flow operation is not needed for a substantial part of the time. This paper describes the basic adjustable speed drive technologies available for large induction motor applications, ASD operating experience and retrofitting ASDs to replace the existing GE Boiling Water Reactor recirculation flow control system

  1. Development of Induction Brazing System for Sealing Instrumentation Feed through Part of Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Kahye; Heo, Sungho; Ahn, Sungho; Joung, Changyoung; Son, Kwangjae; Jung, Yangil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    To test the performance of nuclear fuels, coolant needs to be circulated through the test rig installed in the test loop. Because the pressure and temperature of the coolant is 15.5 MPa and 300 .deg. C respectively, coolant sealing is one of the most important processes in fabricating a nuclear fuel test rig. In particular, 15 instrumentation cables installed in a test rig pass through the pressure boundary, and brazing is generally applied as a sealing method. In this study, an induction brazing system has been developed using a high frequency induction heater including a vacuum chamber. For application in the nuclear field, BNi2 should be used as a paste, and optimal process variables for Ni brazing have been found by several case studies. The performance and soundness of the brazed components has been verified by a tensile test, cross section test, and sealing performance test.

  2. Automatic temperature control method of shipping can

    International Nuclear Information System (INIS)

    Nishikawa, Kaoru.

    1992-01-01

    The present invention provides a method of rapidly and accurately controlling the temperature of a shipping can, which is used upon shipping inspection for a nuclear fuel assembly. That is, a measured temperature value of the shipping can is converted to a gas pressure setting value in a jacket of the shipping can by conducting a predetermined logic calculation by using a fuzzy logic. A gas pressure control section compares the pressure setting value of a fuzzy estimation section and the measured value of the gas pressure in the jacket of the shipping can, and conducts air supply or exhaustion of the jacket gas so as to adjust the measured value with the setting value. These fuzzy estimation section and gas pressure control section control the gas pressure in the jacket of the shipping can to control the water level in the jacket. As a result, the temperature of the shipping can is controlled. With such procedures, since the water level in the jacket can be controlled directly and finely, temperature of the shipping can is automatically controlled rapidly and accurately compared with a conventional case. (I.S.)

  3. Heated wire humidification circuit attenuates the decrease of core temperature during general anesthesia in patients undergoing arthroscopic hip surgery.

    Science.gov (United States)

    Park, Sooyong; Yoon, Seok-Hwa; Youn, Ann Misun; Song, Seung Hyun; Hwang, Ja Gyung

    2017-12-01

    Intraoperative hypothermia is common in patients undergoing general anesthesia during arthroscopic hip surgery. In the present study, we assessed the effect of heating and humidifying the airway with a heated wire humidification circuit (HHC) to attenuate the decrease of core temperature and prevent hypothermia in patients undergoing arthroscopic hip surgery under general anesthesia. Fifty-six patients scheduled for arthroscopic hip surgery were randomly assigned to either a control group using a breathing circuit connected with a heat and moisture exchanger (HME) (n = 28) or an HHC group using a heated wire humidification circuit (n = 28). The decrease in core temperature was measured from anesthetic induction and every 15 minutes thereafter using an esophageal stethoscope. Decrease in core temperature from anesthetic induction to 120 minutes after induction was lower in the HHC group (-0.60 ± 0.27℃) compared to the control group (-0.86 ± 0.29℃) (P = 0.001). However, there was no statistically significant difference in the incidence of intraoperative hypothermia or the incidence of shivering in the postanesthetic care unit. The use of HHC may be considered as a method to attenuate intraoperative decrease in core temperature during arthroscopic hip surgery performed under general anesthesia and exceeding 2 hours in duration.

  4. Sensorless-adaptive DTC of double star induction motor

    International Nuclear Information System (INIS)

    Khedher, Adel; Faouzi Mimouni, Mohamed

    2010-01-01

    This paper presents a study of extension of the Direct Torque Control approach (DTC) developed by Takahashi for a double star induction motor (DSIM) and a new DTC-Space vector modulation (DTC-SVM) strategy around two dead-beat controllers. The suggested control is performed by using a sliding mode stator flux observer (SMSFO). This last allow to estimating the mechanical speed and the electromagnetic torque. To adapt in real time the rotor resistance variations according to temperature effect, the sensorless method is performed by using an adaptive algorithm which is based on the Lyapunov stability theory. Moreover, this paper treats the study of the system stability under the new suggested control. The simulation results for various scenarios operation show the high performances of the proposed control in terms of piloting effectiveness, precision, rapidity and stability for the high powers DSIM operating at variable speeds.

  5. Teacher induction

    NARCIS (Netherlands)

    Beijaard, D.; Buitink, J.; Kessels, C.; Peterson, P.; Baker, E.; McGraw, B.

    2010-01-01

    Teacher induction programs are intended to support the professional development of beginning teachers and thereby contribute to the reduction of teacher attrition during the early teaching years. Teacher induction programs are often based upon a deficit model with a focus on the better organization

  6. Process for titanium powders spheroidization by RF induction plasma

    International Nuclear Information System (INIS)

    Gu Zhongtao; Ye Gaoying; Liu Chuandong; Tong Honghui

    2010-01-01

    Spherical titanium (Ti) particles were obtained by the process of heating irregularly shaped Ti powders under the radio frequency induction plasma (RF induction plasma) condition. The effect of feed rate, various dispersion methods and Ti particle size on the spheroidization efficiency was studied. The efficiency of the spheroidization is evaluated through the measurements of the percentage of powder spheroidized based on the electron microscopic observations and the tap density measurement of the processed powder. During the short flight of the particles in the plasma flow, of the order of a few milliseconds, the individual titanium particles of the powder are heated and melt, forming a spherical liquid droplet which upon freezing gives rise to the formation of a perfectly dense spherical solid particle. So RF induction plasma is a promising method for the preparation of spherical titanium powders with high flow ability. (authors)

  7. Alteration of gene expression during the induction of freezing tolerance in Brassica napus suspension cultures

    International Nuclear Information System (INIS)

    Johnson-Flanagan, A.M.; Singh, J.

    1987-01-01

    Brassica napus suspension-cultured cells can be hardened to a lethal temperature for 50% of the sample of -20 0 C in eight days at room temperature with abscisic acid. During the induction of freezing tolerance, changes were observed in the electrophoretic pattern of [ 35 S]methionine labeled polypeptides. In hardening cells, a 20 kilodalton polypeptide was induced on day 2 and its level increased during hardening. The induction of freezing tolerance with nonmaximal hardening regimens also resulted in increases in the 20 kilodalton polypeptide. The 20 kilodalton polypeptide was associated with a membrane fraction enriched in endoplasmic reticulum and was resolved as a single spot by two-dimensional electrophoresis. In vitro translation of mRNA indicate alteration of gene expression during abscisic acid induction of freezing tolerance. The new mRNA encodes a 20 kilodalton polypeptide associated with increased freezing tolerance induced by either abscisic acid or high sucrose. A 20 kilodalton polypeptide was also translated by mRNA isolated from cold-hardened B. napus plants

  8. Induction Motor Parameter Identification Using a Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Omar Avalos

    2016-04-01

    Full Text Available The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation: They frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This paper presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the proposed method uses a recent evolutionary method called the gravitational search algorithm (GSA. Different from most of the existent evolutionary algorithms, the GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the proposed scheme.

  9. Experimental analysis and simulation calculation of the inductances of loosely coupled transformer

    Science.gov (United States)

    Kerui, Chen; Yang, Han; Yan, Zhang; Nannan, Gao; Ying, Pei; Hongbo, Li; Pei, Li; Liangfeng, Guo

    2017-11-01

    The experimental design of iron-core wireless power transmission system is designed, and an experimental model of loosely coupled transformer is built. Measuring the air gap on both sides of the transformer 15mm inductor under the parameters. The feasibility and feasibility of using the finite element method to calculate the coil inductance parameters of the loosely coupled transformer are analyzed. The system was modeled by ANSYS, and the magnetic field was calculated by finite element method, and the inductance parameters were calculated. The finite element method is used to calculate the inductive parameters of the loosely coupled transformer, and the basis for the accurate compensation of the capacitance of the wireless power transmission system is established.

  10. Study on Method of Ultrasonic Gas Temperature Measure Based on FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S H; Xu, F R [Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 (China)

    2006-10-15

    It is always a problem to measure instantaneous temperature of high-temperature and high-pressure gas. There is difficulty for the conventional method of measuring temperature to measure quickly and exactly, and the measuring precision is low, the ability of anti-jamming is bad, etc. So the article introduces a method of measuring burning gas temperature using ultrasonic based on Field-Programmable Gate Array (FPGA). The mathematic model of measuring temperature is built with the relation of velocity of ultrasonic transmitting and gas Kelvin in the ideal gas. The temperature can be figured out by measuring the difference of ultrasonic frequency {delta}f. FPGA is introduced and a high-precision data acquisition system based on digital phase-shift technology is designed. The feasibility of proposed above is confirmed more by measuring pressure of burning gas timely. Experimental result demonstrates that the error is less than 12.. and the precision is heightened to 0.8%.

  11. Selecting the induction heating for normalization of deposited surfaces of cylindrical parts

    Directory of Open Access Journals (Sweden)

    Олена Валеріївна Бережна

    2017-07-01

    Full Text Available The machine parts recovered by electric contact surfacing with metal strip are characterized by high loading of the surface layer, which has a significant impact on their performance. Therefore, the improvement of the operational stability of fast-wearing machine parts through the use of combined treatment technologies is required. Not all the work-piece but just the worn zones are subjected to recovery with electric contact surfacing; the tape thickness and depth of the heat affected zone being not more than a few millimeters. Therefore, the most optimal in this case is the use of a local surface heating method of high frequency currents. This method has economical benefits because there is no need to heat the entire work-piece. The induction heating mode at a constant power density has been proposed and analytically investigated. The ratios that make it possible to determine the main heating parameters ensuring calculation of the inductor for the normalization of the reconstructed surface of cylindrical parts have been given. These parameters are: specific power, frequency and warm-up time. The proposed induction heating mode is intermediate between the quenching and cross-cutting heating and makes it possible to simultaneously obtain the required temperatures at the surface and at the predetermined depth of the heated layer of cylindrical parts with the normalization of their surfaces restored with electric contact surfacing

  12. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    International Nuclear Information System (INIS)

    Lindeman, M. A.; Bonetti, J. A.; Bumble, B.; Day, P. K.; Holmes, W. A.; Kleinsasser, A. W.; Eom, B. H.

    2014-01-01

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devices and present measurements of their sensitivity.

  13. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, M. A., E-mail: mark.a.lindeman@jpl.nasa.gov; Bonetti, J. A.; Bumble, B.; Day, P. K.; Holmes, W. A.; Kleinsasser, A. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Eom, B. H. [California Institute of Technology, Pasadena, California 91125 (United States)

    2014-06-21

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devices and present measurements of their sensitivity.

  14. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  15. Residual stress improvement for pipe weld by means of induction heating pre-flawed pipe

    International Nuclear Information System (INIS)

    Umemoto, T.; Yoshida, K.; Okamoto, A.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) has been found in type 304 stainless steel piping of several BWR plants. It is already well known that IGSCC is most likely to occur when three essential factors, material sensitization, high tensile stress and corrosive environment, are present. If the welding residual stress is sufficiently high (200 to approximately 400 MPa) in the inside piping surface near the welded joint, then it may be one of the biggest contributors to IGSCC. If the residual stress is reduced or reversed by some way, the IGSCC will be effectively mitigated. In this paper a method to improve the residual stress named IHSI (Induction Heating Stress Improvement) is explained. IHSI aims to improve the condition of residual stress in the inside pipe surface using the thermal stress induced by the temperature difference in pipe wall, that is produced when the pipe is heated from the outside surface by an induction heating coil and cooled on the inside surface by water simultaneously. This method becomes more attractive when it can be successfully applied to in-service piping which might have some pre-flaw. In order to verify the validity of IHSI for such piping, some experiments and calculations using finite element method were conducted. These results are mainly discussed in this paper from the view-points of residual stress, flaw behaviour during IHSI and material deterioration. (author)

  16. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  17. Identification of Malicious Web Pages by Inductive Learning

    Science.gov (United States)

    Liu, Peishun; Wang, Xuefang

    Malicious web pages are an increasing threat to current computer systems in recent years. Traditional anti-virus techniques focus typically on detection of the static signatures of Malware and are ineffective against these new threats because they cannot deal with zero-day attacks. In this paper, a novel classification method for detecting malicious web pages is presented. This method is generalization and specialization of attack pattern based on inductive learning, which can be used for updating and expanding knowledge database. The attack pattern is established from an example and generalized by inductive learning, which can be used to detect unknown attacks whose behavior is similar to the example.

  18. Applications of the VLF induction method for studying some volcanic processes of Kilauea volcano, Hawaii

    Science.gov (United States)

    Zablocki, C.J.

    1978-01-01

    The very low-frequency (VLF) induction method has found exceptional utility in studying various volcanic processes of Kilauea volcano, Hawaii because: (1) significant anomalies result exclusively from ionically conductive magma or still-hot intrusions (> 800??C) and the attendant electrolytically conductive hot groundwater; (2) basalt flows forming the bulk of Kilauea have very high resistivities at shallow depths that result in low geologic noise levels and relatively deep depths of investigation (???100 m); and (3) the azimuths to two of the usable transmitters (NLK and NPM) are aligned favorably with most of the principal geologic features. Measurements of the tilt angle and ellipticity of the polarization ellipse of the magnetic field, using a simple, hand-held receiver, have been used to: (1) delineate the lateral extent of shallow, partially solidified lava lakes, active lava tubes, and recent intrusive dikes; (2) obtain an indication of the attitude of some recent dikes; (3) show that many eruptive fissures cool faster than their intrusive counterparts; (4) show that some fumarolic areas are underlain by shallow, highly altered, and conductive zones; and (5) provide control information for interpreting data obtained with other electrical techniques. Complementary measurements of scalar apparent resistivity and surface impedance phase, using a new attachment for the VLF receiver, have substantially increased the utility of VLF studies in Kilauea. They provide better lateral resolution of conductors and reduce the ambiguity in interpretation. Notwithstanding recent advances in theoretical modeling techniques, the excellent quality of some of the data warrants extension of interpretive techniques, particularly for quantitatively characterizing the configuration and conductivity of small-dimension bodies. These VLF induction methods should have wide application to studies of active volcanic regions in other parts of the world and could provide some insights into

  19. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.

    Science.gov (United States)

    Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong

    2012-05-22

    We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  20. Systematic approach to optimal design of induction heating installations for aluminum extrusion process

    Science.gov (United States)

    Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.

    2018-03-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.

  1. High resolution studies of the origins of polyatomic ions in inductively coupled plasma-mass spectrometry, Part I. Identification methods and effects of neutral gas density assumptions, extraction voltage, and cone material

    International Nuclear Information System (INIS)

    Ferguson, Jill Wisnewski; Houk, R.S.

    2006-01-01

    Common polyatomic ions (ArO + , NO + , H 2 O + , H 3 O + , Ar 2 + , ArN + , OH + , ArH + , O 2 + ) in inductively coupled plasma-mass spectrometry (ICP-MS) are identified using high mass resolution and studied using kinetic gas temperatures (T gas ) determined from a dissociation reaction approach. Methods for making accurate mass measurements, confirming ion identifications, and correcting for mass bias are discussed. The effects of sampler and skimmer cone composition and extraction voltage on polyatomic ion formation are also explored. Neutral species densities at several locations in the extraction interface are estimated and the corresponding effects of the T gas value are calculated. The results provide information about the origins of background ions and indicate possible locations for their formation or removal

  2. Recent UK research and the development of high temperature design methods

    International Nuclear Information System (INIS)

    Rose, R.T.; Tomkins, B.; Townley, C.H.A.

    1987-01-01

    The paper outlines recent research and development activities on high temperature design methods and criteria for high temperature components as utilized by liquid metal cooled fast breeder reactors. (orig.)

  3. Similar estimates of temperature impacts on global wheat yield by three independent methods

    DEFF Research Database (Denmark)

    Liu, Bing; Asseng, Senthold; Müller, Christoph

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produ......-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.......The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce...... similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries...

  4. Influence of Agrobacterium rhizogenes on induction of hairy roots for ...

    African Journals Online (AJOL)

    Harish Tomar

    2012-05-01

    May 1, 2012 ... Artemisinin production from plant tissue cultures and induction of hairy roots in vitro have been ... factors like temperature, pH, cultivation media and carbon source on growth and artemisinin ... estimated 243 million cases led to 863,000 deaths in ... currently the only source of the drug and even modest.

