WorldWideScience

Sample records for temperature heat capacity

  1. Low temperature heat capacity of lutetium and lutetium hydrogen alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thome, David Keith [Iowa State Univ., Ames, IA (United States)

    1977-10-01

    The heat capacity of high purity electrotransport refined lutetium was measured between 1 and 20°K. Results for thetaD were in excellent agreement with theta values determined from elastic constant measurements. The heat capacity of a series of lutetium-hydrogen solid solution alloys was determined and results showed an increase in γ to about 11.3 mJ/g-atom-K2 for hydrogen content increasing from zero to about one atomic percent. Above one percent hydrogen γ decreased with increasing hydrogen contents. The C/T data showed an increase with temperature decreasing below about 2.5°K for samples with 0.1 to 1.5 atomic percent hydrogen. This accounts for a large amount of scatter in thetaD versus hydrogen content in this range. The heat capacity of a bulk sample of lutetium dihydride was measured between 1 and 20°K and showed a large increase in thetaD and a large decrease in ..gamma.. compared to pure lutetium.

  2. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    In this study, a typical office room with a radiant heating system and a mechanical ventilation system was selected as the research subject. Indoor temperature formulas for calculating the room heat loss (including transmission heat loss and ventilation heat loss) and heating capacity of the hybrid...... for calculating ventilation heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems. (C) 2015 Elsevier B.V. All rights reserved....... change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  3. How to Measure Heat Capacity at Low Temperatures

    Science.gov (United States)

    Ventura, Guglielmo; Perfetti, Mauro

    This chapter is devoted to the description of calorimetric techniques used to measure heat capacity of solids: pulse heat calorimetry (Sect. 2.3), relaxation calorimetry (Sect. 2.4), dual slope calorimetry (Sect. 2.5), a.c. calorimetry (Sect. 2.6), differential scanning calorimetry (Sect. 2.7). Examples of measurements of heat capacity are reported in Sects. 2.3 and 2.4.

  4. Anomalous dependence of the heat capacity of supercooled water on pressure and temperature

    Directory of Open Access Journals (Sweden)

    I.A. Stepanov

    2014-01-01

    Full Text Available In some papers, dependences of the isobaric heat capacity of water versus pressure and temperature were obtained. It is shown that these dependences contradict both the dependence of heat capacity on temperature for supercooled water, and an important thermodynamic equation for the dependence of heat capacity on pressure. A possible explanation for this contradiction is proposed.

  5. Temperature dependence of electronic heat capacity in Holstein model of DNA

    Science.gov (United States)

    Fialko, N.; Sobolev, E.; Lakhno, V.

    2016-04-01

    The dynamics of charge migration was modeled to calculate temperature dependencies of its thermodynamic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. The energy varies from nearly polaron one at T ∼ 0 to midpoint of the conductivity band at high temperatures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.

  6. Temperature fluctuation and heat capacity in relativistic heavy-ion collisions

    CERN Document Server

    Ma, Guo Liang; Chen Jin Gen; He Ze-Jun; Long Jia-Li; Lu Zhao-Hui; Ma Yu-Gang; Sá Ben-Hao; Shen Wen-Qing; Wang Kun; Wei Yi-Bin; Zhang Hu-Yong; Zhong Chen

    2004-01-01

    We used LUCIAE3.0 model to simulate the Pb+Pb and C+C in SPS energy. The heat capacity was then extracted from event-by-event temperature fluctuation. It is found that the heat capacity per hadron multiplicity decreases with the increasing of beam energy and impact parameter for a given reaction system. While the hadron mass increases, the heat capacity per hadron multiplicity rises. In addition, we found that, for a given hadron, the heat capacity per hadron multiplicity is almost the same regardless of the reaction system. Some discussions were also given.

  7. Investigations of temperature dependences of electrical resistivity and specific heat capacity of metals

    Energy Technology Data Exchange (ETDEWEB)

    Eser, Erhan, E-mail: eserphy@gmail.com [Department of Physics, Polatlı Faculty of Arts and Sciences, Gazi University, Polatlı, Ankara (Turkey); Koç, Hüseyin [Department of Electrical and Electronics Engineering, Faculty of Engineering, Muş Alparslan University, Muş (Turkey)

    2016-07-01

    In this study, we calculated the electrical resistivity and heat capacities of some ideal metals (Cu, Pt, and Pd) using a method that it employs the statistical model and Debye functions. The method is used to provide a simple and reliable analytical procedure for wide temperature range. The results obtained for the electrical resistivity and heat capacity have been compared with the results in literature. The results obtained at low temperature are in excellent agreement with experimental and theoretical results. Finally the used approximation and analytical method are a useful approach to calculate thermophysical properties of metals.

  8. Low-temperature heat capacity and thermodynamic functions of vitamin B{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, A.V., E-mail: knyazevav@gmail.com; Smirnova, N.N.; Plesovskikh, A.S.; Shushunov, A.N.; Knyazeva, S.S.

    2014-04-01

    Graphical abstract: - Highlights: • Temperature dependence of heat capacity of vitamin B{sub 12} has been measured by precision adiabatic vacuum calorimetry. • The thermodynamic functions of the vitamin B{sub 12} have been determined for the range from T → 0 to 343 K. • The character of heterodynamics of structure was detected. • The thermal stability of cyanocobalamin was studied by differential scanning calorimetry. - Abstract: In the present work temperature dependence of heat capacity of vitamin B{sub 12} (cyanocobalamin) has been measured for the first time in the range from 6 to 343 K by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the vitamin B{sub 12}, namely, the heat capacity, enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0) have been determined for the range from T → 0 to 343 K. The value of the fractal dimension D in the function of multifractal generalization of Debye's theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. The thermal stability of cyanocobalamin was also studied by differential scanning calorimetry.

  9. High-temperature heat capacity of samarium and erbium titanates with pyrochlore structure

    Science.gov (United States)

    Denisova, L. T.; Chumilina, L. G.; Denisov, V. M.; Ryabov, V. V.

    2017-12-01

    Titanates Sm2Ti2O7 and Er2Ti2O7 with pyrochlore structure have been prepared by solid-phase synthesis in air from stoichiometric Sm2O3 (Er2O3)-TiO2 mixtures sequentially at 1673 and 1773 K. Hightemperature heat capacity of the oxide compounds has been determined by differential scanning calorimetry. Their thermodynamic properties have been calculated from experimental temperature dependence C p = f( T).

  10. Prevalence of Temperature Dependent Heat Capacity Changes in Protein-DNA Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-C.; Richard, A.J.; Kausiki, D.; LiCata, V.J.

    2009-05-19

    A large, negative {Delta}Cp of DNA binding is a thermodynamic property of the majority of sequence-specific DNA-protein interactions, and a common, but not universal property of non-sequence-specific DNA binding. In a recent study of the binding of Taq polymerase to DNA, we showed that both the full-length polymerase and its 'Klentaq' large fragment bind to primed-template DNA with significant negative heat capacities. Herein, we have extended this analysis by analyzing this data for temperature-variable heat capacity effects ({Delta}{Delta}Cp), and have similarly analyzed an additional 47 protein-DNA binding pairs from the scientific literature. Over half of the systems examined can be easily fit to a function that includes a {Delta}{Delta}Cp parameter. Of these, 90% display negative {Delta}{Delta}Cp values, with the result that the {Delta}Cp of DNA binding will become more negative with rising temperature. The results of this collective analysis have potentially significant consequences for current quantitative theories relating {Delta}Cp values to changes in accessible surface area, which rely on the assumption of temperature invariance of the {Delta}Cp of binding. Solution structural data for Klentaq polymerase demonstrate that the observed heat capacity effects are not the result of a coupled folding event.

  11. Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: Measurements and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lin Peiyin [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Soriano, Allan N. [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila 1002 (Philippines); Leron, Rhoda B. [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Li Menghui, E-mail: mhli@cycu.edu.t [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2010-08-15

    As part of our systematic study on physicochemical characterization of ionic liquids, in this work, we report new measurements of electrolytic conductivity and molar heat capacity for aqueous solutions of two 1-ethyl-3-methylimidazolium-based ionic liquids, namely: 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate, at normal atmospheric condition and for temperatures up to 353.2 K. The electrolytic conductivity and molar heat capacity were measured by a commercial conductivity meter and a differential scanning calorimeter (DSC), respectively. The estimated experimental uncertainties for the electrolytic conductivity and molar heat capacity measurements were {+-}1% and {+-}2%, respectively. The property data are reported as functions of temperature and composition. A modified empirical equation from another researcher was used to correlate the temperature and composition dependence of the our electrolytic conductivity results. An excess molar heat capacity expression derived using a Redlich-Kister type equation was used to represent the temperature and composition dependence of the measured molar heat capacity and calculated excess molar heat capacity of the solvent systems considered. The correlations applied represent the our measurements satisfactorily as shown by an acceptable overall average deviation of 6.4% and 0.1%, respectively, for electrolytic conductivity and molar heat capacity.

  12. Temperature Dependence of the Molar Heat Capacity for Ferromagnets Within the Mean Field Theory

    Science.gov (United States)

    Fernández Rodríguez, J.; Blanco, J. A.

    2005-01-01

    We describe, using the Mean Field Theory, a detailed analysis of the magnetic contribution to the molar heat capacity Cmag for ferromagnetic systems. This calculation is designed to be used as a teaching homework problem for physics undergraduates. The description emphasises that Cmag at the transition temperature TC is characterised by the existence of a simple jump discontinuity anomaly, but when the temperature is lowered down to 0 K the shape of Cmag depends strongly on the magnitude of the spin S. In fact, the appearance of a shoulder in Cmag for S > 3/2 is expected. The origin of this shoulder could be understood as a Schottky-like anomaly in the ordered state. These physical results are in good agreement with those from real systems, and give the student a valuable insight into the behaviour of the thermodynamical response of a ferromagneticmaterial.

  13. An automated flow calorimeter for heat capacity and enthalpy measurements at elevated temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.

    1990-08-31

    The need for highly accurate thermal property data for a broad range of new application fluids is well documented. To facilitate expansion of the current thermophysical database, an automated flow calorimeter was developed for the measurement of highly accurate isobaric heat capacities and enthalpies of fluids at elevated temperatures and pressures. The experimental technique utilizes traditional electrical power input, adiabatic flow calorimetry with a precision metering pump that eliminates the need for on-line flow rate monitoring. In addition, a complete automation system, greatly simplifies the operation of the apparatus and increases the rapidity of the measurement process. The range over which the instrument was tested, was 300--600 K and 0--12 Mpa, although the calorimeter should perform up to the original design goals of 700 K and 30 MPa. The new flow calorimeter was evaluated by measuring the mean, isobaric, specific heat capacities of liquid water and n-pentane. These experiments yielded an average deviation from the standard literature data of +0.02% and a total variation of 0.05%. Additional data analysis indicated that the overall measurement uncertainty was conservatively estimated as 0.2% with an anticipated precision of 0.1--0.15% at all operating conditions. 44 refs., 27 figs., 2 tabs.

  14. Low temperature resonances in the fermion heat capacity of finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, N K [V.G. Khlopin Radium Institute, 194021 St.-Petersburg (Russian Federation); Mikhajlov, V M [Institute of Physics St.-Petersburg State University 198904 (Russian Federation)], E-mail: kuzmenko@NK9433.spb.edu

    2009-02-01

    Temperature variations of the heat capacity (C) are studied in a low temperature regime T < {epsilon}{sub f}/N ({epsilon}{sub f} is the Fermi energy) for 2D-, and 3D-systems with N{approx} 10{sup 2} to 10{sup 4} treated as a canonical ensemble of N-noninteracting fermions. The analysis of C is performed by introducing a function {rho}({epsilon}), the spectral distribution of C that gives the contribution of each single-particle state to C. The function {rho}({epsilon}) has two peaks divided by the energy interval {delta} {epsilon} {approx} (2 to 5) T. If at some temperature T{sub res} there takes place a resonance i.e. the positions of these peaks coincide with energies of two levels nearest to {epsilon}{sub F} then C vs T shows a local maximum i.e. T{sub res} is determined by single-particle level spacings near the Fermi level.

  15. High-temperature heat capacity of CdO-V2O5 oxides

    Science.gov (United States)

    Denisova, L. T.; Chumilina, L. G.; Belousova, N. V.; Denisov, V. M.; Galiakhmetova, N. A.

    2017-12-01

    Vanadates Cd2V2O7 and CdV2O6 have been prepared from CdO i V2O5 by three-phase synthesis with subsequent burning at 823-1073 K and 823-853 K, respectively. The molar heat capacity of these oxide compounds has been measured by differential scanning calorimetry. The enthalpy change, the entropy change, and the reduced Gibbs energy are calculated using the experimental dependences C p = f( T). It is shown that there is a correlation between the specific heat capacity and the composition of CdO-V2O5 oxide system.

  16. Heat capacity and monogamy relations in the mixed-three-spin XXX Heisenberg model at low temperatures

    Science.gov (United States)

    Zad, Hamid Arian; Movahhedian, Hossein

    2016-08-01

    Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.

  17. A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat.

    Science.gov (United States)

    Cuddy, John S; Hailes, Walter S; Ruby, Brent C

    2014-07-01

    The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a "critical" core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h(-1) with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h(-1), grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, pskin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, ptemperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences in beginning and ending core temperatures or baseline 3-mile run time. This capacity difference appears to result from a magnified core to skin gradient via an environmental temperature advantageous to convective heat loss, and in part from an increased sweat rate. Copyright

  18. Heat capacity and Joule-Thomson coefficient of selected n-alkanes at 0.1 and 10 MPa in broad temperature ranges

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Varzandeh, Farhad; Stenby, Erling Halfdan

    2017-01-01

    Isobaric heat capacity of six n-alkanes, i.e. n-hexane, n-octane, n-decane, n-dodecane, n-tetradecane and n-hexadecane, was determined with a Calvet type differential heat-flux calorimeter at 0.1 and 10 MPa in a broad temperature range. The measured isobaric heat capacity data were combined...

  19. Calibration of a low temperature calorimeter and application in the determination of isobaric heat capacity of 2-propanol

    Energy Technology Data Exchange (ETDEWEB)

    Casas, L.M., E-mail: lmcasas@uvigo.es [Departamento de Fisica Aplicada, Facultade de Ciencias Experimentais, Universidade de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Plantier, F. [Laboratoire de Thermodynamique et Energetique des Fluides Complexes - UMR 5150, Universite de Pau et des Pays de l' Adour, BP 1155, 64013 Pau (France); Pineiro, M.M.; Legido, J.L. [Departamento de Fisica Aplicada, Facultade de Ciencias Experimentais, Universidade de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Bessieres, D. [Laboratoire de Thermodynamique et Energetique des Fluides Complexes - UMR 5150, Universite de Pau et des Pays de l' Adour, BP 1155, 64013 Pau (France)

    2010-08-10

    Nowadays, the experimental thermodynamic characterization of solvents in an extended range of temperatures and pressures is essential for the development of a wide variety of industrial applications (refrigeration, reactors, pumping, etc.). Moreover, accurate experimental data are also the key for the successful development and subsequent benchmarking of thermodynamic theoretical models. In the particular case of isobaric heat capacities, there are quite a lot of reported experimental high temperature data but, on the other hand, low temperature data are practically inexistent for most compounds. Bearing this limitation in mind, the present work is focused on the development of a new calibration methodology for calorimetric determination of isobaric heat capacities in liquid state at low temperatures. For this purpose, a Calvet calorimeter, SETARAM BT 2.15 has been used. By means of the calibration procedure explained below, this calorimeter allows to determine phase transitions and thermodynamic properties in a wide range of temperature (233.15-473.15 K) and pressure (0.1-100 MPa).

  20. Thermodynamic properties of zeolites: low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates of the thermochemical properties of zeolitic water at low temperature.

    Science.gov (United States)

    Hemingway, B.S.; Robie, R.A.

    1984-01-01

    Measured heat capacities between 15 and 305 K and calculated heat capacities, entropies, enthalpy functions and Gibbs energy functions are reported and analysed for phillipsite and clinoptilolite. - J.A.Z.

  1. Multiple pulse-heating experiments with different current to determine total emissivity, heat capacity, and electrical resistivity of electrically conductive materials at high temperatures

    Science.gov (United States)

    Watanabe, Hiromichi; Yamashita, Yuichiro

    2012-01-01

    A modified pulse-heating method is proposed to improve the accuracy of measurement of the hemispherical total emissivity, specific heat capacity, and electrical resistivity of electrically conductive materials at high temperatures. The proposed method is based on the analysis of a series of rapid resistive self-heating experiments on a sample heated at different temperature rates. The method is used to measure the three properties of the IG-110 grade of isotropic graphite at temperatures from 850 to 1800 K. The problem of the extrinsic heating-rate effect, which reduces the accuracy of the measurements, is successfully mitigated by compensating for the generally neglected experimental error associated with the electrical measurands (current and voltage). The results obtained by the proposed method can be validated by the linearity of measured quantities used in the property determinations. The results are in reasonably good agreement with previously published data, which demonstrate the suitability of the proposed method, in particular, to the resistivity and total emissivity measurements. An interesting result is the existence of a minimum in the emissivity of the isotropic graphite at around 1120 K, consistent with the electrical resistivity results.

  2. Measurement of the Electronic Thermal Conductance Channels and Heat Capacity of Graphene at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kin Chung Fong

    2013-10-01

    Full Text Available The ability to transport energy is a fundamental property of the two-dimensional Dirac fermions in graphene. Electronic thermal transport in this system is relatively unexplored and is expected to show unique fundamental properties and to play an important role in future applications of graphene, including optoelectronics, plasmonics, and ultrasensitive bolometry. Here, we present measurements of bipolar thermal conductances due to electron diffusion and electron-phonon coupling and infer the electronic specific heat, with a minimum value of 10k_{B} (10^{-22}  J/K per square micron. We test the validity of the Wiedemann-Franz law and find that the Lorenz number equals 1.32×(π^{2}/3(k_{B}/e^{2}. The electron-phonon thermal conductance has a temperature power law T^{2} at high doping levels, and the coupling parameter is consistent with recent theory, indicating its enhancement by impurity scattering. We demonstrate control of the thermal conductance by electrical gating and by suppressing the diffusion channel using NbTiN superconducting electrodes, which sets the stage for future graphene-based single-microwave photon detection.

  3. Ice ingestion with a long rest interval increases the endurance exercise capacity and reduces the core temperature in the heat.

    Science.gov (United States)

    Naito, Takashi; Iribe, Yuka; Ogaki, Tetsuro

    2017-01-05

    The timing in which ice before exercise should be ingested plays an important role in optimizing its success. However, the effects of differences in the timing of ice ingestion before exercise on cycling capacity, and thermoregulation has not been studied. The aim of the present study was to assess the effect of length of time after ice ingestion on endurance exercise capacity in the heat. Seven males ingested 1.25 g kg body mass-1 of ice (0.5 °C) or cold water (4 °C) every 5 min, six times. Under three separate conditions after ice or water ingestion ([1] taking 20 min rest after ice ingestion, [2] taking 5 min rest after ice ingestion, and [3] taking 5 min rest after cold water ingestion), seven physically active male cyclists exercised at 65% of their maximal oxygen uptake to exhaustion in the heat (35 °C, 30% relative humidity). Participants cycled significantly longer following both ice ingestion with a long rest interval (46.0 ± 7.7 min) and that with a short rest interval (38.7 ± 5.7 min) than cold water ingestion (32.3 ± 3.2 min; both p Heat storage under condition of ice ingestion with a long rest interval during the pre-exercise period was significantly lower than that observed with a short rest interval (-4.98 ± 2.50 W m-2; p heat, which is suggested to be driven by a reduced rectal temperature and heat storage before the start of exercise.

  4. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  5. Low-temperature heat capacities and Raman spectra of negative thermal expansion compounds ZrW2O8 and HfW2O8

    Science.gov (United States)

    Yamamura, Yasuhisa; Nakajima, Noriyuki; Tsuji, Toshihide; Koyano, Mikio; Iwasa, Yoshihiro; Katayama, Shin'ichi; Saito, Kazuya; Sorai, Michio

    2002-06-01

    Heat capacities of ZrW2O8 and HfW2O8 were precisely measured between 1.8 and 330 K. Heat-capacity curves of ZrW2O8 and HfW2O8 are very similar to each other. The heat capacity of HfW2O8 at low temperature is larger than that of ZrW2O8 due to atomic mass effect, but both heat capacities cross around 220 K. Raman spectra of ZrW2O8 and HfW2O8 were recorded at room temperature. Frequency distributions of lattice vibrations were estimated through an analysis of the heat capacities for ZrW2O8 and HfW2O8. It is found that the difference in the frequency distributions between ZrW2O8 and HfW2O8 arises from the different atomic mass and bond strength, and causes the different temperature dependence of the heat capacities. The properties of the optical-phonon modes with a large negative mode-Grüneisen parameter are discussed.

  6. Unprecedented Integral-Free Debye Temperature Formulas: Sample Applications to Heat Capacities of ZnSe and ZnTe

    National Research Council Canada - National Science Library

    R. Pässler

    2017-01-01

    Detailed analytical and numerical analyses are performed for combinations of several complementary sets of measured heat capacities, for ZnSe and ZnTe, from the liquid-helium region up to 600 K. The isochoric (harmonic...

  7. An adiabatic calorimeter for heat capacity measurements of polyurethane foam with blowing agent of HFC245fa in the temperature range 60-290K

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.G.; Xu, L.; Zhang, L.Q.; Chen, N. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-06-15

    In order to meet the urgent need of heat insulating materials used under low temperature in the area of aerospace, a new polyurethane (PU) foam with HFC245fa as blowing agent was developed. In this paper, the heat capacity in the temperature range of 60-290K of the new material was measured through an automated adiabatic calorimeter, which was composed of a heat insulation system, a power measuring system, a vacuum pumping system and a cooling system. The sample cell of the calorimeter was equipped with a miniature platinum thermometer surrounded by two adiabatic shields and housed in a high vacuum can. The temperature differences among the sample cell and the inner and outer adiabatic shields could be adjusted automatically to less than 0.05K, all which ensure there was no heat exchange between the sample and surroundings. Under these conditions, the mathematical formulation of the sample with the physical model was given. Through measuring the heat capacity of {alpha}-Al{sub 2}O{sub 3}, which is a standard reference material, a relatively high reliability with a deviation of +/-2.5% of this adiabatic calorimeter was shown compared with the standard data. The results indicate that the newly developed PU foam has a higher heat capacity compared with other heat insulating materials, and there is no obvious sign of any phase transition or thermal anomaly in the entire temperature range. That is to say, the material is thermodynamically stable when used in the low temperature range. (author)

  8. An adiabatic calorimeter for heat capacity measurements of polyurethane foam with blowing agent of HFC245fa in the temperature range 60-290 K

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.G. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: chunguang_yang@sjtu.edu.cn; Xu, L. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhang, L.Q. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China); Chen, N. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-06-15

    In order to meet the urgent need of heat insulating materials used under low temperature in the area of aerospace, a new PU foam with HFC245fa as blowing agent was developed. In this paper, the heat capacity in the temperature range of 60-290 K of the new material was measured through an automated adiabatic calorimeter, which was composed of a heat insulation system, a power measuring system, a vacuum pumping system and a cooling system. The sample cell of the calorimeter was equipped with a miniature platinum thermometer surrounded by two adiabatic shields and housed in a high vacuum can. The temperature differences among the sample cell and the inner and outer adiabatic shields could be adjusted automatically to less than 0.05 K, all which ensure there was no heat exchange between the sample and surroundings. Under these conditions, the mathematical formulation of the sample with the physical model was given. Through measuring the heat capacity of {alpha}-Al{sub 2}O{sub 3}, which is a standard reference material, a relatively high reliability with a deviation of {+-}2.5% of this adiabatic calorimeter was shown compared with the standard data. The results indicate that the newly developed PU foam has a higher heat capacity compared with other heat insulating materials, and there is no obvious sign of any phase transition or thermal anomaly in the entire temperature range. That is to say, the material is thermodynamically stable when used in the low temperature range.

  9. Temperature dependence of the heat capacities in the solid state of 18 mono-, di-, and poly-saccharides

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Segura, Gerardo O. [Laboratorio de Biofisicoquimica, Departamento de Fisicoquimica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Campos, Myriam [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados del I.P.N., Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Costas, Miguel [Laboratorio de Biofisicoquimica, Departamento de Fisicoquimica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico)], E-mail: costasmi@servidor.unam.mx; Torres, Luis A. [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados del I.P.N., Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)], E-mail: ltorres@cinvestav.mx

    2009-01-15

    The temperature dependence of the heat capacities in solid state C{sub p}(T) of 18 mono-, di-, and poly-saccharides has been determined using a power-compensation differential scanning calorimeter. The saccharides were {alpha}-D-xylose, D-ribose, 2-deoxy-D-ribose, methyl-{beta}-D-ribose, {alpha}-D-glucose, 2-deoxy-D-glucose, {alpha}-D-mannose, {beta}-D-fructose, {alpha}-D-galactose, methyl-{alpha}-D-glucose, sucrose, maltose monohydrate, {alpha}-lactose monohydrate, cellobiose, maltotriose, N-acetyl-D-glucosamine, {alpha}-cyclodextrin, and {beta}-cyclodextrin. The measurements were carried out at atmospheric pressure and from T = (288.15 to 358.15) K for 15 saccharides and from T = (288.15 to 328.15) K for D-ribose, 2-deoxy-D-ribose, and methyl-{beta}-D-ribose. The present results are compared against literature values both at single temperatures, where most of the data are available, and throughout a range of temperatures, i.e., for C{sub p}(T). The predictions of a recently published correlation for organic solids are briefly discussed. By grouping saccharides in subsets, our present results can be used to compare amongst saccharide isomers and to assess the effect of different chemical groups and molecular size.

  10. Sea surface temperature of the coastal zones of France. Heat Capacity Mapping Mission (HCMM)

    Science.gov (United States)

    Deschamps, P. Y.; Frouin, R.; Cassanet, G.; Verger, F. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. HCMM data analysis shows some mesoscale features which were previously expected to occur: summer coastal upwellings in the Gulf of Lions, tidal fronts bordering the English Channel, and cooler surface waters at the continental shelf break. The analysis of the spectral variance density spectra show that the interpretation of the data usually is limited by the HCMM radiometric performance (noise levels) at wavenumbers below 5 km in the oceanic areas; from this analysis it may also be concluded that a decrease of the radiometric noise level down to 0.1 k against an increase of the ground resolution up to 2 km would give a better optimum of the radiometric performances in the oceanic areas. HCMM data appear to be useful for analysis of the sea surface temperature field, particularly in the very coastal area by profiting from the ground resolution of 500 m.

  11. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-09-29

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  12. The Effect of Moisture Content and Temperature on the Specific Heat Capacity of Nut and Kernel of Two Iranian Pistachio Varieties

    Directory of Open Access Journals (Sweden)

    A.R Salari Kia

    2014-04-01

    Full Text Available Pistachio has a special ranking among Iranian agricultural products. Iran is known as the largest producer and exporter of pistachio in the world. Agricultural products are imposed under different thermal treatments during storage and processing. Designing all these processes requires thermal parameters of the products such as specific heat capacity. Regarding the importance of pistachio processing as an exportable product, in this study the specific heat capacity of nut and kernel of two varieties of Iranian pistachio (Kalle-Ghochi and Badami were investigated at four levels of moisture content (initial moisture content (5%, 15%, 25% and 40% w.b. and three levels of temperature (40, 50 and 60°C. In both varieties, the differences between the data were significant at the 1% of probability; however, the effect of moisture content was greater than that of temperature. The results indicated that the specific heat capacity of both nuts and kernels increase logarithmically with increase of moisture content and also increase linearly with increase of temperature. This parameter has altered for nut and kernel of Kalle-Ghochi and Badami varieties within the range of 1.039-2.936 kJ kg-1 K-1, 1.236-3.320 kJ kg-1 K-1, 0.887-2.773 kJ kg-1 K-1 and 0.811-2.914 kJ kg-1 K-1, respectively. Moreover, for any given level of temperature, the specific heat capacity of kernels was higher than that of nuts. Finally, regression models with high R2 values were developed to predict the specific heat capacity of pistachio varieties as a function of moisture content and temperature

  13. Meteorite heat capacities: Results to date

    Science.gov (United States)

    Consolmagno, G.; Macke, R.; Britt, D.

    2014-07-01

    Heat capacity is an essential thermal property for modeling asteroid internal metamorphism or differentiation, and dynamical effects like YORP or Yarkovsky perturbations. We have developed a rapid, inexpensive, and non-destructive method for measuring the heat capacity of meteorites at low temperature [1]. A sample is introduced into a dewar of liquid nitrogen and an electronic scale measures the amount of nitrogen boiled away as the sample is cooled from the room temperature to the liquid nitrogen temperature; given the heat of vaporization of liquid nitrogen, one can then calculate the heat lost from the sample during the cooling process. Note that heat capacity in this temperature range is a strong function of temperature, but this functional relation is essentially the same for all materials; the values we determine are equivalent to the heat capacity of the sample at 175 K. To correct for systematic errors, samples of laboratory-grade quartz are measured along with the meteorite samples. To date, more than 70 samples of more than 50 different meteorites have been measured in this way, including ordinary chondrites [1], irons [2], basaltic achondrites [3], and a limited number of carbonaceous chondrites [1]. In general, one can draw a number of important conclusions from these results. First, the heat capacity of a meteorite is a function of its mineral composition, independent of shock, metamorphism, or other physical state. Second, given this relation, heat capacity can be strongly altered by terrestrial weathering. Third, the measurement of heat capacity in small (less than 1 g) samples as done typically by commercial systems runs a serious risk of giving misleading results for samples that are heterogeneous on scales of tens of grams or more. Finally, we demonstrate that heat capacity is a useful tool for determining and classifying a sample, especially if used in conjunction with other intrinsic variables such as grain density and magnetic susceptibility

  14. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  15. Frequency-dependent heat capacity

    DEFF Research Database (Denmark)

    Behrens, Claus Flensted

    The frequency–dependent heat capacity of super-cooled glycerol near the glass transition is measured using the 3w detection technique. An electrical conducting thin film with a temperature–dependent electrical resistance is deposited on a substrate. The thin film is used simultaneously as a heater...

