WorldWideScience

Sample records for temperature hydrogen separation

  1. High temperature inorganic membranes for separating hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  2. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  3. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  4. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  5. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K. [Southwest Research Inst. (SwRI), San Antonio, TX (United States)

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  6. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  7. Subzero Celsius separations in three-zone temperature controlled hydrogen deuterium exchange mass spectrometry.

    Science.gov (United States)

    Wales, Thomas E; Fadgen, Keith E; Eggertson, Michael J; Engen, John R

    2017-11-10

    Hydrogen deuterium exchange mass spectrometry (HDX MS) reports on the conformational landscape of proteins by monitoring the exchange between backbone amide hydrogen atoms and deuterium in the solvent. To maintain the label for analysis, quench conditions of low temperature and pH are required during the chromatography step performed after protease digestion but before mass spectrometry. Separation at 0°C is often chosen as this is the temperature where the most deuterium can be recovered without freezing of the typical water and acetonitrile mobile phases. Several recent reports of separations at subzero Celsius emphasize the promise for retaining more deuterium and using a much longer chromatographic gradient or direct infusion time. Here we present the construction and validation of a modified Waters nanoACQUITY HDX manager with a third temperature-controlled zone for peptide separations at subzero temperatures. A new Peltier-cooled door replaces the door of a traditional main cooling chamber and the separations and trapping column are routed through the door housing. To prevent freezing, 35% methanol is introduced post online digestion. No new pumps are required and online digestion is performed as in the past. Subzero separations, using conventional HPLC column geometry of 3μ m particles in a 1×50mm column, did not result in major changes to chromatographic efficiency when lowering the temperature from 0 to -20°C. There were significant increases in deuterium recovery for both model peptides and biologically relevant protein systems. Given the higher levels of deuterium recovery, expanded gradient programs can be used to allow for higher chromatographic peak capacity and therefore the analysis of larger and more complex proteins and systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; Scott Beck; Bill Galyean

    2005-09-01

    This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

  9. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  10. Chromatographic hydrogen isotope separation

    Science.gov (United States)

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  11. Diffusion characteristics of specific metals at the high temperature hydrogen separation; Diffusionseigenschaften bestimmter Metalle bei der Hochtemperatur-Wasserstoffabtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Christian

    2010-09-07

    This paper evaluates the metals palladium, nickel, niobium, tantalum, titanium and vanadium according to their ability to separate hydrogen at high temperatures. This evaluation is chiefly based on a thorough consideration of the properties of diffusion for these metals. The various known hydrogen permeabilities of the metals in a temperature range from 300 to 800 C, as well as their physical and mechanical properties will be presented consistent with the current state of technology. The theory of hydrogen diffusion in metals and the mathematical basis for the calculation of diffusion will also be shown. In the empirical section of the paper, permeability measurements are taken in a temperature range of 400 to 825 C. After measurement, the formation of the oxide coating on these membranes is examined using a light-optical microscope. The results of these examinations allow a direct comparison of the different permeabilities of the various metals within the temperature range tested, and also allow for a critical evaluation of the oxide coating formed on the membranes. The final part of the paper shows the efficiency of these metals in the context of in-situ hydrogen separation in a biomass reformer. (orig.)

  12. Integrated High Temperature Coal-to-Hydrogen System with CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    James A. Ruud; Anthony Ku; Vidya Ramaswamy; Wei Wei; Patrick Willson

    2007-05-31

    A significant barrier to the commercialization of coal-to-hydrogen technologies is high capital cost. The purity requirements for H{sub 2} fuels are generally met by using a series of unit clean-up operations for residual CO removal, sulfur removal, CO{sub 2} removal and final gas polishing to achieve pure H{sub 2}. A substantial reduction in cost can be attained by reducing the number of process operations for H{sub 2} cleanup, and process efficiency can be increased by conducting syngas cleanup at higher temperatures. The objective of this program was to develop the scientific basis for a single high-temperature syngas-cleanup module to produce a pure stream of H{sub 2} from a coal-based system. The approach was to evaluate the feasibility of a 'one box' process that combines a shift reactor with a high-temperature CO{sub 2}-selective membrane to convert CO to CO{sub 2}, remove sulfur compounds, and remove CO{sub 2} in a simple, compact, fully integrated system. A system-level design was produced for a shift reactor that incorporates a high-temperature membrane. The membrane performance targets were determined. System level benefits were evaluated for a coal-to-hydrogen system that would incorporate membranes with properties that would meet the performance targets. The scientific basis for high temperature CO{sub 2}-selective membranes was evaluated by developing and validating a model for high temperature surface flow membranes. Synthesis approaches were pursued for producing membranes that integrated control of pore size with materials adsorption properties. Room temperature reverse-selectivity for CO{sub 2} was observed and performance at higher temperatures was evaluated. Implications for future membrane development are discussed.

  13. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    Energy Technology Data Exchange (ETDEWEB)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the

  14. Development of Pd-Ag Compostie Membrane for Separation of Hydrogen at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2009-02-28

    Pd-based membrane reactor offers the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. In this project to develop a defect-free and hermally-stable Pd-film on microporous stainless steel (MPSS) support for H2-separation and membrane reactor applications, the electroless plating process was revisited with an aim to improve the membrane morphology. Specifically, this study includes; (a) an improvement f activation step using Pulse Laser Deposition (PLD), (b) development of a novel surfactant induced electroless plating (SIEP) for depositing robust Pd-film on microporous support, and (c) application of Pd-membrane as membrane reactor in steam methanol reforming (SMR) reactions.

  15. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  17. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2at room temperature

    KAUST Repository

    Li, Peng

    2014-11-13

    Self-assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod-packing 3D microporous hydrogen-bonded organic framework (HOF-3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure.

  18. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  19. Robust Polymer Composite Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-11-01

    This factsheet describes a research project whose primary goal is to achieve a major improvement in the combined economics and performance of polymenzimidazole-based (PBI) membrane technology in the application of hydrogen separation from a syngas stream.

  20. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Ma, Yi Hua [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Yen, Pei-Shan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Deveau, Nicholas [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Fishtik, Ilie [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Mardilovich, Ivan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM. The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 °C has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  1. Development of dense ceramic membranes for hydrogen separation.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Lee, T. H.; Zhang, G.; Dorris, S. E.; Rothenberger, K. S.; Martello, D. V.; Cugini, A. V.; Siriwardane, R. V.; Poston, J. A., Jr.; Fisher, E. P.

    2000-11-01

    We developed novel cermet (i.e., ceramic-metal composite) membranes for separating hydrogen from gas mixtures at high temperature and pressure. The hydrogen permeation rate in the temperature range of 600-900 C was determined for three classes of cermet membranes (ANL-1, ANL-2, and ANL-3). Among these membranes, ANL-3 showed the highest hydrogen permeation rate, with a maximum flux of 3.2 cm{sup 3}/min-cm{sup 2} for a 0.23-mm-thick membrane at 900 C. Effects of membrane thickness and hydrogen partial pressure on permeation rate indicated that bulk diffusion of hydrogen is rate-limiting for ANL-3 membranes. The lack of degradation in permeation rate during exposure to a simulated syngas mixture suggests that ANL-3 membranes are chemically stable and suitable for long-term operation.

  2. Irreversibility analysis of hydrogen separation schemes in thermochemical cycles. [Condensation, physical absorption, diffusion, physical adsorption, thermal adsorption, and electrochemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, K.E.

    1978-01-01

    Six processes have been evaluated as regards irreversibility generation for hydrogen separation from binary gas mixtures. The results are presented as a series of plots of separation efficiency against the mol fraction hydrogen in the feed gas. Three processes, condensation, physical absorption and electrochemical separation indicate increasing efficiency with hydrogen content. The other processes, physical and thermal adsorption, and diffusion show maxima in efficiency at a hydrogen content of 50 mol percent. Choice of separation process will also depend on such parameters as condition of feed, impurity content and capital investment. For thermochemical cycles, schemes based on low temperature heat availability are preferable to those requiring a work input.

  3. Thermal Analysis of Cryogenic Hydrogen Liquid Separator

    Science.gov (United States)

    Congiardo, Jared F.; Fortier, Craig R. (Editor)

    2014-01-01

    During launch for the new Space Launch System (SLS) liquid hydrogen is bleed through the engines during replenish, pre-press, and extended pre-press to condition the engines prior to launch. The predicted bleed flow rates are larger than for the shuttle program. A consequence of the increased flow rates is having liquif hydrogen in the vent system, which the facilities was never designed to handle. To remedy the problem a liquid separator is being designed in the system to accumulated the liquid propellant and protect the facility flare stack (which can only handle gas). The attached document is a presentation of the current thermalfluid analysis performed for the separator and will be presented at the Thermal and Fluid Analysis Workshop (NASA workshop) next week in Cleveland, Ohio.

  4. Phase separation of metallic hydrogen-helium alloys

    Science.gov (United States)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1977-01-01

    Calculations are presented for the thermodynamic functions and phase-separation boundaries of solid metallic hydrogen-helium alloys at temperatures between zero and 19,000 K and at pressures between 15 and 90 Mbar. Expressions for the band-structure energy of a randomly disordered alloy (including third order in the electron-ion interaction) are derived and evaluated. Short- and long-range orders are included by the quasi-chemical method, and lattice dynamics in the virtual-crystal harmonic approximation. It is concluded that at temperatures below 4000 K, there is essentially complete phase separation of hydrogen-helium alloys and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  5. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.

  6. Application of Inorganic Membrane Technology to Hydrogen-hydrocarbon Separations

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, L.D.

    2003-06-30

    Separation efficiency for hydrogen/light hydrocarbon mixtures was examined for three inorganic membranes. Five binary gas mixtures were used in this study: H{sub 2}/CH{sub 4} , H{sub 2}/C{sub 2}H{sub 6}, H{sub 2}/C{sub 3}H{sub 8}, He/CO{sub 2}, and He/Ar. The membranes examined were produced during a development program at the Inorganic Membrane Technology Laboratory in Oak Ridge and provided to us for this testing. One membrane was a (relatively) large-pore-diameter Knudsen membrane, and the other two had much smaller pore sizes. Observed separation efficiencies were generally lower than Knudsen separation but, for the small-pore membranes, were strongly dependent on temperature, pressure, and gas mixture, with the most condensable gases showing the strongest effect. This finding suggests that the separation is strongly influenced by surface effects (i.e., adsorption and diffusion), which enhance the transport of the heavier and more adsorption-prone component and may also physically impede flow of the other component. In one series of experiments, separation reversal was observed (the heavier component preferentially separating to the low-pressure side of the membrane). Trends showing increased separation factors at higher temperatures as well as observations of some separation efficiencies in excess of that expected for Knudsen flow suggest that at higher temperatures, molecular screening effects were observed. For most of the experiments, surface effects were stronger and thus apparently overshadow molecular sieving effects.

  7. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    Science.gov (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  8. Photoelectrochemical water splitting in separate oxygen and hydrogen cells.

    Science.gov (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  9. GC/MS Gas Separator Operates At Lower Temperatures

    Science.gov (United States)

    Sinha, Mahadeva P.; Gutnikov, George

    1991-01-01

    Experiments show palladium/silver tube used to separate hydrogen carrier gas from gases being analyzed in gas-chromatography/mass-spectrometry (GC/MS) system functions satisfactorily at temperatures as low as 70 to 100 degrees C. Less power consumed, and catalytic hydrogenation of compounds being analyzed diminished. Because separation efficiency high even at lower temperatures, gas load on vacuum pump of mass spectrometer kept low, permitting use of smaller pump. These features facilitate development of relatively small, lightweight, portable GC/MS system for such uses as measuring concentrations of pollutants in field.

  10. Experimental verification of hydrogen isotope separation by pressure swing adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K. [Faculty of Eng., Kyushu Univ., 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Tanaka, M. [National Inst. for Fusion Science, 322-6 Oroshi-cho, Toki-shi, Gifu 509-5292 (Japan); Nakamura, Y.; Sakamoto, T. [Faculty of Eng., Kyushu Univ., 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Asakura, Y.; Uda, T. [National Inst. for Fusion Science, 322-6 Oroshi-cho, Toki-shi, Gifu 509-5292 (Japan); Sugiyama, T. [Faculty of Eng., Nagoya Univ., Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2008-07-15

    Focusing on synthetic zeolites that adsorb hydrogen isotopes at liquid N{sub 2} temperature with priority in the order of T{sub 2}, DT, D{sub 2}, HT, HD and H{sub 2}, we have been developing a pressure swing adsorption process system for hydrogen isotope separation. For this purpose, we carried out fundamental experiments of adsorption and desorption of a tracer D{sub 2} in bulk H{sub 2} with zeolite packed-bed columns. In this paper, the results are reported that D{sub 2} is enriched in the adsorbed phase at separation factors near 2.0, flowing through zeolite 5A and 13X packed-beds at 77.4 K. These are in agreement with values predicted from the multi-component equilibrium characteristics. In the gas samples recovered by evacuating the packed-beds, however, D{sub 2} was detected at a relative concentration of 1.20 or 1.32 to that in the feed gas. This lower range results from the isotopic mass effect in kinetic process. That suggests a highly D{sub 2}-enriched residual left during evacuation. This is verified with an unusually high enrichment factor of 6.68 or 9.21 for zeolite 5A or 13X measured in the residual sample desorbed from the packed-bed by heating up to room temperature. (authors)

  11. Low Temperature Hydrogen Antihydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Armour, E. A. G., E-mail: eaga@maths.nott.ac.uk; Chamberlain, C. W. [University of Nottingham, School of Mathematical Sciences (United Kingdom)

    2001-12-15

    In view of current interest in the trapping of antihydrogen (H-bar) atoms at low temperatures, we have carried out a full four-body variational calculation to determine s-wave elastic phase shifts for hydrogen antihydrogen scattering, using the Kohn Variational Principle. Terms outside the Born-Oppenheimer approximation have been taken into account using the formalism of Kolos and Wolniewicz. As far as we are aware, this is the first time that these terms have been included in an H H-bar scattering calculation. This is a continuation of earlier work on H-H-bar interactions. Preliminary results differ substantially from those calculated using the Born-Oppenheimer approximation. A method is outlined for reducing this discrepancy and taking the rearrangement channel into account.

  12. Micromechanics of high temperature hydrogen attack

    NARCIS (Netherlands)

    Schlögl, Sabine M.; Giessen, Erik van der

    1999-01-01

    Hydrogen attack is a material degradation process that occurs at elevated temperatures in hydrogen-rich environments, such as found in petro-chemical installations. Weldments in components such as reactor vessels are particularly susceptible to hydrogen attack. This paper discusses a multi-scale

  13. Hydrogen separation membranes annual report for FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

  14. Proton conducting ceramic membranes for hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  15. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean; Magdefrau, Neal; She, Ying; Thibaud-Erkey, Catherine

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at 95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE's goals prior to down-selection for larger-scale (100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ

  16. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L.

    1990-10-01

    The production of hydrogen from synthesis gas made by gasification of coal is expensive. The separation of hydrogen from synthesis gas is a major cost element in the total process. In this report we describe the results of a program aimed at the development of membranes and membrane modules for the separation and purification of hydrogen from synthesis gas. The performance properties of the developed membranes were used in an economic evaluation of membrane gas separation systems in the coal gasification process. Membranes tested were polyetherimide and a polyamide copolymer. The work began with an examination of the chemical separations required to produce hydrogen from synthesis gas, identification of three specific separations where membranes might be applicable. A range of membrane fabrication techniques and module configurations were investigated to optimize the separation properties of the membrane materials. Parametric data obtained were used to develop the economic comparison of processes incorporating membranes with a base-case system without membranes. The computer calculations for the economic analysis were designed and executed. Finally, we briefly investigated alternative methods of performing the three separations in the production of hydrogen from synthesis gas. The three potential opportunities for membranes in the production of hydrogen from synthesis gas are: (1) separation of hydrogen from nitrogen as the final separation in a air-blown or oxygen-enriched air-blown gasification process, (2) separation of hydrogen from carbon dioxide and hydrogen sulfide to reduce or eliminate the conventional ethanolamine acid gas removal unit, and (3) separation of hydrogen and/or carbon dioxide form carbon monoxide prior to the shift reactor to influence the shift reaction. 28 refs., 54 figs., 40 tabs.

  17. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  18. Production of hydrogen and separation of cycle gases for the liquefaction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H.; Brauer, O.; Heucke, C.; Lohmueller, R.; Ranke, G.

    1984-03-01

    As with the IG-Farbenindustrie coal-hydrogenation process of the forties, low-temperature processes are now again being considered in industrial-scale coal liquefaction processes. Hydrogen can be generated by gasification of heavy residues and by steam reforming of the ethane fraction. Alternatives to the separation of cycle gas into hydrogen and product gases are butane or methane scrubbing processes and low-temperature condensation at high and medium pressures. These processes additionally use a number of absorption and adsorption stages for gas purification. They have proved successful on an industrial scale and they satisfy the legal requirements of environmental protection.

  19. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Inelastic Neutron Scattering and Separation Coefficient of Absorbed Hydrogen

    DEFF Research Database (Denmark)

    Silvera, I. F.; Nielsen, Mourits

    1976-01-01

    Inelastic neutron scattering and measurement of the ortho-para separation coefficient have been used to study the low lying rotational states of molecular hydrogen adsorbed on activated alumina. The observations are consistent with a picture in which the orientational motion of the molecules is s...

  1. Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K.; Kimura, K.; Nakamura, Y.; Kudo, K. [Faculty of Engineering, Kyushu Univ., 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2008-07-15

    It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appear at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)

  2. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  3. The Laboratory for Laser Energetics’ Hydrogen Isotope Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Shmayda, W.T., E-mail: wshm@lle.rochester.edu; Wittman, M.D.; Earley, R.F.; Reid, J.L.; Redden, N.P.

    2016-11-01

    The University of Rochester’s Laboratory for Laser Energetics has commissioned a hydrogen Isotope Separation System (ISS). The ISS uses two columns—palladium on kieselguhr and molecular sieve—that act in a complementary manner to separate the hydrogen species by mass. The 4-sL per day throughput system is compact and has no moving parts. The columns and the attendant gas storage and handling subsystems are housed in a 0.8 -m{sup 3} glovebox. The glovebox uses a helium cover gas that is continuously processed to extract oxygen and water vapor that permeates through the glovebox gloves and any tritium that is released while attaching or detaching vessels to add feedstock to or drawing product from the system. The isotopic separation process is automated and does not require manual intervention. A total of 315 TBq of tritium was extracted from 23.6 sL of hydrogen with tritium purities reaching 99.5%. Deuterium was the sole residual component in the processed gas. Raffinate contained 0.2 TBq of activity was captured for reprocessing. The total emission from the system to the environment was 0.4 GBq over three weeks.

  4. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

    Science.gov (United States)

    Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada

    2017-10-06

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  5. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport

    Directory of Open Access Journals (Sweden)

    Afrooz Farjoo

    2017-10-01

    Full Text Available Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  6. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  7. Low temperature hydrogen-antihydrogen scattering

    Energy Technology Data Exchange (ETDEWEB)

    Armour, E.A.G. E-mail:eaga@maths.nott.ac.ukedward.armour@nottingham.ac.uk; Chamberlain, C.W

    2002-05-01

    In view of current interest in the trapping of antihydrogen (H-bar) atoms at low temperatures [Phys. Rep. 241 (1994) 65; Nucl. Phys. B (Proc. Suppl.) 56A (1997) 338; Rep. Prog. Phys. 62 (1999) 1], we have carried out a four-body variational calculation for s-wave hydrogen-antihydrogen scattering using the Kohn variational method. The aim is to obtain cross-sections for the scattering processes involved. This is a continuation of earlier work on H-H-bar interactions [Nucl. Instr. and Meth. B 143 (1998) 218; J. Phys. B 31 (1998) L679; Int. J. Quant. Chem. 74 (1999) 645].

  8. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  9. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  10. Mixed Ionic and Electonic Conductors for Hydrogen Generation and Separation: A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth Gopalan

    2006-12-31

    Composite mixed conductors comprising one electronic conducting phase, and one ionic conducting phase (MIECs) have been developed in this work. Such MIECs have applications in generating and separating hydrogen from hydrocarbon fuels at high process rates and high purities. The ionic conducting phase comprises of rare-earth doped ceria and the electronic conducting phase of rare-earth doped strontium titanate. These compositions are ideally suited for the hydrogen separation application. In the process studied in this project, steam at high temperatures is fed to one side of the MIEC membrane and hydrocarbon fuel or reformed hydrocarbon fuel to the other side of the membrane. Oxygen is transported from the steam side to the fuel side down the electrochemical potential gradient thereby enriching the steam side flow in hydrogen. The remnant water vapor can then be condensed to obtain high purity hydrogen. In this work we have shown that two-phase MIECs comprising rare-earth ceria as the ionic conductor and doped-strontium titanate as the electronic conductor are stable in the operating environment of the MIEC. Further, no adverse reaction products are formed when these phases are in contact at elevated temperatures. The composite MIECs have been characterized using a transient electrical conductivity relaxation technique to measure the oxygen chemical diffusivity and the surface exchange coefficient. Oxygen permeation and hydrogen generation rates have been measured under a range of process conditions and the results have been fit to a model which incorporates the oxygen chemical diffusivity and the surface exchange coefficient from the transient measurements.

  11. Mixture including hydrogen and hydrocarbon having pressure-temperature stability

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2009-01-01

    The invention relates to a method of storing hydrogen that employs a mixture of hydrogen and a hydrocarbon that can both be used as fuel. In one embodiment, the method involves maintaining a mixture including hydrogen and a hydrocarbon in the solid state at ambient pressure and a temperature in excess of about 10 K.

  12. Fabrication method for a room temperature hydrogen sensor

    Science.gov (United States)

    Seal, Sudipta (Inventor); Shukla, Satyajit V. (Inventor); Ludwig, Lawrence (Inventor); Cho, Hyoung (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  13. Investigation on temperature separation and flow behaviour in vortex chamber

    Science.gov (United States)

    Matsuno, Yuhi; Fukushima, Yusuke; Matsuo, Shigeru; Hashimoto, Tokitada; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.

  14. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  15. Micromachined palladium silver alloy membranes for hydrogen separation

    NARCIS (Netherlands)

    Tong, D.H.; Gielens, F.C.; Berenschot, Johan W.; de Boer, Meint J.; Gardeniers, Johannes G.E.; Jansen, Henricus V.; Nijdam, W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2002-01-01

    This paper presents wafer-scale palladium - silver alloy membranes, fabricated with a sequence of wellknown thin film and silicon micromachining techniques. The membranes have been tested in a gas permeation system to determine the hydrogen permeability and hydrogen selectivity. Typical flow rates

  16. High Temperature Equation of State of Metallic Hydrogen

    OpenAIRE

    V.T.Shvets

    2016-01-01

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures, which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron and proton interaction is applied to determine t...

  17. Materials for the scavanging of hydrogen at high temperatures

    Science.gov (United States)

    Shepodd, Timothy J.; Phillip, Bradley L.

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  18. Intermolecular hydrogen bonds: From temperature-driven proton ...

    Indian Academy of Sciences (India)

    Abstract. We have combined neutron scattering and a range of numerical simulations to study hydrogen bonds in condensed matter. Two examples from a recent thesis will be presented. The first concerns proton transfer with increasing temperature in short inter- molecular hydrogen bonds [1,2]. These bonds have unique ...

  19. Simulation of silicon nanoparticles stabilized by hydrogen at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Galashev, Alexander Y., E-mail: galashev@ecko.uran.r [Russian Academy of Sciences, Ural Division, Institute of Industrial Ecology (Russian Federation)

    2010-10-15

    The stability of different silicon nanoparticles are investigated at a high temperature. The temperature dependence of the physicochemical properties of 60- and 73-atom silicon nanoparticles are investigated using the molecular dynamics method. The 73-atom particles have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene. They are surrounded by a 'coat' from 60 atoms of hydrogen. The nanoassembled particle at the presence of a hydrogen 'coat' has the most stable number (close to four) of Si-Si bonds per atom. The structure and kinetic properties of a hollow single-layer fullerene-structured Si{sub 60} cluster are considered in the temperature range 10 K {<=} T {<=} 1760 K. Five series of calculations are conducted, with a simulation of several media inside and outside the Si{sub 60} cluster, specifically, the vacuum and interior spaces filled with 30 and 60 hydrogen atoms with and without the exterior hydrogen environment of 60 atoms. Fullerene surrounded by a hydrogen 'coat' and containing 60 hydrogen atoms in the interior space has a higher stability. Such cluster has smaller self-diffusion coefficients at high temperatures. The fullerene stabilized with hydrogen is stable to the formation of linear atomic chains up to the temperatures 270-280 K.

  20. Dual temperature dual pressure water-hydrogen chemical exchange for water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Takada, Akito; Morita, Youhei [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Kotoh, Kenji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Munakata, Kenzo [Faculty of Engineering and Resource Science, Akita University, Tegata-gakuen-machi 1-1, Akita 010-8502 (Japan); Taguchi, Akira [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Kawano, Takao; Tanaka, Masahiro; Akata, Naofumi [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Experimental and analytical studies on hydrogen-tritium isotope separation by a dual temperature dual pressure catalytic exchange (DTDP-CE) with liquid phase chemical exchange columns were carried out in order to apply it to a part of the water detritiation system for DEMO fuel cycle. A prototype DTDP-CE apparatus was successfully operated and it was confirmed that tritium was separated by the apparatus as significantly distinguishable. A calculation code was developed based on the channeling stage model. The values of separation factors and the effects of some operating parameters were well predicted by the separative analyses with the code.

  1. Method of Hydrogenous Fuel Usage to Increase the Efficiency in Tandem Diverse Temperature Oxidation System

    Directory of Open Access Journals (Sweden)

    Zubkova Marina

    2016-01-01

    Full Text Available This paper presents the results of estimation energy efficiency, the collation data of thermodynamic calculations and data on material balance for an assessment of electric and thermal components in considered ways to use convention products, performance enhancement in the tandem system containing the high-temperature fuel cell and the low-temperature fuel cell with full heat regeneration for hydrogenous fuel (CH4. The overall effective efficiency (ηΣef. making full use of the recovered heat considered tandem system depends on the efficiency of its constituent fuel cells. The overall effective efficiency of the tandem installation including the fuel converter, separating system, high-temperature oxidation system, and hydrogen disposal system in case of fuel use in the low-temperature fuel cell, is higher than for each of the fuel cell elements separately.

  2. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

    2005-09-30

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  3. Microsystem technology for high-flux hydrogen separation membranes

    NARCIS (Netherlands)

    Gielens, F.C.; Tong, D.H.; van Rijn, C.J.M.; Vorstman, M.A.G.; Keurentjes, J.T.F.

    2004-01-01

    The application of thin hydrogen-selective membranes suffers from the occurrence of pinholes and a significant resistance to mass transfer in the porous support. To overcome these problems, Pd, Pd/Ag and Pd–Ta–Pd membranes with a thickness between 0.5 and 1.2 μm have been deposited on a dense and

  4. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  5. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves.

    Science.gov (United States)

    Ghanem, Bader S; Swaidan, Raja; Ma, Xiaohua; Litwiller, Eric; Pinnau, Ingo

    2014-10-22

    Increases in hydrogen selectivity of more than 100% compared with the most selective ladder polymer of intrinsic microporosity (PIM) reported to date are achieved with self-polymerized A-B-type ladder monomers comprising rigid and three-dimensional 9,10-dialkyl-substituted triptycene moieties. The selectivities match those of materials commercially employed in hydrogen separation, but the gas permeabilities are 150-fold higher. This new polymer molecular sieve is also the most selective PIM for air separation.

  6. Chemically stable ceramic-metal composite membrane for hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanglin; Fang, Shumin; Brinkman, Kyle S.

    2017-06-27

    A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr.sub.1-x-yY.sub.xT.sub.yO.sub.3-.delta. where 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, (x+y)>0; 0.ltoreq..delta..ltoreq.0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.

  7. Quantum simulation of low-temperature metallic liquid hydrogen.

    Science.gov (United States)

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew I J; Pickard, Chris J; Needs, Richard J; Michaelides, Angelos; Wang, Enge

    2013-01-01

    The melting temperature of solid hydrogen drops with pressure above ~65 GPa, suggesting that a liquid state might exist at low temperatures. It has also been suggested that this low-temperature liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Here we report results for hydrogen at high pressures using ab initio methods, which include a description of the quantum motion of the protons. We determine the melting temperature as a function of pressure and find an atomic solid phase from 500 to 800 GPa, which melts at metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature reported, as simulations with classical nuclei lead to considerably higher melting temperatures of ~300 K across the entire pressure range considered.

  8. High Temperature Equation of State of Metallic Hydrogen

    CERN Document Server

    Shvets, V T

    2016-01-01

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures, which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron and proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local field approximation. The interproton interaction is taken into account in the hard spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and thirdorder perturbation theory terms. The third-order term proves to be rather essential at moderately hig...

  9. Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity

    Science.gov (United States)

    Kura, Chiharu; Kunisada, Yuji; Tsuji, Etsushi; Zhu, Chunyu; Habazaki, Hiroki; Nagata, Shinji; Müller, Michael P.; De Souza, Roger A.; Aoki, Yoshitaka

    2017-10-01

    The production of pure hydrogen for use in energy applications and related industries often relies on the permeation of hydrogen through palladium-based membranes. However, the scarcity of Pd reserves necessitates the development of affordable alternatives with high hydrogen permeability. Here we report room-temperature hydrogen permeability of titanium nitrides (widely used as tough and inert coating materials) enabled by mixed hydride ion-electron conductivity. Combined spectroscopic, permeability and microgravimetric measurements reveal that nanocrystalline TiNx membranes feature enhanced grain-boundary diffusion of hydride anions associated with interfacial Ti cations on nanograins. Since the corresponding activation energies are very low (kJ mol-1), these membranes yield a considerably higher room-temperature hydrogen flux than Pd membranes of equivalent thickness. Overall, the current study establishes general guidelines for developing hydride ion transport membranes based on a simple transition metal nitride for hydrogen purification, membrane reactors and other applications.

  10. Hydrogen generation from low-temperature water-rock reactions

    Science.gov (United States)

    Mayhew, L. E.; Ellison, E. T.; McCollom, T. M.; Trainor, T. P.; Templeton, A. S.

    2013-06-01

    Hydrogen is commonly produced during the high-temperature hydration of mafic and ultramafic rocks, owing to the oxidation of reduced iron present in the minerals. Hydrothermal hydrogen is known to sustain microbial communities in submarine vent and terrestrial hot-spring systems. However, the rates and mechanisms of hydrogen generation below temperatures of 150°C are poorly constrained. As such, the existence and extent of hydrogen-fuelled ecosystems in subsurface terrestrial and oceanic aquifers has remained uncertain. Here, we report results from laboratory experiments in which we reacted ground ultramafic and mafic rocks and minerals--specifically peridotite, pyroxene, olivine and magnetite--with anoxic fluids at 55 and 100°C, and monitored hydrogen gas production. We used synchrotron-based micro-X-ray fluorescence and X-ray absorption near-edge structure spectroscopy to identify changes in the speciation of iron in the materials. We report a strong correlation between molecular hydrogen generation and the presence of spinel phases--oxide minerals with the general formula [M2+M23+]O4 and a cubic crystal structure--in the reactants. We also identify Fe(III)-(hydr)oxide reaction products localized on the surface of the spinel phases, indicative of iron oxidation. We propose that the transfer of electrons between Fe(II) and water adsorbed to the spinel surfaces promotes molecular hydrogen generation at low temperatures. We suggest that these localized sites of hydrogen generation in ultramafic aquifers in the oceanic and terrestrial crust could support hydrogen-based microbial life.

  11. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  12. The temperature variation of hydrogen diffusion coefficients in metal alloys

    Science.gov (United States)

    Danford, M. D.

    1990-01-01

    Hydrogen diffusion coefficients were measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.

  13. Hydrogen reduction of molybdenum oxide at room temperature

    Science.gov (United States)

    Borgschulte, Andreas; Sambalova, Olga; Delmelle, Renaud; Jenatsch, Sandra; Hany, Roland; Nüesch, Frank

    2017-01-01

    The color changes in chemo- and photochromic MoO3 used in sensors and in organic photovoltaic (OPV) cells can be traced back to intercalated hydrogen atoms stemming either from gaseous hydrogen dissociated at catalytic surfaces or from photocatalytically split water. In applications, the reversibility of the process is of utmost importance, and deterioration of the layer functionality due to side reactions is a critical challenge. Using the membrane approach for high-pressure XPS, we are able to follow the hydrogen reduction of MoO3 thin films using atomic hydrogen in a water free environment. Hydrogen intercalates into MoO3 forming HxMoO3, which slowly decomposes into MoO2 +1/2 H2O as evidenced by the fast reduction of Mo6+ into Mo5+ states and slow but simultaneous formation of Mo4+ states. We measure the decrease in oxygen/metal ratio in the thin film explaining the limited reversibility of hydrogen sensors based on transition metal oxides. The results also enlighten the recent debate on the mechanism of the high temperature hydrogen reduction of bulk molybdenum oxide. The specific mechanism is a result of the balance between the reduction by hydrogen and water formation, desorption of water as well as nucleation and growth of new phases.

  14. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    NARCIS (Netherlands)

    Bélafi-Bakó, K.; Búcsú, D.; Pientka, Z.; Bálint, B.; Herbel, Z.; Kovács, K.I.; Wessling, Matthias

    2006-01-01

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid

  15. Plasma heating power dissipation in low temperature hydrogen plasmas

    CERN Document Server

    Komppula, J

    2015-01-01

    Theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g. electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  16. High-temperature biotrickling filtration of hydrogen sulphide.

    Science.gov (United States)

    Datta, Indrani; Fulthorpe, Roberta R; Sharma, Shobha; Allen, D Grant

    2007-03-01

    Biofiltration of malodorous reduced sulphur compounds such as hydrogen sulphide has been confined to emissions that are at temperatures below 40 degrees C despite the fact that there are many industrial emissions (e.g. in the pulp and paper industry) at temperatures well above 40 degrees C. This paper describes our study on the successful treatment of hydrogen sulphide gas at temperatures of 40, 50, 60 and 70 degrees C using a microbial community obtained from a hot spring. Three biotrickling filter (BTF) systems were set up in parallel for a continuous run of 9 months to operate at three different temperatures, one of which was always at 40 degrees C as a mesophilic control and the other two were for exploring high-temperature operation up to 70 degrees C. The continuous experiment and a series of batch experiments in glass bottles (250 ml) showed that addition of glucose and monosodium glutamate enhanced thermophilic biofiltration of hydrogen sulphide gas and a removal rate of 40 g m(-3) h(-1) was achieved at 70 degrees C. We suggest that the glucose is acting as a carbon source for the existing microbial community in the BTFs, whereas glutamate is acting as a compatible solute. The use of such organic compounds to enhance biodegradation of hydrogen sulphide, particularly at high temperatures, has not been demonstrated to our knowledge and, hence, has opened up a range of possibilities for applying biofiltration to hot gas effluent.

  17. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.I. [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal); Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal)

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  18. Temperature-responsive chromatography for the separation of biomolecules.

    Science.gov (United States)

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Hydrogen permeation behavior through F82H at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, S.; Katayama, K.; Shimozori, M.; Fukada, S. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kyushu (Japan); Ushida, H. [Energy Science and Engineering, Faculty of Engineering, Kyushu University, Kyushu (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur (Malaysia)

    2015-03-15

    F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 C. degrees because it is considered that F82H can be used up to 30,000 hours at 550 C. degrees. However, it is necessary to assume the situation where F82H is heated over 550 C. degrees in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 to 800 C. degrees. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 to 700 C. degrees agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 C. degrees, the F82H sample was heated to 800 C. degrees. The permeability of hydrogen through F82H sample which was once heated up to 800 C. degrees was lower than that of the original one. (authors)

  20. Materials for the scavenging of hydrogen at high temperatures

    Science.gov (United States)

    Shepodd, T.J.; Phillip, B.L.

    1997-04-29

    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  1. Separation of Hydrogen from Carbon Dioxide through Porous Ceramics

    OpenAIRE

    Taro Shimonosono; Hikari Imada; Hikaru Maeda; Yoshihiro Hirata

    2016-01-01

    The gas permeability of α-alumina, yttria-stabilized zirconia (YSZ), and silicon carbide porous ceramics toward H2, CO2, and H2–CO2 mixtures were investigated at room temperature. The permeation of H2 and CO2 single gases occurred above a critical pressure gradient, which was smaller for H2 gas than for CO2 gas. When the Knudsen number (λ/r ratio, λ: molecular mean free path, r: pore radius) of a single gas was larger than unity, Knudsen flow became the dominant gas transportation process. Th...

  2. Thermoacoustic mixture separation with an axial temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Drew W [Los Alamos National Laboratory; Swift, Gregory A [Los Alamos National Laboratory

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  3. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan

    2008-09-30

    High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

  4. Low temperature heat capacity of lutetium and lutetium hydrogen alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thome, David Keith [Iowa State Univ., Ames, IA (United States)

    1977-10-01

    The heat capacity of high purity electrotransport refined lutetium was measured between 1 and 20°K. Results for thetaD were in excellent agreement with theta values determined from elastic constant measurements. The heat capacity of a series of lutetium-hydrogen solid solution alloys was determined and results showed an increase in γ to about 11.3 mJ/g-atom-K2 for hydrogen content increasing from zero to about one atomic percent. Above one percent hydrogen γ decreased with increasing hydrogen contents. The C/T data showed an increase with temperature decreasing below about 2.5°K for samples with 0.1 to 1.5 atomic percent hydrogen. This accounts for a large amount of scatter in thetaD versus hydrogen content in this range. The heat capacity of a bulk sample of lutetium dihydride was measured between 1 and 20°K and showed a large increase in thetaD and a large decrease in ..gamma.. compared to pure lutetium.

  5. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used.

  6. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    Directory of Open Access Journals (Sweden)

    POPOVICI Ovidiu

    2012-10-01

    Full Text Available The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  7. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Franglin [Univ. of South Carolina, Columbia, SC (United States); Sholl, David [Georgia Inst. of Technology, Atlanta, GA (United States); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Iyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2015-01-22

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  8. Separation of Hydrogen from Carbon Dioxide through Porous Ceramics

    Directory of Open Access Journals (Sweden)

    Taro Shimonosono

    2016-11-01

    Full Text Available The gas permeability of α-alumina, yttria-stabilized zirconia (YSZ, and silicon carbide porous ceramics toward H2, CO2, and H2–CO2 mixtures were investigated at room temperature. The permeation of H2 and CO2 single gases occurred above a critical pressure gradient, which was smaller for H2 gas than for CO2 gas. When the Knudsen number (λ/r ratio, λ: molecular mean free path, r: pore radius of a single gas was larger than unity, Knudsen flow became the dominant gas transportation process. The H2 fraction for the mixed gas of (20%–80% H2–(80%–20% CO2 through porous Al2O3, YSZ, and SiC approached unity with decreasing pressure gradient. The high fraction of H2 gas was closely related to the difference in the critical pressure gradient values of H2 and CO2 single gas, the inlet mixed gas composition, and the gas flow mechanism of the mixed gas. Moisture in the atmosphere adsorbed easily on the porous ceramics and affected the critical pressure gradient, leading to the increased selectivity of H2 gas.

  9. Separation of Hydrogen from Carbon Dioxide through Porous Ceramics.

    Science.gov (United States)

    Shimonosono, Taro; Imada, Hikari; Maeda, Hikaru; Hirata, Yoshihiro

    2016-11-16

    The gas permeability of α-alumina, yttria-stabilized zirconia (YSZ), and silicon carbide porous ceramics toward H₂, CO₂, and H₂-CO₂ mixtures were investigated at room temperature. The permeation of H₂ and CO₂ single gases occurred above a critical pressure gradient, which was smaller for H₂ gas than for CO₂ gas. When the Knudsen number (λ/r ratio, λ: molecular mean free path, r: pore radius) of a single gas was larger than unity, Knudsen flow became the dominant gas transportation process. The H₂ fraction for the mixed gas of (20%-80%) H₂-(80%-20%) CO₂ through porous Al₂O₃, YSZ, and SiC approached unity with decreasing pressure gradient. The high fraction of H₂ gas was closely related to the difference in the critical pressure gradient values of H₂ and CO₂ single gas, the inlet mixed gas composition, and the gas flow mechanism of the mixed gas. Moisture in the atmosphere adsorbed easily on the porous ceramics and affected the critical pressure gradient, leading to the increased selectivity of H₂ gas.

  10. Separation of Hydrogen from Carbon Dioxide through Porous Ceramics

    Science.gov (United States)

    Shimonosono, Taro; Imada, Hikari; Maeda, Hikaru; Hirata, Yoshihiro

    2016-01-01

    The gas permeability of α-alumina, yttria-stabilized zirconia (YSZ), and silicon carbide porous ceramics toward H2, CO2, and H2–CO2 mixtures were investigated at room temperature. The permeation of H2 and CO2 single gases occurred above a critical pressure gradient, which was smaller for H2 gas than for CO2 gas. When the Knudsen number (λ/r ratio, λ: molecular mean free path, r: pore radius) of a single gas was larger than unity, Knudsen flow became the dominant gas transportation process. The H2 fraction for the mixed gas of (20%–80%) H2–(80%–20%) CO2 through porous Al2O3, YSZ, and SiC approached unity with decreasing pressure gradient. The high fraction of H2 gas was closely related to the difference in the critical pressure gradient values of H2 and CO2 single gas, the inlet mixed gas composition, and the gas flow mechanism of the mixed gas. Moisture in the atmosphere adsorbed easily on the porous ceramics and affected the critical pressure gradient, leading to the increased selectivity of H2 gas. PMID:28774051

  11. Study on the Hydrogen Generation Rules of Coal Oxidation at Low Temperature

    OpenAIRE

    Shao He; Zhou Fubao; Chen Kaiyan; Cheng Jianwei; Melogh, Palu H.

    2014-01-01

    Based on a hydrogen desorption experiment and a comparative experiment of low-temperature coal oxidation performed prior to and after hydrogen desorption, this paper demonstrates the occurrence of hydrogen adsorption in coal at room temperature and reveals that the hydrogen generated in the process of coal oxidation originates from coal oxidation and desorption. The results show that the hydrogen accumulation generated only by coal oxidation and the hydrogen accumulation generated...

  12. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    Science.gov (United States)

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  13. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Xu, Xuebing

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference...

  14. Influence of hydrogen temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen

    Science.gov (United States)

    Gröning, Stefan; Hardi, Justin; Suslov, Dmitry; Oschwald, Michael

    2017-03-01

    Since the late 1960s, low hydrogen injection temperature is known to have a destabilising effect on rocket engines with the propellant combination hydrogen/oxygen. Self-excited combustion instabilities of the first tangential mode have been found recently in a research rocket combustor operated with the propellant combination hydrogen/oxygen with a hydrogen temperature of 95 K. A hydrogen temperature ramping experiment has been performed with this research combustor to analyse the impact of hydrogen temperature on the self-excited combustion instabilities. The temperature was varied between 40 and 135 K. Contrary to past results found in literature, the combustor was found to be stable at low hydrogen temperatures while increased oscillation amplitudes of the first tangential mode were found at higher temperatures of around 100 K and above, which is consistent with previous observations of instabilities in this combustor. Further analysis shows that hydrogen temperature has a strong impact on the combustion chamber resonance frequencies. By varying the hydrogen injection temperature, the frequency of the first tangential mode is shifted to coincide with the second longitudinal resonance frequency of the liquid oxygen injector. Excitation of combustion chamber pressure oscillations was observed during such events.

  15. High-temperature vacuum distillation separation of plutonium waste salts

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. [Los Alamos National Lab., NM (United States)

    1996-10-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen.

  16. Effect of temperature and temperature shock on the stability of continuous cellulosic-hydrogen fermentation.

    Science.gov (United States)

    Gadow, Samir I; Jiang, Hongyu; Watanabe, Ryoya; Li, Yu-You

    2013-08-01

    Three continuous stirred tank reactors (CSTR) were operated under mesophilic (37 ± 1°C), thermophilic (55 ± 1°C) and hyper-thermophilic (80 ± 1°C) temperatures for 164 days to investigate the effect of temperature and temperature shock on the cellulosic-dark hydrogen fermentation by mixed microflora. During steady state condition, the sudden decreases in the fermentation temperature occurred twice in each condition for 24h. The results show that the 55 ± 1 and 80 ± 1°C presented stable hydrogen yields of 12.28 and 9.72 mmol/g cellulose, respectively. However, the 37 ± 1°C presented low hydrogen yield of 3.56 mmol/g cellulose and methane yield of 5.4 mmol/g cellulose. The reactor performance under 55 ± 1 or 80 ± 1°C appeared to be more resilient to the sudden decreases in the fermentation temperature than 37 ± 1°C. The experimental analysis results indicated that the changing in soluble by-products could explain the effect of temperature and temperature shock, and the thermophilic temperature is expected having a better economic performance for cellulosic-hydrogen fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Computational investigation of the temperature separation in vortex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Anish, S. [National Institute of Technology Karnataka, Mangalore (India); Setoguchi, T. [Institute of Ocean Energy, Saga University (Japan); Kim, H. D. [Andong National University, Andong (Korea, Republic of)

    2014-06-15

    The vortex chamber is a mechanical device, without any moving parts that separates compressed gas into a high temperature region and a low temperature region. Functionally vortex chamber is similar to a Ranque-Hilsch vortex tube (RVHT), but it is a simpler and compact structure. The objective of the present study is to investigate computationally the physical reasoning behind the energy separation mechanism inside a vortex chamber. A computational analysis has been performed using three-dimensional compressible Navier Stokes equations. A fully implicit finite volume scheme was used to solve the governing equations. A commercial software ANSYS CFX is used for this purpose. The computational predictions were validated with existing experimental data. The results obtained show that the vortex chamber contains a large free vortex zone and a comparatively smaller forced vortex region. The physical mechanism that causes the heating towards periphery of the vortex chamber is identified as the work done by the viscous force. The cooling at the center may be due to expansion of the flow. The extent of temperature separation greatly depends on the outer diameter of the vortex chamber. A small amount of compression is observed towards the periphery of the vortex chamber when the outer diameter is reduced.

  18. Development of membranes for hydrogen separation: Pd-coated V-10Pd

    Energy Technology Data Exchange (ETDEWEB)

    Paglieri, Stephen N [Los Alamos National Laboratory; Wermer, Joseph R [Los Alamos National Laboratory; Buxbaum, Robert E [REB RESEARCH AND CONSULTING; Ciocco, Michael V [NETL; Howard, Bret H [NETL; Morreale, Bryan D [NETL

    2009-01-01

    Numerous Group IVB and VB alloys were prepared and tested as potential membrane materials but most of these materials were brittle or exhibited cracking during hydrogen exposure. One of the more ductile alloys, V-10Pd (at. %), was fabricated into a thin (107-{micro}m thick) composite membrane coated with 100 nm of Pd on each side. The material was tested for hydrogen permeability, resistance to hydrogen embrittlement, and long term hydrogen flux stability. The hydrogen permeability, {phi}, of the V-10Pd membrane was 3.86 x 10{sup -8} mol H{sub 2} m{sup -1} s{sup -1} Pa{sup -0.5} (avg. of three different samples) at 400 C, which is slightly higher than the permeability of Pd-23Ag at that temperature. A 1400 h hydrogen flux test at 400 C demonstrated that the rate of metallic interdiffusion was slow between the V-10Pd foil and the 100-nm-thick Pd coating on the surface. However, at the end of testing the membrane cracked at 118 C because of hydrogen embrittlement.