  5. Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae

    Science.gov (United States)

    McIsaac, R. Scott; Silverman, Sanford J.; McClean, Megan N.; Gibney, Patrick A.; Macinskas, Joanna; Hickman, Mark J.; Petti, Allegra A.; Botstein, David

    2011-01-01

    We describe the development and characterization of a system that allows the rapid and specific induction of individual genes in the yeast Saccharomyces cerevisiae without changes in nutrients or temperature. The system is based on the chimeric transcriptional activator Gal4dbd.ER.VP16 (GEV). Upon addition of the hormone β-estradiol, cytoplasmic GEV localizes to the nucleus and binds to promoters containing Gal4p consensus binding sequences to activate transcription. With galactokinase Gal1p and transcriptional activator Gal4p absent, the system is fast-acting, resulting in readily detectable transcription within 5 min after addition of the inducer. β-Estradiol is nearly a gratuitous inducer, as indicated by genome-wide profiling that shows unintended induction (by GEV) of only a few dozen genes. Response to inducer is graded: intermediate concentrations of inducer result in production of intermediate levels of product protein in all cells. We present data illustrating several applications of this system, including a modification of the regulated degron method, which allows rapid and specific degradation of a specific protein upon addition of β-estradiol. These gene induction and protein degradation systems provide important tools for studying the dynamics and functional relationships of genes and their respective regulatory networks. PMID:21965290

  6. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Yaron; Twig, Ygal; Blank, Aharon [Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2015-02-23

    Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity. This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.

  7. Inverter-Current-Feedback Resonance-Suppression Method for LCL-Type DG System to Reduce Resonance-Frequency Offset and Grid-Inductance Effect

    DEFF Research Database (Denmark)

    Zhou, Leming; Zhou, Xiaoping; Chen, Yandong

    2018-01-01

    For the LCL-type grid-connected distributed generation system, the grid-current-feedback active damping (GCFAD) methods have a conflict between the resonance-suppression ability and harmonic-currents amplification. For this, an inverter-current-feedback reso-nance-suppression (ICFRS) method without...... additional sensors is proposed to reduce resonance-frequency offset and grid-inductance effect due to its unattenuated damping characteristic under high-frequency bandwidth. By analyzing two types of equivalent impedance models of ICFRS and GCFAD with a high-pass filter (HPF), GCFAD can suppress...

  8. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming.

    Science.gov (United States)

    Heide, O M

    2003-09-01

    The effect of temperature during short-day (SD) dormancy induction was examined in three boreal tree species in a controlled environment. Saplings of Betula pendula Roth, B. pubescens Ehrh. and Alnus glutinosa (L.) Moench. were exposed to 5 weeks of 10-h SD induction at 9, 15 and 21 degrees C followed by chilling at 5 degrees C for 40, 70, 100 and 130 days and subsequent forcing at 15 degrees C in a 24-h photoperiod for 60 days. In all species and with all chilling periods, high temperature during SD dormancy induction significantly delayed bud burst during subsequent flushing at 15 degrees C. In A. glutinosa, high temperature during SD dormancy induction also significantly increased the chilling requirement for dormancy release. Field experiments at 60 degrees N with a range of latitudinal birch populations revealed a highly significant correlation between autumn temperature and days to bud burst in the subsequent spring. September temperature alone explained 20% of the variation between years in time of bud burst. In birch populations from 69 and 71 degrees N, which ceased growing and shed their leaves in August when the mean temperature was 15 degrees C, bud burst occurred later than expected compared with lower latitude populations (56 degrees N) in which dormancy induction took place more than 2 months later at a mean temperature of about 6 degrees C. It is concluded that this autumn temperature response may be important for counterbalancing the potentially adverse effects of higher winter temperatures on dormancy stability of boreal trees during climate warming.

  9. Induction Thermography for Surface Crack Detection and Depth Determination

    Directory of Open Access Journals (Sweden)

    Beate Oswald-Tranta

    2018-02-01

    Full Text Available In the last few years, induction thermography has been established as a non-destructive testing method for localizing surface cracks in metals. The sample to be inspected is heated with a short induced electrical current pulse, and the infrared camera records—during and after the heating pulse—the temperature distribution at the surface. Transforming the temporal temperature development for each pixel to phase information makes not only highly reliable detection of the cracks possible but also allows an estimation of its depth. Finite element simulations were carried out to investigate how the phase contrast depends on parameters such as excitation frequency, pulse duration, material parameters, crack depth, and inclination angle of the crack. From these results, generalized functions for the dependency of the phase difference on all these parameters were derived. These functions can be used as an excellent guideline as to how measurement parameters should be optimized for a given material to be able to detect cracks and estimate their depth. Several experiments on different samples were also carried out, and the results compared with the simulations showed very good agreement.

  10. Research on Efficiency of Contactless Charging System based on Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Chen Jianshu

    2016-01-01

    Full Text Available For the efficiency problem of contactless charging in type of electromagnetic induction, this paper establishes a mathematical model of contactless charging in type of electromagnetic induction and the theoretical derivation. This contactless charging simulation model is founded by Matlab/Simulink, which uses the frequency of PWM generator, the mutual inductance value of the coil and load resistance of RL to simulate some conditions, such as the working frequency in practical work, the distance of coil, whether the coils are directed at the central, and changing of loads. Then through the influence of the changing frequency, load and mutual inductance, contactless charging in type of electromagnetic induction is analyzed. By the whole simulation experiment on contactless charging, the theory deduced from the mathematical model is verified, and the method to improve inductive contactless charging is proved.

  11. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  12. Effect of coupling currents on the dynamic inductance during fast transient in superconducting magnets

    Directory of Open Access Journals (Sweden)

    V. Marinozzi

    2015-03-01

    Full Text Available We present electromagnetic models aiming to calculate the variation of the inductance in a magnet due to dynamic effects such as the variation of magnetization or the coupling with eddy currents. The models are studied with special regard to the calculation of the inductance in superconducting magnets which are affected by interfilament coupling currents. The developed models have been compared with experimental data coming from tests of prototype Nb_{3}Sn magnets designed for the new generation of accelerators. This work is relevant for the quench protection study of superconducting magnets: quench is an unwanted event, when part of the magnet becomes resistive; in these cases, the current should be discharged as fast as possible, in order to maintain the resistive zone temperature under a safe limit. The magnet inductance is therefore a relevant term for the description of the current discharge, especially for the high-field new generation superconducting magnets for accelerators, and this work shows how to calculate the correct value during rapid current changes, providing a mean for simulations of the reached temperature.

  13. Beginning Teachers' Perception of Their Induction into the Teaching Profession

    Science.gov (United States)

    Kidd, Lynda; Brown, Natalie; Fitzallen, Noleine

    2015-01-01

    Beginning teachers' induction into the teaching profession needs to be personally and professionally fulfilling, which is often not the case. The main objective of this mixed method study was to gain a deeper understanding of beginning teachers' experiences and the perceptions of their induction into the teaching profession and the support they…

  14. An Efficient Power Regeneration and Drive Method of an Induction Motor by Means of an Optimal Torque Derived by Variational Method

    Science.gov (United States)

    Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji

    When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.

  15. Studies of non-inductive current drive in the CDX-U tokamak

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1993-01-01

    Two types of novel, non-inductive current drive concepts for starting-up and maintaining tokamak discharges, dc-helicity injection and internally-generated pressure-driven currents, have been developed on the CDX-U tokamak. To study the equilibrium and transport of these plasmas, a full set of magnetic diagnostics was installed. By applying a finite element method and a least squares error fitting technique, internal plasma current distributions are reconstructed from the measurements. Electron density distributions were obtained from 2 mm interferometer measurements by a similar least squares error technique utilizing magnetic flux configurations obtained by the magnetic analysis. Neoclassical pressure-driven currents in ECH plasmas are modeled with the reconstructed magnetic structure, using the electron density distribution and the electron temperature profile measured by a Langmuir probe. In the dc-helicity injection scheme, the need to increase injection current and maintain plasma equilibrium restricts possible arrangements. Several injection configurations were investigated, with the best found to be outside injection with a single divertor configuration, where the cathode is placed at the low field side of the x-point. Both pressure-driven and dc-helicity injected tokamaks show the importance of plasma equilibrium in obtaining high plasma current. Programmed vertical field operation has proven to be very important in achieving high plasma current. These non-inductive current drive techniques show great potential as efficient current drive methods for future steady-state and/or long-pulse fusion reactors

  16. Induction heating using induction coils in series-parallel circuits

    Science.gov (United States)

    Matsen, Marc Rollo; Geren, William Preston; Miller, Robert James; Negley, Mark Alan; Dykstra, William Chet

    2017-11-14

    A part is inductively heated by multiple, self-regulating induction coil circuits having susceptors, coupled together in parallel and in series with an AC power supply. Each of the circuits includes a tuning capacitor that tunes the circuit to resonate at the frequency of AC power supply.

  17. Phase inductance estimation for switched reluctance motor using adaptive neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Daldaban, Ferhat; Ustkoyuncu, Nurettin; Guney, Kerim

    2006-01-01

    A new method based on an adaptive neuro-fuzzy inference system (ANFIS) for estimating the phase inductance of switched reluctance motors (SRMs) is presented. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the ANFIS. The rotor position and the phase current of the 6/4 pole SRM are used to predict the phase inductance. The phase inductance results predicted by the ANFIS are in excellent agreement with the results of the finite element method

  18. Risk Factors for Cesarean Delivery following Labor Induction in Multiparous Women

    Directory of Open Access Journals (Sweden)

    Corine J. Verhoeven

    2013-01-01

    Full Text Available Objective. To identify potential risk factors for cesarean delivery following labor induction in multiparous women at term. Methods. We conducted a retrospective case-control study. Cases were parous women in whom the induction of labor had resulted in a cesarean delivery. For each case, we used the data of two successful inductions as controls. Successful induction was defined as a vaginal delivery after the induction of labor. The study was limited to term singleton pregnancies with a child in cephalic position. Results. Between 1995 and 2010, labor was induced in 2548 parous women, of whom 80 had a cesarean delivery (3%. These 80 cases were compared to the data of 160 parous women with a successful induction of labor. In the multivariate analysis history of preterm delivery (odds ratio (OR 5.3 (95% CI 1.1 to 25, maternal height (OR 0.87 (95% CI 0.80 to 0.95 and dilatation at the start of induction (OR 0.43 (95% CI 0.19 to 0.98 were associated with failed induction. Conclusion. In multiparous women, the risk of cesarean delivery following labor induction increases with previous preterm delivery, short maternal height, and limited dilatation at the start of induction.

  19. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  20. A physical method to incorporate parasitic elements in a circuit simulator based on the partial inductance concept

    NARCIS (Netherlands)

    Evenblij, B.H.; Ferreira, J.A.

    2001-01-01

    In switching Power Electronics circuits inductive parasitics of wiring and components contribute substantially to the current and voltage waveforms. This article addresses the theoretical basis as well as the implementation and validation of the incorporation of these inductances in a computerised

  1. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction

    OpenAIRE

    Xia, Rongmin; Li, Xu; He, Bin

    2007-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging tissue electrical impedance properties by integrating magnetic induction and ultrasound measurements. In the present study, we have developed a focused cylindrical scanning mode MAT-MI system and the corresponding reconstruction algorithms. Using this system, we demonstrated 3-dimensional MAT-MI imaging in a physical phantom, with cylindrical scanning combined with ultrasound focusing, and ...

  2. Loss of life of induction motors under various operating anomalies

    International Nuclear Information System (INIS)

    Chugh, Tarun; Varde, P.V.

    2016-01-01

    Reliability studies conducted to study the various failure modes of all induction motors shows that one of failure modes i.e. winding failure is quite prevalent and accounts for high percentage of failures of motors. Thus, there is a pivotal need to understand the theory of winding failure and know how it can be prognosticated based on the input parameters, current operating environment and maintenance history of a motor. This paper defines loss of motor life as the loss of stator winding insulation life due to thermal and environmental stresses. From the thermal point of view, the stator winding insulation is the weakest part of a squirrel cage induction motor, and equations are developed to estimate the insulation Iife and hence the motor life. In this regard, an integrated model consisting of an electrical model, thermal model and insulation ageing model is developed to evaluate the effect of various anomalies/stressors e.g. overvoltage and voltage unbalance on the life of a motor. This model is used to quantify the loss of life of a 2.3 kW, 415 V induction motor. The electrical model is developed by conducting Open Circuit and Blocked Rotor Test on the motor and thereby deriving its equivalent circuit. Using the model, the stator winding losses are calculated and given as an input to the thermal model to find the temperature rise in the stator winding. The steady state temperature of the stator winding is given as an input to the insulation aging model which predicts the loss of life. This work presents a simple technique for calculating thermal parameters based on motor testing rather than from motor design data. The insulation ageing model is developed based on Eyring Equation considering temperature and humidity as stressors. (author)

  3. Loss and Inductance Investigation in Superconducting Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Tønnesen, Ole; Træholt, Chresten

    1999-01-01

    An important parameter in the design and optimization of a superconducting cable conductor is the control of the current distribution among single tapes and layers. This distribution is to a large degree determined by inductances, since the resistances are low. The self and mutual inductances...... of transport current and current distribution.This presentation is based on a number of experiments performed on prototype superconducting cable conductors. The critical current (1uV/cm) of the conductor at 77K was 1590 A (cable #1) and 3240 A (cable #2) respectively.At an rms current of 2 kA (50 Hz) the AC......-loss was measured on cable #2 to 0.6W/mxphase. This is, to our knowledge, the lowest AC-loss (at 2kA and 77K) of a high temperature superconducting cable conductor reported so far....

  4. Ground temperature estimation through an energy balance method

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X. [Manitoba Univ., Winnipeg, MB (Canada); Naterer, G.F. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada)

    2007-07-01

    A joint research project by the University of Manitoba and the University of Ontario Institute of Technology (UOIT) is currently examining ground thermal responses to heat conduction within power transmission line towers. The aim of the study is to develop thermal protection alternatives for the freezing and thawing conditions that typically lead to the tilting and heaving of tower foundations. The analysis presented in this paper focused on the temperatures of areas undisturbed by tower foundations. The ground was approximated as a semi-infinite homogenous system with a sinusoidal variation of ground temperature and constant thermophysical properties. Solar radiation and air temperature data were used to develop the sinusoidal profiles. The far-field temperature was modeled using a 1-D transient heat conduction equation. Geothermal gradients were neglected. The energy balance method was used for boundary conditions at the ground surface. Energy components included heat conduction through the ground; heat convection due to wind; net radiative heat transfer; and latent heat transfer due to evaporation. Newton's law of cooling was used to model the convective heat transfer. The model was used to predict ground temperature under varying conditions. Monthly variations of temperature at 2 meters depth were calculated using different evaporation fractions. The model was also used to estimate summer ground temperature at a site in Manitoba. Air temperature, wind velocity and solar radiation data were used. It was suggested that further research is needed to consider the effects of freezing, thawing, and winter snow cover. 2 refs., 1 tab., 2 figs.

  5. Fracture mapping in geothermal fields with long-offset induction logging

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro [and others

    1997-12-31

    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orienting, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed in a NEDO project, {open_quotes}Deep-Seated Geothermal Reservoirs,{close_quotes} and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have source-receiver separations of 1 m, this device has multiple sensors with separations up to 8 m, allowing for deeper penetration and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This, in turn, allows for accurate projection of these structures into the space between wells. In this paper, we describe the design of the tool and show results of a performance test carried out in an oil-field steam flood. Data from vertical sensors are compared to conventional logging results and indicate the recent formation of a low-resistivity zone associated with high temperatures due to steam flood breakthrough. Horizontal field data indicate that the high-temperature zone is irregular in the vicinity of the borehole and more pronounced closest to the steam injector.

  6. Precise derating of three phase induction motors with unbalanced voltages

    International Nuclear Information System (INIS)

    Faiz, Jawad; Ebrahimpour, H.