  16. Low temperature heat capacities and standard molar enthalpy of formation of sodium benzoate C{sub 6}H{sub 5}COONa (s)

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Yu-Xia [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province (China); Di, You-Ying, E-mail: yydi@lcu.edu.cn [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province (China); Qi, Yu-Dong; Yang, Wei-Wei [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province (China); Tan, Zhi-Cheng [Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2009-05-05

    Sodium benzoate was synthesized by the method of liquid phase synthesis, in which benzoic acid and anhydrous sodium carbonate were chosen as the reactants. The structure and composition of the compound were characterized by FTIR, chemical analysis, elemental analysis and X-ray powder diffraction techniques. Low temperature heat capacities of the compound were measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of the heat capacities as a function of the temperature was fitted by least square method. The smoothed heat capacities and the thermodynamic functions of the compound relative to 298.15 K have been calculated based on the equation. In accordance with Hess law, the standard molar enthalpy of formation of the title compound C{sub 6}H{sub 5}COONa (s) was determined to be {Delta}{sub f}H{sup o}{sub m}[C{sub 6}H{sub 5}COONa,s]=-(642.56{+-}0.64)kJmol{sup -1} by using an isoperibol solution-reaction calorimeter.

  17. Heat capacity of spinning plasma

    Science.gov (United States)

    Geyko, V. I.; Fisch, N. J.

    2017-10-01

    Equilibrium thermodynamics properties, such as heat capacity and adiabatic axial and radial compressibility of a rotating plasma column are studied. These properties depend on rotation speed, charge density, external magnetic field strength and electron-ion mass ratio. Plasma rotation serves as an additional energy storage, hence, yields to increased heat capacity. It also leads to charge separation that changes plasma density distribution due to electrostatic interaction and Lorentz force and therefore modifies thermodynamic properties. The obtained results can provide limits and optimal regimes for radial compression of z-pinch type structures and optimize energy deposition profile. This work was supported by NNSA DE-NA0001836 and DE-NA0002948 and by NSF Contract No. PHY-1506122.

  18. Electron heat capacity and lattice properties of Americium

    Science.gov (United States)

    Povzner, A. A.; Filanovich, A. N.; Os'kina, V. A.; Volkov, A. G.

    2013-12-01

    The temperature dependence of the electron heat capacity of americium is calculated using the concepts on the electronic structure and magnetic properties of this element. The Debye temperature, the thermal expansion coefficient, and the bulk modulus of americium are determined on the basis of the results of calculations and experimental data on heat capacity.

  19. Alternating current calorimeter for specific heat capacity measurements at temperatures below 10 K and pressures up to 10 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Umeo, Kazunori, E-mail: kumeo@sci.hiroshima-u.ac [Cryogenics and Instrumental Analysis Division, N-BARD, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan)

    2016-06-15

    A developed alternating current calorimeter for measuring the absolute value of specific heat C of a very small sample under a pressure up to 10 GPa and low temperature below 10 K is described. A Bridgman anvil cell made of tungsten carbide with a top diameter of 3 mm is used. A hollow at the top prevents expansion of the sample space over the anvil top. Two chip resistors, which act as a thermometer and a heater, are mounted on the outer part of a copper–beryllium gasket with a frying pan-like shape. Thus, the thermometer is not pressurized. In order to isolate the gasket from the anvil thermally, diamond powder with a grain size of 0.25 μm is placed on the anvil top. Two jumps of C at the superconducting transitions of Pb (3.3 mg) and In (5.0 mg) are observed under various pressures up to 9 GPa, as clearly as those at the ambient pressure.

  20. Heat-capacity measurements on small samples: The hybrid method

    NARCIS (Netherlands)

    Klaasse, J.C.P.; Brück, E.H.

    2008-01-01

    A newly developed method is presented for measuring heat capacities on small samples, particularly where thermal isolation is not sufficient for the use of the traditional semiadiabatic heat-pulse technique. This "hybrid technique" is a modification of this heat-pulse method in case the temperature

  1. Device for Measuring Heat Capacities of Microcalorimeter Absorber Materials

    Science.gov (United States)

    Kotsubo, Vincent; Beall, James; Ullom, Joel

    2009-12-01

    We are developing a device for measuring the heat capacity of candidate absorber materials for gamma-ray microcalorimeters with the goal of finding materials with low heat capacity and high stopping power to improve detector efficiency. To date, only Sn has been effective as an absorber, and speculation is that other materials suffer from anomalously high heat capacities at low temperatures. The key component of the measurement device is a 17 mm×17 mm low heat capacity silicon platform suspended by Kevlar fibers designed for accepting 1 g to 2 g samples, and whose heat capacity can be characterized prior to attaching a sample. The platform has a thin film Pd/Au heater deposited directly on the silicon, and a semiconducting thermometer bonded to the surface. The heat capacity is determined from C = Gτ, where G is the in-situ measured conductance and x is the measured temperature decay time from a step change in applied heat. For a platform without samples, decay periods on the order of 0.3 to 0.05 seconds were measured. With samples, decay periods of several seconds are projected, allowing good resolution of the heat capacities. Several thermometers were tested in an effort to find one with the optimum characteristics for measuring platform temperatures. These included a commercial thick-film Ruthenium-oxide surface-mount resistor, a germanium NTD, and a zirconium oxy-nitride thin-film thermometer.

  2. The high-temperature heat capacity of the (Th,U)O2 and (U,Pu)O2 solid solutions

    Science.gov (United States)

    Vălu, S. O.; Beneš, O.; Manara, D.; Konings, R. J. M.; Cooper, M. W. D.; Grimes, R. W.; Guéneau, C.

    2017-02-01

    The enthalpy increment data for the (Th,U)O2 and (U,Pu)O2 solid solutions are reviewed and complemented with new experimental data (400-1773 K) and many-body potential model simulations. The results of the review show that from room temperature up to about 2000 K the enthalpy data are in agreement with the additivity rule (Neumann-Kopp) in the whole composition range. Above 2000 K the effect of Oxygen Frenkel Pair (OFP) formation leads to an excess enthalpy (heat capacity) that is modeled using the enthalpy and entropy of OFP formation from the end-members. A good agreement with existing experimental work is observed, and a reasonable agreement with the results of the many-body potential model, which indicate the presence of the diffuse Bredig (superionic) transition that is not found in the experimental enthalpy increment data.

  3. Correcting for heat capacity and 5'-TA type terminal nearest neighbors improves prediction of DNA melting temperatures using nearest-neighbor thermodynamic models.

    Science.gov (United States)

    Hughesman, Curtis B; Turner, Robin F B; Haynes, Charles

    2011-04-05

    Nearest-neighbor thermodynamic (NNT) models currently provide some of the most accurate predictions of melting thermodynamics, including melting temperature (T(m)) values, for short DNA duplexes. Inherent to all existing NNT models is the assumption that ΔH° and ΔS° for the helix-to-coil transition are temperature invariant. Here we investigate the impact that this zero-ΔC(p) assumption has on the accuracy of T(m) predictions for 128 DNA duplexes. Previous and new melting thermodynamic data are analyzed to establish an estimate of ΔC(p)(bp), the heat capacity change per base pair, of 42 ± 16 cal mol(-1) K(-1) bp(-1), as well as an optimal thermodynamic reference temperature (T(ref)) of 53 ± 5 °C. These results were used to modify the unified NNT model to properly account for the temperature dependence of ΔH° and ΔS° and thereby extend the range over which T(m) is accurately predicted. This new approach is shown to be especially useful for duplexes that melt at a T(m) greater than 70 °C. Thermodynamic data collected by differential scanning calorimetry (DSC) for 16 duplexes designed to melt over a broad temperature range were used to verify the values of ΔC(p)(bp) and T(ref) and to show that ΔC(p)(bp) is essentially constant above 37 °C. Additional DSC analysis of 12 duplex sequences containing all 10 nearest neighbors allowed for errors associated with different terminal nearest neighbors to be examined and showed that duplexes containing one or more terminal 5'-TA groups are significantly more stable than predicted by the unified NNT model. A correction to improve prediction of the hybridization thermodynamics of duplexes with terminal 5'-TA groups is provided.

  4. Systematic Studies on Anharmonicity of Rattling Phonons in Type I Clathrates by Low Temperature Heat Capacity Measurements

    Science.gov (United States)

    Tanigaki, Katsumi; Wu, Jiazhen; Tanabe, Yoichi; Heguri, Satoshi; Shiimotani, Hidekazu; Tohoku University Collaboration

    2014-03-01

    Clathrates are featured by cage-like polyhedral hosts mainly composed of the IVth group elements of Si, Ge, or Sn and alkali metal or alkaline-earth metal elements can be accommodated inside as a guest atom. One of the most intriguing issues in clathrates is their outstanding high thermoelectric performances thanks to the low thermal conductivity. Being irrespective of good electric conductivity σ, the guest atom motions provide a low-energy lying less-dispersive phonons and can greatly suppress thermal conductivity κ. This makes clathrates close to the concept of ``phonon glass electron crystal: PGEC'' and useful in thermoelectric materials from the viewpoint of the figure of merit. In the present study, we show that the local phonon anharmonicity indicated by the tunneling-term of the endohedral atoms (αT) and the itinerant-electron term (γeT), both of which show T-linear dependences in specific heat Cp, can successfully be separated by employing single crystals with various carrier concentrations in a wide range of temperture experimennts. The factors affecting on the phonon anharmonicity as well as the strength of electron-phonon interactions will be discussed based on our recent experiments. The research was financially supported by Ministry of Education, Science, Sports and Culture, Grant in Aid for Science, and Technology of Japan.

  5. Heat capacity of GdNi sub 5

    Energy Technology Data Exchange (ETDEWEB)

    Szewczyk, A. (Inst. of Physics, Polish Academy of Sciences, Warsaw (Poland)); Radwanski, R.J.; Franse, J.J.M.; Nakotte, H. (Natuurkundig Lab., Univ. van Amsterdam (Netherlands))

    1992-02-01

    The heat capacity of GdNi{sub 5} was measured from 1.3 to 48 K in a fixed magnetic field (up to 5 T). The electronic, phonon, and magnetic contributions were separated. Temperature dependences of magnetic specific heat and entropy were calculated in the molecular field approximation. They are in good agreement with the experimental results. (orig.).

  6. Heat capacity and heat of dissociation of methane hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Rueff, R.M.; Sloan, E.D.; Yesavage, V.F.

    1988-09-01

    The objective of this study was to determine the heat capacity and heat of dissociation of methane hydrates. A technique has been devised which circumvents the two major problems encountered in measuring gas hydrate heat capacity: the need to impose a mechanical pressure during the measurement and the need to have an absolutely pure hydrate sample. The technique was shown to be successful utilizing high-pressure, constant-volume cells in a differential scanning calorimeter.

  7. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.

    Science.gov (United States)

    Carmo-Silva, A Elizabete; Salvucci, Michael E

    2012-11-01

    The temperature optimum of photosynthesis coincides with the average daytime temperature in a species' native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO(2) assimilation rate (A) under atmospheric conditions was 30-32 °C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO(2) concentration was consistent with Rubisco limiting A at ambient CO(2). Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63 % reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35 °C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.

  8. Heat Capacity Mapping Mission: 1978-1980

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NASA's Heat Capacity Mapping Mission (HCMM) project collected Earth data in the visible and thermal bands between April 1978 and September 1980. This was an...

  9. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. (comps.)

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  10. Heat capacity measurements on high T sub c superconductors

    CERN Document Server

    Oezcan, S

    1998-01-01

    temperature interval. The phase transition jump increases with the increasing of oxygen amount in the CuO sub 2 layers. The hight of the jump is varying from 1.5% to 3.5% of the total specific heat which is the nature of the bulk superconductivity. The small coherence length increases fluctuation effects and also causes the dependence of superconducting properties on structural defects. The fluctuation effects on the heat capacity of YBCO is investigated on the sample that shows clear superconducting properties. In this work, a heat capacity measurement system which has high sensitivity and reproducibility designed and constructed. The investigation of the effect of oxygen stoichiometry on the superconducting properties of high T sub c superconductors was aimed. For this purpose electrical resistivity, magnetic susceptibility and heat capacity experiment were performed. The constructed system is a computerized adiabatic calorimeter which has temperature resolution of about 0.1 mk and operates in the temperatu...

  11. Prediction of nanofluids properties: the density and the heat capacity

    Science.gov (United States)

    Zhelezny, V. P.; Motovoy, I. V.; Ustyuzhanin, E. E.

    2017-11-01

    The results given in this report show that the additives of Al2O3 nanoparticles lead to increase the density and decrease the heat capacity of isopropanol. Based on the experimental data the excess molar volume and the excess molar heat capacity were calculated. The report suggests new method for predicting the molar volume and molar heat capacity of nanofluids. It is established that the values of the excess thermodynamic functions are determined by the properties and the volume of the structurally oriented layers of the base fluid molecules near the surface of nanoparticles. The heat capacity of the structurally oriented layers of the base fluid is less than the heat capacity of the base fluid for given parameters due to the greater regulation of its structure. It is shown that information on the geometric dimensions of the structured layers of the base fluid near nanoparticles can be obtained from data on the nanofluids density and at ambient temperature – by the dynamic light scattering method. For calculations of the nanofluids heat capacity over a wide range of temperatures a new correlation based on the extended scaling is proposed.

  12. On the Specific Heat Capacity of CuO Nanofluid

    OpenAIRE

    Le-Ping Zhou; Bu-Xuan Wang; Xiao-Feng Peng; Xiao-Ze Du; Yong-Ping Yang

    2010-01-01

    This paper reviews briefly the definition of heat capacity and clarifies the defined specific heat capacity and volumetric heat capacity. The specific heat capacity and volumetric heat capacity, with our measured experimental data for CuO nanofluids, are discussed as an illustrating example. The result indicates that the specific heat capacity of CuO nanofluid decreases gradually with increasing volume concentration of nanoparticles. The measurement and the prediction from the thermal equilib...

  13. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odukomaiya, Adewale [Georgia Inst. of Technology, Atlanta, GA (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  14. Classical fluids of negative heat capacity

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, P.T. (Southampton Univ., (United Kingdom). Faculty of Mathematical Studies); Woodard, R.P. (Florida Univ., Gainesville, FL (United States). Dept. of Physics)

    1992-06-01

    It is shown that new parameters X can be defined such that the heat capacity C{sub X} {equivalent to} T({partial derivative}S/{partial derivative}T)X is negative, even when the canonical ensemble (i.e. at fixed T = ({partial derivative}U/{partial derivative}S) and Y {ne} X) is stable. As examples we treat black body radiation and general gas systems with nonsingular {kappa}{sub T}. For the case of a simple ideal gas we even exhibit an apparatus which enforces a constraint X(p,V) = const. that makes C{sub X} < 0. Since it is possible to invent constraints for which canonically stable systems have negative heat capacity we speculate that it may also be possible to infer the statistical mechanics of canonically unstable systems - for which even the traditional heat capacities are negative - by imposing constraints that stabilize the associated, inoncanonical ensembles.

  15. Classical fluids of negative heat capacity

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, P.T. [Southampton Univ., (United Kingdom). Faculty of Mathematical Studies; Woodard, R.P. [Florida Univ., Gainesville, FL (United States). Dept. of Physics

    1992-06-01

    It is shown that new parameters X can be defined such that the heat capacity C{sub X} {equivalent_to} T({partial_derivative}S/{partial_derivative}T)X is negative, even when the canonical ensemble (i.e. at fixed T = ({partial_derivative}U/{partial_derivative}S) and Y {ne} X) is stable. As examples we treat black body radiation and general gas systems with nonsingular {kappa}{sub T}. For the case of a simple ideal gas we even exhibit an apparatus which enforces a constraint X(p,V) = const. that makes C{sub X} < 0. Since it is possible to invent constraints for which canonically stable systems have negative heat capacity we speculate that it may also be possible to infer the statistical mechanics of canonically unstable systems - for which even the traditional heat capacities are negative - by imposing constraints that stabilize the associated, inoncanonical ensembles.

  16. Public utility Rosenheim enlarge the capacity of district heating by means of return temperatures. District heating transmission stations with cascade; Stadtwerke Rosenheim erweitern FW-Kapazitaet durch niedrigere Ruecklauftemperaturen. Fernwaermeuebergabestation mit Kaskade

    Energy Technology Data Exchange (ETDEWEB)

    Bruehl, Goetz; Bielmeier, Reinhard; Neugebauer, Horst [Stadtwerke Rosenheim (Germany); Weinmann, Edwin [Planungsbuero Weinmann, Muenchen (Germany); Planungsbuero Weinmann, Wielenbach (Germany)

    2012-12-15

    In most cases heating systems, drinking water heaters and circulation heaters are connected in parallel. This arrangement often results in too high return temperatures. In order to keep down the return temperature all the year, the public utility Rosenheim developed a cascaded high-efficiency district heating transmission station in cooperation with two partners. Due to the series connection of the heat exchangers for the hot water circulation, the heating system and the drinking water heaters in continuous flow, not only permanently lower return temperatures are achieved, but also the consumption of the power of pumps is lowered as well as the hygiene requirements to drinking water is improved.

  17. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  18. Reductions in labour capacity from heat stress under climate warming

    Science.gov (United States)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  19. Hybrid heat capacity-moving slab solid-state laser

    Science.gov (United States)

    Stappaerts, Eddy A.

    2005-03-01

    Laser material is pumped and its stored energy is extracted in a heat capacity laser mode at a high duty factor. When the laser material reaches a maximum temperature, it is removed from the lasing region and a subsequent volume of laser material is positioned into the lasing region to repeat the lasing process. The heated laser material is cooled passively or actively outside the lasing region.

  20. An automated flow calorimeter for heat capacity and enthalpy measurements at elevated temperatures and pressures: Progress report for period March 1, 1988--February 29, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.

    1988-10-30

    The need for thermal property data at process conditions has been well documented in applications such as development of atmospherically inert refrigerants and design of petrochemical and synfuel plants. As such, the primary objective of this work is to construct an automated flow calorimeter to measure isobaric heat capacities and enthalpies of vaporization over the range 0--30MPa and 300--700K with an anticipated accuracy of 0.1%. The method of measurement is an adiabatic electrical power input technique with a unique calorimeter design utilizing a concentric coil/radiation shield structure which minimizes heat loss errors and simplifies the replacement of plugged components. Flow generation is accomplished with a precision Ruska pump eliminating the need for on-line flow rate measurement. In addition, the proposed instrument will be fully automated minimizing the need for highly skilled operators which had previously been a severe limitation with this type of instrument. Assembly of all hardware and implementation of the necessary software was completed within the past year. In addition, water was used as a heat capacity standard to evaluate overall system performance. Preliminary indications are that the apparatus is operating near expectations (+//minus/0.2%) although some additional hardware refinements may be necessary achieve the design goals of +//minus/0.1%. 15 refs., 4 figs., 1 tab.

  1. Transient response of a high-capacity heat pipe for Space Station Freedom

    Science.gov (United States)

    Ambrose, J. H.; Holmes, H. R.

    1991-01-01

    High-capacity heat pipe radiator panels have been proposed as the primary means of heat rejection for Space Station Freedom. In this system, the heat pipe would interface with the thermal bus condensers. Changes in system heat load can produce large temperature and heat load variations in individual heat pipes. Heat pipes could be required to start from an initially cold state, with heat loads temporarily exceeding their low-temperature transport capacity. The present research was motivated by the need for accurate prediction of such transient operating conditions. In this work, the cold startup of a 6.7-meter long high-capacity heat pipe is investigated experimentally and analytically. A transient thermohydraulic model of the heat pipe was developed which allows simulation of partially-primed operation. The results of cold startup tests using both constant temperature and constant heat flux evaporator boundary conditions are shown to be in good agreement with predicted transient response.

  2. Experimental determination of the high temperature heat capacity of a natural xenotime-(Y) solid solution and synthetic DyPO{sub 4} and ErPO{sub 4} endmembers

    Energy Technology Data Exchange (ETDEWEB)

    Gysi, Alexander P., E-mail: agysi@mines.edu [Department of Geology and Geological Engineering, Colorado School of Mines, 1516 Illinois Street, Golden, CO 80401 (United States); Harlov, Daniel [Geoforschungszentrum Potsdam (GFZ), Telegrafenberg, D-14473 Potsdam (Germany); Filho, Deusavan Costa [Department of Geology and Geological Engineering, Colorado School of Mines, 1516 Illinois Street, Golden, CO 80401 (United States); Williams-Jones, Anthony E. [Department of Earth and Planetary Sciences, McGill University, 3450 University St., Montreal, QC H3A 2A7 (Canada)

    2016-03-20

    Highlights: • A new DSC calibration method for minerals of geological interest is described. • The heat capacity of DyPO{sub 4}, ErPO{sub 4} and xenotime-(Y) were reliably determined using DSC. • The excess heat capacity of xenotime-(Y) indicates a non-ideal solution with other HREE. - Abstract: The heat capacity of natural xenotime-(Y) and synthetic DyPO{sub 4} and ErPO{sub 4} crystals was determined by differential scanning calorimetry (DSC) at temperatures of 298.15 K to 868.15 K and a pressure of 0.1 MPa. The aim of the study was to develop a method to accurately measure the isobaric heat capacity (C{sub P}) of rare earth element (REE) phosphates, compare the results to data from adiabatic calorimetric experiments, and evaluate the deviation from ideality of the C{sub P} of the natural xenotime-(Y) solid solution. The measured C{sub P} data (in J mol{sup −1} K{sup −1}) can be described by the relationships: 185.5 − 751.9T{sup −0.5} − 3.261e + 06 T{sup −2} for DyPO{sub 4}; 207.2 − 1661T{sup −0.5} − 5.289e + 05 T{sup −2} for ErPO{sub 4}; and 208 − 1241T{sup −0.5} − 2.493e + 06 T{sup −2} for xenotime-(Y); where T is the temperature in K. The heat capacity data for natural xenotime-(Y) were used to determine the excess function for the solid solution, which yields an excess heat capacity ranging between 7.9 and 10.7%, well within the range of the DSC method used in this study. The experiments indicate that xenotime-(Y) forms a non-ideal solid solution. Future DSC studies will provide important data for developing a solid solution model for the incorporation of REE in xenotime-(Y).

  3. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour....... Groundwater, seawater and air heat sources were compared with each other as well as to a scenario consisting of a combination of these heat sources. In addition, base load and peak load units were included. Characteristic parameters were the coefficient of performance, the number of full load hours......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  4. An automated flow calorimeter for heat capacity and enthalpy measurements at elevated temperatures and pressures: Progress report, March 1, 1987-February 29, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.

    1987-10-01

    The need for thermal property data at process conditions in the design of petrochemical and synfuel plants has been well documented. As such, the primary objective of this work is to construct an automated flow calorimeter to measure isobaric heat capacities and enthalpies of vaporization over the range 0 to 30MPa and 300 to 700K with an anticipated accuracy of 0.1%. The method of measurement is by the traditional electrical power input technique with a unique calorimeter design utilizing a concentric coil/radiation shield structure which minimizes heat loss errors and simplifies the replacement of plugged components. Flow generation is accomplished with a precision Ruska pump eliminating the need for on-line flow rate measurement. In addition, the proposed instrument will be fully automated minimizing the need for highly skilled operators which had previously been a severe limitation with this type of instrument. Significant progress has been made on the project this last year with the completion of construction of all major system hardware components and the associated automation electronics. Initial tests of the equipment are encouraging and no significant delays are foreseen in the completion of the apparatus. During the next year the automation and data acquisition software will be written and the completed unit will be tested with water. 7 figs.

  5. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  6. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  7. Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2014-08-01

    Full Text Available Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1 hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance. Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation processes (γ′, γ″ are probably occurring, resulting in a sudden increase in the observed heat capacity.

  8. High capacity demonstration of honeycomb panel heat pipes

    Science.gov (United States)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  9. A New Method for the Determination of the Specific Heat Capacity Using Laser-Flash Calorimetry Down to 77K

    Science.gov (United States)

    Göbel, A.; Hemberger, F.; Vidi, S.; Ebert, H.-P.

    2013-05-01

    A new method for evaluation of the specific heat capacity in the temperature regime between 77K and 330K using laser-flash calorimetry is presented. Usually, laser-flash calorimetry is accomplished by performing an additional laser-flash measurement on a reference specimen with a known specific heat capacity and by comparing the maximum rear-side temperatures rises. In this study, the calibration is achieved by comparison of the rear-side temperature rise to specific-heat-capacity data determined by other methods in an adjacent temperature regime. Subsequently, the thus yielded proportional factor is used for the evaluation of the specific heat capacity from laser-flash measurements at temperatures where no specific-heat-capacity data are available. The reliability of this method is shown by performing measurements on a material with known specific heat capacity, aluminum oxide. Furthermore, the specific heat capacity and thermal conductivity of borosilicate crown glass (BK7) was determined experimentally.

  10. Effect of heat treatment temperature on microstructure and ...

    Indian Academy of Sciences (India)

    Effect of heat treatment temperature on microstructure and electrochemical properties of hollow carbon spheres prepared in high-pressure argon. Boyang Liu Yun ... 40 cycles. However, the discharge capacity of the HCSs decreases and the cycling performance is improved with the increase of heat treatment temperature.

  11. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities; Solveurs de riemann pour des melanges de gaz parfaits avec capacites calorifiques dependant de la temperature

    Energy Technology Data Exchange (ETDEWEB)

    Beccantini, A

    2001-07-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  12. Cold drink ingestion improves exercise endurance capacity in the heat.

    Science.gov (United States)

    Lee, Jason K W; Shirreffs, Susan M; Maughan, Ronald J

    2008-09-01

    To investigate the effect of drink temperature on cycling capacity in the heat. On two separate trials, eight males cycled at 66 +/- 2% VO2peak (mean +/- SD) to exhaustion in hot (35.0 +/- 0.2 degrees C) and humid (60 +/- 1%) environments. Participants ingested three 300-mL aliquots of either a cold (4 degrees C) or a warm (37 degrees C) drink during 30 min of seated rest before exercise and 100 mL of the same drink every 10 min during exercise. Rectal and skin temperatures, heart rate, and sweat rate were recorded. Ratings of thermal sensation and perceived exertion were assessed. Exercise time was longer (P drink (63.8 +/- 4.3 min) than with the warm drink (52.0 +/- 4.1 min). Rectal temperature fell by 0.5 +/- 0.1 degrees C (P drinks. There was no effect of drink temperature on mean skin temperature at rest (P = 0.870), but mean skin temperature was lower from 20 min during exercise with ingestion of the cold drink than with the warm drink (P drink than with the warm drink (P Drink temperature influenced sweat rate (1.22 +/- 0.34 and 1.40 +/- 0.41 L x h(-1) for the cold and the warm drink, respectively; P drink was ingested. Compared with a drink at 37 degrees C, the ingestion of a cold drink before and during exercise in the heat reduced physiological strain (reduced heat accumulation) during exercise, leading to an improved endurance capacity (23 +/- 6%).

  13. An automated flow calorimeter for heat capacity and enthalpy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandarusi, J.A.; Yesavage, V.F.

    1988-11-01

    An automated flow calorimeter has been developed for the measurement of heat capacity and latent enthalpies of fluids at elevated temperatures (300-700 K) and pressure (< 30 MPa) with a design accuracy of 0.1%. The method of measurement is the traditional electrical power input flow calorimeter, utilizing a precision metering pump, which eliminates the need for flow-rate monitoring. The calorimeter cell uses a unique concentric coil design with passive metal radiation shields and active guard heaters to minimize heat leakage, eliminate the traditional constant-temperature bath, and facilitate easy component replacement. An additional feature of the instrument is a complete automation system, greatly simplifying operation of the apparatus. A novel multitasking software scheme allows a single microcomputer simultaneously to control all system temperatures, provide continuous monitoring and updates on system status, and log data. Preliminary results for liquid water mean heat capacities show the equipment to be performing satisfactorily, with data accuracies of better than /plus minus/0.3%. Minor equipment modifications and better thermometry are required to reduce systemic errors and to achieve the designed operational range.

  14. High Temperature Composite Heat Exchangers

    Science.gov (United States)

    Eckel, Andrew J.; Jaskowiak, Martha H.

    2002-01-01

    High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.

  15. High-Capacity Heat-Pipe Evaporator

    Science.gov (United States)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  16. Magnetocaloric effect and the heat capacity of ferrimagnetic nanosystems in magnetic fluids

    Science.gov (United States)

    Korolev, V. V.; Aref'ev, I. M.; Ramazanova, A. G.

    2007-10-01

    The specific heat capacity of a magnetite-based magnetic fluid and changes in the magnetic part of the molar heat capacity of its magnetic phase in magnetic fields of 0 0.7 T were determined calorimetrically over the temperature range 288 353 K. The temperature dependence of changes in the magnetic part of entropy in an applied magnetic field was calculated. It was found that the field dependence of heat capacity had a maximum in fields of 0.3 0.4 T, and the temperature dependences of changes in the magnetic part of heat capacity Δ C p ( H) and entropy Δ S m( H) had maxima at the magnetic phase transition temperature.

  17. High temperature active heat exchanger research for latent heat storage

    Science.gov (United States)

    Alario, J.; Haslett, R.

    1982-02-01

    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide and nitrate families, based on high storage capacity, good corrosion characteristics and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCL o 24.5NaCL o 55.MgCl2% by wt.), with a nominal melting point of 385 C. Various active heat exchange concepts were given a technical and economic comparison to a passive tube shell design for a reference application (300 MW sub t for 6 hours). Test hardware was then built for the most promising concept: a direct contact heat exchanger in which molten salt droplets are injected into a cooler counter flowing stream of liquid metal carrier fluid (lead/Bismuth).