  19. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    James E. O& #39; Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  20. Catalytic polymer membranes for high temperature hydrogenation of viscous liquids

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, D.; Bengtson, G. [GKSS Research Centre Geesthacht GmbH, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht (Germany)

    2006-05-15

    Polymeric membranes with high oil fluxes were developed and catalytically activated by a new route of direct calcination of polymeric membranes charged by Pd or Pt catalyst precursors. High concentrations of citric acid mixed with the precursors afforded a decrease of the calcination temperature to 175 C. Membrane reactor tests in the flow through contactor mode displayed high reactivities for sunflower oil hydrogenation. Pt showed a similar activity to Pd catalysts as measured by iodine value and generated about 13% less trans-isomers but 5% more stearic acid at an iodine value of 90. By means of alumina supported catalysts tests of methyl oleate (cis-C18:1) and methyl elaidate (trans-C18:1) hydrogenation exhibited a different pathway of reaction by either isomerization followed by reduction (Pd) or primarily direct reduction to methyl stearate (Pt). (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Engineering Hydrogen Bonding Interaction and Charge Separation in Bio-Polymers for Green Lubrication.

    Science.gov (United States)

    Mu, Liwen; Shi, Yijun; Hua, Jing; Zhuang, Wei; Zhu, Jiahua

    2017-06-08

    Synthetic additives are widely used in lubricants nowadays to upgrade lubrication properties. The potential of integrating sustainable components in modern lubricants has rarely been studied yet. In this work, two sustainable resources lignin and gelatin have been synergistically incorporated into ethylene glycol (EG), and their tribological properties were systematically investigated. The abundant hydrogen bonding sites in lignin and gelatin as well as their interchain interaction via hydrogen bonding play the dominating roles in tuning the physicochemical properties of the mixture and improving lubricating properties. Moreover, the synergistic combination of lignin and gelatin induces charge separation of gelatin that enables its preferable adsorption on the friction surface through electrostatic force and forms a robust lubrication layer. This layer will be strengthened by lignin through the interpolymer chain hydrogen bonding. At an optimized lignin:gelatin mass ratio of 1:1 and 19 wt % loading of each in EG, the friction coefficient can be greatly stabilized and the wear loss was reduced by 89% compared to pure EG. This work presents a unique synergistic phenomenon between gelatin and lignin, where hydrogen bonding and change separation are revealed as the key factor that bridges the individual components and improves overall lubricating properties.

  2. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.

    Science.gov (United States)

    McKeown, Neil B; Budd, Peter M

    2006-08-01

    This tutorial review describes recent research directed towards the synthesis of polymer-based organic microporous materials termed Polymers of Intrinsic Microporosity (PIMs). PIMs can be prepared either as insoluble networks or soluble polymers with both types giving solids that exhibit analogous behaviour to that of conventional microporous materials such as activated carbons. Soluble PIMs may be processed into thin films for use as highly selective gas separation membranes. Preliminary results also demonstrate the potential of PIMs for heterogeneous catalysis and hydrogen storage.

  3. Transport Reactor Development Unit Modification to Provide a Syngas Slipstream at Elevated Conditions to Enable Separation of 100 LB/D of Hydrogen by Hydrogen Separation Membranes Year - 6 Activity 1.15 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Schlasner, Steven

    2012-03-01

    Gasification of coal when associated with carbon dioxide capture and sequestration has the potential to provide low-cost as well as low-carbon hydrogen for electric power, fuels or chemicals production. The key element to the success of this concept is inexpensive, effective separation of hydrogen from carbon dioxide in synthesis gas. Many studies indicate that membrane technology is one of the most, if not the most, economical means of accomplishing separation; however, the advancement of hydrogen separation membrane technology is hampered by the absence of experience or demonstration that the technology is effective economically and environmentally at larger scales. While encouraging performance has been observed at bench scale (less than 12 lb/d hydrogen), it would be imprudent to pursue a largescale demonstration without testing at least one intermediate scale, such as 100 lb/d hydrogen. Among its many gasifiers, the Energy & Environmental Research Center is home to the transport reactor demonstration unit (TRDU), a unit capable of firing 200—500 lb/hr of coal to produce 400 scfm of synthesis gas containing more than 200 lb/d of hydrogen. The TRDU and associated downstream processing equipment has demonstrated the capability of producing a syngas over a wide range of temperatures and contaminant levels — some of which approximate conditions of commercial-scale gasifiers. Until this activity, however, the maximum pressure of the TRDU’ s product syngas was 120 psig, well below the 400+ psig pressures of existing large gasifiers. This activity installed a high-temperature compressor capable of accepting the range of TRDU products up to 450°F and compressing them to 500 psig, a pressure comparable to some large scale gasifiers. Thus, with heating or cooling downstream of the TRDU compressor, the unit is now able to present a near-raw to clean gasifier synthesis gas containing more than 100 lb/d of hydrogen at up to 500 psig over a wide range of temperatures

  4. Multi-component transport in polymers: hydrocarbon / hydrogen separation by reverse selectivity membrane; Transport multi-composants dans les polymeres: separation hydrocarbures / hydrogene par membrane a selectivite inverse

    Energy Technology Data Exchange (ETDEWEB)

    Mauviel, G.

    2003-12-15

    Hydrogen separation by reverse selectivity membranes is investigated. The first goal is to develop materials showing an increased selectivity. Silicone membranes loaded with inorganic fillers have been prepared, but the expected enhancement is not observed. The second goal is to model the multi- component transport through rubbers. Indeed the permeability model is not able to predict correctly permeation when a vapour is present. Thus many phenomena have to be considered: diffusional inter-dependency, sorption synergy, membrane swelling and drag effect. The dependence of diffusivities with the local composition is modelled according to free-volume theory. The model resolution allows to predict the permeation flow-rates of mixed species from their pure sorption and diffusion data. For the systems under consideration, the diffusional inter-dependency is shown to be preponderant. Besides, sorption synergy importance is pointed out, whereas it is most often neglected. (author)

  5. Magnetic resonance of atomic hydrogen at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, W.N.; Morrow, M.; Jochemsen, R.; Berlinsky, A.J. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)

    1982-07-01

    This article reviews the present state of magnetic resonance studies of atomic hydrogen gas at low temperatures. The various types of resonances that can be exploited are discussed and the paper ends with a review of the existing experimental data. It will be seen that up to the present, essentially all of the results have been derived from pulsed magnetic resonance of the 1420 MHz zero field hyperfine transition, and the many interesting results expected of the high field experiments are yet to appear.

  6. Hydrogen Environment Embrittlement on Austenitic Stainless Steels from Room Temperature to Low Temperatures

    Science.gov (United States)

    Ogata, Toshio

    2015-12-01

    Hydrogen environment embrittlement (HEE) on austenitic stainless steels SUS304, 304L, and 316L in the high pressure hydrogen gas was evaluated from ambient temperature to 20 K using a very simple mechanical properties testing procedure. In the method, the high- pressure hydrogen environment is produced just inside the hole in the specimen and the specimen is cooled in a cooled-alcohol dewar and a cryostat with a GM refrigerator. The effect of HEE was observed in tensile properties, especially at lower temperatures, and fatigue properties at higher stress level but almost no effect around the stress level of yield strength where almost no strain-induced martensite was produced. So, no effect of HEE on austenitic stainless steels unless the amount of the ferrite phase is small.

  7. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature.

    Science.gov (United States)

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Soferová, Lýdie; Sedmidubský, David; Pumera, Martin

    2014-02-21

    Hydrogenated graphene and graphane are in the forefront of graphene research. Hydrogenated graphene is expected to exhibit ferromagnetism, tunable band gap, fluorescence, and high thermal and low electrical conductivity. Currently available techniques for fabrication of highly hydrogenated graphene use either a liquid ammonia (-33 °C) reduction pathway using alkali metals or plasma low pressure or ultra high pressure hydrogenation. These methods are either technically challenging or pose inherent risks. Here we wish to demonstrate that highly hydrogenated graphene can be prepared at room temperature in the aqueous phase by reduction of graphene oxide by nascent hydrogen generated by dissolution of metal in acid. Nascent hydrogen is known to be a strong reducing agent. We studied the influence of metal involved in nascent hydrogen generation and characterized the samples in detail. The resulting reduced graphenes and hydrogenated graphenes were characterized in detail. The resulting hydrogenated graphene had the chemical formula C1.16H1O0.66. Such simple hydrogenation of graphene is of high importance for large scale safe synthesis of hydrogenated graphene.

  8. Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

    2010-06-30

    The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of

  9. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature

    National Research Council Canada - National Science Library

    C. Liu; Y. Y. Fan; M. Liu; H. T. Cong; H. M. Cheng; M. S. Dresselhaus

    1999-01-01

    .... A hydrogen storage capacity of 4.2 weight percent, or a hydrogen to carbon atom ratio of 0.52, was achieved reproducibly at room temperature under a modestly high pressure (about 10 megapascal...

  10. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  11. ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan

    2005-04-01

    Hydrogen production by the water gas shift reaction (WGSR) is equilibrium limited due to thermodynamic constrains. However, this can be overcome by continuously removing the product CO{sub 2}, thereby driving the WGSR in the forward direction to enhance hydrogen production. This project aims at using a high reactivity, mesoporous calcium based sorbent (PCC-CaO) for removing CO{sub 2} using reactive separation scheme. Preliminary results have shown that PCC-CaO dominates in its performance over naturally occurring limestone towards enhanced hydrogen production. However, maintenance of high reactivity of the sorbent over several reaction-regeneration cycles warrants effective regeneration methods. We have identified sub-atmospheric calcination (vacuum) as vital regeneration technique that helps preserve the sorbent morphology. Sub-atmospheric calcination studies reveal the significance of vacuum level, diluent gas flow rate, thermal properties of diluent gas, and sorbent loading on the kinetics of calcination and the morphology of the resultant CaO sorbent. Steam, which can be easily separated from CO{sub 2}, has been envisioned as a potential diluent gas due to its better thermal properties resulting in effective heat transfer. A novel multi-fixed bed reactor was designed which isolates the catalyst bed from the sorbent bed during the calcination step. This should prevent any potential catalyst deactivation due to oxidation by CO{sub 2} during the regeneration phase.

  12. A design study of hydrogen isotope separation system for ITER-FEAT

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yasunori; Yamanishi, Toshihiko; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Preliminary design study of the hydrogen isotope separation system (ISS) for the fuel cycle of the ITER-FEAT, a fusion experimental reactor, was carried out based on the substantial reduction of hydrogen flow to the ISS resulting from the design study for scale reduction of the formerly-designed ITER. Three feed streams (plasma exhaust gas stream, streams from the water detritiation system and that from the neutral beam injectors) are fed to the ISS, and three product streams (high purity tritium gas, high purity deuterium gas and hydrogen gas) are made in it by the method of cryogenic distillation. In this study, an original four-column cascade was proposed to the ISS cryogenic distillation column system considering simplification and the operation scenario of the ITER-FEAT. Substantial reduction of tritium inventory in the ISS was found to be possible in the progress of investigation concerning of the corresponding flow rate of tritium product stream (T>90 %) for pellet injector which depends upon the operation condition. And it was found that tritium concentration in the released hydrogen stream into environment from the ISS could easily fluctuate with current design of column arrangement due to the small disturbance in mass flow balance in the ISS. To solve this problem, two-column system for treatment of this flow was proposed. (author)

  13. Correlation between hydrogen bond basicity and acetylene solubility in room temperature ionic liquids.

    Science.gov (United States)

    Palgunadi, Jelliarko; Hong, Sung Yun; Lee, Jin Kyu; Lee, Hyunjoo; Lee, Sang Deuk; Cheong, Minserk; Kim, Hoon Sik

    2011-02-10

    Room temperature ionic liquids (RTILs) are proposed as the alternative solvents for the acetylene separation in ethylene generated from the naphtha cracking process. The solubility behavior of acetylene in RTILs was examined using a linear solvation energy relationship based on Kamlet-Taft solvent parameters including the hydrogen-bond acidity or donor ability (α), the hydrogen-bond basicity or acceptor ability (β), and the polarity/polarizability (π*). It is found that the solubility of acetylene linearly correlates with β value and is almost independent of α or π*. The solubility of acetylene in RTILs increases with increasing hydrogen-bond acceptor (HBA) ability of the anion, but is little affected by the nature of the cation. Quantum mechanical calculations demonstrate that the acidic proton of acetylene specifically forms hydrogen bond with a basic oxygen atom on the anion of a RTIL. On the other hand, although C-H···π interaction is plausible, all optimized structures indicate that the acidic protons on the cation do not specifically associate with the π cloud of acetylene. Thermodynamic analysis agrees well with the proposed correlation: the higher the β value of a RTIL is, the more negative the enthalpy of acetylene absorption in the RTIL is.

  14. High temperature corrosion of separator materials for MCFC

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Tanimoto, Kazumi; Kojima, Toshikatsu [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    The Molten Carbonate Fuel Cell (MCFC) is one of promising high efficiency power generation devices with low emission. Molten carbonate used for its electrolyte plays an important role in MCFC. It separates between anode and cathode gas environment and provides ionic conductivity on MCFC operation. Stainless steel is conventionally used as separator/current collector materials in MCFC cathode environment. As corrosion of the components of MCFC caused by the electrolyte proceeds with the electrolyte consumption, the corrosion in the MCFC is related to its performance and life. To understand and inhibit the corrosion in the MCFC is important to realize MCFC power generation system. We have studied the effect of alkaline earth carbonate addition into carbonate on corrosion of type 316L stainless steel. In this paper, we describe the effect of the temperature on corrosion behavior of type 316L stainless steel with carbonate mixture, (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}, under the cathode environment in out-of-cell test.

  15. ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan

    2005-03-10

    Hydrogen production cannot be maximized from fossil fuels (gas/coal) via the WGS reaction at high temperatures as the WGS-equilibrium constant K{sub WGS} (= [CO{sub 2}][H{sub 2}]/[CO][H{sub 2}O]), falls with increasing temperatures. However, CO{sub 2} removal down to ppm levels by the carbonation of CaO to CaCO{sub 3} in the temperature range 650-850 C, leads to the possibility of stoichiometric H{sub 2} production at high temperature/pressure conditions and at low steam to fuel ratios. Further, CO{sub 2} is also captured in the H{sub 2} generation process, making this coal to hydrogen process compatible with CO{sub 2} sequestration goals. While microporous CaO sorbents attain <50% conversion over cyclical carbonation-calcination, the OSU-patented, mesoporous CaO sorbents are able to achieve >95% conversion. Novel calcination techniques could lead to an ever-smaller footprint, single-stage reactors that achieve maximum theoretical H{sub 2} production at high temperatures and pressures for on/off site usage. Experimental results indicate that the PCC-CaO sorbent is able to achieve complete conversion of CO for 240 seconds as compared to only a few seconds with CaO derived from natural sources.

  16. ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan

    2005-03-10

    The water gas shift reaction (WGSR) plays a major role in increasing the hydrogen production from fossil fuels. However, the enhanced hydrogen production is limited by thermodynamic constrains posed by equilibrium limitations of WGSR. This project aims at using a mesoporous, tailored, highly reactive calcium based sorbent system for incessantly removing the CO{sub 2} product which drives the equilibrium limited WGSR forward. In addition, a pure sequestration ready CO{sub 2} stream is produced simultaneously. A detailed project vision with the description of integration of this concept with an existing coal gasification process for hydrogen production is presented. Conceptual reactor designs for investigating the simultaneous water gas shift and the CaO carbonation reactions are presented. In addition, the options for conducting in-situ sorbent regeneration under vacuum or steam are also reported. Preliminary, water gas shift reactions using high temperature shift catalyst and without any sorbent confirmed the equilibrium limitation beyond 600 C demonstrating a carbon monoxide conversion of about 80%. From detailed thermodynamic analyses performed for fuel gas streams from typical gasifiers the optimal operating temperature range to prevent CaO hydration and to effect its carbonation is between 575-830 C.

  17. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping

    Science.gov (United States)

    Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.

    2017-05-01

    Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.

  18. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon.

    Science.gov (United States)

    Upham, D Chester; Agarwal, Vishal; Khechfe, Alexander; Snodgrass, Zachary R; Gordon, Michael J; Metiu, Horia; McFarland, Eric W

    2017-11-17

    Metals that are active catalysts for methane (Ni, Pt, Pd), when dissolved in inactive low-melting temperature metals (In, Ga, Sn, Pb), produce stable molten metal alloy catalysts for pyrolysis of methane into hydrogen and carbon. All solid catalysts previously used for this reaction have been deactivated by carbon deposition. In the molten alloy system, the insoluble carbon floats to the surface where it can be skimmed off. A 27% Ni-73% Bi alloy achieved 95% methane conversion at 1065°C in a 1.1-meter bubble column and produced pure hydrogen without CO 2 or other by-products. Calculations show that the active metals in the molten alloys are atomically dispersed and negatively charged. There is a correlation between the amount of charge on the atoms and their catalytic activity. Copyright © 2017, American Association for the Advancement of Science.

  19. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  20. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide.

    Science.gov (United States)

    Nielsen, Martin; Alberico, Elisabetta; Baumann, Wolfgang; Drexler, Hans-Joachim; Junge, Henrik; Gladiali, Serafino; Beller, Matthias

    2013-03-07

    Hydrogen produced from renewable resources is a promising potential source of clean energy. With the help of low-temperature proton-exchange membrane fuel cells, molecular hydrogen can be converted efficiently to produce electricity. The implementation of sustainable hydrogen production and subsequent hydrogen conversion to energy is called "hydrogen economy". Unfortunately, its physical properties make the transport and handling of hydrogen gas difficult. To overcome this, methanol can be used as a material for the storage of hydrogen, because it is a liquid at room temperature and contains 12.6 per cent hydrogen. However, the state-of-the-art method for the production of hydrogen from methanol (methanol reforming) is conducted at high temperatures (over 200 degrees Celsius) and high pressures (25-50 bar), which limits its potential applications. Here we describe an efficient low-temperature aqueous-phase methanol dehydrogenation process, which is facilitated by ruthenium complexes. Hydrogen generation by this method proceeds at 65-95 degrees Celsius and ambient pressure with excellent catalyst turnover frequencies (4,700 per hour) and turnover numbers (exceeding 350,000). This would make the delivery of hydrogen on mobile devices--and hence the use of methanol as a practical hydrogen carrier--feasible.

  1. Temperature Effect on Hydrogen Evolution Reaction at Au Electrode

    Science.gov (United States)

    Tang, Zhi-qiang; Liao, Ling-wen; Zheng, Yong-li; Kang, Jing; Chen, Yan-xia

    2012-08-01

    The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HClO4 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HClO4 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea=37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with η. The pre-exponential factor (A) in 0.1 mol/L HClO4 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HClO4 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with η. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.

  2. Separation of gaseous hydrogen from a water-hydrogen mixture in a fuel cell power system operating in a weightless environment

    Science.gov (United States)

    Romanowski, William E. (Inventor); Suljak, George T. (Inventor)

    1989-01-01

    A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.

  3. Maternal separation produces, and a second separation enhances, core temperature and passive behavioral responses in guinea pig pups.

    Science.gov (United States)

    Hennessy, Michael B; Deak, Terrence; Schiml-Webb, Patricia A; Carlisle, Cohen W; O'Brien, Erin

    2010-06-16

    During separation in a novel cage, guinea pig pups exhibit passive behavior that appears due to increased proinflammatory activity. To determine if separation also produces a febrile response, the present study used telemetry to provide continuous core temperature measurement of pups exposed to a novel cage for 3h while either alone or with their mother on two consecutive days. Separation from the mother increased core temperature, with the clearest effects occurring early during separation the second day. The increased temperature was not associated with an increase in locomotor activity. Further, passive behavior during isolation exhibited pronounced sensitization from the first to second day of separation. These results show that separation produces an increase in core temperature in our testing situation, and suggest that this increase represents true fever. The findings also provide further support for the hypothesis that maternal separation induces aspects of an acute phase response in guinea pig pups. The potential role of proinflammatory activity in promoting change across days in temperature and behavior is discussed. (c) 2010 Elsevier Inc. All rights reserved.

  4. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  5. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    Science.gov (United States)

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  6. Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures.

    Science.gov (United States)

    Ting, Valeska P; Ramirez-Cuesta, Anibal J; Bimbo, Nuno; Sharpe, Jessica E; Noguera-Diaz, Antonio; Presser, Volker; Rudic, Svemir; Mays, Timothy J

    2015-08-25

    Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid-vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores, and occurs at pressures as low as 0.02 MPa. The quantities of contained, solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus, this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.

  7. Finite-temperature hydrogen adsorption and desorption thermodynamics driven by soft vibration modes.

    Science.gov (United States)

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina; Kim, Yong-Hyun

    2013-08-09

    It has been widely accepted that enhanced dihydrogen adsorption is required for room-temperature hydrogen storage on nanostructured porous materials. Here we report, based on results of first-principles total energy and vibrational spectrum calculations, finite-temperature adsorption and desorption thermodynamics of hydrogen molecules that are adsorbed on the metal center of metal-porphyrin-incorporated graphene. We have revealed that the room-temperature hydrogen storage is achievable not only with the enhanced adsorption enthalpy, but also with soft-mode driven vibrational entropy of the adsorbed dihydrogen molecule. The soft vibration modes mostly result from multiple orbital coupling between the hydrogen molecule and the buckled metal center, for example, in Ca-porphyrin-incorporated graphene. Our study suggests that the current design strategy for room-temperature hydrogen storage materials should be modified with explicitly taking the finite-temperature vibration thermodynamics into account.

  8. Metal-Hydrogen Phase Diagrams in the Vicinity of Melting Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, V.I.

    1999-01-06

    Hydrogen-metal interaction phenomena belong to the most exciting challenges of today's physical metallurgy and physics of solids due to the uncommon behavior of hydrogen in condensed media and to the need for understanding hydrogen's strong negative impact on properties of some high-strength steels and.alloys. The paper cites and summarizes research data on fundamental thermodynamic characteristics of hydrogen in some metals that absorb it endothermally at elevated temperatures. For a number of metal-hydrogen systems, information on some phase diagrams previously not available to the English-speaking scientific community is presented.

  9. Performance of ceramic membranes at elevated pressure and temperature. Effect of non-ideal flow conditions in a pilot scale membrane separator

    Energy Technology Data Exchange (ETDEWEB)

    Koukou, M.K.; Papayannakos, N.; Markatos, N.C. [Department of Chemical Engineering, National Technical University of Athens, Athens (Greece); Bracht, M.; Van Veen, H.M.; Roskam, A. [ECN Fuels Conversion and Environment, Petten (Netherlands)

    1998-11-01

    Microporous silica membrane manufacturing technology has been scaled-up and tubes with several hundred cm{sup 2} of membrane surface area have been prepared. Practical problems in applying high-temperature ceramic membrane technology, such as sealing and ceramic metal joining, have been solved successfully on pilot scale. Experiments show that membranes developed are capable of selectively separating hydrogen from a gas mixture containing hydrogen at elevated pressures and temperatures. Permselectivity values for H{sub 2}/CH{sub 4} separation are as high as 28. The gas separation performance of membranes is influenced by the flow conditions at both the feed and permeate side of the membrane separators. By performing high-temperature high-pressure separation experiments and simulation of the non-ideal flow effects around the membrane, the influence of the flow effects is predicted. The operation of the pilot scale membrane separator is simulated by a two-dimensional, one-phase mathematical model which predicts the basic features of the separator from an engineering point of view. A comparison between the experimental data and the modelling results yields the conclusion that the dispersion model predicts much better the membrane separator performance than the simplified model which assumes plug flow on both sides of the membrane separator. 29 refs.

  10. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  11. The effect of temperature and light intensity on hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Inci [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Sevinc, Pelin [Middle East Technical Univ., Ankara (Turkey). Dept. of Biotechnology; Guenduez, Ufuk; Yucel, Meral [Middle East Technical Univ., Ankara (Turkey). Dept. of Biological Sciences

    2010-07-01

    Rhodobacter capsulatus is a purple non-sulfur photosynthetic bacterium which can produce hydrogen by photofermentation on acetate and lactate. Hydrogen productivity depends on several parameters such as medium composition, pH, light intensity and temperature. In the present study, the effects of temperature and light intensity on hydrogen production were investigated. The cell growth curve has been fitted to the logistic model and hydrogen productivity was interpreted by Modified Gompertz Equation. The maximum productivity was obtained at 30 C and light intensity of 4000 lux. (orig.)

  12. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures

    KAUST Repository

    Li, Meng

    2017-02-20

    Hydrogen can facilitate the detachment of protective oxide layer off metals and alloys. The degradation is usually exacerbated at elevated temperatures in many industrial applications; however, its origin remains poorly understood. Here by heating hydrogenated aluminium inside an environmental transmission electron microscope, we show that hydrogen exposure of just a few minutes can greatly degrade the high temperature integrity of metal–oxide interface. Moreover, there exists a critical temperature of ∼150 °C, above which the growth of cavities at the metal–oxide interface reverses to shrinkage, followed by the formation of a few giant cavities. Vacancy supersaturation, activation of a long-range diffusion pathway along the detached interface and the dissociation of hydrogen-vacancy complexes are critical factors affecting this behaviour. These results enrich the understanding of hydrogen-induced interfacial failure at elevated temperatures.

  13. Fiber performance in hydrogen atmosphere at high temperature

    Science.gov (United States)

    Semjonov, Sergey L.; Kosolapov, Alexey F.; Nikolin, Ivan V.; Ramos, Rogerio; Vaynshteyn, Vladimir; Hartog, Arthur

    2006-04-01

    Optical losses induced in fibers at 300 °C and in hydrogen atmosphere were studied. A non-linear dependence of hydrogen penetration through the carbon coating on hydrogen pressure was observed. It was demonstrated that carbon coating could not defend the fiber from hydrogen penetration for a long time period. At some time, the hydrogen presence in the fiber core resulted in high optical losses in all spectral range in the case of Ge-doped fibers. It was found that the short-wavelength loss edge (SWE) in a Ge-doped fiber co-doped with a small amount of phosphorus was significantly smaller than that in Ge-doped fibers without co-doping. Nevertheless, P-codoping effect did not decrease optical losses related with SWE completely.

  14. Simulation of turbulent flow and temperature separation in a uni-flow vortex tube

    Directory of Open Access Journals (Sweden)

    Promvonge, P.

    2007-03-01

    Full Text Available The vortex tube is a mechanical device operating as a refrigerating machine without refrigerants, by separating a compressed gas stream into two streams; the cold air stream at the tube core while the hot airstream near the tube wall. Such a separation of the flow into regions of low and high total temperature is referred to as the temperature separation effect. In this paper, simulation of the turbulent compressible flowand temperature separation in a uni-flow vortex tube with the turbulence model and the algebraic Reynolds stress model (ASM is described. Steady, compressible and two-dimensional flows are assumed through outthe calculation. It has been found that the predicted results of velocity, pressure, and temperature fields are generally in good agreement with available experiment data. Moreover, it can be indicated that the highest temperature separation occurs near the inlet nozzle while the lowest temperature separation is found at the downstream near the control valve.

  15. Hydrogen related crystallization in intrinsic hydrogenated amorphous silicon films prepared by reactive radiofrequency magnetron sputtering at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Senouci, D. [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Baghdad, R., E-mail: r_baghdad@mail.univ-tiaret.dz [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); Belfedal, A.; Chahed, L. [LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Portier, X. [CIMAP, CEA, CNRS UMR 6252-ENSICAEN, UCBN, 6 Bvd Marechal Juin, 14050 Caen Cedex (France); Charvet, S. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France); Kim, K.H. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); TOTAL S.A., Gas and Power, R and D Division, Courbevoie (France); Roca i Cabarrocas, P. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); Zellama, K. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France)

    2012-11-01

    We present an investigation on the transition from amorphous to nanocrystalline silicon and associated hydrogen changes during the first steps of hydrogenated nanocrystalline silicon growth for films elaborated by reactive radiofrequency magnetron sputtering at a substrate temperature as low as room temperature and for deposition times varying from 3 to 60 min. Complementary experimental techniques have been used to characterize the films in their as-deposited state. They are completed by thermal hydrogen effusion experiments conducted in the temperature range, from room temperature to 800 Degree-Sign C. The results show that, during the initial stages of growth, the presence of a hydrogen-rich layer is necessary to initiate the crystallization process. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline silicon growth at room temperature. Black-Right-Pointing-Pointer Transition from amorphous to nanocrystalline silicon. Black-Right-Pointing-Pointer Chemical reactions of H atoms with strained Si-Si bonds. Black-Right-Pointing-Pointer H selective etching and chemical transport caused the silicon nucleation.

  16. Software development for the simulation and design of the cryogenic distillation cascade used for hydrogen isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Draghia, Mirela Mihaela, E-mail: mirela.draghia@istech-ro.com; Pasca, Gheorghe; Porcariu, Florina

    2016-11-01

    Highlights: • Software for designing and simulation of a cryogenic distillation cascade. • The simulation provides the distribution of all the molecular species involved along each cryogenic distillation column and also the temperature profile along the columns. • Useful information that are relevant for ITER Isotope Separation System. - Abstract: The hydrogen isotope separation system (ISS) based on cryogenic distillation is one of the key systems of the fuel cycle of a fusion reactor. Similar with ITER ISS in a Water Detritiation Facility for a CANDU reactor, one of the main systems is cryogenic distillation. The developments on the CANDU water detritiation systems have shown that a cascade of four cryogenic distillation columns is required in order to achieve the required decontamination factor of the heavy water and a tritium enrichment up to 99.9%. This paper aims to present the results of the design and simulation activities in support to the development of the Cernavoda Tritium Removal Facility (CTRF). Beside the main features of software developed “in house”, an introduction to the main relevant issues of a CANDU tritium removal facility for the ITER ISS is provided as well. Based on the input data (e.g. the flow rates, the composition of the gas supplied into the cryogenic distillation cascade, pressure drop along the column, liquid inventory) the simulation provides the distribution of all the molecular species involved along each cryogenic distillation column and also the temperature profile along the columns. The approach for the static and dynamic simulation of a cryogenic distillation process is based on theoretical plates model and the calculations are performed incrementally plate by plate.

  17. Pd-Cu-M (M = Y, Ti, Zr, V, Nb, and Ni) Alloys for the Hydrogen Separation Membrane.

    Science.gov (United States)

    Nayebossadri, Shahrouz; Speight, John D; Book, David

    2017-01-25

    Self-supported fcc Pd-Cu-M (M = Y, Ti, Zr, V, Nb, and Ni) alloys were studied as potential hydrogen purification membranes. The effects of small additions (1-2.6 at. %) of these elements on the structure, hydrogen solubility, diffusivity, and permeability were examined. Structural analyses by X-ray diffraction (XRD) showed the fcc phase for all alloys with induced textures from cold rolling. Heat treatment at 650 °C for 96 h led to the reorientation in all alloys except the Pd-Cu-Zr alloy, exhibiting the possibility to enhance the structural stability by Zr addition. Hydrogen solubility was almost doubled in the ternary alloys containing Y and Zr compared to Pd65.1Cu34.9 alloy at 300 °C. It was noted that hydrogen diffusivity is decreased upon additions of these elements compared to the Pd65.1Cu34.9 alloy, with the Pd-Cu-Zr alloy showing the lowest hydrogen diffusivity. However, the comparable hydrogen permeability of the Pd-Cu-Zr alloy with the corresponding binary alloy, as well as its highest hydrogen permeability among the studied ternary alloys at temperatures higher than 300 °C, suggested that hydrogen permeation of these alloys within the fcc phase is mainly dominated by hydrogen solubility. Hydrogen flux variations of all ternary alloys were studied and compared with the Pd65.1Cu34.9 alloy under 1000 ppm of H2S + H2 feed gas. Pd-Cu-Zr alloy showed superior resistance to the sulfur poisoning probably due to the less favorable H2S-surface interaction and more importantly slower rate of bulk sulfidation as a result of improved structural stability upon Zr addition. Therefore, Pd-Cu-Zr alloys may offer new potential hydrogen purification membranes with improved chemical stability and hydrogen permeation compared to the binary fcc Pd-Cu alloys.

  18. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Shwetha Ramkumar; Liang-Shih Fan

    2006-09-30

    Enhancement in the production of high purity hydrogen from fuel gas, obtained from coal gasification, is limited by thermodynamics of the Water Gas Shift Reaction. However, this constraint can be overcome by concurrent water-gas shift (WGS) and carbonation reactions to enhance H{sub 2} production by incessantly driving the equilibrium-limited WGS reaction forward and in-situ removing the CO2 product from the gas mixture. The spent sorbent is then regenerated by calcining it to produce a pure stream of CO{sub 2} and CaO which can be reused. However while performing the cyclic carbonation and calcination it was observed that the CO{sub 2} released during the in-situ calcination causes the deactivation of the iron oxide WGS catalyst. Detailed understanding of the iron oxide phase diagram helped in developing a catalyst pretreatment procedure using a H{sub 2}/H{sub 2}O system to convert the deactivated catalyst back to its active magnetite (Fe{sub 3}O{sub 4}) form. The water gas shift reaction was studied at different temperatures, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0-300 psig. The combined water gas shift and carbonation reaction was investigated at temperatures ranging from 600-700C, S/C ratio of 3:1 to 1:1 and at different pressures of 0-300 psig and the calcium looping process was found to produce high purity hydrogen with in-situ CO{sub 2} capture.

  19. Hugoniot and temperature measurements of liquid hydrogen by laser-shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Sano, T; Shigemori, K; Shiroshita, A; Hironaka, Y; Kadono, T; Nakai, M [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Ozaki, N; Kimura, T; Miyanishi, K; Endo, T; Jitsui, T [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Sakaiya, T; Takahashi, H; Kondo, T [Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ikoma, M; Hori, Y [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8551 (Japan); Iwamoto, A [National Institute of Fusion Science, Toki, Gifu 509-5292 (Japan); Okuchi, T [Institute for Study of the Earth' s Interior, Okayama University, Misasa, Tottori 682-0193 (Japan); Otani, K [Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Shimizu, K, E-mail: sano@ile.osaka-u.ac.j [KYOKUGEN, Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2010-08-01

    Hydrogen at high pressure in the fluid state is of great interest for target design of inertial confinement fusion and understanding the interior structure of gas giant planets. In this work, we successfully obtained the Hugoniot data for liquid hydrogen up to 55 GPa under laser-driven shock loading using impedance matching to a quartz standard. The shocked temperature was determined simultaneously by the brightness temperature. The compression and temperature along the principal Hugoniot are in good agreement with theoretical models. High reflectivity of hydrogen was observed at 40 GPa, which suggests the fluid becomes conducting.

  20. Al doped graphene: A promising material for hydrogen storage at room temperature

    OpenAIRE

    Ao, Z. M.; Jiang, Q.; Zhang, R. Q.; Tan, T. T.; Li, S.

    2008-01-01

    A promising material for hydrogen storage at room temperature-Al doped graphene was proposed theoretically by using density functional theory calculation. Hydrogen storage capacity of 5.13 wt% was predicted at T = 300 K and P = 0.1 Gpa with adsorption energy Eb = -0.260 eV/H2. This is close to the target of 6 wt% and satisfies the requirement of immobilization hydrogen with Eb of -0.2 ~ -0.4 eV/H2 at ambient temperature and modest pressure for commercial applications specified by U.S. Departm...

  1. Low-Temperature Failure Mode for Nickel-Hydrogen Cells

    National Research Council Canada - National Science Library

    Zimmerman, A. H

    2005-01-01

    .... It has been shown that there are chemical processes that can occur within the operating nickel-hydrogen cell that can raise the electrolyte freezing point in some cell designs up to the -5 to -10...

  2. CHRISGAS Project. WP13: Ancillary and Novel Processes. Final Report: Separation of Hydrogen with Membranes Combined with Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hervas, J. M.; Marono, M.; Barreiro, M. M.

    2011-05-13

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology has been investigated under the scope of the VI FP CHRISGAS project, which started in September 2004 and had a duration of five and a half years. The Division of Combustion and Gasification of CIEMAT participated in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the project regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification, the separation of H2 with selective membranes and the combination of both processes in one by means of a catalytic membrane reactor. (Author) 20 refs.

  3. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  4. Temperature dependence of anti-hydrogen production in the ATHENA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bonomi, G. E-mail: germano.bonomi@cern.ch; Amoretti, M.; Amsler, C.; Bouchta, A.; Bowe, P.; Carraro, C.; Cesar, C.L.; Charlton, M.; Doser, M.; Filippini, V.; Fontana, A.; Fujiwara, M.C.; Funakoshi, R.; Genova, P.; Hangst, J.S.; Hayano, R.S.; Joergensen, L.V.; Lagomarsino, V.; Landua, R.; Lindeloef, D.; Lodi Rizzini, E.; Macri, M.; Madsen, N.; Montagna, P.; Pruys, H.; Regenfus, C.; Riedler, P.; Rotondi, A.; Testera, G.; Variola, A.; Werf, D.P. van der

    2004-01-01

    The ATHENA experiment recently produced the first sample of cold anti-hydrogen atoms by mixing cold plasmas of anti-protons and positrons. The temperature of the positron plasma was increased by controlled RF heating and the anti-hydrogen production rate was measured. Preliminary results are presented.

  5. Temperature dependence of anti-hydrogen production in the ATHENA experiment

    CERN Document Server

    Bonomi, G; Amsler, Claude; Bouchta, A; Bowe, P; Carraro, C; Cesar, C L; Charlton, M; Doser, Michael; Filippini, V; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, Rolf; Lindelöf, D; Lodi-Rizzini, E; Macri, M; Madsen, N; Montagna, P; Pruys, H S; Regenfus, C; Riedler, P; Rotondi, A; Testera, G; Variola, A; Van der Werf, D P

    2004-01-01

    The ATHENA experiment recently produced the first sample of cold anti-hydrogen atoms by mixing cold plasmas of anti-protons and positrons. The temperature of the positron plasma was increased by controlled RF heating and the anti-hydrogen production rate was measured. Preliminary results are presented. (8 refs).

  6. Analyses to support development of risk-informed separation distances for hydrogen codes and standards.

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, Jeffrey L.; Houf, William G. (Sandia National Laboratories, Livermore, CA); Fluer, Inc., Paso Robels, CA; Fluer, Larry (Fluer, Inc., Paso Robels, CA); Middleton, Bobby

    2009-03-01

    The development of a set of safety codes and standards for hydrogen facilities is necessary to ensure they are designed and operated safely. To help ensure that a hydrogen facility meets an acceptable level of risk, code and standard development organizations are tilizing risk-informed concepts in developing hydrogen codes and standards.

  7. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation

    KAUST Repository

    Briceño, Kelly

    2012-10-01

    A high molecular weight polyimide (Matrimid) was used as a precursor for fabricating supported carbon molecular sieve membranes without crack formation at 550-700°C pyrolysis temperature. A one-step polymer (polyimide) coating method as precursor of carbon layer was used without needing a prior modification of a TiO 2 macroporous support. The following fabrication variables were optimized and studied to determine their effect on the carbon structure: polymeric solution concentration, solvent extraction, heating rate and pyrolysis temperature. Two techniques (Thermogravimetric analysis and Raman spectroscopy) were used to determine these effects on final carbon structure. Likewise, the effect of the support was also reported as an additional and important variable in the design of supported carbon membranes. Atomic force microscopy and differential scanning calorimetry quantified the degree of influence. Pure gas permeation tests were performed using CH 4, CO, CO 2 and H 2. The presence of a molecular sieving mechanism was confirmed after defects were plugged with PDMS solution at 12wt%. Gas selectivities higher than Knudsen theoretical values were reached with membranes obtained over 650°C, showing as best values 4.46, 4.70 and 10.62 for H 2/N 2, H 2/CO and H 2/CH 4 ratio, respectively. Permeance values were over 9.82×10 -9mol/(m 2Pas)during pure hydrogen permeation tests. © 2012 Elsevier B.V.

  8. Silicon carbide-based hydrogen gas sensors for high-temperature applications

    National Research Council Canada - National Science Library

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    .... In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC...

  9. A Temperature and Emissivity Separation Technique for Thermal Hyperspectral Imagers

    Science.gov (United States)

    2005-10-01

    ISSTES algorithm. This algorithm has subsequently been studied thoroughly by Ingram and Muse [2]. In our technique, we use the downwelling irradiance...technique’s difference from ISSTES lies in the method used for selecting the right temperature and its corresponding emissivity. That difference leads to

  10. The effects of incubation period and temperature on the Hydrogen ...

    African Journals Online (AJOL)

    EJIRO

    Hydrogen sulphide (H2S) technique for detection of faecal contamination in water. Morteza Izadi1, Ahmad Sabzali2*, Bijan Bina2, Nematt A. Jonidi Jafari1,. Maryam Hatamzdeh2 and Hossein Farrokhzadeh2. 1Health Research Center, Baqiyatallah University of medical sciences, Tehran, Iran. 2Department of Environmental ...

  11. Hydrogen absorption/desorption characteristics of room temperature ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The present communication deals with the hydrogen storage characteristics of C15 laves phase. ZrMn2–xNix system tailored within the x values of 1\\25 to 1\\50. Drastic variations in thermodynamics of the hydride phase is observed for any little changes of concentration x within this narrow range. The most prom-.

  12. Verification of hydrogen isotope separation by pressure swing adsorption process: Successive volume reduction of isotopic gas mixture using SZ-5A column

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K., E-mail: kotoh@nucl.kyushu-u.ac.jp [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Tanaka, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takashima, S.; Tsuge, T. [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Asakura, Y.; Uda, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Sugiyama, T. [Faculty of Eng., Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8601 (Japan)

    2011-12-15

    For the purpose of verifying the applicability of pressure swing adsorption (PSA) process to such as volume reduction of tritiated waste storage, an experimental series was carried out by a PSA apparatus having a zeolite packed column operated at the liquefied nitrogen temperature, where synthetic zeolite 5A was used as a candidate of adsorbents. Experimental results are shown here which were obtained from cyclic operation of isolating a volume of hydrogen decontaminated with its heaver isotope from a mixture of H{sub 2} and D{sub 2} while reducing a volume of this mixture storage. Successive reduction during six cycles is observed in the inventory of this hydrogen mixture in a gas holder. Experimental data are analyzed in order to evaluate the performance of this PSA process operating the hydrogen isotope separation, where several factors are introduced defining efficiencies of decontamination, volumetric reduction, and so on. These factors suggest that the PSA process is available for successive reduction of a tritiated hydrogen storage inventory. A tritium waste management system of PSA process combined with electrolysis is considerable which is aiming at reducing the inventory of tritiated water in storage.

  13. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  14. Hydrogen absorption/desorption characteristics of room temperature ...

    Indian Academy of Sciences (India)

    ... hydrogen storage materials are found to be formed within the range of 1.35 to 1.45 where ∼ 2.5 to 2.9 H/F.U. can be reversibly stored under the ideal operating conditions. The heat of the reaction is found to be ∼ 17 kJ/mol, which means these are promising candidates for stationary and short range mobile applications.

  15. Tip-filter tests on paraffin removal from Luetzkendorf Paraffingatsch and Zeitz separator residue hydrogenated in a small unit

    Energy Technology Data Exchange (ETDEWEB)

    Engel

    1943-04-21

    By the propane process, deparaffining tests were conducted on hydrogenated products made from Luetzkendorf and Zeitz residues. A table provided information as to raw materials, hydrogenation temperature, catalyst, pressure, input, and gas used. The report stated that all materials were deparaffined by heating each 300 g, in which 1.5 g filtering agent A was dissolved together with 600 g propane, to 70/sup 0/C in the tip-filter. Then the mixture was cooled to -40/sup 0/C, filtered under 0.2 atmospheres of nitrogen, and 1 to 3 g removed for a paraffin test. The rest of the paraffin was immediately mixed with 600 g propane. This was stirred for 10 minutes at -40/sup 0/C, and filtered again under 0.2 atmospheres nitrogen. All products tested gave good results in the tip-filter. Properties of products resulting from the deparaffination were discussed. These included specific gravity, paraffin melting points and how hydrogenation temperatures affected specific gravity. Tables attached gave information resulting from processes run on the residues. Luetzkendorf Paraffingatsch (paraffin sludge from Fischer--Tropsch synthesis) gave 44.6% to 49% (by weight) paraffin when hydrogenated at temperatures between 14.5 and 20.5 millivolts; at higher temperatures, the specific gravity of the oil fell off increasingly strongly and that of the paraffin not so strongly. Hydrogenation of Zeitz residue didn't seem to change the properties of its paraffins very greatly, but the paraffin content was increased a bit (from 43.5% to more than 48%). Hydrogenating Zeitz residue with higher throughput and less gas injected gave slightly lower yield of paraffin, and the specific gravity of the paraffin was lower, whereas that of the oil was higher.

  16. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernández, Carlos García, E-mail: danielgonro@gmail.com, E-mail: mmhamada@ipen.br [Instituto Superior de Tecnologías y Ciencias aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  17. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  18. Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method.

    Science.gov (United States)

    Wang, Heping; Zang, Duyang; Li, Xiaoguang; Geng, Xingguo

    2017-12-27

    This paper presents an exploration of the phase separation behavior and pattern formation in a binary fluid with temperature-dependent viscosity via a coupled lattice Boltzmann method (LBM). By introducing a viscosity-temperature relation into the LBM, the coupling effects of the viscosity-temperature coefficient [Formula: see text] , initial viscosity [Formula: see text] and thermal diffusion coefficient [Formula: see text] , on the phase separation were successfully described. The calculated results indicated that an increase in initial viscosity and viscosity-temperature coefficient, or a decrease in the thermal diffusion coefficient, can lead to the orientation of isotropic growth fronts over a wide range of viscosity. The results showed that droplet-type phase structures and lamellar phase structures with domain orientation parallel or perpendicular to the walls can be obtained in equilibrium by controlling the initial viscosity, thermal diffusivity, and the viscosity-temperature coefficient. Furthermore, the dataset was rearranged for growth kinetics of domain growth and thermal diffusion fronts in a plot by the spherically averaged structure factor and the ratio of separated and continuous phases. The analysis revealed two different temporal regimes: spinodal decomposition and domain growth stages, which further quantified the coupled effects of temperature and viscosity on the evolution of temperature-dependent phase separation. These numerical results provide guidance for setting optimum temperature ranges to obtain expected phase separation structures for systems with temperature-dependent viscosity.

  19. Application of low-temperature plasma for the synthesis of hydrogenated graphene (graphane)

    Science.gov (United States)

    Shavelkina, M. B.; Amirov, R. H.; Katarzhis, V. A.; Kiselev, V. I.

    2017-12-01

    The possibility of a direct synthesis of hydrogenated graphene in decomposition of methane by means of low-temperature plasma was investigated. A DC plasma torch with an expanding channel-anode, a vortex gas supply and a self-setting arc length was used as a generator of low-temperature plasma. Argon was used as the plasma-forming gas. The temperatures of argon plasma and with methane addition to it were determined on the basis of spectral measurements. The synthesis products were characterized by electron microscopy and thermogravimetry. The effect of hydrogenated graphene as a nanomodifier on the properties of the cubic boron nitride based functional ceramics was investigated.