    2007-01-01

    Performance analysis of three phase induction motors under supply voltage unbalance conditions is normally conducted using the well-known symmetrical components analysis. In this analysis, the voltage unbalance level at the terminals of the machine is assessed by means of the NEMA or IEC definitions. Both definitions lead to a relatively large error in predicting the performance of a machine. A method has recently been proposed in which, in addition to the voltage unbalance factor (VUF), the phase angle has been taken into account in the analysis. This means that the voltage unbalance factor is regarded as a complex value. This paper shows that although the use of the complex VUF reduces the computational error considerably, it is still high. This is proven by evaluating the derating factor of a three phase induction motor. A method is introduced to determine the derating factor precisely using the complex unbalance factor for an induction motor operating under any unbalanced supply condition. A practical case for derating of a typical three phase squirrel cage induction motor supplied by an unbalanced voltage is studied in the paper

  7. Speed Synchronization of Multi Induction Motors with Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    HACHEMI Glaoui

    2013-05-01

    Full Text Available A continuous web winding system is a large-scale, complex interconnected dynamic system with numerous tension zones to transport the web while processing it. There are two control schemes for large-scale system control: the centralized scheme and the decentralized scheme. Centralized control is the traditional control method, which considers all the information about the system to be a single dynamic model and design a control system for this model. Aspeed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed controlstrategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designedcontroller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.

  8. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...

  9. Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2008-01-01

    ) synchronous motors. This paper presents an AC+DC measurement method for determination of the d-axis and q-axis high frequency inductance profiles of SMPM synchronous motors. This method uses DC currents to set a desired magnetic working point on the motor laminations, and then superimpose balanced small AC......Accurate knowledge of the high frequency inductance profile plays an important role in many designs of sensorless controllers for Surface inductance. A special algorithm is used to decouple the cross-coupling effects between the d-axis and the q-axis, which allows Mounted Permanent Magnet (SMPM...... signals to measure the incremental a separate determination of the d, q inductance profiles as functions of the d, q currents. Experimental results on a commercial SMPM motor using the proposed method are presented in this paper....

  10. Fault Diagnosis of Low-Power Three-Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    Gedzurs Aleksejs

    2016-12-01

    Full Text Available An Induction motor reliability survey at an egg processing plant shows that almost 50% of the total motor failures are fan induction motors. Visual investigations of the faulty fan motors show that the main cause of the induction motor failure is air gap eccentricity. In this study, experimental tests are performed on a 1.1kW three-phase induction motor to detect air gap eccentricity and overheating of the induction motor. Heating tests show that end shield housing temperature reaches 100°C with blocked air flow from the fan, which can reduce the lifespan of the bearing. Dimension measurements of the end shield housing show that the dimensions of both tested motors back-end shields are larger than ISO tolerance grade limit. It leads to a loose fit between the housing and bearing, causing air gap eccentricity. Also, both motor back end shield housing has an out-of-round condition leading to an unbalanced magnetic pull. To detect the air gap eccentricity caused by too loose of a fit between housing bore and bearing, current Park’s vector approach is used. To measure three phase current, Hall Effect current transducers, a digital oscilloscope is used and Matlab software to process the measurement data. Results show that Park’s vector approach can be used to detect the air gap eccentricity caused by too loose a fit between bearing and housing. Therefore, the Park’s vector approach can be used to diagnose air gap eccentricity and analyse the type of the air gap eccentricity.

  11. Detection of a static eccentricity fault in a closed loop driven induction motor by using the angular domain order tracking analysis method

    Science.gov (United States)

    Akar, Mehmet

    2013-01-01

    In this study, a new method was presented for the detection of a static eccentricity fault in a closed loop operating induction motor driven by inverter. Contrary to the motors supplied by the line, if the speed and load, and therefore the amplitude and frequency, of the current constantly change then this also causes a continuous change in the location of fault harmonics in the frequency spectrum. Angular Domain Order Tracking analysis (AD-OT) is one of the most frequently used fault diagnosis methods in the monitoring of rotating machines and the analysis of dynamic vibration signals. In the presented experimental study, motor phase current and rotor speed were monitored at various speeds and load levels with a healthy and static eccentricity fault in the closed loop driven induction motor with vector control. The AD-OT method was applied to the motor current and the results were compared with the traditional FFT and Fourier Transform based Order Tracking (FT-OT) methods. The experimental results demonstrate that AD-OT method is more efficient than the FFT and FT-OT methods for fault diagnosis, especially while the motor is operating run-up and run-down. Also the AD-OT does not incur any additional cost for the user because in inverter driven systems, current and speed sensor coexist in the system. The main innovative parts of this study are that AD-OT method was implemented on the motor current signal for the first time.

  12. Analytical investigation on cell temperature control method of planar solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Y.; Ito, N.; Nakajima, T.; Urata, A. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi (Japan)

    2006-09-15

    The solid oxide fuel cell (SOFC) has a problem in durability of the ceramics used as its cell materials because its operating temperature is very high and the cell temperature fluctuation induces thermal stress in the ceramics. The cell temperature distribution in the SOFC, therefore, should be kept as constant as possible during variable load operation through control of the average current density in the cell. Considering this fact, the authors numerically optimize the operating parameters of air utilization and the inlet gas temperature of the planar SOFC by minimizing the cell temperature shift from its nominal value and propose a new cell temperature control method that adopts these optimum operating parameters for each average current density. The effectiveness of the proposed method is very high and the temperature variation is suppressed to a very low level without lowering the single cell voltage for both the co-flow and counter-flow type cells, indicating that the proposed cell temperature control method makes variable load operation of the planar SOFC possible. (author)

  13. Prediction of human core body temperature using non-invasive measurement methods.

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  14. Novel rotating characteristics of a squirrel-cage-type HTS induction/synchronous motor

    International Nuclear Information System (INIS)

    Nakamura, T; Ogama, Y; Miyake, H; Nagao, K; Nishimura, T

    2007-01-01

    This paper describes the rotating characteristics of a high-T c superconducting induction/synchronous motor, which possesses both asynchronous and synchronous torques even though its structure is exactly the same as the squirrel-cage-type induction motor. Two kinds of Bi-2223/Ag multifilamentary tapes were utilized for the secondary windings. A commercialized motor (1.5 kW) was subjected to this study. A conventional (normal conducting) stator (three-phase, four-pole) was directly utilized, and only the squirrel-cage windings were replaced with the superconducting tapes. The tests were performed after the fabricated motor was immersed in liquid nitrogen. The operating temperature was also varied by pumping out the liquid nitrogen. It is shown that the motor is successfully synchronized for the temperature range from 65 to 77 K. Detailed discussions for such novel rotating characteristics are reported based on the electrical equivalent circuit

  15. Risk Factors for Cesarean Delivery following Labor Induction in Multiparous Women

    NARCIS (Netherlands)

    Verhoeven, Corine J.; van Uytrecht, Cedric T.; Porath, Martina M.; Mol, Ben Willem J.

    2013-01-01

    Objective. To identify potential risk factors for cesarean delivery following labor induction in multiparous women at term. Methods. We conducted a retrospective case-control study. Cases were parous women in whom the induction of labor had resulted in a cesarean delivery. For each case, we used the

  16. Studies on the effective methods for induction of mutations of vegetatively propagated plants by the use of the gamma field

    International Nuclear Information System (INIS)

    Nakajima, Kenji

    1977-01-01

    In the gamma field for the whole plant irradiation of vegetatively propagated plants, artificial induction of mutations in rose, tea, mulberry and chrysanthemum has been studied since 1962. The studies include induction of wholly mutated shoots (sports), irradiation techniques for mutation induction, usage of cultivars in mutation breeding and re-treatment of induced mutations with gamma ray. The results so far attained are described as follows: effects of the cutting back treatment on the induction of sports; induction of radiation injuries and mutations by whole plant irradiation; and re-treatment of induced mutants with gamma ray. (Mori, K.)

  17. Modelling imperfect adherence to HIV induction therapy

    Directory of Open Access Journals (Sweden)

    Smith? Robert J

    2010-01-01

    Full Text Available Abstract Background Induction-maintenance therapy is a treatment regime where patients are prescribed an intense course of treatment for a short period of time (the induction phase, followed by a simplified long-term regimen (maintenance. Since induction therapy has a significantly higher chance of pill fatigue than maintenance therapy, patients might take drug holidays during this period. Without guidance, patients who choose to stop therapy will each be making individual decisions, with no scientific basis. Methods We use mathematical modelling to investigate the effect of imperfect adherence during the inductive phase. We address the following research questions: 1. Can we theoretically determine the maximal length of a possible drug holiday and the minimal number of doses that must subsequently be taken while still avoiding resistance? 2. How many drug holidays can be taken during the induction phase? Results For a 180 day therapeutic program, a patient can take several drug holidays, but then has to follow each drug holiday with a strict, but fairly straightforward, drug-taking regimen. Since the results are dependent upon the drug regimen, we calculated the length and number of drug holidays for all fifteen protease-sparing triple-drug cocktails that have been approved by the US Food and Drug Administration. Conclusions Induction therapy with partial adherence is tolerable, but the outcome depends on the drug cocktail. Our theoretical predictions are in line with recent results from pilot studies of short-cycle treatment interruption strategies and may be useful in guiding the design of future clinical trials.

  18. Review of induction linac studies

    International Nuclear Information System (INIS)

    Keefe, D.

    1984-01-01

    The three major experimental activities are as follows: (1) The Single-Beam Transport Experiment (SBTE): A quadrupole transport system consisting of 5 matching lenses and 41 identical F-D lens pairs to test the stability, or otherwise, of transport of a high-current Cs +1 beam over a long distance; (2) The Multiple-Beam Experiment (MBE): An arrangement of long-pulse induction accelerating units between which are placed multiple-beam focussing arrays to transport 16 independent beams threading the same accelerating structure. The experiment is designed to simulate on a small scale as many as possible of the features to be encountered in the HTE; and (3) The High Temperature Experiment

  19. Induction hardening of tool steel for heavily loaded aircraft engine components

    Directory of Open Access Journals (Sweden)

    Rokicki P.

    2017-03-01

    Full Text Available Induction hardening is an innovative process allowing modification of the materials surface with more effective, cheaper and more reproducible way to compare with conventional hardening methods used in the aerospace industry. Unfortunately, high requirements and strict regulation concerning this branch of the industry force deep research allowing to obtain results that would be used for numerical modelling of the process. Only by this way one is able to start the industrial application of the process. The main scope of presented paper are results concerning investigation of microstructure evolution of tool steel after single-frequency induction hardening process. The specimens that aim in representing final industrial products (as heavily loaded gears, were heat- -treated with induction method and subjected to metallographic preparation, after which complex microstructure investigation was performed. The results obtained within the research will be a basis for numerical modelling of the process of induction hardening with potential to be introduced for the aviation industrial components.

  20. Comparison of two setups for induction heating in injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness......, and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper, a new embedded induction heating system is proposed and validated and two different coil setups were tested and compared. An experimental investigation was performed based...

  1. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    Science.gov (United States)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  2. Identifying conditions for inducible protein production in E. coli: combining a fed-batch and multiple induction approach

    Directory of Open Access Journals (Sweden)

    Choi Young J

    2006-08-01

    Full Text Available Abstract Background In the interest of generating large amounts of recombinant protein, inducible systems have been studied to maximize both the growth of the culture and the production of foreign proteins. Even though thermo-inducible systems were developed in the late 1970's, the number of studies that focus on strategies for the implementation at bioreactor scale is limited. In this work, the bacteriophage lambda PL promoter is once again investigated as an inducible element but for the production of green fluorescent protein (GFP. Culture temperature, induction point, induction duration and number of inductions were considered as factors to maximize GFP production in a 20-L bioreactor. Results It was found that cultures carried out at 37°C resulted in a growth-associated production of GFP without the need of an induction at 42°C. Specific production was similar to what was achieved when separating the growth and production phases. Shake flask cultures were used to screen for desirable operating conditions. It was found that multiple inductions increased the production of GFP. Induction decreased the growth rate and substrate yield coefficients; therefore, two time domains (before and after induction having different kinetic parameters were created to fit a model to the data collected. Conclusion Based on two batch runs and the simulation of culture dynamics, a pre-defined feeding and induction strategy was developed to increase the volumetric yield of a temperature regulated expression system and was successfully implemented in a 20-L bioreactor. An overall cell density of 5.95 g DW l-1 was achieved without detriment to the cell specific production of GFP; however, the production of GFP was underestimated in the simulations due to a significant contribution of non-growth associated product formation under limiting nutrient conditions.

  3. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1992-01-01

    The use of 14 N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14 N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14 N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation

  4. Phenomenological modeling of the drying of a thin cloth with a rotating cylinder heated by electromagnetic induction; Modelisation phenomenologique du sechage d'une nappe mince avec un cylindre rotatoire chauffe par induction electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Perez, S. [Universidad de Carabobo, Facultad de Ingenieria, Valencia (Venezuela); Therien, N.; Broadbent, A.D. [Sherbrooke Univ., Faculte de Genie, Quebec (Canada)

    2001-07-01

    A phenomenological model of the evolution of the humidity and temperature during the drying of a thin fiber cloth in contact with a metal surface heated by electric induction is presented. The model calculates also the temperature inside the cylinder with respect to its position. Differential mass and energy statuses are established and the concept of substantial derivative is used to bind the state variables with respect to the time and position. The conduction, convection, radiant heat transfer, thermal induction, and energy transfer due to water vaporization are explicitly considered. The model takes into consideration the disturbances due to the variations of the humidity of the cloth at the input of the process. It calculates the response of the process in front of these disturbances and in front of the rotation speed of the cylinder and the electric power supplied to the system. Multiple experiments performed on a bench test have permitted to characterize the response of the drying process (temperature of the cylinder, humidity and temperature of the cloth) under different combinations of conditions. (J.S.)

  5. Analytical method for estimating the thermal expansion coefficient of metals at high temperature

    International Nuclear Information System (INIS)

    Takamoto, S; Izumi, S; Nakata, T; Sakai, S; Oinuma, S; Nakatani, Y

    2015-01-01

    In this paper, we propose an analytical method for estimating the thermal expansion coefficient (TEC) of metals at high-temperature ranges. Although the conventional method based on quasiharmonic approximation (QHA) shows good results at low temperatures, anharmonic effects caused by large-amplitude thermal vibrations reduces its accuracy at high temperatures. Molecular dynamics (MD) naturally includes the anharmonic effect. However, since the computational cost of MD is relatively high, in order to make an interatomic potential capable of reproducing TEC, an analytical method is essential. In our method, analytical formulation of the radial distribution function (RDF) at finite temperature realizes the estimation of the TEC. Each peak of the RDF is approximated by the Gaussian distribution. The average and variance of the Gaussian distribution are formulated by decomposing the fluctuation of interatomic distance into independent elastic waves. We incorporated two significant anharmonic effects into the method. One is the increase in the averaged interatomic distance caused by large amplitude vibration. The second is the variation in the frequency of elastic waves. As a result, the TECs of fcc and bcc crystals estimated by our method show good agreement with those of MD. Our method enables us to make an interatomic potential that reproduces the TEC at high temperature. We developed the GEAM potential for nickel. The TEC of the fitted potential showed good agreement with experimental data from room temperature to 1000 K. As compared with the original potential, it was found that the third derivative of the wide-range curve was modified, while the zeroth, first and second derivatives were unchanged. This result supports the conventional theory of solid state physics. We believe our analytical method and developed interatomic potential will contribute to future high-temperature material development. (paper)

  6. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; hide

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  7. Similar estimates of temperature impacts on global wheat yield by three independent methods

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Aggarwal, Pramod K.; Alderman, Phillip D.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andy; Deryng, Delphine; Sanctis, Giacomo De; Doltra, Jordi; Fereres, Elias; Folberth, Christian; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Kimball, Bruce A.; Koehler, Ann-Kristin; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry J.; Olesen, Jørgen E.; Ottman, Michael J.; Palosuo, Taru; Prasad, P. V. Vara; Priesack, Eckart; Pugh, Thomas A. M.; Reynolds, Matthew; Rezaei, Ehsan E.; Rötter, Reimund P.; Schmid, Erwin; Semenov, Mikhail A.; Shcherbak, Iurii; Stehfest, Elke; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wall, Gerard W.; Wang, Enli; White, Jeffrey W.; Wolf, Joost; Zhao, Zhigan; Zhu, Yan

    2016-12-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify `method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  8. A new method for compensation of the effect of charging transformer's leakage inductance on PFN voltage regulation in Klystron pulse modulators

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Akhil, E-mail: akhilpatel@rrcat.gov.in; Kale, Umesh; Shrivastava, Purushottam

    2017-04-21

    The Line type modulators have been widely used to generate high voltage rectangular pulses to power the klystron for high power RF generation. In Line type modulator, the Pulse Forming Network (PFN) which is a cascade combination of lumped capacitors and inductors is used to store the electrical energy. The charged PFN is then discharged into a klystron by firing a high voltage Thyratron switch. This discharge generates a high voltage rectangular pulse across the klystron electrodes. The amplitude and phase of Klystron's RF output is governed by the high voltage pulse amplitude. The undesired RF amplitude and phase stability issues arises at the klystron's output due to inter-pulse and during the pulse amplitude variations. To reduce inter-pulse voltage variations, the PFN is required to be charged at the same voltage after every discharge cycle. At present, the combination of widely used resonant charging and deQing method is used to regulate the pulse to pulse PFN voltage variations but the charging transformer's leakage inductance puts an upper bound on the regulation achievable by this method. Here we have developed few insights of the deQing process and devised a new compensation method to compensate this undesired effect of charging transformer's leakage inductance on the pulse to pulse PFN voltage stability. This compensation is accomplished by the controlled partial discharging of the split PFN capacitor using a low voltage MOSFET switch. Theoretically, very high values of pulse to pulse voltage stability may be achieved using this method. This method may be used in deQing based existing modulators or in new modulators, to increase the pulse to pulse voltage stability, without having a very tight bound on charging transformer's leakage inductance. Given a stable charging power supply, this method may be used to further enhance the inter-pulse voltage stability of modulators which employ the direct charging, after replacing the

  9. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  10. Ultra high frequency induction welding of powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, U.; Gulsahin, I.