  18. Cyclic high temperature heat storage using borehole heat exchangers

    Science.gov (United States)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  19. Intermediate Temperature Water Heat Pipe Tests

    Science.gov (United States)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  20. Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.pt [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Rocha, Marisa A.A.; Rodrigues, Ana S.M.C. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Stejfa, Vojtech; Fulem, Michal [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, CZ-166 28 Prague 6 (Czech Republic); Bastos, Margarida [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2011-12-15

    Graphical abstract: Highlights: > We present the reassembling, improvement and testing of a high-precision C{sub p} drop calorimeter. > The apparatus was tested, using benzoic acid and hexafluorobenzene. > The high sensitivity of the apparatus is comparable to the one obtained in adiabatic calorimetry. > Heat capacities at T = 298.15 K of some polyphenyls were measured. > Subtle heat capacity differences among position isomers (ortho, meta, para) were detected. - Abstract: The description of the reassembling and testing of a twin heat conduction, high-precision, drop microcalorimeter for the measurement of heat capacities of small samples are presented. The apparatus, originally developed and used at the Thermochemistry Laboratory, Lund, Sweden, has now been reassembled and modernized, with changes being made as regarding temperature sensors, electronics and data acquisition system. The apparatus was thereafter thoroughly tested, using benzoic acid and hexafluorobenzene as test substances. The accuracy of the C{sub p,m}{sup 0} (298.15 K) data obtained with this apparatus is comparable to that achieved by high-precision adiabatic calorimetry. Here we also present the results of heat capacity measurements on of some polyphenyls (1,2,3-triphenylbenzene, 1,3,5-triphenylbenzene, p-terphenyl, m-terphenyl, o-terphenyl, p-quaterphenyl) at T = 298.15 K, measured with the renewed high precision heat capacity drop calorimeter system. The high resolution and accuracy of the obtained heat capacity data enabled differentiation among the ortho-, meta-, and para-phenyl isomers.

  1. High temperature heat exchange: nuclear process heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment.

  2. The capacity credit of micro-combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, A.D. [Centre for Energy Policy and Technology, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Leach, M.A. [Centre for Environmental Strategy, Faculty of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2008-04-15

    This article is concerned with development of a methodology to determine the capacity credit of micro-combined heat and power (micro-CHP), and application of the method for the UK. Capacity credit is an important parameter in electricity system planning because it measures the amount of conventional generation that would be displaced by an alternative technology. Firstly, a mathematical formulation is presented. Capacity credit is then calculated for three types of micro-CHP units - Stirling engine, internal combustion engine, and fuel cell systems - operating under various control strategies. It is found that low heat-to-power ratio fuel cell technologies achieve the highest capacity credit of approximately 85% for a 1.1 GW penetration when a heat-led control strategy is applied. Higher heat-to-power ratio Stirling engine technology achieves approximately 33% capacity credit for heat-led operation. Low heat-to-power ratio technologies achieve higher capacity credit because they are able to continue operating even when heat demand is relatively low. Capacity credit diminishes as penetration of the technology increases. Overall, the high capacity credit of micro-CHP contributes to the viewpoint that the technology can help meet a number of economic and environmental energy policy aims. (author)

  3. Ambient heat capacities and entropies of ionic solids: a unique view using the Debye equation.

    Science.gov (United States)

    Glasser, Leslie

    2013-06-03

    Entropies of solids are obtained experimentally as integrals of measured heat capacities over the temperature range from zero to ambient. Correspondingly, the Debye phonon distribution equation for solids provides a theoretical connection between these two chemical thermodynamic measures. We examine how the widely applicable Debye equation illuminates the relation between the corresponding experimental measures using more than 250 ionic solids. Estimation of heat capacities for simple ionic solids by the Dulong-Petit heat capacity limit, by the Neumann-Kopp elemental sum, and by the ion sum method is examined in relation to the Debye equation. We note that, and explain why, the ambient temperature heat capacities and entropies of ionic solids are found to be approximately equal, and how deviations from equality may be related to the Debye temperature, ΘD, which characterizes the Debye equation. It is also demonstrated that Debye temperatures may be readily estimated from the experimental ratio of ambient heat capacity to entropy, C(p)/S(p), rather than requiring resort to elaborate theoretical or experimental procedures for their determination. Correspondingly, ambient mineral entropies and heat capacities are linearly correlated and may thus be readily estimated from one another.

  4. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System.

    Science.gov (United States)

    Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng

    2016-05-19

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.

  5. Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

    OpenAIRE

    He, Yongning; Jin, Lei; Cao, Feng; Chen, Shengkun

    2014-01-01

    Gas injection technology is often used in cold regions to solve heat pump’s low heating capacity and high discharge temperature at low ambient temperature. Injecting gas into port opened at specific position of compressor could increase mass flow rate of compressor and total heating capacity of heat pump. Gas injection also changes compression ratio of compressor and decreases discharge temperature. An optimal gas injection pressure is got when the coefficient of performance reached to peak v...

  6. The Magnetocaloric Effect and Heat Capacity of Suspensions of High-Dispersity Samarium Ferrite

    Science.gov (United States)

    Korolev, V. V.; Aref'ev, I. M.; Ramazanova, A. G.

    2008-02-01

    The magnetocaloric effect and specific heat capacity of an aqueous suspension of samarium ferrite were determined calorimetrically over the temperature range 288-343 K in magnetic fields of 0-0.7 T. The data obtained were used to calculate changes in the magnetic component of the molar heat capacity and entropy of the magnetic phase and changes in the enthalpy of the process under an applied magnetic field. The magnetocaloric effect was found to increase nonlinearly as the magnetic field induction grew. The corresponding temperature dependences contained a maximum at 313 K related to the second-order magnetic phase transition at the Curie point. The field and temperature dependences of heat capacity contained a maximum in fields of 0.4 T and a minimum at the magnetic phase transition temperature.

  7. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    OpenAIRE

    Pavel Neuberger; Radomír Adamovský; Michaela Šeďová

    2014-01-01

    Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by the ...

  8. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2014-02-01

    Full Text Available Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by the heat-exchangers, has been characterised by meticulous measurements. These reveal that high concentrations of antifreeze mix in the heat-transfer fluid of the heat exchanger have an adverse impact on heat flows discharged into the soil.

  9. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  10. Saturated-liquid heat capacity calculation of alkanes

    Directory of Open Access Journals (Sweden)

    JOVAN D. JOVANOVIC

    2005-12-01

    Full Text Available An empirical model for the calculation of the heat capacity of alkanes is recommended. This model was tested and compared to known models (Luria–Benson and Rizicka–Domalski using 68 sets with 1155 literature experimental heat capacity data of 39 alkanes. The obtained results indicate that the newmodel is slightly better tha the existing models, especially near the critical point.

  11. The influence of heat sink temperature on the seasonal efficiency of shallow geothermal heat pumps

    Science.gov (United States)

    Pełka, Grzegorz; Luboń, Wojciech; Sowiżdżał, Anna; Malik, Daniel

    2017-11-01

    Geothermal heat pumps, also known as ground source heat pumps (GSHP), are the most efficient heating and cooling technology utilized nowadays. In the AGH-UST Educational and Research Laboratory of Renewable Energy Sources and Energy Saving in Miękinia, shallow geothermal heat is utilized for heating. In the article, the seasonal efficiency of two geothermal heat pump systems are described during the 2014/2015 heating season, defined as the period between 1st October 2014 and 30th April 2015. The first system has 10.9 kW heating capacity (according to European Standard EN 14511 B0W35) and extracts heat from three vertical geothermal loops at a depth of 80m each. During the heating season, tests warmed up the buffer to 40°C. The second system has a 17.03 kW heating capacity and extracts heat from three vertical geothermal loops at a depth of 100 m each, and the temperature of the buffer was 50°C. During the entire heating season, the water temperatures of the buffers was constant. Seasonal performance factors were calculated, defined as the quotient of heat delivered by a heat pump to the system and the sum of electricity consumed by the compressor, source pump, sink pump and controller of heat pumps. The measurements and calculations give the following results: - The first system was supplied with 13 857 kWh/a of heat and consumed 3 388 kWh/a electricity. The SPF was 4.09 and the average temperature of outlet water from heat pump was 40.8°C, and the average temperature of brine flows into the evaporator was 3.7 °C; - The second system was supplied with 12 545 kWh/a of heat and consumed 3 874 kWh/a electricity. The SPF was 3.24 and the average temperature of outlet water from heat pump was 51.6°C, and the average temperature of brine flows into the evaporator was 5.3°C. To summarize, the data shown above presents the real SPF of the two systems. It will be significant in helping to predict the SPF of objects which will be equipped with ground source heat pumps.

  12. Separation of Power and Capacity In latent Heat Energy Storage

    OpenAIRE

    Pointner, H.; Steinmann, W.D.; van Eck, M.; Bachelier, C.

    2015-01-01

    The state-of-the-art latent heat energy storage system is equipped with aluminum fins at the heat exchanger pipes in order to compensate the low thermal conductivity of the phase change material (PCM). The necessary amount of fins is directly coupled to the capacity of the storage system, what makes larger systems expensive. The PCMflux concept is developed in order to realize both a controllable and a possibly more cost effectivelatent heat storage system. These aims are addressed by separat...

  13. Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components

    Science.gov (United States)

    Bogatishcheva, N. S.; Faizullin, M. Z.; Nikitin, E. D.

    2017-09-01

    The heat capacities and thermal diffusivities of ethyl esters of liquid n-alkane acids C n H2 n-1O2C2H5 with the number of carbon atoms in the parent acid n = 10, 11, 12, 14, and 16 are measured. The heat capacities are measured using a DSC 204 F1 Phoenix heat flux differential scanning calorimeter (Netzsch, Germany) in the temperature range of 305-375 K. Thermal diffusivities are measured by means of laser flash method on an LFA-457 instrument (Netzsch, Germany) at temperatures of 305-400 K. An equation is derived for the dependence of the molar heat capacities of the investigated esters on temperature. It is shown that the dependence of molar heat capacity C p,m (298.15 K) on n ( n = 1-6) is close to linear. The dependence of thermal diffusivity on temperature in the investigated temperature range is described by a first-degree polynomial, but thermal diffusivity a (298.15 K) as a function of n has a minimum at n = 5.

  14. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  15. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan

    2009-01-01

    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  16. Heat pump air conditioning system for pure electric vehicle at ultra-low temperature

    Directory of Open Access Journals (Sweden)

    Li Hai-Jun

    2014-01-01

    Full Text Available When the ordinary heat pump air conditioning system of a pure electric vehicle runs at ultra-low temperature, the discharge temperature of compressor will be too high and the heating capacity of the system will decay seriously, it will lead to inactivity of the heating system. In order to solve this problem, a modification is put forward, and an experiment is also designed. The experimental results show that in the same conditions, this new heating system increases more than 20% of the heating capacity; when the outside environment temperature is negative 20 degrees, the discharge temperature of compressor is below 60 degrees.

  17. Integrated Temperature Sensors based on Heat Diffusion

    NARCIS (Netherlands)

    Van Vroonhoven, C.P.L.

    2015-01-01

    This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and

  18. Thermodynamic functions of ZrW2O8 from its heat capacity

    Science.gov (United States)

    Ji, FengMin; Dai, XianXi; Stevens, R.; Goates, J. B.

    2012-04-01

    It is interesting to maximize the amount of information we can obtain from one experiment on a single sample. In obtaining all the thermodynamic properties of some materials from their experimental heat capacity data only, we aim to get the temperature- independent energy spectrum. However, all the practical measured energy spectra depend on the temperature of experiments. One promising method to obtain the temperature-independent energy spectrum is to solve the so-called specific heat-phonon spectrum inversion (SPI) problem. Here we show, by developing a new practical solution method of SPI, the phonon spectrum of the negative thermal expansion material ZrW2O8 is obtained. This phonon spectrum is temperature- independent and almost method independent. Hence all the thermodynamic properties of ZrW2O8, such as thermodynamic potential, entropy, Helmholtz free energy, etc. are obtained by heat capacity only.

  19. Thermodynamics of micellization from heat-capacity measurements.

    Science.gov (United States)

    Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij

    2014-06-23

    Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Maximum Power Point Characteristics of Generalized Heat Engines with Finite Time and Finite Heat Capacities

    Directory of Open Access Journals (Sweden)

    Abhishek Khanna

    2012-01-01

    Full Text Available We revisit the problem of optimal power extraction in four-step cycles (two adiabatic and two heat-transfer branches when the finite-rate heat transfer obeys a linear law and the heat reservoirs have finite heat capacities. The heat-transfer branch follows a polytropic process in which the heat capacity of the working fluid stays constant. For the case of ideal gas as working fluid and a given switching time, it is shown that maximum work is obtained at Curzon-Ahlborn efficiency. Our expressions clearly show the dependence on the relative magnitudes of heat capacities of the fluid and the reservoirs. Many previous formulae, including infinite reservoirs, infinite-time cycles, and Carnot-like and non-Carnot-like cycles, are recovered as special cases of our model.

  1. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    , and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  2. Measuring Specific Heats at High Temperatures

    Science.gov (United States)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  3. Solvation thermodynamics and heat capacity of polar and charged solutes in water.

    Science.gov (United States)

    Sedlmeier, Felix; Netz, Roland R

    2013-03-21

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F(-) and a Na(+) ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na(+) and F(-) ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔC(p) stays positive and even increases slightly upon charging the Na(+) ion, it decreases upon charging the F(-) ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  4. Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Miaja, Gonzalo; Troncoso, Jacobo [Departamento de Fisica Aplicada, Universidad de Vigo, Facultad de Ciencias, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis [Departamento de Fisica Aplicada, Universidad de Vigo, Facultad de Ciencias, Campus As Lagoas, 32004 Ourense (Spain)], E-mail: romani@uvigo.es

    2009-02-15

    Experimental measurements of excess molar enthalpy, density, and isobaric molar heat capacity are presented for a set of binary systems ionic liquid + water as a function of temperature at atmospheric pressure. The studied ionic liquids are 1-butyl-3-methylpyridinium tetrafluoroborate, 1-ethyl-3-methylimidazolium ethylsulfate, 1-butyl-3-methylimidazolium methylsulfate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Excess molar enthalpy was measured at 303.15 K whereas density and heat capacity were determined within the temperature range (293.15 to 318.15) K. From experimental data, excess molar volume and excess molar isobaric heat capacity were calculated. The analysis of the excess properties reveals important differences between the studied ionic liquids which can be ascribed to their capability to form hydrogen bonds with water molecules.

  5. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  6. Negative heat capacities in central Xe+Sn reactions

    Energy Technology Data Exchange (ETDEWEB)

    Le Neindre, N.; Bougault, R.; Gulminelli, F. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA et Universite, 14 - Caen (France)] [and others

    2000-02-01

    In this study the fluctuation method is applied to the 32-50 A.MeV Xe + Sn central collisions detected with the INDRA multidetector. This method based on kinetic energy fluctuations allows the authors to provide information on the liquid gas phase transition in nuclear multifragmentation. In the case of Xe + Sn central reactions a divergence in the total heat capacity is observed. This divergence corresponds to large fluctuations on the detected fragment partitions. A negative heat capacity branch is measured and so tends to confirm the observation of a first order phase transition in heavy-ion collisions. (A.C.)

  7. Development of a high capacity variable conductance heat pipe.

    Science.gov (United States)

    Kosson, R.; Hembach, R.; Edelstein, F.; Loose, J.

    1973-01-01

    The high-capacity, pressure-primed, tunnel-artery wick concept was used in a gas-controlled variable conductance heat pipe. A variety of techniques were employed to control the size of gas/vapor bubbles trapped within the artery. Successful operation was attained with a nominal 6-foot long, 1-inch diameter cold reservoir VCHP using ammonia working fluid and nitrogen control gas. The pipe contained a heat exchanger to subcool the liquid in the artery. Maximum transport capacity with a 46-inch effective length was 1200 watts level (more than 50,000 watt-inches) and 800 watts at 0.5-inch adverse tilt.

  8. On the Einstein-Stern model of rotational heat capacities

    DEFF Research Database (Denmark)

    Dahl, Jens Peder

    1998-01-01

    The Einstein-Stern model for the rotational contribution to the heat capacity of a diatomic gas has recently been resuscitated. In this communication, we show that the apparent success of the model is illusory, because it is based on what has turned out to be an unfortunate comparison with experi......The Einstein-Stern model for the rotational contribution to the heat capacity of a diatomic gas has recently been resuscitated. In this communication, we show that the apparent success of the model is illusory, because it is based on what has turned out to be an unfortunate comparison...

  9. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  10. Heat Capacity, Crystallization, and Nucleation in Poly(vinyl alcohol) Thin Films

    Science.gov (United States)

    Thomas, David; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph; Cebe, Peggy

    Polyvinyl alcohol (PVA) is hydrophilic, biodegradable, semi-crystalline polymer with a wide array of applications ranging from textiles and packaging to medicine. Despite possessing favorable properties, PVA thermally degrades at temperatures just in excess of 200 °C which occurs slightly below the observed peak endothermic melting peak at 203 °C. Utilizing fast scanning calorimetry it is possible to minimize sample degradation allowing measurements of the liquid phase heat capacity as well as study nucleation and crystallization from the amorphous melt state. Samples cut from parent films 2-3 μm thick were placed on UFSC1 sensors and brought between -80 and 270 °C at rates of 2000 °C/s under a nitrogen atmosphere. After five complete cycles samples did not show any signs of degradation. By fitting the symmetry corrected glassy phase heat capacity with literature values for the specific heat capacity from the ATHAS databank sample masses were determined to vary between 15-50 ng. Homogeneous nucleation was observed for all samples cooled from the melt with peak temperature 123 °C. Fitting linear heat capacity baselines in the melt and glassy states it was possible to obtain an experimental measurement of the heat capacity increment 44.5 J/mol K at the glass transition 85 °C. NSF DMR-1206010.

  11. Molecular mobility, thermodynamics and stability of griseofulvin's ultraviscous and glassy states from dynamic heat capacity.

    Science.gov (United States)

    Tombari, E; Presto, S; Johari, G P; Shanker, Ravi M

    2008-04-01

    To determine the calorimetric relaxation time needed for modeling griseofulvin's stability against crystallization during storage. Both temperature-modulated and unmodulated scanning calorimetry have been used to determine the heat capacity of griseofulvin in the glassy and melt state. The calorimetric relaxation time, tau cal, of its melt varies with the temperature T according to the relation, tau cal [s] = 10(-13.3) exp [2, 292 /(T[K] - 289.5)] , and the distribution of relaxation times parameter is 0.67. The unrelaxed heat capacity of the griseofulvin melt is equal to its vibrational heat capacity. Griseofulvin neither crystallizes on heating to 373 K at 1 K/h rate, nor on cooling. Molecular mobility and vibrational heat capacity measured here are more reliable for modeling a pharmaceutical's stability against crystallization than the currently used kinetics-thermodynamics relations, and molecular mobility in the (fixed structure) glassy state is much greater than the usual extrapolation from the melt state yields. Molecular relaxation time of the glassy state of griseofulvin is about 2 months at 298 K, and longer at lower temperatures. It would spontaneously increase with time. If the long-range motions alone were needed for crystallization, griseofulvin would become more stable against crystallization during storage.

  12. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  13. Decoding heat capacity features from the energy landscape

    Science.gov (United States)

    Wales, David J.

    2017-03-01

    A general scheme is derived to connect transitions in configuration space with features in the heat capacity. A formulation in terms of occupation probabilities for local minima that define the potential energy landscape provides a quantitative description of how contributions arise from competition between different states. The theory does not rely on a structural interpretation for the local minima, so it is equally applicable to molecular energy landscapes and the landscapes defined by abstract functions. Applications are presented for low-temperature solid-solid transitions in atomic clusters, which involve just a few local minima with different morphologies, and for cluster melting, which is driven by the landscape entropy associated with the more numerous high-energy minima. Analyzing these features in terms of the balance between states with increasing and decreasing occupation probabilities provides a direct interpretation of the underlying transitions. This approach enables us to identify a qualitatively different transition that is caused by a single local minimum associated with an exceptionally large catchment volume in configuration space for a machine learning landscape.

  14. The influence of working memory capacity on experimental heat pain.

    Science.gov (United States)

    Nakae, Aya; Endo, Kaori; Adachi, Tomonori; Ikeda, Takashi; Hagihira, Satoshi; Mashimo, Takashi; Osaka, Mariko

    2013-10-01

    Pain processing and attention have a bidirectional interaction that depends upon one's relative ability to use limited-capacity resources. However, correlations between the size of limited-capacity resources and pain have not been evaluated. Working memory capacity, which is a cognitive resource, can be measured using the reading span task (RST). In this study, we hypothesized that an individual's potential working memory capacity and subjective pain intensity are related. To test this hypothesis, we evaluated 31 healthy participants' potential working memory capacity using the RST, and then applied continuous experimental heat stimulation using the listening span test (LST), which is a modified version of the RST. Subjective pain intensities were significantly lower during the challenging parts of the RST. The pain intensity under conditions where memorizing tasks were performed was compared with that under the control condition, and it showed a correlation with potential working memory capacity. These results indicate that working memory capacity reflects the ability to process information, including precise evaluations of changes in pain perception. In this work, we present data suggesting that changes in subjective pain intensity are related, depending upon individual potential working memory capacities. Individual working memory capacity may be a phenotype that reflects sensitivity to changes in pain perception. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  15. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    Science.gov (United States)

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  16. Measurement of the specific heat capacity of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Picard, S.; Burns, D.T.; Roger, P

    2006-01-15

    With the objective of implementing graphite calorimetry at the BIPM to measure absorbed dose, an experimental assembly has recently been constructed to measure the specific heat capacity of graphite. A status description of the apparatus and results from the first measurements are given. The outcome is discussed and the experimental uncertainty is reviewed. (authors)

  17. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    Science.gov (United States)

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  18. Influence of collector heat capacity and internal conditions of heat exchanger on cool-down process of small gas liquefier

    Science.gov (United States)

    Saberimoghaddam, Ali; Bahri Rasht Abadi, Mohammad Mahdi

    2018-01-01

    Joule-Thomson cooling systems are commonly used in gas liquefaction. In small gas liquefiers, transient cool-down time is high. Selecting suitable conditions for cooling down process leads to decrease in time and cost. In the present work, transient thermal behavior of Joule-Thomson cooling system including counter current helically coiled tube in tube heat exchanger, expansion valve, and collector was studied using experimental tests and simulations. The experiments were performed using small gas liquefier and nitrogen gas as working fluid. The heat exchanger was thermally studied by experimental data obtained from a small gas liquefier. In addition, the simulations were performed using experimental data as variable boundary conditions. A comparison was done between presented and conventional methods. The effect of collector heat capacity and convection heat transfer coefficient inside the tubes on system performance was studied using temperature profiles along the heat exchanger.

  19. Application of Neumann-Kopp rule for the estimation of heat capacity of mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, J., E-mail: jindrich.leitner@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vonka, P. [Department of Physical Chemistry, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Sedmidubsky, D. [Department of Inorganic Chemistry, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); European Commission, JRC, Institute for Transuranium Elements, Postbox 2340, D-76125 Karlsruhe (Germany); Svoboda, P. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 120 00 Prague 2 (Czech Republic)

    2010-01-10

    The empirical Neumann-Kopp rule (NKR) for the estimation of temperature dependence of heat capacity of mixed oxide is analyzed. NKR gives a reasonable estimate of C{sub pm} for most mixed oxides around room temperature, but at both low and high temperatures the accuracy of the estimate is substantially lowered. At very low temperatures, the validity of NKR is shown to be predominantly determined by the relation between the characteristic Debye and Einstein temperatures of a mixed oxide and its constituents. At high temperatures, the correlation between their molar volumes, volume expansion coefficients and compressibilities takes the dominance. In cases where the formation of a mixed oxide is not accompanied by any volume change, the difference between dilatation contributions to heat capacity of a mixed oxide and its constituents is exclusively negative. It turns out that in the high-temperature range, where the contribution of harmonic lattice vibrations approached the 3NR limit, {Delta}{sub ox}C{sub p} assumes negative values. For more complex oxides whose heat capacity has contributions from terms such as magnetic ordering, electronic excitations, the applicability of NKR is only restricted to lattice and dilatation terms.

  20. TEACHING PHYSICS: Teaching about heat and temperature

    Science.gov (United States)

    Carlton, Kevin

    2000-03-01

    Students encountering thermal physics at introductory level often have difficulty distinguishing between heat and temperature. It has been found with teacher education students at Canterbury Christ Church University College that challenging misconceptions by experiment and through discussion can quickly enable them to acquire the necessary concepts to equip them to develop their understanding of thermal physics. The key concepts are those of thermal equilibrium, the notion of flow of heat energy and the ability to differentiate between heat and temperature. This paper outlines a possible combination of activities to illustrate how this may be accomplished.

  1. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  2. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  3. Heat capacities and asymmetric criticality of coexistence curves for benzonitrile + alkanes and dimethyl carbonate + alkanes.

    Science.gov (United States)

    Huang, Meijun; Lei, Yuntao; Yin, Tianxiang; Chen, Zhiyun; An, Xueqin; Shen, Weiguo

    2011-11-24

    The critical behavior of isobaric heat capacities per unit volume for a series of critical binary solutions {benzonitrile + octane, or dodecane, or hexadecane} and {dimethyl carbonate + nonane, or decane, or dodecane} were studied. The corresponding exponent was obtained to be in consistent with the 3D-Ising value. The amplitudes in one-phase and two-phase regions were deduced, which were used to test some critical amplitude ratios. Analysis of the dependence of the effective critical exponent of the heat capacity on the temperature indicated a critical crossover from the 3D-Ising to the mean-field for all the studied systems. It was found that the heat capacity does play an important role for describing the asymmetric criticality of coexistence curves by the complete scaling theory. © 2011 American Chemical Society

  4. Modeling the Heat Capacity of Spider Silk Inspired Di-block Copolymers

    Science.gov (United States)

    Huang, W.; Krishnaji, S.; Kaplan, D.; Cebe, P.

    2011-03-01

    We synthesized and characterized a new family of di-block copolymers based on the amino acid sequences of Nephila clavipes major ampulate dragline spider silk, having the form HABn and HBAn (n=1-6), comprising an alanine-rich hydrophobic block, A, a glycine-rich hydrophilic block, B, and a histidine tag, H. Using temperature modulated differential scanning calorimetry (TMDSC), we captured the effect of bound water acting as a plasticizer for copolymer films which had been cast from water solution and dried. We determined the water content by thermogravimetry and used the weight loss vs. temperature to correct the mass in TMDSC experiments. Our result shows that non-freezing bound water has a strong plasticization effect which lowers the onset of the glass transition by about 10circ; C. The reversing heat capacities, Cp(T), for temperatures below and above the glass transition were also characterized by TMDSC. We then calculated the solid state heat capacities of our novel block copolymers below the glass transition (Tg) based on the vibrational motions of the constituent poly(amino acid)s, whose heat capacities are known from the ATHAS Data Bank. Excellent agreement was found between the measured and calculated values of the heat capacity, showing that this model can serve as a standard method to predict the solid state Cp for other biologically inspired block copolymers. Support was provided from the NSF CBET-0828028 and the MRI Program under DMR-0520655 for thermal analysis instrumentation.

  5. High-temperature heat-pump fluids

    Science.gov (United States)

    Bertinat, M. P.

    1988-05-01

    Heat pumps could be immensely useful in many industrial processes, but standard working fluids are unsuitable for the high temperatures involved. The ideal high-temperature heat-pump fluid should have a high (but not too high) critical temperature, a moderate critical pressure ( approximately=5.0 MPa) and a low (but not too low) boiling point. There are many organic fluids that do meet the above thermodynamic criteria The author's list of 250 contained dozens of them including many of the common laboratory solvents such as ethanol, ether and especially acetone. Unfortunately most of them are highly flammable. The ideal work fluid for high-temperature heat pumps will probably always remain elusive and water, despite its drawbacks will continue to be the best choice in most applications

  6. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house......A heating and cooling system could be divided into three parts: terminal units (emission system), distribution system, and heating and cooling plant (generation system). The choice of terminal unit directly affects the energy performance, and the indoor environment in that space. Therefore......, a holistic system evaluation is necessary to ensure an optimal indoor environment for the occupants and to achieve energy efficiency simultaneously. Low temperature heating and high temperature cooling systems are one of the possible approaches to heat or cool indoor spaces in buildings. In this thesis...

  7. Heat Capacity Uncertainty Calculation for the Eutectic Mixture of Biphenyl/Diphenyl Ether Used as Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J. C.; Glatzmaier, G. C.; Mehos, M.

    2012-09-01

    The main objective of this study was to calculate the uncertainty at 95% confidence for the experimental values of heat capacity of the eutectic mixture of biphenyl/diphenyl ether (Therminol VP-1) determined from 300 to 370 degrees C. Twenty-five samples were evaluated using differential scanning calorimetry (DSC) to obtain the sample heat flow as a function of temperature. The ASTM E-1269-05 standard was used to determine the heat capacity using DSC evaluations. High-pressure crucibles were employed to contain the sample in the liquid state without vaporizing. Sample handling has a significant impact on the random uncertainty. It was determined that the fluid is difficult to handle, and a high variability of the data was produced. The heat capacity of Therminol VP-1 between 300 and 370 degrees C was measured to be equal to 0.0025T+0.8672 with an uncertainty of +/- 0.074 J/g.K (3.09%) at 95% confidence with T (temperature) in Kelvin.

  8. THERMAL STUDY OF THE DIII-D MACHINE HEAT REMOVAL CAPACITY

    Energy Technology Data Exchange (ETDEWEB)

    YIP,H; ADERSON,P.M; HOLTROP,K.L; HARRISON,S

    2003-10-01

    OAK-B135 With each plasma shot, the DIII-D tokamak dissipates 0.5 to 1.0 GJ of energy. Plasma shots may occur as frequently as every ten minutes, and the energy is removed in the form of heat by a cooling water system. to remove heat from the machine, cooling water circulates through each major heat source. These sources include the power supplies, motor/generator, rf current drives, neutral beam power supplies, magnetic field coils, and vacuum vessel. The cooling water system consists of isolated primary and secondary cooling loops separated by intermediate heat exchangers. As future DIII-D plans include operation during summer months and longer pulse duration, the cooling system's overall heat removal capability and performance efficiency must be assessed. Temperature and flow data from around the DIII-D facility are collected by a programmable logic controller (PLC); the data are used to analyze the heat generating sources, the heat transfer rate to intermediate heat exchangers, and the ultimate heat rejection to the environment via the cooling towers. A comparison of the original DIII-D machine design versus the actual performance determines the margin of heat removal capacity. projections of the heat removal rate for various longer plasma shots are made. Improvements in design and/or operational procedure will be necessary to attain the desired pulse duration.