  20. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    Science.gov (United States)

    Willms, R. S.; Taylor, D. J.; Enoeda, Mikio; Okuno, Kenji

    1994-04-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB's) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H2, and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is a practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  1. Numerical analysis of accidental hydrogen releases from high pressure storage at low temperatures

    DEFF Research Database (Denmark)

    Markert, Frank; Melideo, Daniele; Baraldi, Daniele

    2014-01-01

    ) and temperatures (down to 20 K), e.g. cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33 K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types...

  2. Microstructure and low-temperature hydrogen storage capacity of ball-milled graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hentsche, Melanie; Hermann, Helmut; Lindackers, Dirk [Leibniz-Institute for Solid State and Materials Research IFW Dresden, PF 270116, D-01171 Dresden (Germany); Seifert, Gotthard [Technical University Dresden, Institute of Physical Chemistry and Electrochemistry, D-01062 Dresden (Germany)

    2007-07-15

    Hydrogen adsorption in ball-milled graphite is investigated in the low temperature range from 110 to 35 K and at pressures up to 20 MPa. The adsorption data are compared to the results of detailed quantitative microstructural analyses of the samples used for the adsorption experiments. The amount of hydrogen adsorbed at temperatures well below 77 K exceeds considerably that what is expected from adsorption on plane graphitic planes. The results can be explained assuming the following mechanisms: (i) adsorption in trapping states on plane surfaces at and below 110 K; (ii) adsorption in small micropores with diameter of less than 1 nm at 77 K and pressure of 10 MPa, and (iii) multilayer adsorption in mesopores at temperatures from 35 to 40 K and pressure of 2 MPa. The effects observed in the low temperature range are reversible and make the investigated material interesting as a supporting component for liquid hydrogen storage systems. (author)

  3. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    Science.gov (United States)

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  4. CFD Analysis of Energy Separation in Ranque-Hilsch Vortex Tube at Cryogenic Temperature

    Directory of Open Access Journals (Sweden)

    T. Dutta

    2013-01-01

    Full Text Available Study of the energy separation phenomenon in vortex tube (VT at cryogenic temperature (temperature range below 123 K has become important because of the potential application of VT as in-flight air separator in air breathing propulsion. In the present study, a CFD model is used to simulate the energy separation phenomenon in VT with gaseous air at cryogenic temperature as working fluid. Energy separation at cryogenic temperature is found to be considerably less than that obtained at normal atmospheric temperature due to lower values of inlet enthalpy and velocity. Transfer of tangential shear work from inner to outer fluid layers is found to be the cause of energy separation. A parametric sensitivity analysis is carried out in order to optimize the energy separation at cryogenic temperature. Also, rates of energy transfer in the form of sensible heat and shear work in radial and axial directions are calculated to investigate the possible explanation of the variation of the hot and cold outlet temperatures with respect to various geometric and physical input parameters.

  5. Temperature effect in the conductance of hydrogen molecule

    OpenAIRE

    Crisan, M.; Grosu, I.

    2008-01-01

    We present a many-body calculation for the conductance of a conducting bridge of a simple hydrogen molecule between $Pt$ electrodes.The experimental results showed that the conductance $G=dI/dV$ has the maximum value near the quantum unit $G_{0}=2e^{2}/h$. The $I-V$ dependence presents peak and dip and we consider that the electron-phonon interaction is responsible for this behavior. At T=0 there is a step in this dependence for the energy of phonons $\\omega_{0}$ which satisfies $eV=\\omega_{0...

  6. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    performance and thermal cycling (573 - 723 - 573 K) at 15 psi pressure drop for 1200 hours. Pd membranes showed excellent hydrogen permeability and thermal stability during the operational period. Under thermal cycling (573 K - 873 K - 573 K), Pd-Cu-MPSS membrane was stable and retained hydrogen permeation characteristics for over three months of operation. From this limited study, we conclude that SIEP is viable method for fabrication of defect-free, robust Pd-alloy membranes for high-temperature H{sub 2}-separation applications.

  7. Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data

    Directory of Open Access Journals (Sweden)

    Lisheng Song

    2015-05-01

    Full Text Available Soil and vegetation component temperatures in non-isothermal pixels encapsulate more physical meaning and are more applicable than composite temperatures. The component temperatures however are difficult to be obtained from thermal infrared (TIR remote sensing data provided by single view angle observations. Here, we present a land surface temperature and albedo (T-α space approach combined with the mono-surface energy balance (SEB-1S model to derive soil and vegetation component temperatures. The T-α space can be established from visible and near infrared (VNIR and TIR data provided by single view angle observations. This approach separates the soil and vegetation component temperatures from the remotely sensed composite temperatures by incorporating soil wetness iso-lines for defining equivalent soil temperatures; this allows vegetation temperatures to be extracted from the T-α space. This temperature separation methodology was applied to advanced scanning thermal emission and reflection radiometer (ASTER VNIR and high spatial resolution TIR image data in an artificial oasis area during the entire growing season. Comparisons with ground measurements showed that the T-α space approach produced reliable soil and vegetation component temperatures in the study area. Low root mean square error (RMSE values of 0.83 K for soil temperatures and 1.64 K for vegetation temperatures, respectively, were obtained, compared to component temperatures measurements from a ground-based thermal camera. These results support the use of soil wetness iso-lines to derive soil surface temperatures. It was also found that the estimated vegetation temperatures were extremely close to the near surface air temperature observations when the landscape is well watered under full vegetation cover. More robust soil and vegetation temperature estimates will improve estimates of soil evaporation and vegetation transpiration, leading to more reliable the monitoring of crop

  8. Variable temperature FT-IR studies on hydrogen adsorption on the zeolite (Mg,Na)-Y

    Energy Technology Data Exchange (ETDEWEB)

    Otero Arean, C. [Departamento de Quimica, Universidad de las Islas Baleares, Palma de Mallorca (Spain)]. E-mail: dqueep0@uib.es; Turnes Palomino, G. [Departamento de Quimica, Universidad de las Islas Baleares, Palma de Mallorca (Spain); Llop Carayol, M.R. [Departamento de Quimica, Universidad de las Islas Baleares, Palma de Mallorca (Spain)

    2007-04-30

    Variable-temperature infrared spectroscopy was used for the thermodynamic studies on the adsorption of hydrogen on the zeolite (Mg,Na)-Y. Adsorption renders the H-H stretching mode infrared active, and simultaneous measurement of IR absorbance and hydrogen equilibrium pressure, over a range of temperature, allowed adsorption enthalpy and entropy to be determined. The standard adsorption enthalpy and entropy resulted to be {delta}H{sup o} -18.2({+-}0.8) kJ mol{sup -1} and {delta}S{sup o} = -136({+-}10) J mol{sup -1} K{sup -1}, respectively. The adsorption enthalpy is substantially higher than the hydrogen liquefaction heat, which suggests that magnesium-containing porous materials are potential candidates in the search for suitable adsorbents for reversible hydrogen storage.

  9. Pressure of a partially ionized hydrogen gas : numerical results from exact low temperature expansions

    OpenAIRE

    Alastuey, Angel; Ballenegger, Vincent

    2010-01-01

    8 pages; International audience; We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading corrections to the ideal Saha equation ...

  10. Pd Alloy Membranes for Hydrogen Separation from Coal-Derived Syngas

    National Research Council Canada - National Science Library

    Alptekin, Gokhan O; DeVoss, Sarah; Amalfitano, Bob; Way, Douglas; Thoen, Paul; Lusk, Mark

    2006-01-01

    TDA Research Inc., in collaboration with Colorado School of Mines (CSM) is developing a sulfur and CO-tolerant membrane to produce the clean hydrogen from syngas using Pd membrane films prepared on a variety of supports (e.g...

  11. Electrical properties and flux performance of composite ceramic hydrogen separation membranes

    DEFF Research Database (Denmark)

    Fish, J.S.; Ricote, Sandrine; O'Hayre, R.

    2015-01-01

    The electrical properties and hydrogen permeation flux behavior of the all-ceramic protonic/electronic conductor composite BaCe0.2Zr0.7Y0.1O3-δ/Sr0.95Ti0.9Nb0.1O3-δ (BCZY27/STN95: BS27) are evaluated. Conductivity and hydrogen permeability are examined as a function of phase volume ratios. Total...

  12. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  13. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts

    Science.gov (United States)

    Lin, Lili; Zhou, Wu; Gao, Rui; Yao, Siyu; Zhang, Xiao; Xu, Wenqian; Zheng, Shijian; Jiang, Zheng; Yu, Qiaolin; Li, Yong-Wang; Shi, Chuan; Wen, Xiao-Dong; Ma, Ding

    2017-03-01

    Polymer electrolyte membrane fuel cells (PEMFCs) running on hydrogen are attractive alternative power supplies for a range of applications, with in situ release of the required hydrogen from a stable liquid offering one way of ensuring its safe storage and transportation before use. The use of methanol is particularly interesting in this regard, because it is inexpensive and can reform itself with water to release hydrogen with a high gravimetric density of 18.8 per cent by weight. But traditional reforming of methanol steam operates at relatively high temperatures (200-350 degrees Celsius), so the focus for vehicle and portable PEMFC applications has been on aqueous-phase reforming of methanol (APRM). This method requires less energy, and the simpler and more compact device design allows direct integration into PEMFC stacks. There remains, however, the need for an efficient APRM catalyst. Here we report that platinum (Pt) atomically dispersed on α-molybdenum carbide (α-MoC) enables low-temperature (150-190 degrees Celsius), base-free hydrogen production through APRM, with an average turnover frequency reaching 18,046 moles of hydrogen per mole of platinum per hour. We attribute this exceptional hydrogen production—which far exceeds that of previously reported low-temperature APRM catalysts—to the outstanding ability of α-MoC to induce water dissociation, and to the fact that platinum and α-MoC act in synergy to activate methanol and then to reform it.

  14. Mapping the coronal hydrogen temperature in view of the forthcoming coronagraph observations by Solar Orbiter

    Science.gov (United States)

    Dolei, S.; Spadaro, D.; Ventura, R.

    2016-08-01

    Context. Synergistic visible light and ultraviolet coronagraphic observations are essential to investigate the link of the Sun to the inner heliosphere through the study of the dynamic properties of the solar wind. Aims: We perform spectroscopic mapping of the outer solar corona to constitute a statistically significant database of neutral hydrogen coronal temperatures, which is suitable for overcoming the lack of spectrometric information in observations performed by coronagraphs that are solely equipped for visible light and ultraviolet imaging; these include the forthcoming Metis instrument on board Solar Orbiter. Methods: We systematically analysed neutral hydrogen Lyα line data that was obtained by UVCS/SOHO observations of the extended solar corona relevant to a lot of polar, mid-latitude and equatorial structures at different phases of solar activity, and collected far longer than a whole solar cycle (1996-2012). Results: We created a database consisting in both the neutral hydrogen temperature components, which are perpendicular and parallel to the radially symmetric coronal magnetic field lines, as a function of the heliocentric distance and polar angle and for different phases of the solar activity cycle. We validated the reliability of the constituted neutral hydrogen temperature database, investigating a new set of UVCS Lyα data with the Doppler dimming technique. The solar wind outflow velocities obtained by adopting both the neutral hydrogen temperature distribution directly derived from the observed Lyα profiles and those taken from our database well agree within the uncertainties.

  15. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    Science.gov (United States)

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  16. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.

    Science.gov (United States)

    Bouša, Daniel; Friess, Karel; Pilnáček, Kryštof; Vopička, Ondřej; Lanč, Marek; Fónod, Kristián; Pumera, Martin; Sedmidubský, David; Luxa, Jan; Sofer, Zdeněk

    2017-08-22

    The preparation and gas-separation performance of self-standing, high-flux, graphene oxide (GO) membranes is reported. Defect-free, 15-20 μm thick, mechanically stable, unsupported GO membranes exhibited outstanding gas-separation performance towards H2 /CO2 that far exceeded the corresponding 2008 Robeson upper bound. Remarkable separation efficiency of GO membranes for H2 and bulky C3 or C4 hydrocarbons was achieved with high flux and good selectivity at the same time. On the contrary, N2 and CH4 molecules, with larger kinetic diameter and simultaneously lower molecular weight, relative to that of CO2 , remained far from the corresponding H2 /N2 or H2 /CH4 upper bounds. Pore size distribution analysis revealed that the most abundant pores in GO material were those with an effective pore diameter of 4 nm; therefore, gas transport is not exclusively governed by size sieving and/or Knudsen diffusion, but in the case of CO2 was supplemented by specific interactions through 1) hydrogen bonding with carboxyl or hydroxyl functional groups and 2) the quadrupole moment. The self-standing GO membranes presented herein demonstrate a promising route towards the large-scale fabrication of high-flux, hydrogen-selective gas membranes intended for the separation of H2 /CO2 or H2 /alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel

    Energy Technology Data Exchange (ETDEWEB)

    E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young

    2006-03-16

    The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.

  18. The reaction of hydrogen atoms with hydrogen peroxide as a function of temperature

    DEFF Research Database (Denmark)

    Lundström, T.; Christensen, H.; Sehested, K.

    2001-01-01

    The temperature dependence for the reaction of H atoms with H2O2 at pH 1 has been determined using pulse radiolysis technique. The reaction was studied in the temperature range 10-120 degreesC. The rate constant at 25 degreesC was found to be 5.1 +/- 0.5 x 10(7) dm(3) mol(-1) s(-1) and the activa...

  19. The effects of incubation period and temperature on the Hydrogen ...

    African Journals Online (AJOL)

    A total of 171 water samples from 3 sources were analyzed for the presence of faecal contamination by standard MPN, P/A, EC-M and H2S techniques at different temperatures and incubation times. Analysis of water samples by H2S technique showed that the incubation period of H2S bottles is highly dependent on ...

  20. New insights into designing metallacarborane based room temperature hydrogen storage media.

    Science.gov (United States)

    Bora, Pankaj Lochan; Singh, Abhishek K

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  1. Evaluation of the high temperature electrolysis of steam to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Park, Wonseok; Chang, Jonghwa; Park, Jongkuen [Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong-gu, Daejeon (Korea)

    2007-07-15

    A very high temperature gas-cooled reactor (VHTR) can be effectively used for hydrogen production through several CO{sub 2}-free alternative technologies, such as the Sulfur-Iodine (SI) cycle, the high temperature electrolysis of steam (HTES), and others. In our current study, the electrochemical thermodynamic properties and the overall thermal efficiency of the VHTR-assisted hydrogen production system by using the HTES technology have been calculated as a function of the operating temperature in the range of 600-1000 {sup circle} C. On the other hand, the effect of not only the gas turbine efficiency but also the recovery of waste heat for the overall hydrogen production thermal efficiency has also been evaluated. The thermal efficiency defined by a high heat value of the produced hydrogen (HHV) divided by the total energy of the heat and the electricity required to produce the hydrogen was adopted in our evaluation scheme. As a result, a maximized overall thermal efficiency of about 48% can be anticipated at 1000 {sup circle} C. Compared with a thermal efficiency of 27% by a conventional alkaline solution electrolysis at lower temperatures, a hydrogen production by the VHTR-assisted HTES can save on the required energy by about 2 times. The sensitivity of the operating temperature for the overall thermal efficiency defined by {delta}{eta}{sub {delta}} {sub T}/{eta}{sub T} is about 14.3% in the range of 600 to 1000 {sup circle} C. From the aspect of a conservative gas turbine efficiency and a reasonable recovery of the waste heat, an overall feasible efficiency of 46% is anticipated at 850 {sup circle} C. (author)

  2. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos, E-mail: danielgonro@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la, E-mail: lgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Sanchez, Danny [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  3. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Kostoglou, Nikolaos, E-mail: nikolaos.kostoglou@stud.unileoben.ac.at [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Constantinides, Georgios [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3036 Lemesos (Cyprus); Charalambopoulou, Georgia; Steriotis, Theodore [National Center for Scientific Research Demokritos, Agia Paraskevi Attikis, 15310 Athens (Greece); Polychronopoulou, Kyriaki [Department of Mechanical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Li, Yuanqing; Liao, Kin [Department of Aerospace Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Ryzhkov, Vladislav [Nanotube Production Department, Fibrtec Incorporation, TX, 75551 Atlanta (United States); Mitterer, Christian [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Rebholz, Claus, E-mail: claus@ucy.ac.cy [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)

    2015-12-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m{sup 2}/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H{sub 2}, CO{sub 2} and CH{sub 4} sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO{sub 2} (28–33 kJ/mol) and CH{sub 4} (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO{sub 2}/CH{sub 4} gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H{sub 2}, CO{sub 2} and CH{sub 4} adsorption up to 1 bar • CO{sub 2} over CH{sub 4} gas selectivity estimated between 45 and 95 at 273 K using the IAST model.

  4. Gold Supported on Graphene Oxide: An Active and Selective Catalyst for Phenylacetylene Hydrogenations at Low Temperatures

    DEFF Research Database (Denmark)

    Shao, Lidong; Huang, Xing; Teschner, Detre

    2014-01-01

    A constraint to industrial implementation of gold-catalyzed alkyne hydrogenation is that the catalytic activity was always inferior to those of other noble metals. In this work, gold was supported on graphene oxide (Au/GO) and used in a hydrogenation application. A 99% selectivity toward styrene...... with a 99% conversion in the hydrogenation of phenylacetylene was obtained at 60 °C, which is 100 to 200 °C lower than optimal temperatures in most previous reports on Au catalysts. A series of gold- and palladium-based reference catalysts were tested under the same conditions for phenylacetylene...... hydrogenation, and the performance of Au/GO was substantiated by studying the role of functionalized GO in governing the geometrical structure and thermal stability of supported Au nanoparticles under reaction conditions....

  5. Low Temperature and High Pressure Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.; Martinez-Frias, J.; Garcia-Villazana, O.

    2000-06-25

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures.

  6. Rate- and Temperature-Dependent Material Behavior of a Multilayer Polymer Battery Separator

    Science.gov (United States)

    Avdeev, Ilya; Martinsen, Michael; Francis, Alex

    2014-01-01

    Designing battery packs for safety in automotive applications requires multiscale modeling, as macroscopic deformations due to impact cause the mechanical failure of individual cells on a sub-millimeter level. The separator material plays a critical role in this process, as the thinning or perforating of the separator can lead to thermal runaway and catastrophic failure of an entire battery pack. The electrochemical properties of various polymer separators have been extensively investigated; however, the dependency of mechanical properties of these thin films on various factors, such as high temperature and strain rate, has not been sufficiently characterized. In this study, the macroscopic mechanical properties of a multilayer polymer thin film used as a battery separator are studied experimentally at various temperatures, strain rates, and solvent saturations. Due to the anisotropy of the material, material testing was conducted in two perpendicular directions (machine and transverse directions). Material samples were tested in both dry and saturated conditions at several temperatures, and it was found that temperature and strain rate have a nearly linear effect on the stress experienced by the material. Additionally, saturating the separator material in a common lithium-ion solvent had softened it and had a positive effect on its toughness. The experimental results obtained in this study can be used to develop mathematical constitutive models of the multilayer separator material for subsequent numerical simulations and design.

  7. Low temperature accumulation of hydrogen through incubation of forsterite in buffered water.

    Science.gov (United States)

    Neubeck, Anna; Thanh Duc, Nguyen; Bastviken, David; Holm, Nils G.

    2010-05-01

    In order to test whether or not methane producing archaea may survive solely on the products forming through the hydration of olivine, we have analyzed the products formed from the low temperature incubation of natural forsterite sand in buffered water. Already after one month of incubation, the molecular hydrogen concentration was high enough to theoretically sustain the survival of methanogenic archaea at temperatures above 30° C. Also, many important trace elements were present as well as a low enough redox potential. Introduction Hydrocarbons are known to be formed through the reduction of CO2 by H2 in the so called Fischer-Tropsch Type or Sabatier reaction in hydrothermal systems (Charlou 2002; Holm 1998; Rushdi A. 2001), but the temperatures used are often higher than at least 100° C. (McCollom 2009). Hydrocarbon and/or hydrogen formation in lower temperature environments would expand the plausible sites for the existence and growth of microbial communities and possibly also the abiotic formation of organic compounds. Therefore we have tested the potential abiotic H2 and CH4 production in a mixture of forsterite and buffered water at temperatures ranging from 30° C to 70° C. Discussion We have analyzed the methane and hydrogen formation coupled to the hydration of forsterite in three different temperatures, 30° C, 50° C and 70° C. In all temperatures, there is a consistent and temperature dependent release of methane into the headspace of the reaction cells. Even at temperatures as low as 30° C there is a clear methane and hydrogen release already after one month of incubation. This indicates that reactions coupled to the hydration of natural forsterite are forming or releasing methane and hydrogen at very low temperatures. Therefore, environments in which methane and hydrogen may be released and thus also sustain the growth or survival of certain microorganisms, might be more widespread than previously thought. Also, reactions such as the Fischer

  8. Room temperature hydrogen sensing with the graphite/ZnO nanorod junctions decorated with Pt nanoparticles

    Science.gov (United States)

    Yatskiv, R.; Grym, J.; Gladkov, P.; Cernohorsky, O.; Vanis, J.; Maixner, J.; Dickerson, J. H.

    2016-02-01

    We report on the performance of solution-processed hydrogen sensors based on vertical arrays of ZnO nanorods with Schottky contacts. The vertical arrays of ZnO nanorods are grown by a low temperature hydrothermal method on a seed layer consisting of electrophoretically deposited ZnO nanoparticles. A Schottky contact on the ZnO nanorod arrays is created by the deposition of graphite from a colloidal solution. The structure of the graphite/ZnO nanorod system is shown to be sensitive to hydrogen at room temperature. The hydrogen sensing properties are further enhanced by the decoration of the graphite/ZnO nanorod interface with Pt nanoparticles. The sensing response is improved by a factor of 100, and faster recovery and response times are observed.

  9. Optical measurement of static temperature and hydroxyl radical profiles in a hydrogen-fueled supersonic combustor

    Science.gov (United States)

    Gaugler, R. E.

    1974-01-01

    Profiles of static temperature and hydroxyl radical concentration were measured in a two-dimensional supersonic combustor test section 22.8 cm downstream of hydrogen injection. A high-pressure gas generator supplied vitiated air to the test section at Mach 2.44, atmospheric pressure, and a total temperature of about 2240 K. Room-temperature hydrogen was injected through a 0.40-cm step slot at Mach 1 and matched pressure. The measurements utilized a noninterfering spectral line absorption technique in which narrow ultraviolet emission lines of the hydroxyl electronic transition are absorbed by the broader absorption lines in the combustion gas. Comparison of the measured temperature profiles with theoretical calculations showed good agreement.

  10. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, Bita; Nakhla, George; Karamanev, Dimitre; Margaritis, Argyrios [Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Reid, Gregor [Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario (Canada); Canadian Research and Development Center for Probiotics, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2 (Canada)

    2008-08-15

    The effect of heat treatment at different temperatures on two types of inocula, activated sludge and anaerobically digested sludge, was investigated in batch cultures. Heat treatments were conducted at 65, 80 and 95 C for 30 min. The untreated inocula produced less amount of hydrogen than the pretreated inocula, with lactic acid as the main metabolite. The maximum yields of 2.3 and 1.6 mol H{sub 2}/mol glucose were achieved for the 65 C pretreated anaerobically digested and activated sludges, respectively. Approximately a 15% decrease in yield was observed with increasing pretreatment temperature from 65 to 95 C concomitant with an increase in butyrate/acetate ratio from 1.5 to 2.4 for anaerobically digested sludge. The increase of pretreatment temperature of activated sludge to 95 C suppressed the hydrogen production by lactic acid fermentation. DNA analysis of the microbial community showed that the elevated pretreatment temperatures reduced the species diversity. (author)

  11. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    Energy Technology Data Exchange (ETDEWEB)

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the

  12. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures.

    Science.gov (United States)

    Ramos, Lucas Rodrigues; Silva, Edson Luiz

    2017-06-01

    The objective of this study was to investigate the effects of hydraulic retention time (HRT) (8 to 0.5 h) and temperature (55 to 75 °C) in two anaerobic fluidized bed reactors (AFBR) using cheese whey (AFBR-CW = 10,000 mg sugars L -1 ) and vinasse (AFBR-V = 10,000 mg COD L -1 ) as substrates. Decreasing the HRT to 0.5 h increased the hydrogen production rates in both reactors, with maximum values of 5.36 ± 0.81 L H 2 h -1 L -1 in AFBR-CW and 0.71 ± 0.16 L H 2 h -1 L -1 in AFBR-V. The optimal conditions for hydrogen production were the HRT of 4 h and temperature of 65 °C in AFBR-CW, observing maximum hydrogen yield (HY) of 5.51 ± 0.37 mmol H 2 g COD -1 . Still, the maximum HY in AFBR-V was 1.64 ± 0.22 mmol H 2 g COD -1 at 4 h and 55 °C. However, increasing the temperature to 75 °C reduced the hydrogen production in both reactors. Methanol and butyric, acetic, and lactic acids were the main metabolites at temperatures of 55 and 65 °C, favoring the butyric and acetic metabolic pathways of hydrogen production. The increased productions of lactate, propionate, and methanol at 75 °C indicate that the hydrogen-producing bacteria in the thermophilic inoculum were inhibited under hyperthermophilic conditions.

  13. Study of the high temperature characteristics of hydrogen storage alloys

    CERN Document Server

    Rong, Li; Shaoxiong, Zhou; Yan, Qi; 10.1016/j.jallcom.2004.07.006

    2005-01-01

    In this work, the phase structure of as-cast and melt-spun (MmY)/sub 1/(NiCoMnAl)/sub 5/ alloys (the content of yttrium is 0-2.5wt.%) and their electrochemical properties were studied with regard to discharge capacity at different temperatures (30-80 degrees C) and cycling life at 30 degrees C. It is found that the substitution of yttrium increase the electrochemical capacity of the compounds and decrease the difference in capacity between as-cast and as-quenched compounds at 30 degrees C. When increasing the yttrium concentration from 0 to 2.5wt.%, the cycling life of both the as-cast and the melt- spun compounds deteriorated, although the latter have a slightly longer cycle life than the former. The remarkable feature of the alloys obtained by yttrium substitution is the improvement of the high temperature electrochemical properties. It shows that the stability of the hydrides is increased. Compared with the as-cast alloys, the melt-spun ribbons have higher electrochemical charge /discharge capacity in the ...

  14. Low hydrogen content silicon nitride films deposited at room temperature with a multipolar ECR plasma source

    NARCIS (Netherlands)

    Isai, I.G.; Holleman, J.; Wallinga, Hans; Woerlee, P.H.

    2004-01-01

    Silicon nitride layers with very low hydrogen content (less than 1 atomic percent) were deposited at near room temperature, from N2 and SiH4, with a multipolar electron cyclotron resonance plasma. The influences of pressure and nitrogen flow rate on physical and electrical properties were studied in

  15. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    Science.gov (United States)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  16. Uncertainties in risk assessment of hydrogen discharges from pressurized storage vessels at low temperatures

    DEFF Research Database (Denmark)

    Markert, Frank; Melideo, D.; Baraldi, D.

    2013-01-01

    20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel...

  17. Hydrogen oxidation at high pressure and intermediate temperatures: experiments and kinetic modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2015-01-01

    Hydrogen oxidation at 50 bar and temperatures of 700–900 K was investigated in a high pressure laminar flow reactor under highly diluted conditions. The experiments provided information about H 2 oxidation at pressures above the third explosion limit. The fuel–air equivalence ratio of the reactants...

  18. Effect of temperature and active biogas process on passive separation of digested manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Angelidaki, Irini

    2008-01-01

    The objective of the study was to identify the optimum time interval for effluent removal after temporarily stopping stirring in otherwise continuously stirred tank reactors. Influence of temperature (10 and 55 degrees C) and active biogas process on passive separation of digested manure, where...... separation was achieved when digested manure was allowed to settle at 55 degrees C with active biogas process (pre-incubated at 55 degrees C) compared to separation at 55 degrees C without active biogas process (autoclaved at 120 degrees C, for 20 min) or at 10 degrees C with active biogas process. Maximum...... solids separation was noticed 24 h after settling in column incubated at 55 degrees C, with active biogas process. Microbiological analyses revealed that proportion of Archaea and Bacteria, absent in the autoclaved material, varied with incubation temperature, time and sampling depth. Short rod shaped...

  19. An numerical analysis of high-temperature helium reactor power plant for co-production of hydrogen and electricity

    Science.gov (United States)

    Dudek, M.; Podsadna, J.; Jaszczur, M.

    2016-09-01

    In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  20. Extraction of aromatic compounds using ionic liquids and low transition temperature mixtures as separation agents

    OpenAIRE

    Fernandez Requejo, Patricia

    2015-01-01

    The main objective of this thesis is the evaluation of the feasibility of two types of designer solvents, ionic liquids (ILs) and low transition temperature mixtures (LTTMs), as extraction agents to improve the efficiency and/or sustainability of the separation of aromatic hydrocarbons from their mixtures with aliphatic hydrocarbons. The research about the applicability of the ionic liquids as entrainers for the separation of aromatic/aliphatic mixtures was developed through the experimental ...

  1. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping

    OpenAIRE

    Lozada Hidalgo, Marcelo; Zhang, Sheng; Hu, Sheng; Esfandiar, Ali; Grigorieva, Irina; Geim, Andre

    2017-01-01

    Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by ...

  2. On the temperature dependence of H-U{sub iso} in the riding hydrogen model

    Energy Technology Data Exchange (ETDEWEB)

    Lübben, Jens; Volkmann, Christian [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Grabowsky, Simon [School of Chemistry and Biochemistry, Stirling Highway 35, WA-6009 Crawley (Australia); Edwards, Alison [Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Morgenroth, Wolfgang [Institut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Fabbiani, Francesca P. A. [GZG, Abteilung Kristallographie, Georg-August Universität, Goldschmidtstrasse 1, 37077 Göttingen (Germany); Sheldrick, George M. [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Dittrich, Birger, E-mail: birger.dittrich@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany)

    2014-07-01

    The temperature dependence of hydrogen U{sub iso} and parent U{sub eq} in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U{sub iso} in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U{sub iso} below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found.

  3. Promising monolayer membranes for CO{sub 2}/N{sub 2}/CH{sub 4} separation: Graphdiynes modified respectively with hydrogen, fluorine, and oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lianming, E-mail: lmzhao@upc.edu.cn; Sang, Pengpeng; Guo, Sheng; Liu, Xiuping; Li, Jing; Zhu, Houyu; Guo, Wenyue, E-mail: wyguo@upc.edu.cn

    2017-05-31

    Graphical abstract: Graphdiyne monolayer membrane modified by fluorine or oxygen can effectively separate CO{sub 2}/N{sub 2}/CH{sub 4} mixtures. - Highlights: • Three graphdiyne-like membranes were designed and their stabilities were confirmed. • The DFT and MD results claimed a tunable gas separation property of the membranes. • Graphdiyne modified with F or O can effectively separate CO{sub 2}/N{sub 2}/CH{sub 4} mixtures. - Abstract: Three graphdiyne-like monolayers were designed by substituting one-third diacetylenic linkages with heteroatoms hydrogen, fluorine, and oxygen (GDY-X, X = H, F, and O), respectively. The CO{sub 2}/N{sub 2}/CH{sub 4} separation performance of the designed graphdiyne-like monolayers was investigated by using both first-principle density functional theory (DFT) and molecular dynamic (MD) simulations. The stabilities of GDY-X monolayers were confirmed by the calculated cohesive energies and phonon dispersion spectra. Both the DFT and MD calculations demonstrated that although the GDY-H membrane has poor selectivity for CO{sub 2}/N{sub 2}/CH{sub 4} gases, the GDY-F and GDY-O membranes can excellently separate CO{sub 2} and N{sub 2} from CH{sub 4} in a wide temperature range. Moreover, the CO{sub 2}/N{sub 2} mixture can be effectively separated by GDY-O at temperatures lower than 300 K. Based on the kinetic theory, extremely high permeances were found for CO{sub 2} and N{sub 2} passing through the GDY-X membranes (10{sup −4}–10{sup −2} mol/m{sup 2} s Pa at 298 K). In addition, the influence of relative concentration on selectivity was also investigated for gases in the binary mixtures. This work provides an effective way to modify graphdiyne for the separation of large molecular gases, which is quite crucial in the gas separation industry.

  4. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    Science.gov (United States)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  5. The high-temperature sodium coolant technology in nuclear power installations for hydrogen power engineering

    Science.gov (United States)

    Kozlov, F. A.; Sorokin, A. P.; Alekseev, V. V.; Konovalov, M. A.

    2014-05-01

    In the case of using high-temperature sodium-cooled nuclear power installations for obtaining hydrogen and for other innovative applications (gasification and fluidization of coal, deep petroleum refining, conversion of biomass into liquid fuel, in the chemical industry, metallurgy, food industry, etc.), the sources of hydrogen that enters from the reactor plant tertiary coolant circuit into its secondary coolant circuit have intensity two or three orders of magnitude higher than that of hydrogen sources at a nuclear power plant (NPP) equipped with a BN-600 reactor. Fundamentally new process solutions are proposed for such conditions. The main prerequisite for implementing them is that the hydrogen concentration in sodium coolant is a factor of 100-1000 higher than it is in modern NPPs taken in combination with removal of hydrogen from sodium by subjecting it to vacuum through membranes made of vanadium or niobium. Numerical investigations carried out using a diffusion model showed that, by varying such parameters as fuel rod cladding material, its thickness, and time of operation in developing the fuel rods for high-temperature nuclear power installations (HT NPIs) it is possible to exclude ingress of cesium into sodium through the sealed fuel rod cladding. However, if the fuel rod cladding loses its tightness, operation of the HT NPI with cesium in the sodium will be unavoidable. Under such conditions, measures must be taken for deeply purifying sodium from cesium in order to minimize the diffusion of cesium into the structural materials.

  6. Synchrotron radiation photoemission study of metal overlayers on hydrogenated amorphous silicon at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pi, J.

    1990-09-21

    In this dissertation, metals deposited on a hydrogenated amorphous silicon (a-Si:H) film at room temperature are studied. The purpose of this work is mainly understanding the electronic properties of the interface, using high-resolution synchrotron radiation photoemission techniques as a probe. Atomic hydrogen plays an important role in passivating dangling bonds of a-Si:H films, thus reducing the gap-state distribution. In addition, singly bonded hydrogen also reduces states at the top of the valence band which are now replaced by deeper Si-H bonding states. The interface is formed by evaporating metal on an a-Si:H film in successive accumulations at room temperature. Au, Ag, and Cr were chosen as the deposited metals. Undoped films were used as substrates. Since some unique features can be found in a-Si:H, such as surface enrichment of hydrogen diffused from the bulk and instability of the free surface, we do not expect the metals/a-Si:H interface to behave exactly as its crystalline counterpart. Metal deposits, at low coverages, are found to gather preferentially around regions deficient in hydrogen. As the thickness is increased, some Si atoms in those regions are likely to leave their sites to intermix with metal overlayers like Au and Cr. 129 refs., 30 figs.

  7. Improving accuracy and precision of ice core δD(CH4 analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    Directory of Open Access Journals (Sweden)

    M. Bock

    2014-07-01

    Full Text Available Firn and polar ice cores offer the only direct palaeoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD(CH4 or δ2H(CH4 0.5 to 1.5 kg of ice was hitherto used. Here we present a method to improve precision and reduce the sample amount for δD(CH4 measurements in (ice core air. Pre-concentrated methane is focused in front of a high temperature oven (pre-pyrolysis trapping, and molecular hydrogen formed by pyrolysis is trapped afterwards (post-pyrolysis trapping, both on a carbon-PLOT capillary at −196 °C. Argon, oxygen, nitrogen, carbon monoxide, unpyrolysed methane and krypton are trapped together with H2 and must be separated using a second short, cooled chromatographic column to ensure accurate results. Pre- and post-pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods, we estimate a precision of 2.3‰ for 350 g of ice (or roughly 30 mL – at standard temperature and pressure (STP – of air with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4 of about 6 mL (STP or about 500 pmol of pure CH4.

  8. One hydrogen bond does not a separation make, or does it?

    DEFF Research Database (Denmark)

    Báthori, Nikoletta B; Nassimbeni, Luigi R; van de Streek, Jacco

    2015-01-01

    Diacetoneketogulonic acid was used to separate primary amines from their racemic modifications and the selectivity of the acid was rationalized by lattice energy calculations and analyzing the weak interactions around the captured amines....

  9. Measurements of the Separated Longitudinal Structure Function F_L from Hydrogen and Deuterium Targets at Low Q^2

    CERN Document Server

    Tvaskis, V; Niculescu, I; Abbott, D; Adams, G S; Afanasev, A; Ahmidouch, A; Angelescu, T; Arrington, J; Asaturyan, R; Avery, S; Baker, O K; Benmouna, N; Berman, B L; Biselli, A; Blok, H P; Boeglin, W U; Bosted, P E; Brash, E; Breuer, H; Chang, G; Chant, N; Christy, M E; Connell, S H; Dalton, M M; Danagoulian, S; Day, D; Dodario, T; Dunne, J A; Dutta, D; Khayari, N El; Ent, R; Fenker, H C; Frolov, V V; Gaskell, D; Garrow, K; Gilman, R; Gueye, P; Hafidi, K; Hinton, W; Holt, R J; Horn, T; Huber, G M; Jackson, H; Jiang, X; Jones, M K; Joo, K; Kelly, J J; Keppel, C E; Kuhn, J; Kinney, E; Klein, A; Kubarovsky, V; Liang, M; Liang, Y; Lolos, G; Lung, A; Mack, D; Malace, S; Markowitz, P; Mbianda, G; McGrath, E; Mckee, D; McKee, P; Meekins, D G; Mkrtchyan, H; Moziak, B; Napolitano, J; Navasardyan, T; Niculescu, G; Nozar, M; Ostapenko, T; Papandreou, Z; Potterveld, D; Reimer, P E; Reinhold, J; Roche, J; Rock, S E; Schulte, E; Segbefia, E; Smith, C; Smith, G R; Stoler, P; Tadevosyan, V; Tang, L; Telfeyan, J; Todor, L; Ungaro, M; Uzzle, A; Vidakovic, S; Villano, A; Vulcan, W F; Wang, M; Warren, G; Wesselmann, F; Wojtsekhowski, B; Wood, S A; Xu, C; Yan, C; Yuan, L; Zheng, X; Zihlmann, B; Zhu, H

    2016-01-01

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. While differences are found, the parameterizations generally agree with the data even at the very low Q^2 scale of the data. The deuterium data show a smaller longitudinal structure function, and smaller ratio of longitudinal to transverse cross section R, than the proton. This suggests either an unexpected difference in R for the proton and neutron or a suppression of the gluonic distribution in nuclei.

  10. Molecular emission characteristics of various fluorides in a low-temperature-hydrogen diffusion flame.

    Science.gov (United States)

    Dagnall, R M; Fleet, B; Risby, T H; Deans, D R

    1971-02-01

    A capillary burner supporting a nitrogen/hydrogen diffusion flame has been evaluated as a possible means of detection for several volatile fluorides after their gas-chromatographic separation. The fluorides of As, B, C, Ge, I, Mo, P, Re, S, Sb, Se, Si, Te and W were formed by the reaction of the element with chlorine trifluoride, and the intense molecular emission given by each was recorded. An attempt was made to identify the emitting species.

  11. NUMERICAL SIMULATION OF TEMPERATURE SEPARATION IN METHANE STREAM IN RANQUE-HILSCH VORTEX TUBE

    Directory of Open Access Journals (Sweden)

    А.D. Gutak

    2015-06-01

    Full Text Available In present numerical research, the temperature separation in methane stream within a counter flow Ranque-Hilsch vortex tube was investigated. A complete three-dimensional geometry of the vortex tube was used to generate a high-density computational grid. A vortex tube with two tangential inlet nozzles, an axial cold stream outlet and a circumferential hot stream outlet was considered. Methane was used as a fluid along with Peng-Robinson cubic equation of state. Fluid properties like total temperature and total pressure were analyzed for a range of inlet mass flow rates and inlet total pressure values. Also the total pressure and total temperature distribution along the axial direction was investigated. The temperature separation effect is more significant for air then for methane at all investigated pressures. Created model can be used to design industrial vortex tubes for oil and gas industry where methane is a main product.

  12. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  13. Electron density and temperature diagnostics in laser-induced hydrogen plasma

    Science.gov (United States)

    Gautam, G.; Parigger, C. G.

    2017-02-01

    Laser-induced optical breakdown is achieved by using Q-switched, Nd:YAG radiation focused into ultra-high-purity (UHP) hydrogen gas at a pressure of 1.08 ± 0.03 × 105 Pa inside a cell. The plasma emission spectra are dispersed by a Czerny-Turner type spectrometer and detected with an intensified charge-coupled device (ICCD). Stark-broadened hydrogen Balmer series H α and Hβ line profiles are used as a spectroscopic tool for the determination of electron density and excitation temperature. Spatial variation of electron density and temperature at 0.40 µs are extracted from the recorded intensities of H α and Hβ lines. Temporal variations of electron density and excitation temperature are also presented for the time delay range of 0.15 µs to 1.4 µs.

  14. Influence of fuel temperature on supersonic mixing and combustion of hydrogen

    Science.gov (United States)

    Rogers, R. C.

    1977-01-01

    Results are presented from an experimental investigation of the influence of fuel stagnation temperature on the mixing and reaction of hydrogen injected transverse to a supersonic flow in a duct. The hydrogen fuel was injected stoichiometrically at stagnation temperatures of 300 K and 800 K from a row of five circular orifices in the duct wall. Detailed measurements in the flow at the duct exit are used to determine the overall amount of mixing accomplished at each of three test conditions. Static pressure distributions are used with duct wall temperatures and heat flux in a one-dimensional analysis to deduce the fraction of fuel reacted along the duct. Results from the one-dimensional analyses of the tests with hot fuel indicated slightly more fuel reacted at the exit; however, differences in the accomplished mixing obtained from integrations of exit surveys were small.

  15. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Sato, K.; Kinoshita, M. [Nuclear Power Engineering Corp., Tokyo (Japan)

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  16. Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO{sub 2} nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wangweinj0603@126.com; Ni, Yaru, E-mail: niyr2000@hotmail.com; Lu, Chunhua, E-mail: lchnjut@163.com; Xu, Zhongzi, E-mail: xzznjut@163.com

    2014-01-30

    A systematic study has been devoted to prepare N–F co-doped anatase TiO{sub 2} nanosheets with further hydrogenation treatment at different temperatures. The hydrogenation temperature plays a significant role in changing the inner structure of TiO{sub 2} from N–F co-doping to the truly hydrogenated characteristic, resulting in various bandgap structures with different light absorption ability and photogenerated electron–hole pair separation efficiency. Moreover, the visible-light-driven photocatalytic activity not only depend on the light absorption ability, but also affected by the amount of defect states significantly. Results indicate that isolated defect state will serve as photogenerated electron–hole pair recombination center, while a large amount of combined defect states will truly reduce the bandgap, enhance the light absorption and the photogenerated electron–hole pair separation efficiency. The photocatalyst hydrogenated at 500 °C, which has a specific bandgap structure, gives the highest ability in the degradation of phenol under the visible light irradiation. This simple investigation is of great significance for the design and preparation of anion modified TiO{sub 2}-based photocatalysts with specific crystal structures to make sufficient use of the visible light for environment protection.

  17. Bulk hydrogen stable isotope composition of seaweeds: Clear separation between Ulvophyceae and other classes.

    Science.gov (United States)

    Carvalho, Matheus C; Carneiro, Pedro Bastos de Macedo; Dellatorre, Fernando Gaspar; Gibilisco, Pablo Ezequiel; Sachs, Julian; Eyre, Bradley D

    2017-10-01

    Little is known about the bulk hydrogen stable isotope composition (δ(2) H) of seaweeds. This study investigated the bulk δ(2) H in several different seaweed species collected from three different beaches in Brazil, Australia, and Argentina. Here, we show that Ulvophyceae (a group of green algae) had lower δ(2) H values (between -94‰ and -130‰) than red algae (Florideophyceae), brown algae (Phaeophyceae), and species from the class Bryopsidophyceae (another group of green algae). Overall the latter three groups of seaweeds had δ(2) H values between -50‰ and -90‰. These findings were similar at the three different geographic locations. Observed differences in δ(2) H values were probably related to differences in hydrogen (H) metabolism among algal groups, also observed in the δ(2) H values of their lipids. The marked difference between the δ(2) H values of Ulvophyecae and those of the other groups could be useful to trace the food source of food webs in coastal rocky shores, to assess the impacts of green tides on coastal ecosystems, and to help clarify aspects of their phylogeny. However, reference materials for seaweed δ(2) H are required before the full potential of using the δ(2) H of seaweeds for ecological studies can be exploited. © 2017 Phycological Society of America.

  18. Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene.

    Science.gov (United States)

    Giesbers, A J M; Uhlířová, K; Konečný, M; Peters, E C; Burghard, M; Aarts, J; Flipse, C F J

    2013-10-18

    We show ferromagnetic properties of hydrogen-functionalized epitaxial graphene on SiC. Ferromagnetism in such a material is not directly evident as it is inherently composed of only nonmagnetic constituents. Our results nevertheless show strong ferromagnetism with a saturation of 0.9μ(B)/hexagon projected area, which cannot be explained by simple magnetic impurities. The ferromagnetism is unique to hydrogenated epitaxial graphene on SiC, where interactions with the interfacial buffer layer play a crucial role. We argue that the origin of the observed ferromagnetism is governed by electron correlation effects of the narrow Si dangling bond states in the buffer layer exchange coupled to localized states in the hydrogenated graphene layer. This forms a quasi-three-dimensional ferromagnet with a Curie temperature higher than 300 K.

  19. Properties of municipal solid waste incineration ashes with respect to their separation temperature

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Pavlík, Z.; Tydlitát, V.; Volfová, P.; Švarcová, Silvie; Šyc, Michal; Černý, R.

    2012-01-01

    Roč. 30, č. 10 (2012), s. 1041-1048 ISSN 0734-242X Institutional support: RVO:61388980 ; RVO:67985858 Keywords : bottom ash * fly ash * municipal solid waste incinerator * pozzolanic activity * hydration heat * separation temperature * building industry Subject RIV: CA - Inorganic Chemistry Impact factor: 1.047, year: 2012

  20. Two separable conformers of TATP and analogues exist at room temperature.

    Science.gov (United States)

    Denekamp, C; Gottlieb, L; Tamiri, T; Tsoglin, A; Shilav, R; Kapon, M

    2005-06-09

    [reaction: see text] TATP gives rise to two separable conformations because the barrier for interconversion between them is relatively high at room temperature. This kind of behavior is rare in cyclic organic systems and is the result of poor overlap in the "flip-flop" transition state. The crystal structure of the analogous tricyclohexanone triperoxide also indicates the presence of two conformers.

  1. Application of high temperature superconductors to high-gradient magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, M.A.; Prenger, F.C.; Hill, D.D.; Daney, D.E.; Worl, L.W.; Schake, A.R.; Padilla, D.D.