    2014-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  11. Controller Design for Direct Torque Controlled Space Vector Modulated (DTC-SVM) Induction Motor Drives

    DEFF Research Database (Denmark)

    Zelechowski, M.; Kazmierkowski, M.P.; Blaabjerg, Frede

    2005-01-01

    In this paper two different methods of PI controllers for direct torque controlled-space vector modulated induction motor drives have been studied. The first one is simple method based only on symmetric optimum criterion. The second approach takes into account the full model of induction motor in...

  12. Multifrequency spiral vector model for the brushless doubly-fed induction machine

    DEFF Research Database (Denmark)

    Han, Peng; Cheng, Ming; Zhu, Xinkai

    2017-01-01

    This paper presents a multifrequency spiral vector model for both steady-state and dynamic performance analysis of the brushless doubly-fed induction machine (BDFIM) with a nested-loop rotor. Winding function theory is first employed to give a full picture of the inductance characteristics...... analytically, revealing the underlying relationship between harmonic components of stator-rotor mutual inductances and the airgap magnetic field distribution. Different from existing vector models, which only model the fundamental components of mutual inductances, the proposed vector model takes...... into consideration the low-order space harmonic coupling by incorporating nonsinusoidal inductances into modeling process. A new model order reduction approach is then proposed to transform the nested-loop rotor into an equivalent single-loop one. The effectiveness of the proposed modelling method is verified by 2D...

  13. INDUCTION HEATING IN HISTORY AND DEVELOPMENT. APPLICATION IN MODERN TRANSPORT REPAIRING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yu. Batyhin

    2017-06-01

    Full Text Available The technologies used in repair of vehicles were analyzed in the given paper. The shortcomings of the mechanical repair methods in question can be solved by using induction heating. Analysis of the stages of development and implementation of induction heating in industries showed effective performance of this technology and its opportunities for further improvement. An alternative repair technique, which consists in using induction heating, was proposed.

  14. Turbulent flow and temperature noise simulation by a multiparticle Monte Carlo method

    International Nuclear Information System (INIS)

    Hughes, G.; Overton, R.S.

    1980-10-01

    A statistical method of simulating real-time temperature fluctuations in liquid sodium pipe flow, for potential application to the estimation of temperature signals generated by subassembly blockages in LMFBRs is described. The method is based on the empirical characterisation of the flow by turbulence intensity and macroscale, radial velocity correlations and spectral form. These are used to produce realisations of the correlated motion of successive batches of representative 'marker particles' released at discrete time intervals into the flow. Temperature noise is generated by the radial mixing of the particles as they move downstream from an assumed mean temperature profile, where they acquire defined temperatures. By employing multi-particle batches, it is possible to perform radial heat transfer calculations, resulting in axial dissipation of the temperature noise levels. A simulated temperature-time signal is built up by recording the temperature at a given point in the flow as each batch of particles reaches the radial measurement plane. This is an advantage over conventional techniques which can usually only predict time-averaged parameters. (U.K.)

  15. A fully analytic treatment of resonant inductive coupling in the far field

    Science.gov (United States)

    Sedwick, Raymond J.

    2012-02-01

    For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation.

  16. A Method for Identification of the Equivalent Inductance and Resistance in the Plant Model of Current-Controlled Grid-Tied Converters

    DEFF Research Database (Denmark)

    Vidal, Ana; Yepes, Alejandro G.; Fernandez, Francisco Daniel Freijedo

    2015-01-01

    Precise knowledge of the plant time constant L=R is essential to perform a thorough analysis and design of the current control loop in voltage source converters (VSCs). From the perspective of the current controller dynamics in the low frequency range, such plant time constant is also suitable...... for most cases in which an LCL filter is used. As the loop behavior can be significantly influenced by the VSC working conditions, the effects associated to converter losses should be included in the model, through an equivalent series resistance. In addition, the plant inductance may also present...... important uncertainties with respect to the value of the VSC L/LCL interface filter measured at rated conditions. Thus, in this work, a method is presented to estimate both parameters of the plant time constant, i.e., the equivalent inductance and resistance in the plant model of current-controlled VSCs...

  17. Improved Creep Measurements for Ultra-High Temperature Materials

    Science.gov (United States)

    Hyers, Robert W.; Ye, X.; Rogers, Jan R.

    2010-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.

  18. Methodes d'amas quantiques a temperature finie appliquees au modele de Hubbard

    Science.gov (United States)

    Plouffe, Dany

    Depuis leur decouverte dans les annees 80, les supraconducteurs a haute temperature critique ont suscite beaucoup d'interet en physique du solide. Comprendre l'origine des phases observees dans ces materiaux, telle la supraconductivite, est l'un des grands defis de la physique theorique du solide des 25 dernieres annees. L'un des mecanismes pressentis pour expliquer ces phenomenes est la forte interaction electron-electron. Le modele de Hubbard est l'un des modeles les plus simples pour tenir compte de ces interactions. Malgre la simplicite apparente de ce modele, certaines de ses caracteristiques, dont son diagramme de phase, ne sont toujours pas bien etablies, et ce malgre plusieurs avancements theoriques dans les dernieres annees. Cette etude se consacre a faire une analyse de methodes numeriques permettant de calculer diverses proprietes du modele de Hubbard en fonction de la temperature. Nous decrivons des methodes (la VCA et la CPT) qui permettent de calculer approximativement la fonction de Green a temperature finie sur un systeme infini a partir de la fonction de Green calculee sur un amas de taille finie. Pour calculer ces fonctions de Green, nous allons utiliser des methodes permettant de reduire considerablement les efforts numeriques necessaires pour les calculs des moyennes thermodynamiques, en reduisant considerablement l'espace des etats a considerer dans ces moyennes. Bien que cette etude vise d'abord a developper des methodes d'amas pour resoudre le modele de Hubbard a temperature finie de facon generale ainsi qu'a etudier les proprietes de base de ce modele, nous allons l'appliquer a des conditions qui s'approchent de supraconducteurs a haute temperature critique. Les methodes presentees dans cette etude permettent de tracer un diagramme de phase pour l'antiferromagnetisme et la supraconductivite qui presentent plusieurs similarites avec celui des supraconducteurs a haute temperature. Mots-cles : modele de Hubbard, thermodynamique

  19. Articles for high temperature service and methods for their manufacture

    Science.gov (United States)

    Sarrafi-Nour, Reza; Meschter, Peter Joel; Johnson, Curtis Alan; Luthra, Krishan Lal; Rosenzweig, Larry Steven

    2016-06-14

    An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing alkaline-earth aluminosilicate layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.

  20. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    Science.gov (United States)

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  1. [Determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry].

    Science.gov (United States)

    Lin, Li; Chen, Guang; Chen, Yuhong

    2011-07-01

    A method was established for the determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP/ MS). Alkaline extraction and IC-ICP/MS were applied as the sample pre-treatment method and the detection technique respectively, for iodate and iodide determination. Moreover, high-temperature pyrolysis absorption was adopted as the pre-treatment method for total iodine analysis, which finally converted all the iodine species into iodide and measured the iodide by IC-ICP/MS. The recoveries of iodine for alkaline extraction and high-temperature pyrolysis absorption were 89.6%-97.5% and 95.2%-111.2%, respectively. The results were satisfactory. The detection limit of iodine was 0.010 mg/kg. The iodine and its speciation contents in several kinds of plant samples such as seaweeds, kelp, cabbage, tea leaf and spinach were investigated. It was shown that the iodine in seaweeds mainly existed as organic iodine; while the ones in kelp, cabbage, tea leaf and spinach mainly existed as inorganic iodine.

  2. A Correction Method for UAV Helicopter Airborne Temperature and Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Longqing Fan

    2017-01-01

    Full Text Available This paper presents a correction method for UAV helicopter airborne temperature and humidity including an error correction scheme and a bias-calibration scheme. As rotor downwash flow brings measurement error on helicopter airborne sensors inevitably, the error correction scheme constructs a model between the rotor induced velocity and temperature and humidity by building the heat balance equation for platinum resistor temperature sensor and the pressure correction term for humidity sensor. The induced velocity of a spatial point below the rotor disc plane can be calculated by the sum of the induced velocities excited by center line vortex, rotor disk vortex, and skew cylinder vortex based on the generalized vortex theory. In order to minimize the systematic biases, the bias-calibration scheme adopts a multiple linear regression to achieve a systematically consistent result with the tethered balloon profiles. Two temperature and humidity sensors were mounted on “Z-5” UAV helicopter in the field experiment. Overall, the result of applying the calibration method shows that the temperature and relative humidity obtained by UAV helicopter closely align with tethered balloon profiles in providing measurements of the temperature profiles and humidity profiles within marine atmospheric boundary layers.

  3. An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers

    OpenAIRE

    Ahmet Y. Arabul; Ibrahim Senol; Fatma Keskin Arabul; Mustafa G. Aydeniz; Yasemin Oner; Gokhan Kalkan

    2016-01-01

    In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which ar...

  4. Demonstration of the improved PID method for the accurate temperature control of ADRs

    International Nuclear Information System (INIS)

    Shinozaki, K.; Hoshino, A.; Ishisaki, Y.; Mihara, T.

    2006-01-01

    Microcalorimeters require extreme stability (-bar 10μK) of thermal bath at low temperature (∼100mK). We have developed a portable adiabatic demagnetization refrigerator (ADR) system for ground experiments with TES microcalorimeters, in which we observed residual temperature between aimed and measured values when magnet current was controlled with the standard Proportional, Integral, and Derivative control (PID) method. The difference increases in time as the magnet current decreases. This phenomenon can be explained by the theory of the magnetic cooling, and we have introduced a new functional parameter to improve the PID method. With this improvement, long-term stability of the ADR temperature about 10μK rms is obtained up to the period of ∼15ks down to almost zero magnet current. We briefly describe our ADR system and principle of the improved PID method, showing the temperature control result. It is demonstrated that the controlled time of the aimed temperature can be extended by about 30% longer than the standard PID method in our system. The improved PID method is considered to be of great advantage especially in the range of small magnet current

  5. Numerical analysis of the induction melting process of oxide fuel material

    International Nuclear Information System (INIS)

    Kondala Rao, R.; Mangarjuna Rao, P.; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    For the experimental simulation of Molten Fuel-Coolant Interaction (MFCI) phenomenon under hypothetical core meltdown accident scenario in a nuclear reactor, it is required to generate the molten pool of core materials. For this purpose, a laboratory scale Cold wall Crucible induction melting system has been developed. To optimize the system for efficient and reliable melting process, it is required to have comprehensive knowledge on the heat and mass transfer processes along with electromagnetic process that occur during the melting of core materials. Hence, a 2D axi-symmetric numerical model has been developed using a multiphysics software to simulate the induction melting process. The phase change phenomenon is taken into account by using enthalpy formulation. The experimental data available in literature for magnetic field and flow field are used for model validation. The model predicted temperatures are also in good agreement with experimentally measured values. The validated model has been used to study the induction melting behavior of UO_2 fuel material. (author)

  6. Spectroanalytical investigations on inductively coupled N2/Ar and Ar/Ar high frequency plasmas

    International Nuclear Information System (INIS)

    Malinowski, P.; Mazurkiewicz, M.; Nickel, H.

    1981-03-01

    In order to improve the detection limits of trace elements in corrosion products of metallic materials, the inductively coupled plasma excitation source (ICP) was applied for spectroscopic analysis. Besides optimizing the working conditions for the mentioned materials, the fundamental research clearing the excitation processes in ICP was carried out. Basicly, two plasma systems were investigated: the nitrogen cooled N 2 /Ar- and pure Ar/Ar-plasma. The computed detection limits for 8 chosen elements are between 0.1 and 50 μg ml -1 in both plasmas. The advantage of ion lines was clearly present; in N 2 /Ar-plasma it was larger than in Ar/Ar-plasma. The excitation temperatures measured with help of ArI, FeI and ZnI lines rise with increasing power and decreasing distance from the induction coil. The distribution of Zn excitation temperature in N 2 /Ar-plasma as well as the measured N + 2 rotational and CN vibrational temperatures indicate, that the toroidal structure of Ar/Ar-plasma is not analogue to the N 2 /Ar-plasma. The values of the various excitation temperatures (Ar, Fe, Zn) and the differences between the excitation, vibration, rotation and ionization temperatures (Tsub(i) > Tsub(n) = Tsub(vib) > Tsub(rot)) indicate an absence of thermal equilibrium in the concerned system. (orig.)

  7. Research of Driving Circuit in Coaxial Induction Coilgun

    Directory of Open Access Journals (Sweden)

    Yadong Zhang

    2013-09-01

    Full Text Available Power supply is crucial equipment in coaxial induction coil launcher.Configuration of the driving circuit influences the efficiency of the coil launcher directly.This paper gives a detailed analysis of the properties of the driving circuit construction based on the capacitor source. Three topologies of the driving circuit are compared including oscillation circuit, crowbar circuit and half-wave circuit. It is proved that which circuit has the better efficiency depends on the detailed parameters of the experiment, especially the crowbar resistance. Crowbar resistor regulates not only efficiency of the system, but also temperature rise of the coil. Electromagnetic force (EMF applied on the armature will be another question which influences service condition of the driving circuits. Oscillation circuit and crowbar circuit should apply to the asynchronous induction coil launcher and synchronous induction coil launcher, respectively. Half-wave circuit is seldom used in the experiment. Although efficiency of the half-wave circuit is very high, the speed of the armature is low. A simple independent half-wave circuit is suggested in this paper. Generally speaking, the comprehensive property of crowbar circuit is the most practical in the three typical circuits. Conclusions of the paper could provide guidelines for practice.

  8. A taxonomy of inductive problems.

    Science.gov (United States)

    Kemp, Charles; Jern, Alan

    2014-02-01

    Inductive inferences about objects, features, categories, and relations have been studied for many years, but there are few attempts to chart the range of inductive problems that humans are able to solve. We present a taxonomy of inductive problems that helps to clarify the relationships between familiar inductive problems such as generalization, categorization, and identification, and that introduces new inductive problems for psychological investigation. Our taxonomy is founded on the idea that semantic knowledge is organized into systems of objects, features, categories, and relations, and we attempt to characterize all of the inductive problems that can arise when these systems are partially observed. Recent studies have begun to address some of the new problems in our taxonomy, and future work should aim to develop unified theories of inductive reasoning that explain how people solve all of the problems in the taxonomy.

  9. A theory evaluation of an induction programme

    Directory of Open Access Journals (Sweden)

    Kenrick Hendricks

    2012-07-01

    Full Text Available Orientation: An induction programme is commonly used to help new employees understand their job within the organisation. Research purpose: The main aim of this study was to examine whether or not the programme theory of an induction programme was plausible and would lead to the intended outcomes as described by the programme manager. Motivation for the study: Induction training is one of the most common training programmes in an organisation. However, there is little research to evaluate whether or not the activities of an induction programme will lead to the intended outcomes of such a programme. Research design, approach and method: This theory evaluation used a descriptive design. One hundred and thirteen employees of a media company completed a ten-item, five-point Likert scale which measured their perceptions of the programme’s outcome, identification with the organisation and intentions to stay with the organisation. Main findings: From this theory evaluation it was apparent that an induction programme based on an implausible programme theory could be problematic. An implausible programme theory affects the design of the programme activities and unsuitable activities may not deliver the desired outcomes. Practical/managerial implications: The intention of the evaluation is to guide human resource managers through a process of replacing an implausible programme theory with one that is plausible, and which ensures better alignment of programme activities and outcomes. Contribution/value-add: The evaluators showed how a plausible programme theory could improve programme design. This redesigned induction programme may lead to benefits, such as staff retention and company identification, rather than the vague assumption that it has been conforming to a legal obligation.