  9. Liquid heat capacity of the solvent system (piperazine + 2-amino-2-methyl-l-propanol + water)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-R. [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Caparanga, Alvin R.; Soriano, Allan N. [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Intramuros, Manila 1002 (Philippines); Li, M.-H., E-mail: mhli@cycu.edu.t [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2010-04-15

    This report presents a new set of heat capacity data for the system piperazine left brace(PZ) + 2-amino-2-methyl-1-propanol (AMP) + water (H{sub 2}O)right brace, measured using the differential scanning calorimetry technique, over the temperature range 303.2 K to 353.2 K and at fourteen (14) different concentrations in which the water mole fractions, x{sub 3}'s, were fixed at 0.60, 0.70, 0.80, and 0.90. Heat capacity for the binary system left bracePZ (1) + AMP (2)right brace at x{sub 1} = 0.05, 0.10, 0.15, and 0.20 were, likewise, measured to generate parameters necessary in the Redlich-Kister-type model, which was used to estimate excess molar heat capacities. Such estimates were then used to predict the values of the molar heat capacity at the corresponding sets of temperature and concentration. The predicted values were subsequently compared against the measured values and the results are satisfactory.

  10. Synthesis of Bottom Hole Temperatures and Heat Flow Data

    Science.gov (United States)

    Gosnold, W. D.; Crowell, A. M.

    2012-12-01

    The development of a National Geothermal Data System (http://www.geothermaldata.org/) promises to provide industry, governmental agencies and researchers with a wealth of data on United States geothermal resources. Two of the larger data sets in the NDGS effort are the bottom-hole temperature data set from oil and gas drilling and the heat flow data set. The BHT data are being compiled by state geological surveys in a Bore Hole Observation Template that can include up to 76 different attributes for each well. The heat flow data are being compiled by a consortium led by the SMU Geothermal Laboratory in a Heat Flow Template that can include up to 63 different atrributes for each heat flow site. The key data for geothermal resource development are temperature, depth and the reservoir properties that control production capacity. The UND geothermal laboratory has assembled the BHT and heat flow data sets for North Dakota, Nebraska and Minnesota and we have compared how accurately the key geothermal data may be independently determined from each data set and by synthesis of both data sets. The BHT data provide temperature at depth, but it is well-documented that BHT data were recorded at non-equilibrium conditions and generally underestimate actual formation temperatures. Heat flow data include a measured temperature gradient, although the gradient may apply to only a short segment of the borehole temperature measurement. Synthesis of these two data sets provides checks that can prevent errors in data interpretation. We compared BHT data from the Denver Basin and Williston Basin to equilibrium temperature vs. depth profiles measured in deep boreholes and developed a thermal stratigraphy approach that permits correction of the BHT data for each basin.

  11. Investigation of high capacity heat energy storage for building applications

    OpenAIRE

    Ding, Yate

    2014-01-01

    The problems of excessive consumption of fossil resources, oil shortages and greenhouse gas emissions are becoming increasingly severe. Research and development work on new methods of thermal energy storage are imminently required. To effectively store seasonal renewable energy, a novel high capacity heat storage system has been designed and evaluated/validated through laboratory experiments and numerical simulations in this research. The system is driven by direct flow evacuated tube solar c...

  12. A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    The study presented in this paper focuses on an experimental investigation of the specific heat capacity as a function of the temperature Cp (T) of concrete mixed with various amounts of phase change material (PCM). The tested specimens are prepared by directly mixing concrete and microencapsulated...... PCM. This paper describes the development of the new material and the experimental set-up to determine the specific heat capacity of the PCM concrete material. Moreover, various methods are proposed and compared to calculate the specific heat capacity of the PCM concrete. Finally, it is hoped...

  13. Parametric Study on the Dynamic Heat Storage Capacity of Building Elements

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2007-01-01

    of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well......In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning systems are often used even in moderate and cold climates. Particularly in this case, passive cooling by night-time ventilation seems to offer considerable...... potential. However, because heat gains and night ventilation periods do not coincide in time, a sufficient amount of thermal mass is needed in the building to store the heat. Assuming a 24 h-period harmonic oscillation of the indoor air temperature within a range of thermal comfort, the analytical solution...

  14. Power generation from low-temperature heat source

    Energy Technology Data Exchange (ETDEWEB)

    Lakew, Amlaku Abie

    2012-07-01

    transcritical power cycle is operating at lower pump efficiency, the effect of a decrease in pump efficiency is equivalent to a decrease in turbine efficiency. The thermodynamic analysis is coupled with a 1D mean line turbine design. Both axial and radial turbines are considered. The Ainely and Mathieson loss model is used in the 1D axial turbine designs. It is observed that the blade height is generally small; the reason being high operating pressure and low flow rate. A novel approach to enhance the performance of low-temperature CO{sub 2} transcritical power cycles is investigated. From the thermodynamic analysis, it is observed that the pump work is significant and reduction of pump work will be translated to a gain in net power output. The mechanical driven pump is suggested to be replaced by a thermally driven pump. The working principle of thermally driven pump is by exploiting the phenomena in which the pressure of a closed vessel filled full with saturated liquid will rise when heated. A cascade of vessels is used to make the pressurizing process continuous. The time taken to pressurize is an important parameter for the performance of thermally driven pump. Pressurizing time depends on isochoric specific heat capacity of the working fluid, heat transfer coefficient, inlet conditions of heat source, tube diameter, and initial mass of the working fluid. When the pressurizing time is longer, more vessels are required to make the process continuous. It is shown that it possible to increase power output using a thermal driven pump, but additional equipments are required. An example of a possible application is a low-temperature CO{sub 2} power cycle integrated with a post-combustion carbon dioxide capture plant. The heat rejected by low temperature streams in the capture plant is used as a heat sources for power generation. It is found that utilization of heat of the capture plant improves the performance of the overall process. It shows that low-temperature transcritical

  15. Power Output Stability Research for Harvesting Automobile Exhaust Energy with Heat Capacity Material as Intermediate Medium

    Science.gov (United States)

    Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng

    2018-01-01

    Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.

  16. Reaction heats and heat capacity changes for intermediate steps of the ATP hydrolysis catalyzed by myosin subfragment 1.

    Science.gov (United States)

    Kodama, T

    1981-03-25

    The interaction of myosin Subfragment 1 with ATP in 0.1 M KCl containing 0.01 M MgCl2 and 0.02 M Tris/HCl (pH 8.0) was studied by microcalorimetry at temperatures of 4, 12, and 23 degrees C so that values of the heat capacity change (delta Cp) could be obtained for intermediate steps of the ATPase cycle. The delta Cp values are large compared to the value for the overall cycle, indicating that large changes in the hydrophobic effect are involved in transitions between different intermediate states. However, the heat capacity changes themselves show peculiar temperature dependences. Thus bindings of ATP and ADP to Subfragment 1, both of which are strongly exothermic processes, take place with large negative delta Cp of about -3 kJK-1 mol-1 between 4 and 12 degrees C but with very small delta Cp of 0.3-0.4 kJ K-1 mol-1 between 12 and 23 degrees C. On the contrary, the delta Cp for the endothermic hydrolysis of ATP bound to Subfragment 1 is positive (congruent to kJK-1 mol-1) in the lower temperature range but strongly negative (congruent to -4 kJK-1 mol-1) in the higher temperature range. The magnitude of delta Cp for the slow Pi dissociation process is similar but its sign is just opposite to that for the hydrolysis. These anomalous changes in the heat capacity may be due to the temperature-induced changes in a balance between large opposing effects which result from distinct, local conformation changes within the Subfragment 1 molecule.

  17. Effect of crystalline electric field on heat capacity of LnBaCuFeO5 (Ln = Gd, Ho, Yb)

    Science.gov (United States)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-02-01

    Structural, magnetic and thermodynamic properties of layered perovskite compounds LnBaCuFeO5 (Ln = Ho, Gd, Yb) have been investigated. Unlike the iso-structural compound YBaCuFeO5, which shows commensurate antiferromagnetic to incommensurate antiferromagnetic ordering below ∼200 K, the studied compounds do not show any magnetic transition in measured temperature range of 2-350 K. The high temperature heat capacity of the compounds is understood by employing contributions from both optical and acoustic phonons. At low temperature, the observed upturn in the heat capacity is attributed to the Schottky anomaly. The magnetic field dependent heat capacity shows the variation in position of the anomaly with temperature, which appears due to the removal of ground state degeneracy of the rare earth ions, by the crystalline electric field.

  18. Study of heating capacity of focused IR light soldering systems.

    Science.gov (United States)

    Anguiano, C; Félix, M; Medel, A; Bravo, M; Salazar, D; Márquez, H

    2013-10-07

    An experimental study about four optical setups used for developing a Focused IR Light Soldering System (FILSS) for Surface Mount Technology (SMT) lead-free electronic devices specifically for Ball Grid Arrays (BGA) is presented. An analysis of irradiance and infrared thermography at BGA surface is presented, as well as heat transfer by radiation and conduction process from the surface of the BGA to the solder balls. The results of this work show that the heating provided by our proposed optical setups, measured at the BGA under soldering process, meets the high temperature and uniform thermal distribution requirements, which are defined by the reflow solder method for SMT devices.

  19. Determination of the heat capacities of Lithium/BCX (bromide chloride in thionyl chloride) batteries

    Science.gov (United States)

    Kubow, Stephen A.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    1989-01-01

    Heat capacities of twelve different Lithium/BCX (BrCl in thionyl chloride) batteries in sizes AA, C, D, and DD were determined. Procedures and measurement results are reported. The procedure allowed simple, reproducible, and precise determinations of heat capacities of industrially important Lithium/BCX cells, without interfering with performance of the cells. Use of aluminum standards allowed the accuracy of the measurements to be maintained. The measured heat capacities were within 5 percent of calculated heat capacity values.

  20. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating......District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  1. Exercise capacity in the heat is greater in the morning than in the evening in man.

    Science.gov (United States)

    Hobson, Ruth M; Clapp, Emma L; Watson, Phillip; Maughan, Ronald J

    2009-01-01

    This study investigated the effect of time of day on endurance exercise capacity in a warm environment. Nine males cycled to exhaustion at 65% .VO2peak in an ambient temperature of 35 degrees C (60% relative humidity) at 0645 h (AM) and 1845 h (PM). Rectal temperature (Tc), skin temperature (Tsk), and heart rate (HR) were recorded and blood and expired air samples collected at rest every 5 min during exercise and during recovery. Time to exhaustion was longer in the AM trial (45.8 +/- 10.7 min) than in the PM trial (40.5 +/- 9.0 min; P = 0.009). Resting Tc was lower in the AM trial and remained lower for the first 25 min of exercise (P exercise (P exercise capacity in the heat was significantly greater in the morning than the evening, possibly due to a lower initial Tc.

  2. Analytical evaluation of thermal conductance and heat capacities of one-dimensional material systems

    Energy Technology Data Exchange (ETDEWEB)

    Saygi, Salih [Department of Physics, Gaziosmanpasa University, Tokat, 60200 Turkey (Turkey)

    2014-02-15

    We theoretically predict some thermal properties versus temperature dependence of one dimensional (1D) material nanowire systems. A known method is used to provide an efficient and reliable analytical procedure for wide temperature range. Predicted formulas are expressed in terms of Bloch-Grüneisen functions and Debye functions. Computing results has proved that the expressions are in excellent agreement with the results reported in the literature even if it is in very low dimension limits of nanowire systems. Therefore the calculation method is a fully predictive approach to calculate thermal conductivity and heat capacities of nanowire material systems.

  3. Effect of Temperature on the Oviposition Capacity of Engorged Adult ...

    African Journals Online (AJOL)

    Effects of temperature on the oviposition capacity of engorged adult females of Rhipicephalus sanguineus and Haemaphysalis leachi leachi and on the hatching pattern of their eggs were investigated under laboratory conditions. The temperatures of maintenance were 150C, 200C, 250C, 300C and 370C at 85% relative ...

  4. Excess heat capacity and entropy of mixing along the chlorapatite-fluorapatite binary join

    Science.gov (United States)

    Dachs, Edgar; Harlov, Daniel; Benisek, Artur

    2010-10-01

    The heat capacity at constant pressure, C p, of chlorapatite [Ca5(PO4)3Cl - ClAp], and fluorapatite [Ca5(PO4)3F - FAp], as well as of 12 compositions along the chlorapatite-fluorapatite join have been measured using relaxation calorimetry [heat capacity option of the physical properties measurement system (PPMS)] and differential scanning calorimetry (DSC) in the temperature range 5-764 K. The chlor-fluorapatites were synthesized at 1,375-1,220°C from Ca3(PO4)2 using the CaF2-CaCl2 flux method. Most of the chlor-fluorapatite compositions could be measured directly as single crystals using the PPMS such that they were attached to the sample platform of the calorimeter by a crystal face. However, the crystals were too small for the crystal face to be polished. In such cases, where the sample coupling was not optimal, an empirical procedure was developed to smoothly connect the PPMS to the DSC heat capacities around ambient T. The heat capacity of the end-members above 298 K can be represented by the polynomials: C {p/ClAp} = 613.21 - 2,313.90 T -0.5 - 1.87964 × 107 T -2 + 2.79925 × 109 T -3 and C {p/FAp} = 681.24 - 4,621.73 × T -0.5 - 6.38134 × 106 T -2 + 7.38088 × 108 T -3 (units, J mol-1 K-1). Their standard third-law entropy, derived from the low-temperature heat capacity measurements, is S° = 400.6 ± 1.6 J mol-1 K-1 for chlorapatite and S° = 383.2 ± 1.5 J mol-1 K-1 for fluorapatite. Positive excess heat capacities of mixing, Δ C {p/ex}, occur in the chlorapatite-fluorapatite solid solution around 80 K (and to a lesser degree at 200 K) and are asymmetrically distributed over the join reaching a maximum of 1.3 ± 0.3 J mol-1 K-1 for F-rich compositions. They are significant at these conditions exceeding the 2 σ-uncertainty of the data. The excess entropy of mixing, Δ S ex, at 298 K reaches positive values of 3-4 J mol-1 K-1 in the F-rich portion of the binary, is, however, not significantly different from zero across the join within its 2 σ-uncertainty.

  5. Heat capacity and thermodynamic functions of thulium orthophosphate TmPO4 in the range of 10-1350 K

    Science.gov (United States)

    Ryumin, M. A.; Gurevich, V. M.; Khoroshilov, A. V.; Tyurin, A. V.; Gavrichev, K. S.

    2017-12-01

    The heat capacity of TmPO4 in temperature ranges of 9.11-346.05 and 304.6-1344.6 K is measured via adiabatic and differential scanning calorimetry, respectively. The measurement data are used to calculate the temperature dependences of the heat capacity, entropy, change in enthalpy, and reduced Gibbs energy of TmPO4 in the range of 10-1344 K. The Gibbs energy of formation of thulium orthophosphate from elements Δf G 0(298.15 K) is determined.

  6. Quantum Heat Engine and Negative Boltzmann Temperature

    Science.gov (United States)

    Xi, Jing-Yi; Quan, Hai-Tao

    2017-09-01

    To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble description. The work extraction, entropy production and the efficiency of these cycles are explored. Conditions for constructing and properties of these thermodynamic cycles are elucidated. We find that the apparent “violation” of the second law of thermodynamics in these cycles are due to the fact that the traditional definition of thermodynamic efficiency is inappropriate in this situation. When properly understanding the efficiency and the adiabatic processes, in which the system crosses over “absolute ZERO” in a limit sense, the Carnot cycle with one of the heat reservoirs at a negative Boltzmann temperature can be understood straightforwardly, and it contradicts neither the second nor the third law of thermodynamics. Hence, negative Boltzmann temperature is a consistent concept in thermodynamics. We use a two-level system and an Ising spin system to illustrate our central results. Support from the National Science Foundation of China under Grants Nos. 11375012, 11534002, and The Recruitment Program of Global Youth Experts of China

  7. Temperature Evaluation of Heat Transferring Body while Preparing Temperature Chart of Heating Technologies and Metal Thermal Treatment

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2011-01-01

    Full Text Available The paper considers problems pertaining to temperature evaluation of a heat transferring body in the operational space of high temperature installations. A formula for evaluation of this temperature has been written down in the paper. Calculation of a heating transferring body (furnace makes it possible to realize temperature chart parameters in the plant heating technologies and steel thermal treatment.

  8. An experimental study of the enhanced heating capacity of an electric heat pump (EHP) using the heat recovered from a gas engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Min; Chang, Se Dong [HAC R and D Laboratory, LG Electronics, 327-23 Gasan-Dong, Geumcheon-gu, Seoul 153-802 (Korea); Lee, Jaekeun; Hwang, Yujin [School of Mechanical Engineering, Pusan National University, San 30, Changjeon-Dong, Keumjeong-Ku, Busan 609-735 (Korea)

    2009-11-15

    This paper is concerned with the effect of recovered heat on the heating capacity of an Electric Heat Pump (EHP), which is supplied with electric power and recovered heat from a gas engine generator system. Two methods of supplying recovery heat are examined: (i) to the refrigerant with the discharge line heat exchanger (HEX), and (ii) to the refrigerant of the evaporator with the sub-evaporator. Heating capacity, input power and coefficient of performance (COP) were investigated and compared for each heat recovery method. Conclusively, we found that the second method was most reasonable to recover wasted heat and increased system COP by 215%. (author)

  9. Apparent molar volumes and apparent molar heat capacities of aqueous N-acetyl-D-glucosamine at temperatures from 278.15 K to 368.15 K and of aqueous N-methylacetamide at temperatures from 278.15 K to 393.15 K at the pressure 0.35 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, D.M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Ziemer, S.P. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Blodgett, M.B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Jones, J.S. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Woolley, E.M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States)]. E-mail: earl_woolley@byu.edu

    2006-12-15

    We determined apparent molar volumes V {sub {phi}} from densities measured with a vibrating-tube densimeter at 278.15 {<=} (T/K) {<=} 368.15 and apparent molar heat capacities C {sub p,{phi}} with a twin fixed-cell, differential, temperature-scanning calorimeter at 278.15 {<=} (T/K) {<=} 363.15 for aqueous solutions of N-acetyl-D-glucosamine at m from (0.01 to 1.0) mol . kg{sup -1} and at p = 0.35 MPa. We also determined V {sub {phi}} at 278.15 {<=} (T/K) {<=} 368.15 and C {sub p,{phi}} at 278.15 {<=} (T/K) {<=} 393.15 for aqueous solutions of N-methylacetamide at m from (0.015 to 1.0) mol . kg{sup -1} and at p = 0.35 MPa. Empirical functions of m and T for each compound were fitted to our results, which are then compared to those for N,N-dimethylacetamide. Estimated values of {delta}{sub r} V {sub m}(m, T) and {delta}{sub r} C {sub p,m}(m, T) for formation of aqueous N-acetyl-D-glucosamine from aqueous D-glucose and aqueous acetamide are calculated and discussed.

  10. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic...... hot water and space heating. Space heating may be provided at low temperature in modern low energy buildings. Domestic hot water, however, needs to reach sufficient temperatures to avoid growth of legionella bacteria. If the network temperature is below the temperature demand, supplementary heating...... is required by the consumer. In the present paper we study conventional district heating at different temperature levels and compare the energy efficiency, the exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature...

  11. CDC WONDER: Daily Air Temperatures and Heat Index

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Air Temperature and Heat Index data available on CDC WONDER are county-level daily average air temperatures and heat index measures spanning the years...

  12. Heat Capacity Measurements of Sr2RuO4 Under Uni-axial Stress

    Science.gov (United States)

    Li, You-Sheng; Gibbs, Alexandra; MacKenzie, Andrew; Hicks, Clifford; Nicklas, Michael

    One of the most-discussed possible pairing symmetries of the superconductor Sr2RuO4 is px + /-ipy. By applying in-plane uniaxial stress, the degeneracy of the px and py components should be lifted, yielding two critical temperatures (Tc) . Hicks et al. observed an increase of Tc of Sr2RuO4 under both compressive and tensile stress, and did not find evidence for splitting of transition. However, that result was based on magnetic susceptibility measurements, which would be sensitive only to the upper transition. For a direct test of possible splitting, we measure the heat capacity of Sr2RuO4 under uniaxial stress. To do so, we have developed an approach to measure heat capacity under non-adiabatic conditions. We have observed the increase in Tc under compressive strain, providing the first thermodynamic evidence for the strain-induced increase in Tc of Sr2RuO4, and also resolve strong strain-induced changes in the normal-state heat capacity.

  13. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Sira Maria Karvinen

    2016-07-01

    Full Text Available The production of heat , i.e. thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect body temperature. Here we use rat models that differ for maximal running capacity (Low capacity runners, LCR and High capacity Runners, HCR to study the connection between PA and body temperature. Ten HCR and ten LCR female rats were studied between 9 and 21 months of age. Rectal temperature of HCR and LCR rats was measured before and after one year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs 21 months of age. HCRs had on average 1.3C higher body temperature than LCRs (p < 0.001. Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a marked impact on the body temperature of HCRs (p < 0.001 allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c and OXPHOS contents in the skeletal muscle (p < 0.050. These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050, but not that of HCRs. In conclusion, rats born with high intrinsic aerobic capacity and better health have higher body temperature compared to rats born with low aerobic

  14. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile

    Science.gov (United States)

    Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making. PMID:27606592

  15. Heat and moisture exchange capacity of the upper respiratory tract and the effect of tracheotomy breathing on endotracheal climate

    NARCIS (Netherlands)

    Scheenstra, R.J.; Muller, S.H.; Vincent, A.; Hilgers, F.J.M.

    2011-01-01

    Background. The aim of this study was to assess the heat and moisture exchange (HME) capacity of the upper respiratory tract and the effect of tracheotomy breathing on endotracheal climate in patients with head and neck cancer. Methods. We plotted the subglottic temperature and humidity measurements

  16. HEAT AND MOISTURE EXCHANGE CAPACITY OF THE UPPER RESPIRATORY TRACT AND THE EFFECT OF TRACHEOTOMY BREATHING ON ENDOTRACHEAL CLIMATE

    NARCIS (Netherlands)

    Scheenstra, Renske J.; Muller, Sara H.; Vincent, Andrew; Hilgers, Frans J. M.

    2011-01-01

    Background. The aim of this study was to assess the heat and moisture exchange (HME) capacity of the upper respiratory tract and the effect of tracheotomy breathing on endotracheal climate in patients with head and neck cancer. Methods. We plotted the subglottic temperature and humidity measurements

  17. A heat capacity anomaly of the superconducting transition in a ferromagnetic superconductor UGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tateiwa, Naoyuki; Kobayashi, Tatsuo C.; Amaya, Kiichi; Haga, Yoshinori; Settai, Rikio; Onuki, Yoshichika

    2003-05-15

    We performed the heat capacity, C(T), measurement under high pressure on a ferromagnetic superconductor UGe{sub 2}, in order to study the pressure dependence of the anomaly in C(T) associated with the superconducting transition. A clear peak appears only around a critical pressure P{sub c}* where an another transition temperature T* becomes 0 K. This result suggests that a bulk superconducting phase exists in the narrower pressure region around P{sub c}* than those clarified by previous studies.

  18. Performance of ultra low temperature district heating systems with utility plant and booster heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Thorsen, Jan Eric; Markussen, Wiebke Brix

    2017-01-01

    The optimal integration of booster heat pumps in ultra low temperature district heating (ULTDH) was investigated and compared to the performance of low temperature district heating. Two possible heat production technologies for the DH networks were analysed, namely extraction combined heat...... and power (CHP) and central heat pumps (HPs). The analysis focussed on the characteristic heat demands of newly build multi-story buildings and the results were based on the ratio of the individual demands compared to the total. It was found that the optimal return temperature was dependent on the forward...

  19. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  20. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  1. High-temperature self-circulating thermoacoustic heat exchanger

    Science.gov (United States)

    Backhaus, S.; Swift, G. W.; Reid, R. S.

    2005-07-01

    Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.

  2. Saturated-liquid heat capacity of organic compounds: new empirical correlation model

    Directory of Open Access Journals (Sweden)

    DUSAN K. GROZDANIC

    2004-03-01

    Full Text Available A new saturated-liquid heat capacity model is recommended. This model is tested and compared with the known polynomial and quasi-polynomial models on 39 sets with 1453 experimental heat capacity data. The obtained results indicate that the new model is better then the existing models, especially near the critical point.

  3. Challenges in Smart Low-Temperature District Heating Development

    DEFF Research Database (Denmark)

    Li, Hongwei; Wang, Stephen Jia

    2014-01-01

    Previous research and development shows that low temperature district heating (LTDH) system is economic feasible for low energy buildings and buildings at sparse areas. Coupling with reduced network temperature and well-designed district heating (DH) networks, LTDH can reduce network heat loss...... by up to 75% comparing with the current medium temperature district heating system. Further system efficiency improvement can be achieved through a holistic approach which includes measures such as reduced system design margin, enhanced demand side management and improved operation of decentralized heat...

  4. Droplet Evaporator For High-Capacity Heat Transfer

    Science.gov (United States)

    Valenzuela, Javier A.

    1993-01-01

    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  5. Model-based control of district heating supply temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Linn

    2010-11-15

    A model-based control strategy for the supply temperature to a district heating network was tested during three weeks at Idbaecken's CHP plant. The aim was to increase the electricity efficiency by a lower supply temperature, without risking the delivery reliability of heat to the district heating customers. Simulations and tests showed that at high loads, the mean supply temperature could be reduced by 4 deg C and the electricity production could be increased by 2.5%

  6. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel.......Both power production and heat pumps may benefit from the development as both technologies utilize a heat source. This makes it possible to cover the complete temperature range of low temperature sources. The development may contribute to significantly lower energy consumption in Danish industry and shipping...

  7. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  8. Pressure Controlled Heat Pipe for Precise Temperature Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research project will develop Pressure Controlled Heat Pipes (PCHPs) for precise temperature control (milli-Kelvin level). Several...

  9. Thermal expansion and the heat capacity of nanocrystalline and coarse-crystalline silver sulfide Ag2S

    Science.gov (United States)

    Sadovnikov, S. I.; Gusev, A. I.

    2017-09-01

    The thermal expansion and the heat capacity of coarse-crystalline and nanocrystalline silver sulfide Ag2S were studied by dilatometry and differential scanning calorimentry for the first time in the temperature range 290-970 K. It is found that the thermal expansion coefficient and the heat capacity of nanocrystalline silver sulfide in this temperature range are higher than those in the case of the coarse-crystalline sulfide. It is revealed that the transformation of α-Ag2S acanthite to β-Ag2S argentite and β-Ag2S argentite to γ-Ag2S phase are the first-order phase transitions; the temperatures and the enthalpies of these transformations have been determined.

  10. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network...... is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand...... optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system...

  11. Mapping of low temperature heat sources in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Holm, Fridolin Müller; Huang, Baijia

    2015-01-01

    heat. The total accessible waste heat potential is found to be approximately 266 PJ per year with 58 % of it below 100 °C. In the natural heat category, temperatures below 20 °C originate from ambient air, sea water and shallow geothermal energy, and temperatures up to 100 °C are found for solar...... and deep geothermal energy. The theoretical solar thermal potential alone would be above 500 PJ per year. For the development of advanced thermodynamic cycles for the integration of heat sources in the Danish energy system, several areas of interest are determined. In the maritime transport sector a high......Low temperature heat sources are available in many applications, ranging from waste heat from industrial processes and buildings to geothermal and solar heat sources. Technical advancements, such as heat pumps with novel cycle design and multi-component working fluids, make the utilisation of many...

  12. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    Science.gov (United States)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  13. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    Science.gov (United States)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  14. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    G. K. Housley; J.E. O' Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  15. Characterization of Molten CZT Using Thermal Conductivity and Heat Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Nero, Franco [Y-12 National Security Complex, Oak Ridge, TN (United States); Jackson, Maxx [Y-12 National Security Complex, Oak Ridge, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-10

    To compare thermal conductivity of a polycrystalline semiconductor to the single crystal semiconductor using thermo-physical data acquired from Simultaneous Thermal Analysis and Transient Plane Source heating.

  16. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2010-10-01

    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  17. Book of presentations of the International Workshop on High Temperature Heat Pumps

    DEFF Research Database (Denmark)

    is much more limited. Some obstacles relate to regulations and boundary conditions which may not be favorablefor heat pumps and electrification. But, the level of the technology willprobably also improve with regards to temperature limits, efficiency, capacity, and economy, and hence inherently become...

  18. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    District heating (DH) systems supplied by renewable energy sources are one of the main solutions for achieving a fossil-free heating sector in Denmark by 2035. To reach this goal, the medium temperature DH used until now needs to transform to a new concept reflecting the requirement for lower heat...... loss from DH networks required by the reduced heating demand of low-energy and refurbished buildings combined with the lower supply temperatures required by using renewable heat sources. Both these needs meet in the recently developed concept of low-temperature DH designed with supply....../return temperatures as low as 50°C/25°C and highly insulated pipes with reduced inner diameter. With this design, the heat loss from the DH networks can be reduced to one quarter of the value for traditional DH designed and operated for temperatures of 80°C/40°C. However, such low temperatures bring challenges...

  19. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...... for both the demand side (community building structure) and the supply side (network properties or energy sources). Especially in connection with buildings that demand only low temperatures for space heating. The utilisation of lower temperatures reduces losses in pipelines and can increase the overall...