    1994-06-01

    High Gradient Magnetic Separation (HGMS) is a powerful technique which can be used to separate widely dispersed contaminants from a host material, This technology can separate magnetic solids from other solids, liquids or gases. As the name implies HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles. HGMS separators usually consist of a high-field solenoid magnet, the bore of which contains a fine-structured, ferromagnetic matrix material. The matrix material locally distorts the magnetic field and creates large field gradients in the vicinity of the matrix elements. These elements then become trapping sites for magnetic particles and are the basis for the magnetic separation. In this paper we discuss the design and construction of a prototype HGMS unit using a magnet made with high temperature superconductors (HTS). The prototype consists of an outer vacuum vessel which contains the HTS solenoid magnet The magnet is surrounded by a thermal radiation shield and multilayer insulation (MLI) blankets. The magnet, thermal shield and current leads all operate in a vacuum and are cooled by a cryocooler. High temperature superconducting current leads are used to reduce the heat leak from the ambient environment to the HTS magnet.

  2. Temperature-sensitive PSII: a novel approach for sustained photosynthetic hydrogen production.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2016-12-01

    The need for energy and the associated burden are ever growing. It is crucial to develop new technologies for generating clean and efficient energy for society to avoid upcoming energetic and environmental crises. Sunlight is the most abundant source of energy on the planet. Consequently, it has captured our interest. Certain microalgae possess the ability to capture solar energy and transfer it to the energy carrier, H2. H2 is a valuable fuel, because its combustion produces only one by-product: water. However, the establishment of an efficient biophotolytic H2 production system is hindered by three main obstacles: (1) the hydrogen-evolving enzyme, [FeFe]-hydrogenase, is highly sensitive to oxygen; (2) energy conversion efficiencies are not economically viable; and (3) hydrogen-producing organisms are sensitive to stressful conditions in large-scale production systems. This study aimed to circumvent the oxygen sensitivity of this process with a cyclic hydrogen production system. This approach required a mutant that responded to high temperatures by reducing oxygen evolution. To that end, we randomly mutagenized the green microalgae, Chlamydomonas reinhardtii, to generate mutants that exhibited temperature-sensitive photoautotrophic growth. The selected mutants were further characterized by their ability to evolve oxygen and hydrogen at 25 and 37 °C. We identified four candidate mutants for this project. We characterized these mutants with PSII fluorescence, P700 absorbance, and immunoblotting analyses. Finally, we demonstrated that these mutants could function in a prototype hydrogen-producing bioreactor. These mutant microalgae represent a novel approach for sustained hydrogen production.

  3. Morphology, Microstructure, and Hydrogen Content of Carbon Nanostructures Obtained by PECVD at Various Temperatures

    Directory of Open Access Journals (Sweden)

    M. Acosta Gentoiu

    2017-01-01

    Full Text Available Carbon nanostructures were obtained by acetylene injection into an argon plasma jet in the presence of hydrogen. The samples were synthesized in similar conditions, except that the substrate deposition temperatures TD were varied, ranging from 473 to 973 K. A strong dependence of morphology, structure, and graphitization upon TD was found. We obtained vertical aligned carbon nanotubes (VA-CNTs at low temperatures as 473 K, amorphous carbon nanoparticles (CNPs at temperatures from about 573 to 673 K, and carbon nanowalls (CNWs at high temperatures from 773 to 973 K. Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, elastic recoil detection analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to substantiate the differences in these material types. It is known that hydrogen concentration modifies strongly the properties of the materials. Different concentrations of hydrogen-bonded carbon could be identified in amorphous CNP, VA-CNT, and CNW. Also, the H : C ratios along depth were determined for the obtained materials.

  4. High temperature seals between ceramic separation membranes and super-alloy housing

    Science.gov (United States)

    Honea, G.; Sridhar, K. R.

    1991-01-01

    One of the concepts for oxygen production from Martian atmospheric carbon dioxide involves the use of tubular electrochemical membranes for oxygen separation. The tubular configuration offers the advantage of being able to separate the oxygen at pressures of up to 500 psi, thereby eliminating the need for a pre-liquefaction oxygen compressor. A key technology that has to be developed in order for the electrochemical separator to combine as a compressor is a high temperature static seal between the ceramic separation cell and the nickel-based super-alloy tube. Equipment was designed and fabricated to test the seals. Efforts are under way to develop a finite element model to study the thermal stresses at the joints and on the seal, and the optimal shape of the seal. The choice of seal materials and the technique to be used to fabricate the seals are also being investigated.

  5. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  6. A model for oxidation kinetics in air at room temperature of hydrogen-terminated (1 0 0) Si

    Science.gov (United States)

    Cerofolini, G. F.; Mascolo, D.; Vlad, M. O.

    2006-09-01

    A quantitative model is proposed for the description of the oxidation kinetics in air at room temperature of single crystalline, hydrogen-terminated, (1 0 0) silicon. The theory separates the growth kinetics of the interfacial suboxide from those of the outer stoichiometric oxide. The theory proceeds assuming that the suboxide grows along the surface at the border of oxidized-silicon clusters, while the formation of the stoichiometric oxide takes place on the top of the suboxide at a rate decaying exponentially with the oxide thickness. In these hypotheses the kinetics of suboxide formation are found to depend on the initial concentration of (defective) oxo groups, while the growth of the stoichiometric oxide is described by the Elovich equation both in the short- and long-time limits.

  7. Silica-based monolithic capillary columns-Effect of preparation temperature on separation efficiency.

    Science.gov (United States)

    Planeta, Josef; Moravcová, Dana; Roth, Michal; Karásek, Pavel; Kahle, Vladislav

    2010-09-03

    The temperature effects during the sol-gel process and ageing of the silica-based monolith on the structure and separation efficiency of the capillary columns (100microm i.d., 150mm) for HPLC separations were studied. The tested columns were synthesized from a mixture of tetramethoxysilane, polyethylene glycol and urea under the acidic conditions. The temperature was varied from 40 degrees C to 44 degrees C and formation of bypass channels between the silica mold and the capillary wall was examined. The temperature of 43 degrees C was estimated as optimal for preparation of efficient silica capillary columns which were subsequently modified by octadecyldimethyl-N,N-diethylaminosilane or covered by poly(octadecyl methacrylate) and tested using standard mixture of alkylbenzenes under the isocratic conditions. 2010 Elsevier B.V. All rights reserved.

  8. An application of high-temperature superconductors YBCO to magnetic separation

    Science.gov (United States)

    Guo, Qiudong; Zhang, Peng; Bo, Lin; Zeng, Guibin; Li, Dengqian; Fan, J. D.; Liu, Huajun

    2017-10-01

    With the rapid development of manufacturing technology of high temperature superconductive YBa2Cu3O7‑x YBCO materials and decreasing in cost of production, YBCO is marching into industrial areas with its good performances as source of high-magnetic field and rather low cost in reaching superconductivity. Based on analysis of the performance of high temperature superconductors YBCO and development of technology in superconductive magnetic separation both home and abroad, we propose a new approach of taking YBCO tape to make a solenoid as the source of a high magnetic field of magnetic separatior of ores. The paper also looks into the future of the YBCO high temperature superconductive magnetic separation from the perspective of technology and cost, as well as its applications in other industries.

  9. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  10. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Muazzez Gürgan

    2015-06-01

    Full Text Available Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C and heat (42 °C stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F. The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS bacteria under temperature stress.

  11. Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Lijin [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang City 110819 (China); Peng, Qunjia, E-mail: qunjiapeng@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Shoji, Tetsuo [Frontier Research Initiative, New Industry Creation Hatchery Center, Tohoku University, 6-6-10, Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Han, En-Hou; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Wang, Lei [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang City 110819 (China)

    2015-12-15

    Highlights: • Dissolved hydrogen (DH) effect on corrosion of stainless steel in high temperature water. • Increasing DH caused decrease of Cr- but increase of Fe-concentrations in the inner oxide layer. • Concentration gradient of Cr and Fe in the inner oxide layer. • DH effect was attributed to the accelerated diffusion of Fe ion in the inner oxide layer. - Abstract: Characterizations of oxide films formed on 316 stainless steel in high temperature, hydrogenated water were conducted. The results show the oxide film consists of an outer layer with oxide particles of Fe–Ni spinel and hematite, and an inner continuous layer of Fe–Cr–Ni spinel. Increasing dissolved hydrogen (DH) concentrations causes decrease of Cr- and increase of Fe-concentrations in the inner layer. A continuous decrease of Cr- and increase of Fe-concentrations was observed from the surface of the inner layer to the oxide/substrate interface. The DH effect is attributed to the enhanced diffusion of Fe ions in the oxide film by hydrogen.

  12. Low temperature diffusion of hydrogenic species in oxide crystals: Radiation induced diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Oak Ridge National Lab., TN (United States); Gonzalez, R. [Universidad `Carlos III` de Madrid (Spain). Dept. de Ingenieria

    1993-10-01

    Normally stable configurations of substitutional protons or deuterons in oxide crystal become highly unstable during ionizing radiation at room temperature, resulting in the displacements of these species. The cross section for radiation-induced-displacements of protons is exceedingly large and is a strong function of temperature. The displacement cross section of protons from cation sites is twice that of deuterons. Diffusion of these species can be induced at temperatures not otherwise possible by thermal means. For example, using electron irradiation near room temperature the O-H bond is readily broken and the hydrogenic species can be channeled along the c-axis in TiO{sub 2} by an applied electric field. Radiation induced displacements of protons from anion sites (hydride ions) at room temperature are also discussed.

  13. Physical Stabilization of Pharmaceutical Glasses Based on Hydrogen Bond Reorganization under Sub-Tg Temperature.

    Science.gov (United States)

    Tominaka, Satoshi; Kawakami, Kohsaku; Fukushima, Mayuko; Miyazaki, Aoi

    2017-01-03

    Amorphous solid dispersions (ASDs) play a key role in the pharmaceutical industry through the use of high-energy amorphous state to improve solubility of pharmaceutical agents. Understanding the physical stability of pharmaceutical glasses is of great importance for their successful development. We focused on the anti-HIV agent, ritonavir (RTV), and investigated the influence of annealing at temperatures below the glass transition temperature (sub-Tg) on physical stability, and found that the sub-Tg annealing effectively stabilized RTV glasses. Through the atomic structure analyses using X-ray pair distribution functions and infrared spectroscopy, we ascertained that this fascinating effect of the sub-Tg annealing originated from strengthened hydrogen bonding between molecules and probably from a better local packing associated with the stronger hydrogen bonds. The sub-Tg annealing is effective as a physical stabilization strategy for some pharmaceutical molecules, which have relatively large energy barrier for nucleation.

  14. Numerical simulation of a Rotating Detonation with a realistic injector designed for separate supply of gaseous hydrogen and oxygen

    Science.gov (United States)

    Gaillard, T.; Davidenko, D.; Dupoirieux, F.

    2017-12-01

    This paper presents numerical results for a Rotating Detonation (RD) propagating in a layer of combustible mixture, created by injection of gaseous hydrogen and oxygen. 3D Large Eddy Simulations (LES) of a reacting flow have been performed in a domain of planar geometry in order to eliminate possible effects of the chamber curvature. First, the results for a 2D case with uniformly distributed premixed injection are presented to characterize the RD propagation under the most idealized conditions. Then a 3D concept is introduced for the injector composed of a series of injection elements. The RD propagation is simulated under the conditions of premixed and separate injection of the propellants at globally stoichiometric proportions. The case of separate propellant injection is the most realistic one. The computational results, represented by instantaneous and averaged flowfields, are analyzed to characterize the flowfield and the conditions of RD propagation. This analysis allows identifying the effects due to two major factors: the injection through discrete holes with respect to the distributed one and the separate propellant feeding with respect to the premixed one. Macroscopic quantities, such as the RD propagation speed, mean chamber pressure, average parameters of the mixture, and mixing efficiency are evaluated and compared in order to characterize the studied effects.

  15. CH spectroscopy for carbon chemical erosion analysis in high density low temperature hydrogen plasma

    NARCIS (Netherlands)

    Westerhout, J.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    The CH A-X molecular band is measured upon seeding the hydrogen plasma in the linear plasma generator Pilot-PSI [electron temperature T-e=0.1-2.5 eV and electron density n(e)=(0.5-5) X 10(20) m(-3)] with methane. Calculated inverse photon efficiencies for these conditions range from 3 up to

  16. Novel Zeolitic Imidazolate Framework/Polymer Membranes for Hydrogen Separations in Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Musselman, Inga H.

    2013-01-31

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed-matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethylenediamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncrosslinked polymer.

  17. Low-temperature specific heat in hydrogenated and Mn-doped La (Fe,Si ) 13

    Science.gov (United States)

    Lovell, Edmund; Ghivelder, Luis; Nicotina, Amanda; Turcaud, Jeremy; Bratko, Milan; Caplin, A. David; Basso, Vittorio; Barcza, Alexander; Katter, Matthias; Cohen, Lesley F.

    2016-10-01

    It is now well established that the paramagnetic-to-ferromagnetic transition in the magnetocaloric La (FeSi) 13 is a cooperative effect involving spin, charge, and lattice degrees of freedom. However, the influence of this correlated behavior on the ferromagnetic state is as yet little studied. Here we measure the specific heat at low temperatures in a systematic set of LaF exM nyS iz samples, with and without hydrogen, to extract the Sommerfeld coefficient, the Debye temperature, and the spin-wave stiffness. Substantial and systematic changes in magnitude of the Sommerfeld coefficient are observed with Mn substitution and introduction of hydrogen, showing that over and above the changes to the density of states at the Fermi energy there are significant enhanced d -band electronic interactions at play. The Sommerfeld coefficient is found to be 90 -210 mJ mo l-1K-2 , unusually high compared to that expected from band-structure calculations. The Debye temperature determined from the specific heat measurement is insensitive to Mn and Si doping but increases when hydrogen is introduced into the system. The Sommerfeld coefficient is reduced in magnetic field for all compositions that have a measurable spin-wave contribution. These results move our understanding of the cooperative effects forward in this important and interesting class of materials significantly and provide a basis for future theoretical development.

  18. High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility

    Science.gov (United States)

    l'Abee, Roy; DaRosa, Fabien; Armstrong, Mark J.; Hantel, Moritz M.; Mourzagh, Djamel

    2017-03-01

    We report (electro-)chemically stable, high temperature resistant and fast wetting Li-ion battery separators produced through a phase inversion process using novel polyetherimides (PEI) based on bisphenol-aceton diphthalic anhydride (BPADA) and para-phenylenediamine (pPD). In contrast to previous studies using PEI based on BPADA and meta-phenylenediamine (mPD), the separators reported herein show limited swelling in electrolytes and do not require fillers to render sufficient mechanical strength and ionic conductivity. In this work, the produced 15-25 μm thick PEI-pPD separators show excellent electrolyte compatibility, proven by low degrees of swelling in electrolyte solvents, low contact angles, fast electrolyte wicking and high electrolyte uptake. The separators cover a tunable range of morphologies and properties, leading to a wide range of ionic conductivities as studied by Electrochemical Impedance Spectroscopy (EIS). Dynamic Mechanical Analysis (DMA) demonstrated dimensional stability up to 220 °C. Finally, single layer graphite/lithium nickel manganese cobalt oxide (NMC) pouch cells were assembled using this novel PEI-pPD separator, showing an excellent capacity retention of 89.3% after 1000 1C/2C cycles, with a mean Coulombic efficiency of 99.77% and limited resistance build-up. We conclude that PEI-pPD is a promising new material candidate for high performance separators.

  19. Application of hydrogen injection and oxidation to low temperature solution-processed oxide semiconductors

    Directory of Open Access Journals (Sweden)

    Masashi Miyakawa

    2016-08-01

    Full Text Available Solution-processed oxide semiconductors are promising candidates for the low cost, large scale fabrication of oxide thin-film transistors (TFTs. In this work, a method using hydrogen injection and oxidation (HIO that allows the low temperature solution processing of oxide semiconductors was demonstrated. We found that this method significantly decreases the concentration of residual species while improving the film densification. Additionally, enhanced TFT performance was confirmed following the use of processing temperatures as low as 300 °C. The proposed process is potentially applicable to the fabrication of a wide variety of solution-processed oxide semiconductors.

  20. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  1. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    Science.gov (United States)

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.

  2. Influence of temperature on hydrogen production from bread mill wastewater by sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Tang, G.L.; Huang, J.; Li, Y.Y.; Sun, Z.J. [China Agricultural Univ., Beijing (China). College of Resources and Environmental Sciences; Tang, Q.Q. [Nanjing Univ., Nanjing (China). Medical School

    2008-07-01

    Hydrogen (H{sub 2}) energy has been touted as a sustainable and clean energy source that can solve environmental problems such as acid rain, greenhouse gases and transboundary pollution. While most hydrogen is currently produced from nonrenewable sources such as oil, natural gas, and coal, these processes are energy-intensive and costly. The biological production of hydrogen using fermentative bacteria is an environmentally friendly and energy-saving process which has recently attracted much attention as an effective way of converting biomass into H{sub 2}. Waste-based H{sub 2} production processes mainly include wastewater from paper mills, municipal solid waste, rice winery wastewater, and food wastewater from cafeterias. This study investigated the use of bread mill wastewater for biological production of hydrogen due to its high production potential. Annual bread production in China is estimated to be over 1.5 million tons, producing 10 m{sup 3} of wastewater per ton of bread. The wastewater has high chemical oxygen demand and carbohydrate concentrations and is therefore suitable for anaerobic treatment processes. This study evaluated the effect of temperature on H{sub 2} production from bread mill wastewater by sewage sludge in lab-scale experiments. H{sub 2} production, the distribution of volatile fatty acids and the lag-phase time were influenced by temperature. H{sub 2} production and H{sub 2} yield increased with increasing temperature. The optimal temperature for H{sub 2} production was 50 degrees C. Butyrate, acetate and alcohol were the main by-products of H{sub 2} fermentation. According to 16S rDNA analysis, the dominant microflora was Clostridium, but the microbial species varied with temperature. The activation energy for H{sub 2} production was estimated to be 92 kJ per mol for bread mill wastewater. It was concluded that bread mill wastewater could potentially serve as a substrate for H{sub 2} production. This research provides a means of

  3. High-temperature separation with polymer-coated fiber in packed capillary gas chromatography.

    Science.gov (United States)

    Saito, Yoshihiro; Ogawa, Mitsuhiro; Imaizumi, Motohiro; Ban, Kazuhiro; Abe, Akira; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2005-06-01

    High-temperature gas chromatographic separation of several synthetic polymer mixtures with Dexsil-coated fiber-packed columns was studied. A bundle of heat-resistant filaments, Zylon, was longitudinally packed into a short metal capillary, followed by the conventional coating process with Dexsil 300 material. Prior to the packing process the metal capillary was deactivated by the formation of a silica layer. The typical size of the resulting column was 0.3-mm i.d., 0.5-mm o.d., 1-m length, and packed with about 170 filaments of the Dexsil-coated Zylon. The column temperature could be elevated up to 450 degrees C owing to the good thermal stability of the fiber, Dexsil coating, and metal capillary; furthermore, this allowed the separation of low-volatile compounds to be studied.

  4. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  5. Effect of water electrolysis temperature of hydrogen production system using direct coupling photovoltaic and water electrolyzer

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Maeda

    2016-01-01

    Full Text Available We propose control methods of a photovoltaic (PV-water electrolyzer (ELY system that generates hydrogen by controlling the number of ELY cells. The advantage of this direct coupling between PV and ELY is that the power loss of DC/DC converter is avoided. In this study, a total of 15 ELY cells are used. In the previous researches, the electrolyzer temperature was constantly controlled with a thermostat. Actually, the electrolyzer temperature is decided by the balance of the electrolysis loss and the heat loss to the outside. Here, the method to control the number of ELY cells was investigated. Maximum Power Point Tracking efficiency of more than 96% was achieved without ELY temperature control. Furthermore we construct a numerical model taking into account of ELY temperature. Using this model, we performed a numerical simulation of 1-year. Experimental data and the simulation results shows the validity of the proposed control method.

  6. Chemical nature of coal hydrogenation oils. II - The effect of temperature

    Science.gov (United States)

    Kershaw, J. R.; Barrass, G.; Du Preez, I. C.; Gray, D.

    1980-05-01

    Hydrogenation of the same coal was carried out at 400, 450, 500, 550, 600, 650 and 700 C. H-1-nuclear magnetic resonance spectra of the oils (hexane soluble portion) showed an increase in the percentage of aromatic protons and a decrease in the percentage of aliphatic protons as the temperature increases, while the percentage of benzylic protons remained constant. The aromaticity of the oils as calculated by the Brown-Ladner equation increases with the reactor temperature. C-13-nuclear magnetic resonance spectra of the oils indicates that the long aliphatic chains present decrease in both number and length as the reactor temperature increases. The molecular weight and viscosity of the oil as well as the percentage of polar compounds in the oil decrease with increasing temperature.

  7. Pressure-concentration-temperature characterization of St909 getter alloy with hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzi, F. [Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica del Plasma; Boffito, C. [SAES Getters S.p.A., Milan (Italy)

    1996-06-01

    One of the major issues related to the next generation of fusion reactors is tritium recovery and recycling from tritiated water. Among the various approaches proposed, chemical dissociation of tritiated water over active beds based on reactive alloys appears to be a promising solution. It enables, in fact, safe recovery of tritium by exploiting the relatively high equilibrium pressures, even at low concentrations and operating temperature, of selected alloys. This paper presents the results of pressure-temperature-composition measurements carried out on a Zr-Mn-Fe alloy, named St909, candidate for such an application. Equilibrium isotherms have been determined between room temperature and 400{sup o}C for low hydrogen concentrations, and at room temperature for higher concentrations, exploring the bi-phasic region. Sieverts` law appears to be obeyed in the low concentration range, at H/A ratios of less than 0.03. (Author).

  8. Stable catalyst layers for hydrogen permeable composite membranes

    Science.gov (United States)

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  9. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

    Science.gov (United States)

    Yu, Kai Man Kerry; Tong, Weiyi; West, Adam; Cheung, Kevin; Li, Tong; Smith, George; Guo, Yanglong; Tsang, Shik Chi Edman

    2012-01-01

    A non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaO(x) catalyst at 150-200 °C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm). This can be used to supply proton exchange membrane fuel cells for mobile applications without invoking any CO shift and cleanup stages. The working catalyst contains, on average, 3-4 nm copper particles, alongside extremely small size of copper clusters stabilized on a defective ZnGa2O4 spinel oxide surface, providing hydrogen productivity of 393.6 ml g(-1)-cat h(-1) at 150 °C.

  10. Production of hydrogen bromide by bromine-methane reactions at elevated temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Robert W.; Larson, Richard S.

    2003-05-01

    Hydrogen bromide is a potentially useful intermediate for hydrogen production by electrolysis because it has a low cell potential and is extremely soluble in water. Processes have been proposed to exploit these properties, but among the important issues to be resolved is the efficiency of HBr production from hydrocarbon precursors. This investigation evaluated a fundamental facet of such a technology by studying the reaction of methane and bromine at elevated temperature to determine the yield and kinetics of HBr formation. Laboratory experimentation and computational chemistry were combined to provide a description of this reaction for possible application to reactor design at a larger scale. Experimental studies with a tubular flow reactor were used to survey a range of reactant ratios and reactor residence times at temperatures between 500 C and 800 C. At temperatures near 800 C with excess methane, conversions of bromine to HBr exceeded 90% and reaction products included solid carbon (soot) in stoichiometric amounts. At lower temperatures, HBr conversion was significantly reduced, the products included much less soot, and the formation of bromocarbon compounds was indicated qualitatively. Calculations of chemical equilibrium behavior and reaction kinetics for the experimental conditions were performed using the Sandia CHEMKIN package. An elementary multistep mechanism for the gas-phase chemistry was used together with a surface mechanism that assumed facile deposition of radical species at the reactor walls. Simulations with the laminar-flow boundary-layer code of the CHEMKIN package gave reasonable agreement with experimental data.

  11. Bench-Scale Study of Hydrogen Separation Using Pre-Commercial Membranes; Estudio, a Escala de Planta Piloto, del Proceso de Separacion de Hidrogeno mediante Membranas Pre-Comerciales

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Hervas, J. M.; Marano, M.

    2011-11-10

    This report compiles the research undertaken by CIEMAT over 2009-2011 in the sub-project 8 Purification and Separation of Hydrogen of the PSE H2ENOV Project funded by the Spanish Ministry of Science and Innovation, MICINN. Permeability and hydrogen selectivity of a pre-commercial palladium membrane was studied at bench scale level. The effect of main operating parameters - pressure, temperature and feed-flow-rate- on permeate flow-rate was determined. The influence of other gas components on hydrogen permeation was evaluated. Mixtures of H{sub 2}-N{sub 2} and H{sub 2}-CO{sub 2} were studied. Although nitrogen and carbon dioxide did not permeate, both components decreased hydrogen permeation rate. Operating the membrane for around 1000 h under various conditions showed a small decrease in hydrogen permeation, but not in selectivity. A literature review was done in order to identify causes for permeation inhibition and reduction and for the definition of procedures for membrane regeneration. (Author) 29 refs.

  12. Preparation of slightly hydrogenated coal

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.

    1943-05-03

    Processes serving as producers of slightly hydrogenated coal are discussed. It was established that the working process of an extracting hydrogenation from coal alone did not present optimal conditions for production of slightly hydrogenated coal, and therefore led to unfavorably high costs. More favorable operating costs were expected with the use of larger amounts of gas or with simultaneous production of asphalt-free oils in larger quantity. The addition of coal into the hydrogenation of low temperature carbonization tars made it possible to produce additional briquetting material (slightly hydrogenated coal) in the same reaction space without impairment of the tar hydrogenation. This was to lower the cost still more. For reasons of heat exchange, the process with a cold separator was unfavorable, and consideration of the residue quality made it necessary to investigate how high the separator temperature could be raised. 3 tables.

  13. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    Science.gov (United States)

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-08

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.

  14. Dynamic changes in ear temperature in relation to separation distress in dogs.

    Science.gov (United States)

    Riemer, Stefanie; Assis, Luciana; Pike, Thomas W; Mills, Daniel S

    2016-12-01

    Infrared thermography can visualize changes in body surface temperature that result from stress-induced physiological changes and alterations of blood flow patterns. Here we explored its use for remote stress monitoring (i.e. removing need for human presence) in a sample of six pet dogs. Dogs were tested in a brief separation test involving contact with their owner, a stranger, and social isolation for two one-minute-periods. Tests were filmed using a thermographic camera set up in a corner of the room, around 7m from where the subjects spent most of the time. Temperature was measured from selected regions of both ear pinnae simultaneously. Temperatures of both ear pinnae showed a pattern of decrease during separation and increase when a person (either the owner or a stranger) was present, with no lateralized temperature differences between the two ears. Long distance thermographic measurement is a promising technique for non-invasive remote stress assessment, although there are some limitations related to dogs' hair structure over the ears, making it unsuitable for some subjects. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effect of the initial pressure and temperature on the combustion characteristics of hydrogen-containing mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Shebeko, IU.N.; Korol' chenko, A.IA.; Tsarichenko, S.G.; Navtsenia, V.IU.; Malkin, V.L.

    1989-06-01

    Experiments were carried out to investigate the effect of initial pressure and temperature on the normal combustion velocity of stoichiometric hydrogen-containing mixtures with additions of steam and on the lower concentration limit of flame propagation of oxyhydrogen gas ({sup 2}H{sub 2}-O{sub 2}) in steam. It is shown that the baric index of the normal combustion velocity is positive for hydrogen-air mixtures containing no steam and negative for mixtures with a steam content greater than 5 percent. In oxyhydrogen gas mixtures with saturated and superheated steam, the initial pressure is found to have little effect on the lower concentration limit of flame propagation. 18 refs.

  16. Assessment of the efficacy of a low temperature hydrogen peroxide gas plasma sterilization system.

    Science.gov (United States)

    Kyi, M S; Holton, J; Ridgway, G L

    1995-12-01

    The STERRAD 100 sterilization system (Johnson & Johnson Medical Ltd) uses low temperature hydrogen peroxide gas plasma for sterilization of heat labile equipment. The efficacy of the machine was tested by contaminating a standard set of instruments with different organisms and using a filtration method to assess recovery of organisms from the wash fluids of instruments post-sterilization. Experiments were performed under clean (the organism only) and dirty (organism mixed with egg protein) conditions. A parallel study conducted using a 3M STERIVAC ethylene oxide sterilizer could not be completed owing to closure of the ethylene oxide plant. For sterilization of instruments with long and narrow lumens, hydrogen peroxide adaptors are necessary. The STERRAD 100 sterilizer can achieve effective sterilization of heat labile instruments with a reduction of 6 log10 cfu/mL of organisms tested. This method has the advantages over ethylene oxide sterilization of safety, ease of maintenance and no requirement for aeration time.

  17. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores.

    Science.gov (United States)

    Huang, Pei-Hsing

    2015-09-21

    The separation of poisonous compounds from various process fluids has long been highly intractable, motivating the present study on the dynamic separation of H2S in acidic-gas-mixture-filled micropores. The molecular dynamics approach, coupled with the isothermal-isochoric ensemble, was used to model the molecular interactions and adsorption of H2S/CO2/CO/H2O mixtures inside metal-doped graphite slits. Due to the difference in the adsorption characteristics between the two distinct adsorbent materials, the metal dopant in the graphitic micropores leads to competitive adsorption, i.e. the Au and graphite walls compete to capture free adsorbates. The effects of competitive adsorption, coupled with changes in the gas temperature, concentration, constituent ratio and slit width on the constituent separation of mixtures were systematically studied. The molecule-wall binding energies calculated in this work (those of H2S, H2O and CO on Au walls and those of H2O, CO and CO2 on graphite walls) show good agreement with those obtained using density functional theory (DFT) and experimental results. The z-directional self-diffusivities (Dz) for adsorbates inside the slit ranged from 10(-9) to 10(-7) m(2) s(-1) as the temperature was increased from 10 to 500 K. The values are comparable with those for a typical microporous fluid (10(-8)-10(-9) m(2) s(-1) in a condensed phase and 10(-6)-10(-7) m(2) s(-1) in the gaseous state). The formation of H-bonding networks and hydrates of H2S is disadvantageous for the separation of mixtures. The results indicate that H2S can be efficiently separated from acidic gas mixtures onto the Au(111) surface by (i) reducing the mole fraction of H2S and H2O in the mixtures, (ii) raising the gas temperature to the high temperature limit (≥400 K), and (iii) lowering the slit width to below the threshold dimension (≤23.26 Å).

  18. Single-walled carbon nanotubes as stationary phase in gas chromatographic separation and determination of argon, carbon dioxide and hydrogen.

    Science.gov (United States)

    Safavi, Afsaneh; Maleki, Norooz; Doroodmand, Mohammad Mahdi

    2010-08-24

    A chromatographic technique is introduced based on single-walled carbon nanotubes (SWCNTs) as stationary phase for separation of Ar, CO(2) and H(2) at parts per million (ppm) levels. The efficiency of SWCNTs was compared with solid materials such as molecular sieve, charcoal, multi-walled carbon nanotubes and carbon nanofibers. The morphology of SWCNTs was optimized for maximum adsorption of H(2), CO(2) and Ar and minimum adsorption of gases such as N(2), O(2), CO and H(2)O vapour. To control temperature of the gas chromatography column, peltier cooler was used. Mixtures of Ar, CO(2) and H(2) were separated according to column temperature program. Relative standard deviation for nine replicate analyses of 0.2 mL H(2) containing 10 microL of each Ar or CO(2) was 2.5% for Ar, 2.8% for CO(2) and 3.6% for H(2). The interfering effects of CO, and O(2) were investigated. Working ranges were evaluated as 40-600 ppm for Ar, 30-850 ppm for CO(2) and 10-1200 ppm for H(2). Significant sensitivity, small relative standard deviation (RSD) and acceptable limit of detection (LOD) were obtained for each analyte, showing capability of SWCNTs for gas separation and determination processes. Finally, the method was used to evaluate the contents of CO(2) in air sample. 2010 Elsevier B.V. All rights reserved.

  19. Low-temperature decontamination with hydrogen peroxide or chlorine dioxide for space applications.

    Science.gov (United States)

    Pottage, T; Macken, S; Giri, K; Walker, J T; Bennett, A M

    2012-06-01

    The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m(3) exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry.

  20. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves

    KAUST Repository

    Ghanem, Bader

    2014-07-19

    The synthesis, microstructures, and exceptional gas transport properties of two new soluble ladder polymers, polymers of intrinsic microporosity (TPIM-1 and TPIM-2) containing triptycene moieties substituted with branched isopropyl and linear propyl chains at the 9,10-bridgeheads were reported. The precursor A-B monomers were modified with an o -difluoride functionality for enhanced activation for nucleophilic aromatic substitution. In a Schlenk tube, a mixture of the A-B monomer, 18-crown-6, anhydrous DMF and anhydrous potassium carbonate was stirred at 155 °C under nitrogen atmosphere for 20 min followed by the addition of toluene. The reaction was continued for another 45 min and more toluene was added. After another 45 min the reaction mixture was cooled to room temperature and poured into methanol. Slow evaporation of filtered, dilute 3-5 wt% chloroform solutions from a leveled glass plate yielded isotropic polymer films. Dry membranes were soaked in methanol for 24 h, air-dried, and then heated at 120°C for 24 h under high vacuum to remove any traces of residual solvent. TPIM-1 exhibits simultaneous boosts in permeability and selectivity, which highlights the significant potential of an isopropyl-substituted triptycene moiety as a contortion center for ladder PIMs.

  1. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds.

    Science.gov (United States)

    Chamachi, Neharika G; Chakrabarty, Suman

    2017-02-14

    The structural basis of pathways of misfolding of a cellular prion (PrPC) into the toxic scrapie form (PrPSC) and identification of possible intermediates (e.g., PrP*) still eludes us. In this work, we have used a cumulative ∼65 μs of replica exchange molecular dynamics simulation data to construct the conformational free energy landscapes and capture the structural and thermodynamic characteristics associated with various stages of the thermal denaturation process in human prion protein. The temperature-dependent free energy surfaces consist of multiple metastable states stabilized by non-native contacts and hydrogen bonds, thus rendering the protein prone to misfolding. We have been able to identify metastable conformational states with high β-content (∼30-40%) and low α-content (∼10-20%) that might be precursors of PrPSC oligomer formation. These conformations also involve participation of the unstructured N-terminal domain, and its role in misfolding has been investigated. All the misfolded or partially unfolded states are quite compact in nature despite having large deviations from the native structure. Although the number of native contacts decreases dramatically at higher temperatures, the radius of gyration and number of intraprotein hydrogen bonds and contacts remain relatively unchanged, leading to stabilization of the misfolded conformations by non-native interactions. Our results are in good agreement with the established view that the C-terminal regions of the second and third helices (H2 and H3, respectively) of mammal prions might be the Achilles heels of their stability, while separation of B1-H1-B2 and H2-H3 domains seems to play a key role, as well.

  2. Nanocomposite thin films for high temperature optical gas sensing of hydrogen

    Science.gov (United States)

    Ohodnicki, Jr., Paul R.; Brown, Thomas D.

    2013-04-02

    The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream at temperatures greater than about 500.degree. C. utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. At high temperatures, blue shift of the plasmon resonance optical absorption peak indicates the presence of H.sub.2. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

  3. Experimental and Numerical Study of Low Temperature Methane Steam Reforming for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Martin Khzouz

    2017-12-01

    Full Text Available Low temperature methane steam reforming for hydrogen production, using experimental developed Ni/Al2O3 catalysts is studied both experimentally and numerically. The catalytic activity measurements were performed at a temperature range of 500–700 °C with steam to carbon ratio (S/C of 2 and 3 under atmospheric pressure conditions. A mathematical analysis to evaluate the reaction feasibility at all different conditions that have been applied by using chemical equilibrium with applications (CEA software and in addition, a mathematical model focused on the kinetics and the thermodynamics of the reforming reaction is introduced and applied using a commercial finite element analysis software (COMSOL Multiphysics 5.0. The experimental results were employed to validate the extracted simulation data based on the yields of the produced H2, CO2 and CO at different temperatures. A maximum hydrogen yield of 2.7 mol/mol-CH4 is achieved at 700 °C and S/C of 2 and 3. The stability of the 10%Ni/Al2O3 catalyst shows that the catalyst is prone to deactivation as supported by Thermogravimetric Analysis TGA results.

  4. Simultaneous temperature and multi-species measurements in opposed jet flames of nitrogen-diluted hydrogen and air

    Science.gov (United States)

    Wehrmeyer, J. A.; Cheng, T. S.; Pitz, R. W.; Nandula, S.; Wilson, L. G.; Pellett, G. L.

    1991-01-01

    A narrowband UV Raman scattering system is used to obtain measurement profiles of major and minor species concentrations, temperature, and mixture fraction in opposed jet diffusion flames. The measurement profiles can be compared to previously obtained temperature and concentration profiles (Pellett et al., 1989), obtained using CARS, and they can also be qualitatively compared to the predicted concentration and temperature profiles in pure hydrogen/air flames (Gutheil and Williams, 1990) and in diluted hydrogen/air flames (Dixon-Lewis and Missaghi, 1988; Ho and Isaac, 1991). The applied stress-rates for the two flame conditions studied are 240/s and 340/s, with respective hydrogen concentrations in the fuel jet of 0.67 and 0.83, on a mole fraction basis (0.13 and 0.26 hydrogen mass fractions, respectively).

  5. Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature

    Directory of Open Access Journals (Sweden)

    Ana Fernández-Barquín

    2016-05-01

    Full Text Available In this work, mixed matrix membranes (MMMs composed of small-pore zeolites with various topologies (CHA (Si/Al = 5, LTA (Si/Al = 1 and 5, and Rho (Si/Al = 5 as dispersed phase, and the hugely permeable poly(1-trimethylsilyl-1-propyne (PTMSP as continuous phase, have been synthesized via solution casting, in order to obtain membranes that could be attractive for oxygen-enriched air production. The O2/N2 gas separation performance of the MMMs has been analyzed in terms of permeability, diffusivity, and solubility in the temperature range of 298–333 K. The higher the temperature of the oxygen-enriched stream, the lower the energy required for the combustion process. The effect of temperature on the gas permeability, diffusivity, and solubility of these MMMs is described in terms of the Arrhenius and Van’t Hoff relationships with acceptable accuracy. Moreover, the O2/N2 permselectivity of the MMMs increases with temperature, the O2/N2 selectivities being considerably higher than those of the pure PTMSP. In consequence, most of the MMMs prepared in this work exceeded the Robeson’s upper bound for the O2/N2 gas pair in the temperature range under study, with not much decrease in the O2 permeabilities, reaching O2/N2 selectivities of up to 8.43 and O2 permeabilities up to 4,800 Barrer at 333 K.

  6. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  7. A novel metal-organic framework for high storage and separation of acetylene at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xing, E-mail: star1987@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310027 (China); Wang, Huizhen [State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027 (China); Ji, Zhenguo [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310027 (China); Cui, Yuanjing; Yang, Yu [State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027 (China); Qian, Guodong, E-mail: gdqian@zju.edu.cn [State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-15

    A novel 3D microporous metal-organic framework with NbO topology, [Cu{sub 2}(L)(H{sub 2}O){sub 2}]∙(DMF){sub 6}·(H{sub 2}O){sub 2} (ZJU-10, ZJU = Zhejiang University; H{sub 4}L =2′-hydroxy-[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid; DMF =N,N-dimethylformamide), has been synthesized and structurally characterized. With suitable pore sizes and open Cu{sup 2+} sites, ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g, as well as moderately high C{sub 2}H{sub 2} volumetric uptake capacity of 132 cm{sup 3}/cm{sup 3}. Meanwhile, ZJU-10a is a promising porous material for separation of acetylene from methane and carbon dioxide gas mixtures at room temperature. - Graphical abstract: A new NbO-type microporous metal-organic framework ZJU-10 with suitable pore size and open Cu{sup 2+} sites was synthesized to realize the strong interaction with acetylene molecules, which can separate the acetylene from methane and carbon dioxane gas mixtures at room temperature. Display Omitted - Highlights: • A novel 3D NbO-type microporous metal-organic framework ZJU-10 was solvothermally synthesized and structurally characterized. • ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g. • ZJU-10a shows a moderately high C{sub 2}H{sub 2} gravimetric (volumetric) uptake capacity of 174 (132) cm{sup 3}/g at 298 K and 1 bar. • ZJU-10a can separate acetylene from methane and carbon dioxide gas mixtures at room temperature.

  8. Design and energy analysis of a electrolytic hydrogen production process by means of a high temperature nuclear reactor; Diseno y analisis energetico de un proceso de produccion de hidrogeno electrolitico por medio de un reactor nuclear de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI Campus Morelos, Jiutepec, Morelos (Mexico)]. e-mail: julfi_jg@yahoo.com.mx

    2008-07-01

    In this work an energy analysis to a process of production of hydrogen by means of electrolysis of high temperature is realized. This electrolysis type, unlike conventional electrolysis allows us to reach efficiencies of up to 60% because when increasing the temperature of the water, providing to its thermal energy, diminishes the demand of electrical energy required to separate the molecule of the water. Nevertheless, to obtain these efficiencies it is needed to have superheated aqueous vapor to but of 850 centigrade degrees, temperatures that can be reached about high temperature reactor; HTGR. In the present work it is mentioned to introduction way the importance of the hydrogen like energy vector and the advantages of obtaining it by means of nuclear energy. The electrolysis process of high temperature is described and a design is realized of this from its coupling to a nuclear power plant PBMR. The technological advances on which it counts the PBMR; efficiencies of 48% for optimized plants, their modular design and the thermodynamic cycle recuperative Brayton where upon operate; make the short term ideal candidate for the production of hydrogen. The thermodynamic analysis of optimized plant PBMR appears in another work, here the results of the balance of mass and energy involved in the process appear of hydrogen generation and the complete analysis of this. The result is a complete model of generation of hydrogen by electrolysis of high temperature coupled to an optimized plant PBMR that will be implemented for its dynamic simulation later. (Author)

  9. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

  10. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    Science.gov (United States)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  11. Ordering of hydrogen bonds in high-pressure low-temperature H2O.

    Science.gov (United States)

    Cai, Y Q; Mao, H-K; Chow, P C; Tse, J S; Ma, Y; Patchkovskii, S; Shu, J F; Struzhkin, V; Hemley, R J; Ishii, H; Chen, C C; Jarrige, I; Chen, C T; Shieh, S R; Huang, E P; Kao, C C

    2005-01-21

    The near K-edge structure of oxygen in liquid water and ices III, II, and IX at 0.25 GPa and several low temperatures down to 4 K has been studied using inelastic x-ray scattering at 9884.7 eV with a total energy resolution of 305 and 175 meV. A marked decrease of the preedge intensity from the liquid phase and ice III to ices II and IX is attributed to ordering of the hydrogen bonds in the proton-ordered lattice of the latter phases. Density functional theory calculations including the influence of the Madelung potential of the ice IX crystal correctly account for the remaining preedge feature. Furthermore, we obtain spectroscopic evidence suggesting a possible new phase of ice at temperatures between 4 and 50 K.

  12. Low-Temperature Carrier Transport in Ionic-Liquid-Gated Hydrogen-Terminated Silicon

    Science.gov (United States)

    Sasama, Yosuke; Yamaguchi, Takahide; Tanaka, Masashi; Takeya, Hiroyuki; Takano, Yoshihiko

    2017-11-01

    We fabricated ionic-liquid-gated field-effect transistors on the hydrogen-terminated (111)-oriented surface of undoped silicon. Ion implantation underneath electrodes leads to good ohmic contacts, which persist at low temperatures down to 1.4 K. The sheet resistance of the channel decreases by more than five orders of magnitude as the gate voltage is changed from 0 to -1.6 V at 220 K. This is caused by the accumulation of hole carriers. The sheet resistance shows thermally activated behavior at temperatures below 10 K, which is attributed to hopping transport of the carriers. The activation energy decreases towards zero with increasing carrier density, suggesting the approach to an insulator-metal transition. We also report the variation of device characteristics induced by repeated sweeps of the gate voltage.

  13. Non-Intrusive, Real-Time, On-Line Temperature Sensor for Superheated Hydrogen at High Pressure and High Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The SSC needs a hydrogen temperature sensor that can provide high accuracy, fast response and can be operated on a superheated hydrogen (SHH2) environment. This will...

  14. Kinetic study of the reactions between chloramine disinfectants and hydrogen peroxide: temperature dependence and reaction mechanism.

    Science.gov (United States)

    McKay, Garrett; Sjelin, Brittney; Chagnon, Matthew; Ishida, Kenneth P; Mezyk, Stephen P

    2013-09-01

    The temperature-dependent kinetics for the reaction between hydrogen peroxide and chloramine water disinfectants (NH2Cl, NHCl2, and NCl3) have been determined using stopped flow-UV/Vis spectrophotometry. Rate constants for the mono- and dichloramine-peroxide reaction were on the order of 10(-2)M(-1)s(-1) and 10(-5)M(-1)s(-1), respectively. The reaction of trichloramine with peroxide was negligibly slow compared to its thermal and photolytically-induced decomposition. Arrhenius expressions of ln(kH2O2-NH2Cl)=(17.3±1.5)-(51500±3700)/RT and ln(kH2O2-NHCl2)=(18.2±1.9)-(75800±5100)/RT were obtained for the mono- and dichloramine peroxide reaction over the temperature ranges 11.4-37.9 and 35.0-55.0°C, respectively. Both monochloramine and hydrogen peroxide were first-order in the rate-limiting kinetic step and concomitant measurements made using a chloride ion selective electrode showed that the chloride was produced quantitatively. These data will aid water utilities in predicting chloramine concentrations (and thus disinfection potential) throughout the water distribution system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Analysis and design of an ultrahigh temperature hydrogen-fueled MHD generator

    Science.gov (United States)

    Moder, Jeffrey P.; Myrabo, Leik N.; Kaminski, Deborah A.

    1993-01-01

    A coupled gas dynamics/radiative heat transfer analysis of partially ionized hydrogen, in local thermodynamic equilibrium, flowing through an ultrahigh temperature (10,000-20,000 K) magnetohydrodynamic (MHD) generator is performed. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer, and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using nongray, absorbing-emitting 2D and 3D P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation and through the temperature- and density-dependent absorption coefficient. The resulting nonlinear elliptic problem is solved by iterative methods. Design of such MHD generators as onboard, open-cycle, electric power supplies for a particular advanced airbreathing propulsion concept produced an efficient and compact 128-MWe generator characterized by an extraction ratio of 35.5 percent, a power density of 10,500 MWe/cu m, and a specific (extracted) energy of 324 MJe/kg of hydrogen. The maximum wall heat flux and total wall heat load were 453 MW/sq m and 62 MW, respectively.