  10. Optimization of callus induction and regeneration system for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... 2Plant Biotechnology, NIGAB, National Agriculture Research Center Park Road Islamabad, Pakistan. Accepted 30 June ... transformation. MATERIALS AND METHODS ... Surface sterilization and callus induction. Seeds were ...

  11. Willingness to pay for ovulation induction treatment in case of WHO II anovulation: a study using the contingent valuation method.

    Science.gov (United States)

    Poder, Thomas G; He, Jie; Simard, Catherine; Pasquier, Jean-Charles

    2014-01-01

    To measure the willingness to pay (WTP) of women aged 18-45 years to receive drug treatment for ovulation induction (ie, the social value of normal cycles of ovulation for a woman of childbearing age) in order to feed the debate about the funding of fertility cares. An anonymous questionnaire was used over the general population of Quebec. A total of 136 subjects were recruited in three medical clinics, and 191 subjects through an online questionnaire. THE QUESTIONNAIRE CONSISTED OF THREE PARTS: introduction to the problematic, socioeconomic data collection to determine factors influencing the formation of WTP, and a WTP question using the simple bid price dichotomous choice elicitation technique. The econometric estimation method is based on the "random utility theory." Each subject responding to our questionnaire could express her uncertainty about the answer to our WTP question by choosing the answer "I do not know." The WTP in Canadian dollars of women aged 18-45 years to receive drug treatment for ovulation induction. Results are positive and indicate an average WTP exceeding 4,800 CAD, which is much more than the drug treatment cost. There is no evidence of sample frame bias or avidity bias across the two survey modes that cannot be controlled in econometric estimates. Medical treatment for ovulation induction is highly socially desirable in Quebec.

  12. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  13. Half Bridge Inductive Heater

    Directory of Open Access Journals (Sweden)

    Zoltán GERMÁN-SALLÓ

    2015-12-01

    Full Text Available Induction heating performs contactless, efficient and fast heating of conductive materials, therefore became one of the preferred heating procedure in industrial, domestic and medical applications. During induction heating the high-frequency alternating currents that heat the material are induced by means of electromagnetic induction. The material to be heated is placed inside the time-varying magnetic field generated by applying a highfrequency alternating current to an induction coil. The alternating electromagnetic field induces eddy currents in the workpiece, resulting resistive losses, which then heat the material. This paper describes the design of a power electronic converter circuit for induction heating equipment and presents the obtained results. The realized circuit is a low power half bridge resonant inverter which uses power MOS transistors and adequate driver circuits.

  14. Inductive Reasoning and Writing

    Science.gov (United States)

    Rooks, Clay; Boyd, Robert

    2003-01-01

    Induction, properly understood, is not merely a game, nor is it a gimmick, nor is it an artificial way of explaining an element of reasoning. Proper understanding of inductive reasoning--and the various types of reasoning that the authors term inductive--enables the student to evaluate critically other people's writing and enhances the composition…

  15. Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole

    1996-01-01

    Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck's radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single...... of blackbody sources are estimated with an uncertainty of 0.2-2 K. The method is demonstrated for measuring the spectral emissivity of a brass specimen and an oxidized nickel specimen. (C) 1996 Optical Society of America...... measurement at a known sample temperature, for example, at ambient temperature. The temperature of the sample surface can be measured rather easily at ambient temperature. The spectrum at ambient temperature is used to eliminate background effects from spectra as measured at other surface temperatures...

  16. [Mood induction procedures: a critical review].

    Science.gov (United States)

    Gilet, A-L

    2008-06-01

    For a long period in the history of psychological research, emotion and cognition have been studied independently, as if one were irrelevant to the other. The renewed interest of researchers for the study of the relations between cognition and emotion has led to the development of a range of laboratory methods for inducing temporary mood states. This paper aims to review the main mood induction procedures allowing the induction of a negative mood as well as a positive mood, developed since the pioneer study of Schachter and Singer [Psychol Rev 69 (1962) 379-399] and to account for the usefulness and problems related to the use of such techniques. The first part of this paper deals with the detailed presentation of some of the most popular mood induction procedures according to their type: simple (use of only one mood induction technique) or combined (association of two or more techniques at once). The earliest of the modern techniques is the Velten Mood Induction Procedure [Behav Res Ther 6 (1968) 473-482], which involves reading aloud sixty self-referent statements progressing from relative neutral mood to negative mood or dysphoria. Some researchers have varied the procedure slightly by changing the number of the statements [Behav Res Ther 21 (1983) 233-239, Br J Clin Psychol 21 (1982) 111-117, J Pers Soc Psychol 35 (1977) 625-636]. Various other mood induction procedures have been developed including music induction [Cogn Emotion 11 (1997) 403-432, Br J Med Psychol 55 (1982) 127-138], film clip induction [J Pers Soc Psychol 20 (1971) 37-43, Cogn Emotion 7 (1993) 171-193, Rottenberg J, Ray RR, Gross JJ. Emotion elicitation using films. In: Coan JA, Allen JJB, editors. The handbook of emotion elicitation and assessment. New York: Oxford University Press, 2007], autobiographical recall [J Clin Psychol 36 (1980) 215-226, Jallais C. Effets des humeurs positives et négatives sur les structures de connaissances de type script. Thèse de doctorat non publi

  17. A comparison of sputum induction methods: ultrasonic vs compressed-air nebulizer and hypertonic vs isotonic saline inhalation.

    Science.gov (United States)

    Loh, L C; Eg, K P; Puspanathan, P; Tang, S P; Yip, K S; Vijayasingham, P; Thayaparan, T; Kumar, S

    2004-03-01

    Airway inflammation can be demonstrated by the modem method of sputum induction using ultrasonic nebulizer and hypertonic saline. We studied whether compressed-air nebulizer and isotonic saline which are commonly available and cost less, are as effective in inducing sputum in normal adult subjects as the above mentioned tools. Sixteen subjects underwent weekly sputum induction in the following manner: ultrasonic nebulizer (Medix Sonix 2000, Clement Clarke, UK) using hypertonic saline, ultrasonic nebulizer using isotonic saline, compressed-air nebulizer (BestNeb, Taiwan) using hypertonic saline, and compressed-air nebulizer using isotonic saline. Overall, the use of an ultrasonic nebulizer and hypertonic saline yielded significantly higher total sputum cell counts and a higher percentage of cell viability than compressed-air nebulizers and isotonic saline. With the latter, there was a trend towards squamous cell contaminations. The proportion of various sputum cell types was not significantly different between the groups, and the reproducibility in sputum macrophages and neutrophils was high (Intraclass correlation coefficient, r [95%CI]: 0.65 [0.30-0.91] and 0.58 [0.22-0.89], p compressed-air nebulizers and isotonic saline. We conclude that in normal subjects, although both nebulizers and saline types can induce sputum with reproducible cellular profile, ultrasonic nebulizers and hypertonic saline are more effective but less well tolerated.

  18. The effect of warmed inspired gases on body temperature during arthroscopic shoulder surgery under general anesthesia.

    Science.gov (United States)

    Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong

    2013-07-01

    Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.

  19. A method to stabilize the temperature dependent performance of G-APD arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Yoonsuk [Molecular Imaging Research and Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Choi, Yong; Ho Jung, Jin; Jung, Jiwoong [Molecular Imaging Research and Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of)

    2015-02-01

    This paper presents a compensation method to stabilize the temperature dependent performance of Geiger-mode Avalanche Photodiode (G-APD) arrays for Positron Emission Tomography (PET). The compensation method is used to identify the bias voltage range that provides stable performance even at different temperatures using the G-APD’s characteristics, and to control the photo-peak variation as a function of temperature using the preamplifier gain within the identified bias voltage range. A pair of G-APD detectors and temperature sensors were located in the temperature chamber and the preamplifiers which can control the gain of the detectors using the digital potentiometer were positioned outside the chamber. The performance of the G-APD detector, especially energy resolution and coincidence timing resolution, was characterized as a function of bias voltage at different temperatures from 20 °C to 40 °C at 5 °C increments; the energy resolution, coincidence timing resolution, and photo-peak position of all channels of G-APD PET detectors before and after the preamplifier gain correction were then measured and compared. The results of this study demonstrated that the optimal bias voltage range providing the good energy and coincidence timing resolution, 12.1±1.2% and 1.30±0.09 ns, respectively, could be identified at the temperature range and the photo-peak variation and the performance at different temperatures could be stabilized by adjusting the preamplifier gain within the identified bias voltage range. We concluded the proposed method to be reliable and useful for the development of the PET system using G-APD arrays.

  20. Analysis of induction phenomena in thermonuclear experiments

    International Nuclear Information System (INIS)

    Deeds, W.E.; Dodd, C.V.

    1976-01-01

    Many of the problems involving transients induced by changing currents in the large coils of thermonuclear machines are identical to those arising in nondestructive testing by eddy currents. There are three chief methods used for calculating such induction phenomena: analytical boundary-value solutions, relaxation or iteration techniques, and model experiments. Some of the results obtained by each of these methods are described below

  1. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    Science.gov (United States)

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  2. SALT segmented primary mirror: laboratory test results for FOGALE inductive edge sensors

    Science.gov (United States)

    Menzies, John; Gajjar, Hitesh; Buous, Sébastien; Buckley, David; Gillingham, Peter

    2010-07-01

    At the Southern African Large Telescope (SALT), in collaboration with FOGALE Nanotech, we have been testing the recently-developed new generation inductive edge sensors. The Fogale inductive sensor is one technology being evaluated as a possible replacement for the now defunct capacitance-based edge sensing system. We present the results of exhaustive environmental testing of two variants of the inductive sensor. In addition to the environmental testing including RH and temperature cycles, the sensor was tested for sensitivity to dust and metals. We also consider long-term sensor stability, as well as that of the electronics and of the glue used to bond the sensor to its supporting structure. A prototype design for an adjustable mount is presented which will allow for in-plane gap and shear variations present in the primary mirror configuration without adversely disturbing the figure of the individual mirror segments or the measurement accuracy.

  3. Induction of triploidy and tetraploidy in Nile tilapia, Oreochromis niloticus (L.)

    Science.gov (United States)

    El Gamal, A.-R.A.; Davis, K.B.; Jenkins, J.A.; Les, Torrans E.

    1999-01-01

    Induction of triploidy and tetraploidy in Nile tilapia, Oreochromis niloticus, was investigated by heat shock, cold shock, hydrostatic pressure, and/ or chemicals (cytochalasin A, B, and D). Additionally, efficacy of combined protocols was determined. Heat shock 10 min after fertilization induced triploidy when incubation temperature was 24 C but not when incubation temperature was 31 C. Heat shock of 40-41 C at 4-6 min after fertilization was effective in inducing up to 100% triploidy with hatchability similar to controls. Cold shock at 13 C for 45 min five min after fertilization induced 85-100% triploids. Heat shock and multiple heat shocking were the most effective treatments for the induction of tetraploidy. Two heat treatments of 41 C applied at 65 and 80 min after fertilization for 5 min each produced approximately 80% tetraploidy in hatched fry. Immersion of fertilized eggs in cytochalasin A, B, or D at concentrations up to 10 ??g/L applied at various times and durations was ineffective in inducing triploidy or tetraploidy.

  4. A separation method to overcome the interference of aluminium on zinc determination by inductively coupled plasma atomic emission spectroscopy

    OpenAIRE

    Jesus, Djane S. de; Korn, Maria das Graças Andrade; Ferreira, Sergio Luis Costa; Carvalho, Marcelo Souza de

    2000-01-01

    Texto completo: acesso restrito. p.389–394 The use of polyurethane foam (PUF) to separate zinc from large amounts of aluminium and its determination by inductively coupled plasma atomic emission spectroscopy technique (ICP-AES) in aluminium matrices is described. The proposed method is based on the solid-phase extraction of the zinc(II) cation as a thiocyanate complex. Parameters such as effect of pH on zinc sorption, zinc desorption from the foam and analytical features of the procedure w...

  5. Relations between inductive reasoning and deductive reasoning.

    Science.gov (United States)

    Heit, Evan; Rotello, Caren M

    2010-05-01

    One of the most important open questions in reasoning research is how inductive reasoning and deductive reasoning are related. In an effort to address this question, we applied methods and concepts from memory research. We used 2 experiments to examine the effects of logical validity and premise-conclusion similarity on evaluation of arguments. Experiment 1 showed 2 dissociations: For a common set of arguments, deduction judgments were more affected by validity, and induction judgments were more affected by similarity. Moreover, Experiment 2 showed that fast deduction judgments were like induction judgments-in terms of being more influenced by similarity and less influenced by validity, compared with slow deduction judgments. These novel results pose challenges for a 1-process account of reasoning and are interpreted in terms of a 2-process account of reasoning, which was implemented as a multidimensional signal detection model and applied to receiver operating characteristic data. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  6. Determination of magnetic characteristics of nanoparticles by low-temperature calorimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ugulava, A.; Toklikishvili, Z. [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Chkhaidze, S., E-mail: simon.chkhaidze@tsu.ge [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Kekutia, Sh. [V. Chavchanidze Institute of Cybernetics, at the Technical State University, S. Euli str. 5, 0186 Tbilisi, Georgia (United States)

    2017-05-15

    At low temperatures, the heat capacity of a superparamagnetic “ideal gas” determined by magnetic degrees of freedom can greatly exceed the lattice heat capacity. It is shown that in the presence of an external magnetic field, the temperature dependence of the magnetic part of the heat capacity has two maxima. The relations between the temperature at which these maxima are achieved, the magnetic moment of the nanoparticles and the magnetic anisotropy constant have been obtained. Measuring the heat capacity maxima temperatures by low-temperature calorimetry methods and using the obtained relations, we can obtain the numerical values both of the magnetic moment of nanoparticles and the magnetic anisotropy constants.

  7. Induction of lucid dreams: a systematic review of evidence.

    Science.gov (United States)

    Stumbrys, Tadas; Erlacher, Daniel; Schädlich, Melanie; Schredl, Michael

    2012-09-01

    In lucid dreams the dreamer is aware of dreaming and often able to influence the ongoing dream content. Lucid dreaming is a learnable skill and a variety of techniques is suggested for lucid dreaming induction. This systematic review evaluated the evidence for the effectiveness of induction techniques. A comprehensive literature search was carried out in biomedical databases and specific resources. Thirty-five studies were included in the analysis (11 sleep laboratory and 24 field studies), of which 26 employed cognitive techniques, 11 external stimulation and one drug application. The methodological quality of the included studies was relatively low. None of the induction techniques were verified to induce lucid dreams reliably and consistently, although some of them look promising. On the basis of the reviewed studies, a taxonomy of lucid dream induction methods is presented. Several methodological issues are discussed and further directions for future studies are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Inductance calculation of 3D superconducting structures with ground plane

    International Nuclear Information System (INIS)

    Teh, C.H.; Kitagawa, M.; Okabe, Y.

    1999-01-01

    An inductance calculation method, which is based on calculating the current distribution of a fluxoid-trapped superconducting loop by using the expression of momentum and the Maxwell equations, is reconstructed to enable calculation of arbitrary 3D structures which have a ground plane (GP). Calculation of the mutual inductances of the superconductor system is also incorporated into the algorithm. The method of images is used to save computational resources, and the mirror plane is demonstrated to be just at the effective penetration depth below the upper boundary of the GP. The algorithm offers accurate results with reasonable calculation time. (author)

  9. Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko; Ragunathan, Karthik

    2018-04-17

    A method for determining waveguide temperature for at least one waveguide of a transceiver utilized for generating a temperature map. The transceiver generates an acoustic signal that travels through a measurement space in a hot gas flow path defined by a wall such as in a combustor. The method includes calculating a total time of flight for the acoustic signal and subtracting a waveguide travel time from the total time of flight to obtain a measurement space travel time. A temperature map is calculated based on the measurement space travel time. An estimated wall temperature is obtained from the temperature map. An estimated waveguide temperature is then calculated based on the estimated wall temperature wherein the estimated waveguide temperature is determined without the use of a temperature sensing device.