  20. Low exhaust temperature electrically heated particulate matter filter system

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  1. Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    Harry O'Hanley

    2012-01-01

    Full Text Available Nanofluids are being considered for heat transfer applications; therefore it is important to know their thermophysical properties accurately. In this paper we focused on nanofluid specific heat capacity. Currently, there exist two models to predict a nanofluid specific heat capacity as a function of nanoparticle concentration and material. Model I is a straight volume-weighted average; Model II is based on the assumption of thermal equilibrium between the particles and the surrounding fluid. These two models give significantly different predictions for a given system. Using differential scanning calorimetry (DSC, a robust experimental methodology for measuring the heat capacity of fluids, the specific heat capacities of water-based silica, alumina, and copper oxide nanofluids were measured. Nanoparticle concentrations were varied between 5 wt% and 50 wt%. Test results were found to be in excellent agreement with Model II, while the predictions of Model I deviated very significantly from the data. Therefore, Model II is recommended for nanofluids.

  2. FEM Simulation of the Effect of Coefficient of Thermal Expansion and Heat Capacity on Prediction of Residual Stresses of Compression Molded Glass Lenses

    Science.gov (United States)

    Tao, Bo; Yuan, Ye

    2017-11-01

    In this research, the effects of the coefficient of thermal expansion (CTE) and heat capacity on the prediction of residual stresses in BK7 compression molded glass lenses were studied. Three different groups of CTE and two different kinds of heat capacity, which are constant and proportional to temperature, were chosen to investigate the impacts of residual stresses. The simulation results show a big difference and suggest that the properties of glass materials determine the residual stresses and should be measured carefully.

  3. Heat capacity changes associated with guanine quadruplex formation: an isothermal titration calorimetry study.

    Science.gov (United States)

    Majhi, Pinaki R; Qi, Jianying; Tang, Chung-Fei; Shafer, Richard H

    2008-04-01

    This study addresses the temperature dependence of the enthalpy of formation for several unimolecular quadruplexes in the presence of excess monovalent salt. We examined a series of biologically significant guanine-rich DNA sequences: thrombin binding aptamer (TBA) (d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), PS2.M, a catalytically active aptamer (d(GTG(3)TAG(3)CG(3)T(2)G(2))), and the human telomere repeat (HT) (d(AG(3)(T(2)AG(3))(3))). Using CD spectra and UV melting, we confirmed the presence of quadruplex structures and established the temperature range in which quadruplex conformation is stable. We then performed ITC experiments, adding DNA to a solution containing excess NaCl or KCl. In this approach, only several additions are made, and only the enthalpy of quadruplex formation is measured. This measurement was repeated at different temperatures to determine the temperature dependence of the enthalpy change accompanying quadruplex formation. To control for the effect of nonspecific salt interactions during DNA folding, we repeated the experiment by replacing the quadruplex-forming sequences with a similar but nonfolding sequence. Dilution enthalpies were also subtracted to obtain the final enthalpy value involving only the quadruplex folding process. For all sequences studied, quadruplex formation was exothermic but with an increasing magnitude with increasing temperature. These results are discussed in terms of the change in heat capacity associated with quadruplex formation.

  4. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    Science.gov (United States)

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  5. Industrial heat pumps for high temperature process applications

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær

    Industrial processes often consume large quantities of heat, while of-ten dissipating large quantities of waste heat to the ambient. The main energy source for industrial heat supply is fossil fuels, either oil or nat-ural gas. Thus, the heat consumption of industrial processes often entail large...... with the absorber. It is found that the cost of most components are evenly distributed between operational and capital investment cost. The highest rate of avoidable environmental impact stems from the compressor. It is shown that the environmental impact of construction, transportation and disposal was negligible...... CO2 emissions as well as emission of other harmful pollutants. As heat pumps can upgrade low temperature waste heat to a high temperature heat supply using only a fraction of primary energy, heat pumps may be applied to improve the energy efficiency of industrial processes. Further, Replacing oil...

  6. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  7. Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables.

    Science.gov (United States)

    Juániz, Isabel; Ludwig, Iziar A; Huarte, Estibaliz; Pereira-Caro, Gema; Moreno-Rojas, Jose Manuel; Cid, Concepción; De Peña, María-Paz

    2016-04-15

    The impact of cooking heat treatments (frying in olive oil, frying in sunflower oil and griddled) on the antioxidant capacity and (poly)phenolic compounds of onion, green pepper and cardoon, was evaluated. The main compounds were quercetin and isorhamnetin derivates in onion, quercetin and luteolin derivates in green pepper samples, and chlorogenic acids in cardoon. All heat treatments tended to increase the concentration of phenolic compounds in vegetables suggesting a thermal destruction of cell walls and sub cellular compartments during the cooking process that favor the release of these compounds. This increase, specially that observed for chlorogenic acids, was significantly correlated with an increase in the antioxidant capacity measured by DPPH (r=0.70). Griddled vegetables, because of the higher temperature applied during treatment in comparison with frying processes, showed the highest amounts of phenolic compounds with increments of 57.35%, 25.55% and 203.06% compared to raw onion, pepper and cardoon, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Assessing heat exchanger performance data using temperature ...

    African Journals Online (AJOL)

    To ensure operation of heat exchangers, the goal is to verify that the exchanger is performing, or will perform, at its design. This is especially relevant to coolers that typically operate at heat loads reduced from their design basis. In addition, any calculated performance acceptance criteria must also consider uncertainty and ...

  9. Effect of high energy electron beam (10MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite.

    Science.gov (United States)

    Soltani, Z; Ziaie, F; Ghaffari, M; Beigzadeh, A M

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    Science.gov (United States)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  11. Determination of the thermal conductivity and specific heat capacity of neem seeds by inverse problem method

    Directory of Open Access Journals (Sweden)

    S.N. Nnamchi

    2010-01-01

    Full Text Available Determination of the thermal conductivity and the specific heat capacity of neem seeds (Azadirachta indica A. Juss usingthe inverse method is the main subject of this work. One-dimensional formulation of heat conduction problem in a spherewas used. Finite difference method was adopted for the solution of the heat conduction problem. The thermal conductivityand the specific heat capacity were determined by least square method in conjunction with Levenberg-Marquardt algorithm.The results obtained compare favourably with those obtained experimentally. These results are useful in the analysis ofneem seeds drying and leaching processes.

  12. Urban heat : natural and anthropogenic factors influencing urban air temperatures

    OpenAIRE

    N. E. Theeuwes

    2015-01-01

    The urban heat island effect is a phenomenon observed worldwide, i.e. evening and nocturnal temperatures in cities are usually several degrees higher than in the surrounding countryside. The main goal of this thesis is to understand the processes that drive the urban air temperature and the urban heat island. First, the effects of street geometry and open water bodies on the diurnal cycle of the urban air temperatures were investigated. This was followed by a search for a universal scaling of...

  13. Heat capacity jumps induced by magnetic field in the Er{sub 2}HoAl{sub 5}O{sub 12} garnet

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, E.V. [Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Charnaya, E.V., E-mail: charnaya@live.com [Physics Department, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Lee, M.K. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); NSC Instrument Center at NCKU, Tainan, 70101 Taiwan (China); Chang, L.J. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); Khazanov, E.N.; Taranov, A.V. [Kotel' nikov Institute of Radio Engineering and Electronics RAS, 125009 (Russian Federation); Bugaev, A.S. [Moscow Institute of Physics and Technology, Moscow, 141700 (Russian Federation)

    2017-01-30

    Measurements of the heat capacity were carried out for the mixed Er{sub 2}HoAl{sub 5}O{sub 12} garnet at magnetic fields up to 15 T. The heat capacity variations at low temperatures were dominated by the Schottky anomalies. In addition, anomalous sharp steps in the heat capacity were observed in magnetic fields stronger than 8 T upon cooling as well as upon warming. The temperatures of the steps increased with increasing magnetic field. Jumps found upon cooling and warming were shifted relative to each other showing the thermal hysteresis. The sharp decrease in the heat capacity at low temperatures suggested the blocking of magnetic flips induced by strong enough magnetic fields. - Highlights: • Anomalous steps of the heat capacity were observed in the Er{sub 2}HoAl{sub 5}O{sub 12} garnet. • The steps are induced by magnetic field at low temperatures. • The temperatures of the steps increased with increasing magnetic field. • The steps show a pronounced thermal hysteresis. • The findings suggest the blocking of the magnetic moment flips at field.

  14. Benefit of innovative connection devices for customers of district heating. Redcution of low return temperature; Nutzen innovativer Anschlussanlagen fuer den Fernwaermekunden. Reduzierung der Ruecklauftemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Triesch, F. [Thermo Integral GmbH und Co. KG, Leipzig (Germany); Weinmann, E. [SWM Services GmbH, Muenchen (Germany)

    2008-04-15

    Reducing the return temperature in district heating networks can have very substantial effects. Anything that serves to increase transport capacities, reduce heat loss in district heating networks, reduce auxiliary energy demand, or increase the output of cogeneration plants represents a strong economic incentive for district heating suppliers. But how do district heating customers benefit from the use of innovative connection installations with low return temperatures?.

  15. Innovative system for delivery of low temperature district heating

    Directory of Open Access Journals (Sweden)

    Anton Ivanov Ianakiev

    2017-01-01

    Full Text Available An innovative Low Temperature District Heating (LTDH local network is developed in Nottingham, supported by REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the of the existing district heating system in Nottingham would be created to use low temperature heating for the first time in UK. The development is aimed to extract wasted (unused heat from existing district heating system and make it more efficient and profitable. Four maisonette blocks of 94 low-raised flats, at Nottingham demo site of the REMOURBAN project will be connected to this new LTDH system. The scheme will provide a primary supply of heat and hot water at approximately 50oC to 60oC. Innovated solutions have been put forward to overcome certain barriers, such as legionella related risks and peak loads during extreme heating seasons and occasional maintenance.

  16. Experiment and simulation of temperature characteristics of intermittently-controlled ground heat exchanges

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qing; Li, Ming; Yu, Ming [Department of Thermal Engineering, Jilin University, Changchun (China)

    2010-06-15

    Because of poor heat transfer coefficients of soil/rock, ground source heat pumps (GSHP) or underground thermal energy storage (UTES) systems always occupy a large area and need many ground heat exchangers. This initial energy investment is so heavy that it cannot be used on a large-scale. Intermittent operation can reduce the extreme temperatures around the ground heat exchangers (GHEs) and keep the temperature in reasonable range. The aim of this study is to implement an experiment and develop a dynamic model of hydronic heating systems of GSHP in order to get a more fair comparison of energy efficiency between continuously controlled and intermittently controlled systems. Factors such as thermal inertia, temperature levels and lag time are also considered to see how they affect the efficiency. It is shown that temperature variation is related to the intermittent period and that intermittence prolongs the heat transfer without reaching at an utmost temperature (operation limitation). An effectively controlled intermittent process can optimize the capacity of heat exchange units so as to achieve better application of the ground energy. Additionally, the intermittent control can decrease the number of GHEs of GSHP and UTES systems and keep better working conditions. (author)

  17. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS

    Directory of Open Access Journals (Sweden)

    S. S. Belimenko

    2016-10-01

    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  18. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    Science.gov (United States)

    Sekret, Robert; Nitkiewicz, Anna

    2014-03-01

    Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

  19. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    Science.gov (United States)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  20. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law

    Science.gov (United States)

    Hsiang, J.-T.; Chou, C. H.; Subaşı, Y.; Hu, B. L.

    2018-01-01

    In a series of papers, we intend to take the perspective of open quantum systems and examine from their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of thermodynamics become well defined and viable for quantum many-body systems. We first describe how an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system + environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than assumed in the beginning. The linkage between the two comes from the reduced density matrix of ONEq in that stage having the same form as that of the system in the CGTs. We see the open-system approach having the advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because it spells out the conditions of QTD's existence, it can also aid us in addressing the basic issues in quantum thermodynamics from first principles in a systematic way. We then study one broad class of open quantum systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper, we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models, amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics relies on quantum entanglement. They are

  1. Exergetic evaluation of heat pump booster configurations in a low temperature district heating network

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    with a heat pump, as the remaining heat demands are often not required at temperature levels as high as the tap water. The scope of this work is to evaluate the power consumption and second law efficiency of booster heat pumps for tap water production in a low temperature district heating network. The heat...... pump and storage arrangement is evaluated based on a tapping sequence from the Danish standards (DS439). Based an initial investigation of possible designs, three configurations have been chosen for the evaluation. Of the three heat pumps, two are implemented on the primary side to boost the network...... exchanger sizes and the isentropic efficiency of the compressor used in the heat pump. The superior configuration shows exergetic efficiencies higher than 0.5 when forward temperatures is around 45 ºC....

  2. Optimization of Temperature Schedule Parameters on Heat Supply in Power-and-Heat Supply Systems

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2009-01-01

    Full Text Available The paper considers problems concerning optimization of a temperature schedule in the district heating systems with steam-turbine thermal power stations having average initial steam parameters. It has been shown in the paper that upkeeping of an optimum network water temperature permits to increase an energy efficiency of heat supply due to additional systematic saving of fuel. 

  3. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  4. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics.

    Science.gov (United States)

    Shiga, Motoyuki; Shinoda, Wataru

    2005-10-01

    As an application of atomistic simulation methods to heat capacities, path-integral molecular dynamics has been used to calculate the constant-volume heat capacities of light and heavy water in the gas, liquid, and solid phases. While the classical simulation based on conventional molecular dynamics has estimated the heat capacities too high, the quantum simulation based on path-integral molecular dynamics has given reasonable results based on the simple point-charge/flexible potential model. The calculated heat capacities (divided by the Boltzmann constant) in the quantum simulation are 3.1 in the vapor H2O at 300 K, 6.9 in the liquid H2O at 300 K, and 4.1 in the ice Ih H2O at 250 K, respectively, which are comparable to the experimental data of 3.04, 8.9, and 4.1, respectively. The quantum simulation also reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than that of H2O, while it is 13% higher in the experiment. The results demonstrate that the path-integral simulation is a promising approach to quantitatively evaluate the heat capacities for molecular systems, taking account of quantum-mechanical vibrations as well as strongly anharmonic motions.

  5. Simulating canopy temperature for modelling heat stress in cereals

    Science.gov (United States)

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  6. Pulmonary artery and intestinal temperatures during heat stress and cooling

    DEFF Research Database (Denmark)

    Pearson, James; Ganio, Matthew S; Seifert, Thomas

    2012-01-01

    In humans, whole body heating and cooling are used to address physiological questions where core temperature is central to the investigated hypotheses. Core temperature can be measured in various locations throughout the human body. The measurement of intestinal temperature is increasingly used...

  7. Effect of Inhomogeneous Heat Flow on the Enhancement of Heat Capacity in Helium-II by Counterflow near Tλ

    Science.gov (United States)

    Boyd, S. T. P.; Chatto, A. R.; Lee, R. A. M.; Duncan, R. V.; Goodstein, D. L.

    2006-09-01

    In 2000 Harter et al. reported the first measurements of the enhancement of the heat capacity ΔCQ≡C(Q)-C(Q=0) of helium-II transporting a heat flux density Q near Tλ. Surprisingly, their measured ΔCQ was ˜7-12 times larger than predicted, depending on which theory was assumed. In this report we present a candidate explanation for this discrepancy: unintended heat flux inhomogeneity. Because C(Q) should diverge at a critical heat flux density Qc, homogeneous heat flow is required for an accurate measurement. We present results from numerical analysis of the heat flow in the Harter et al. cell indicating that substantial inhomogeneity occurred. We determine the effect of the inhomogeneity on ΔCQ and find rough agreement with the observed disparity between prediction and measurement.

  8. Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2015-01-01

    This paper presents a method for the dimensioning of the low-energy District Heating (DH) piping networks operating with a control philosophy of supplying heat in low-temperature such as 55 °C in supply and 25°C in return regularly while the supply temperature levels are being boosted in cold...... winter periods. The performance of the existing radiators that were formerly sized with over-dimensions was analyzed, its results being used as input data for the performance evaluation of the piping network of the low-energy DH system operating with the control philosophy in question. The optimization...... from the DH network. Sensitivity analysis was carried out in order to evaluate the area of applicability of the proposed method. Hence varied values of the original capacity and the current capacity of the existing radiators were evaluated with the design temperature values that were defined by two...

  9. Conjugated Conduction-Free Convection Heat Transfer in an Annulus Heated at Either Constant Wall Temperature or Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    HAROON IMTIAZ

    2017-04-01

    Full Text Available In this paper, we investigate numerically the effect of thermal boundary conditions on conjugated conduction-free convection heat transfer in an annulus between two concentric cylinders using Fourier Spectral method. The inner wall of the annulus is heated and maintained at either CWT (Constant Wall Temperature or CHF (Constant Heat Flux, while the outer wall is maintained at constant temperature. CHF case is relatively more significant for high pressure industrial applications, but it has not received much attention. This study particularly focuses the latter case (CHF. The main influencing parameters on flow and thermal fields within the annulus are: Rayleigh number Ra; thickness of inner wall Rs; radius ratio Rr and inner wall-fluid thermal conductivity ratio Kr. The study has shown that the increase in Kr increases the heat transfer rate through the annulus for heating at CWT and decreases the inner wall dimensionless temperature for heating at CHF and vice versa. It has also been proved that as the Rs increases at fixed Ra and Rr, the heat transfer rate decreases for heating at CWT and the inner wall dimensionless temperature increases for heating at CHF at Kr 1 depends on Rr. It has been shown that for certain combinations of controlling parameters there will be a value of Rr at which heat transfer rate will be minimum in the annulus in case of heating at CWT, while

  10. Estimating local heat transfer coefficients from thin wall temperature measurements

    Science.gov (United States)

    Gazizov, I. M.; Davletshin, I. A.; Paereliy, A. A.

    2017-09-01

    An approach to experimental estimation of local heat transfer coefficient on a plane wall has been described. The approach is based on measurements of heat-transfer fluid and wall temperatures during some certain time of wall cooling. The wall was a thin plate, a printed circuit board, made of composite epoxy material covered with a copper layer. The temperature field can be considered uniform across the plate thickness when heat transfer is moderate and thermal resistance of the plate in transversal direction is low. This significantly simplifies the heat balance written for the wall sections that is used to estimate the heat transfer coefficient. The copper layer on the plate etched to form a single strip acted as resistance thermometers that measured the local temperature of the wall.

  11. Thermoelectric harvesting of low temperature natural/waste heat

    Science.gov (United States)

    Rowe, David Michael

    2012-06-01

    Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.

  12. Analysis of heat exchanger network for temperature fluctuation

    Directory of Open Access Journals (Sweden)

    Jin Zunlong

    2015-09-01

    Full Text Available Subject to temperature disturbance, exchangers in heat exchanger network will interact. It is necessary to evaluate the degree of temperature fluctuation in the network. There is inherently linear relationship between output and inlet temperatures of heat exchanger network. Based on this, the concept of temperature-change sensitivity coefficient was put forward. Quantitative influence of temperature fluctuation in the network was carried out in order to examine transmission character of temperature fluctuation in the system. And the information was obtained for improving the design quality of heat exchanger network. Favorable results were obtained by the introduced method compared with the experimental results. These results will assist engineers to distinguish primary and secondary influencing factors, which can be used in observing and controlling influencing factors accurately.

  13. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...... in the zone above the occupied zone. A model to calculate the two air temperatures has been developed and implemented in Suncode- PC, a thermal analysis programme for residential and small commercial buildings. The dimensionless temperature profile based on measurements in a laboratory test room is presented...

  14. Overcoming heat shock protein inhibition at critical temperature vital ...

    African Journals Online (AJOL)

    Overcoming heat shock protein inhibition at critical temperature vital for survival in Solanum tuberosum L. in vivo condition. Bengyella Louis, Pranab Roy, Tamgue Ousman, Sayanika Waikhom Devi, Narayan Chandra Talukdar ...

  15. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  16. Phase Change Material Systems for High Temperature Heat Storage.

    Science.gov (United States)

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance.

  17. High temperature thermographic measurements of laser heated silica

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  18. Linking Surface Urban Heat Islands with Groundwater Temperatures.

    Science.gov (United States)

    Benz, Susanne A; Bayer, Peter; Goettsche, Frank M; Olesen, Folke S; Blum, Philipp

    2016-01-05

    Urban temperatures are typically, but not necessarily, elevated compared to their rural surroundings. This phenomenon of urban heat islands (UHI) exists both above and below the ground. These zones are coupled through conductive heat transport. However, the precise process is not sufficiently understood. Using satellite-derived land surface temperature and interpolated groundwater temperature measurements, we compare the spatial properties of both kinds of heat islands in four German cities and find correlations of up to 80%. The best correlation is found in older, mature cities such as Cologne and Berlin. However, in 95% of the analyzed areas, groundwater temperatures are higher than land surface temperatures due to additional subsurface heat sources such as buildings and their basements. Local groundwater hot spots under city centers and under industrial areas are not revealed by satellite-derived land surface temperatures. Hence, we propose an estimation method that relates groundwater temperatures to mean annual land-surface temperatures, building density, and elevated basement temperatures. Using this method, we are able to accurately estimate regional groundwater temperatures with a mean absolute error of 0.9 K.

  19. Utilization of low temperature heat for environmentally friendly electricity production

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Elmegaard, Brian; Haglind, Fredrik

    2014-01-01

    The focus on reduction of fossil fuelled electricity generation has increased the attention on exploitation of low grade heat as the energy source for electricity producing power plants. Low grade heat is heat, which isavailable at a low temperature, e.g. from waste heat from marine diesel engines...... and industrial processes orfrom geothermal and solar heat sources. Utilization of such heat sources makes it possible to produce electricity with no additional burning of fossil fuel, and does therefore represent an environmentally friendly alternative to fossil fuel based electricity production. Utilization...... of low grade heat is not feasible with conventional steam Rankine cycles (steam engines) due to undesirable properties of steam. Instead the organic Rankine cycle is typically used, since it enables thechoice of a working fluid, e.g. hydrocarbons or refrigerants, with desirable properties. One of the key...

  20. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    National Research Council Canada - National Science Library

    Delventhal, Mary

    1999-01-01

    Findings from several studies have demonstrated that the use of a heat and moisture exchanger increases airway humidity, which in turn increases mean airway temperature and prevents decreases in core body temperature...

  1. Heat capacity, lattice dynamics, and thermodynamic stability of the negative thermal expansion material HfMo2O8

    Science.gov (United States)

    Kennedy, Catherine A.; White, Mary Anne; Wilkinson, Angus P.; Varga, Tamas

    2007-06-01

    We explore the lattice dynamics of the negative thermal expansion material, cubic HfMo2O8 , through analysis of its heat capacity (measured from 0.5to300K ) and its room-temperature Raman spectrum. Its heat capacity is quantitatively very similar to that of ZrW2O8 , as is its Raman spectrum. The heat capacity of HfMo2O8 can be well represented by the present lattice dynamical assignment and by CP(HfW2O8)-CP(ZrW2O8)+CP(ZrMo2O8) , but not by CP(HfO2)+2CP(MoO3) , likely because the AB2O8 compounds have low-frequency optic modes, not present in HfO2 and MoO3 . The present thermodynamic data also allow an analysis of the thermodynamic stability of cubic HfMo2O8 , and it is shown to be unstable with respect to MoO3 and HfO2 at room temperature.

  2. Anomalous low-temperature heat capacity in antiperovskite compounds

    Science.gov (United States)

    Guo, Xin-Ge; Lin, Jian-Chao; Tong, Peng; Lin, Shuai; Yang, Cheng; Lu, Wen-Jian; Song, Wen-Hai; Sun, Yu-Ping

    2017-02-01

    Not Available Project supported by the National Key Basic Research Program of China (Grant Nos. 2011CBA00111) and the National Natural Science Foundation of China (Grant Nos. 51322105, U1632158, 51301165, and 51301167).

  3. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  4. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  5. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  6. Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers

    Science.gov (United States)

    Chegel, Raad

    2017-04-01

    By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB1- and AB2- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.

  7. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs

    DEFF Research Database (Denmark)

    Fuchs, Sven; Balling, Niels; Förster, Andrea

    2015-01-01

    In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents...... of each property vary depending on the selected well-log combination. Best prediction is in the range of 2–8 per cent for the specific heat capacity, of 5–10 per cent for the thermal conductivity, and of 8–15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated...... by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is conductivity...

  8. Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chegel, Raad, E-mail: Raad.chegel@gmail.com

    2017-04-15

    By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB{sub 1}- and AB{sub 2}- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.

  9. Empirical equations for viscosity and specific heat capacity determination of paraffin PCM and fatty acid PCM

    Science.gov (United States)

    Barreneche, C.; Ferrer, G.; Palacios, A.; Solé, A.; Inés Fernández, A.; Cabeza, L. F.

    2017-10-01

    Phase change materials (PCM) used in thermal energy storage (TES) systems have been presented, over recent years, as one of the most effective options in energy storage. Paraffin and fatty acids are some of the most used PCM in TES systems, as they have high phase change enthalpy and in addition they do not present subcooling nor hysteresis and have proper cycling stability. The simulations and design of TES systems require the knowledge of the thermophysical properties of PCM. Thermal conductivity, viscosity, specific heat capacity (Cp) can be experimentally determined, but these are material and time consuming tasks. To avoid or to reduce them, and to have reliable data without the need of experimentation, thermal properties can be calculated by empirical equations. In this study, five different equations are given to calculate the viscosity and specific heat capacity of fatty acid PCM and paraffin PCM. Two of these equations concern, respectively, the empirical calculation of the viscosity and liquid Cp of the whole paraffin PCM family, while the other three equations presented are for the corresponding calculation of viscosity, solid Cp, liquid Cp of the whole fatty acid family of PCM. Therefore, this study summarize the work performed to obtain the main empirical equations to measure the above mentioned properties for whole fatty acid PCM family and whole paraffin PCM family. Moreover, empirical equations have been obtained to calculate these properties for other materials of these PCM groups and these empirical equations can be extrapolated for PCM with higher or lower phase change temperatures within a lower relative error 4%.

  10. Circular Dichroism Method for Heat Capacity Determination of Proteins

    Science.gov (United States)

    Jones, Cecil L.; Bailey, Chris; Bheemarti, Kiran Kumar

    2006-01-01

    Circular dichroism spectroscopy was used to measure the thermal unfolding of bovine pancreatic ribonuclease A (RNase A) with various concentrations of guanidine hydrochloride (GuHCl). A red shift in transition midpoint temperatures, T[subscript m], occurred with increasing concentration of the strong protein denaturant. van Hoff enthalpy changes,…

  11. The Use Of Multifrequency Induction Heating For Temperature Distribution Control

    Directory of Open Access Journals (Sweden)

    Smalcerz A.

    2015-06-01

    Full Text Available The paper presents possibilities of controlling temperature field distribution in inductively heated charge. The change of its distribution was obtained using the sequential one-, two-, and three-frequency heating. The study was conducted as a multi-variant computer simulation of hard coupled electromagnetic and temperature fields. For the analysis, a professional calculation software package utilizing the finite element method, Flux 3D, was used. The problem of obtaining an appropriate temperature distribution in the heated charge of a complex shape is very important in many practical applications. A typical example is hardening of gear wheels. For such an application, it is necessary to obtain (on the surface and at a desired depth an uniform temperature distribution on the tooth face, top land and bottom land of the gear. The obtained temperature should have proper distribution and value. Such a distribution is very difficult to achieve.

  12. Measurements of thermal diffusivity, specific heat capacity and thermal conductivity with LFA 447 apparatus

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    The LFA 447 can be successfully used for measurements of thermal diffusivity, specific heat and thermal conductivity of various samples. It is especially useful when determining the properties of materials on a very small scale. The matrix measurement mode allows for determining the local...... properties with a fine resolution, down to 1 millimeter. Special attention needs to be taken when determining the specific heat capacity in the comparative method. First of all, the test and reference sample should be of nearly identical thickness. Secondly, their heat diffusion time should be comparable, so...... that the heat losses from both samples during the measurement are similar. Finally, the leveling of the samples is very important. Very small discrepancies can cause a massive error in the derivation of specific heat capacity and, as a result, thermal conductivity....

  13. Comparative miRNAs analysis of Two contrasting broccoli inbred lines with divergent head-forming capacity under temperature stress.

    Science.gov (United States)

    Chen, Chi-Chien; Fu, Shih-Feng; Norikazu, Monma; Yang, Yau-Wen; Liu, Yu-Ju; Ikeo, Kazuho; Gojobori, Takashi; Huang, Hao-Jen

    2015-12-01

    MicroRNAs (miRNAs) play a vital role in growth, development, and stress response at the post-transcriptional level. Broccoli (Brassica oleracea L. var italic) is an important vegetable crop, and the yield and quality of broccoli are decreased by heat stress. The broccoli inbred lines that are capable of producing head at high temperature in summer are unique varieties in Taiwan. However, knowledge of miRNAomes during the broccoli head formation under heat stress is limited. In this study, molecular characterization of two nearly isogenic lines with contrasting head-forming capacity was investigated. Head-forming capacity was better for heat-tolerant (HT) than heat-sensitive (HS) broccoli under heat stress. By deep sequencing and computational analysis, 20 known miRNAs showed significant differential expression between HT and HS genotypes. According to the criteria for annotation of new miRNAs, 24 novel miRNA sequences with differential expression between the two genotypes were identified. To gain insight into functional significance, 213 unique potential targets of these 44 differentially expressed miRNAs were predicted. These targets were implicated in shoot apical development, phase change, response to temperature stimulus, hormone and energy metabolism. The head-forming capacity of the unique HT line was related to autonomous regulation of Bo-FT genes and less expression level of heat shock protein genes as compared to HS. For the genotypic comparison, a set of miRNAs and their targets had consistent expression patterns in various HT genotypes. This large-scale characterization of broccoli miRNAs and their potential targets is to unravel the regulatory roles of miRNAs underlying heat-tolerant head-forming capacity.