  16. Physical properties of Fe doped In2O3 magnetic semiconductor annealed in hydrogen at different temperature

    Science.gov (United States)

    Baqiah, H.; Ibrahim, N. B.; Halim, S. A.; Chen, S. K.; Lim, K. P.; Kechik, M. M. Awang

    2016-03-01

    The effects of hydrogen-annealing at different temperatures (300, 400, 500 and 600 °C) on physical properties of In2-xFexO3 (x=0.025) thin film were investigated. The structural measurement using XRD shows that the film has a single In2O3 phase structure when annealed in hydrogen at 300-500 °C, however when annealed in hydrogen at 600 °C the film has a mixed phase structure of In2O3 and In phases. The electrical measurements show that the carrier concentrations of the films decrease with the increase of hydrogen-annealing temperature in the range 300-500 °C. The optical band gap of the films decreases with increasing hydrogen-annealing temperatures. The saturation magnetisation, Ms, and coercivity of films increase with the increment of hydrogen annealing temperature. The film annealed at 300 °C has the lowest resistivity, ρ=0.03 Ω cm, and the highest carrier concentrations, n=6.8×1019 cm-3, while film annealed at 500 °C has both good electrical (ρ=0.05 Ω.cm and n=2.2×1019 cm-3) and magnetic properties, Ms=21 emu/cm-3.

  17. Equilibrium separation in a high pressure helium plasma and its application to the determination of temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rodero, A.; Garcia, M.C.; Gamero, A. [Universidad de Cordoba (Spain)

    1995-12-31

    The spectroscopy method based on the Boltzmann-plot of emission lines has been usually employed for measuring the excitation temperature (T{sub exc}) in high pressure plasmas. In the present work, it is shown that this method can produce great errors in the temperature determination when equilibrium separation exists. In this way, the suitability of this determination is tested comparing with other alternative methods in a high pressure helium plasma and also studying its separation from the equilibrium situation, via the absolute population measurements of atomic levels and the estimation of its atomic state distribution function (ASDF). We have made this study using a new excitation structure, the axial injection torch (Torche A Injection Axiale or T.I.A.), which produces a high power microwave plasma at atmospheric pressure. The measurements were carried out at the beginning of the flame (the highest line intensity zone) for a 300-900 W power range at 2.45 GHz and 71/min. of helium gas flow.

  18. CO.sub.2 separation from low-temperature flue gases

    Science.gov (United States)

    Dilmore, Robert; Allen, Douglas; Soong, Yee; Hedges, Sheila

    2010-11-30

    Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO.sub.2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating the need to heat the entire amine solution (80% water) in order to regenerate and release CO.sub.2. Both methods also take advantage of the low-regeneration temperatures of CO.sub.2-bearing mineral systems such as Na.sub.2CO.sub.3/NaHCO.sub.3 and K.sub.2CO.sub.3/KHCO.sub.3.

  19. Combinatorial Phase Separation of Polymer Blends: Surface Energy, Temperature and Film Confinement Effects

    Science.gov (United States)

    Karim, Alamgir

    2003-03-01

    Control of pattern scale of ultrathin film polymeric surfaces has many potential applications such as anti-reflection coatings, optical sieves, controlled tissue growth or adhesion control. We combinatorially investigate the influence of surface energy E, film thickness H, and temperature T, on the late stage surface morphology of phase separating polymer blend films of polystyrene-polyvinylmethylether. A simple gradient UV approach was used to create stable substrates with a range of surface energies. Confinement between air and substrate interfaces and preferential wetting of components at the walls determines the aspect ratio of the phase separated structures. A non-monotonic change in the lateral scale of phase separation, L and surface roughness with surface energy is observed along with the systematic increase with thickness. We describe the L dependence on E by the empirical relationship, L ˜ A exp[-(E-E*)/S^2] for fixed H, where the pre-factor A is film thickness dependent and S characterizes the peak width about an inversion surface energy E*. Application to studies of a biocompatible blend of poly(e-caprolactone) and poly(D-L Lactic Acid) to assay cellular response to topographical scales as well as millifluidic approaches to the problem will be discussed.

  20. Two-step gasification of cattle manure for hydrogen-rich gas production: Effect of biochar preparation temperature and gasification temperature.

    Science.gov (United States)

    Xin, Ya; Cao, Hongliang; Yuan, Qiaoxia; Wang, Dianlong

    2017-10-01

    Two-step gasification process was proposed to dispose cattle manure for hydrogen rich gas production. The effect of temperature on product distribution and biochar properties were first studied in the pyrolysis-carbonization process. The steam gasification of biochar derived from different pyrolysis-carbonization temperatures was then performed at 750°C and 850°C. The biochar from the pyrolysis-carbonization temperatures of 500°C had high carbon content and low volatiles content. According to the results of gasification stage, the pyrolysis-carbonization temperature of 500°C and the gasification temperature of 850°C were identified as the suitable conditions for hydrogen production. We obtained 1.61m 3 /kg of syngas production, 0.93m 3 /kg of hydrogen yield and 57.58% of hydrogen concentration. This study shows that two-step gasification is an efficient waste-to-hydrogen energy process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Simulation of Liquid Level, Temperature and Pressure Inside a 2000 Liter Liquid Hydrogen Tank During Truck Transportation

    Science.gov (United States)

    Takeda, Minoru; Nara, Hiroyuki; Maekawa, Kazuma; Fujikawa, Shizuichi; Matsuno, Yu; Kuroda, Tsuneo; Kumakura, Hiroaki

    Hydrogen is an ultimate energy source because only water is produced after the chemical reaction of hydrogen and oxygen. In the near future, a large amount of hydrogen, produced using sustainable/renewable energy, is expected to be consumed. Since liquid hydrogen (LH2) has the advantage of high storage efficiency, it is expected to be the ultimate medium for the worldwide storage and transportation of large amounts of hydrogen. To make a simulation model of the sloshing of LH2 inside a 2000 liter tank, simulation analyses of LH2 surface oscillation, temperature and pressure inside the tank during a truck transportation have been carried out using a multipurpose software ANSYS CFX. Numerical results are discussed in comparison with experimental results.

  2. High and rapid hydrogen release from thermolysis of ammonia borane near PEM fuel cell operating temperature

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Arvind; Hwang, Hyun Tae; Al-Kukhun, Ahmad

    2016-11-15

    A system for generating and purifying hydrogen. To generate hydrogen, the system includes inlets configured to receive a hydrogen carrier and an inert insulator, a mixing chamber configured to combine the hydrogen carrier and the inert insulator, a heat exchanger configured to apply heat to the mixture of hydrogen carrier and the inert insulator, wherein the applied heat results in the generation of hydrogen from the hydrogen carrier, and an outlet configured to release the generated hydrogen. To purify hydrogen, the system includes a primary inlet to receive a starting material and an ammonia filtration subassembly, which may include an absorption column configured to absorb the ammonia into water for providing purified hydrogen at a first purity level. The ammonia filtration subassembly may also include an adsorbent member configured to adsorb ammonia from the starting material into an adsorbent for providing purified hydrogen at a second purity level.

  3. Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame

    Science.gov (United States)

    Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.

    1992-01-01

    UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) techniques are combined and applied to a lifted hydrogen jet diffusion flame. Simultaneous, temporally and spatially resolved point measurements of temperature, major species concentrations (H2, O2, N2, H2O), and absolute hydroxyl radical concentration (OH) are obtained with a 'single' excimer laser for the first time. For OH measurements, the use of LIPF makes quenching corrections unnecessary. Results demonstrate that fuel and oxidizer are in a rich, premixed, and unignited condition in the center core of the lifted flame base. In the lifted zone, combustion occurs in an intermittent annular turbulent flame brush and strong finite-rate chemistry effects result in nonequilibrium values of temperature, major species, and OH radicals. Downstream in the slow three-body recombination zone, the major species concentrations are in partial equilibrium, the OH concentrations are in superequilibrium, and the temperatures are in subequilibrium. Far downstream in the flame, equilibrium values of temperature, OH radical, and major species are found.

  4. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells

    KAUST Repository

    Lu, Lu

    2012-11-01

    H2 can be obtained from glucose by fermentation at mesophilic temperatures, but here we demonstrate that hydrogen can also be obtained from glucose at low temperatures using microbial electrolysis cells (MECs). H2 was produced from glucose at 4°C in single-chamber MECs at a yield of about 6mol H2mol-1 glucose, and at rates of 0.25±0.03-0.37±0.04m3 H2m-3d-1. Pyrosequencing of 16S rRNA gene and electrochemical analyses showed that syntrophic interactions combining glucose fermentation with the oxidization of fermentation products by exoelectrogens was the predominant pathway for current production at a low temperature other than direct glucose oxidization by exoelectrogens. Another syntrophic interaction, methanogenesis and homoacetogenesis, which have been found in 25°C reactors, were not detected in MECs at 4°C. These results demonstrate the feasibility of H2 production from abundant biomass of carbohydrates at low temperature in MECs. © 2012 Elsevier Ltd.

  5. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells.

    Science.gov (United States)

    Lu, Lu; Xing, Defeng; Ren, Nanqi; Logan, Bruce E

    2012-11-01

    H(2) can be obtained from glucose by fermentation at mesophilic temperatures, but here we demonstrate that hydrogen can also be obtained from glucose at low temperatures using microbial electrolysis cells (MECs). H(2) was produced from glucose at 4°C in single-chamber MECs at a yield of about 6 mol H(2)mol(-1) glucose, and at rates of 0.25±0.03-0.37±0.04 m(3) H(2)m(-3)d(-1). Pyrosequencing of 16S rRNA gene and electrochemical analyses showed that syntrophic interactions combining glucose fermentation with the oxidization of fermentation products by exoelectrogens was the predominant pathway for current production at a low temperature other than direct glucose oxidization by exoelectrogens. Another syntrophic interaction, methanogenesis and homoacetogenesis, which have been found in 25°C reactors, were not detected in MECs at 4°C. These results demonstrate the feasibility of H(2) production from abundant biomass of carbohydrates at low temperature in MECs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Monte Carlo Simulations Probing the Adsorptive Separation of Hydrogen Sulfide/Methane Mixtures Using All-Silica Zeolites.

    Science.gov (United States)

    Shah, Mansi S; Tsapatsis, Michael; Siepmann, J Ilja

    2015-11-10

    Selective removal of hydrogen sulfide (H2S) from sour natural gas mixtures is one of the key challenges facing the natural gas industry. Adsorption and pervaporation processes utilizing nanoporous materials, such as zeolites, can be alternatives to highly energy-intensive amine-based absorption processes. In this work, the adsorption behavior of binary mixtures containing H2S and methane (CH4) in seven different all-silica zeolite frameworks (CHA, DDR, FER, IFR, MFI, MOR, and MWW) is investigated using Gibbs ensemble Monte Carlo simulations at two temperatures (298 and 343 K) and pressures ranging from 1 to 50 bar. The simulations demonstrate high selectivities that, with the exception of MOR, increase with increasing H2S concentration due to favorable sorbate-sorbate interactions. The simulations indicate significant inaccuracies of predictions using unary adsorption data and ideal adsorbed solution theory. In addition, the adsorption of binary H2S/H2O mixtures in MFI is considered to probe whether the presence of H2S induces coadsorption and reduces the hydrophobic character of all-silica zeolites. The simulations show preferential adsorption of H2S from moist gases with a selectivity of about 18 over H2O.

  7. Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry.

    Science.gov (United States)

    Renpenning, Julian; Kümmel, Steffen; Hitzfeld, Kristina L; Schimmelmann, Arndt; Gehre, Matthias

    2015-09-15

    The traditional high-temperature conversion (HTC) approach toward compound-specific stable isotope analysis (CSIA) of hydrogen for heteroatom-bearing (i.e., N, Cl, S) compounds has been afflicted by fractionation bias due to formation of byproducts HCN, HCl, and H2S. This study presents a chromium-based high-temperature conversion (Cr/HTC) approach for organic compounds containing nitrogen, chlorine, and sulfur. Following peak separation along a gas chromatographic (GC) column, the use of thermally stable ceramic Cr/HTC reactors at 1100-1500 °C and chemical sequestration of N, Cl, and S by chromium result in quantitative conversion of compound-specific organic hydrogen to H2 analyte gas. The overall hydrogen isotope analysis via GC-Cr/HTC-isotope ratio mass spectrometry (IRMS) achieved a precision of better than ± 5 mUr along the VSMOW-SLAP scale. The accuracy of GC-Cr/HTC-IRMS was validated with organic reference materials (RM) in comparison with online EA-Cr/HTC-IRMS and offline dual-inlet IRMS. The utility and reliability of the GC-Cr/HTC-IRMS system were documented during the routine measurement of more than 500 heteroatom-bearing organic samples spanning a δ(2)H range of -181 mUr to 629 mUr.

  8. Temperature and emissivity separation via sparse representation with thermal airborne hyperspectral imager data

    Science.gov (United States)

    Li, Chengyi; Tian, Shufang; Li, Shijie; Yin, Mei

    2016-10-01

    The thermal airborne hyperspectral imager (TASI), which has 32 channels that provide continuous spectral coverage within wavelengths of 8 to 11.5 μm, is very beneficial for land surface temperature and land surface emissivity (LSE) retrieval. In remote sensing applications, emissivity is important for features classification and temperature is important for environmental monitoring, global climate change, and target recognition studies. This paper proposed a temperature and emissivity separation method via sparse representation (SR-TES) with TASI data, which employs a sparseness differences point of view whereby the atmospheric spectrum cannot be considered SR under the LSE spectral dictionary. We built the dictionary from Johns Hopkins University's spectral library as an overcomplete base, and the dictionary learning K-SVD algorithm was adopted. The simulation results showed that SR-TES performed better than the TES algorithm in the case of noise impact, and the results from TASI data for the Liuyuan research region were reasonable; partial validation revealed a root mean square error of 0.0144 for broad emissivity, which preliminarily proves that this method is feasible.

  9. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Directory of Open Access Journals (Sweden)

    S. N. Ladd

    2017-09-01

    Full Text Available The hydrogen isotopic composition (δ2H of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H∕1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early

  10. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Science.gov (United States)

    Nemiah Ladd, S.; Dubois, Nathalie; Schubert, Carsten J.

    2017-09-01

    The hydrogen isotopic composition (δ2H) of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H/1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early spring, which are displaced by

  11. Reactor Design for CO2 Photo-Hydrogenation toward Solar Fuels under Ambient Temperature and Pressure

    Directory of Open Access Journals (Sweden)

    Chun-Ying Chen

    2017-02-01

    Full Text Available Photo-hydrogenation of carbon dioxide (CO2 is a green and promising technology and has received much attention recently. This technique could convert solar energy under ambient temperature and pressure into desirable and sustainable solar fuels, such as methanol (CH3OH, methane (CH4, and formic acid (HCOOH. It is worthwhile to mention that this direction can not only potentially depress atmospheric CO2, but also weaken dependence on fossil fuel. Herein, 1 wt % Pt/CuAlGaO4 photocatalyst was successfully synthesized and fully characterized by ultraviolet-visible light (UV-vis spectroscopy, X-ray diffraction (XRD, Field emission scanning electron microscopy using energy dispersive spectroscopy analysis (FE-SEM/EDS, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET, respectively. Three kinds of experimental photo-hydrogenation of CO2 in the gas phase, liquid phase, and gas-liquid phase, correspondingly, were conducted under different H2 partial pressures. The remarkable result has been observed in the gas-liquid phase. Additionally, increasing the partial pressure of H2 would enhance the yield of product. However, when an extra amount of H2 is supplied, it might compete with CO2 for occupying the active sites, resulting in a negative effect on CO2 photo-hydrogenation. For liquid and gas-liquid phases, CH3OH is the major product. Maximum total hydrocarbons 8.302 µmol·g−1 is achieved in the gas-liquid phase.

  12. Trehalose enhancing microbial electrolysis cell for hydrogen generation in low temperature (0 °C).

    Science.gov (United States)

    Xu, Linji; Liu, Wenzong; Wu, Yining; Lee, Poheng; Wang, Aijie; Li, Shuai

    2014-08-01

    This work explored the feasibility of a method combining physical (sonication and base) and biological (partial fermentation) processes for sludge treatment and the effects of trehalose on the hydrogen generation of microbial electrolysis cell at 0 °C. The results demonstrated that the above pretreatment method was favorable, which promoted organics decomposing into lower molecular weight matter. The promotion of trehalose for MEC efficiency was obvious and the optimal concentration of trehalose was 50 mmol/L. With this concentration, the highest hydrogen recovery rate was 0.25 m(3)-H₂/-m(3)-reactor per day. Coulomb efficiency and energy recovery efficiency were 46.4% and 203%, respectively. Further, the consumption order of mixed substances was VFAs>proteins>carbohydrates. For microorganism community, SEM photographs illustrated that the selectivity of environmental temperature for the species of anode bacteria was strong and denaturing gradient gel electrophoresis indicated that Microbacterium and Proteobacteria were the two main species and Proteobacteria may be one of the species that produced electrons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A novel metal-organic framework for high storage and separation of acetylene at room temperature

    Science.gov (United States)

    Duan, Xing; Wang, Huizhen; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2016-09-01

    A novel 3D microporous metal-organic framework with NbO topology, [Cu2(L)(H2O)2]•(DMF)6·(H2O)2 (ZJU-10, ZJU = Zhejiang University; H4L =2‧-hydroxy-[1,1‧:4‧,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid; DMF =N,N-dimethylformamide), has been synthesized and structurally characterized. With suitable pore sizes and open Cu2+ sites, ZJU-10a exhibits high BET surface area of 2392 m2/g, as well as moderately high C2H2 volumetric uptake capacity of 132 cm3/cm3. Meanwhile, ZJU-10a is a promising porous material for separation of acetylene from methane and carbon dioxide gas mixtures at room temperature.

  14. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  15. High Temperature Vacuum Annealing and Hydrogenation Modification of Exfoliated Graphite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Xiaobing Li

    2013-01-01

    Full Text Available Highly active defect sites on the edges of graphene automatically capture oxygen from air to form various oxygen groups. A two-step procedure to remove various oxygen functional groups from the defect sites of exfoliated graphene nanoplatelets (GNPs has been developed to reduce the atomic oxygen concentration from 9.5% to 4.8%. This two-step approach involves high temperature vacuum annealing followed by hydrogenation to protect the reduced edge carbon atoms from recombining with the atmospheric oxygen. The reduced GNPs exhibit decreased surface resistance and graphitic potential-dependent capacitance characteristics compared to the complex potential-dependent capacitance characteristics exhibited by the unreduced GNPs as a result of the removal of the oxygen functional groups present primarily at the edges. These reduced GNPs also exhibit high electrochemical cyclic stability for electrochemical energy storage applications.

  16. Low-temperature thermostatics of face-centered-cubic metallic hydrogen

    Science.gov (United States)

    Caron, L. G.

    1974-01-01

    The thermostatic properties of a high-symmetry phase of metallic hydrogen with atomic sphere radius between 0.1 and 1.5 bohr are studied, with special emphasis accorded to electronic screening and quantum proton motion. The electron-proton and proton-proton interactions receive a perturbation treatment based on the Singwi dielectric function, while the proton motion is handled by self-consistent harmonic approximation. Quantum behavior is found to be less pronounced than expected, and nuclear magnetism is absent. The phonon spectrum is, however, affected by screening and large proton motion. The zero-point vibrational energy and the superconducting critical temperature are below previous estimates. The crystalline-defect formation energies are a few times the Debye energy, which implies that defects contribute significantly to melting at the lower particle densities.

  17. Low-temperature hydrogen absorption in metallic nanocontacts studied by point-contact spectroscopy measurements

    Science.gov (United States)

    Takata, H.; Islam, M. S.; Ienaga, K.; Inagaki, Y.; Hashizume, K.; Kawae, T.

    2017-09-01

    We report on hydrogen (H) and deuterium (D) atoms absorption below T = 20 K in metallic palladium (Pd) via quantum tunnelling (QT). When a small bias voltage is applied between Pd nanocontacts that are immersed in liquid H2 (D2), the differential conductance spectra measured by point-contact spectroscopy change enormously. The results indicate H (D) absorption in Pd nanocontacts at the temperature where H (D) absorption due to thermal hopping process is not expected, and can be explained by QT. The QT occurs when the energy level of the potential well trapping the H (D) atom coincides with those not trapping the H (D) atom, and is assisted by phonons induced by ballistic electrons.

  18. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    Science.gov (United States)

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  19. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-03-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

  20. Controlling factors of tunneling reactions in solid hydrogen at very low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo E-mail: miyamiya@apchem.nagoya-u.ac.jp; Kumagai, Jun; Kumada, Takayuki

    2001-07-01

    The recent studies on tunneling reactions of our group are auto-reviewed. The local structure around reactants, the new temperature effect, and the impurity effect are pointed out as important controlling factors of tunneling reactions in the solid phase. The distances between H(D) atoms and H{sub 2}(HD, D{sub 2}) molecules in solid hydrogen and solid argon were estimated by ESR, electron nuclear double resonance (ENDOR), and electron spin echo (ESE). The new temperature effects on tunneling reaction were observed in a reaction D+HD{yields}D{sub 2}+H in solid HD. A mechanism of a vacancy-assisted tunneling reaction has been proposed to account for the temperature effect. The strange temperature dependence of a tunneling electron-transfer-reaction H{sub 2}{sup -}+H{sub 2}{yields}H{sub 2}+H{sub 2}{sup -} was explained in terms of the phonon-scattering effect and the impurity effect on the tunneling reaction. The rate constant for a tunneling reaction H+p-H{sub 2}{yields}p-H{sub 2}+H in solid para-H{sub 2} (p-H{sub 2}) decreases with the increase in the concentration of ortho-H{sub 2} (o-H{sub 2}). The results were explained by the model that the orientational defects by o-H{sub 2} molecules affect the tunneling reaction H+p-H{sub 2}. A tunneling reaction at very low temperature gives a surprising example in control of a reaction that a small amount of energy as such 2 cal mol{sup -1} can affect the rate of a reaction. The tunneling reaction in the solid phase, which can be considered as a multidimensional tunneling phenomenon, is affected significantly by the condition surrounding reactants. (author)

  1. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  2. Crack growth behavior of warm-rolled 316L austenitic stainless steel in high-temperature hydrogenated water

    Science.gov (United States)

    Choi, Kyoung Joon; Yoo, Seung Chang; Jin, Hyung-Ha; Kwon, Junhyun; Choi, Min-Jae; Hwang, Seong Sik; Kim, Ji Hyun

    2016-08-01

    To investigate the effects of warm rolling on the crack growth of 316L austenitic stainless steel, the crack growth rate was measured and the oxide structure was characterized in high-temperature hydrogenated water. The warm-rolled specimens showed a higher crack growth rate compared to the as-received specimens because the slip bands and dislocations produced during warm rolling served as paths for corrosion and cracking. The crack growth rate increased with the dissolved hydrogen concentration. This may be attributed to the decrease in performance and stability of the protective oxide layer formed on the surface of stainless steel in high-temperature water.

  3. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2013-01-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein–protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent. PMID:22298288

  4. A Temperature and Emissivity Separation Algorithm for Landsat-8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Songhan Wang

    2015-08-01

    Full Text Available On-board the Landsat-8 satellite, the Thermal Infrared Sensor (TIRS, which has two adjacent thermal channels centered roughly at 10.9 and 12.0 μm, has a great benefit for the land surface temperature (LST retrieval. The single-channel algorithm (SC and split-window algorithm (SW have been applied to retrieve the LST from TIRS data, which need the land surface emissivity (LSE as prior knowledge. Due to the big challenge of determining the LSE, this study develops a temperature and emissivity separation algorithm which can simultaneously retrieve the LST and LSE. Based on the laboratory emissivity spectrum data, the minimum-maximum emissivity difference module (MMD module for TIRS data is developed. Then, an emissivity log difference method (ELD method is developed to maintain the emissivity spectrum shape in the iterative process, which is based on the modified Wien’s approximation. Simulation results show that the root-mean-square-errors (RMSEs are below 0.7 K for the LST and below 0.015 for the LSE. Based on the SURFRAD ground measurements, further evaluation demonstrates that the average absolute error of the LST is about 1.7 K, which indicated that the algorithm is capable of retrieving the LST and LSE simultaneously from TIRS data with fairly good results.

  5. Ranque-Hilsch effect revisited - Temperature separation traced to orderly spinning waves or 'vortex whistle'

    Science.gov (United States)

    Kurosaka, M.; Goodman, J. R.; Chu, J. Q.

    1982-06-01

    An acoustic streaming model of the total temperature separation mechanism present in the air flow in a Ranque-Hilsch tube is detailed. Previous explanations of the phenomenon of cold air encountered in the core flow and elevated temperatures of the radial wall flow in a tube where the inlet stream enters tangentially are reviewed. The emergence of a vortex whistle is shown to be a selective amplification of background noise, present in the swirling flow, and drawing energy from the flow itself. Taking the base flow to be a helix with a constant axial velocity and a swirl which is a Rankine vortex, the imposition of unsteady disturbances is demonstrated to result in the establishment of an unsteady boundary forming an annular viscous region around an inviscid core. A feedback occurs between the acoustic streaming in the outer layer and the inviscid core. Results are given for calculations of the frequency, the form of the second-order waves, and the tangential acoustic streaming at the outer edge of the unsteady viscous layer.

  6. Room temperature hydrogen generation from hydrolysis of ammonia-borane over an efficient NiAgPd/C catalyst

    KAUST Repository

    Hu, Lei

    2014-12-01

    NiAgPd nanoparticles are successfully synthesized by in-situ reduction of Ni, Ag and Pd salts on the surface of carbon. Their catalytic activity was examined in ammonia borane (NH3BH3) hydrolysis to generate hydrogen gas. This nanomaterial exhibits a higher catalytic activity than those of monometallic and bimetallic counterparts and a stoichiometric amount of hydrogen was produced at a high generation rate. Hydrogen production rates were investigated in different concentrations of NH3BH3 solutions, including in the borates saturated solution, showing little influence of the concentrations on the reaction rates. The hydrogen production rate can reach 3.6-3.8 mol H2 molcat -1 min-1 at room temperature (21 °C). The activation energy and TOF value are 38.36 kJ/mol and 93.8 mol H2 molcat -1 min-1, respectively, comparable to those of Pt based catalysts. This nanomaterial catalyst also exhibits excellent chemical stability, and no significant morphology change was observed from TEM after the reaction. Using this catalyst for continuously hydrogen generation, the hydrogen production rate can be kept after generating 6.2 L hydrogen with over 10,000 turnovers and a TOF value of 90.3 mol H2 molcat -1 min-1.

  7. Sensitivity to temperature and material properties of hydrogen concentration at a crack tip in austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Schembri, Philip E [Los Alamos National Laboratory

    2008-01-01

    It is well known that dissolved hydrogen interacts with the stress field at a crack tip, with one result being an intensification of the hydrogen concentration in the region of maximum crack tip stress. The current paper presents recent calculations in ongoing efforts to use coupled stress-diffusion finite element analyses to aid in the structural integrity assessment of pressure vessels containing tritium. The focus of the current work is quantification of the effect of material properties (structural and diffusion) and temperature on the values of maximum stress and hydrogen concentration at the tip of a crack. A one-way-coupled finite element model of a compact tension specimen is used in which the effect of stress and trapping on the hydrogen diffusion is accounted for. Results show that, within the ranges of inputs considered, maximum stress varies approximately linearly with a material's room temperature yield stress but nonlinearly with temperature. Also, peak lattice hydrogen is shown to be a strong function of solubility parameters, a moderate function of yield stress, but only a weak function of trap binding energy and density when trap density is relatively low.

  8. Synthesis and development of ordered, phase-separated, room-temperature ionic liquid-based AB and ABC block copolymers for gas separation applications

    Science.gov (United States)

    Wiesenauer, Erin F.

    CO2 capture process development is an economically and environmentally important challenge, as concerns over greenhouse gas emissions continue to receive worldwide attention. Many applications require the separation of CO 2 from other light gases such as N2, CH4, and H2 and a number of technologies have been developed to perform such separations. While current membrane technology offers an economical, easy to operate and scale-up solution, polymeric membranes cannot withstand high temperatures and aggressive chemical environments, and they often exhibit an unfavorable tradeoff between permeability and selectivity. Room-temperature ionic-liquids (RTILs) are very attractive as next-generation CO2-selective separation media and their development into polymerized membranes combat these challenges. Furthermore, polymers that can self-assemble into nanostructured, phase-separated morphologies (e.g., block copolymers, BCPs) have a direct effect on gas transport as materials morphology can influence molecular diffusion and membrane transport performance. In this thesis, nanophase-separated, RTIL-based AB and ABC di- and tri-BCPs were prepared via the sequential, living ring-opening metathesis polymerization (ROMP) of an IL-based monomer and one or more mutually immiscible co-monomers. This novel type of ion-containing BCP system forms various ordered nanostructures in the melt state via primary and secondary structure control. Monomer design and control of block composition, sequence, and overall polymer lengths were found to directly affect the ordered polymer assembly. Supported, composite membranes of these new BCPs were successfully fabricated, and the effect of BCP composition and nanostructure on CO2/light gas transport properties was studied. These nanostructured IL-based BCPs represent innovative polymer architectures and show great potential CO2/light gas membrane separation applications.

  9. One-Dimensional Vanadium Dioxide Nanostructures for Room Temperature Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Aline Simo

    2015-06-01

    Full Text Available In relation to hydrogen (H2 economy in general and gas sensing in particular, an extensive set of one dimensional (1-D nano-scaled oxide materials are being investigated as ideal candidates for potential gas sensing applications. This is correlated to their set of singular surface characteristics, shape anisotropy and readiness for integrated devices. Nanostructures of well- established gas sensing materials such as Tin Oxide (SnO2, Zinc Oxide (ZnO, Indium (III Oxide (In2O3, and Tungsten Trioxide (WO3 have shown higher sensitivity and gas selectivity, quicker response, faster time recovery, as well as an enhanced capability to detect gases at low concentrations. While the overall sensing characteristics of these so called 1-D nanomaterials are superior, they are efficient at high temperature; generally above 200 0C. This operational impediment results in device complexities in integration that limit their technological applications, specifically in their miniaturized arrangements. Unfortunately, for room temperature applications, there is a necessity to dope the above mentioned nano-scaled oxides with noble metals such as Platinum (Pt, Palladium (Pd, Gold (Au, Ruthenium (Ru. This comes at a cost. This communication reports, for the first time, on the room temperature enhanced H2 sensing properties of a specific phase of pure Vanadium Dioxide (VO2 phase A in their nanobelt form. The relatively observed large H2 room temperature sensing in this Mott type specific oxide seems to reach values as low as 14 ppm H2 which makes it an ideal gas sensing in H2 fuelled systems.

  10. Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Carl M. Stoots; James E. O' Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2008-09-01

    The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

  11. Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures

    Science.gov (United States)

    Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki

    2016-10-01

    Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.

  12. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter [Vanderbilt Univ., Nashville, TN (United States)

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  13. Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Chen, Liangyu; Biagi-Labiosa, Azlin M.; Ward, Benjamin J.; Lukco, Dorothy; Gonzalez, Jose M., III; Lampard, Peter S.; Artale, Michael A.; Hampton, Christopher L.

    2011-01-01

    This paper describes efforts towards the transition of existing high temperature hydrogen and hydrocarbon Schottky diode sensor elements to packaged sensor structures that can be integrated into a testing system. Sensor modifications and the technical challenges involved are discussed. Testing of the sensors at 500 C or above is also presented along with plans for future development.

  14. Thermomechanical properties of zirconium tungstate/hydrogenated nitrile butadiene rubber (HNBR) composites for low-temperature applications

    OpenAIRE

    Akulichev, Anton G.; Alcock, Ben; Tiwari, Avinash; Echtermeyer, Andreas T.

    2017-01-01

    Rubber compounds for pressure sealing application typically have inferior dimensional stability with temperature fluctuations compared with their steel counterparts. This effect may result in seal leakage failures when subjected to decreases in temperature. Composites of hydrogenated nitrile butadiene rubber (HNBR) and zirconium tungstate as a negative thermal expansion filler were prepared in order to control the thermal expansivity of the material. The amount of zirconium tungstate (ZrW2O8)...

  15. Inactivation of Ascaris eggs in source-separated urine and feces by ammonia at ambient temperatures.

    Science.gov (United States)

    Nordin, Annika; Nyberg, Karin; Vinnerås, Björn

    2009-02-01

    Sustainable management of toilet waste must prevent disease transmission but allow reuse of plant nutrients. Inactivation of uterus-derived Ascaris suum eggs was studied in relation to ammonia in source-separated urine without additives and in human feces to which urea had been added, in order to evaluate ammonia-based sanitation for production of safe fertilizers from human excreta. Urine was used concentrated or diluted 1:1 and 1:3 with tap water at 4, 14, 24, and 34 degrees C. Fecal material, with and without ash, was treated with 1% or 2% (wt/wt) urea at 24 and 34 degrees C. At 34 degrees C eggs were inactivated in less than 10 days in urine and in amended feces. At 24 degrees C only feces with 2% (wt/wt) urea or 1% (wt/wt) urea at high pH (10) inactivated all eggs within 1 month, and no inactivation was observed after 75 days in urine diluted 1:3 (18 +/- 11 mM NH(3)). At temperatures of > or =24 degrees C, NH(3) proved to be an efficient sanitizing agent in urine and feces at concentrations of > or =60 mM. Treating fecal material at 34 degrees C can give a 6-log(10) egg inactivation within 1 month, whereas at 24 degrees C 6 months of treatment is necessary for the same level of egg inactivation. At temperatures of 14 degrees C and below, inactivation rates were low, with viable eggs after 6 months even in concentrated urine.

  16. Hydrogen Production via a High-Efficiency Low-Temperature Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu; Theo T. Tsotsis

    2006-05-31

    Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposed to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of

  17. Properties of municipal solid waste incineration ashes with respect to their separation temperature.

    Science.gov (United States)

    Keppert, Martin; Pavlík, Zbysek; Tydlitát, Vratislav; Volfová, Petra; Svarcová, Silvie; Syc, Michal; Cerny, Robert

    2012-10-01

    Fly ashes generated by power and heating plants are commonly used in the production of building materials in some countries, mainly as partial replacement of cement or aggregates in concrete. The ashes from municipal solid waste incinerators can be applied in a similar way. However, their chemical and mineralogical composition, granulometry and toxic constituents have to be taken into account. In this paper, four types of municipal solid waste incinerator (MSWI) ashes produced by the modern MSWI facility in Liberec, Czech Republic, were investigated. The relationship between the particular ash properties (morphology, chemical composition) and its separation temperature in the incinerator line is discussed. A coal fly ash (class F) is characterized as well, for a comparison because its utilization in building industry is more developed. The studied MSWI ashes exhibit high concentration of chlorides and sulfates which is an unfavourable feature for a potential concrete admixture. On the other hand, three of four ashes are found to be pozzolanic active and certain hydration reactions are indicated.

  18. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  19. Temperature dependence of the rate constant of hydrogen isotope interactions with a lithium capillary-porous system under reactor irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Kulsartov, Timur; Gordienko, Yuri [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Mukanova, Aliya [Al’ Farabi Kazakh National University, Almaty (Kazakhstan); Ponkratov, Yuri; Barsukov, Nikolay; Tulubaev, Evgeniy [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Platacis, Erik [University of Latvia (IPUL), Riga (Latvia); Kenzhin, Ergazy [Shakarim Semey State University, Semey (Kazakhstan)

    2013-10-15

    Highlights: • The experiments with Li CPS sample were carried out at reactor IVG-1.M. • The gas absorption technique was used to study hydrogen isotope interaction with lithium CPS. • The temperature dependence of constants of interaction rate was obtained for various power rates of the reactor. • Determination of the activation energies, and pre-exponents of Arrhenius dependence. • The effect of increase of the rate constant under reaction irradiation. -- Abstract: Experiments with a sample of a lithium capillary-porous system (CPS) were performed at the reactor IVG-1.M of the Institute of Atomic Energy NNC RK to study the effects of neutron irradiation on the parameters of hydrogen isotope interactions with a lithium CPS. The absorption technique was used during the experiments, and this technique allowed the temperature dependences of the hydrogen isotope interaction rate constants with the lithium CPS to be obtained under various reactor powers. The obtained dependencies were used to determine the main interaction parameters: the activation energies and the pre-exponents of the Arrhenius dependence of the hydrogen interaction rate constants with lithium and the lithium CPS. An increase of the hydrogen isotope interaction rate with the lithium CPS was observed under reactor irradiation.

  20. Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data

    Science.gov (United States)

    Soil and vegetation component temperatures in non-isothermal pixels encapsulate more physical meaning and are more applicable than composite temperatures. The component temperatures however are difficult to be obtained from thermal infrared (TIR) remote sensing data provided by single view angle obs...

  1. Site-Specific Hydrogen Isotope Composition of Propane: Mass spectrometric methods, equilibrium temperature dependence, and kinetics of exchange

    Science.gov (United States)

    Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.

    2016-12-01

    Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site

  2. High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum

    Directory of Open Access Journals (Sweden)

    Diogo Vieira Carvalho

    2015-10-01

    Full Text Available A novel membrane based on silicon dioxide (SiO2 and hydroxypropyl guar gum (HPG as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO2 and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance.

  3. Hydrogen dynamics in the low temperature phase of LiBH{sub 4} probed by quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Remhof, Arndt, E-mail: arndt.remhof@empa.ch [Empa, Swiss Federal Institute for Materials Science and Technology, Hydrogen and Energy, CH-8600 Dübendorf (Switzerland); Züttel, Andreas [Empa, Swiss Federal Institute for Materials Science and Technology, Hydrogen and Energy, CH-8600 Dübendorf (Switzerland); Ramirez-Cuesta, Timmy; García-Sakai, Victoria [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Frick, Bernhard [Institut Laue-Langevin, F-38002 Grenoble (France)

    2013-12-12

    Highlights: • Inelastic fixed window sans offer new possibilities in neutron backscattering spectrometers. • Two different kind of reorientational motion were identified in the low temperature phase of LiBH{sub 4}. • Thermally activated jump rotation. - Abstract: LiBH{sub 4} contains 18.5 wt% hydrogen and undergoes a structural phase transition (orthorhombic → hexagonal) at 381 K which is associated with a large increase in hydrogen and lithium solid-state mobility. We investigated the hydrogen dynamics in the low temperature phase of LiBH{sub 4} by quasielastic neutron scattering, including a new kind of inelastic fixed window scan (IFWS). In the temperature range from 175 to 380 K the H-dynamics is dominated by thermally activated rotational jumps of the [BH{sub 4}]{sup −} anion around the c3 axis with an activation energy of about 162 meV. In agreement with earlier NMR data, a second type of thermally activated motion with an activation energy of about 232 meV could be identified using the IFWS. The present study of hydrogen dynamics in LiBH{sub 4} illustrates the feasibility of using IFWS on neutron backscattering spectrometers as a probe of localised motion.

  4. Specifics of high-temperature sodium coolant purification technology in fast reactors for hydrogen production and other innovative applications

    Directory of Open Access Journals (Sweden)

    F.A. Kozlov

    2017-03-01

    Full Text Available In creating a large-scale atomic-hydrogen power industry, the resolution of technological issues associated with high temperatures in reactor plants (900°C and large hydrogen concentrations intended as long-term resources takes on particular importance. The paper considers technological aspects of removing impurities from high-temperature sodium used as a coolant in the high-temperature fast reactor (BN-HT 600MW (th. intended for the production of hydrogen as well as other innovative applications. The authors examine the behavior of impurities in the BN-HT circuits associated with the mass transfer intensification at high temperatures (Arrhenius law in different operating modes. Special attention is given to sodium purification from hydrogen, tritium and corrosion products in the BN-HT. Sodium purification from hydrogen and tritium by their evacuation through vanadium or niobium membranes will make it possible to develop compact highly-efficient sodium purification systems. It has been shown that sodium purification from tritium to concentrations providing the maximum permissible concentration of the produced hydrogen (3.6Bq/l according to NRB-99/2009 specifies more stringent requirements to the hydrogen removal system, i.e., the permeability index of the secondary tritium removal system should exceed 140kg/s. Provided that a BN-HN-type reactor meets these conditions, the bulk of tritium (98% will be accumulated in the compact sodium purification system of the secondary circuit, 0.6% (∼ 4·104Bq/s, will be released into the environment and 1.3% will enter the product (hydrogen. The intensity of corrosion products (CPs coming into sodium is determined by the corrosion rate of structural materials: at a high temperature level, a significant amount of corrosion products flows into sodium. The performed calculations showed that, for the primary BN-HT circuit, the amount of corrosion products formed at the oxygen concentration in sodium of 1mln

  5. Hydrogen-doping induced reduction in the phase transition temperature of VO2: a first-principles study.

    Science.gov (United States)

    Cui, Yuanyuan; Shi, Siqi; Chen, Lanli; Luo, Hongjie; Gao, Yanfeng

    2015-08-28

    VO2 is a promising thermochromic material that can intelligently control the transmittance of sunlight in the near-infrared region in response to temperature change, although the high phase transition temperature (Tc) of 340 K restricts its wide application. Our first-principles calculations show that hydrogen is an efficient dopant which can stabilize the metallic VO2 phase at ambient temperature through reducing Tc by 38 K/at% H. The reduction in Tc is coupled with the changes in atomic and electronic structures, i.e., the V-V chains feature the dimerization characteristics in H-doped VO2(R) and the V-O bonds become less ionic due to the formation of a typical H-O covalent bond. In addition, hydrogen-doped VO2 is more sensitive to external strain as compared with pure VO2, implying that Tc can be further regulated through a combination of H-doping and strain.

  6. Dust separation at high temperatures a method for cleaning fly ashes? Final report; Stoftavskiljning vid hoeg temperatur en metod foer rening av flygaska? Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Zintl, Frank [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-12-01

    An experimental study of separation of fly ashes by a filter at high temperatures, 300-650 deg C, with the purpose to study: Capture of heavy metals (Cd, Hg, Pb, Zn) in the fly ash; Relation between heavy metal capture and temperature; Relation between heavy metal capture and the availability of fuel chlorine. Pelletized forestry waste fuel was doped with heavy metals in two different forms. Pelletized Salix was also used, without doping. The study shows that: There is a strong inverse relation between the capture of heavy metals and the filter temperature; There is a strong relation between the availability of chlorine and the capture of heavy metals. Separation at 300-650 deg C gives much less heavy metals in the fly ash, however the ash is not clean enough to allow disposal in ordinary landfills. Thus, high temperature filtering does not seem to be a promising solution for producing 'clean' fly ash.

  7. The protein amide ¹H(N) chemical shift temperature coefficient reflects thermal expansion of the N-H···O=C hydrogen bond.

    Science.gov (United States)

    Hong, Jingbo; Jing, Qingqing; Yao, Lishan

    2013-01-01

    The protein amide (1)H(N) chemical shift temperature coefficient can be determined with high accuracy by recording spectra at different temperatures, but the physical mechanism responsible for this temperature dependence is not well understood. In this work, we find that this coefficient strongly correlates with the temperature coefficient of the through-hydrogen-bond coupling, (3h)J(NC'), based on NMR measurements of protein GB3. Parallel tempering molecular dynamics simulation suggests that the hydrogen bond distance variation at different temperatures/replicas is largely responsible for the (1)H(N) chemical shift temperature dependence, from which an empirical equation is proposed to predict the hydrogen bond thermal expansion coefficient, revealing responses of individual hydrogen bonds to temperature changes. Different expansion patterns have been observed for various networks formed by β strands.

  8. Durable Cu composite catalyst for hydrogen production by high temperature methanol steam reforming

    Science.gov (United States)

    Matsumura, Yasuyuki

    2014-12-01

    Durable catalysts are necessitated for the high temperature methanol steam reforming in compact hydrogen processors. The high durability at 400 °C can be obtained with a composite Cu catalyst where a small amount of Cu-ZnO-ZrO2-Y2O3-In2O3 is coprecipitated on a zirconia support. The lifetime of the composite catalyst containing 3 wt.% Cu is estimated to be as long as 53 × 102 h at 400 °C to produce the full conversion at a contact time of 250 g h m-3. The deactivation rate empirically relates to the cube of the activity. The gradual deactivation is caused by the gradual reduction of the Cu surface amount and also by the reduction of the surface activity which is believed to decrease with an increase in the Cu particle size. The interaction between the thin layer of the coprecipitate and the support surface probably suppresses the aggregation of the coprecipitate leading to Cu sintering.

  9. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    Science.gov (United States)

    Snyder, Seth W [Lincolnwood, IL; Lin, Yupo J [Naperville, IL; Hestekin', Jamie A [Fayetteville, AR; Henry, Michael P [Batavia, IL; Pujado, Peter [Kildeer, IL; Oroskar, Anil [Oak Brook, IL; Kulprathipanja, Santi [Inverness, IL; Randhava, Sarabjit [Evanston, IL

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  10. Hydrogen bond network relaxation in aqueous polyelectrolyte solutions: the effect of temperature

    Science.gov (United States)

    Sarti, S.; Truzzolillo, D.; Bordi, F.

    2012-07-01

    Dielectric spectroscopy data over the range 100 MHz-40 GHz allow for a reliable analysis of two of the major relaxation phenomena for polyelectrolytes (PE) in water. Within this range, the dielectric relaxation of pure water is dominated by a near-Debye process at ν = 18.5 GHz corresponding to a relaxation time of τ = 8.4 ps at 25 °C. This mode is commonly attributed to the cooperative relaxation specific to liquids forming a hydrogen bond network (HBN) and arising from long range H-bond-mediated dipole-dipole interactions. The presence of charged polymers in water partially modifies the dielectric characteristics of the orientational water molecule relaxation due to a change of the dielectric constant of water surrounding the charges on the polyion chain. We report experimental results on the effect of the presence of a standard flexible polyelectrolyte (sodium polyacrylate) on the HBN relaxation in water for different temperatures, showing that the HBN relaxation time does not change by increasing the polyelectrolyte density in water, even if relatively high concentrations are reached (0.02 monomol l-1 ≤ C ≤ 0.4 monomol l-1). We also find that the effect of PE addition on the HBN relaxation is not even a broadening of its distribution, rather a decrease of the spectral weight that goes beyond the pure volume fraction effect. This extra decrease is larger at low T and less evident at high T, supporting the idea that the correlation length of the water is less affected by the presence of charged flexible chains at high temperatures.

  11. Hydrogen incorporation induced metal-semiconductor transition in ZnO:H thin films sputtered at room temperature

    Science.gov (United States)

    Singh, Anil; Chaudhary, Sujeet; Pandya, D. K.

    2013-04-01

    The room temperature deposited ZnO:H thin films having high conductivity of 500 Ω-1 cm-1 and carrier concentration reaching 1.23 × 1020 cm-3 were reactively sputter deposited on glass substrates in the presence of O2 and 5% H2 in Ar. A metal-semiconductor transition at 165 K is induced by the increasing hydrogen incorporation in the films. Hydrogen forms shallow donor complex with activation energy of ˜10-20 meV at oxygen vacancies (VO) leading to increase in carrier concentration. Hydrogen also passivates VO and VZn causing ˜4 times enhancement of mobility to 25.4 cm2/V s. These films have potential for use in transparent flexible electronics.

  12. Hydrogen incorporation induced metal-semiconductor transition in ZnO:H thin films sputtered at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anil; Chaudhary, Sujeet; Pandya, D. K. [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2013-04-29

    The room temperature deposited ZnO:H thin films having high conductivity of 500 Ohm-Sign {sup -1} cm{sup -1} and carrier concentration reaching 1.23 Multiplication-Sign 10{sup 20} cm{sup -3} were reactively sputter deposited on glass substrates in the presence of O{sub 2} and 5% H{sub 2} in Ar. A metal-semiconductor transition at 165 K is induced by the increasing hydrogen incorporation in the films. Hydrogen forms shallow donor complex with activation energy of {approx}10-20 meV at oxygen vacancies (V{sub O}) leading to increase in carrier concentration. Hydrogen also passivates V{sub O} and V{sub Zn} causing {approx}4 times enhancement of mobility to 25.4 cm{sup 2}/V s. These films have potential for use in transparent flexible electronics.