  10. Prediction of deformations of steel plate by artificial neural network in forming process with induction heating

    International Nuclear Information System (INIS)

    Nguyen, Truong Thinh; Yang, Young Soo; Bae, Kang Yul; Choi, Sung Nam

    2009-01-01

    To control a heat source easily in the forming process of steel plate with heating, the electro-magnetic induction process has been used as a substitute of the flame heating process. However, only few studies have analyzed the deformation of a workpiece in the induction heating process by using a mathematical model. This is mainly due to the difficulty of modeling the heat flux from the inductor traveling on the conductive plate during the induction process. In this study, the heat flux distribution over a steel plate during the induction process is first analyzed by a numerical method with the assumption that the process is in a quasi-stationary state around the inductor and also that the heat flux itself greatly depends on the temperature of the workpiece. With the heat flux, heat flow and thermo-mechanical analyses on the plate to obtain deformations during the heating process are then performed with a commercial FEM program for 34 combinations of heating parameters. An artificial neural network is proposed to build a simplified relationship between deformations and heating parameters that can be easily utilized to predict deformations of steel plate with a wide range of heating parameters in the heating process. After its architecture is optimized, the artificial neural network is trained with the deformations obtained from the FEM analyses as outputs and the related heating parameters as inputs. The predicted outputs from the neural network are compared with those of the experiments and the numerical results. They are in good agreement

  11. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    International Nuclear Information System (INIS)

    Chin, O.H.; Jayapalan, K.K.; Wong, C.S.

    2014-01-01

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile. (author)

  12. Structure–property relationship in a 960 MPa grade ultrahigh strength low carbon niobium–vanadium microalloyed steel: The significance of high frequency induction tempering

    International Nuclear Information System (INIS)

    Xie, Z.J.; Fang, Y.P.; Han, G.; Guo, H.; Misra, R.D.K.; Shang, C.J.

    2014-01-01

    The present study describes the microstructure and precipitation behavior in an ultra-high strength low carbon niobium–vanadium microalloyed steel that was processed by quenching and high frequency induction tempering. Ultrahigh yield strength of ∼1000 MPa with high elongation of ∼15% and high low temperature toughness of 55 J (half thickness) at −40 °C was obtained after quenching from austenitization at 900 °C for 30 min, and tempering at 600 °C for 15 min by induction reheating with a reheating rate of ∼50 °C/s. While the yield strength increase on tempering was similar for both induction reheating and conventional reheating (electrical resistance reheating), there was ∼100% increase in low temperature toughness in induction reheated steel compared to the conventional reheating process. The underlying reason for the increase in toughness was attributed to the transformation of cementite film observed in conventional reheating and tempering to nanoscale cementite in induction reheating and tempering. The precipitation of nanoscale carbides is believed to significantly contribute to ultra-high strength, good ductility, and high toughness in the high frequency induction reheating and tempering process

  13. A spectral measurement method for determining white OLED average junction temperatures

    Science.gov (United States)

    Zhu, Yiting; Narendran, Nadarajah

    2016-09-01

    The objective of this study was to investigate an indirect method of measuring the average junction temperature of a white organic light-emitting diode (OLED) based on temperature sensitivity differences in the radiant power emitted by individual emitter materials (i.e., "blue," "green," and "red"). The measured spectral power distributions (SPDs) of the white OLED as a function of temperature showed amplitude decrease as a function of temperature in the different spectral bands, red, green, and blue. Analyzed data showed a good linear correlation between the integrated radiance for each spectral band and the OLED panel temperature, measured at a reference point on the back surface of the panel. The integrated radiance ratio of the spectral band green compared to red, (G/R), correlates linearly with panel temperature. Assuming that the panel reference point temperature is proportional to the average junction temperature of the OLED panel, the G/R ratio can be used for estimating the average junction temperature of an OLED panel.

  14. Experiments of full non-inductive current drive on HT-7

    International Nuclear Information System (INIS)

    Zhang, X.D.; Wu, Z.W.; Chen, Z.Y.; Gong, X.Z.; Wang, H.; Xu, D.; Huang, Y.; Luo, J.; Gao, X.; Hu, L.; Zhao, J.; Wan, B.N.; Li, J.

    2005-01-01

    Some experimental results of steady-state operation and full non-inductive current drive have been obtained on HT-7. Three types of experiment are used to study long pulse discharge, quasi-steady-state operation and full non-inductive current drive. The experiments show that the plasma current in the full non-inductive drive case is instable due to no adjusting effect of OH heating field, when the waveguide tube discharge lead to the LHW power injecting tokamak plasma decrease. This instability of plasma current will increase the interaction of plasma with limiter and first surface and bring impurity. All discharges of full non-inductive current drive are terminated because of impurity spurting. To adjust the LHW injection power for control the loop voltage during long pulse discharge is the most effective method for steady-state operation on HT-7. (author)

  15. IQC-based robust stability analysis for LPV control of doubly-fed induction generators

    NARCIS (Netherlands)

    Tien, H. N.; Scherer, C. W.; Scherpen, J. M. A.

    2008-01-01

    Parameters of electrical machines are usually varying with time in a smooth way due to changing operating conditions, such as variations in the machine temperature and/or the magnetic saturation. This paper is concerned with robust stability analysis of controlled Doubly-Fed Induction Generators

  16. Induction and pruning of classification rules for prediction of microseismic hazards in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M. [Silesian Technical University, Gliwice (Poland)

    2011-06-15

    The paper presents results of application of a rule induction and pruning algorithm for classification of a microseismic hazard state in coal mines. Due to imbalanced distribution of examples describing states 'hazardous' and 'safe', the special algorithm was used for induction and rule pruning. The algorithm selects optimal parameters' values influencing rule induction and pruning based on training and tuning sets. A rule quality measure which decides about a form and classification abilities of rules that are induced is the basic parameter of the algorithm. The specificity and sensitivity of a classifier were used to evaluate its quality. Conducted tests show that the admitted method of rules induction and classifier's quality evaluation enables to get better results of classification of microseismic hazards than by methods currently used in mining practice. Results obtained by the rules-based classifier were also compared with results got by a decision tree induction algorithm and by a neuro-fuzzy system.

  17. Etch induction time in cellulose nitrate: a new particle identification parameter

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Knowles, H.B.; Luckstead, S.C.; Tripard, G.E.

    1977-01-01

    By the use of a 'continuous etch' method, it has been ascertained that particle tracks do not appear in cellulose nitrate track detectors until a certain finite time after etch has been started: this etch induction time may provide a unique signal for distinguishing ions of different atomic number, Z, and possibly also resolving the mass, M, of such ions. Empirical relations between etch induction time and various experimental quantities are described, as is a simple theory of the cause of etch induction time, which can be related to experimental evidence on hand. There is reason to believe that etch induction time appears in other types of plastic track detectors and may indeed be a general phenomenon in all track detectors. (Auth.)

  18. Analysis of maizena drying system using temperature control based fuzzy logic method

    Science.gov (United States)

    Arief, Ulfah Mediaty; Nugroho, Fajar; Purbawanto, Sugeng; Setyaningsih, Dyah Nurani; Suryono

    2018-03-01

    Corn is one of the rice subtitution food that has good potential. Corn can be processed to be a maizena, and it can be used to make type of food that has been made from maizena, viz. Brownies cake, egg roll, and other cookies. Generally, maizena obtained by drying process carried out 2-3 days under the sun. However, drying process not possible during the rainy season. This drying process can be done using an automatic drying tool. This study was to analyze the design result and manufacture of maizena drying system with temperature control based fuzzylogic method. The result show that temperature of drying system with set point 40°C - 60°C work in suitable condition. The level of water content in 15% (BSN) and temperatureat 50°C included in good drying process. Time required to reach the set point of temperature in 50°C is 7.05 minutes. Drying time for 500 gr samples with temperature 50°C and power capacity 127.6 watt was 1 hour. Based on the result, drying process using temperature control based fuzzy logic method can improve energy efficiency than the conventional method of drying using a direct sunlight source with a temperature that cannot be directly controlled by human being causing the quality of drying result of flour is erratic.

  19. Optimization design of the main switch in 12 MeV linear induction accelerator

    International Nuclear Information System (INIS)

    Li Xin; Wang Jinsheng; Ding Hensong; Ye Yi

    2004-01-01

    A method for optimization design of the main switch (using in 12 MeV linear induction accelerator) was introduced. The switch's inductance was decreased from 63.7 nH to 35 nH by optimizing the configuration of the main switch and the size of the electric poles so that the accelerating cavity can get a better rising time of 27 ns. The accelerator's performance can be effectively improved through this method, the feasibility of the method is also proved by testing

  20. Verification of two-temperature method for heat transfer process within a pebble fuel

    International Nuclear Information System (INIS)

    Yu Dali; Peng Minjun

    2014-01-01

    A typical pebble fuel that used in high temperature reactor (HTR), mainly consists of a graphite matrix with numerous dispersed tristructural-isotropic (TRISO) fuel particles and a surrounding thin non-fueled graphite shell. These high heterogeneities lead to difficulty in explicit thermal calculation of a pebble fuel. We proposed a two-temperature method (TTM) to calculate the temperature distribution within a pebble fuel. The method is not only convenient to perform but also gives more realistic results since particles and graphite matrix are considered separately while the traditional ways are considering the fuel zone as average heat generation source. The method is validated both by Computational Fluid Dynamics (CFD) method and Wiener bounds. Results show that TTM has a stable performance and high accuracy. (author)

  1. Design of Annular Linear Induction Pump for High Temperature Liquid Lead Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    EM(Electro Magnetic) Pump is divided into two parts, which consisted of the primary one with electromagnetic core and exciting coils, and secondary one with liquid lead flow. The main geometrical variables of the pump included core length, inner diameter and flow gap while the electromagnetic ones covered pole pitch, turns of coil, number of pole pairs, input current and input frequency. The characteristics of design variables are analyzed by electrical equivalent circuit method taking into account hydraulic head loss in the narrow annular channel of the ALIP. The design program, which was composed by using MATLAB language, was developed to draw pump design variables according to input requirements of the flow rate, developing pressure and operation temperature from the analyses. The analysis on the design of ALIP for high temperature liquid lead transportation was carried for the produce of ALIP designing program based on MATLAB. By the using of ALIP designing program, we don't have to bother about geometrical relationship between each component during detail designing process because code calculate automatically. And prediction of outputs about designing pump can be done easily before manufacturing. By running the code, we also observe and analysis change of outputs caused by changing of pump factors. It will be helpful for the research about optimization of pump outputs.

  2. High-kinetic inductance additive manufactured superconducting microwave cavity

    Science.gov (United States)

    Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; Woollett, Nathan; Voisin, Thomas; Wang, Y. Morris; Torres, Sharon G.; Mireles, Jorge; Carosi, Gianpaolo; DuBois, Jonathan L.

    2017-11-01

    Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, "3D printing," opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.

  3. Fault detection and isolation in processes involving induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Zell, K; Medvedev, A [Control Engineering Group, Luleaa University of Technology, Luleaa (Sweden)

    1998-12-31

    A model-based technique for fault detection and isolation in electro-mechanical systems comprising induction machines is introduced. Two coupled state observers, one for the induction machine and another for the mechanical load, are used to detect and recognize fault-specific behaviors (fault signatures) from the real-time measurements of the rotor angular velocity and terminal voltages and currents. Practical applicability of the method is verified in full-scale experiments with a conveyor belt drive at SSAB, Luleaa Works. (orig.) 3 refs.

  4. Fault detection and isolation in processes involving induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Zell, K.; Medvedev, A. [Control Engineering Group, Luleaa University of Technology, Luleaa (Sweden)

    1997-12-31

    A model-based technique for fault detection and isolation in electro-mechanical systems comprising induction machines is introduced. Two coupled state observers, one for the induction machine and another for the mechanical load, are used to detect and recognize fault-specific behaviors (fault signatures) from the real-time measurements of the rotor angular velocity and terminal voltages and currents. Practical applicability of the method is verified in full-scale experiments with a conveyor belt drive at SSAB, Luleaa Works. (orig.) 3 refs.

  5. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction

    Science.gov (United States)

    Xia, Rongmin; Li, Xu; He, Bin

    2007-08-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging tissue electrical impedance properties by integrating magnetic induction and ultrasound measurements. In the present study, the authors have developed a focused cylindrical scanning mode MAT-MI system and the corresponding reconstruction algorithms. Using this system, they demonstrated a three-dimensional MAT-MI imaging approach in a physical phantom, with cylindrical scanning combined with ultrasound focusing, and the ability of MAT-MI in imaging electrical conductivity properties of biological tissue.

  6. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  7. Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems

    Directory of Open Access Journals (Sweden)

    Thomas Hermans

    2014-08-01

    Full Text Available Low enthalpy geothermal systems exploited with ground source heat pumps or groundwater heat pumps present many advantages within the context of sustainable energy use. Designing, monitoring and controlling such systems requires the measurement of spatially distributed temperature fields and the knowledge of the parameters governing groundwater flow (permeability and specific storage and heat transport (thermal conductivity and volumetric thermal capacity. Such data are often scarce or not available. In recent years, the ability of electrical resistivity tomography (ERT, self-potential method (SP and distributed temperature sensing (DTS to monitor spatially and temporally temperature changes in the subsurface has been investigated. We review the recent advances in using these three methods for this type of shallow applications. A special focus is made regarding the petrophysical relationships and on underlying assumptions generally needed for a quantitative interpretation of these geophysical data. We show that those geophysical methods are mature to be used within the context of temperature monitoring and that a combination of them may be the best choice regarding control and validation issues.

  8. Practicing induction:

    DEFF Research Database (Denmark)

    Sprogøe, Jonas; Rohde, Nicolas

    2009-01-01

    We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning.......We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning....

  9. The Experimental Study of the Inductive Heating Process by the cleating Method

    Directory of Open Access Journals (Sweden)

    Dorel Anton HOBLE

    2009-05-01

    Full Text Available The paper focuses on onemethod of welding of two coaxial cylinders, made ofdifferent materials. The method of welding usesinductive heating technology, and it is based on thedifferent dilatation coefficient of the materials, theinside material has an upper value of the dilatationcoefficient. In the paper it was analyzed the inducedpower density inside the ferromagnetic material, andthe distribution of the temperature field inside thestructure. The theoretical results were utilized tomake an experimental model.

  10. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...

  11. Modifications to the Patient Rule-Induction Method that utilize non-additive combinations of genetic and environmental effects to define partitions that predict ischemic heart disease

    DEFF Research Database (Denmark)

    Dyson, Greg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G

    2009-01-01

    This article extends the Patient Rule-Induction Method (PRIM) for modeling cumulative incidence of disease developed by Dyson et al. (Genet Epidemiol 31:515-527) to include the simultaneous consideration of non-additive combinations of predictor variables, a significance test of each combination,...

  12. High temperature spectral emissivity measurement using integral blackbody method

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  13. ICP-MS determination of boron: method optimization during preparation of graphite reference material for boron

    International Nuclear Information System (INIS)

    Granthali, S.K.; Shailaja, P.P.; Mainsha, V.; Venkatesh, K.; Kallola, K.S.; Sanjukta, A.K.

    2017-01-01

    Graphite finds widespread use in nuclear reactors as moderator, reflector, and fuel fabricating components because of its thermal stability and integrity. The manufacturing process consists of various mixing, moulding and baking operations followed by heat-treatment between 2500 °C and 3000 °C. The high temperature treatment is required to drive the amorphous carbon-to-graphite phase transformation. Since synthetic graphite is processed at high temperature, impurity concentrations in the precursor carbon get significantly reduced due to volatilization. However boron may might partly gets converted into boron carbide at high temperatures in the carbon environment of graphite and remains stable (B_4C: boiling point 3500 °C) in the matrix. Literature survey reveals the use of various methods for determination of boron. Previously we have developed a method for determination of boron in graphite electrodes using inductively coupled plasma mass spectrometry (ICP-MS). The method involves removal of graphite matrix by ignition of the sample at 800°C in presence of saturated barium hydroxide solution to prevent the loss of boron. Here we are reporting a modification in the method by using calcium carbonate in place of barium hydroxide and using beryllium (Be) as an internal standard, which resulted in a better precession. The method was validated by spike recovery experiments as well as using another technique viz. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The modified method was applied in evaluation of boron concentration in the graphite reference material prepared

  14. Monitoring of Non-Ferrous Wear Debris in Hydraulic Oil by Detecting the Equivalent Resistance of Inductive Sensors

    Directory of Open Access Journals (Sweden)

    Lin Zeng

    2018-03-01

    Full Text Available Wear debris in hydraulic oil contains important information on the operation of equipment, which is important for condition monitoring and fault diagnosis in mechanical equipment. A micro inductive sensor based on the inductive coulter principle is presented in this work. It consists of a straight micro-channel and a 3-D solenoid coil wound on the micro-channel. Instead of detecting the inductance change of the inductive sensor, the equivalent resistance change of the inductive sensor is detected for non-ferrous particle (copper particle monitoring. The simulation results show that the resistance change rate caused by the presence of copper particles is greater than the inductance change rate. Copper particles with sizes ranging from 48 μm to 150 μm were used in the experiment, and the experimental results are in good agreement with the simulation results. By detecting the inductive change of the micro inductive sensor, the detection limit of the copper particles only reaches 70 μm. However, the detection limit can be improved to 48 μm by detecting the equivalent resistance of the inductive sensor. The equivalent resistance method was demonstrated to have a higher detection accuracy than conventional inductive detection methods for non-ferrous particle detection in hydraulic oil.