  14. Phonon hydrodynamics for nanoscale heat transport at ordinary temperatures

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2018-01-01

    The classical Fourier's law fails in extremely small and ultrafast heat conduction even at ordinary temperatures due to strong thermodynamic nonequilibrium effects. In this work, a macroscopic phonon hydrodynamic equation beyond Fourier's law with a relaxation term and nonlocal terms is derived through a perturbation expansion to the phonon Boltzmann equation around a four-moment nonequilibrium solution. The temperature jump and heat flux tangential retardant boundary conditions are developed based on the Maxwell model of the phonon-boundary interaction. Extensive steady-state and transient nanoscale heat transport cases are modeled by the phonon hydrodynamic model, which produces quantitative predictions in good agreement with available phonon Boltzmann equation solutions and experimental results. The phonon hydrodynamic model provides a simple and elegant mathematical description of non-Fourier heat conduction with a clear and intuitive physical picture. The present work will promote deeper understanding and macroscopic modeling of heat transport in extreme states.

  15. Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    To improve energy efficiency and give more access to renewable energy sources, low-temperature district heating (LTDH) is a promising concept to be realized in the future. However, concern about Legionella proliferation restricts applying low-temperature district heating in conventional systems...

  16. Multi-Temperature Heat Pump with Cascade Compressor Connection

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2017-08-01

    Full Text Available The object of the study is a multifunctional heat pump with several evaporators and condensers designed for simultaneous provision of technological processes with heat and cold. The aim of the work is the development and study of the scheme for this type of heat pumps, which ensures minimum irreversibility in the "compressor-gas coolers" chain, without the use of adjustable ejectors installed after evaporators and used as flow mixers. The obtained technical solution ensures the stabilization of the heat pump coefficient of performance (COP and prescribed thermal regimes of heat exchangers at a variable flow rate of the refrigerant. The novelty of the elaboration is inclusion a compressor of the first stage with a serially connected intermediate heat exchanger and a control valve that are located before the compressor inlet of the second stage of the heat pump, which allows to establish a rational pressure after the first stage of the compressors. A scheme is proposed for regulating the temperature at the inlet of the first stage compressors by regulating the flow through the primary circuits of the recuperative heat exchangers. The first stage compressor control system allows providing the required modes of operation of the heat pump. It is established, because of the exergetic analysis of the sections of the hydraulic circuit of heat pump located between the evaporators and gas coolers that the reduction of irreversible losses in the heat pump is ensured due to the optimal choice of the superheat value of the gas after the evaporators.

  17. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Kono, Jamie [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2015-06-01

    A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. They are controlled differently than standard fixed-capacity systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40% - 118% of nominal full capacity), thus staying 'on' for 60% - 100% more hours per day compared to fixed -capacity systems. Experiments in this research examined the performance of 2-ton and 3-ton fixed- and variable-capacity systems and the impacts of system oversizing.

  18. Technical-and-Economic Efficiency of Draft Enriched with Oxygen in Small-Capacity Heating Boilers

    Directory of Open Access Journals (Sweden)

    P. Ratnikov

    2013-01-01

    Full Text Available Data on complex experimental and theoretical investigations pertaining to efficiency of oxygen-enriched draft in the small-capacity heating boilers as exemplified by the plant HEIZA (HW-S-10/K have been presented in the paper. The paper provides a calculation model of heating processes in heat generator burner (as exemplified by HEIZA plant. Simulation of heating processes in the operational zone has been executed in paper. The experimental data have proved model adequacy. The calculation scheme of the plant will be used in future for determination of power and ecological efficiency of draft enrichment with oxygen.

  19. Hovering in the heat: effects of environmental temperature on heat regulation in foraging hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Langland, Kathleen M; Wethington, Susan M; Powers, Sean D; Graham, Catherine H; Tobalske, Bret W

    2017-12-01

    At high temperature (greater than 40°C) endotherms experience reduced passive heat dissipation (radiation, conduction and convection) and increased reliance on evaporative heat loss. High temperatures challenge flying birds due to heat produced by wing muscles. Hummingbirds depend on flight for foraging, yet inhabit hot regions. We used infrared thermography to explore how lower passive heat dissipation during flight impacts body-heat management in broad-billed (Cynanthus latirostris, 3.0 g), black-chinned (Archilochus alexandri, 3.0 g), Rivoli's (Eugenes fulgens, 7.5 g) and blue-throated (Lampornis clemenciae, 8.0 g) hummingbirds in southeastern Arizona and calliope hummingbirds (Selasphorus calliope, 2.6 g) in Montana. Thermal gradients driving passive heat dissipation through eye, shoulder and feet dissipation areas are eliminated between 36 and 40°C. Thermal gradients persisted at higher temperatures in smaller species, possibly allowing them to inhabit warmer sites. All species experienced extended daytime periods lacking thermal gradients. Broad-billed hummingbirds lacking thermal gradients regulated the mean total-body surface temperature at approximately 38°C, suggesting behavioural thermoregulation. Blue-throated hummingbirds were inactive when lacking passive heat dissipation and hence might have the lowest temperature tolerance of the four species. Use of thermal refugia permitted hummingbirds to tolerate higher temperatures, but climate change could eliminate refugia, forcing distributional shifts in hummingbird populations.

  20. Urban heat : natural and anthropogenic factors influencing urban air temperatures

    NARCIS (Netherlands)

    Theeuwes, N.E.

    2015-01-01

    The urban heat island effect is a phenomenon observed worldwide, i.e. evening and nocturnal temperatures in cities are usually several degrees higher than in the surrounding countryside. The main goal of this thesis is to understand the processes that drive the urban air temperature and the urban

  1. Analysis of temperature distribution in a heat conducting fiber with ...

    African Journals Online (AJOL)

    The temperature distribution in a heat conducting fiber is computed using the Galerkin Finite Element Method in the present study. The weak form of the governing differential equation is obtained and nodal temperatures for linear and quadratic interpolation functions for different mesh densities are calculated for Neumann ...

  2. A Framework for Spatial Assessment of Local Level Vulnerability and Adaptive Capacity to Extreme Heat

    Science.gov (United States)

    Wilhelmi, O.; Hayden, M.; Harlan, S.; Ruddell, D.; Komatsu, K.; England, B.; Uejio, C.

    2008-12-01

    Changing climate is predicted to increase the intensity and impacts of heat waves prompting the need to develop preparedness and adaptation strategies that reduce societal vulnerability. Central to understanding societal vulnerability, is adaptive capacity, the potential of a system or population to modify its features/behaviors so as to better cope with existing and anticipated stresses and fluctuations. Adaptive capacity influences adaptation, the actual adjustments made to cope with the impacts from current and future hazardous heat events. Understanding societal risks, vulnerabilities and adaptive capacity to extreme heat events and climate change requires an interdisciplinary approach that includes information about weather and climate, the natural and built environment, social processes and characteristics, interactions with the stakeholders, and an assessment of community vulnerability. This project presents a framework for an interdisciplinary approach and a case study that explore linkages between quantitative and qualitative data for a more comprehensive understanding of local level vulnerability and adaptive capacity to extreme heat events in Phoenix, Arizona. In this talk, we will present a methodological framework for conducting collaborative research on societal vulnerability and adaptive capacity on a local level that includes integration of household surveys into a quantitative spatial assessment of societal vulnerability. We highlight a collaborative partnership among researchers, community leaders and public health officials. Linkages between assessment of local adaptive capacity and development of regional climate change adaptation strategies will be discussed.

  3. Size-dependence of the heat capacity and thermodynamic properties of hematite ({alpha}-Fe{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Claine L.; Lee, Christopher R.; Shi, Quan; Boerio-Goates, Juliana [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Woodfield, Brian F., E-mail: brian_woodfield@byu.ed [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2010-09-15

    The heat capacity of a 13 nm hematite ({alpha}-Fe{sub 2}O{sub 3}) sample was measured from T = (1.5 to 350) K using a combination of semi-adiabatic and adiabatic calorimetry. The heat capacity was higher than that of the bulk which can be attributed to the presence of water on the surface of the nanoparticles. No anomaly was observed in the heat capacity due to the Morin transition and theoretical fits of the heat capacity below T = 15 K show a small T{sup 3} dependence (due to lattice contributions) with no T{sup 3/2} dependence. This suggests that there are no magnetic spin-wave contributions to the heat capacity of 13 nm hematite. The use of a large linear term to fit the heat capacity below T = 15 K is most likely due to superparamagnetic contributions. A small anomaly within the temperature range (4 to 8) K was attributed to the presence of uncompensated surface spins.

  4. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Directory of Open Access Journals (Sweden)

    Folco eGiomi

    2013-05-01

    Full Text Available Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming is characterized by two phases. During initial warming, oxygen consumption and heart rate increase while stroke volume and haemolymph oxygen partial pressures decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance, this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph oxygen transport in eurythermal invertebrates.

  5. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions.

    Science.gov (United States)

    Larose, Joanie; Boulay, Pierre; Wright-Beatty, Heather E; Sigal, Ronald J; Hardcastle, Stephen; Kenny, Glen P

    2014-07-01

    This study examined the progression of impairments in heat dissipation as a function of age and environmental conditions. Sixty men (n = 12 per group; 20-30, 40-44, 45-49, 50-54, and 55-70 yr) performed four intermittent exercise/recovery cycles for a duration of 2 h in dry (35°C, 20% relative humidity) and humid (35°C, 60% relative humidity) conditions. Evaporative heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and heat loss during the sessions. Evaporative heat loss was reduced during exercise in the humid vs. dry condition in age groups 20-30 (-17%), 40-44 (-18%), 45-49 (-21%), 50-54 (-25%), and 55-70 yr (-20%). HE fell short of being significantly different between groups in the dry condition, but was greater in age group 20-30 yr (279 ± 10 W) compared with age groups 45-49 (248 ± 8 W), 50-54 (242 ± 6 W), and 55-70 yr (240 ± 7 W) in the humid condition. As a result of a reduced rate of heat dissipation predominantly during exercise, age groups 40-70 yr stored between 60-85 and 13-38% more heat than age group 20-30 yr in the dry and humid conditions, respectively. These age-related differences in heat dissipation and heat storage were not paralleled by significant differences in local sweating and skin blood flow, or by differences in core temperature between groups. From a whole body perspective, combined heat and humidity impeded heat dissipation to a similar extent across age groups, but, more importantly, intermittent exercise in dry and humid heat stress conditions created a greater thermoregulatory challenge for middle-aged and older adults. Copyright © 2014 the American Physiological Society.

  6. High resolution numerical modelling of high temperature heat storage in geological media

    Science.gov (United States)

    Boockmeyer, Anke; Bauer, Sebastian

    2014-05-01

    Increasing use of energy stemming from renewable sources, such as wind or solar power plants, requires development of new and improvement of existing energy storage options on different time scales. One potential storage option is high temperature heat storage with temperatures of up to 100°C in the geological subsurface using borehole heat exchanger (BHE). Numerical scenario simulations are performed to assess feasibility and storage capacity and, furthermore, to predict the effects induced. To allow for accurate and reliable results, the BHE must be represented correctly and realistic in the numerical model. Therefore, a detailed model of a single BHE and the surrounding aquifer, accounting for the full geometry and component parametrisation (circulating working fluid, pipe and grout), is set up. This model setup is used to simulate an experimental data set from a laboratory sandbox by Beier et al. (2011), containing an 18 m long single U-tube BHE centered horizontally along it. Temperature curves observed in different radial distances as well as at the pipe outflow can be matched well with the model setup used, which is thus verified. Potential geological formations for high temperature heat storage are located in greater depths below fresh water aquifers that are used for drinking water. Therefore, the above model is adapted to represent a 100 m long vertical double U-tube BHE placed in an average depth of 500 m. The processes of heat transport and groundwater flow are coupled by water density and viscosity, which both depend on pressure and temperature. A sensitivity study is done to quantify the effects of the thermal parameters of grout and aquifer on the amount of heat stored and the temperature distribution in the aquifer. It was found that the amount of heat stored through the BHE is most sensitive to the heat conductivity of the aquifer. Increasing the aquifer heat conductivity by 50 % increases the amount of heat stored in the numerical model by 30

  7. The Heat Is On! Using Particle Models to Change Students' Conceptions of Heat and Temperature

    Science.gov (United States)

    Hitt, Austin Manning; Townsend, J. Scott

    2015-01-01

    Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…

  8. Heat conductivity of high-temperature thermal insulators

    Science.gov (United States)

    Kharlamov, A. G.

    The book deals essentially with the mechanisms of heat transfer by conduction, convection, and thermal radiation in absorbing and transmitting media. Particular attention is given to materials for gas-cooled reactor systems, the temperature dependent conductivities of high-temperature insulations in vacuum, and the thermal conductivities of MgO, Al2O3, ZrO2, and other powders at temperatures up to 2000 C. The thermal conductivity of pyrolitic graphite and graphite foam are studied.

  9. Plasma heating power dissipation in low temperature hydrogen plasmas

    CERN Document Server

    Komppula, J

    2015-01-01

    Theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g. electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  10. Heat generation patterns and temperature profiles in electroslag welding

    Science.gov (United States)

    Debroy, T.; Szekely, J.; Eagar, T. W.

    1980-12-01

    A formulation is presented to calculate, in three dimensions, the important process parameters such as the voltage profiles, heat generation patterns and temperature profiles in the slag and metal phases for an electroslag welding system. It is shown that the current is significantly larger for the electroslag welding process than that of the electroslag refining process operating with equivalent slag, electrode and other geometrical variables. Calculations show that the heat generation patterns are highly sensitive to the geometrical location of the electrode in the slag and that a relatively minor error in the alignment of the electrode can cause a major asymmetry in the heat generation pattern. The temperature fields in the slag and the metal phases are calculated in three dimensions and the roles played by various factors on the heat balance are assessed. The computation accounts for the transport of heat from the slag to the metal phase by the liquid metal drops, the energy loss due to electrolysis and the energy required for the heating of the cold slag charge. Using the computed values of the weld rate the possible decrease in the heat input due to a) the decrease of the plate gap and b) the use of multiple electrodes is calculated. The values of heat input obtained from independent experiments are compared with model predictions. Possible effects of imposing an external magnetic field during the welding are examined.

  11. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  12. The energy budget, thermogenic capacity and behavior in Swiss mice exposed to a consecutive decrease in temperatures.

    Science.gov (United States)

    Zhao, Zhi-Jun; Chi, Qing-Sheng; Cao, Jing; Han, Ying-Dong

    2010-12-01

    The limitation on sustainable energy intake (SusEI) is important because it establishes the upper energetic limit on the ability of animals to disperse, survive and reproduce. However, there are still arguments about what factors impose that limitation. Thermoregulation in cold environments imposes great energy demands on small mammals. A cold-exposed animal has been suggested to be a model suitable for testing these factors. Here, we examined the changes in food intake and digestible energy intake (DEI) as measures of SusEI, thermogenic capacity and behavioral patterns in Swiss mice exposed to consecutively lower ambient temperatures from 23 to -15°C. Cold-exposed mice showed significant decreases in body mass, fat content of the carcass and body temperature, and increases in DEI compared with controls. The time spent on feeding significantly increased with decreasing temperatures, and time spent on general activity decreased following cold exposure. Resting metabolic rate, nonshivering thermogenesis and serum tri-iodothyronine levels significantly increased in mice exposed to lower temperatures in comparison with controls, whereas these thermogenic variables were not significantly different between 0 and -15°C. It might suggest that SusEI in cold exposed Swiss mice was constrained peripherally by the capacity to produce heat and also by the ability to dissipate body heat, but to a different extent. Moderate cold exposure might result in a relaxation of the heat dissipation limit (HDL), allowing the animals to increase food intake to meet cold stress. When animals are exposed to severe cold, the thermogenenic capacity might reach a ceiling, failing to compensate for the heat loss and which would finally result in lower body temperature and considerable weight loss. This might indicate that the HDL was set at a higher level than peripheral limits for Swiss mice exposed to a consecutive decrease in ambient temperatures.

  13. The determination of values of the specific heat capacity of the selected thermal insulation materials used in track bed structure

    Directory of Open Access Journals (Sweden)

    Dobeš Peter

    2017-01-01

    Full Text Available The report concentrates on the determination of the specific heat capacity of the selected thermal insulation materials (liapor, styrodur, foam concrete. The aim of the report is to gain the necessary input parameters for the numerical modelling of the temperature changes of various track bed structures of the railway line where a part or, if appropriate, the whole protective layer is replaced by the material with better thermal insulation properties. There are described the methods for stating the specific heat capacity as well as the calibration of the calorimeter for stating of the calorimetric constant in the introduction of the report. The parameters needed for calculation of the specific heat capacity of the selected thermal insulation materials are characterized in the second part of the report. There are also introduced the laboratory stated values of the parameter in question. The comparison of the values stated by the laboratory measurements with the values introduced in the technical data sheets from their producers (or if appropriate gained from the foreign sources is made in the conclusion of the report.

  14. Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables

    OpenAIRE

    Juaniz, I. (Isabel); Ludwig, I.A. (Iziar A.); Huarte, E; Pereira-Caro, G.; Moreno-Rojas, J.M.; Cid, C. (Concepción); Peña, M.P. (María Paz) de

    2016-01-01

    The impact of cooking heat treatments (frying in olive oil, frying in sunflower oil and griddled) on the antioxidant capacity and (poly)phenolic compounds of onion, green pepper and cardoon, was evaluated. The main compounds were quercetin and isorhamnetin derivates in onion, quercetin and luteolin derivates in green pepper samples, and chlorogenic acids in cardoon. All heat treatments tended to increase the concentration of phenolic compounds in vegetables suggesting a thermal destruction of...

  15. Nonuniformity of Temperatures in Microwave Steam Heating of Lobster Tail.

    Science.gov (United States)

    Fleischman, Gregory J

    2016-11-01

    The biennial Conference for Food Protection provides a formal process for all interested parties to influence food safety guidance. At a recent conference, an issue was raised culminating in a formal request to the U.S. Food and Drug Administration to change its Food Code recommendation for safe cooking of seafood using microwave energy when steaming was also employed. The request was to treat microwave steam cooked seafood as a conventionally cooked raw animal product rather than a microwave cooked product, for which the safe cooking recommendation is more extensive owing to the complex temperature distributions in microwave heating. The request was motivated by a literature study that revealed a more uniform temperature distribution in microwave steam cooked whole lobster. In that study, single-point temperatures were recorded in various sections of the whole lobster, but only one temperature was recorded in the tail, although the large size of the tail could translate to multiple hot and cold points. The present study was conducted to examine lobster tail specifically, measuring temperatures at multiple points during microwave steam cooking. Large temperature differences, greater than 60°C at times, were found throughout the heating period. To compensate for such differences, the Food Code recommends a more extensive level of cooking when microwave energy, rather than conventional heat sources, is used. Therefore, a change in the Food Code regarding microwave steam heating cannot be recommended.

  16. Optical fiber temperature sensors: applications in heat treatments for foods

    Science.gov (United States)

    Sosa-Morales, María Elena; Rojas-Laguna, Roberto; López-Malo, Aurelio

    2010-10-01

    Heat treatments are important methods to provide safe foods. Conventional heat treatments involve the application of steam and recently microwave treatments have been studied and applied as they are considered as fast, clean and efficient. Optical fiber sensing is an excellent tool to measure the temperature during microwave treatments. This paper shows the application of optical fiber temperature sensing during the heat treatment of different foods such as vegetables (jalapeño pepper and cilantro), cheese and ostrich meat. Reaching the target temperature, important bacteria were inactivated: Salmonella, Listeria and Escherichia coli. Thus, the use of optical fiber sensors has resulted be a useful way to develop protocols to inactivate microorganisms and to propose new methods for food processing.

  17. Future changes of temperature and heat waves in Ontario, Canada

    Science.gov (United States)

    Li, Zhong; Huang, Guohe; Huang, Wendy; Lin, Qianguo; Liao, Renfei; Fan, Yurui

    2017-05-01

    Apparent changes in the temperature patterns in recent years brought many challenges to the province of Ontario, Canada. As the need for adapting to climate change challenges increases, the development of reliable climate projections becomes a crucial task. In this study, a regional climate modeling system, Providing Regional Climates for Impacts Studies (PRECIS), is used to simulate the temperature patterns in Ontario. Three PRECIS runs with a resolution of 25 km × 25 km are carried out to simulate the present (1961-1990) temperature variations. There is a good match between the simulated and observed data, which validates the performance of PRECIS in reproducing temperature changes in Ontario. Future changes of daily maximum, mean, and minimum temperatures during the period 2071-2100 are then projected under the IPCC SRES A2 and B2 emission scenarios using PRECIS. Spatial variations of annual mean temperature, mean diurnal range, and temperature seasonality are generated. Furthermore, heat waves defined based on the exceedance of local climatology and their temporal and spatial characteristics are analyzed. The results indicate that the highest temperature and the most intensive heat waves are most likely to occur at the Toronto-Windsor corridor in Southern Ontario. The Northern Ontario, in spite of the relatively low projected temperature, would be under the risk of long-lasting heat waves, and thus needs effective measures to enhance its climate resilience in the future. This study can assist the decision makers in better understanding the future temperature changes in Ontario and provide decision support for mitigating heat-related loss.

  18. Temperature and Heat Flow Rate Calibration of a Calvet Calorimeter from 0 {°}C to 190 {°}C

    Science.gov (United States)

    Kim, Daeho; Lee, Joohyun; Kwon, Suyong

    2017-12-01

    This study describes the temperature and heat flow rate calibrations of a Calvet calorimeter (SETARAM, BT2.15) in the temperature range of 0-190 {°}C. Temperature calibration is carried out using three reference materials, namely water, gallium, and indium, as specified in the International Temperature Scale of 1990 (ITS-90). The sample temperature of the Calvet calorimeter is corrected by the obtained mean value, -0.489 {°}C, of the measured extrapolated peak onset temperature (Te) when the heating rate (β) is zero (Δ T_corr (β = 0)). The heat flow rate is calibrated using a reference material with a known heat capacity, namely SRM 720 α -Al2O3 (synthetic sapphire), which is traceable to the National Institute of Standards and Technology. From the heat flow rate measurements of the blank baseline and SRM 720, the proportional calibration factor, K_{Φ }, in the 0-190 {°}C temperature range was determined. The specific heat capacity of copper was measured with the obtained calibration values, and the measured data show consistency with the reference value.

  19. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  20. Effect of Indoor Temperature on Physical Performance in Older Adults during Days with Normal Temperature and Heat Waves.

    Science.gov (United States)

    Lindemann, Ulrich; Stotz, Anja; Beyer, Nina; Oksa, Juha; Skelton, Dawn A; Becker, Clemens; Rapp, Kilian; Klenk, Jochen

    2017-02-14

    Indoor temperature is relevant with regard to mortality and heat-related self-perceived health problems. The aim of this study was to describe the association between indoor temperature and physical performance in older adults. Eighty-one older adults (84% women, mean age 80.9 years, standard deviation 6.53) were visited every four weeks from May to October 2015 and additionally during two heat waves in July and August 2015. Indoor temperature, habitual gait speed, chair-rise performance and balance were assessed. Baseline assessment of gait speed was used to create two subgroups (lower versus higher gait speed) based on frailty criteria. The strongest effect of increasing temperature on habitual gait speed was observed in the subgroup of adults with higher gait speed (-0.087 m/s per increase of 10 °C; 95% confidence interval (CI): -0.136; -0.038). The strongest effects on timed chair-rise and balance performance were observed in the subgroup of adults with lower gait speed (2.03 s per increase of 10 °C (95% CI: 0.79; 3.28) and -3.92 s per increase of 10 °C (95% CI: -7.31; -0.52), respectively). Comparing results of physical performance in absentia of a heat wave and during a heat wave, habitual gait speed was negatively affected by heat in the total group and subgroup of adults with higher gait speed, chair-rise performance was negatively affected in all groups and balance was not affected. The study provides arguments for exercise interventions in general for older adults, because a better physical fitness might alleviate impediments of physical capacity and might provide resources for adequate adaptation in older adults during heat stress.

  1. The Specific Heat of Matter at Low Temperatures

    CERN Document Server

    Tari, A

    2003-01-01

    Recent discoveries of new materials and improvements in calorimetric techniques have given new impetus to the subject of specific heat. Nevertheless, there is a serious lack of literature on the subject. This invaluable book, which goes some way towards remedying that, is concerned mainly with the specific heat of matter at ordinary temperatures. It discusses the principles that underlie the theory of specific heat and considers a number of theoretical models in some detail. The subject matter ranges from traditional materials to those recently discovered - heavy fermion compounds, high temper

  2. Thermodynamics of the first and second proton dissociations from aqueous L-aspartic acid and L-glutamic acid at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa: Apparent molar heat capacities and apparent molar volumes of zwitterionic, protonated cationic, and deprotonated anionic forms at molalities from (0.002 to 1.0) mol . kg{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Ziemer, S.P. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Woolley, E.M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States)]. E-mail: earl_woolley@byu.edu

    2007-04-15

    We have measured the densities of aqueous solutions of L-aspartic acid, L-glutamic acid, and equimolal solutions of these two amino acids with HCl and with NaOH at temperatures 278.15 {<=} T/K {<=} 368.15, at molalities 0.002 {<=} m/mol . kg{sup -1} {<=} 1.0 as solubity of the solutes allowed, and at p = 0.35 MPa using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15 {<=} T/K {<=} 393.15 and at the same m and p using a twin fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes V {sub {phi}} and the heat capacities to calculate apparent molar heat capacities C {sub p,{phi}} for these solutions. We used our results and values from the literature for V {sub {phi}}(T, m) and C {sub p,{phi}}(T, m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change {delta}{sub r} C {sub p,m}(T, m) for ionization of water to calculate parameters for {delta}{sub r} C {sub p,m}(T, m) for the first two proton dissociations from each of the protonated aqueous cationic amino acids. We used Young's Rule and integrated these results iteratively to account for the effects of equilibrium speciation and chemical relaxation on V {sub {phi}}(T, m) and C {sub p,{phi}}(T, m). This procedure gave parameters for V {sub {phi}}(T, m) and C {sub p,{phi}}(T, m) for L-aspartinium and L-glutaminium chlorides and for monosodium L-aspartate and L-glutamate which modeled our observed results within experimental uncertainties. We report values for {delta}{sub r} C {sub p,m}, {delta}{sub r} H {sub m}, pQ {sub a}, {delta}{sub r} S {sub m}, and {delta}{sub r} V {sub m} for the first and second proton dissociations from protonated aqueous L-aspartic acid and L-glutamic acid as functions of T and m.

  3. Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber.

    Science.gov (United States)

    Luján, Rosario; Lledías, Fernando; Martínez, Luz María; Barreto, Rita; Cassab, Gladys I; Nieto-Sotelo, Jorge

    2009-12-01

    Agaves are perennial crassulacean acid metabolism (CAM) plants distributed in tropical and subtropical arid environments, features that are attractive for studying the heat-shock response. In agaves, the stress response can be analysed easily during leaf development, as they form a spirally shaped rosette, having the meristem surrounded by folded leaves in the centre (spike) and the unfolded and more mature leaves in the periphery. Here, we report that the spike of Agave tequilana is the most thermotolerant part of the rosette withstanding shocks of up to 55 degrees C. This finding was inconsistent with the patterns of heat-shock protein (Hsp) gene expression, as maximal accumulation of Hsp transcripts was at 44 degrees C in all sectors (spike, inner, middle and outer). However, levels of small HSP (sHSP)-CI and sHSP-CII proteins were conspicuously higher in spike leaves at all temperatures correlating with their thermotolerance. In addition, spike leaves showed a higher stomatal density and abated more efficiently their temperature several degrees below that of air. We propose that the greater capacity for leaf cooling during the day in response to heat stress, and the elevated levels of sHSPs, constitute part of a set of strategies that protect the SAM and folded leaves of A. tequilana from high temperatures.

  4. Modeling Of Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly For Prototype Design

    Science.gov (United States)

    Bower, Chad E.; Padilla, Sebastian A.; Iacomini, Christie S.; Paul, Heather L.

    2010-01-01

    This paper describes modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly: a sorbent bed, a sublimation (cooling) heat exchanger (SHX), and a condensing icing (warming) heat exchanger (CIHX). The primary function of the MTSA, removing carbon dioxide from a space suit Portable Life Support System (PLSS) ventilation loop, is performed via the sorbent bed. The CIHX is used to heat the sorbent bed for desorption and to remove moisture from the ventilation loop while the SHX is alternately employed to cool the sorbent bed via sublimation of a spray of water at low pressure to prepare the reconditioned bed for the next cycle. This paper describes subsystem heat a mass transfer modeling methodologies relevant to the description of the MTSA subassembly in Thermal Desktop and SINDA/FLUINT. Several areas of particular modeling interest are discussed. In the sorbent bed, capture of the translating carbon dioxide (CO2) front and associated local energy and mass balance in both adsorbing and desorbing modes is covered. The CIHX poses particular challenges for modeling in SINDA/FLUINT as accounting for solids states in fluid submodels are not a native capability. Methods for capturing phase change and latent heat of ice as well as the transport properties across a layer of low density accreted frost are developed. This extended modeling capacity is applicable to temperatures greater than 258 K. To extend applicability to the minimum device temperature of 235 K, a method for a mapped transformation of temperatures from below the limit temperatures to some value above is given along with descriptions for associated material property transformations and the resulting impacts to total heat and mass transfer. Similar considerations are given for the SHX along with functional relationships for areal sublimation rates as limited by flow mechanics in t1he outlet duct.