  13. Evaluation of two processes of hydrogen production starting from energy generated by high temperature nuclear reactors; Evaluacion de dos procesos de produccion de hidrogeno a partir de energia generada por reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J., E-mail: jvalle@upmh.edu.mx [Universidad Politecnica Metropolitana de Hidalgo, Boulevard Acceso a Tolcayuca 1009, Ex-Hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)

    2013-10-15

    In this work an evaluation to two processes of hydrogen production using energy generated starting from high temperature nuclear reactors (HTGR's) was realized. The evaluated processes are the electrolysis of high temperature and the thermo-chemistry cycle Iodine-Sulfur. The electrolysis of high temperature, contrary to the conventional electrolysis, allows reaching efficiencies of up to 60% because when increasing the temperature of the water, giving thermal energy, diminishes the electric power demand required to separate the molecule of the water. However, to obtain these efficiencies is necessary to have water vapor overheated to more than 850 grades C, temperatures that can be reached by the HTGR. On the other hand the thermo-chemistry cycle Iodine-Sulfur, developed by General Atomics in the 1970 decade, requires two thermal levels basically, the great of them to 850 grades C for decomposition of H{sub 2}SO{sub 4} and another minor to 360 grades C approximately for decomposition of H I, a high temperature nuclear reactor can give the thermal energy required for the process whose products would be only hydrogen and oxygen. In this work these two processes are described, complete models are developed and analyzed thermodynamically that allow to couple each hydrogen generation process to a reactor HTGR that will be implemented later on for their dynamic simulation. The obtained results are presented in form of comparative data table of each process, and with them the obtained net efficiencies. (author)

  14. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  15. Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation.

    Science.gov (United States)

    Mao, Yiyin; shi, Li; Huang, Hubiao; Cao, Wei; Li, Junwei; Sun, Luwei; Jin, Xianda; Peng, Xinsheng

    2013-06-25

    Large scale, robust, well intergrown free-standing HKUST-1 membranes were converted from copper hydroxide nanostrand free-standing films in 1,3,5-benzenetricarboxylic acid water-ethanol solution at room temperature, and explored for gas separation. The truncated crystals are controllable and favorable for the dense intergrowth.

  16. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  17. High-temperature hydrogenation of pure and silver-decorated titanate nanotubes to increase their solar absorbance for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, Milivoj [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Gajović, Andreja, E-mail: gajovic@irb.hr [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Jakša, Gregor; Žagar, Kristina; Čeh, Miran [Institute Jožef Stefan, Jamova 39, 1000 Ljubljana (Slovenia)

    2014-04-05

    Graphical abstract: The aim of the work is to study how annealing in a reducing atmosphere of titanate nanotubes (TiNT) and Ag decorated titanate nanotubes (TiNT@Ag) influenced on their structure, morphology, phase transitions, UV–ViS-NIR absorbance and photocatalytic activity. An increase of photocatalytic activity after a heat treatment in a reducing atmosphere was observed in the TiNT and TiNT@Ag. We found that the hydrogenated TiNT@Ag samples (TiNT@Ag-HA) had a two-times higher photodegradation impact on the caffeine than the TiNT samples, which is a consequence of the increased absorption of visible light and the synergetic effects between the silver and the TiO{sub 2} nanoparticles that increase the efficiency of the formation of electron–hole pairs and the charge transfer to the surface of the nanoparticles. -- Highlights: • Titanate nanotubes with and without Ag nanoparticles were hydrogenated at 550 °C. • TiO{sub 2} nanostructures obtained by hydrogenation have core–shell structure. • Hydrogenated samples show absorption in the visible spectral region. • Hydrogenated Ag decorated sample show stronger absorption in visible than in UV. • Photocatalytic efficiency is improved by hydrogenation and by Ag nanoparticles. -- Abstract: Titanate nanotubes (TiNTs) and silver-decorated titanate nanotubes (TiNTs@Ag) were synthesized using the hydrothermal method. In the decorated nanotubes the silver particles were obtained by the photoreduction of AgNO{sub 3} under UV light. Pure and Ag-decorated nanotubes were high-temperature heat treated at 550 °C in a hydrogen atmosphere and the “core–shell”-structured TiO{sub 2} nanoparticles were formed. For the structural characterization of all the titanate nanostructures we used conventional and analytical transmission electron microscopy (TEM) techniques, X-ray diffraction (XRD) and Raman spectroscopy. The Ag-decorated titanate nanostructures were additionally studied by X-ray photo

  18. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    Energy Technology Data Exchange (ETDEWEB)

    Mashovets, N.S., E-mail: mashovets@rambler.ru [Khmelnickiy National University (Ukraine); Pastukh, I.M., E-mail: pastim@mail.ru [Khmelnickiy National University (Ukraine); Voloshko, S.M. [Khmelnickiy National University (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute” (Ukraine)

    2017-01-15

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm{sup 2}. The above material shows the promise of the technology of low-temperature

  19. Conceptual design and selection of deposited metal on the valve seat for the high temperature isolation valve in the HTTR hydrogen production system (contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Tetsuo; Iwatsuki, Jin [Department of Advanced Nuclear Heat Technology, Oarai Research Establishment, Japan Atomic Energy Research Institute, Oarai, Ibaraki (Japan)

    1999-11-01

    In the HTTR hydrogen production system a high temperature isolation valve should be provided outside the penetration of containment vessel on the secondary helium loop. As the secondary helium gas is at temperature of 905degC and pressure of 4.1 MPa, there is not any available isolation valve used under such conditions. Once demonstration test of high temperature isolation valve was carried out in the ERANS project. Tested valve could meet the basic design requirements but some problems remained. In this report a conceptual design of the high temperature isolation valve is performed in consideration of resolving these problems. The structural reliability is confirmed by the three-dimensional stress analysis. With respect to the deposited metal on valve seat, a screening test is done to observe the basic properties of candidate metals. From these results, it is shown that Stellite alloy that is used in practical valve has a possibility of the separation at welding layer and carbon diffusion from deposited metal into the base metal. Nickel-base super alloy has a possibility of internal and intergranular oxidation due to contained Al and Ti. Therefore, detail metallographical and mechanical tests for long period are planned to select the adequate deposited metal. (author)

  20. Comparison of different turbulence models in predicting the temperature separation in a Ranque-Hilsch vortex tube

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, T.; Bandyopdhyay, S.S. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur 721302 (India); Sinhamahapatra, K.P. [Department of Aerospace Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-06-15

    An axisymmetric computational fluid dynamics (CFD) model is used to compare the influence of different Reynolds Averaged Navier-Stokes (RANS) based turbulence models in predicting the temperature separation in a Ranque-Hilsch vortex tube. The standard {kappa}-{epsilon}, RNG {kappa}-{epsilon}, standard {kappa}-{omega} and SST {kappa}-{omega} turbulence models are used in this study. The performance curves (hot and cold outlet temperatures versus hot outlet mass fraction) obtained by using these turbulence models are compared with the experimental results. The objective is to select an appropriate turbulence model for the simulation of the flow phenomena in a vortex tube with optimum computational expense. The performance analysis shows that among all the turbulence models investigated in this study, temperature separation predicted by the standard {kappa}-{epsilon} turbulence model is closer to the experimental results. (author)

  1. Effects of temperature and hydrogen-like impurity on the coherence time of RbCl parabolic quantum dot qubit

    Science.gov (United States)

    Xiao, Jing-Lin

    2016-02-01

    By using a variational method of Pekar type, the Fermi Golden Rule and the quantum statistics theory (VMPTFGRQST), we investigate the effects of the hydrogen-like impurity and temperature on the coherence time of a parabolic quantum dot (PQD) qubit with a hydrogen-like impurity at the center. We then derive the ground and the first excited states' (GFES) eigenenergies and the eigenfunctions in a PQD. A single qubit can be realized in this two-level quantum system. The phonon spontaneous emission causes the decoherence of the qubit. The numerical results show that the coherence time is a decreasing function of the temperature, the strength of the Coulombic impurity potential (CIP) and the polaron radius (PR).

  2. Exceptional high selectivity of hydrogen/methane separation on a phosphonate-based MOF membrane with exclusion of methane molecules.

    Science.gov (United States)

    Yang, Qipeng; Li, Liangjun; Tan, Weiqiang; Sun, Yingjie; Wang, Huanli; Ma, Jiping; Zhao, Xuebo

    2017-08-29

    A phosphonate-based metal-organic framework membrane was constructed on a porous anodic alumina membrane (PAAM) substrate for H2/CH4 separation for the first time. Owing to the ultra-micro pore windows, this membrane exhibited effective size exclusion for CH4 molecules but suitable permeance for H2 molecules, giving rise to an exceptional high H2/CH4 separation selectivity.

  3. Battery Separator Membrane Having a Selectable Thermal Shut-Down Temperature Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal to NASA requests $596,750.96 support for Policell Technologies, Inc. to develop a series of separator...

  4. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations

    KAUST Repository

    Swaidan, Raja

    2015-08-20

    Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain “rigidity”, the traditional design metric of highly permeable polymers of intrinsic microporosity (PIMs), with gas-sieving ultramicroporosity yields high-performance gas separation membranes. Highly ultramicroporous PIMs have redefined the state-of-the-art in large-scale air (e.g., O2/N2) and hydrogen recovery (e.g., H2/N2, H2/CH4) applications with unprecedented molecular sieving gas transport properties. Accordingly, presented herein are new 2015 permeability/selectivity “upper bounds” for large-scale commercial membrane-based air and hydrogen applications that accommodate the substantial performance enhancements of recent PIMs over preceding polymers. A subtle balance between intrachain rigidity and interchain spacing has been achieved in the amorphous microstructures of PIMs, fine-tuned using unique bridged-bicyclic building blocks (i.e., triptycene, ethanoanthracene and Tröger’s base) in both ladder and semiladder (e.g., polyimide) structures.

  5. Hydrogen-Induced Ostwald Ripening at Room Temperature in a Pd Nanocluster Film

    NARCIS (Netherlands)

    Di Vece, M.|info:eu-repo/dai/nl/248753355; Grandjean, D.P.P.; van Bael, M.J.; Romero, C.P.; Wang, X; Decoster, S.; Vantomme, A.; Lievens, P.

    2008-01-01

    The structural and morphological changes occurring in an ensemble of vapor deposited palladium nanoclusters have been studied after several hydrogenation cycles with x-ray diffraction, extended x-rayabsorption fine structure spectroscopy, Rutherford backscattering spectrometry, and STM. Initial

  6. Porous-like structures prepared by temperature-pressure treatment of heavily hydrogenated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Misiuk, A. [Institute of Electron Technology, Al. Lotnikow 46, 02-668 Warsaw (Poland); Shalimov, A.; Bak-Misiuk, J. [Institute of Physics, PAS, Al. Lotnikow 32, 02-668 Warsaw (Poland); Surma, B. [Institute of Electron Technology, Al. Lotnikow 46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Wnuk, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Antonova, I.V. [Institute of Semiconductor Physics, SB RAS, Lavrentieva 13, 630090 Novosibirsk (Russian Federation); Zavodinsky, V.G.; Gnidenko, A.A. [Institute of Materials Science, RAS, Tikhookeanskaya 153, 680042 Khabarovsk (Russian Federation)

    2005-06-01

    Microstructure and related properties of Czochralski silicon heavily doped with hydrogen by implantation (hydrogen dose 2.7 x 10{sup 17} cm{sup -2}, at 24 keV) or by hydrogen plasma etching (reference samples) and treated at up to 1270 K (HT) under argon pressure up to 1.1 GPa (HP) are investigated. The structure of HT-HP treated Cz-Si:H is similar to that of porous (spongy) Si. Visible photoluminescence at 2.0-2.8 eV originates from accumulation of hydrogen and oxygen atoms near the sample surface. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Diffusion cross section for atomic hydrogen in helium gas at low temperature and the H-He potential

    Energy Technology Data Exchange (ETDEWEB)

    Jochemsen, R.; Berlinsky, A.J.; Hardy, W.N. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)

    1984-08-01

    A calculation of the diffusion cross section Q sub(D) of hydrogen atoms in helium gas at low temperature is performed and compared with recent experimental results. The comparison allows an improved determination of the H-He potential. Calculations were done for three different potentials: our own empirical potential based on experimental high-energy scattering results and calculated long-range dispersion terms, which gives good results for Q sub(D) and total collision cross sections; a recently determined semi-empirical potential, and an ab initio calculated potential. All three potentials imply a strong temperature dependence of Q sub(D) for T < 1.5 K.

  8. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  9. UV-Induced Hydrogen-Atom-Transfer Processes in 3-Thio-1,2,4-triazole Isolated in Ar and H2 Low-Temperature Matrixes.

    Science.gov (United States)

    Rostkowska, Hanna; Lapinski, Leszek; Nowak, Maciej J

    2017-09-21

    The UV-induced thione → thiol phototautomeric reaction has been studied for monomeric 3-thio-1,2,4-triazole (3-ST) isolated in low-temperature Ar and n-H2 (normal hydrogen) matrixes. Prior to any UV irradiation, monomers of 3-ST isolated in solid Ar or solid n-H2 adopted mainly the most stable thione tautomeric form, as revealed by the IR spectra. Upon UV (λ > 275 nm) irradiation of 3-ST isolated in Ar matrixes, the IR bands due to this thione form decreased, while a set of initially weak bands increased in intensity. Growing bands indicated generation of a photoproduct, which was identified as the thiol tautomer with labile hydrogen atoms attached to sulfur and N(2) atoms. The UV-induced spectral changes allowed also identification of another minor thiol tautomer of 3-ST, which was present in the matrix prior to any irradiation and did not change its population upon exposure to UV light. The identification of the observed isomeric forms was supported by comparison of their separated experimental IR spectra with the spectra theoretically predicted for the various structures of 3-ST. The thione → thiol phototautomerization that was the main UV-induced process observed for 3-ST in Ar matrixes did not occur for monomers of the compound trapped in solid n-H2.

  10. Hydrogen production by the high temperature combination of the water gas shift and CO{sub 2} absorption reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bretado, M.A.E.; Vigil, M.D.D.; Gutierrez, J.S.; Ortiz, A.L.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chih (Mexico). Dept. de Quimica de Materiales

    2009-01-15

    Hydrogen is an important raw material for the chemical and petroleum industry. An important research field has surfaced, dealing with the production of high purity hydrogen for power generation purposes through fuel cells. Industrial technologies for hydrogen production are based on the use of fossil fuels, with catalytic steam methane reforming being the most important process together with partial oxidation of hydrocarbons and the integrated combined coal gasification cycle. Hydrogen production through the water gas shift (WGS) reaction requires two consecutive catalytic steps followed by carbon dioxide (CO{sub 2}) separation. However, combination of the WGS reaction and CO{sub 2} capture by a solid absorbent opens the opportunity to produce high purity hydrogen in one single step called absorption enhanced WGS or AEWGS. In theory, this process would not require a catalyst. This paper presented an experimental study of AEWGS using a quartz-made fixed bed reactor. The CO{sub 2} absorbents tested in this study were calcined dolomite, (CaOMgO) and sodium zirconate (Na{sub 2}ZrO{sub 3}). The paper described the experimental study, with particular reference to the thermodynamic analysis that determined the equilibrium conditions of the systems CO/H{sub 2}O (WGS) and CO/absorbent/H{sub 2} (AEWGS); synthesis and characterization; and the fixed bed reaction system. Results were determined by X-ray diffraction, BET surface area and crystallite size, and reaction evaluation. It was concluded that at reaction conditions, dolomite can efficiently remove CO{sub 2} at partial pressures three times lower than with the use of Na{sub 2}ZrO{sub 3} as absorbent. 24 refs., 1 tab., 6 figs.

  11. Physical properties of Fe doped In{sub 2}O{sub 3} magnetic semiconductor annealed in hydrogen at different temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baqiah, H. [Superconductors and Thin Film Laboratory, Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Ibrahim, N.B., E-mail: baayah@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Halim, S.A., E-mail: ahalim@upm.edu.my [Superconductors and Thin Film Laboratory, Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Chen, S.K.; Lim, K.P.; Kechik, M.M. Awang [Superconductors and Thin Film Laboratory, Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-03-01

    The effects of hydrogen-annealing at different temperatures (300, 400, 500 and 600 °C) on physical properties of In{sub 2−x}Fe{sub x}O{sub 3} (x=0.025) thin film were investigated. The structural measurement using XRD shows that the film has a single In{sub 2}O{sub 3} phase structure when annealed in hydrogen at 300–500 °C, however when annealed in hydrogen at 600 °C the film has a mixed phase structure of In{sub 2}O{sub 3} and In phases. The electrical measurements show that the carrier concentrations of the films decrease with the increase of hydrogen-annealing temperature in the range 300–500 °C. The optical band gap of the films decreases with increasing hydrogen-annealing temperatures. The saturation magnetisation, Ms, and coercivity of films increase with the increment of hydrogen annealing temperature. The film annealed at 300 °C has the lowest resistivity, ρ=0.03 Ω cm, and the highest carrier concentrations, n=6.8×10{sup 19} cm{sup −3}, while film annealed at 500 °C has both good electrical (ρ=0.05 Ω.cm and n=2.2×10{sup 19} cm{sup −3}) and magnetic properties, Ms=21 emu/cm{sup -3}. - Highlights: • Physical properties of films were sensitive to hydrogen-annealing temperature. • Magnetisation, Ms, of films increased with increase of hydrogen annealing temperature. • Film annealed in hydrogen at 300 °C has the lowest resistivity, ρ=0.03 Ω cm. • Film annealed in hydrogen at 600 °C has highest magnetisation, Ms=30 emu/cm{sup 3}.

  12. In-situ experimental characterization of the clamping pressure effects on low temperature polymer electrolyte membrane electrolysis International Journal of Hydrogen Energy

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Cui, Xiaoti; Frensch, Steffen Henrik

    2017-01-01

    The recent acceleration in hydrogen production’s R&D will lead the energy transition. Low temperature polymer electrolyte membrane electrolysis (LT-PEME) is one of the most promising candidate technologies to produce hydrogen from renewable energy sources, and for synthetic fuel production. LT-PE...

  13. Hydrogen separation from multicomponent gas mixtures containing CO, N2 and CO2 using Matrimid asymmetric hollow fiber membranes

    NARCIS (Netherlands)

    David, Oana C.; Gorri, Daniel; Nijmeijer, Dorothea C.; Ortiz, Inmaculada; Urtiaga, Ane

    2012-01-01

    The application of hollow fiber membranes for the separation of industrial gas mixtures relies on the correct characterization of the permeation of the involved gaseous components through the hollow fiber membranes. Thus, this study is focused on the characterization of the permeation through

  14. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen

    2017-04-12

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  15. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic.

    Science.gov (United States)

    Zhang, Huibin; Liu, Xinli; Jiang, Yao; Gao, Lin; Yu, Linping; Lin, Nan; He, Yuehui; Liu, C T

    2017-09-15

    A temperature-controlled selective filtration technology for synchronous removal of arsenic and recovery of antimony from the fume produced from reduction smelting process of lead anode slimes was proposed. The chromium (Cr) alloyed FeAl intermetallic with an asymmetric pore structure was developed as the high-temperature filter material after evaluating its corrosive resistance, structural stability and mechanical properties. The results showed that porous FeAl alloyed with 20wt.% Cr had a long term stability in a high-temperature sulfide-bearing environment. The separation of arsenic and antimony trioxides was realized principally based on their disparate saturated vapor pressures at specific temperature ranges and the asymmetric membrane of FeAl filter elements with a mean pore size of 1.8μm. Pilot-scale filtration tests showed that the direct separation of arsenic and antimony can be achieved by a one-step or two-step filtration process. A higher removal percentage of arsenic can reach 92.24% at the expense of 6∼7% loss of antimony in the two-step filtration process at 500∼550°C and 300∼400°C. The FeAl filters had still good permeable and mechanical properties with 1041h of uninterrupted service, which indicates the feasibility of this high-temperature filtration technology. Copyright © 2017. Published by Elsevier B.V.

  16. Initial proof-of-principle for near room temperature Xe and Kr separation from air with MOFs

    Energy Technology Data Exchange (ETDEWEB)

    Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strachan, Denis M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-06-06

    Materials were developed and tested in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of Xenon and krypton from gaseous products of nuclear fuel reprocessing unit operations. During FY 2012, Three Metal organic framework (MOF) structures were investigated in greater detail for the removal and storage of Xe and Kr from air at room temperature. Our breakthrough measurements on Nickel based MOF could capture and separate parts per million levels of Xe from Air (40 ppm Kr, 78% N2, 21% O2, 0.9% Ar, 0.03% CO2). Similarly, the selectivity can be changed from Xe > Kr to Xe < Kr simply by changing the temperature in another MOF. Also for the first time we estimated the cost of the metal organic frameworks in bulk.

  17. Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature.

    Science.gov (United States)

    Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak

    2015-10-27

    The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.

  18. A new MOF-5 homologue for selective separation of methane from C2 hydrocarbons at room temperature

    Science.gov (United States)

    He, Yabing; Song, Chengling; Ling, Yajing; Wu, Chuande; Krishna, Rajamani; Chen, Banglin

    2014-12-01

    A new MOF-5 homologue compound UTSA-10 has been obtained under solvothermal conditions from a mixture of Zn(NO3)2ṡ6H2O and commercially available linker, 2-methylfumaric acid, in N,N-dimethylformamide. The moderate surface area and suitable pore sizes enable the activated UTSA-10a to separate methane from C2 hydrocarbons at room temperature.

  19. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures.

    Science.gov (United States)

    Rico, Víctor J; Hueso, José L; Cotrino, José; Gallardo, Victoria; Sarmiento, Belén; Brey, Javier J; González-Elipe, Agustín R

    2009-11-07

    Dielectric Barrier Discharges (DBD) operated at atmospheric pressure and working at reduced temperatures (T steam reforming of methanol (SRM) for hydrogen production and for the preferential oxidation of CO (CO-PROX).

  20. Room Temperature Reactivity Of Silicon Nanocrystals With Solvents: The Case Of Ketone And Hydrogen Production From Secondary Alcohols: Catalysis?

    KAUST Repository

    El Demellawi, Jehad K.

    2015-05-29

    Although silicon nanoparticles dispersed in liquids are used in various applications ranging from bio-labeling to hydrogen production, their reactivities with their solvents and their catalytic properties re-main still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g. isopropanol) to ketones and hydrogen. This catalytic reaction was followed by gas chromatography, pH measurements, mass spectroscopy and solidstate NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their stability in solvents in general as well as being candidates in catalysis.

  1. Sticking of Hydrogen on Supported and Suspended Graphene at Low Temperature

    Science.gov (United States)

    Lepetit, Bruno; Jackson, Bret

    2011-12-01

    The physisorption of atomic hydrogen on graphene is investigated quantum mechanically using a semiempirical model for the lattice dynamics. A thermally averaged wave packet propagation describes the motion of the H atoms with respect to the membrane. Two graphene configurations, either supported on a silicone oxide substrate or suspended over a hole in the substrate, are considered. In both cases, the phonon spectrum is modified in such a way that graphene is stabilized with respect to thermal fluctuations. The sticking probabilities of hydrogen on these stabilized membranes at 10 K are high at low collision energies, and larger than on graphite.

  2. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Erofeev, E. V., E-mail: erofeev@micran.ru [Tomsk State University of Control Systems and Radioelectronics, Research Institute of Electrical-Communication Systems (Russian Federation); Fedin, I. V.; Kutkov, I. V. [Research and Production Company “Micran” (Russian Federation); Yuryev, Yu. N. [National Research Tomsk Polytechnic University, Institute of Physics and Technology (Russian Federation)

    2017-02-15

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V{sub th} = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V{sub th} = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.

  3. 81929 - Fission-Product Separation Based on Room - Temperature Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Robin D. Rogers

    2004-12-09

    This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics.

  4. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huimin; Hussey, Charles L.

    2005-09-30

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  5. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huimin

    2006-11-15

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  6. Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect.

    Science.gov (United States)

    Wu, Changzheng; Feng, Feng; Feng, Jun; Dai, Jun; Peng, Lele; Zhao, Jiyin; Yang, Jinlong; Si, Cheng; Wu, Ziyu; Xie, Yi

    2011-09-07

    Regulation of electron-electron correlation has been found to be a new effective way to selectively control carrier concentration, which is a crucial step toward improving thermoelectric properties. The pure electronic behavior successfully stabilized the nonambient metallic VO(2)(R) to room temperature, giving excellent thermoelectric performance among the simple oxides with wider working temperature ranges.

  7. Magnetic resonance studies of atomic hydrogen at zero field and low temperature. Recombination and binding on liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Jochemsen, R.; Morrow, M.; Berlinsky, A.J.; Hardy, W.N. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)

    1982-07-01

    Magnetic resonance studies at zero field are reported for atomic hydrogen gas confined in a closed glass bulb with helium-coated walls for T<1 K in a dilution refrigerator. Low-energy r.f. discharge pulses have been used to produce H atoms at temperatures as low as T=0.06 K. The atom density nsub(H) (10/sup 9/temperatures recombination is dominated by the process H+H+wall..-->..H/sub 2/+wall. From the temperature dependence of the rate constant K we have determined the binding energy of H on liquid /sup 4/He and /sup 3/He, and also the cross section for recombination on the surface.

  8. Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low-temperature storage.

    Science.gov (United States)

    Mizuno, M; Kamei, M; Tsuchida, H

    1998-04-01

    We investigated the behavior of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APx), in potato tubers during storage at low temperature. SOD activity increased temporarily within 3 weeks and was higher at 1 degree C than at 20 degrees C. APx activity also increased more at low (1 degree C) than at higher temperatures (5 and 20 degrees C). The contents of ascorbic acid (AsA), which is the substrate of APx, decreased immediately within 3 weeks and then gradually decreased until 15 weeks. The activity of CAT, the other enzyme which can scavenge hydrogen peroxide, decreased once in the first six weeks and thereafter increased to 15 weeks. Thus, the enhancement of the active oxygen-scavenging system that was induced by low temperature in potato tubers could result not only in a decrease of AsA but also in combined increases in APx and CAT activity whose manners were different.

  9. Effect of pyrolytic temperature on the properties of TiO2/ITO films for hydrogen sensing.

    Science.gov (United States)

    Vijayalakshmi, K; Jereil, S David; Karthick, K

    2015-03-05

    Titanium dioxide (TiO2) thin films were prepared on ITO (222) coated glass substrates by spray pyrolysis technique. The influence of substrate temperature on the orientation, phase, vibrational bands and band gap energy of TiO2 films were discussed. The X-ray diffraction patterns of the films revealed preferentially oriented (101) TiO2 anatase phase at the substrate temperature of 300°C and 350°C. Fourier transform infrared spectra of the films showed the significant sharpening of absorption band at ∼645cm(-1) with increase in substrate temperature, which clearly indicates the formation of anatase phase dependent on substrate temperature. Fourier Raman Spectra of the films showed the significant presence of long range order anatase TiO2 phase. The optical measurements of the film prepared at different substrate temperatures revealed the direct band gap of 3.15-3.63eV and indirect band gap of 3.48-3.73eV, characteristic of TiO2 anatase phase. To understand the enhancement of sensing performances of TiO2 films with substrate temperature, the gas sensing mechanism of the films towards 400sccm of hydrogen at room temperature was studied and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Fabrication of Pt/Ti/TiO2 Photoelectrodes by RF-Magnetron Sputtering for Separate Hydrogen and Oxygen Production

    Directory of Open Access Journals (Sweden)

    Gian Luca Chiarello

    2016-04-01

    Full Text Available Evolution of pure hydrogen and oxygen by photocatalytic water splitting was attained from the opposite sides of a composite Pt/Ti/TiO2 photoelectrode. The TiO2 films were prepared by radio frequency (RF-Magnetron Sputtering at different deposition time ranging from 1 up to 8 h and then characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and ultraviolet-visible-near infrared (UV-vis-NIR diffuse reflectance spectroscopy. The photocatalytic activity was evaluated by incident photon to current efficiency (IPCE measurements and by photocatalytic water splitting measurements in a two-compartment cell. The highest H2 production rate was attained with the photoelectrode prepared by 6 h-long TiO2 deposition thanks to its high content in the rutile polymorph, which is active under visible light. By contrast, the photoactivity dropped for longer deposition time, because of the increased probability of electron-hole recombination due to the longer electron transfer path.

  11. Room temperature hydrogen sensing with the graphite/ZnO nanorod junctions decorated with Pt nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan; Gladkov, Petar; Černohorský, Ondřej; Vaniš, Jan; Maixner, J.; Dickerson, J.H.

    2016-01-01

    Roč. 116, February (2016), s. 124-129 ISSN 0038-1101 R&D Projects: GA MŠk(CZ) LD14111; GA ČR(CZ) GA15-17044S Institutional support: RVO:67985882 Keywords : Graphite based junction * Hydrogen sensor * Electrophoretic deposition Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.580, year: 2016

  12. An efficient on-board metal-free nanocatalyst for controlled room temperature hydrogen production.

    Science.gov (United States)

    Santra, Saswati; Das, Debanjan; Das, Nirmalya Sankar; Nanda, Karuna Kar

    2017-04-01

    Positively charged functionalized carbon nanodots (CNDs) with a variety of different effective surface areas (ESAs) are synthesized via a cheap and time effective microwave method and applied for the generation of hydrogen via hydrolysis of sodium borohydride. To the best of our knowledge, this is the first report of metal-free controlled hydrogen generation. Our observation is that a positively charged functional group is essential for the hydrolysis for hydrogen production, but the overall activity is found to be enhanced with the ESA. A maximum value of 1066 ml g(-1) min(-1) as the turnover frequency is obtained which is moderate in comparison to other catalysts. However, the optimum activation energy is found to be 22.01 kJ mol(-1) which is comparable to well-known high cost materials like Pt and Ru. All of the samples showed good reusability and 100% conversion even after the 10th cycle. The effect of H(+) and OH(-) is also studied to control the on-board and on-demand hydrogen production ("on-off switching"). It is observed that H2 production decreases inversely with NaOH concentration and ceases completely when 10(-1) M NaOH is added. With the addition of HCl, H2 production can be initiated again, which confirms the on/off control over production.

  13. Low Temperature Curing of Hydrogen Silsesquioxane Surface Coatings for Corrosion Protection of Aluminum

    DEFF Research Database (Denmark)

    Lampert, Felix; Jensen, Annemette Hindhede; Møller, Per

    2016-01-01

    Hydrogen Silsesquioxane (HSQ) has shown to be a promising precursor for corrosion protective glass coatings for metallic substrates due to the excellent barrier properties of the films, especially in the application of protective coatings for aluminum in the automotive industry where high chemical...... on aluminum substrates to evaluate the adhesion and corrosion resistance of the films....

  14. Hydrogen-Based Energy Conservation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sustainable Innovations is developing a technology for efficient separation and compression of hydrogen gas. The electrochemical hydrogen separator and compressor...

  15. Effect of freezing temperature in thermally induced phase separation method in hydroxyapatite/chitosan-based bone scaffold biomaterial

    Science.gov (United States)

    Albab, Muh Fadhil; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    In the current study, hydroxyapatite (HA)/chitosan-based bone scaffold has been fabricated using Thermally Induced Phase Separation (TIPS) method under freezing temperature variation of -20, -30, -40 and -80 °C. The samples with weight percent ratio of 70% HA and 30% chitosan were homogeneously mixed and subsequently dissolved in 2% acetic acid. The synthesized samples were further characterized using Fourier transform infrared (FTIR), compressive test and scanning electron microscope (SEM). The investigation results showed that low freezing temperature reduced the pore size and increased the compressive strength of the scaffold. In the freezing temperature of -20 °C, the pore size was 133.93 µm with the compressive strength of 5.9 KPa, while for -80 °C, the pore size declined to 60.55 µm with the compressive strength 29.8 KPa. Considering the obtained characteristics, HA/chitosan obtained in this work has potential to be applied as a bone scaffold.

  16. Dual fluorescent polyaniline model compounds: steric and temperature effects on excited state charge separation.

    Science.gov (United States)

    Kapelle, Sabine; Rettig, Wolfgang; Lapouyade, René

    2002-07-01

    Low temperature dual fluorescence of several derivatives of 4-aminodiphenylamine is investigated quantitatively. A strong thermochromic and solvatochromic redshift is indicative of the high dipole moment of the CT state emitting at long wavelength. The combination of steady state and time-resolved data allowed the calculation of the excited-state equilibrium. The absence of CT-risetimes in diethyl ether and their presence in butyronitrile points to the complication by additional ground state conformational equilibria. Both ground and excited state equilibria depend on solvent polarity and temperature. High solvent polarity favours one of the ground state conformers.

  17. Hydrogen Bonding-Mediated Microphase Separation during the Formation of Mesoporous Novolac-Type Phenolic Resin Templated by the Triblock Copolymer, PEO-b-PPO-b-PEO.

    Science.gov (United States)

    Chu, Wei-Cheng; Chiang, Shih-Fan; Li, Jheng-Guang; Kuo, Shiao-Wei

    2013-11-07

    After blending the triblock copolymer, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-b-PPO-b-PEO) with novolac-type phenolic resin, Fourier transform infrared spectroscopy revealed that the ether groups of the PEO block were stronger hydrogen bond acceptors for the OH groups of phenolic resin than were the ether groups of the PPO block. Thermal curing with hexamethylenetetramine as the curing agent resulted in the triblock copolymer being incorporated into the phenolic resin, forming a nanostructure through a mechanism involving reaction-induced microphase separation. Mild pyrolysis conditions led to the removal of the PEO-b-PPO-b-PEO triblock copolymer and formation of mesoporous phenolic resin. This approach provided a variety of composition-dependent nanostructures, including disordered wormlike, body-centered-cubic spherical and disorder micelles. The regular mesoporous novolac-type phenolic resin was formed only at a phenolic content of 40-60 wt %, the result of an intriguing balance of hydrogen bonding interactions among the phenolic resin and the PEO and PPO segments of the triblock copolymer.

  18. Hydrogen Bonding-Mediated Microphase Separation during the Formation of Mesoporous Novolac-Type Phenolic Resin Templated by the Triblock Copolymer, PEO-b-PPO-b-PEO

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Chu

    2013-11-01

    Full Text Available After blending the triblock copolymer, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide (PEO-b-PPO-b-PEO with novolac-type phenolic resin, Fourier transform infrared spectroscopy revealed that the ether groups of the PEO block were stronger hydrogen bond acceptors for the OH groups of phenolic resin than were the ether groups of the PPO block. Thermal curing with hexamethylenetetramine as the curing agent resulted in the triblock copolymer being incorporated into the phenolic resin, forming a nanostructure through a mechanism involving reaction-induced microphase separation. Mild pyrolysis conditions led to the removal of the PEO-b-PPO-b-PEO triblock copolymer and formation of mesoporous phenolic resin. This approach provided a variety of composition-dependent nanostructures, including disordered wormlike, body-centered-cubic spherical and disorder micelles. The regular mesoporous novolac-type phenolic resin was formed only at a phenolic content of 40–60 wt %, the result of an intriguing balance of hydrogen bonding interactions among the phenolic resin and the PEO and PPO segments of the triblock copolymer.

  19. Effects of temperature on stress corrosion cracking behavior of stainless steel and outer oxide distribution in cracks due to exposure to high-temperature water containing hydrogen peroxide

    Science.gov (United States)

    Nakano, Junichi; Sato, Tomonori; Kato, Chiaki; Yamamoto, Masahiro; Tsukada, Takashi; Kaji, Yoshiyuki

    2014-01-01

    Cracking growth tests were conducted in high-temperature water containing hydrogen peroxide (H2O2) at 561-423 K to evaluate the effects of H2O2 on stress corrosion cracking (SCC) of stainless steel (SS) at temperature lower than the boiling water reactor (BWR) operating temperature. Small compact tension (CT) specimens were prepared from thermally sensitized type 304 SS. Despite the observation of only a small portion intergranular SCC (IGSCC) near the side groove of the CT specimen at 561 K in high-temperature water containing 100 ppb H2O2, the IGSCC area expanded to the central region of the CT specimens at 423 and 453 K. Effects of H2O2 on SCC appeared intensely at temperature lower than the BWR operating temperature because of a reduction in the thermal decomposition of H2O2. To estimate the environment in the cracks, outer oxide distribution on the fracture surface and the fatigue pre-crack were examined by laser Raman spectroscopy and thermal equilibrium calculation was performed.

  20. Adsorption and separation of methane/hydrogen in octaphenylsilsesquioxane based covalently-linked organic-inorganic hybrid framework

    Science.gov (United States)

    Li, Xiao-Dong; Zhang, Hong; Tang, Yong-Jian; Wang, Chao-Yang

    2012-08-01

    The adsorption and separation of CH4/H2 in two covalently-linked organic-inorganic hybrid frameworks polyoctaphenylsilsesquioxane (JUC-Z1) were computationally studied using the Grand Canonical Monte Carlo (GCMC) simulations. The results show that JUC-Z1 with Linde type A (LTA) and polycubane (zeolite code ACO) net topologies can adsorb up to 20.32, 18.57 mmol/g of CH4 and 19.04, 17.89 mmol/g of H2 at 298 K and 10 MPa, respectively. For the adsorption of binary mixture, the selectivity of CH4 over H2 in LTA-JUC-Z1 decrease gradually with the increase of the pressure or the CH4 mole fraction of the mixture. As to ACO-JUC-Z1, the selectivity first increases at low pressure or CH4 mole fraction, and then begins to decrease with the further increase of the corresponding amount. Anyhow, the two materials both exhibit excellent adsorption and separation capacities of CH4/H2.

  1. Dynamic Simulation of Temperature Transition on the Secondary Helium Loop of a VHTR-SI Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ji Woon; Shin, Young Joon; Lee, Tae Hoon; Lee, Ki Young; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Youn, Cheong [Chungnam National University, Daejeon (Korea, Republic of)

    2011-10-15

    A sulfur.iodine (SI) cycle coupled to a Very High Temperature Gas Cooled Reactor (VHTR) is one of the leading candidates of thermochemical cycles for hydrogen production. The SI cycle can be divided into three sections based on the chemical reactions: a Bunsen reaction (Section 1), sulfuric acid concentration and decomposition (Section 2), and a hydrogen iodine concentration and decomposition (Section 3). The heat required in the SI cycle can be supplied through an intermediate heat exchanger (IHX) by the VHTR. On the other hand, helium is used as a high-temperature energy carrier gas between the VHTR and the IHX or IHX and the SI cycle. In the SI cycle, the chemical reactors that receive thermal energy from the helium are a sulfuric acid vaporizer, sulfuric acid decomposer, sulfuric trioxide decomposer, and hydriodic acid decomposer including a pre-heating part. To simulate the dynamic behavior of the VHTR-SI cycle, the Korea Atomic Energy Research Institute -Dynamic Simulation Code (KAERI-DySCo) based on the Visual C++ has been prepared by the KAERI research group in 2010. KAERI-DySCo is integration application software, which includes several code modules that can solve the dynamic problem of the seven chemical reactors in the VHTR-SI cycle. In this paper, the dynamic behavior of the temperature transition on the secondary helium loop of the SI cycle has been simulated using KAERI-DySCo

  2. Optical cell for combinatorial in situ Raman spectroscopic measurements of hydrogen storage materials at high pressures and temperatures.

    Science.gov (United States)

    Hattrick-Simpers, Jason R; Hurst, Wilbur S; Srinivasan, Sesha S; Maslar, James E

    2011-03-01

    An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storage materials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element lenses. For combinatorial investigations, up to 19 individual powder samples can be loaded into the optical cell at one time. This cell design is also compatible with thin-film samples. To demonstrate the capabilities of the cell, in situ measurements of the Ca(BH(4))(2) and nano-LiBH(4)-LiNH(2)-MgH(2) hydrogen storage systems at elevated temperatures and pressures are reported.

  3. Optical cell for combinatorial in situ Raman spectroscopic measurements of hydrogen storage materials at high pressures and temperatures

    Science.gov (United States)

    Hattrick-Simpers, Jason R.; Hurst, Wilbur S.; Srinivasan, Sesha S.; Maslar, James E.

    2011-03-01

    An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storage materials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element lenses. For combinatorial investigations, up to 19 individual powder samples can be loaded into the optical cell at one time. This cell design is also compatible with thin-film samples. To demonstrate the capabilities of the cell, in situ measurements of the Ca(BH4)2 and nano-LiBH4-LiNH2-MgH2 hydrogen storage systems at elevated temperatures and pressures are reported.

  4. Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, Stephane; Flamant, Gilles [Processes, Materials, and Solar Energy Laboratory, CNRS (PROMES-CNRS, UPR 8521), 7 Rue du Four Solaire, 66120 Odeillo Font-Romeu (France)

    2007-07-15

    A high-temperature fluid-wall solar reactor was developed for the production of hydrogen from methane cracking. This laboratory-scale reactor features a graphite tubular cavity directly heated by concentrated solar energy, in which the reactive flowing gas dissociates to form hydrogen and carbon black. The solar reactor characterization was achieved with: (a) a thorough experimental study on the reactor performance versus operating conditions and (b) solar reactor modeling. The results showed that the conversion of CH{sub 4} and yield of H{sub 2} can exceed 97% and 90%, respectively, and these depend strongly on temperature and on fluid-wall heat transfer and reaction surface area. In addition to the experimental study, a 2D computational model coupling transport phenomena was developed to predict the mapping of reactor temperature and of species concentration, and the reaction extent at the outlet. The model was validated and kinetics of methane decomposition were identified from simulations and comparison to experimental results. (author)

  5. Chemical composition separation of a propylene-ethylene random copolymer by high temperature solvent gradient interaction chromatography.

    Science.gov (United States)

    Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald

    2017-11-03

    A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Development of gas temperature probes for 1700 degrees C hydrogen-combustion turbine combustors; 1700 degrees C suiso nensho turbine yo nenshokino gas ondo keisoku probe no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Nishida, H.; Kasai, Y.; Fukahori, O. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Murayama, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Dodo, S. [Hitachi, Ltd., Tokyo (Japan)

    2000-05-20

    In the development of the Hydrogen-oxygen combustor for 1700 degrees C Hydrogen-combustion turbines, it is important to measure gas temperature distribution at combustor outlet where local temperatures are estimated over 1800 degrees C in order to evaluate the performance of combustors. Multi point gas temperature probes consisting of Pt/Rh 40% Pt/Rh 20% thermocouples are developed to measure gas temperature distribution in the combustion tests of the Hydrogen-Oxygen combustors. Two types of probes no cooled and water-cooled, are designed and tested on the high pressure combustion tests. The test results demonstrate that the water-cooled type probes enable us to measure local gas temperatures up to 1850 degrees C in 2.5 Mpa, 130 m/s steam flow, and are applicable to the combustion tests of the combustor. (author)

  7. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  8. Imaging correlated three-particle continuum states. Experiment and theory on the non-adiabatic projection of bound triatomic hydrogen into three separated atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fechner, Peer Cornelis

    2015-07-21

    The central topic of this thesis is the experimental observation and the theoretical modeling of non-adiabatic three-body dissociation of H{sub 3} and D{sub 3} neutral triatomic hydrogen molecules. Our goal is to lend a meaning to the observed momentum vector correlation (MVC) of the three emerging ground state hydrogen atoms, for example H{sub 3}→H(1s)+H(1s)+H(1s), in terms of symmetries of the nuclear molecular wave function and of the non-adiabatic coupling which initiates this decay. In many experiments carried out over the years, a wealth of state specific MVCs was collected by different research groups. The MVCs are imaged in form of so-called Dalitz plots which show a rich structure of maxima and nodal lines, depending on the initial state of the triatomic hydrogen neutral. Theory was slow to catch up with experiment and only by this year, 2015, a general agreement was accomplished. Nevertheless, these models lack of an easy understanding of the underlying physics as many numerical calculations are involved. The theoretical model presented in this thesis follows a different approach which is more guided by the imaging character of our experiments. We concentrate on a rather qualitative treatment by limiting ourselves to the essential ingredients only. This proceeding contributes to giving a physical interpretation of the structures in the Dalitz plots in the following form: Three-particle coincident imaging offers a direct view of the emerging spatial continuum wave function of a predissociating triatomic molecule as it evolves from molecular spatial dimensions into the realm of independent free particles. This latter result is discussed in the context of the so-called Imaging Theorem, the second main part of this work. A third major part of this thesis pertains to obtaining molecular momentum wave functions in separated degrees-of-freedom via Fourier transformation. Even for triatomic hydrogen - the most simple polyatomic molecule - this is a challenging

  9. Two-temperature equilibration in warm dense hydrogen measured with x-ray scattering from the LCLS

    Science.gov (United States)

    Fletcher, Luke; High Energy Density Sciences Collaboration

    2017-10-01

    Understanding the properties of warm dense hydrogen plasmas is critical for modeling stellar and planetary interiors, as well as for inertial confinement fusion (ICF) experiments. Of central importance are the electron-ion collision and equilibration times that determine the microscopic properties in a high energy density state. Spectrally and angularly resolved x-ray scattering measurements from fs-laser heated hydrogen have resolved the picosecond evolution and energy relaxation from a two-temperature plasma towards thermodynamic equilibrium in the warm dense matter regime. The interaction of rapidly heated cryogenic hydrogen irradiated by a 400 nm, 5x1017 W/cm2 , 70 fs-laser is visualized with ultra-bright 5.5 kev x-ray pulses from the Linac Coherent Light (LCLS) source in 1 Hz repetition rate pump-probe setting. We demonstrate that the energy relaxation is faster than many classical binary collision theories that use ad hoc cutoff parameters used in the Landau-Spitzer determination of the Coulomb logarithm. This work was supported by the DOE Office of Science, Fusion Energy Science under contract No. SF00515 and supported under FWP 100182 and DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, contract DE-AC02-76SF00515.

  10. DGGE analysis of buffalo manure eubacteria for hydrogen production: effect of pH, temperature and pretreatments.

    Science.gov (United States)

    Carillo, Petronia; Carotenuto, Claudia; Di Cristofaro, Filomena; Kafantaris, Ioannis; Lubritto, Carmine; Minale, Mario; Morrone, Biagio; Papa, Stefania; Woodrow, Pasqualina

    2012-12-01

    Buffalo dung is a low-cost substrate with plenty of carbohydrates, an optimal carbon/nitrogen ratio, and a rich microbial flora, and could become a valuable source of biogas. Therefore, in the present study we compared the type and amount of specific eubacteria to the different configurations of pH, temperature and thermal pretreatment after fermentation in batch reactors in order to understand the suitability of buffalo manure for hydrogen production. The phylogenetic structure of the microbial community in fermentation samples was studied using denaturing gradient gel electrophoresis to generate fingerprints of 16S rRNA genes. The sequences analysis revealed abundance of the phyla Bacteroidetes and Firmicutes, and in particular of the order Clostridiales. Very active hydrogen producing bacteria belonging to Clostridium cellulosi species were identified demonstrating the suitability of this substrate to produce hydrogen. Moreover, a large fraction of 16S-rDNA amplicons could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms involved in anaerobic fermentation in digesters or bioreactors are still unclassified or unknown.