  15. Synthetic signal injection using inductive coupling

    Science.gov (United States)

    Marro, Kenneth I.; Lee, Donghoon; Shankland, Eric G.; Mathis, Clinton M.; Hayes, Cecil E.; Amara, Catherine E.; Kushmerick, Martin J.

    2008-09-01

    Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content.

  16. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: a narrative review

    OpenAIRE

    Cliff J. d C. Harvey; Grant M. Schofield; Micalla Williden

    2018-01-01

    Background Adaptation to a ketogenic diet (keto-induction) can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK) and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase. Methods PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science So...

  17. High Lipid Induction in Microalgae for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Peer M. Schenk

    2012-05-01

    Full Text Available Oil-accumulating microalgae have the potential to enable large-scale biodiesel production without competing for arable land or biodiverse natural landscapes. High lipid productivity of dominant, fast-growing algae is a major prerequisite for commercial production of microalgal oil-derived biodiesel. However, under optimal growth conditions, large amounts of algal biomass are produced, but with relatively low lipid contents, while species with high lipid contents are typically slow growing. Major advances in this area can be made through the induction of lipid biosynthesis, e.g., by environmental stresses. Lipids, in the form of triacylglycerides typically provide a storage function in the cell that enables microalgae to endure adverse environmental conditions. Essentially algal biomass and triacylglycerides compete for photosynthetic assimilate and a reprogramming of physiological pathways is required to stimulate lipid biosynthesis. There has been a wide range of studies carried out to identify and develop efficient lipid induction techniques in microalgae such as nutrients stress (e.g., nitrogen and/or phosphorus starvation, osmotic stress, radiation, pH, temperature, heavy metals and other chemicals. In addition, several genetic strategies for increased triacylglycerides production and inducibility are currently being developed. In this review, we discuss the potential of lipid induction techniques in microalgae and also their application at commercial scale for the production of biodiesel.

  18. Induction and identification of rabbit peripheral blood derived dendritic cells

    Science.gov (United States)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  19. Use of non-contacting electromagnetic inductive method for estimating soil moisture across a landscape

    International Nuclear Information System (INIS)

    Khakural, B.R.; Robert, P.C.; Hugins, D.R.

    1998-01-01

    There is a growing interest in real-time estimation of soil moisture for site-specific crop management. Non-contacting electromagnetic inductive (EMI) methods have potentials to provide real-time estimate of soil profile water contents. Soil profile water contents were monitored with a neutron probe at selected sites. A Geonics LTD EM-38 terrain meter was used to record bulk soil electrical conductivity (EC(A)) readings across a soil-landscape in West central Minnesota with variable moisture regimes. The relationships among EC(A), selected soil and landscape properties were examined. Bulk soil electrical conductivity (0-1.0 and 0-0.5 m) was negatively correlated with relative elevation. It was positively correlated with soil profile (1.0 m) clay content and negatively correlated with soil profile coarse fragments (2 mm) and sand content. There was significant linear relationship between ECA (0-1.0 and 0-0.5) and soil profile water storage. Soil water storage estimated from ECA reflected changes in landscape and soil characteristics

  20. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C. Y. [Bloomington, IN; Hieftje, Gary M [Bloomington, IN

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  1. Spectrographical method for determining temperature variations of cosmic rays

    International Nuclear Information System (INIS)

    Dorman, L.I.; Krest'yannikov, Yu.Ya.; AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln)

    1977-01-01

    A spectrographic method for determining [sigmaJsup(μ)/Jsup(μ)]sub(T) temperature variations in cosmic rays is proposed. The value of (sigmaJsup(μ)/Jsup(μ)]sub(T) is determined from three equations for neutron supermonitors and the equation for the muon component of cosmic rays. It is assumed that all the observation data include corrections for the barometric effect. No temperature effect is observed in the neutron component. To improve the reliability and accuracy of the results obtained the surface area of the existing devices and the number of spectrographic equations should be increased as compared with that of the unknown values. The value of [sigmaJsup(μ)/Jsup(μ)]sub(T) for time instants when the aerological probing was carried out, was determined from the data of observations of cosmic rays with the aid of a spectrographic complex of devices of Sib IZMIR. The r.m.s. dispersion of the difference is about 0.2%, which agrees with the expected dispersion. The agreement obtained can be regarded as an independent proof of the correctness of the theory of meteorological effects of cosmic rays. With the existing detection accuracy the spectrographic method can be used for determining the hourly values of temperature corrections for the muon component

  2. Ring-shaped inductive sensor design and application to pressure sensing

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Myoung Gyu; Baek, Seong Ki; Park, Young Woo [Dept. of Mechatronics Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Sun Young [Samsung Electro-Mechanics, Busan (Korea, Republic of)

    2015-10-15

    Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor.

  3. Ring-shaped inductive sensor design and application to pressure sensing

    International Nuclear Information System (INIS)

    Noh, Myoung Gyu; Baek, Seong Ki; Park, Young Woo; Kim, Sun Young

    2015-01-01

    Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor

  4. Carbon nanotubes and methods of forming same at low temperature

    Science.gov (United States)

    Biris, Alexandru S.; Dervishi, Enkeleda

    2017-05-02

    In one aspect of the invention, a method for growth of carbon nanotubes includes providing a graphitic composite, decorating the graphitic composite with metal nanostructures to form graphene-contained powders, and heating the graphene-contained powders at a target temperature to form the carbon nanotubes in an argon/hydrogen environment that is devoid of a hydrocarbon source. In one embodiment, the target temperature can be as low as about 150.degree. C. (.+-.5.degree. C.).

  5. New method for the induction of therapeutic amenorrhea: low dose endometrial afterloading irradiation. Clinical and hormonal studies

    Energy Technology Data Exchange (ETDEWEB)

    Gronroos, M.; Turunen, T.; Raekallio, J.; Ruotsalinen, P.; Salmi, T. (Turku Univ. (Finland). Dept. of Obstetrics and Gynecology)

    1982-08-01

    The authors present a new method for the induction of therapeutic amenorrhea: low dose endometrial afterloading irradiation. The problem with this method has been how to inactivate the endometrium while maintaining the physiological function of the ovaries. In 5/29 young patients regular or irregular bleedings occurred after an endometrial dose of 11+-1 Gy. These subjects were given a repeat low dose intrauterine irradiation. Thereafter no bleedings were found in four out of five patients. Two to 9 years after the repeat irradiation the plasma levels of E/sub 1/, E/sub 2/, FSH and LH corresponded closely to those of healthy women in reproductive age in three out of five patients; some high plasma P levels indicated ovulation. In two patients the E/sub 1/, E/sub 2/, and P values were more likely postmenopausal but, on the other hand, FSH and LH values reproductive ones. 19 refs.

  6. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    Science.gov (United States)

    Cockeram, Brian V.

    2017-01-10

    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200.degree. C. is reached.

  7. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    International Nuclear Information System (INIS)

    Frantlović, Miloš; Stanković, Srđan; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran

    2016-01-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance. (paper)

  8. A portable borehole temperature logging system using the four-wire resistance method

    Science.gov (United States)

    Erkan, Kamil; Akkoyunlu, Bülent; Balkan, Elif; Tayanç, Mete

    2017-12-01

    High-quality temperature-depth information from boreholes with a depth of 100 m or more is used in geothermal studies and in studies of climate change. Electrical wireline tools with thermistor sensors are capable of measuring borehole temperatures with millikelvin resolution. The use of a surface readout mode allows analysis of the thermally conductive state of a borehole, which is especially important for climatic and regional heat flow studies. In this study we describe the design of a portable temperature logging tool that uses the four-wire resistance measurement method. The four-wire method enables the elimination of cable resistance effects, thus allowing millikelvin resolution of temperature data at depth. A preliminary two-wire model of the system is also described. The portability of the tool enables one to collect data from boreholes down to 300 m, even in locations with limited accessibility.

  9. Long range inductive power transfer system

    International Nuclear Information System (INIS)

    Lawson, James; Pinuela, Manuel; Yates, David C; Lucyszyn, Stepan; Mitcheson, Paul D

    2013-01-01

    We report upon a recently developed long range inductive power transfer system (IPT) designed to power remote sensors with mW level power consumption at distances up to 7 m. In this paper an inductive link is established between a large planar (1 × 1 m) transmit coil (Tx) and a small planer (170 × 170 mm) receiver coil (Rx), demonstrating the viability of highly asymmetrical coil configurations that real-world applications such as sensor networks impose. High Q factor Tx and Rx coils required for viable power transfer efficiencies over such distances are measured using a resonant method. The applicability of the Class-E amplifier in very low magnetic coupling scenarios and at the high frequencies of operation required for high Q operation is demonstrated by its usage as the Tx coil driver

  10. Liquid level measurement on coolant pipeline using Raman distributed temperature sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Babu Rao, C.; Murali, N.; Jayakumar, T.

    2011-01-01

    Optical fibre based Raman Distributed Temperature Sensor (RDTS) has been widely used for temperature monitoring in oil pipe line, power cable and environmental monitoring. Recently it has gained importance in nuclear reactor owing to its advantages like continuous, distributed temperature monitoring and immunity from electromagnetic interference. It is important to monitor temperature based level measurement in sodium capacities and in coolant pipelines for Fast Breeder Reactor (FBR). This particular application is used for filling and draining sodium in storage tank of sodium circuits of Fast breeder reactor. There are different conventional methods to find out the sodium level in the storage tank of sodium cooled reactors. They are continuous level measurement and discontinuous level measurement. For continuous level measurement, mutual inductance type level probes are used. The disadvantage of using this method is it needs a temperature compensation circuit. For discontinuous level measurement, resistance type discontinuous level probe and mutual inductance type discontinuous level probe are used. In resistance type discontinuous level probe, each level needs a separate probe. To overcome these disadvantages, RDTS is used for level measurement based distributed temperature from optical fibre as sensor. The feasibility of using RDTS for measurement of temperature based level measurement sensor is studied using a specially designed test set-up and using hot water, instead of sodium. The test set-up consist of vertically erected Stainless Steel (SS) pipe of length 2m and diameter 10cm, with provision for filling and draining out the liquid. Bare graded index multimode fibre is laid straight along the length of the of the SS pipe. The SS pipe is filled with hot water at various levels. The hot water in the SS pipe is maintained at constant temperature by insulating the SS pipe. The temperature profile of the hot water at various levels is measured using RDTS. The

  11. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Castor oil, bath and/or enema for cervical priming and induction of labour.

    Science.gov (United States)

    Kelly, Anthony J; Kavanagh, Josephine; Thomas, Jane

    2013-07-24

    Castor oil, a potent cathartic, is derived from the bean of the castor plant. Anecdotal reports, which date back to ancient Egypt have suggested the use of castor oil to stimulate labour. Castor oil has been widely used as a traditional method of initiating labour in midwifery practice. Its role in the initiation of labour is poorly understood and data examining its efficacy within a clinical trial are limited. This is one of a series of reviews of methods of cervical ripening and labour induction using standardised methodology. To determine the effects of castor oil or enemas for third trimester cervical ripening or induction of labour in comparison with other methods of cervical ripening or induction of labour. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 April 2013) and bibliographies of relevant papers. Clinical trials comparing castor oil, bath or enemas used for third trimester cervical ripening or labour induction with placebo/no treatment or other methods listed above it on a predefined list of labour induction methods. A strategy was developed to deal with the large volume and complexity of trial data relating to labour induction. This involved a two-stage method of data extraction. Three trials, involving 233 women, are included. There was no evidence of differences in caesarean section rates between the two interventions in the two trials reporting this outcome (risk ratio (RR) 2.04, 95% confidence interval (CI) 0.92 to 4.55). There were no data presented on neonatal or maternal mortality or morbidity.There was no evidence of a difference between castor oil and placebo/no treatment for the rate of instrumental delivery, meconium-stained liquor, or Apgar score less than seven at five minutes. The number of participants was too small to detect all but large differences in outcome. All women who ingested castor oil felt nauseous (RR 59.92, 95% CI 8.46 to 424.52). The three trials included in the review contain small numbers

  13. Numerical Simulation of High Frequency Induction Heating for the Design of a Casting Furnace

    International Nuclear Information System (INIS)

    Lee, Hye Jin; Lee, Yoon Sang; Yang, Jae Ho; Park, Jong Man

    2010-01-01

    Induction heating is used for various applications of the industrial manufacturing process. It provides various heat treatments such as hardening, melting, casting and so on. Induction heating is a complex process coupling the electromagnetic and thermal phenomena. In this process an alternating electric current induces electromagnetic field, which in turn induces eddy currents in the workpiece. The induced eddy currents release energy in the form of heat, which is then distributed throughout the workpiece. In this paper, the electromagnetic and thermal coupling analysis was performed by the 3 dimensional finite elements program, OPERA 3D. For convenience of calculation, a steady-state was assumed. Based on materials composing a real smelting furnace, testing the distribution of eddy current from each material and its final temperature value, we found out which material has advantage in the temperature variations among suggested materials, and confirmed which material is suitable to composing smelting furnace

  14. Forward modelling of multi-component induction logging tools in layered anisotropic dipping formations

    International Nuclear Information System (INIS)

    Gao, Jie; Xu, Chenhao; Xiao, Jiaqi

    2013-01-01

    Multi-component induction logging provides great assistance in the exploration of thinly laminated reservoirs. The 1D parametric inversion following an adaptive borehole correction is the key step in the data processing of multi-component induction logging responses. To make the inversion process reasonably fast, an efficient forward modelling method is necessary. In this paper, a modelling method has been developed to simulate the multi-component induction tools in deviated wells drilled in layered anisotropic formations. With the introduction of generalized reflection coefficients, the analytic expressions of magnetic field in the form of a Sommerfeld integral were derived. The fast numerical computation of the integral has been completed by using the fast Fourier–Hankel transform and fast Hankel transform methods. The latter is so time efficient that it is competent enough for real-time multi-parameter inversion. In this paper, some simulated results have been presented and they are in excellent agreement with the finite difference method code's solution. (paper)

  15. Repairing method and device for thermonuclear device

    International Nuclear Information System (INIS)

    Sakurai, Akiko; Masumoto, Hiroshi; Tachikawa, Nobuo.

    1995-01-01

    The present invention provides a method of and a device for repairing a first wall and a divertor disposed in a vacuum vessel of a thermonuclear device. Namely, an armour tile of the divertor secured, by a brazing material, in a vacuum vessel of the thermonuclear device in which high temperature plasmas of deuterium and tritium are confined to cause fusion reaction is induction-heated or heated by microwaves to melt the brazing material. Only the armour tile is thus exchanged by its attachment/detachment. This device comprises, in the vacuum vessel, an armour tile attaching/detaching manipulator and a repairing manipulator comprising a heating manipulator having induction heating coils at the top end thereof. Induction heating coils are connected to an AC power source. According to the present invention, the armour tile is exchanged without taking the divertor out of the vacuum vessel. Therefore, cutting of a divertor cooling tube for taking the divertor out of the vacuum vessel and re-welding of the divertor for attaching it to the vacuum vessel again are no more necessary. (I.S.)

  16. Microwave kinetic inductance detectors for astronomy and particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Christian; Monfardini, Alessandro [Institut Neel, CNRS and Universite J. Fourier, Grenoble (France); Roesch, Markus; Schuster, Karl [IRAM, St. Martin d' Heres (France)

    2011-07-01

    A new type of superconducting detector, the Microwave Kinetic Inductance Detector, has recently drawn the attention of the low-temperature detector community. Easy fabrication, high sensitivity, low time constants and most notably the intrinsic capability to frequency multiplexing open new possibilities to applications that need very large array sizes and/or high speed read-out. We develop detector arrays for applications in the domain of astronomy, particle detection, phonon imaging and Helium-physics based on Lumped Element KIDs (LEKIDs). In a LEKID a resonant circuit composed of a discrete inductance and capacitance is coupled to a transmission line. The constant current density in the inductive part makes it a very efficient detector for em-radiation and particles. In this contribution we discuss detector principle, design and measured characteristics. Then we focus on the application for a millimeter wavelength camera, successfully tested at the IRAM 30-meter telescope at Pico Veleta, Spain in October 2010. The current instrument contains two arrays at 100 mK with more than 100 pixels on one read-out-line each for observations at 1.3 and 2 mm. The performances are the best achieved as of today for groundbased KIDs with sensitivities already comparable with existing (horns-coupled bolometers) instruments.