  5. Novel Anthropometry-Based Calculation of the Body Heat Capacity in the Korean Population.

    Directory of Open Access Journals (Sweden)

    Duong Duc Pham

    Full Text Available Heat capacity (HC has an important role in the temperature regulation process, particularly in dealing with the heat load. The actual measurement of the body HC is complicated and is generally estimated by body-composition-specific data. This study compared the previously known HC estimating equations and sought how to define HC using simple anthropometric indices such as weight and body surface area (BSA in the Korean population. Six hundred participants were randomly selected from a pool of 902 healthy volunteers aged 20 to 70 years for the training set. The remaining 302 participants were used for the test set. Body composition analysis using multi-frequency bioelectrical impedance analysis was used to access body components including body fat, water, protein, and mineral mass. Four different HCs were calculated and compared using a weight-based HC (HC_Eq1, two HCs estimated from fat and fat-free mass (HC_Eq2 and HC_Eq3, and an HC calculated from fat, protein, water, and mineral mass (HC_Eq4. HC_Eq1 generally produced a larger HC than the other HC equations and had a poorer correlation with the other HC equations. HC equations using body composition data were well-correlated to each other. If HC estimated with HC_Eq4 was regarded as a standard, interestingly, the BSA and weight independently contributed to the variation of HC. The model composed of weight, BSA, and gender was able to predict more than a 99% variation of HC_Eq4. Validation analysis on the test set showed a very high satisfactory level of the predictive model. In conclusion, our results suggest that gender, BSA, and weight are the independent factors for calculating HC. For the first time, a predictive equation based on anthropometry data was developed and this equation could be useful for estimating HC in the general Korean population without body-composition measurement.

  6. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    Science.gov (United States)

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  7. Estimating Temperature Rise Due to Flashlamp Heating Using Irreversible Temperature Indicators

    Science.gov (United States)

    Koshti, Ajay M.

    1999-01-01

    One of the nondestructive thermography inspection techniques uses photographic flashlamps. The flashlamps provide a short duration (about 0.005 sec) heat pulse. The short burst of energy results in a momentary rise in the surface temperature of the part. The temperature rise may be detrimental to the top layer of the part being exposed. Therefore, it is necessary to ensure the nondestructive nature of the technique. Amount of the temperature rise determines whether the flashlamp heating would be detrimental to the part. A direct method for the temperature measurement is to use of an infrared pyrometer that has much shorter response time than the flash duration. In this paper, an alternative technique is given using the irreversible temperature 'indicators. This is an indirect technique and it measures the temperature rise on the irreversible temperature indicators and computes the incident heat flux. Once the heat flux is known, the temperature rise on the part can be computed. A wedge shaped irreversible temperature indicator for measuring the heat flux is proposed. A procedure is given to use the wedge indicator.

  8. Carbohydrate ingestion and pre-cooling improves exercise capacity following soccer-specific intermittent exercise performed in the heat.

    Science.gov (United States)

    Clarke, N D; Maclaren, D P M; Reilly, T; Drust, B

    2011-07-01

    Ingestion of carbohydrate and reducing core body temperature pre-exercise, either separately or combined, may have ergogenic effects during prolonged intermittent exercise in hot conditions. The aim of this investigation was to examine the effect of carbohydrate ingestion and pre-cooling on the physiological responses to soccer-specific intermittent exercise and the impact on subsequent high-intensity exercise performance in the heat. Twelve male soccer players performed a soccer-specific intermittent protocol for 90 min in the heat (30.5°C and 42.2% r.h.) on four occasions. On two occasions, the participants underwent a pre-cooling manoeuvre. During these sessions either a carbohydrate-electrolyte solution (CHOc) or a placebo was consumed at (PLAc). During the remaining sessions either the carbohydrate-electrolyte solution (CHO) or placebo (PLA) was consumed. At 15-min intervals throughout the protocol participants performed a mental concentration test. Following the soccer-specific protocol participants performed a self-chosen pace test and a test of high-intensity exercise capacity. The period of pre-cooling significantly reduced core temperature, muscle temperature and thermal sensation (P carbohydrate during exercise enhances exercise capacity and helps maintain mental performance during intermittent exercise in hot conditions.

  9. Temperature control for kinetic refolding of heat-denatured ovalbumin.

    Science.gov (United States)

    Tani, F; Shirai, N; Onishi, T; Venelle, F; Yasumoto, K; Doi, E

    1997-07-01

    The folding of heat-denatured ovalbumin, a non-inhibitory serpin with a molecular size of 45 kDa, was examined. Ovalbumin was heat-denatured at 80 degrees C under nonreducing conditions at pH 7.5 and then cooled either slowly or rapidly. Slow cooling allowed the heat-denatured ovalbumin to refold to its native structure with subsequent resistance to digestion by trypsin. Upon rapid cooling, by contrast, the heat-denatured molecules assumed the metastable non-native conformations that were susceptible to trypsin. The non-native species were marginally stable for several days at a low temperature, but the molecules were transformed slowly into the native conformation. Considering data from size-exclusion chromatography and from analyses of CD, intrinsic tryptophan fluorescence, and adsorption of the dye 1-anilinonaphthalene-8-sulfonate, we postulated that the non-native species that accumulated upon rapid cooling were compact but structureless globules with disordered side chains collectively as a folding intermediate. Temperature-jumped CD experiments revealed biphasic kinetics for the refolding process of heat-denatured ovalbumin, with the features of increasing and subsequently decreasing amplitude of the rapid and the slow phases, respectively, with the decrease in folding temperature. The temperature dependence of the refolding kinetics indicated that the yield of renaturation was maximal at about 55 degrees C. These findings suggested the kinetic partitioning of heat-denatured ovalbumin between alternative fates, slow renaturation to the native state and rapid collapse to the metastable intermediate state. Analysis of disulfide pairing revealed the formation of a scrambled form with non-native disulfide interactions in both the heat-denatured state and the intermediate state that accumulated upon rapid cooling, suggesting that non-native disulfide pairing is responsible for the kinetic barriers that retard the correct folding of ovalbumin.

  10. Determination of heat capacity of ionic liquid based nanofluids using group method of data handling technique

    Science.gov (United States)

    Sadi, Maryam

    2017-07-01

    In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.

  11. The Stone-Wales transformation: from fullerenes to graphite, from radiation damage to heat capacity.

    Science.gov (United States)

    Heggie, M I; Haffenden, G L; Latham, C D; Trevethan, T

    2016-09-13

    The Stone-Wales (SW) transformation, or carbon-bond rotation, has been fundamental to understanding fullerene growth and stability, and ab initio calculations show it to be a high-energy process. The nature and topology of the fullerene energy landscape shows how the Ih-C60 must be the final product, if SW transformations are fast enough, and various mechanisms for their catalysis have been proposed. We review SW transformations in fullerenes and then discuss the analogous transformation in graphite, where they form the Dienes defect, originally posited to be a transition state in the direct exchange of a bonded atom pair. On the basis of density functional theory calculations in the local density approximation, we propose that non-equilibrium concentrations of the Dienes defect arising from displacing radiation are rapidly healed by point defects and that equilibrium concentrations of Dienes defects are responsible for the divergent ultra-high-temperature heat capacity of graphite.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. © 2016 The Author(s).

  12. Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods

    Science.gov (United States)

    Tao, N.; Li, X. L.; Sun, J. G.

    2017-06-01

    Thermal properties are important for material applications involved with temperature. Although many measurement methods are available, they may not be convenient to use or have not been demonstrated suitable for testing of a wide range of materials. To address this issue, we developed a new method for the nondestructive measurement of the thermal effusivity of bulk materials with uniform property. This method is based on the pulsed thermal imaging-multilayer analysis (PTI-MLA) method that has been commonly used for testing of coating materials. Because the test sample for PTI-MLA has to be in a two-layer configuration, we have found a commonly used commercial tape to construct such test samples with the tape as the first-layer material and the bulk material as the substrate. This method was evaluated for testing of six selected solid materials with a wide range of thermal properties covering most engineering materials. To determine both thermal conductivity and heat capacity, we also measured the thermal diffusivity of these six materials by the well-established flash method using the same experimental instruments with a different system setup. This paper provides a description of these methods, presents detailed experimental tests and data analyses, and discusses measurement results and their comparison with literature values.

  13. Building America Case Study: Impact of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    C. Withers, J. Cummings, B. Nigusse, E. Martin

    2017-04-01

    A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40 to 118% of nominal full capacity); thus, staying 'on' for 60% to 100% more hours per day compared to fixed-capacity systems. Current Phase 4 experiments in an instrumented lab home with simulated occupancy evaluate the impact of duct R-value enhancement on the overall operating efficiency of the variable-capacity system compared to the fixed-capacity system.

  14. CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    Science.gov (United States)

    Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.

    2009-01-01

    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.

  15. THE HEAT CAPACITY OF FLUORINATED PROPANE AND BUTANE DERIVATIVES BY DIFFERENTIAL SCANNING CALORIMETRY

    Science.gov (United States)

    The paper gives results of the measurement (to 3% accuracy) of the constant-pressure liquid-phase heat capacities of 21 hydrogen-containing fluorinated propane and butane derivatives and one fluorinated ether (CF3OCF2H) with boiling points ranging from -34.6 to 76.7 C, using diff...

  16. Glass heat capacity and its abrupt change in glass transition region

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Smedskjær, Morten Mattrup; Mauro, John C.

    Glass transition (GT) has been a fascinating, but challenging subject in the condensed matter science over decades. Despite progress in understanding GT, many crucial problems still need to be clarified. One of the problems deals with the microscopic origin of abrupt change of heat capacity (Cp) ...

  17. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000ÀC showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  18. Comparative analysis of single- and continuously variable-capacity heat pump concepts

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C.K.; Fischer, S.K.

    1984-01-01

    This work is an initial assessment of the potential benefits of continuous-capacity-modulation in electric-driven, air-to-air heat pumps for residential application. The purpose of the project was to provide a quantitative estimate of the possible annual performance gains of advanced continuously modulating heat pumps relative to single-speed designs at comparable levels of development. Previous analytical design work in this area at ORNL dealt with single-design-point, heating-mode optimization of single-speed heat pumps. For that work the ORNL Steady State Heat Pump Design Model was connected to a constrained numerical optimization code. The present work represents an extension of the earlier work in two directions. First, seasonal (heating and cooling) and annual performance factor (APF) analysis capability was added to allow direct evaluation of annual energy use from heat pump performance data generated by the ORNL heat pump model. Secondly, a modulating version of the heat pump model was developed to provide a means for simulating the steady state performance of continuously variable-speed (CVS) systems. With these tools, the APFs of both single- and continuously variable-capacity (CVC) concepts could be studied as basic heat pump design variables were varied. Based on this initial evaluation of CVS systems and considering the potential for electronics costs to further decrease as electricity prices rise, we see such advanced CVS systems as a strong future competitor to single-speed systems and as decidedly superior in energy conservation potential. To achieve this position, it seems especially important that such systems be computer optimized to take full advantage of the increased design flexibility available. Further, development of PM-ECMs or equivalent technology must continue to the point of providing speed controllers of: moderate to low cost, moderate to high performance, and high reliability. 16 refs., 12 figs.

  19. High Efficiency Heat Exchanger for High Temperature and High Pressure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capital and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating

  20. Thermodynamic properties in the normal and superconducting states of Na(x)CoO(2)*yH(2)O powder measured by heat capacity experiments

    OpenAIRE

    Lorenz, B.; Cmaidalka, J.; Meng, R. L.; Chu, C. W.

    2003-01-01

    The heat capacity of superconducting Na(x)CoO(2)*yH(2)O was measured and the data are discussed based on three different models: The thermodynamic Ginzburg-Landau model, the BCS theory, and a model including the effects of line nodes in the superconducting gap function. The electronic heat capacity is separated from the lattice contribution in a thermodynamically consistent way maintaining the entropy balance of superconducting and normal states at the critical temperature. It is shown that f...

  1. Molar Heat Capacity (Cv) for Saturated and Compressed Liquid and Vapor Nitrogen from 65 to 300 K at Pressures to 35 MPa.

    Science.gov (United States)

    Magee, J W

    1991-01-01

    Molar heat capacities at constant volume (Cv ,) for nitrogen have been measured with an automated adiabatic calorimeter. The temperatures ranged from 65 to 300 K, while pressures were as high as 35 MPa. Calorimetric data were obtained for a total of 276 state conditions on 14 isochores. Extensive results which were obtained in the saturated liquid region (Cv((2)) and Cσ ) demonstrate the internal consistency of the Cv (ρ,T) data and also show satisfactory agreement with published heat capacity data. The overall uncertainty of the Cv values ranges from 2% in the vapor to 0.5% in the liquid.

  2. Temperature Histories in Ceramic-Insulated Heat-Sink Nozzle

    Science.gov (United States)

    Ciepluch, Carl C.

    1960-01-01

    Temperature histories were calculated for a composite nozzle wall by a simplified numerical integration calculation procedure. These calculations indicated that there is a unique ratio of insulation and metal heat-sink thickness that will minimize total wall thickness for a given operating condition and required running time. The optimum insulation and metal thickness will vary throughout the nozzle as a result of the variation in heat-transfer rate. The use of low chamber pressure results in a significant increase in the maximum running time of a given weight nozzle. Experimentally measured wall temperatures were lower than those calculated. This was due in part to the assumption of one-dimensional or slab heat flow in the calculation procedure.

  3. Fast temperature programming in gas chromatography using resistive heating

    NARCIS (Netherlands)

    Dallüge, J.; Ou-Aissa, R.; Vreuls, J.J.; Brinkman, U.A.T.; Veraart, J.R.

    1999-01-01

    The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed

  4. Temperature mapping, thermal diffusivity and subsoil heat flux at ...

    Indian Academy of Sciences (India)

    Thermal diffusivity () of the soil has been calculated by range and lag methods and also from amplitudes and phase angles of first and second harmonics. The two methods lead to similar results. Diurnal soil heat ux and soil temperatures at different depths are modelled and found to be comparable with observations.

  5. Temperature mapping, thermal diffusivity and subsoil heat flux at ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the day by intense solar radiation than the lay- ers beneath, resulting in temperature gradient between the surface and subsoil on the one hand and surface and air layers near the ground on the other. Within the soil this causes heat flow downward as a thermal wave, the amplitude of which changes with depth. Estimation of ...

  6. Articulated Multimedia Physics, Lesson 13, Internal Energy, Heat, and Temperature.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    As the thirteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to internal energy, heat, and temperature. The topics are concerned with collisions, thermometers, friction forces, degrees Centigrade and Fahrenheit, calories, Brownian motion, and state changes. The…

  7. Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method.

    Science.gov (United States)

    Sola, A; Bougiatioti, P; Kuepferling, M; Meier, D; Reiss, G; Pasquale, M; Kuschel, T; Basso, V

    2017-04-25

    The determination of the longitudinal spin Seebeck effect (LSSE) coefficient is currently plagued by a large uncertainty due to the poor reproducibility of the experimental conditions used in its measurement. In this work we present a detailed analysis of two different methods used for the determination of the LSSE coefficient. We have performed LSSE experiments in different laboratories, by using different setups and employing both the temperature difference method and the heat flux method. We found that the lack of reproducibility can be mainly attributed to the thermal contact resistance between the sample and the thermal baths which generate the temperature gradient. Due to the variation of the thermal resistance, we found that the scaling of the LSSE voltage to the heat flux through the sample rather than to the temperature difference across the sample greatly reduces the uncertainty. The characteristics of a single YIG/Pt LSSE device obtained with two different setups was (1.143 ± 0.007) 10-7 Vm/W and (1.101 ± 0.015) 10-7 Vm/W with the heat flux method and (2.313 ± 0.017) 10-7 V/K and (4.956 ± 0.005) 10-7 V/K with the temperature difference method. This shows that systematic errors can be considerably reduced with the heat flux method.

  8. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  9. Heat Transfer in High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran

    2002-01-01

    The combined radiation/conduction heat transfer in high-porosity, high-temperature fibrous insulations was investigated experimentally and numerically. The effective thermal conductivity of fibrous insulation samples was measured over the temperature range of 300-1300 K and environmental pressure range of 1.33 x 10(exp -5)-101.32 kPa. The fibrous insulation samples tested had nominal densities of 24, 48, and 72 kilograms per cubic meter and thicknesses of 13.3, 26.6 and 39.9 millimeters. Seven samples were tested such that the applied heat flux vector was aligned with local gravity vector to eliminate natural convection as a mode of heat transfer. Two samples were tested with reverse orientation to investigate natural convection effects. It was determined that for the fibrous insulation densities and thicknesses investigated no heat transfer takes place through natural convection. A finite volume numerical model was developed to solve the governing combined radiation and conduction heat transfer equations. Various methods of modeling the gas/solid conduction interaction in fibrous insulations were investigated. The radiation heat transfer was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. A genetic-algorithm based parameter estimation technique was utilized with this model to determine the relevant radiative properties of the fibrous insulation over the temperature range of 300-1300 K. The parameter estimation was performed by least square minimization of the difference between measured and predicted values of effective thermal conductivity at a density of 24 kilograms per cubic meters and at nominal pressures of 1.33 x 10(exp -4) and 99.98 kPa. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements at other densities and pressures. The numerical model was also validated by comparison with a transient thermal test simulating reentry aerodynamic heating

  10. Analysis of the Impact of Decreasing District Heating Supply Temperature on Combined Heat and Power Plant Operation

    Science.gov (United States)

    Bolonina, Alona; Bolonins, Genadijs; Blumberga, Dagnija

    2014-12-01

    District heating systems are widely used to supply heat to different groups of heat consumers. The district heating system offers great opportunities for combined heat and power production. In this paper decreasing district heating supply temperature is analysed in the context of combined heat and power plant operation. A mathematical model of a CHP plant is developed using both empirical and theoretical equations. The model is used for analysis of modified CHP plant operation modes with reduced district heating supply temperature. Conclusions on the benefits of new operation modes are introduced.

  11. Analysis of the Impact of Decreasing District Heating Supply Temperature on Combined Heat and Power Plant Operation

    Directory of Open Access Journals (Sweden)

    Bolonina Alona

    2014-12-01

    Full Text Available District heating systems are widely used to supply heat to different groups of heat consumers. The district heating system offers great opportunities for combined heat and power production. In this paper decreasing district heating supply temperature is analysed in the context of combined heat and power plant operation. A mathematical model of a CHP plant is developed using both empirical and theoretical equations. The model is used for analysis of modified CHP plant operation modes with reduced district heating supply temperature. Conclusions on the benefits of new operation modes are introduced.

  12. Basal metabolic rate, maximum thermogenic capacity and aerobic scope in rodents: interaction between environmental temperature and torpor use

    OpenAIRE

    Careau, Vincent

    2013-01-01

    When torpid animals arouse and warm up to restore normal body temperature (Tb), they produce heat at levels that can reach up to 10 times basal metabolic rate (BMR), close to the cold-induced summit metabolism (VO2-sum). Because torpor is an adaptation aimed at conserving energy over periods of low ambient temperature (Ta) and food availability, selective forces that have led to the evolution of torpor may have simultaneously favoured high thermogenic capacity (i.e. VO2-sum) relative to the m...

  13. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock.

    Science.gov (United States)

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing

    2016-09-14

    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  14. System Modeling of Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly for Prototype Design

    Science.gov (United States)

    Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.

    2009-01-01

    This paper describes modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly: the sorbent bed, a sublimation (cooling) heat exchanger (SHX), and a condensing icing (warming) heat exchanger (CIHX). The primary function of the MTSA, removing carbon dioxide from a ventilation loop, is performed via the sorbent bed. The CIHX is used to heat the sorbent bed for desorption and to remove moisture from the ventilation loop while the SHX is alternately employed to cool the sorbent bed via sublimation of a spray of water at low pressure to prepare the reconditioned bed for the next cycle. This paper describes a system level model of the MTSA as developed in Thermal Desktop and SINDA/FLUINT including assumptions on geometry and physical phenomena, modeling methodology and relevant pa ra mete rizatio ns. Several areas of particular modeling interest are discussed. In the sorbent bed, capture of the translating CO2 saturation front and associated local energy and mass balance in both adsorbing and desorbing modes is covered. The CIHX poses particular challenges for modeling in SINDA/FLUINT as accounting for solids states in fluid submodels are not a native capability. Methods for capturing phase change and latent heat of ice as well as the transport properties across a layer of low density accreted frost are developed. This extended modeling capacity is applicable to temperatures greater than 258 K. To extend applicability to the minimum device temperature of 235 K, a method for a mapped transformation of temperatures from below the limit temperatures to some value above is given along with descriptions for associated material property transformations and the resulting impacts to total heat and mass transfer. Similar considerations are shown for the SHX along with assumptions for flow mechanics and resulting model methods for sublimation in a flow.

  15. Temperature and heat in informal settlements in Nairobi.

    Science.gov (United States)

    Scott, Anna A; Misiani, Herbert; Okoth, Jerrim; Jordan, Asha; Gohlke, Julia; Ouma, Gilbert; Arrighi, Julie; Zaitchik, Ben F; Jjemba, Eddie; Verjee, Safia; Waugh, Darryn W

    2017-01-01

    Nairobi, Kenya exhibits a wide variety of micro-climates and heterogeneous surfaces. Paved roads and high-rise buildings interspersed with low vegetation typify the central business district, while large neighborhoods of informal settlements or "slums" are characterized by dense, tin housing, little vegetation, and limited access to public utilities and services. To investigate how heat varies within Nairobi, we deployed a high density observation network in 2015/2016 to examine summertime temperature and humidity. We show how temperature, humidity and heat index differ in several informal settlements, including in Kibera, the largest slum neighborhood in Africa, and find that temperature and a thermal comfort index known colloquially as the heat index regularly exceed measurements at the Dagoretti observation station by several degrees Celsius. These temperatures are within the range of temperatures previously associated with mortality increases of several percent in youth and elderly populations in informal settlements. We relate these changes to surface properties such as satellite-derived albedo, vegetation indices, and elevation.

  16. Temperature measurements using multicolor pyrometry in thermal radiation heating environments.

    Science.gov (United States)

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-01

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100-2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700-1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  17. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Tairan, E-mail: trfu@mail.tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Beijing 100084 (China); Liu, Jiangfan; Duan, Minghao; Zong, Anzhou [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2014-04-15

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  18. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    Science.gov (United States)

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-01

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100-2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700-1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  19. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Withers, C. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States); Cummings, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States); Nigusse, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States)

    2016-09-01

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied by adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.

  20. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Withers, C. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States); Cummings, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States)

    2016-09-08

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied by adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.

  1. Effects of caffeine on endurance capacity and psychological state in young females and males exercising in the heat.

    Science.gov (United States)

    Suvi, Silva; Timpmann, Saima; Tamm, Maria; Aedma, Martin; Kreegipuu, Kairi; Ööpik, Vahur

    2017-01-01

    Acute caffeine ingestion is considered effective in improving endurance capacity and psychological state. However, current knowledge is based on the findings of studies that have been conducted on male subjects mainly in temperate environmental conditions, but some physiological and psychological effects of caffeine differ between the sexes. The purpose of this study was to compare the physical performance and psychological effects of caffeine in young women and men exercising in the heat. Thirteen male and 10 female students completed 2 constant-load walks (60% of thermoneutral peak oxygen consumption on a treadmill until volitional exhaustion) in a hot-dry environment (air temperature, 42 °C; relative humidity, 20%) after caffeine (6 mg·kg -1 ) and placebo (wheat flour) ingestion in a double-blind, randomly assigned, crossover manner. Caffeine, compared with placebo, induced greater increases (p Caffeine decreased (p caffeine was associated with a shorter time to exhaustion. In conclusion, acute caffeine ingestion increases HR and blood lactate levels during exercise in the heat, but it has no impact on thermoregulation or endurance capacity in either gender. Under exercise-heat stress, caffeine reduces ratings of perceived exertion and fatigue in males but not in females.

  2. Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Meirelles, A.J.A.

    2009-01-01

    for 86 types of substances) included fatty compounds, such as fatty acids, esters, alcohols and triacylglycerols, and hydrocarbons. The performance of this method is compared with other published group contribution methods [Z. Kolska, J. Kukal, M. Zabransky, V. Ruzicka Ind. Eng. Chem. Res. 47 (2008) 2075......-2085] and the Rowlinson-Bondi equation. Also, the predictive performance of general correlations of heats of vaporization based on the corresponding-states method, such as Carruth and Kobayashi [G.F. Carruth, R. Kobayashi, Ind. Eng. Chem. Fundam. 11 (1972) 509-516], Sivaraman et al. [A. Sivaraman, J.W. Magee, R...... in the prediction of heats of vaporization of fatty compounds based on the vapor pressure model of Ceriani and Meirelles [R. Ceriani. A.J.A. Meirelles, Fluid Phase Equilib. 215 (2004) 227-236] and its combination with the Clausius-Clapeyron equation has been Studied. (C) 2009 Elsevier B.V. All rights reserved....

  3. Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M. F.; Miriyala, N.; Hassanpourfard, M.; Thundat, T. [Ingenuity Lab, Edmonton, Alberta T6G 2R3 (Canada); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Lee, J. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Department of Mechanical Engineering, Sogang University, 121-742 Seoul (Korea, Republic of); Kumar, A. [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2016-05-23

    Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which is dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ∼10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g{sup −1 }K{sup −1}) and a resolution of 23 mJ/(g K) for ∼150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.

  4. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6.

    Science.gov (United States)

    Liang, Tian; Koohpayeh, S M; Krizan, J W; McQueen, T M; Cava, R J; Ong, N P

    2015-07-06

    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition.

  5. Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid

    Science.gov (United States)

    Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael

    2017-09-01

    A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.

  6. Measurement of a surface heat flux and temperature

    Science.gov (United States)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-01-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  7. Break in the Heat Capacity Change at 303 K for Complex Binding of Netropsin to AATT Containing Hairpin DNA Constructs

    Science.gov (United States)

    Freyer, Matthew W.; Buscaglia, Robert; Hollingsworth, Amy; Ramos, Joseph; Blynn, Meredith; Pratt, Rachael; Wilson, W. David; Lewis, Edwin A.

    2007-01-01

    Studies performed in our laboratory demonstrated the formation of two thermodynamically distinct complexes on binding of netropsin to a number of hairpin-forming DNA sequences containing AATT-binding regions. These two complexes were proposed to differ only by a bridging water molecule between the drug and the DNA in the lower affinity complex. A temperature-dependent isothermal titration calorimetry (ITC)-binding study was performed using one of these constructs (a 20-mer hairpin of sequence 5′-CGAATTCGTCTCCGAATTCG) and netropsin. This study demonstrated a break in the heat capacity change for the formation of the complex containing the bridging water molecule at ∼303 K. In the plot of the binding enthalpy change versus temperature, the slope (ΔCp) was −0.67 kcal mol−1 K−1 steeper after the break at 303 K. Because of the relatively low melting temperature of the 20-mer hairpin (341 K (68°C)), the enthalpy change for complex formation might have included some energy of refolding of the partially denatured hairpin, giving the suggestion of a larger ΔCp. Studies done on the binding of netropsin to similar constructs, a 24-mer and a 28-mer, with added GC basepairs in the hairpin stem to increase thermal stability, exhibit the same nonlinearity in ΔCp over the temperature range of from 275 to 333 K. The slopes (ΔCp) were −0.69 and −0.64 kcal mol−1 K−1 steeper after 303 K for the 24-mer and 28-mer, respectively. This observation strengthens the argument regarding the presence of a bridging water molecule in the lower affinity netropsin/DNA complex. The ΔCp data seem to infer that because the break in the heat capacity change function for the lower affinity binding occurs at the isoequilibrium temperature for water, water may be included or trapped in the complex. The fact that this break does not occur in the heat capacity change function for formation of the higher affinity complex can similarly be taken as evidence that water is not included in

  8. Downward Heat Penetration below Seasonal Thermocline and its Impact on Sea Surface Temperature Variation Affected by Net Heat Flux during Summer Season

    Science.gov (United States)

    Hosoda, S.; Nonaka, M.; Tomita, T.; Taguchi, B.; Tomita, H.; Iwasaka, N.

    2016-02-01

    Oceanic heat capacity of the upper layer is a key of the change in the sea surface temperature (SST) affecting air-sea heat exchange and of the temporal scale of SST variability. In the past, studies of SST variability associated with the air-sea heat exchange have mainly focused on the conditions during the winter, because wintertime deep mixed layer (ML) accumulates a huge amount of heat to the atmosphere. On the contrary, ML during the warming season is thinner than it is during the cooling season, being only a few tens of meters deep at mid- and high- latitudes, bounded by a shallow and sharp seasonal thermocline. Since the ML that directly communicates with the atmosphere is thin, the ocean has been considered to play a passive role in air-sea interactions during the warming season. In this study, we clarified that subsurface ocean plays an important role to seasonal changes of SST and heat capacity during the warming season using observational data of Argo and J-OFURO2, which is net heat flux (Qnet) data from satellites. To clarify the role of upper ocean to the Qnet during summer, we introduce a concept of heat penetration depth (HPD), defined as the depth to which Qnet distinctly penetrates below the seasonal thermocline. Then we assume vertical one dimensional process between Qnet and temporal heat content (HC) change integrating temperature from surface to HPD. The vertical one dimensional process can be assumed in almost mid- and high-latitude NP, and we successfully characterize the heat capacity in terms of the HC above the HPD. The downward heat penetration below the shallow seasonal thermocline is widely found throughout the NP. On the basis of a simple estimation that the amount of heat accumulated by summer Qnet in the NP, about two-thirds of Qnet penetrates below the shallow seasonal thermocline. The effect of heat penetration also makes a magnitude of seasonal change in SST to be smaller, at least a half of that the magnitude under the assumption

  9. Development of energy efficient smart module with variable direction of heat flow, heat capacity and surface absorptivity(I)

    Energy Technology Data Exchange (ETDEWEB)

    Chun, W.K.; Lee, Y.J.; Lee, H.J. [Jeju University, Jeju (Korea, Republic of)] [and others

    1996-02-01

    This work has been carried out to develop thermal diode modules with variable direction of heat flow, heat capacity and surface absorptivity. The module can be used for space heating in winter and reduce the cooling load of buildings in summer. this concept could be also utilized for domestic hot water heating. The modules are categorized as follows; (1) Loop Type Smart Module, (2) Bayonet Type Smart Module, (3) Roller Type Smart Module, (4) Plane Tubeless Solar Collector and Storage System Utilizing the Bayonet Concept. Each system generally features either or both of the passive or active schemes. The Loop Type, in particular, is designed with the photo diode and microprocessor to harness the solar energy more aggressively. It is essential to contrive a totally new design concept apart from conventional ones to fully appreciate the availability of the sun`s energy. In this regard, the solar modules under investigation in the present study is of great significance. (author) 29 refs., 65 figs., 5 photos.