  11. Hydrogen-Free Liquid-Helium Recovery Plants: The Solution for Low-Temperature Flow Impedance Blocking

    Science.gov (United States)

    Gabal, M.; Arauzo, A.; Camón, A.; Castrillo, M.; Guerrero, E.; Lozano, M. P.; Pina, M. P.; Sesé, J.; Spagna, S.; Diederichs, J.; Rayner, G.; Sloan, J.; Galli, F.; van der Geest, W.; Haberstroh, C.; Dittmar, N.; Oca, A.; Grau, F.; Fernandes, A.; Rillo, C.

    2016-08-01

    The blocking of fine-capillary tubes used as flow impedances in 4H3 evaporation cryostats to achieve temperatures below 4.2 K is generally attributed to nitrogen or air impurities entering these tubes from the main bath. The failure of even the most rigorous low-temperature laboratory best practices aimed at eliminating the problem by maintaining the cleanliness of the helium bath and preventing impurities from entering the capillary tubes suggests that a different cause is responsible for the inexplicable reduction of impedance flow. Many low-temperature research laboratories around the world have suffered this nuisance at a considerable financial cost due to the fact that the affected systems have to be warmed to room temperature in order to recover their normal low-temperature operation performance. Here, we propose an underlying physical mechanism responsible for the blockages based upon the freezing of molecular H2 traces present in the liquid-helium bath. Solid H2 accumulates at the impedance low-pressure side, and, after some time, it produces a total impedance blockage. The presence of H2 traces is unavoidable due its occurrence in the natural gas wells where helium is harvested, forcing gas suppliers to specify a lower bound for impurity levels at about 100 ppb even in high-grade helium. In this paper, we present a simple apparatus to detect hydrogen traces present in liquid helium and easily check the quality of the liquid. Finally, we propose a solution to eliminate the hydrogen impurities in small- and large-scale helium recovery plants. The solution has been implemented in several laboratories that previously experienced a chronic occurrence of blocking, eliminating similar occurrences for more than one year.

  12. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph.

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, Richard D. (University of Michigan, Ann Arbor, MI); Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Lambertus, Gordon R. (University of Michigan, Ann Arbor, MI); Potkay, Joseph A. (University of Michigan, Ann Arbor, MI); Wise, Kensall D. (University of Michigan, Ann Arbor, MI)

    2006-10-01

    This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

  13. Ruthenium–nickel–nickel hydroxide nanoparticles for room temperature catalytic hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua; Shan, Shiyao; Petkov, Valeri; Hu, Weiwei; Kroner, Anna; Zheng, Jinbao; Yu, Changlin; Zhang, Nuowei; Li, Yunhua; Luque, Rafael; Zhong, Chuan-Jian; Ye, Hengqiang; Yang, Zhiqing; Chen, Bing H.

    2017-01-01

    Improving the utilization of metals in heterogeneous catalysts with excellent catalytic performance, high selectivity and good stability represents a major challenge. Herein a new strategy is disclosed by enabling a nanoscale synergy between a transition metal and a noble metal. A novel Ru/Ni/Ni(OH)2/C catalyst, which is a hybrid of Ru nanoclusters anchored on Ni/Ni(OH)2 nanoparticles (NPs), was designed, prepared and characterized. The Ru/Ni/Ni(OH)2/C catalyst exhibited a remarkable catalytic activity for naphthalene hydrogenation in comparison with existing Ru/C, Ni/Ni(OH)2/C and Ru–Ni alloy/C catalysts. This is mainly attributed to the interfacial Ru, Ni and Ni(OH)2 sites of Ru/Ni/Ni(OH)2/C, where hydrogen is adsorbed and activated on Ru while Ni transfers the activated hydrogen species (as a “bridge”) to the activated naphthalene on Ni(OH)2 sites, producing decalin through a highly effective pathway.

  14. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures

    OpenAIRE

    He, Feng; Wang, Zhijun; Wu, Qingfeng; Li, Junjie; Wang, Jincheng; Liu, C T

    2016-01-01

    The CoCrFeNi alloy is widely accepted as an exemplary stable base for high entropy alloys (HEAs). Although various investigations prove it to be stable solid solution, its phase stability is still suspicious. Here, we identified that the CoCrFeNi HEA was thermally metastable at intermediate temperatures, and composition decomposition occurred after annealed at 750oC for 800 hrs. The increased lattice distortion induced by minor addition of Al into the CoCrFeNi base accelerated the composition...

  15. Adiabatic wall temperature and heat transfer coefficient influenced by separated supersonic flow

    Directory of Open Access Journals (Sweden)

    Leontiev Alexander

    2017-01-01

    Full Text Available Investigations of supersonic air flow around plane surface behind a rib perpendicular to the flow direction are performed. Research was carried out for free stream Mach number 2.25 and turbulent flow regime - Rex>2·107. Rib height was varied in range from 2 to 8 mm while boundary layer thickness at the nozzle exit section was about 6 mm. As a result adiabatic wall temperature and heat transfer coefficient are obtained for flow around plane surface behind a rib incontrast with the flow around plane surface without any disturbances.

  16. Application of hydrogenation to low-temperature cleaning of the Si(001) surface in the processes of molecular-beam epitaxy: Investigation by scanning tunneling microscopy, reflected high-energy electron diffraction, and high resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arapkina, L. V.; Krylova, L. A.; Chizh, K. V.; Chapnin, V. A.; Uvarov, O. V.; Yuryev, V. A. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation)

    2012-07-01

    Structural properties of the clean Si(001) surface obtained as a result of low-temperature (470-650 Degree-Sign C) pre-growth annealings of silicon wafers in a molecular-beam epitaxy chamber have been investigated. To decrease the cleaning temperature, a silicon surface was hydrogenated in the process of a preliminary chemical treatment in HF and NH{sub 4}F aqueous solutions. It has been shown that smooth surfaces composed of wide terraces separated by monoatomic steps can be obtained by dehydrogenation at the temperatures Greater-Than-Or-Equivalent-To 600 Degree-Sign C, whereas clean surfaces obtained at the temperatures <600 Degree-Sign C are rough. It has been found that there exists a dependence of structural properties of clean surfaces on the temperature of hydrogen thermal desorption and the process of the preliminary chemical treatment. The frequency of detachment/attachment of Si dimers from/to the steps and effect of the Ehrlich-Schwoebel barrier on ad-dimer migration across steps have been found to be the most probable factors determining a degree of the resultant surface roughness.

  17. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.

    Science.gov (United States)

    Tao, Li; Lee, Jongho; Chou, Harry; Holt, Milo; Ruoff, Rodney S; Akinwande, Deji

    2012-03-27

    We report new findings on the chemical vapor deposition (CVD) of monolayer graphene with negligible defects (≥95% negligible defect-peak over 200 μm × 200 μm areas) on evaporated copper films. Compared to copper foils used in the CVD of graphene, several new unexpected results have been observed including high-quality monolayer synthesis at temperatures graphene grains on underlying copper grains. These thermal, chemical, and physical growth characteristics of graphene on copper films can be attributed to the distinct differences in the dominant crystal orientation of copper films (111) versus foils (100), and consequent dissimilar interplay with the precursor gas. This study suggests that reduced temperature, hydrogen-free synthesis of defect-negligible monolayer graphene is feasible, with the potential to shape and scale graphene grains by controlling the size and crystal orientation of the underlying copper grains. © 2012 American Chemical Society

  18. An investigation of the distal histidyl hydrogen bonds in oxyhemoglobin: effects of temperature, pH, and inositol hexaphosphate.

    Science.gov (United States)

    Yuan, Yue; Simplaceanu, Virgil; Ho, Nancy T; Ho, Chien

    2010-12-21

    On the basis of X-ray crystal structures and electron paramagnetic resonance (EPR) measurements, it has been inferred that the O(2) binding to hemoglobin is stabilized by the hydrogen bonds between the oxygen ligands and the distal histidines. Our previous study by multinuclear nuclear magnetic resonance (NMR) spectroscopy has provided the first direct evidence of such H-bonds in human normal adult oxyhemoglobin (HbO(2) A) in solution. Here, the NMR spectra of uniformly (15)N-labeled recombinant human Hb A (rHb A) and five mutant rHbs in the oxy form have been studied under various experimental conditions of pH and temperature and also in the presence of an organic phosphate, inositol hexaphosphate (IHP). We have found significant effects of pH and temperature on the strength of the H-bond markers, i.e., the cross-peaks for the side chains of the two distal histidyl residues, α58His and β63His, which form H-bonds with the O(2) ligands. At lower pH and/or higher temperature, the side chains of the distal histidines appear to be more mobile, and the exchange with water molecules in the distal heme pockets is faster. These changes in the stability of the H-bonds with pH and temperature are consistent with the changes in the O(2) affinity of Hb as a function of pH and temperature and are clearly illustrated by our NMR experiments. Our NMR results have also confirmed that this H-bond in the β-chain is weaker than that in the α-chain and is more sensitive to changes in pH and temperature. IHP has only a minor effect on these H-bond markers compared to the effects of pH and temperature. These H-bonds are sensitive to mutations in the distal heme pockets but not affected directly by the mutations in the quaternary interfaces, i.e., α(1)β(1) and/or α(1)β(2) subunit interface. These findings provide new insights regarding the roles of temperature, hydrogen ion, and organic phosphate in modulating the structure and function of hemoglobin in solution.

  19. Development of a nuclear magnetic resonance system for in situ analysis of hydrogen storage materials under high pressures and temperatures.

    Science.gov (United States)

    Hashimoto, S; Noda, Y; Maekawa, H; Takamura, H; Fujito, T; Moriya, J; Ikeda, T

    2010-10-01

    A NMR system for in situ analysis of hydrogen storage materials under high pressure and temperature conditions was developed. The system consists of a gas pressure and flow rate controlling unit, a temperature controller, a high temperature NMR probe tunable for both (1)H and other nuclei, and a sample tube holder. Sample temperature can be controlled up to 623 K by heated N(2) gas flow. Sample tube atmosphere can be substituted by either H(2) or Ar and can be pressurized up to 1 MPa under constant flow rate up to 100 ml/min. During the NMR measurement, the pressure can be adjusted easily by just handle a back pressure valve. On the blank NMR measurement, (1)H background noise was confirmed to be very low. (1)H and (11)B NMR spectrum of LiBH(4) were successfully observed at high temperature for the demonstration of the system. The intensity of the (1)H NMR spectra of H(2) gas was also confirmed to be proportional to the applied pressure.

  20. Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Desquines, J., E-mail: jean.desquines@irsn.fr; Drouan, D.; Billone, M.; Puls, M.P.; March, P.; Fourgeaud, S.; Getrey, C.; Elbaz, V.; Philippe, M.

    2014-10-15

    Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450 °C with hydrogen contents ranging between 50 and 600 wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100 wppm had the lowest ductility.

  1. Crack growth behavior of warm-rolled 316L austenitic stainless steel in high-temperature hydrogenated water

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Yoo, Seung Chang [Department of Nuclear Science and Engineering, School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919 (Korea, Republic of); Jin, Hyung-Ha; Kwon, Junhyun; Choi, Min-Jae; Hwang, Seong Sik [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute (KAERI), 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Department of Nuclear Science and Engineering, School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919 (Korea, Republic of)

    2016-08-01

    To investigate the effects of warm rolling on the crack growth of 316L austenitic stainless steel, the crack growth rate was measured and the oxide structure was characterized in high-temperature hydrogenated water. The warm-rolled specimens showed a higher crack growth rate compared to the as-received specimens because the slip bands and dislocations produced during warm rolling served as paths for corrosion and cracking. The crack growth rate increased with the dissolved hydrogen concentration. This may be attributed to the decrease in performance and stability of the protective oxide layer formed on the surface of stainless steel in high-temperature water. - Highlights: • 316L Stainless steels were used for the study of crack growth behavior in PWR water. • Warm rolling was applied to simulate the irradiation hardening of stainless steels. • DH concentration was changed to see the effect on crack growth and oxide structure. • Warm-rolled stainless steels showed higher rates of corrosion and crack growth. • Higher DH concentration also promoted the rates of corrosion and crack growth.

  2. Enhanced TiC/SiC Ohmic contacts by ECR hydrogen plasma pretreatment and low-temperature post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bingbing [School of Electronic Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Qin, Fuwen [State Key Laboratory of Material Modification by Laser, Ion and Electron Beam (Ministry of Education), Dalian University of Technology, Dalian 116024 (China); Wang, Dejun, E-mail: dwang121@dlut.edu.cn [School of Electronic Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-11-15

    Highlights: • Low-temperature ECR microwave hydrogen plasma were pretreated for moderately doped (1 × 10{sup 18} cm{sup −3}) SiC surfaces. • The relationship among Ohmic properties, the SiC surface properties and TiC/SiC interface properties were established. • Interface band structures were analyzed to elucidate the mechanism by which the Ohmic contacts were formed. - Abstract: We proposed an electronic cyclotron resonance (ECR) microwave hydrogen plasma pretreatment (HPT) for moderately doped (1 × 10{sup 18} cm{sup −3}) SiC surfaces and formed ideal TiC/SiC Ohmic contacts with significantly low contact resistivity (1.5 × 10{sup −5} Ω cm{sup 2}) after low-temperature annealing (600 °C). This is achieved by reducing barrier height at TiC/SiC interface because of the release of pinned Fermi level by surface flattening and SiC surface states reduction after HPT, as well as the generation of donor-type carbon vacancies, which reduced the depletion-layer width for electron tunneling after annealing. Interface band structures were analyzed to elucidate the mechanism of Ohmic contact formations.

  3. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst

    Science.gov (United States)

    Tedsree, Karaked; Li, Tong; Jones, Simon; Chan, Chun Wong Aaron; Yu, Kai Man Kerry; Bagot, Paul A. J.; Marquis, Emmanuelle A.; Smith, George D. W.; Tsang, Shik Chi Edman

    2011-05-01

    Formic acid (HCOOH) has great potential as an in situ source of hydrogen for fuel cells, because it offers high energy density, is non-toxic and can be safely handled in aqueous solution. So far, there has been a lack of solid catalysts that are sufficiently active and/or selective for hydrogen production from formic acid at room temperature. Here, we report that Ag nanoparticles coated with a thin layer of Pd atoms can significantly enhance the production of H2 from formic acid at ambient temperature. Atom probe tomography confirmed that the nanoparticles have a core-shell configuration, with the shell containing between 1 and 10 layers of Pd atoms. The Pd shell contains terrace sites and is electronically promoted by the Ag core, leading to significantly enhanced catalytic properties. Our nanocatalysts could be used in the development of micro polymer electrolyte membrane fuel cells for portable devices and could also be applied in the promotion of other catalytic reactions under mild conditions.

  4. Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation.

    Science.gov (United States)

    Mao, Yiyin; Li, Junwei; Cao, Wei; Ying, Yulong; Sun, Luwei; Peng, Xinsheng

    2014-03-26

    The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages.

  5. On-Line Hydrogen-Isotope Measurements of Organic Samples Using Elemental Chromium : An Extension for High Temperature Elemental-Analyzer Techniques

    NARCIS (Netherlands)

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A. J.; Brand, Willi A.; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by

  6. Salt effect in the solubility of hydrogen in n-alcohols at pressures up to 10 MPa and temperatures up to 498.15 K

    Directory of Open Access Journals (Sweden)

    J. V.H. d’Angelo

    2000-12-01

    Full Text Available Gas-liquid solubility of hydrogen in methanol and ethanol systems with electrolytes was studied in the temperature range from 305.15 K to 498.15 K and pressures from 4 to 10 MPa. The experimental method used was the Total Pressure Method, which eliminates sampling and analysis of the phases, determining their composition at equilibrium using the following experimental data: moles of solute and solvent in the system; pressure, temperature and volume of the system at equilibrium; together with thermodynamic equations for fluid-phase equilibria. The salts used were lithium chloride and potassium acetate. The solubility of hydrogen increases with increasing temperature and pressure and the presence of salts causes a decrease in the solubility of hydrogen, when compared with the results of systems without salts, characterizing a "salting-out" effect, which is greater in conditions of lower temperature and pressure, specially for potassium acetate.

  7. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S., E-mail: sroy27@gmail.com [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland); Materials Processing & Corrosion Engineering Division, Mod-Lab, D-Block, Bhabha Atomic Research Centre, Mumbai 400085 (India); Seifert, H.-P.; Spätig, P.; Que, Z. [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland)

    2016-09-15

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  8. Differential strand separation at critical temperature: A minimally disruptive enrichment method for low-abundance unknown DNA mutations

    Science.gov (United States)

    Guha, Minakshi; Castellanos-Rizaldos, Elena; Liu, Pingfang; Mamon, Harvey; Makrigiorgos, G. Mike

    2013-01-01

    Detection of low-level DNA variations in the presence of wild-type DNA is important in several fields of medicine, including cancer, prenatal diagnosis and infectious diseases. PCR-based methods to enrich mutations during amplification have limited multiplexing capability, are mostly restricted to known mutations and are prone to polymerase or mis-priming errors. Here, we present Differential Strand Separation at Critical Temperature (DISSECT), a method that enriches unknown mutations of targeted DNA sequences purely based on thermal denaturation of DNA heteroduplexes without the need for enzymatic reactions. Target DNA is pre-amplified in a multiplex reaction and hybridized onto complementary probes immobilized on magnetic beads that correspond to wild-type DNA sequences. Presence of any mutation on the target DNA forms heteroduplexes that are subsequently denatured from the beads at a critical temperature and selectively separated from wild-type DNA. We demonstrate multiplexed enrichment by 100- to 400-fold for KRAS and TP53 mutations at multiple positions of the targeted sequence using two to four successive cycles of DISSECT. Cancer and plasma-circulating DNA samples containing traces of mutations undergo mutation enrichment allowing detection via Sanger sequencing or high-resolution melting. The simplicity, scalability and reliability of DISSECT make it a powerful method for mutation enrichment that integrates well with existing downstream detection methods. PMID:23258702

  9. Compound-specific hydrogen isotope analysis of fluorine-, chlorine-, bromine- and iodine-bearing organics using gas chromatography-chromium-based high-temperature conversion (Cr/HTC) isotope ratio mass spectrometry.

    Science.gov (United States)

    Renpenning, Julian; Schimmelmann, Arndt; Gehre, Matthias

    2017-07-15

    The conventional high-temperature conversion (HTC) approach towards hydrogen compound-specific isotope analysis (CSIA) of halogen-bearing (F, Cl, Br, I) organics suffers from incomplete H2 yields and associated hydrogen isotope fractionation due to generation of HF, HCl, HBr, and HI byproducts. Moreover, the traditional off-line combustion of highly halogenated compounds results in incomplete recovery of water as an intermediary compound for hydrogen isotope ratio mass spectrometry (IRMS), and hence also leads to isotope fractionation. This study presents an optimized chromium-based high-temperature conversion (Cr/HTC) approach for hydrogen CSIA of various fluorinated, chlorinated, brominated and iodinated organic compounds. The Cr/HTC approach is fast, economical, and not affected by low H2 yields and associated isotope fractionation. The performance of the modified gas chromatography/chromium-based high-temperature conversion (GC-Cr/HTC) system was monitored and optimized using an ion trap mass spectrometer. Quantitative conversion of organic hydrogen into H2 analyte gas was achieved for all halogen-bearing compounds. The corresponding accuracy of CSIA was validated using (i) manual dual-inlet (DI)-IRMS after off-line conversion into H2 , and (ii) elemental analyzer (EA)-Cr/HTC-IRMS (on-line conversion). The overall hydrogen isotope analysis of F-, Cl-, Br- and I-bearing organics via GC-Cr/HTC-IRMS achieved a precision σ ≤ 3 mUr and an accuracy within ±5 mUr along the VSMOW-SLAP scale compared with the measured isotope compositions resulting from both validation methods, off-line and on-line. The same analytical performance as for single-compound GC-Cr/HTC-IRMS was achieved compound-specifically for mixtures of halogenated organics following GC separation to baseline resolution. GC-Cr/HTC technology can be implemented in existing analytical equipment using commercially available materials to provide a versatile tool for hydrogen CSIA of halogenated and non

  10. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-04

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  12. Reactions of atomic hydrogen with formic acid and carbon monoxide in solid parahydrogen I: Anomalous effect of temperature.

    Science.gov (United States)

    Paulson, Leif O; Mutunga, Fredrick M; Follett, Shelby E; Anderson, David T

    2014-09-11

    Low-temperature condensed phase reactions of atomic hydrogen with closed-shell molecules have been studied in rare gas matrices as a way to generate unstable chemical intermediates and to study tunneling-driven chemistry. Although parahydrogen (pH2) matrix isolation spectroscopy allows these reactions to be studied equally well, little is known about the analogous reactions conducted in a pH2 matrix host. In this study, we present Fourier transform infrared (FTIR) spectroscopic studies of the 193 nm photoinduced chemistry of formic acid (HCOOH) isolated in a pH2 matrix over the 1.7 to 4.3 K temperature range. Upon short-term irradiation the HCOOH readily undergoes photolysis to yield CO, CO2, HOCO, HCO and H atoms. Furthermore, after photolysis at 1.9 K tunneling reactions between migrating H atoms and trapped HCOOH and CO continue to produce HOCO and HCO, respectively. A series of postphotolysis kinetic experiments at 1.9 K with varying photolysis conditions and initial HCOOH concentrations show the growth of HOCO consistently follows single exponential (k = 4.9(7)x10(-3) min(-1)) growth kinetics. The HCO growth kinetics is more complex displaying single exponential growth under certain conditions, but also biexponential growth at elevated CO concentrations and longer photolysis exposures. By varying the temperature after photolysis, we show the H atom reaction kinetics qualitatively change at ∼2.7 K; the reaction that produces HOCO stops at higher temperatures and is only observed at low temperature. We rationalize these results using a kinetic mechanism that involves formation of an H···HCOOH prereactive complex. This study clearly identifies anomalous temperature effects in the reaction kinetics of H atoms with HCOOH and CO in solid pH2 that deserve further study and await full quantitative theoretical modeling.

  13. WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Tungsten carbide (WC) nanopowder was tested as a non-platinum cathode electrocatalyst for polymer electrolyte membrane (PEM) water electrolysers, operating at elevated temperatures. It was prepared in thermal plasma reactor with confined plasma jet from WO3 precursor in combination with CH4...... carburizing agent. The results of the investigation showed that the activity of tungsten carbide as cathode electrocatalyst increases significantly with temperature and this effect is more pronounced than for platinum, especially, at 150 °C....

  14. Recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation: process optimization and mineralogical study

    Science.gov (United States)

    Jiao, Rui-min; Xing, Peng; Wang, Cheng-yan; Ma, Bao-zhong; Chen, Yong-Qiang

    2017-09-01

    Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. Herein, the recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation was conducted; process optimization was carried out, and the corresponding mineralogy was investigated. The reduction time, reduction temperature, reducing agent (coal), calcium chloride additive, grinding time, and magnetic field intensity were examined for process optimization. Mineralogical analyses of the sample, reduced pellets, and magnetic concentrate under various conditions were performed by X-ray diffraction, optical microscopy, and scanning electron microscopy-energy-dispersive X-ray spectrometry to elucidate the iron reduction and growth mechanisms. The results indicated that the optimum parameters of iron recovery include a reduction temperature of 1150°C, a reduction time of 120 min, a coal dosage of 25%, a calcium chloride dosage of 2.5%, a magnetic field intensity of 100 mT, and a grinding time of 1 min. Under these conditions, the iron grade in the magnetic concentrate was greater than 90%, with an iron recovery ratio greater than 95%.

  15. Influence of temperature on the hydrogen evolution reaction on stainless steels in LiBr solution by means of polarization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Guinon Pina, V.; Igual-Munoz, A.; Garcia-Anton, J. [Valencia Univ. Politecnica, Dept. de Ingenieria Quimica y Nuclear. ETSI Industriales, Valencia (Spain)

    2009-07-01

    Lithium Bromide aqueous solutions used as absorbent in refrigeration machines can cause serious corrosion problems which also facilitate the hydrogen evolution reaction (HER) in the cathodic regions. Hydrogen formation is an important problem in the operating conditions of adsorption machines because they operate under low pressure conditions. Hydrogen generation makes pressure to increase and as a consequence efficiency decreases. Duplex Stainless Steels (DSS) are iron-based alloys with a two-phase microstructure: austenite and delta ferrite in approximately similar percentages. DSS find increasing use as an alternative to austenitic stainless steels, particularly where aggressive anions such as bromide are present in high concentrations. The objective of the present work is to study the effect of temperature on the hydrogen evolution reaction (HER) of two different stainless steels, Austenitic and Duplex steels, using different electrochemical techniques: Open Circuit Potential (OCP), potentiodynamic and galvano-static measurements and image digital analysis. The HER was studied in 992 g/l LiBr at three different temperatures (25, 50 and 75 C). The results showed that the electrocatalytic activity for the HER increased with temperature. The energy consumption for hydrogen generation on Austenitic Stainless Steel, UNS N08031, is lower than on Duplex Stainless Steel, EN 1.4462, at the studied temperatures. (authors)

  16. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Amanda [Pall Corporation, Port Washington, NY (United States); Zhao, Hongbin [Pall Corporation, Port Washington, NY (United States); Hopkins, Scott [Pall Corporation, Port Washington, NY (United States)

    2014-12-01

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  17. A Room-temperature Hydrogen Gas Sensor Using Palladium-decorated Single-Walled Carbon Nanotube/Si Heterojunction

    Directory of Open Access Journals (Sweden)

    Yong Gang DU

    2016-05-01

    Full Text Available We report a room-temperature (RT hydrogen gas (H2 sensor based on palladium-decorated single-walled carbon nanotube/Si (Pd-SWNTs/Si heterojunction. The current-voltage (I-V curves of the Pd-SWNTs/Si heterojunction in different concentrations of H2 were measured. The experimental results reveal that the Pd-SWNTs/Si heterojunction exhibits high H2 response. After exposure to 0.02 %, 0.05 %, and 0.1 % H2 for 10 min, the resistance of the heterojunction increases dramatically. The response is 122 %, 269 % and 457 %, respectively. A simple interfacial theory is used to understand the gas sensitivity results. This approach is a step toward future CNTs-based gas sensors for practical application.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12925

  18. A comparative study of ethylene oxide gas, hydrogen peroxide gas plasma, and low-temperature steam formaldehyde sterilization.

    Science.gov (United States)

    Kanemitsu, Keiji; Imasaka, Takayuki; Ishikawa, Shiho; Kunishima, Hiroyuki; Harigae, Hideo; Ueno, Kumi; Takemura, Hiromu; Hirayama, Yoshihiro; Kaku, Mitsuo

    2005-05-01

    To compare the efficacies of ethylene oxide gas (EOG), hydrogen peroxide gas plasma (PLASMA), and low-temperature steam formaldehyde (LTSF) sterilization methods. The efficacies of EOG, PLASMA, and LTSF sterilization were tested using metal and plastic plates, common medical instruments, and three process challenge devices with narrow lumens. All items were contaminated with Bacillus stearothermophilus spores or used a standard biological indicator. EOG and LTSF demonstrated effective killing of B. stearothermophilus spores, with or without serum, on plates, on instruments, and in process challenge devices. PLASMA failed to adequately sterilize materials on multiple trials in several experiments, including two of three plates, two of three instruments, and all process challenge devices. Our results suggest that PLASMA sterilization may be unsuccessful under certain conditions, particularly when used for items with complex shapes and narrow lumens. Alternatively, LTSF sterilization demonstrates excellent efficacy and is comparable to EOG sterilization. LTSF could potentially act as a substitute if EOG becomes unavailable due to environmental concerns.

  19. Hydrogen-bond mediated transitional adlayer of glycine on Si(111)7 x 7 at room temperature.

    Science.gov (United States)

    Zhang, L; Chatterjee, A; Ebrahimi, M; Leung, K T

    2009-03-28

    The growth of glycine film by thermal evaporation on Si(111)7 x 7 at room temperature has been studied by X-ray photoemission. In contrast to common carboxylic acids, glycine is found to adsorb on Si(111)7 x 7 dissociatively through cleavage of a N-H bond instead of O-H bond. The intricate evolution of the observed N 1s features at 399.1, 401.4, and 402.2 eV with increasing film thickness demonstrates the existence of a transitional adlayer between the first adlayer and the zwitterionic multilayer. This transitional adlayer is estimated to be 1-2 adlayer thick and is characterized by the presence of intermolecular N...HO hydrogen bond. An intramolecular proton transfer mechanism is proposed to account for the adsorption process through the amino group.

  20. An analysis of the thermodynamic cycles with high-temperature nuclear reactor for power generation and hydrogen co-production

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2017-01-01

    Full Text Available In the present paper, numerical analysis of the thermodynamic cycle with the high-temperature nuclear gas reactor (HTGR for electricity and hydrogen production have been done. The analysed system consists of two independent loops. The first loop is for HTGR and consists of a nuclear reactor, heat exchangers, and blower. The second loop (Rankine cycle consist of up-to four steam turbines, that operate in heat recovery system. The analysis of the system shows that it is possible to achieve significantly higher efficiency than could be offered by traditional nuclear reactor technology (PWR and BWR. It is shown that the thermal efficiency about 52.5% it is possible to achieve when reactor works at standard conditions and steam is superheated up to 530oC. For the cases when the steam has supercritical conditions the value of thermal efficiency is still very high and equal about 50%.

  1. Thermomechanical properties of zirconium tungstate/hydrogenated nitrile butadiene rubber (HNBR) composites for low-temperature applications

    Science.gov (United States)

    Akulichev, Anton G.; Alcock, Ben; Tiwari, Avinash; Echtermeyer, Andreas T.

    2016-12-01

    Rubber compounds for pressure sealing application typically have inferior dimensional stability with temperature fluctuations compared with their steel counterparts. This effect may result in seal leakage failures when subjected to decreases in temperature. Composites of hydrogenated nitrile butadiene rubber (HNBR) and zirconium tungstate as a negative thermal expansion filler were prepared in order to control the thermal expansivity of the material. The amount of zirconium tungstate (ZrW2O8) was varied in the range of 0 to about 40 vol%. The coefficient of thermal expansion (CTE), bulk modulus, uniaxial extension and compression set properties were measured. The CTE of the ZrW2O8-filled HNBR decreases with the filler content and it is reduced by a factor of 2 at the highest filler concentration used. The filler effect on CTE is found to be stronger when HNBR is below the glass transition temperature. The experimental thermal expansion data of the composites are compared with the theoretical estimates and predictions given by FEA. The effect of ZrW2O8 on the mechanical characteristics and compression set of these materials is also discussed.

  2. Effect of strain rate and temperature on the susceptibility of 304 austenitic stainless steel to hydrogen embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    El Shawesh, F. [Petroleum Research Center, Tripoli (Libyan Arab Jamahiriya)

    1998-12-31

    Cathodic charging of notched 304 austenitic stainless steel specimens was carried out in aqueous solution of 1N H{sub 2}SO{sub 4}, containing 250 mg/l NaAsO{sub 2}, at room temperature and 70 {+-} 2 C while undergoing tensile straining over a wide range of crosshead speed (833 {micro}m/s, 83 {micro}m/s, 8.3 {micro}m/s, 833 nm/s, 83 nm/s and 9.8 nm/s). Test at room temperature 22 {+-} 2 C resulted in a marked reduction in the elongation to fracture ratio (Esol/Eair) by reducing the crosshead speed. However, little reduction was observed in the stress to fracture ratio ({sigma}sol/{sigma}air). Quasi cleavage and intergranular fractures where the predominant failure modes when tests were carried out at low crosshead speeds, The extent of these modes of fracture was observed to increase by reducing the crosshead speed. Cathodic charging of 304 austenitic stainless steel at 70 {+-} 2 C caused less reduction in the elongation to fracture ratio compared to the tests carried out at room temperature. Consistent with the room temperature test results, the reduction in the elongation to fracture ratio was found to increase with reduced crosshead speed. However, restoration in the elongation to fracture ratio was exhibited by 304 austenitic stainless steel specimens tested at the lowest crosshead speed (9.8 nm/s). These results are in good agreement with the finding that hydrogen embrittlement is temperature and strain dependent. Quasi cleavage fracture associated with the plastic deformation was the predominant failure mode exhibited by 304 austenitic stainless steel specimens tested at 70 {+-} 2 C at low crosshead speeds.

  3. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...

  4. Simulated Annealing Approach to the Temperature-Emissivity Separation Problem in Thermal Remote Sensing Part One: Mathematical Background

    CERN Document Server

    Morgan, John A

    2016-01-01

    The method of simulated annealing is adapted to the temperature-emissivity separation (TES) problem. A patch of surface at the bottom of the atmosphere is assumed to be a greybody emitter with spectral emissivity $\\epsilon(k)$ describable by a mixture of spectral endmembers. We prove that a simulated annealing search conducted according to a suitable schedule converges to a solution maximizing the $\\textit{A-Posteriori}$ probability that spectral radiance detected at the top of the atmosphere originates from a patch with stipulated $T$ and $\\epsilon(k)$. Any such solution will be nonunique. The average of a large number of simulated annealing solutions, however, converges almost surely to a unique Maximum A-Posteriori solution for $T$ and $\\epsilon(k)$. The limitation to a stipulated set of endmember emissivities may be relaxed by allowing the number of endmembers to grow without bound, and to be generic continuous functions of wavenumber with bounded first derivatives with respect to wavenumber.

  5. Upgrading of High-Aluminum Hematite-Limonite Ore by High Temperature Reduction-Wet Magnetic Separation Process

    Directory of Open Access Journals (Sweden)

    Xianlin Zhou

    2016-03-01

    Full Text Available The huge consumption of iron ores in China has attracted much attention to utilizing low grade complex iron resources, such as high-aluminum hematite-limonite ore, which is a refractory resource and difficult to upgrade by traditional physical concentration processes due to the superfine size and close dissemination of iron minerals with gangue minerals. An innovative technology for a high temperature reduction-magnetic separation process was studied to upgrade a high-aluminum iron ore assaying 41.92% Fetotal, 13.74% Al2O3 and 13.96% SiO2. The optimized results show that the final metal iron powder, assaying 90.46% Fetotal, was manufactured at an overall iron recovery of 90.25% under conditions as follows: balling the high aluminum iron ore with 15% coal blended and at 0.3 basicity, reducing the dried pellets at 1350 °C for 25 min with a total C/Fe mass ratio of 1.0, grinding the reduced pellets up to 95%, passing at 0.074 mm and magnetically separating the ground product in a Davis Tube at a 0.10-T magnetic field intensity. The metal iron powder can be used as the burden for an electric arc furnace (EAF. Meanwhile, the nonmagnetic tailing is suitable to produce ceramic, which mainly consists of anorthite and corundum. An efficient way has been found to utilize high-aluminum iron resources.

  6. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    hydrogen embrittlement. The effects of hydrogen gas on mechanical properties such as tensile strength, ductility, fracture, low and high cycle fatigue, crack growth rate, and creep rupture are analyzed with respect to the general trends established from the HEE index values. It is observed that the severity of HE effects is also influenced by environmental factors such as pressure, temperature, and hydrogen gas purity. The severity of HE effects is also influenced by material factors such as surface finish, heat treatment, and product forms, compositions, grain direction, and crystal orientations.

  7. Hydrogen- and helium-implanted silicon: Low-temperature positron-lifetime studies

    DEFF Research Database (Denmark)

    Mäkinen, S.; Rajainmäki, H.; Linderoth, Søren

    1991-01-01

    High-purity single-crystal samples of float-zoned Si have been implanted with 6.95-MeV protons and with 25-MeV 3He2 ions at 15 K, and the positron-lifetime technique has been used to identify the defects created in the samples, and to study the effects of H and He on the annealing of point defects...... in Si. The results have been compared with those of proton-irradiated Si. A 100–300-K annealing stage was clearly observed in hydrogen (H+) -implanted Si, and this stage was almost identical to that in the p-irradiated Si. The final annealing state of the H+-implanted Si started at about 400 K......, and it is connected to annealing out of negatively charged divacancy-oxygen pairs. This stage was clearly longer than that for the p-irradiated Si, probably due to the breakup of Si-H bonds at about 550 K. The 100-K annealing stage was not seen with the He-implanted samples. This has been explained by assuming...

  8. N Vibrational Temperatures and OH Number Density Measurements in a NS Pulse Discharge Hydrogen-Air Plasmas

    Science.gov (United States)

    Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.

    2017-06-01

    This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling

  9. Effect of hydrogen charging on fracture toughness obtained by small specimen of SUS304L : Study on low temperature materials used in WE-NET 19

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, T.; Saito, M.; Yuri, T. [National Institute for Materials Science (Japan). Materials Information Technology Station; Hirayama, Y. [Mitsubishi Heavy Industries Ltd. (Japan); Eguchi, H. [Ishikawajima-Harima Heavy Industries Co. Ltd. (Japan)

    2002-07-01

    The ductility of austenitic stainless steels even at cryogenic temperatures and a hydrogen environment make it a widely used material in cryogenic applications. The evaluation of mechanical properties of structural materials including weld metals at low temperatures is important, as fracture toughness of cryogenic materials is required for the design of large scale facilities such as clean energy to transport and store liquid hydrogen. The authors used a new testing procedure of J-evaluation on tensile test (JETT) to evaluate local fracture toughness of top, middle, bottom, and heat-affected zone of welds of SUS304L. The tests revealed that a decrease of 9 parts per million hydrogen-charging occurred in fracture toughness in 5 per cent and 10 per cent delta-ferrite welds, and that toughness decreased by only 4 parts per million hydrogen-charging in 10 per cent welds. The authors concluded that less amount of delta-ferrite weld has less influence of hydrogen embrittlement and a critical amount of hydrogen-charging. 7 refs., 1 tab., 5 figs.

  10. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals.

    Science.gov (United States)

    Merzlikin, Sergiy V; Borodin, S; Vogel, D; Rohwerder, M

    2015-05-01

    In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Hydrogen usage

    Energy Technology Data Exchange (ETDEWEB)

    1942-10-22

    This short tabular report listed the number of m/sup 3/ of hydrogen required for a (metric) ton of product for various combinations of raw material and product in a hydrogenation procedure. In producing auto gasoline, bituminous coal required 2800 m/sup 3/, brown coal required 2400 m/sup 3/, high-temperature-carbonization tar required 2100 m/sup 3/, bituminous coal distillation tar required 1300 m/sup 3/, brown-coal low-temperature-carbonization tar required 850 m/sup 3/, petroleum residues required 900 m/sup 3/, and gas oil required 500 m/sup 3/. In producing diesel oil, brown coal required 1900 m/sup 3/, whereas petroleum residues required 500 m/sup 3/. In producing diesel oil, lubricants, and paraffin by the TTH (low-temperature-hydrogenation) process, brown-coal low-temperature-carbonization tar required 550 m/sup 3/. 1 table.

  12. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  13. The reaction of hydrogen peroxide with Fe(II) ions at elevated temperatures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1993-01-01

    The rate constant for the reaction between Fe(II) ions and H2O2 has been determined at pH 0.4-2 as a function of temperature in the range 5-300-degrees-C. H2O2 was produced by irradiating the aqueous solution with a pulse of electrons. The rate constants at 20 and 300-degrees-C were determined...

  14. The problems of using a high-temperature sodium coolant in nuclear power plants for the production of hydrogen and other innovative applications

    Science.gov (United States)

    Sorokin, A. P.; Alexeev, V. V.; Kuzina, Ju. A.; Konovalov, M. A.

    2017-11-01

    The intensity of the hydrogen sources arriving from the third contour of installation in second in comparison with the hydrogen sources on NPP BN-600 increases by two – three order at using of high-temperature nuclear power plants with the sodium coolant (HT-NPP) for drawing of hydrogen and other innovative applications (gasification and a liquefaction of coal, profound oil refining, transformation of biomass to liquid fuel, in the chemical industry, metallurgy, the food-processing industry etc.). For these conditions basic new technological solutions are offered. The main condition of their implementation is raise of hydrogen concentration in the sodium coolant on two – three order in comparison with the modern NPP, in a combination to hydrogen removal from sodium and its pumping out through membranes from vanadium or niobium. The researches with use diffusive model have shown possibility to expel a casium inflow in sodium through a leakproof shell of fuel rods if vary such parameters as a material of fuel rods shell, its thickness and maintenance time at design of fuel rods for high-temperature NPP. However maintenance of high-temperature NPP in the presence of casium in sodium is inevitable at loss of leakproof of a fuel rods shell. In these conditions for minimisation of casium diffusion in structural materials it is necessary to provide deep clearing of sodium from cesium.

  15. Land Surface Temperature and Emissivity Separation from Cross-Track Infrared Sounder Data with Atmospheric Reanalysis Data and ISSTES Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-Ze Zhang

    2017-01-01

    Full Text Available The Cross-track Infrared Sounder (CrIS is one of the most advanced hyperspectral instruments and has been used for various atmospheric applications such as atmospheric retrievals and weather forecast modeling. However, because of the specific design purpose of CrIS, little attention has been paid to retrieving land surface parameters from CrIS data. To take full advantage of the rich spectral information in CrIS data to improve the land surface retrievals, particularly the acquisition of a continuous Land Surface Emissivity (LSE spectrum, this paper attempts to simultaneously retrieve a continuous LSE spectrum and the Land Surface Temperature (LST from CrIS data with the atmospheric reanalysis data and the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES algorithm. The results show that the accuracy of the retrieved LSEs and LST is comparable with the current land products. The overall differences of the LST and LSE retrievals are approximately 1.3 K and 1.48%, respectively. However, the LSEs in our study can be provided as a continuum spectrum instead of the single-channel values in traditional products. The retrieved LST and LSEs now can be better used to further analyze the surface properties or improve the retrieval of atmospheric parameters.

  16. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  17. Molecular Dynamics Simulation of Electron-Ion Temperature Relaxation in Dense Hydrogen: Electronic Quantum Effects

    Science.gov (United States)

    Ma, Qian; Dai, Jiayu; Zhao, Zengxiu

    2016-10-01

    The electron-ion temperature relaxation is an important non-equilibrium process in the generation of dense plasmas, particularly in Inertial Confinement Fusion. Classical molecular dynamics considers electrons as point charges, ignoring important quantum processes. We use an Electron Force Field (EFF) method to study the temperature relaxation processes, considering the nuclei as semi-classical point charges and assume electrons as Gaussian wave packets which includes the influences of the size and the radial motion of electrons. At the same time, a Pauli potential is used to describe the electronic exchange effect. At this stage, quantum effects such as exchange, tunneling can be included in this model. We compare the results from EFF and classical molecular dynamics, and find that the relaxation time is much longer with including quantum effects, which can be explained directly by the deference of collision cross sections between quantum particles and classical particles. Further, the final thermal temperature of electron and ion is different compared with classical results that the electron quantum effects cannot be neglected.

  18. Corrosion Behavior of NiCrFe Alloy 600 in High Temperature, Hydrogenated Water

    Energy Technology Data Exchange (ETDEWEB)

    SE Ziemniak; ME Hanson

    2004-11-02

    The corrosion behavior of Alloy 600 (UNS N06600) is investigated in hydrogenated water at 260 C. The corrosion kinetics are observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 0.055 mg dm{sup -2} hr{sup -1/2}. A combination of scanning and transmission electron microscopy, supplemented by energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction, are used to identify the oxide phases present (i.e., spinel) and to characterize their morphology and thickness. Two oxide layers are identified: an outer, ferrite-rich layer and an inner, chromite-rich layer. X-ray photoelectron spectroscopy with argon ion milling and target factor analysis is applied to determine spinel stoichiometry; the inner layer is (Ni{sub 0.7}Fe{sub 0.3})(Fe{sub 0.3}Cr{sub 0.7}){sub 2}O{sub 4}, while the outer layer is (Ni{sub 0.9}Fe{sub 0.1})(Fe{sub 0.85}Cr{sub 0.15}){sub 2}O{sub 4}. The distribution of trivalent iron and chromium cations in the inner and outer oxide layers is essentially the same as that found previously in stainless steel corrosion oxides, thus confirming their invariant nature as solvi in the immiscible spinel binary Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} (or NiFe{sub 2}O{sub 4}-NiCr{sub 2}O{sub 4}). Although oxidation occurred non-selectively, excess quantities of nickel(II) oxide were not found. Instead, the excess nickel was accounted for as recrystallized nickel metal in the inner layer, as additional nickel ferrite in the outer layer, formed by pickup of iron ions from the aqueous phase, and by selective release to the aqueous phase.

  19. Isotope dependent, temperature regulated, energy repartitioning in a low-barrier, short-strong hydrogen bonded cluster

    NARCIS (Netherlands)

    Li, X. H.; Oomens, J.; Eyler, J. R.; Moore, D. T.; Iyengar, S. S.

    2010-01-01

    We investigate and analyze the vibrational properties, including hydrogen/deuterium isotope effects, in a fundamental organic hydrogen bonded system using multiple experimental (infrared multiple photon dissociation and argon-tagged action spectroscopy) and computational techniques. We note a

  20. Gas separations using inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Egan, B.Z.; Singh, S.P.N. [Oak Ridge National Lab., TN (United States); Fain, D.E.; Roettger, G.E.; White, D.E. [Oak Ridge K-25 Site, TN (United States)

    1992-04-01

    This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases.

  1. Development of Tritium Permeation Analysis Code and Tritium Transport in a High Temperature Gas-Cooled Reactor Coupled with Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2010-06-01

    Abstract – A tritium permeation analyses code (TPAC) was developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in very high temperature reactor (VHTR) systems, including integrated hydrogen production systems. A MATLAB SIMULINK software package was used in developing the code. The TPAC is based on the mass balance equations of tritium-containing species and various forms of hydrogen coupled with a variety of tritium sources, sinks, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, and 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems, including high temperature electrolysis and sulfur-iodine processes.

  2. Low temperature motion of hydrogen on metal surfaces signals breakdown of quantum mechanics in 3+1 dimensions

    Science.gov (United States)

    Drakova, D.; Doyen, G.

    2013-06-01

    The low temperature motion of hydrogen on solid metal surfaces displays some unexplained experimental features: in the quantum diffusion regime more than nine orders of magnitude difference between the diffusion rates on different metal surfaces have been measured, the lowest diffusion rates being established in the low temperature scanning tunnelling microscope. Furthermore telegraph-signal-like adsorption site change, rather than Rabi oscillations predicted by Schrödinger equation in 3+1 dimensions, is observed, signaling the breakdown of quantum mechanics in 3+1 dimensions. A theory is presented to resolve these problems, involving the entanglement of the adsorbate motion to gravitons in high-dimensional spacetime. Soft local massive gravonons, induced in the presence of the adsorbate, determine the time scale for surface diffusion. The γη-model is used for the evaluation of the soft gravonon modes. Weak and local entanglement of the adsorbate motion with a nearly degenerate graviton continuum of high density of states are the conditions for the telegraph-signal-like time development of adsorption site change. In contrast to the Copenhagen interpretation of quantum mechanics, this apparent "classical" behaviour of the adsorbate in 3+1 dimensional spacetime is the result of the solution of Schrödinger's time dependent equation in high-dimensional spacetime.