  17. Method of preparing high-temperature-stable thin-film resistors

    Science.gov (United States)

    Raymond, L.S.

    1980-11-12

    A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

  18. Method of preparing high-temperature-stable thin-film resistors

    International Nuclear Information System (INIS)

    Raymond, L.S.

    1983-01-01

    A chemical vapor deposition method is disclosed for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor

  19. Inductive line energy storage generator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The inductive energy storage (IES) generator has long been considered to be the most efficient system for energy usage in large pulsed power system at the MA level. A number of parameters govern the efficiency of energy transfer between the storage capacitors and the load, and the level of current deliverable to the load. For high power system, the energy storage capacitors are arranged as a Marx generator. The primary constraints are the inductances in the various parts of the circuit, in particular, the upstream inductance between the Marx and the POS, and the downstream inductance between the POS and the load. This paper deals with the effect of replacing part of the upstream inductance with a transmission line and introduces the new concept of an inductive line for energy storage (ILES). Extensive parametric scans were carried out on circuit simulations to investigate the effect of this upstream transmission line. A model was developed to explain the operation of the ILES design based on the data obtained. Comparison with an existing IES generator shows that the ILES design offers a significant improvement in the maximum current and hence energy delivered to an inductive load. (author). 5 figs., 1 ref.

  20. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  1. Temperature gradient method for lipid phase diagram construction using time-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.; Hing, F.S.

    1987-01-01

    A method that enables temperature-composition phase diagram construction at unprecedented rates is described and evaluated. The method involves establishing a known temperature gradient along the length of a metal rod. Samples of different compositions contained in long, thin-walled capillaries are positioned lengthwise on the rod and equilibrated such that the temperature gradient is communicated into the sample. The sample is then moved through a focused, monochromatic synchrotron-derived x-ray beam and the image-intensified diffraction pattern from the sample is recorded on videotape continuously in live-time as a function of position and, thus, temperature. The temperature at which the diffraction pattern changes corresponds to a phase boundary, and the phase(s) existing (coexisting) on either side of the boundary can be identified on the basis of the diffraction pattern. Repeating the measurement on samples covering the entire composition range completes the phase diagram. These additional samples can be conveniently placed at different locations around the perimeter of the cylindrical rod and rotated into position for diffraction measurement. Temperature-composition phase diagrams for the fully hydrated binary mixtures, dimyristoylphosphatidylcholine (DMPC)/dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE)/DPPC, have been constructed using the new temperature gradient method. They agree well with and extend the results obtained by other techniques. In the DPPE/DPPC system structural parameters as a function of temperature in the various phases including the subgel phase are reported. The potential limitations of this steady-state method are discussed

  2. Inductive Reasoning: A Training Approach

    Science.gov (United States)

    Klauer, Karl Josef; Phye, Gary D.

    2008-01-01

    Researchers have examined inductive reasoning to identify different cognitive processes when participants deal with inductive problems. This article presents a prescriptive theory of inductive reasoning that identifies cognitive processing using a procedural strategy for making comparisons. It is hypothesized that training in the use of the…

  3. Inductive Monitoring System (IMS)

    Data.gov (United States)

    National Aeronautics and Space Administration — IMS: Inductive Monitoring System The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to extract models of normal...

  4. A Successful Induction of Lactation in Surrogate Pregnancy with Metoclopramide and Review of Lactation Induction

    OpenAIRE

    Elahe Mirzaaga; Arezoo Arabipoor; Mitra Frotan; Marzieh Shiva

    2010-01-01

    In surrogate pregnancies genetic parents have little opportunity for early bonding with their infants,either prenatally (in utero) or during the immediate postnatal period. Procedures commonlyused to induce lactation include both pharmacologic and nonpharmacologic methods, often incombination. Studies reporting induced lactation are sparse, due to the rarity of augmentedlactation. Here we report a case of lactation induction following a surrogate pregnancy. Othermethods that can be used to au...

  5. Deformation measurements of materials at low temperatures using laser speckle photography method

    International Nuclear Information System (INIS)

    Sumio Nakahara; Yukihide Maeda; Kazunori Matsumura; Shigeyoshi Hisada; Takeyoshi Fujita; Kiyoshi Sugihara

    1992-01-01

    The authors observed deformations of several materials during cooling down process from room temperature to liquid nitrogen temperature using the laser speckle photography method. The in-plane displacements were measured by the image plane speckle photography and the out-of-plane displacement gradients by the defocused speckle photography. The results of measurements of in-plane displacement are compared with those of FEM analysis. The applicability of laser speckle photography method to cryogenic engineering are also discussed

  6. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients

    Directory of Open Access Journals (Sweden)

    Asadian S

    2016-09-01

    Full Text Available Simin Asadian,1 Alireza Khatony,1 Gholamreza Moradi,2 Alireza Abdi,1 Mansour Rezaei,3 1Nursing and Midwifery School, Kermanshah University of Medical Sciences, 2Department of Anesthesiology, 3Biostatistics & Epidemiology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran Introduction: An accurate determination of body temperature in critically ill patients is a fundamental requirement for initiating the proper process of diagnosis, and also therapeutic actions; therefore, the aim of the study was to assess the accuracy and precision of four noninvasive peripheral methods of temperature measurement compared to the central nasopharyngeal measurement. Methods: In this observational prospective study, 237 patients were recruited from the intensive care unit of Imam Ali Hospital of Kermanshah. The patients’ body temperatures were measured by four peripheral methods; oral, axillary, tympanic, and forehead along with a standard central nasopharyngeal measurement. After data collection, the results were analyzed by paired t-test, kappa coefficient, receiver operating characteristic curve, and using Statistical Package for the Social Sciences, version 19, software. Results: There was a significant meaningful correlation between all the peripheral methods when compared with the central measurement (P<0.001. Kappa coefficients showed good agreement between the temperatures of right and left tympanic membranes and the standard central nasopharyngeal measurement (88%. Paired t-test demonstrated an acceptable precision with forehead (P=0.132, left (P=0.18 and right (P=0.318 tympanic membranes, oral (P=1.00, and axillary (P=1.00 methods. Sensitivity and specificity of both the left and right tympanic membranes were more than for other methods. Conclusion: The tympanic and forehead methods had the highest and lowest accuracy for measuring body temperature, respectively. It is recommended to use the tympanic method (right and left for

  7. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    Science.gov (United States)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  8. Biotransformation and induction: implications for toxicity, bioaccumulation and monitoring of environmental xenobiotics in fish

    International Nuclear Information System (INIS)

    Kleinow, K.M.; Melancon, M.J.; Lech, J.J.

    1987-01-01

    Biotransformation of xenobiotics in fish occurs by many of the same reactions as in mammals. These reactions have been shown to affect the bioaccumulation, persistence, residue dynamics, and toxicity of select chemicals in fish. P-450-dependent monooxygenase activity of fish can be induced by polycyclic aromatic hydrocarbons, but phenobarbital-type agents induce poorly, if at all. Fish monooxygenase activity exhibits ideal temperature compensation and sex-related variation. Induction of monooxygenase activity by polycyclic aromatic hydrocarbons can result in qualitative as well as quantitative changes in the metabolic profile of a chemical. Induction can also alter toxicity. In addition, multiple P-450 isozymes have been described for several fish species. The biotransformation productions of certain chemicals have been related to specific P-450 isozymes, and the formation of these products can be influenced by induction. Exposure of fish to low levels of certain environmental contaminants has resulted in induction of specific monooxygenase activities and monitoring of such activities has been suggested as a means of identifying areas of pollutant exposure in the wild

  9. THE INFLUENCE OF SOWING TERM ON THE DURUM WHEAT INDUCTION ABILITY IN SOUTH UKRAINE

    Directory of Open Access Journals (Sweden)

    I. S. Zambriborsh

    2014-08-01

    Full Text Available The sowing term of spring durum wheat influence on the induction ability in the South Ukraine was evaluated. Wheat was sowed in two terms: April, 11 and April, 18 of 2013. Two sowing term were different in the growing conditions. The second term is characterized with higher temperature and lower soil humidity during wheat germination and growing. Wheat spikes were cut in appropriate microspore development stage according to standard protocol. Anthers were cultivated on different cultural media. We used standard protocols as well as our own improved protocols of media preparation. The level of sowing term and plant culture media on the induction ability of different wheat genotypes was estimated. Stress growing conditions increased the induction ability of durum wheat. The new formation percentage was higher for the second sowing term wheat on different media. However it was shown that the level of sowing term influence was lower on appropriate cultural media. Key words: in vitro anther culture, durum wheat, sowing term, new formation induction.

  10. Control method for light deterioration of amorphous solar cell. Temperature effect method; Amorphous taiyo denchi no hikari rekka yokuseiho. Ondo kokaho

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Yokoyama, S.; Itsumi, J. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1996-10-27

    This paper describes a proposed method for suppressing light deterioration (temperature effect method), in which an annealing effect was always expected by laminating an NEM element and a heat insulation material on the back side of a-Si solar cell module and thereby raising the temperature in the back side of the module, and also describes an outdoor exposure test device completed for the method. The NEM element consisted of conductive potassium titanate and high molecular polymer and was a self temperature-controlling organic exothermic body that required no outside temperature control device. It was provided with a heat generating temperature of 45-75{degree}C as the exothermic property of the element and capable of generating heating temperature arbitrarily according to the purpose. The NEM element varied a resistance value against the ambient temperature and kept the element temperature constant. Measurement was commenced starting April 19, 1996, using the completed outdoor exposure test device and a measuring circuit. The deterioration phenomenon was and from then on continuously examined under the following conditions: (1) measurements were those of clear days only, and (2) measurements to be used were those between 10:00 and 14:00 with the quantity of solar radiation on a constant level. 4 refs., 4 figs., 1 tab.

  11. Methods of Temperature and Emission Measure Determination of Coronal Loops

    Science.gov (United States)

    Cirtain, J. W.; Schmelz, J. T.; Martens, P. C. H.

    2002-05-01

    Recent observational results from both SOHO-EIT and TRACE indicate that coronal loops are isothermal along their length (axially). These results are obtained from a narrowband filter ratio method that assumes that the plasma is isothermal along the line of sight (radially). However, these temperatures vary greatly from those derived from differential emission measure (DEM) curves produced from spectral lines recorded by SOHO-CDS. The DEM results indicate that the loops are neither axially nor radially isothermal. This discrepancy was investigated by Schmelz et al. (2001). They chose pairs of iron lines from the same CDS data set to mimic the EIT and TRACE loop results. Ratios of different lines gave different temperatures, indicating that the plasma was not radially isothermal. In addition the results indicated that the loop was axially isothermal, even though the DEM analysis of the same data showed this result to be false. Here we have analyzed the EIT data for the CDS loop published by Schmelz et al. (2001). We took the ratios of the 171-to-195 and 195-to-284 filter data, and made temperature maps of the loop. The results indicate that the loop is axially isothermal, but different temperatures were found for each pair of filters. Both ratio techniques force the resultant temperature to lie within the range where the response functions (for filters) or the emissivity functions (for lines) overlap; isothermal loops are therefore a byproduct of the analysis. This conclusion strengthens support for the idea that temperature and emission measure results from filter ratio methods may be misleading or even drastically wrong. This research was funded in part by the NASA/TRACE MODA grant for Montana State University. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783.

  12. Study on cord/rubber interface at elevated temperatures by H-pull test method

    Science.gov (United States)

    Jamshidi, M.; Afshar, F.; Mohammadi, N.; Pourmahdian, S.

    2005-08-01

    Cords are used as reinforcing materials in rubber compounds. To increase cord/rubber interfacial adhesion, they are coated by an adhesive (usually based on resorcinol-formaldehyde-latex). These composites are used in many sectors such as tire and belt industries. Cord/rubber adhesion strength is an important aspect to determine the durability of system. Due to temperature increase during running tires, the adhesion energy becomes different from initial one. To study cord/rubber interface at elevated temperatures, H-adhesion test method was used. H-pull test is a simple method for adhesion evaluation at ambient temperature, so it is usually used for material quality control. In this research, cord/rubber systems were vulcanized at different temperatures and H-adhesion of samples were evaluated at elevated temperatures. Also cord/rubber interface was studied by ATR analyze to determine interfacial interactions kind.

  13. Growth factor combination for chondrogenic induction from human mesenchymal stem cell

    International Nuclear Information System (INIS)

    Indrawattana, Nitaya; Chen Guoping; Tadokoro, Mika; Shann, Linzi H.; Ohgushi, Hajime; Tateishi, Tetsuya; Tanaka, Junzo; Bunyaratvej, Ahnond

    2004-01-01

    During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-β3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-β3 and BMP-6 or TGF-β3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction

  14. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    International Nuclear Information System (INIS)

    Surducan, V.; Surducan, E.; Dadarlat, D.

    2013-01-01

    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved

  15. The effect of induction motor shaft diameter on motor performance

    Directory of Open Access Journals (Sweden)

    Asım Gökhan Yetgin

    2017-10-01

    Full Text Available Induction motors are used in many areas from the past to the present and in different fields with the development of technology has continued to be used. It is obvious that induction motors as an improvement to the efficiency in terms of energy saving would cause great benefit. In that context, induction motor manufacturers and designers are constantly trying out new methods to improve motor performance and efficiency. In this study, what would be the optimum diameter of the shaft in order to increase the efficiency of the induction motor were investigated. In the study, 5.5 kW, 7.5 kW and 11 kW motors analyzes were also performed. Obtained shaft diameter values were compared with the manufacturer values. In addition, critical points such as the magnetic flux values, weight values and performances of the motors were examined and optimal shaft diameter values for each motor have been determined.

  16. Inductively coupled plasma as atomization, excitation and ionization sources in analytical atomic spectrometry

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi

    1996-01-01

    Studies on inductively coupled plasma (ICP) for atomic emission and mass spectrometry accomplished in our laboratory since 1978 are reviewed. In emission spectrometry, the characteristics of the plasma are studied concerning the spatial profiles of spectral line intensity, axial profiles of gas and excitation temperatures, spectral line widths and matrix effect. The studies are particularly emphasized on the instrumentation such as developments of plasma generator, emission spectrometers, water-cooled torches and sample introduction methods. A slew-scan type spectrometer developed in these works represents a predecessor of the current commercial spectrometers. An ICP mass spectrometer was first developed in Japan in this laboratory in 1984. Non-spectroscopic interference of this method was found to have the correlation with the atomic weight of the matrix element. Plasma gases other than argon such as nitrogen and oxygen were used for the ICP to evaluate their performance in mass spectrometry as for the sensitivity and interferences. (author). 63 refs

  17. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection

    DEFF Research Database (Denmark)

    Nguyen, Tam T T N; Østergaard, Jesper; Gammelgaard, Bente

    2015-01-01

    An analytical method based on capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICP-MS) detection was developed for studies on the interaction of gold-containing drugs and plasma proteins using auranofin as example. A detection limit of 18 ng/mL of auranofin corresp...

  18. Molecular-dynamics method for the simulation of bulk-solid interfaces at high temperatures

    International Nuclear Information System (INIS)

    Lutsko, J.F.; Wolf, D.; Yip, S.; Phillpot, S.R.; Nguyen, T.

    1988-01-01

    A new method for the molecular-dynamics simulation of bulk planar interfaces at high temperatures is presented. The method uses the basic Parrinello-Rahman (constant-stress) scheme, modified for the application to inhomogeneous systems. Since our computational cell contains only one interface with two-dimensional (2D) periodic border conditions, we are able to study isolated interfaces all the way up to melting. The interaction between boundaries which may lead to their annihilation at higher temperatures, which is a problem when 3D periodic borders are applied, is thus avoided. As an application, the method is used to study the stability of a grain boundary at high temperatures. Observations on a possible connection between grain-boundary migration and ''premelting'' are discussed

  19. Computations of finite temperature QCD with the pseudofermion method

    International Nuclear Information System (INIS)

    Fucito, F.; Solomon, S.

    1985-01-01

    The authors discuss the phase diagram of finite temperature QCD as it is obtained including the effects of dynamical quarks by the pseudofermion method. They compare their results with the results obtained by other groups and comment on the actual state of the art for these kind of computations

  20. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    Science.gov (United States)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.