  3. Ambient-temperature synthesis of nanocrystalline ZnO and its application in the generation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Perales-Perez, O.J.; Singh, S.P. [University of Puerto Rico, Mayagueez, PR 00681 (United States); Tomar, M.S.; Watanabe, A.; Arai, T.; Kasuya, A.; Tohji, K. [Tohoku University, Aramaki-Aza, Aoba-ku, Sendai 980-8579 (Japan)

    2004-03-01

    The conditions leading to the direct formation of nanocrystalline ZnO particles from aqueous solutions at 25 C are presented. The synthesis of ZnO was made possible by the suitable selection of the solution chemistry and the control of the alkaline conditions established during the formation and conversion of the precursor solid. XRD and FT-IR analyses revealed that the progressive removal of molecular and coordinated water from the precursor basic zinc sulphate and the diminution of sulphate contents took place at a temperature as low as 25 C, making unnecessary any further thermal treatment of the as-synthesized powders. SEM observations evidenced the formation of sub-micron aggregates of ZnO (sizes below 100 nm). Depending on synthesis and precipitation conditions, it was possible to decrease the crystallite size from 25 down to 11 nm. The ambient-temperature ZnO nanocrystals were used in the photo-catalytic generation of hydrogen from alkaline Na{sub 2}S aqueous solutions. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Quantification of Hydrogen Cyanide Generated at Low Temperature O-Chlorobenzylidene Malononitrile (CS) Dispersal

    Science.gov (United States)

    2013-05-10

    the higher temperature of CS pyrolysis generated a higher percentage of HCN. From the 1970’s to the early 2000’s, research into HCN as a thermal...1995. Occupational Safety and Health Guideline for o-Chlorobenzylidene Malononitrile. http://www.cdc.gov/niosh/docs/81-123/ pdfs /0122-rev.pdf 11...Health Guidelines for O-chlorobenzylidene Malononitrile. www.cdc.gov/niosh/docs/81-123/ pdf /0122. pdf 27. NIOSH. 1994. NIOSH Manual of Analytical

  5. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    of the mixture was varied from oxidizing to reducing conditions. Moreover, a series of experiments in an oxygen atmosphere instead of a nitrogen atmosphere has been done. A reaction mechanism based on a recent work by Burke et al. has been developed. In addition to modeling of the present experiments......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  6. Effects of calcining temperature on photocatalysis of g-C{sub 3}N{sub 4}/TiO{sub 2} composites for hydrogen evolution from water

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ailan, E-mail: elainqal@163.com; Xu, Xinmei; Xie, Haolong; Zhang, Yangyu; Li, Yuyu; Wang, Junxian

    2016-08-15

    Highlights: • TiO{sub 2} promotes melon to form at 400 °C, whereas it forms at 500 °C for only melamine. • The highest photocatalytic activity was achieved when calcination was performed at 400 °C. • Coordinated N−Ti−N bonds were formed in MA/TiO{sub 2} (400) and disappeared at high temperature. • The surface area decreased and the pore size increased with increasing of temperature. • Only MA/TiO{sub 2} (400) has a narrower band gap than pure g-C{sub 3}N{sub 4}. - Abstract: A composite of graphitic carbon nitride and TiO{sub 2} (g-C{sub 3}N{sub 4}/TiO{sub 2}) with enhanced photocatalytic hydrogen evolution capacity was achieved by calcining melamine and TiO{sub 2} sol-gel precursor. Characterization results reveal that heating temperature had a great influence on the structure, surface area and properties of the composites. Compared with the polycondensation of pure melamine, the presence of TiO{sub 2} precursor can promote the formation of melon at a low temperature. The highest photocatalytic activity of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) was achieved when the calcination was performed at 400 °C, exhibiting H{sub 2} production rate of 76.25 μmol/h under UV–vis light irradiation (λ > 320 nm) and 35.44 μmol/h under visible light irradiation (λ > 420 nm). The highest photocatalytic performance of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) can be attributed to: (1) the strong UV–vis light absorption due to the narrow bandgap caused by synergic effect of TiO{sub 2} and g-C{sub 3}N{sub 4}, (2) high surface area and porosity, (3) the effective separation of photo-generated electron-holes owing to the favorable heterojunction between TiO{sub 2} and g-C{sub 3}N{sub 4}.

  7. Extending the predictions of chemical mechanisms for hydrogen combustion by Comparison of predicted and measured flame temperatures in burner-stabilized, 1-D flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    A method is presented for extending the range of conditions for which the performance of chemical mechanisms used to predict hydrogen burning velocities can be evaluated. Specifically, by comparing the computed variation of flame temperature with mass flux in burner-stabilized flat flames with those

  8. A three-site Langmuir adsorption model to elucidate the temperature, pressure, and support dependence of the hydrogen coverage on supported Pt particles

    NARCIS (Netherlands)

    Ji, Y.; Koot, V.; van der Eerden, A.M.J.; Weckhuysen, B.M.; Koningsberger, D.C.; Ramaker, D.E.

    2007-01-01

    The three-site adsorption model, previously developed to describe H adsorption on small Pt particles, was used to gain insight into dependence of hydrogen coverage on temperature, pressure, and support ionicity. The three sites, in order of decreasing PtH bond strength, involve H in an atop, a

  9. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  10. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  11. Recent Progress At The Idaho National Laboratory In High Temperature Electrolysis For Hydrogen And Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    C. Stoots; J. O' Brien; J. Herring; J. Hartvigsen

    2008-11-01

    This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying electrolysis of steam and coelectrolysis of steam / carbon dioxide in solid-oxide electrolysis stacks. Single button cell tests as well as multi-cell stack testing have been conducted. Multi-cell stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec, Inc (Salt Lake City, Utah, USA) and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to 15 kW testing capacity (H2 production rate based upon lower heating value).

  12. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide.

    Science.gov (United States)

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J

    2012-01-01

    In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H(2)O(2)) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175°C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115°C and 145°C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175°C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145°C, with a 26% increase in biogas production after 8days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H(2)O(2) modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H(2)O(2) displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  14. Hydrogen bonds and hydrogen-bonded systems in Mannich bases of 2,2'-biphenol: an FTIR study of the proton polarizability and Fermi resonance effects as a function of temperature

    Science.gov (United States)

    Brzezinski, Bogumil; Radziejewski, Piotr; Rabold, Arno; Zundel, Georg

    1995-09-01

    5,5'-Dibromo-3-diethylaminomethyl-2,2'-biphenol ( 1) and 5,5'-dibromo-3,3'-bis(diethylaminomethyl)-2,2'-biphenol ( 2) were synthesized and studied by FTIR and 1H NMR spectroscopy. In dichloromethane solution, 1 forms a hydrogen-bonded system with large proton polarizability due to collective tunnelling of protons in the two intramolecular hydrogen bonds. In acetonitrile the system is polarized to a greater extent. If this system is protonated, the HO⋯HO⋯bond is broken and hence the collective system destroyed. The FTIR spectrum of protonated 2 shows an intense continuum indicating a collective hydrogen-bonded system with large proton polarizability due to collective proton motion. The butyronitrile solution of 1 shows an increase of the Fermi resonance bands with decreasing temperature (above the glass transition). The hydrogen bonds become stronger. Furthermore, the proton polarizability increases. With the transition in the glass state the continuum remains unchanged since the local fields are frozen. Only the Fermi resonance effect becomes slightly stronger. With the butyronitrile solution of 2 the IR continuum caused by the polarizable OH⋯N ⇌ O -⋯H +N bonds increases above the glass transition with decreasing temperature. The equilibrium is shifted in favour of the polar structure. In the glass state no change of the continuum and thus of the proton polarizability is observed, since the local fields are frozen.

  15. Metal-Borohydride-Modified Zr(BH4 )4 ⋅8 NH3 : Low-Temperature Dehydrogenation Yielding Highly Pure Hydrogen.

    Science.gov (United States)

    Huang, Jianmei; Ouyang, Liuzhang; Gu, Qinfen; Yu, Xuebin; Zhu, Min

    2015-10-12

    Due to its high hydrogen density (14.8 wt %) and low dehydrogenation peak temperature (130 °C), Zr(BH4 )4 ⋅8 NH3 is considered to be one of the most promising hydrogen-storage materials. To further decrease its dehydrogenation temperature and suppress its ammonia release, a strategy of introducing LiBH4 and Mg(BH4 )2 was applied to this system. Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 composites showed main dehydrogenation peaks centered at 81 and 106 °C as well as high hydrogen purities of 99.3 and 99.8 mol % H2 , respectively. Isothermal measurements showed that 6.6 wt % (within 60 min) and 5.5 wt % (within 360 min) of hydrogen were released at 100 °C from Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , respectively. The lower dehydrogenation temperatures and improved hydrogen purities could be attributed to the formation of the diammoniate of diborane for Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 , and the partial transfer of NH3 groups from Zr(BH4 )4 ⋅8 NH3 to Mg(BH4 )2 for Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , which result in balanced numbers of BH4 and NH3 groups and a more active H(δ+) ⋅⋅⋅(-δ) H interaction. These advanced dehydrogenation properties make these two composites promising candidates as hydrogen-storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoteng Liu

    2013-12-01

    Full Text Available Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs, contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  17. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  18. Hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.

    1942-10-16

    This report mentioned that not very severe demands for purity were made on the hydrogen used in hydrogenation of coal or similar raw materials, because the catalysts were not very sensitive to poisoning. However, the hydrogenation plants tried to remove most impurities anyway by means of oil washes. The report included a table giving the amount of wash oil used up and the amount of hydrogen lost by dissolving into the wash oil used up and the amount of hydrogen lost by dissolving into the wash oil in order to remove 1% of various impurities from 1000 m/sup 3/ of the circulating gas. The amounts of wash oil used up were 1.1 m/sup 3/ for removing 1% nitrogen, 0.3 m/sup 3/ for 1% carbon monoxide, 0.03 m/sup 3/ for 1% methane. The amount of hydrogen lost was 28 m/sup 3/ for 1% nitrogen, 9 m/sup 3/ for 1% methane and ranged from 9 m/sup 3/ to 39 m/sup 3/ for 1% carbon monoxide and 1 m/sup 3/ to 41 m/sup 3/ for carbon dioxide depending on whether the removal was done in liquid phase or vapor phase and with or without reduction of the oxide to methane. Next the report listed and described the major processes used in German hydrogenation plants to produce hydrogen. Most of them produced water gas, which then had its carbon monoxide changed to carbon dioxide, and the carbon oxides washed out with water under pressure and copper hydroxide solution. The methods included the Winkler, Pintsch-Hillebrand, and Schmalfeldt-Wintershall processes, as well as roasting of coke in a rotating generator, splitting of gases formed during hydrogenation, and separation of cokery gas into its components by the Linde process.

  19. Modeling low-temperature serpentinization reactions to estimate molecular hydrogen production with implications for potential microbial life on Saturn's moon Enceladus.

    Science.gov (United States)

    Zwicker, Jennifer; Smrzka, Daniel; Taubner, Ruth-Sophie; Bach, Wolfgang; Rittmann, Simon; Schleper, Christa; Peckmann, Jörn

    2017-04-01

    Serpentinization of ultramafic rocks attracts much interest in research on the origin of life on Earth and the search for life on extraterrestrial bodies including icy moons like Enceladus. Serpentinization on Earth occurs in peridotite-hosted systems at slow-spreading mid-ocean ridges, and produces large amounts of molecular hydrogen and methane. These reduced compounds can be utilized by diverse chemosynthetic microbial consortia as a metabolic energy source. Although many hydrothermal vents emit hot and acidic fluids today, it is more likely that life originated in the Archean at sites producing much cooler and more alkaline fluids that allowed for the synthesis and stability of essential organic molecules necessary for life. Therefore, a detailed understanding of water-rock interaction processes during low-temperature serpentinization is of crucial importance in assessing the life-sustaining potential of these environments. In the course of serpentinization, the metasomatic hydration of olivine and pyroxene produces various minerals including serpentine minerals, magnetite, brucite, and carbonates. Hydrogen production only occurs if ferrous iron within iron-bearing minerals is oxidized and incorporated as ferric iron into magnetite. The PHREEQC code was used to model the pH- and temperature-dependent dissolution of olivine and pyroxene to form serpentine, magnetite and hydrogen under pressure and temperature conditions that may exist on Saturn's icy moon Enceladus. Various model setups at 25 and 50°C were run to assess the influence of environmental parameters on hydrogen production. The results reveal that hydrogen production rates depend on the composition of the initial mineral assemblage and temperature. The current assumption is that there is a gaseous phase between Enceladus' ice sheet and subsurface ocean. To test various scenarios, model runs were conducted with and without the presence of a gas phase. The model results show that hydrogen production is

  20. THE IMPACT OF TRACE ADDITIVES ON THE APPARENT SOLUBILITY OF HYDROGEN IN HEAVY OIL AND RELATED FEEDSTOCKS AT LOW AND HIGH TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Jalal Abedi

    2002-09-01

    A systematic investigation was conducted to provide an accurate determination of hydrogen solubility in liquid media in temperatures in the range of 25-250 C and pressures in the range of 0.5-8 MPa. Results were obtained by an indirect gas solubility measurement method. The method was intended for use with high-resolution camera. The hydrogen solubility measurements were indirect and were based on pressure changes at constant temperature and measured volumes. Since the volume of the view cell was fixed the volume available for the vapor phase could be determined by measuring the location of the liquid-vapor interface. The interface was located to within the height of one pixel using high-resolution camera, which added {+-} 0.4 ml to the uncertainty of the vapor volume. Liquid-liquid interface locations were measured with equal precision. The accuracy of the method was illustrated through hydrogen solubility measurements in hexadecane and tetralin, which were in close agreement with the values available in the literature. Hydrogen solubilities in Athabasca bitumen vacuum bottoms (ABVB) were reported over a broad range of temperatures (80-250 C) and pressures (0.5-8 MPa).

  1. Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO₂ for high-charging-rate batteries.

    Science.gov (United States)

    Ventosa, Edgar; Tymoczko, Anna; Xie, Kunpeng; Xia, Wei; Muhler, Martin; Schuhmann, Wolfgang

    2014-09-01

    There are several strategies to improve the electrochemical performance of TiO2 as negative electrode material for Li-ion batteries. Introducing oxygen vacancies through hydrogen reduction leads to an enhancement in electrical conductivity. However, this strategy does not improve the low lithium-ion mobility. Herein, we show that by decreasing the temperature of hydrogen annealing the improved lithium-ion mobility of high-surface-area TiO2 and β-TiO2 can be combined with the enhanced electrical conductivity of oxygen deficiencies. Annealing at only 275-300 °C in pure hydrogen atmosphere successfully creates oxygen vacancies in TiO2, as confirmed by UV/Vis spectroscopy, whereas the temperature is low enough to maintain a high specific surface area and prevent β-to-anatase phase transformation. The hydrogen reduction of high-surface-area anatase or anatase/β-TiO2 at these temperatures leads to improvements in the performance, achieving charge capacities of 142 or 152 mAh g(-1) at 10C, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effectiveness of the custom-mold room temperature vulcanizing silicone toe separator on hallux valgus: A prospective, randomized single-blinded controlled trial.

    Science.gov (United States)

    Chadchavalpanichaya, Navaporn; Prakotmongkol, Voraluck; Polhan, Nattapong; Rayothee, Pitchaya; Seng-Iad, Sirirat

    2017-03-01

    Silicone toe separator is considered as a conservative treatment for hallux valgus. The prefabricated toe separator does not fit all. However, effectiveness in prescription of the custom-mold toe separator is still unknown. To investigate the effect of using a custom-mold room temperature vulcanizing silicone toe separator to decrease hallux valgus angle and hallux pain. The compliances, complications, and satisfactions of toe separator were also explored. A prospective, randomized single-blinded controlled trial. A total of 90 patients with a moderate degree of hallux valgus were enrolled in a study at the Foot Clinic, Siriraj Hospital, Thailand. Patients were randomized into two groups; the study group was prescribed a custom-mold room temperature vulcanizing silicone toe separator for 6 h per night for 12 months. Patients in both groups received proper foot care and shoes and were permitted to continue drug treatment. In total, 40 patients in the study group and 39 patients in the control group completed the study. The hallux valgus angle was obtained through radiographic measurement. At month 12, both groups had significant differences in mean hallux valgus angle with a decrease of 3.3° ± 2.4° for the study group and increase of 1.9° ± 1.9° for the control group. There were statistically significant differences of hallux valgus angle between the two groups ( p Hallux pain was decreased in the study group. A custom-mold room temperature vulcanizing silicone toe separator can decrease hallux valgus angle and pain with no serious complications. Clinical relevance The custom-mold room temperature vulcanizing silicone toe separator for treatment of hallux valgus reduces deformity and hallux pain.

  3. The effects of hydrothermal temperature on the photocatalytic performance of ZnIn{sub 2}S{sub 4} for hydrogen generation under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fei [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Zhu, Rongshu, E-mail: rszhu@hitsz.edu.cn [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055 (China); Song, Kelin; Niu, Minli [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Ouyang, Feng, E-mail: Ouyangfh@hit.edu.cn [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055 (China); Cao, Gang, E-mail: caog@hotmail.com [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055 (China)

    2015-10-15

    Highlights: • The ZnIn{sub 2}S{sub 4} (120, 140, 160, 180, and 200 °C) was prepared. • The activities splitting water to hydrogen under visible light were evaluated. • The activity achieved the best when hydrothermal temperature was 160 °C. • The activity order is related to the surface morphology and surface defects. - Abstract: A series of ZnIn{sub 2}S{sub 4} photocatalysts were successfully synthesized using the hydrothermal method with different hydrothermal temperatures (120, 140, 160, 180, and 200 °C) and characterized by various analysis techniques, such as UV–vis, XRD, SEM, BET and PL. The results indicated that these photocatalysts had a similar band gap. The hydrothermal temperature had a huge influence on the properties of the photocatalysts such as the BET surface area, the total pore volume, the average pore diameter, the defects and the morphology. The photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated based on photocatalytic hydrogen production from water under visible-light irradiation. The activity order is attributed to the coefficient of the surface morphology and the surface defects. The hydrogen production efficiency achieved the best when the hydrothermal temperature was 160 °C. On the basis of the characterization of the catalysts, the effects of the hydrothermal temperature on the photocatalytic activity of ZnIn{sub 2}S{sub 4} were discussed.

  4. Temperature-dependent breakdown of hydrogen peroxide-treated ZnO and TiO2 nanoparticle agglomerates.

    Science.gov (United States)

    Sabuncu, Sinan; Çulha, Mustafa

    2015-01-01

    Metal oxide nanoparticles (MONPs) are used in a variety of applications including drug formulations, paint, sensors and biomedical devices due to their unique physicochemical properties. One of the major problems with their widespread implementation is their uncontrolled agglomeration. One approach to reduce agglomeration is to alter their surface chemistry with a proper functionality in an environmentally friendly way. In this study, the influence of hydrogen peroxide (H2O2) treatment on the dispersion of ZnO and TiO2 nanoparticle (NP) agglomerates as a function of temperature is studied. The H2O2 treatment of the MONPs increases the density of hydroxyl (-OH) groups on the NP surface, as verified with FTIR spectroscopy. The influence of heating on the dispersion of H2O2-treated ZnO and TiO2 NPs is investigated using dynamic light scattering. The untreated and H2O2-treated ZnO and TiO2 NP suspensions were heated from 30 °C to 90 °C at 5 °C intervals to monitor the breakdown of large aggregates into smaller aggregates and individual nanoparticles. It was shown that the combined effect of hydroxylation and heating enhances the dispersion of ZnO and TiO2 NPs in water.

  5. Temperature-dependent breakdown of hydrogen peroxide-treated ZnO and TiO2 nanoparticle agglomerates

    Directory of Open Access Journals (Sweden)

    Sinan Sabuncu

    2015-09-01

    Full Text Available Metal oxide nanoparticles (MONPs are used in a variety of applications including drug formulations, paint, sensors and biomedical devices due to their unique physicochemical properties. One of the major problems with their widespread implementation is their uncontrolled agglomeration. One approach to reduce agglomeration is to alter their surface chemistry with a proper functionality in an environmentally friendly way. In this study, the influence of hydrogen peroxide (H2O2 treatment on the dispersion of ZnO and TiO2 nanoparticle (NP agglomerates as a function of temperature is studied. The H2O2 treatment of the MONPs increases the density of hydroxyl (–OH groups on the NP surface, as verified with FTIR spectroscopy. The influence of heating on the dispersion of H2O2-treated ZnO and TiO2 NPs is investigated using dynamic light scattering. The untreated and H2O2-treated ZnO and TiO2 NP suspensions were heated from 30 °C to 90 °C at 5 °C intervals to monitor the breakdown of large aggregates into smaller aggregates and individual nanoparticles. It was shown that the combined effect of hydroxylation and heating enhances the dispersion of ZnO and TiO2 NPs in water.

  6. Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer

    Science.gov (United States)

    Barron, Olivia; Su, Huaneng; Linkov, Vladimir; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-03-01

    Zirconium hydrogen phosphate (ZHP) together with polytetrafluoroethylene (PTFE) polymer binder is incorporated into the catalyst layers (CLs) of ABPBI (poly(2,5-benzimidazole))-based high temperature polymer electrolyte membrane fuel cell (HT-PEMFCs) to improve its performance and durability. The influence of ZHP content (normalised with respect to dry PTFE) on the CL properties are structurally characterised by scanning electron microscopy (SEM) and mercury intrusion porosimetry. Electrochemical analyses of the resultant membrane electrode assemblies (MEAs) are performed by recording polarisation curves and impedance spectra at 160 °C, ambient pressure and humidity. The result show that a 30 wt.% ZHP/PTFE content in the CL is optimum for improving fuel cell performance, the resultant MEA delivers a peak power of 592 mW cm-2 at a cell voltage of 380 mV. Electrochemical impedance spectra (EIS) indicate that 30% ZHP in the CL can increase the proton conductivity compared to the pristine PTFE-gas diffusion electrode (GDE). A short term stability test (∼500 h) on the 30 wt.% ZHP/PTFE-GDE shows a remarkable high durability with a degradation rate as low as ∼19 μV h-1 at 0.2 A cm-2, while 195 μV h-1 was obtained for the pristine GDE.

  7. Batch dark fermentative hydrogen production from grass silage: The effect of inoculum, pH, temperature and VS ratio

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, Outi; Lehtomaeki, Annimari; Rintala, Jukka [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2008-01-15

    The potential for fermentative hydrogen (H{sub 2}) production from grass silage was evaluated in laboratory batch assays. First, two different inocula (from a dairy farm digester and digested sewage sludge) were studied with and without prior heat treatment and pH adjustment. Only the inoculum from the dairy farm digester produced H{sub 2} from grass silage. Without heat treatment, methane (CH{sub 4}) was mainly produced, but heat treatment efficiently inhibited CH{sub 4} production. pH adjustment to 6 further increased H{sub 2} production. The effects of initial pH (4, 5 and 6), temperature (35, 55 and 70 {sup circle} C) and the substrate to inoculum volatile solids (VS) ratio (henceforth VS ratio) (1:1; 1.5:1 and 2:1) on H{sub 2} production from grass silage were evaluated with heat-treated dairy farm digester sludge as inoculum. Optimal pH was found to be between 5 and 6, while at pH 4 no H{sub 2} was formed. The highest H{sub 2} yield was achieved at 70 {sup circle} C. H{sub 2} production also increased when the VS ratio was increased. However, the overall energy value of H{sub 2} compared to that of CH{sub 4} production remained low. (author)

  8. Development and application of new membranes at high temperatures in order to get hydrogen from fossil fuel. Final report. Entwicklung und Einsatz neuer Membranen bei hohen Temperaturen zur Wasserstoffgewinnung aus fossilen Energietraegern. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, F.; Luecke, L.; Oertel, M.; Pavlidis, S.; Schmitz, J.

    1990-06-01

    The use of membranes in dehydration reactions allows hydrogen to be extracted in one process step; at the same time the yield from the reactions is increased by the product extraction. Metallic membranes of titanium/nickel and coated vanadium as well as ceramic membranes have been developed on the basis of separation layers of aluminium oxide and zeolites. Whereas the permeation rates through TiNi are around one magnitude below those of palladium, the figures for vanadium are equal to, and in some cases even exceed those of Pd. When ceramic membranes are used no high-purity hydrogen is produced, but rather the feed gas is enriched with H{sub 1} Separation factors for H{sub 1}/N{sub 2} of between 2 and 3 are achieved with {gamma}-Al{sub 2}O{sub 3} membranes, and between 3 and 6 with zeolite membranes. The use of metal membranes in a steam reforming plant results in increases in the yield of between 10 and 45% depending on the reaction pressure. The service lives of the membrane modules developed when used in a test plant are currently around 2500 hours. The calculations carried out parallel to this are a good reflection of the test results for commercial plants without membranes and laboratory system with integrated membranes. An economic appraisal has shown that the hydrogen production costs in a conventional steam reforming plant are around 5% lower than those of a system using membranes; the relationship does, however, change in favour of the steam reformer with integrated membranes if high temperatures are used as a source of heat. (orig.) With 61 refs., 16 tabs., 55 figs.

  9. Dissipative properties of materials with microplastic mechanism of damping under conditions of separate and joint action of static stresses and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shpak, D.E.

    1985-01-01

    Static stress and temperature are studied experimentally for their separate and joint effect on dissipative properties of VT3-1 and Ehp 718 alloys whose dissipation energy is conditioned by microplastic strains. The results of the study are presented. It is shown that for the materials studied in contrast to the materials with other basic damping mechanisms joint effect of static stresses and temperature is close to a simple summation of the separate effect of these factors without any changes in the character of energy dissipation dependence.

  10. On-line hydrogen-isotope measurements of organic samples using elemental chromium: an extension for high temperature elemental-analyzer techniques.

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B; Meijer, Harro A J; Brand, Willi A; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ(2)H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ(2)H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while

  11. On-line hydrogen-isotope measurements of organic samples using elemental chromium: An extension for high temperature elemental-analyzer techniques

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A.J.; Brand, Willi A.; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ2H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ2H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while

  12. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    Science.gov (United States)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  13. Effect of delayed serum separation and storage temperature on serum glucose concentration in horse, dog, alpaca, and sturgeon.

    Science.gov (United States)

    Collicutt, Nancy B; Garner, Bridget; Berghaus, Roy D; Camus, Melinda S; Hart, Kelsey

    2015-03-01

    Although delays between blood sample collection and analysis are common in veterinary medicine, the effect of prolonged serum-clot contact time on serum glucose concentration is not well established and species differences have not been elucidated. The objective was to investigate the effect of storage time and temperature on serum glucose concentration in stored whole blood samples from horse, dog, alpaca, and sturgeon. Whole blood specimens were divided into 7 no-additive tubes and serum was separated from one sample within one hour, serving as the reference sample. The remaining samples were stored at 4°C and 25°C, then centrifuged and serum glucose measured by automated analysis at 2, 4, and 8 hours postcollection. Glucose concentrations were compared using linear mixed models. The decline in serum glucose concentration for all samples stored at 4°C was not statistically significant, except for the 8-hour samples from sturgeon and dog. At 25°C, serum glucose concentration was comparable to reference values at 2 hours in sturgeon and alpaca, but significantly lower at 4 and 8 hours in those species, and at all time points in equine and canine specimens, being most prominent after 8 hours of storage in canine specimens. Storage at 4°C limits serum glucose decline for at least 4 hours in all species tested and up to 8 hours in specimens of horse and alpaca. At 25°C, serum-clot contact time should not exceed 1 hour in equine and canine samples, and 2 hours in specimens from alpaca and sturgeon. © 2014 American Society for Veterinary Clinical Pathology.

  14. High-temperature membranes for H{sub 2}S and SO{sub 2} separations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winnick, J.

    1995-01-01

    Electrochemical cells which separate H{sub 2}S and S0{sub 2} from hot gas streams have two important materials issues that limit their successful industrial application: (1) membranes and (2) electrodes. These were the focus of the present study. For the H{sub 2}S work, experimental analysis incorporated several membrane and electrode materials; densified zirconia provided the best matrices for entrainment of electrolytic species, ionic mobility, and a process-gas barricade hindering the capabilities of gas cross-over, alternate reactions. Electrode materials of lithiated Ni converted to NiO in-situ were successful in polishing applications; however H{sub 2}S levels >100 ppM converted the NiO cathode to a molten nickel sulfide necessitating the use of Co. Lithiated NiO for the anode material remained morphologically stable and conductive in all experimentation. High temperature electrochemical removal of H{sub 2}S from coal gasification streams has been shown on the bench scale level at the Georgia Institute of Technology utilizing the aforementioned materials. Experimental removals from 1000 ppM to 100 ppM H{sub 2}S and 100 ppM to 10 ppM H{sub 2}S proved over 90% removal with applied current was economically feasible due to high current efficiencies ({approximately}100%) and low polarizations. For the S0{sub 2}work, an extensive search was conducted for a suitable membrane material for use in the S0{sub 2} removal system. The most favorable material found was Si{sub 3}N{sub 4}, proven to be more efficient than other possible materials. New lithiated NiO electrodes were also developed and characterized, proving more stable than previously used pervoskite electrodes. The combination of these new components led to 90% removal at near 100% current efficiency over a wide range of current densities.

  15. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  16. Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure

    Science.gov (United States)

    Li, Zhong; Haidry, Azhar Ali; Wang, Tao; Yao, Zheng Jun

    2017-07-01

    The development of cost-effective gas sensors with improved sensing properties and minimum power consumption for room temperature hydrogen leakage monitoring is in increasing demand. In this context, this report focus on the facile fabrication of ordered mesoporous TiO2 via evaporation-induced self-assembly route. With the controlled doping threshold (3%Co-TiO2), the output resistance change to 1000 ppm H2 is ˜4.1 × 103 with the response time of 66 s. The sensor response exhibits power law dependence with an increase in the hydrogen concentration, where the power law coefficient was found not only specific to the kind of target gas but also related to temperature. Further, the effect of structure integrity with doping level and humidity on sensing characteristics is interpreted in terms of variation in surface potential eVS and depletion region w caused by the adsorption of molecular oxygen O2-.

  17. Speeding up solar disinfection (SODIS): effects of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli.

    Science.gov (United States)

    Fisher, Michael B; Keenan, Christina R; Nelson, Kara L; Voelker, Bettina M

    2008-03-01

    Solar disinfection, or SODIS, shows tremendous promise for point-of-use drinking water treatment in developing countries, but can require 48 h or more for adequate disinfection in cloudy weather. In this research, we show that a number of low-cost additives are capable of accelerating SODIS. These additives included 100-1000 muM hydrogen peroxide, both at room temperature and at elevated temperatures, 0.5 - 1% lemon and lime juice, and copper metal or aqueous copper plus ascorbate, with or without hydrogen peroxide. Laboratory and field experiments indicated that additives might make SODIS more rapid and effective in both sunny and cloudy weather, developments that could help make the technology more effective and acceptable to users.

  18. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...

  19. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter

    2003-01-01

    gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  20. Effects of temperature, salt concentration, and the protonation state on the dynamics and hydrogen-bond interactions of polyelectrolyte multilayers on lipid membranes.

    Science.gov (United States)

    Lee, Hwankyu

    2016-03-07

    Polyelectrolyte multilayers, which consist of poly-l-lysines (PLL) and hyaluronic acids (HA), are simulated on phospholipid membranes with explicit water at different temperatures, salt concentrations, and protonation states of PLL that correspond to pH 7 or higher. PLL and HA polymers, which are initially sequentially deposited as three HA/PLL bilayers above the membrane, partially intermix with each other within 300 ns, and with a significant amount of water at almost half of its bulk density. With reduced protonation of amine groups of PLL, the polymers diffuse faster, especially at higher temperatures, and for 0%-protonation, disperse into the water, due to the many fewer hydrogen bonds between PLL and HA polymers. When PLL is protonated, the addition of salt ions weakens electrostatic interactions between PLL and HA and, at 0.5 M NaCl, eventually reduces the number of hydrogen bonds, which in experiments leads to hole formation inside the PLL/HA film. Multilayers are stabilized by hydrogen bonds, primarily between charged groups and to a lesser extent between uncharged groups. PLL and HA also electrostatically interact with lipid head groups of membranes which reduces the lateral mobility of membrane lipids, to an extent dependent on the salt concentration. These findings help quantitate the effects of temperature, salt, and the protonation state (or pH) on the stability and dynamics of multilayers and membranes, and show trends that compare favorably with the experimental observations of the swelling of multilayers.

  1. Hydrogenation induced deviation of temperature and concentration dependences of polymer-solvent interactions in poly(vinyl chloride) and a new eco-friendly plasticizer

    Science.gov (United States)

    Liu, Yang; Zhang, Rongchun; Wang, Xiaoliang; Sun, Pingchuan; Chen, Wei; Shen, Jianyi; Xue, Gi

    2015-06-01

    As a substitute for di-2-ethylhexyl phthalate (DOP), a new eco-friendly plasticizer, di(2-ethylhexyl) cyclohexane-1,2-dicarboxylate (DEHHP), was systematically studied in this work, mainly focusing on its interaction with poly(vinyl chloride) (PVC). The temperature and concentration dependences of polymer-solvent interactions in PVC/DEHHP were systematically investigated by rheology, low-field NMR and molecular dynamics simulations, and the results were quite different from those in PVC/DOP. With temperature increasing or PVC concentration decreasing, rheology experiments revealed that polymer-solvent interactions in PVC/DEHHP were weaker than that in PVC/DOP. Low-field 1H NMR results showed that the number of polymer-solvent complexes decreased as temperature increased. A faster decreasing rate of this number made the polymer-solvent interactions weaker in PVC/DEHHP than in PVC/DOP. Molecular dynamics simulations were further performed to study the role of polymer-solvent hydrogen bonding interactions in the systems. The radial distribution function showed that heating and dilution both resulted in faster molecular motions, and disassociation of the hydrogen bonds in the simplex hydrogen bonding system. Therefore, heating and dilution had an equivalent effect on the polymer-solvent interactions.

  2. Variable-temperature Fourier transform near-infrared imaging spectroscopy of the deuterium/hydrogen exchange in liquid D₂O.

    Science.gov (United States)

    Unger, Miriam; Ozaki, Yukihiro; Siesler, Heinz W

    2014-01-01

    In the present publication, the deuterium/hydrogen (D/H) exchange of liquid D2O exposed to water vapor of the surrounding atmosphere has been studied by variable-temperature Fourier transform near-infrared (FT-NIR) imaging spectroscopy. Apart from the visualization of the exchange process in the time-resolved FT-NIR images, kinetic parameters and the activation energy for this D/H exchange reaction have been derived from the Arrhenius plot of the variable-temperature spectroscopic data.

  3. Water, Hydrogen Bonding and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available n this work, the properties of the water are briefly revisited. Though liquid water has a fleeting structure, it displays an astonishingly stable network of hydrogen bonds. Thus, even as a liquid, water possesses a local lattice with short range order. The presence of hydroxyl (O-H and hydrogen (H....OH2 bonds within water, indicate that it can simultaneously maintain two separate energy systems. These can be viewed as two very different temperatures. The analysis presented uses results from vibrational spec- troscopy, extracting the force constant for the hydrogen bonded dimer. By idealizing this species as a simple diatomic structure, it is shown that hydrogen bonds within wa- ter should be able to produce thermal spectra in the far infrared and microwave regions of the electromagnetic spectrum. This simple analysis reveals that the oceans have a physical mechanism at their disposal, which is capable of generating the microwave background.

  4. Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors.

    Science.gov (United States)

    Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy

    2017-04-05

    Herein, we report the novel nanostructural interfaces of self-assembled hierarchical ZnO nanotubes/graphene (ZNT/G) with three different growing times of ZNTs on graphene substrates (namely, SH1, SH2, and SH3). Each sample was fabricated with interdigitated electrodes to form hydrogen sensors, and their hydrogen sensing properties were comprehensively studied. The systematic investigation revealed that SH1 sensor exhibits an ultrahigh sensor response even at a low detection level of 10 ppm (14.3%) to 100 ppm (28.1%) compared to those of the SH2 and SH3 sensors. The SH1 sensor was also found to be well-retained with repeatability, reliability, and long-term stability of 90 days under hydrogenation/dehydrogenation processes. This outstanding enhancement in sensing properties of SH1 is attributed to the formation of a strong metalized region in the ZNT/G interface due to the inner/outer surfaces of ZNTs, establishing a multiple depletion layer. Furthermore, the respective band models of each nanostructure were also purposed to describe their heterostructure, which illustrates the hydrogen sensing properties. Moreover, the long-term stability can be ascribed by the heterostructured combination of ZNTs and graphene via a spillover effect. The salient features of this self-assembled nanostructure are its reliability, simple synthesis method, and long-term stability, which makes it a promising candidate for new generation hydrogen sensors and hydrogen storage materials.

  5. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  6. Solar hydrogen generator

    Science.gov (United States)

    Sebacher, D. I.; Sabol, A. P. (Inventor)

    1977-01-01

    An apparatus, using solar energy to manufacture hydrogen by dissociating water molecules into hydrogen and oxygen molecules is described. Solar energy is concentrated on a globe containing water thereby heating the water to its dissociation temperature. The globe is pervious to hydrogen molecules permitting them to pass through the globe while being essentially impervious to oxygen molecules. The hydrogen molecules are collected after passing through the globe and the oxygen molecules are removed from the globe.

  7. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  8. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  9. Temperature Effect of Hydrogen-Like Impurity on the Ground State Energy of Strong Coupling Polaron in a RbCl Quantum Pseudodot

    Science.gov (United States)

    Xiao, Jing-Lin

    2016-11-01

    We study the ground state energy and the mean number of LO phonons of the strong-coupling polaron in a RbCl quantum pseudodot (QPD) with hydrogen-like impurity at the center. The variations of the ground state energy and the mean number of LO phonons with the temperature and the strength of the Coulombic impurity potential are obtained by employing the variational method of Pekar type and the quantum statistical theory (VMPTQST). Our numerical results have displayed that [InlineMediaObject not available: see fulltext.] the absolute value of the ground state energy increases (decreases) when the temperature increases at lower (higher) temperature regime, [InlineMediaObject not available: see fulltext.] the mean number of the LO phonons increases with increasing temperature, [InlineMediaObject not available: see fulltext.] the absolute value of ground state energy and the mean number of LO phonons are increasing functions of the strength of the Coulombic impurity potential.

  10. Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC

    NARCIS (Netherlands)

    Gutiérrez-Sevillano, J.J.; Calero, S.; Krishna, R.

    2015-01-01

    Configurational-bias Monte Carlo (CBMC) simulations are used to establish the potential of CuBTC for separation of water/benzene, methanol/benzene, ethanol/benzene, and acetone/benzene mixtures. For operations under pore saturation conditions, the separations are in favor of molecules that partner

  11. Application of Temperature-Correlated Mobility Theory for Optimizing the MEKC Separation of the Main Lignans from Schisandra Chinensis Fructus and its prescription Yuye Decoction

    DEFF Research Database (Denmark)

    Liu, Jingyi; Petersen, Nickolaj J.; Lee, Kaifai

    2014-01-01

    The present work shows the application of the temperature-correlated mobility theory for the optimization of the separation and peak alignment of the main lignans from water extracts of traditional Chinese medicine Schisandra Chinensis Fructus (SCF) as well as its prescription Yuye Decoction (Jade...... Fluid Decoction) (YYD). This is the first application of this theory for MEKC separations, and the data presentation allows a much easier peak tracking and therby identification of the analytes. Most interestingly, the data obtained and presented in the mobility scale at 298 K, show that Schisantherin A...

  12. Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

  13. Moderate Temperature Dense Phase Hydrogen Storage Materials within the US Department of Energy (DOE H2 Storage Program: Trends toward Future Development

    Directory of Open Access Journals (Sweden)

    Scott McWhorter

    2012-05-01

    Full Text Available Hydrogen has many positive attributes that make it a viable choice to augment the current portfolio of combustion-based fuels, especially when considering reducing pollution and greenhouse gas (GHG emissions. However, conventional methods of storing H2 via high-pressure or liquid H2 do not provide long-term economic solutions for many applications, especially emerging applications such as man-portable or stationary power. Hydrogen storage in materials has the potential to meet the performance and cost demands, however, further developments are needed to address the thermodynamics and kinetics of H2 uptake and release. Therefore, the US Department of Energy (DOE initiated three Centers of Excellence focused on developing H2 storage materials that could meet the stringent performance requirements for on-board vehicular applications. In this review, we have summarized the developments that occurred as a result of the efforts of the Metal Hydride and Chemical Hydrogen Storage Centers of Excellence on materials that bind hydrogen through ionic and covalent linkages and thus could provide moderate temperature, dense phase H2 storage options for a wide range of emerging Proton Exchange Membrane Fuel Cell (PEM FC applications.

  14. Hydrogen Plasma Processing of Iron Ore

    Science.gov (United States)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  15. Heterostructured WS2-MoS2Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solar-Driven Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Reddy, D Amaranatha; Park, Hanbit; Ma, Rory; Kumar, D Praveen; Lim, Manho; Kim, Tae Kyu

    2017-04-10

    Solar-driven photocatalytic hydrogen evolution is important to bring solar-energy-to-fuel energy-conversion processes to reality. However, there is a lack of highly efficient, stable, and non-precious photocatalysts, and catalysts not designed completely with expensive noble metals have remained elusive, which hampers their large-scale industrial application. Herein, for the first time, a highly efficient and stable noble-metal-free CdS/WS 2 -MoS 2 nanocomposite was designed through a facile hydrothermal approach. When assessed as a photocatalyst for water splitting, the CdS/WS 2 -MoS 2 nanostructures exhibited remarkable photocatalytic hydrogen-evolution performance and impressive durability. An excellent hydrogen evolution rate of 209.79 mmol g -1  h -1 was achieved under simulated sunlight irradiation, which is higher than the values for CdS/MoS 2 (123.31 mmol g -1  h -1 ) and CdS/WS 2 nanostructures (169.82 mmol g -1  h -1 ) and the expensive CdS/Pt benchmark catalyst (34.98 mmol g -1  h -1 ). The apparent quantum yield reached 51.4 % at λ=425 nm in 5 h. Furthermore, the obtained hydrogen evolution rate was better than those of several noble-metal-free catalysts reported previously. The observed high rate of hydrogen evolution and remarkable stability may be a result of the ultrafast separation of photogenerated charge carriers and transport between the CdS nanorods and the WS 2 -MoS 2 nanosheets, which thus increases the number of electrons involved in hydrogen production. The proposed designed strategy is believed to potentially open a door to the design of advanced noble-metal-free photocatalytic materials for efficient solar-driven hydrogen production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Heat and mass transfer in porous media phase separation at temperatures below the lambda-point of He-4

    Science.gov (United States)

    Yuan, S. W. K.; Frederking, T. H. K.

    1986-01-01

    Newtonian fluid motion, coupled to heat transfer via latent heat of phase transition, is well known from numerous studies of condensation and boiling. Considerably less knowledge is available for vapor-liquid phase separation in the absence of gravity effect on the transport phenomena. The present studies are focused on heat and mass transfer associated with vapor-liquid phase separation required for long-term storage of the cryogen liquid He II in space vessels. Though space conditions are the dominant mode of interest in advanced equipment, e.g. IR telescopes, the systems may be operated in principle during terrestrial conditions. The latter are considered in the present work. It emphasizes the linear regime including an extrapolation based on variable thermophysical properties. Data taken with a phase separation approach show departures from the linear regime prediction. They agree with a transport equation proposed for the nonlinear, turbulent regime.

  17. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports.

    Science.gov (United States)

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H

    2013-05-30

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.

  18. Effect of the deposition temperature and a hydrogen post-annealing treatment on the structural, electrical, and optical properties of Ga-doped ZnO films

    Science.gov (United States)

    Lee, Min-Jung; Lee, Tae-Il; Lim, Jinhyong; Bang, Jungsik; Lee, Woong; Lee, Taeyoon; Myoung, Jae-Min

    2009-09-01

    The combined effects of the deposition temperature and a hydrogen post-annealing treatment on the structural, electrical, and optical properties of Ga-doped ZnO (GZO) films were investigated as a potential substitute for indium tin oxide transparent conductive oxide (TCO). On the as-deposited films, increasing the deposition temperature initially improved the electrical properties, but a deposition temperature in excess of 423 K resulted in the deterioration of the electrical properties due to the development of ZnGa2O4 and Ga2O3 phases originating from the excessive amount of the Ga dopant. While a post-annealing treatment of the GZO films in hydrogen leveled off the overall properties, improvement in the electrical property was observed only in films initially deposited at room temperature. This is attributed to the excessively high concentration of the dopant Ga released from ZnGa2O4 and Ga2O3 during the post-annealing treatment. It is therefore suggested that in the preparation of TCOs based on GZO films, the concentration of the dopant Ga should be carefully controlled to obtain the optimal properties by suppressing the formation of ZnGa2O4 and Ga2O3 that occurs due to the presence of excess Ga.

  19. THE EFFECT OF MAGNETITE (Fe3O4CATALYST FROM IRON SANDS ON DESORPTION TEMPERATURE OF MgH2 HYDROGEN STORAGE MATERIAL

    Directory of Open Access Journals (Sweden)

    Maulinda Maulinda

    2016-03-01

    Full Text Available One of the future technologies for a safe hydrogen storage media is  metal hydrides. Currently, Mg-based metal hydride has a safety factor and efficient for vehicle applications. However, the thermodynamic properties of magnesium hydride (MgH2 found a relatively high temperature. High desorption temperatures caused MgH2 high thermodynamic stability resulting desorption enthalpy is also high. In this study, natural mineral (iron ore has been extracted from iron sand into powder of magnetite (Fe3O4 and used as a catalyst in an effort to improve the desorption properties of MgH2. Magnetie has been successfully extracted from iron sand using precipitation method with a purity of 85 % , where the purity of the iron sand before extracted was 81%. Then, MgH2-Fe3O4 was milling using mechanical alloying method with a variety of catalysts and milling time. The observation by XRD showed the material was reduced to nanocrystalline scale. MgH2 phase appears as the main phase. DSC test results showed with the addition of Fe3O4, the desorption temperature can be reduced up to 366oC, compared to pure pure MgH2 reached by 409o C. Furthermore, based on gravimetric test, the hydrogen release occurs at a temperature of 388o C, weight loss  of 0.66 mg during 16 minutes.

  20. Experimental investigation of solid hydrogen pellet ablation in high-temperature plasmas using holographic interferometry and other diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Jr., C. E.

    1981-03-01

    The technology currently most favored for the refueling of fusion reactors is the high-velocity injection of solid hydrogen pellets. Design details are presented for a holographic interferometer/shadowgraph used to study the microscopic characteristics of a solid hydrogen pellet ablating in an approx. 1-keV plasma. Experimental data are presented for two sets of experiments in which the interferometer/shadowgraph was used to study approx. 1-mm-diam solid hydrogen pellets injected into the Impurity Study Experiment (ISX-B) tokamak at Oak Ridge National Laboratory (ORNL) at velocities of 1000 m/s. In addition to the use of the holographic interferometer, the pellet ablation process is diagnosed by studying the emission of Balmer-alpha photons and by using the available tokamak diagnostics (Thomson scattering, microwave/far-infrared interferometer, pyroelectric radiometer, hard x-ray detector).