  10. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Kono, Jamie [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2015-06-24

    A new generation of full variable-capacity air-conditioning (A/C) and heat pump units has come on the market that promises to deliver very high cooling and heating efficiency. The units are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and cycling off when the thermostat is satisfied, the new units can vary their capacity over a wide range (approximately 40%–118% of nominal full capacity) and stay on for 60%–100% more hours per day than the fixed-capacity systems depending on load-to-capacity ratios. Two-stage systems were not evaluated in this research effort.

  11. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings II: Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-10-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = AT^{4} + BT^{3} + CT^{2} + DT + \\varvec{E} where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3R at all temperatures.

  12. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  13. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings II: Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-11-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = {AT}^{4} + {BT}^{3} + {CT}^{2} + DT + \\varvec{E}where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3 R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3 R at all temperatures.

  14. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    Science.gov (United States)

    Ku, Jentung; Garrison, Matt; Patel, Deepak; Robinson, Frank; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  15. Heat Transfer Retardation at Elevated Temperatures. Phase I. Analysis of Heat Transfer Retardation Configurations and Materials.

    Science.gov (United States)

    1983-09-01

    The cenospheres (which are spherical, hollow glass particles) are heated in a mold in air or any inert atmosphere at firing temperatures in the range of...between 2500 to 3000 F, and the cenospheres then shrink together to form a closed-pore ceramic foam. The two problems with the closed-pore foam

  16. Evaluation of selected advanced heat exchangers for waste heat recuperation of high temperature streams

    Science.gov (United States)

    Bliem, C. J.; Kochan, R.; Mittl, J. C.; Piscitella, R. R.; Schafer, J.; Synder, A.; Wiggins, D.; Zabriskie, J. N.

    1984-02-01

    The design, functional and cost requirements for high-temperature, heat recovery systems (recuperators) and describes the state-of-the-art systems, emerging industrial technologies and new concepts developed by EG and G Idaho, Inc. are discussed. All systems/concepts are then evaluated and compared with respect to corrosion/durability, fouling, performance, operation and maintenance, and economics.

  17. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures

    Science.gov (United States)

    Zhu, Jiangong; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng; Gu, Weijun

    2017-11-01

    Effect of the AC (alternating current) pulse heating method on battery SoH (state of health) for large laminated power lithium-ion batteries at low temperature is investigated experimentally. Firstly, excitation current frequencies, amplitudes, and voltage limitations on cell temperature evolution are studied. High current amplitudes facilitate the heat accumulation and temperature rise. Low frequency region serves as a good innovation to heat the battery because of the large impedance. Wide voltage limitations also enjoy better temperature evolution owing to the less current modulation, but the temperature difference originated from various voltage limitations attenuates due to the decrement of impedance resulting from the temperature rise. Experiments with the thermocouple-embedded cell manifest good temperature homogeneity between the battery surface and interior during the AC heating process. Secondly, the cell capacity, Direct Current resistance and Electrochemical Impedance Spectroscopy are all calibrated to assess the battery SoH after the hundreds of AC pulse heating cycles. Also, all cells are disassembled to investigate the battery internal morphology with the employment of Scanning Electron Microscope and Energy-Dispersive x-ray Spectroscopy techniques. The results indicate that the AC heating method does not aggravate the cell degradation even in the low frequency range (0.5 Hz) under the normal voltage protection limitation.

  18. Dynamic heat capacity of the east model and of a bead-spring polymer model.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, John Dwane (New Mexico Institute of Mining and Technology, Socorro, NM); Brown, Jonathan R. (New Mexico Institute of Mining and Technology, Socorro, NM); Adolf, Douglas Brian

    2011-10-01

    In this report we have presented a brief review of the glass transition and one means of characterizing glassy materials: linear and nonlinear thermodynamic oscillatory experiments to extract the dynamic heat capacity. We have applied these methods to the east model (a variation of the Ising model for glass forming systems) and a simple polymeric system via molecular dynamics simulation, and our results match what is seen in experiment. For the east model, since the dynamics are so simple, a mathematical model is developed that matches the simulated dynamics. For the polymeric system, since the system is a simulation, we can instantaneously 'quench' the system - removing all vibrational energy - to separate the vibrational dynamics from dynamics associated with particle rearrangements. This shows that the long-time glassy dynamics are due entirely to the particle rearrangements, i.e. basin jumping on the potential energy landscape. Finally, we present an extension of linear dynamic heat capacity to the nonlinear regime.

  19. Magnetic susceptibility and heat capacity of graphene in two-band Harrison model

    Science.gov (United States)

    Mousavi, Hamze; Bagheri, Mehran; Khodadadi, Jabbar

    2015-11-01

    Using a two-band tight-binding Harrison model and Green's function technique, the influences of both localized σ and delocalized π electrons on the density of states, the Pauli paramagnetic susceptibility, and the heat capacity of a graphene sheet are investigated. We witness an extension in the bandwidth and an increase in the number of Van-Hove singularities as well. As a notable point, besides the magnetic nature which includes diamagnetism in graphene-based nanosystems, a paramagnetic behavior associated with the itinerant π electrons could be occurred. Further, we report a Schottky anomaly in the heat capacity. This study asserts that the contribution of both σ and π electrons play dominant roles in the mentioned physical quantities.

  20. Vibrational Spectra and Heat Capacity of Methane, and the Speed of Sound

    Science.gov (United States)

    Tennis, Ronald; Bailey, Ryan; Henderson, Giles

    2000-12-01

    A two-part physical chemistry laboratory experiment is described in which students evaluate statistical mechanical theory by comparing a measured speed of sound and heat capacity with values predicted from vibrational spectra. In part 1 students measure the IR spectrum of CH4(g) and the Raman spectrum of CH4(l) to determine quantized vibrational energy spacings. Strong Raman scattering of a pulsed nitrogen laser beam is observed with a liquid methane sample in a custom cryogenic cell constructed from two side-arm test tubes and a length of Pyrex tube. These data are used with the statistical mechanics of a harmonic oscillator to calculate vibrational heat capacities and CP/CV; of CH4(g) and the speed of sound in CH4(g). In part 2, the predicted speed of sound is compared with an experimental value measured with a simple acoustic resonance cavity (Kundt's tube) exhausted to a Bunsen burner.

  1. Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements

    Science.gov (United States)

    Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.; Camperchioli, W. P.

    2000-01-01

    Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three vane linear cascade, with inlet pressures between 0.14 and 1.02 atm., and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10%. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.

  2. Large-scale calculations of gas phase thermochemistry : Enthalpy of formation, standard entropy, and heat capacity

    OpenAIRE

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; Ditz, Jonas C.; Lindh, Roland; van der Spoel, David

    2016-01-01

    Large scale quantum calculations for molar enthalpy of formation (Delta(f) H-0), standard entropy (S-0), and heat capacity (C-V) are presented. A large data set may help to evaluate quantum thermochemistry tools in order to uncover possible hidden shortcomings and also to find experimental data that might need to be reinvestigated, indeed we list and annotate approximately 200 problematic thermochemistry measurements. Quantum methods systematically underestimate S-0 for flexible molecules in ...

  3. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride

    OpenAIRE

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-01-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous...

  4. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    Energy Technology Data Exchange (ETDEWEB)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-05-18

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to <5kW. Even at the maximum demonstrated average powers, the output is most often delivered as continuous wave (CW) or as small energy pulses at high pulse repetition frequency (PRF) and the beam divergence is typically >10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode

  5. DEVELOPING LOW TEMPERATURE SOURCE LOCAL HEATING FOR PIGLETS

    OpenAIRE

    Chus R. V.; Koshchayev A. G.; Kostenko S. V.; Koshchaeva O. V.

    2015-01-01

    During the research, we have developed a low-temperature zonal heating panels with an infrared emitter to create a local microclimate for piglets in the suckling period. This heater is lightweight and durable frame in the form of an inverted box size 400 mm x 1800 mm, attached to the wall of the building swivel. Top frame mounted thermostat is connected to a temperature sensor mounted directly on a metal plate with a thickness of 1 mm, painted in black color. In the upper part of the inner ca...

  6. Conversion of medium and low temperature heat to power

    Science.gov (United States)

    Fischer, Johann; Wendland, Martin; Lai, Ngoc Anh

    2013-04-01

    Presently most electricity is produced in power plants which use high temperature heat supplied by coal, oil, gas or nuclear fission and Clausius-Rankine cycles (CRC) with water as working fluid (WF). On the other hand, geo-, solar-, ocean-, and biogenic-heat have medium and low temperatures. At these temperatures, however, the use of other WF and/or other cycles can yield higher efficiencies than those of the water-CRC. For an assessment of the efficiency we model systems which include the heat transfer to and from the WF and the cycle. Optimization criterion is the exergy efficiency defined as the ratio of the net power output to the incoming exergy flow of the heat carrier. First, for a better understanding we discuss some thermodynamic properties of the WFs: 1) the critical point parameters, 2) the shape of the vapour- liquid coexistence curve in the temperature vs entropy (T,s)-diagram which may be either bell-shaped or overhanging [1,2], and 3) the shape of sub- and supercritical isobars for pure fluids and fluid mixtures. Second, we show that the problems of a CRC with water at lower temperatures are 1) the shape of the T,s-diagram and 2) the exergy loss during heat transfer to the WF. The first problem can be overcome by using an organic working fluid in the CRC which then is called organic Rankine cycle (ORC). The second problem is reduced by supercritical organic Rankine cycles (sORC) [1,2], trilateral cycles (TLC) and the more general power-flash cycles (PFC) [2], and organic flash cycles (OFC) [3]. Next, selected results for systems with the above mentioned cycles will be presented. The heat carrier inlet temperatures THC range from 120°C to 350°C.The pure working fluids are water, refrigerants, alkanes, aromates and siloxanes and have to be selected to match with THC. It is found that TLC with water have the highest efficiencies but show very large volume flows at lower temperatures. Moreover, expansion machines for TLC and PFC are still under

  7. Improved exercise capacity in the heat followed by coconut water consumption

    Directory of Open Access Journals (Sweden)

    Orlando Laitano

    2014-03-01

    Full Text Available The aim of the present study was to assess the effects of prior ingestion of coconut water on fluid retention and exercise capacity in the heat as well as signs of gastrointestinal distress. Eight physically active men were recruited (age 23 ± 3 years, height 176 ± 6 cm, body mass 78 ± 7 kg and performed three exercise capacity trials on a cycle ergometer in the heat (34 ± 1°C after the ingestion of one of the following drinks: a plain water (PW, b flavored drink (FD, and c coconut water (CW. Ingestion of CWresulted in a longer time to exhaustion (p=0.029. Likewise, participants achieved a higher heart rate in the CW session when compared to the other trials (PW 183 ± 5 bpm, FD 184 ± 8 bpm, and CW 189 ± 8 bpm, p<0.05 and a reduced urine output after the coconut water ingestion (PW 214 ± 85 ml, FD 267 ± 90 ml, and CW 161 ± 73 ml, p<0.05 indicating a higher fluid retention of coconut water in comparison to plain water and the flavored drink. These results demonstrate that previous ingestion of coconut water improves exercise capacity in the heat and provide a reduced urine output in comparison to plain water and flavored drink. Also there is no evidence for GI distress.

  8. Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics

    Directory of Open Access Journals (Sweden)

    Frédéric Barbaresco

    2014-08-01

    Full Text Available The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from “Characteristic Functions”, was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of this Characteristic Function concept by Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic Function (KVCF on convex cones will be presented as cornerstone of “Information Geometry” theory, defining Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher Information Metrics as hessian of these dual functions, invariant by their automorphisms. In parallel, Souriau has extended the Characteristic Function in Statistical Physics looking for other kinds of invariances through co-adjoint action of a group on its momentum space, defining physical observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric (Planck Temperature, with values in the Lie algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, giving to the metric tensor a null Lie derivative. Fisher Information metric appears as the opposite of the derivative of Mean “Moment map” by geometric temperature, equivalent to a Geometric Capacity or Specific Heat. We will synthetize the analogies between both Koszul and Souriau models, and will reduce their definitions to the exclusive Cartan “Inner Product”. Interpreting Legendre transform as Fourier transform in (Min,+ algebra, we conclude with a definition of Entropy given by a relation mixing Fourier/Laplace transforms: Entropy = (minus Fourier(Min,+ o Log o Laplace(+,X.

  9. Numerical Investigation on the Heat Extraction Capacity of Dual Horizontal Wells in Enhanced Geothermal Systems Based on the 3-D THM Model

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2018-01-01

    Full Text Available The Enhanced Geothermal System (EGS constructs an artificial thermal reservoir by hydraulic fracturing to extract heat economically from hot dry rock. As the core element of the EGS heat recovery process, mass and heat transfer of working fluid mainly occurs in fractures. Since the direction of the natural and induced fractures are generally perpendicular to the minimum principal stress in the formation, as an effective stimulation approach, horizontal well production could increase the contact area with the thermal reservoir significantly. In this paper, the thermal reservoir is developed by a dual horizontal well system and treated as a fractured porous medium composed of matrix rock and discrete fracture network. Using the local thermal non-equilibrium theory, a coupled THM mathematical model and an ideal 3D numerical model are established for the EGS heat extraction process. EGS heat extraction capacity is evaluated in the light of thermal recovery lifespan, average outlet temperature, heat production, electricity generation, energy efficiency and thermal recovery rate. The results show that with certain reservoir and production parameters, the heat production, electricity generation and thermal recovery lifespan can achieve the commercial goal of the dual horizontal well system, but the energy efficiency and overall thermal recovery rate are still at low levels. At last, this paper puts forward a series of optimizations to improve the heat extraction capacity, including production conditions and thermal reservoir construction design.

  10. Simulation of the airflow and temperature distribution in heated greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Bougoul, S.; Zeroual, S.; Azil, A. [Batna Univ., Batna (Algeria). Dept. of Physics; Boulard, T. [Unit of Integrated Research in Horticulture, Sophia Antipolis (France)

    2007-07-01

    The climate inside greenhouses depends on the external conditions such as wind velocity, outside temperature, and external moisture, as well as interior conditions such as heating, humidification, dehumidification, and ventilation. Plant transpiration and condensation on the walls are also factors that affect climate and vegetation. The interaction of various forms of mass and thermal transfer with plants results in a complex process. This paper presented an analysis of the heating process in a reduced scale mono-span greenhouse module using computational fluid dynamics (CFD). The purpose of the study was to validate some experimental data and to investigate how heating tubes influenced airflow and temperature patterns inside the greenhouse. Simulations were conducted in empty greenhouses with and without open sided roof vents. The results obtained were satisfactory by comparison to the experimental ones. In the closed greenhouses, the average temperature and velocity calculated were in good agreement with those measured. Maximum air velocity values inside the greenhouse were observed near the opening section and along the wall and floor, whereas air velocity was lowest in the centre of greenhouse. The presence of plants was also investigated in a particular configuration. 18 refs., 1 tab., 13 figs.

  11. Measuring the temperature history of isochorically heated warm dense metals

    Science.gov (United States)

    McGuffey, Chris; Kim, J.; Park, J.; Moody, J.; Emig, J.; Heeter, B.; Dozieres, M.; Beg, Fn; McLean, Hs

    2017-10-01

    A pump-probe platform has been designed for soft X-ray absorption spectroscopy near edge structure measurements in isochorically heated Al or Cu samples with temperature of 10s to 100s of eV. The method is compatible with dual picosecond-class laser systems and may be used to measure the temperature of the sample heated directly by the pump laser or by a laser-driven proton beam Knowledge of the temperature history of warm dense samples will aid equation of state measurements. First, various low- to mid-Z targets were evaluated for their suitability as continuum X-ray backlighters over the range 200-1800 eV using a 10 J picosecond-class laser with relativistic peak intensity Alloys were found to be more suitable than single-element backlighters. Second, the heated sample package was designed with consideration of target thickness and tamp layers using atomic physics codes. The results of the first demonstration attempts will be presented. This work was supported by the U.S. DOE under Contract No. DE-SC0014600.

  12. Experimental study of energy performance in low-temperature hydronic heating systems

    DEFF Research Database (Denmark)

    Hesaraki, Arefeh; Bourdakis, Eleftherios; Ploskić, Adnan

    2015-01-01

    Energy consumption, thermal environment and environmental impacts were analytically and experimentally studied for different types of heat emitters. The heat emitters studied were conventional radiator, ventilation radiator, and floor heating with medium-, low-, and very-low-temperature supply, r...

  13. Heat capacity measurements of Sr{sub 2}RuO{sub 4} under uni-axial strain

    Energy Technology Data Exchange (ETDEWEB)

    Li, You-sheng; Mackenzie, Andrew [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of St. Andrews, School of Physics and Astronomy (United Kingdom); Gibbs, Alexandra [Max Planck Institute for Solid State Research, Stuttgart (Germany); Hicks, Clifford [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Nicklas, Michael [University of St. Andrews, School of Physics and Astronomy (United Kingdom)

    2016-07-01

    One of the most-discussed possible pairing symmetries of Sr{sub 2}RuO{sub 4} is p{sub x} ± ip{sub y}. By applying strain along left angle 100 right angle -direction, the degeneracy of the p{sub x} and p{sub y} components is lifted, and thus there should be two critical temperatures (T{sub c}). Hicks et al. have observed an increase of T{sub c} of Sr{sub 2}RuO{sub 4} under both compressive and tensile strains, by measuring the susceptibility, which is sensitive only to the first transition. Their results also indicate, indirectly, that any splitting of T{sub c}s might be small. For a direct test of possible splitting, we measure the heat capacity of Sr{sub 2}RuO{sub 4} under strain. To do so, we are developing an approach to measure heat capacity under non-adiabatic conditions. We have observed an increase of T{sub c} under compressive strain. This is the first thermodynamic evidence of the strain-induced increase in T{sub c} of Sr{sub 2}RuO{sub 4}.

  14. An automated flow calorimeter for the determination of liquid and vapor isobaric heat capacities: Test results for water and n -pentane

    Energy Technology Data Exchange (ETDEWEB)

    Sandarusi, J.A. (National Institute of Science and Technology, Thermophysics Division, Boulder, Colorado 80303 (United States)); Mulia, K.; Yesavage, V.F. (Colorado School of Mines, Chemical Engineering Department, Golden, Colorado 80401 (United States))

    1992-02-01

    An automated flow calorimeter has been developed for the measurement of highly accurate isobaric heat capacities and enthalpies of fluids at elevated temperatures and pressures. The instrument was successfully tested over the range 300--600 K and 0--12 MPa and is readily extensible to 700 K and 30 MPa. The flow calorimeter relied on an adiabatic design with a two-chambered cell design incorporating several concentric shells of active and passive shields designed to minimize heat losses, facilitate easy component replacement, and eliminate any external temperature regulation baths. A pair of miniature standard platinum resistance thermometers were built to determine the differential calorimeter temperatures. A precision metering pump eliminated the need for direct mass flow-rate determinations while a complete automation system supplied all of the required data acquisition, monitoring, and control (except for pressure) resources necessary to operate the calorimeter and make measurements from a single personal computer. Measurements of isobaric heat capacities were performed on water (liq.) and {ital n}-pentane (liq. and vap.) to test the new calorimeter. These experiments compared well with the published values, indicating an overall measurement precision of 0.1% and uncertainty in the range of 0.2%--0.3%. The total calorimeter heat leak was small affecting the experimental uncertainty as much as the combined mass flow-rate and calorimeter temperature difference errors.

  15. Cryostat for semiautomatic measurement of heat capacity and elastic moduli between 1.6 and 400 K

    Science.gov (United States)

    Hirao, Kazuyuki; Soga, Naohiro

    1983-11-01

    An adiabatic cryostat system for the measurement of either heat capacity or elastic moduli was constructed. The vacuum system, electronic equipment to achieve the adiabatic conditions, and instruments for measurements are described. The cube resonance method used for measurement of elastic moduli is shown. Test measurements on the heat capacity of α-Al2O3 show agreement within ±1% of the literature values. The results of heat capacity and elastic moduli measurements on optical fiberglass are described and compared with other data.

  16. Metal foam sandwich structure as a high temperature heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Salimijazi, H.R.; Pershin, L.; Coyle, T.W.; Mostaghimi, J.; Chandra, S. [Toronto Univ., ON (Canada)

    2008-07-01

    Nickel-based superalloys can be used at temperatures up to 1050 C in air. Superalloy open cell foam sheets with skin layers plasma sprayed on both sides can be used as high temperature heat exchangers provided that the two deposited skins are dense and well adhered to the open cell foam. In this study alloy 625 skins were deposited on each side of a sheet of metal foam by APS and HVOF to form a sandwich structure. Two densities of open cell foams, 20 and 10 pores per linear inch (ppi), were used in this study as the core. The initial Ni foam was converted to an alloy composition by plasma spraying aluminum and chromium on the foam's struts with subsequent diffusion/solutionizing heat treatments before the alloy 625 skins were deposited. The microstructure of the coatings and the interface between the struts and skins was investigated. A layer of Ni-Al alloy was formed near the surface of the struts as a result of the heat treatment. The foam struts were imbedded more deeply into the coatings deposited by HVOF than the coatings deposited by APS. (orig.)

  17. The Effect of Heating Temperature on the Prooxidant and Hydroperoxide Decomposition Activity of Myoglobin

    National Research Council Canada - National Science Library

    BERISHA, Adrian; ENDO, Yasushi; FUJIMOTO, Kenshiro

    2000-01-01

    Solutions of myoglobin from the heart of a horse were heated at various temperatures to assess the effect of heating temperature on the prooxidant and hydroperoxide decomposition activity of myoglobin...

  18. Temperature measurement methods during direct heat arterial tissue fusion.

    Science.gov (United States)

    Cezo, James D; Kramer, Eric; Taylor, Kenneth D; Ferguson, Virginia; Rentschler, Mark E

    2013-09-01

    Fusion of biological tissues through direct and indirect heating is a growing area of medical research, yet there are still major gaps in understanding this procedure. Several companies have developed devices which fuse blood vessels, but little is known about the tissue's response to the stimuli. The need for accurate measurements of tissue behavior during tissue fusion is essential for the continued development and improvement of energy delivery devices. An experimental study was performed to measure the temperatures experienced during tissue fusion and the resulting burst pressure of the fused arteries. An array of thermocouples was placed in the lumen of a porcine splenic artery segment and sealed using a ConMed Altrus thermal fusion device. The temperatures within the tissue, in the device, and at the tissue-device interface were recorded. These measurements were then analyzed to calculate the temperature profile in the lumen of the artery. The temperature in the artery at the site of tissue fusion was measured to range from 142 to 163 °C using the ConMed Altrus. The corresponding burst pressure for arteries fused at this temperature was measured as 416 ± 79 mmHg. This study represents the first known experimental measurement of temperature at the site of vessel sealing found in the literature.

  19. Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles

    Science.gov (United States)

    2015-01-01

    The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb3+, Er3+. A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications. PMID:24779552

  20. A Model for the Determination of Diffusion Capacity Under Non-Standard Temperature and Pressure Conditions

    Directory of Open Access Journals (Sweden)

    Eitzinger Bernhard

    2014-07-01

    Full Text Available The diffusion capacity of cigarette paper has been reported to be an important parameter in relation to the self-extinguishment of cigarettes and also in relation to carbon monoxide yields. Although the diffusion capacity is routinely measured and instruments for this measurement have been available for several years, differences between measured values obtained on the same paper sample but on different instruments or in different laboratories may be substantial and may make it difficult to use these values, for example, as a basis for paper specifications. Among several reasons, deviations of temperature and pressure from standard conditions, especially within the measurement chamber of the instrument, may contribute to the high variation in diffusion capacity data. Deviations of temperature and pressure will have an influence on the gas flow rates, the diffusion processes inside the measurement chamber and consequently the measured CO2 concentration. Generally, the diffusion capacity is determined from a mathematical model, which describes the diffusion processes inside the measurement chamber. Such models provide the CO2 concentration in the outflow gas for a given diffusion capacity. For practical applications the inverse model is needed, that is, the diffusion capacity shall be determined from a measured CO2 concentration. Often such an inverse model is approximated by a polynomial, which, however, is only valid for standard temperature and pressure. It is shown that relative approximation errors from such polynomials, even without temperature and pressure deviations, cannot always be neglected and it is proposed to eliminate such errors by direct inversion of the model with a comparably simple iterative method. A model which includes temperature and pressure effects is described and the effects of temperature and pressure deviations on the diffusion capacity are theoretically estimated by comparing the output of a model with and without

  1. Low temperature specific heat of glasses: a non-extensive approach

    OpenAIRE

    Razdan, Ashok

    2005-01-01

    Specific heat is calculated using Tsallis statistics. It is observed that it is possible to explain some low temperature specific heat properties of glasses using non-extensive approach. A similarity between temperature dependence of non-extensive specific heat and fractal specific heat is also discussed.

  2. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...

  3. Temperature measurement by IR camera of heated device to high temperature during a short time

    Science.gov (United States)

    Sonneck-Museux, Nathanaëlle; Vergé, Philippe; Judic, Jean-Pierre; Edard, Pierrick

    2015-04-01

    A device allowing heating a liquid to high temperatures during a very short time has been conceived in our laboratory. The goal of this survey is to find the suitable experimental configurations, so that tested material affected by the temperatures coved between 200 and 750°C. This study is achieved to the Solar Furnace of the DGA in Odeillo. The cavity containing the liquid is a thermocouple sleeve (capillary) in Inconel 600. Its extremity is closed tightly by a removable steel plug permitting the tightness after replenishment. An electromagnet associated to a generator of delay permit to make fall the whole after the solar irradiation in liquid nitrogen in order to stop the reaction of "deterioration" of the tested product. According to capillary dimensions and to heating time, the temperature measurement using a pyrometer is not possible. A second possibility is using thermocouple, but it is not easy to join this captor on Inconel 600. Using by infrared camera allows observing the presence or the absence of inflammation during the solar irradiation and the sleeve fall too. The measures of temperatures by thermocouple show a lot of variability. The measures comparison with those by infrared camera shows a phenomenon of "heat well". Several score of tests to the solar furnace have been achieved in different experimental configurations. Nine experimental configurations have been validated, for variable flux of 100 to 500W/cm². The observation by infrared camera permitted to validate the conceived system and to verify the homogeneity of the sleeve heated.

  4. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Science.gov (United States)

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  5. Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity

    Directory of Open Access Journals (Sweden)

    Ch. Cherif

    2018-03-01

    Full Text Available A stable and reproducible bi-component melt spinning process on an industrial scale incorporating Phase Change Material (PCM into textile fibres has been successfully developed and carried out using a melt spinning machine. The key factor for a successful bi-component melt spinning process is that a deep insight into the thermal and rheological behaviour of PCM using Difference Scanning Calorimetry (DSC, Thermogravimetric Analysis (TGA, and an oscillatory rheological investigation. PCM is very sensitive to the temperature and residence time of the melt spinning process. It is found that the optimal process temperature of PCM is 210 °C. The textile-physical properties and the morphology of the melt spun and further drawn bi-component core and sheath fibres (bico fibres were investigated and interpreted. The heat capacities of PCM incorporated in bico fibres were also determined by means of DSC. The melt spun bico fibres integrating PCM provide a high latent heat of up to 22 J/g, which is three times higher than that of state-of-the-art fibres, which were also obtained using the melt spinning process. Therefore, they have the potential to be used as smart polymer fibres for textile and other technical applications.

  6. Analysis of frozen startup of high-temperature heat pipes and three-dimensional modeling of block-heated heat pipes

    Science.gov (United States)

    Faghri, Amir

    1991-11-01

    The use of high-temperature heat pipes has been proposed for cooling the leading edges and nose cones of re-entry vehicles, rail guns, and laser mirrors, as well as for the thermal management of future hypersonic vehicle structures. The startup behavior of high temperature heat pipes from the frozen state was investigated both numerically and experimentally for various heat loads and input locations. A high temperature sodium/stainless steel heat pipe with multiple heat sources and sinks was fabricated, processed, and tested. A numerical simulation of the transient heat pipe performance including the vapor region, wick structure, and the heat pipe wall is given. Furthermore, experimental and numerical analyses of several operating parameters of a low-temperature copper-water heat pipe under uniform circumferential heating and block heating has been performed. Finally, a numerical analysis of transient heat pipe performance including nonconventional heat pipes with nonuniform heat distributions is presented. Numerical calculations were then made for a leading edge heat pipe with localized high heat fluxes.

  7. Guide for the calculation of heating capacity and heating coils for deep tanks / Handleiding bij de berekening van verwarmingskapasiteit en spiraallengte voor dieptanks

    NARCIS (Netherlands)

    Heeden, D.J. van der; Koppenol, A.D.

    1972-01-01

    This report deals with a method for calculating the heating capacity and the length of heating coils, required for deep tanks in dry cargo ships. It is based on the theory of natural convection and on experiments, carried out on tanks loaded with mineral oils. The calculating method is set up for

  8. Determining the Optimal Capacities of Renewable-Energy-Based Energy Conversion Systems for Meeting the Demands of Low-Energy District Heating, Electricity, and District Cooling

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend; Dincer, Ibrahim

    2015-01-01

    This chapter presents a method for determining the optimal capacity of a renewable-energy-based energy conversion system for meeting the energy requirements of a given district as considered on a monthly basis, with use of a low-energy district heating system operating at a low temperature, as low......, and the other for the Greater Toronto Area. Various climate conditions of the case areas in question caused different observations of nominal capacities for the energy conversion systems considered with single-production and multi-production based on different renewable energy sources....

  9. Heating capacity of rebound shortwave diathermy and moist hot packs at superficial depths.

    Science.gov (United States)

    Hawkes, Amanda R; Draper, David O; Johnson, A Wayne; Diede, Mike T; Rigby, Justin H

    2013-01-01

    The effectiveness of a new continuous diathermy unit, ReBound, as a heating modality is unknown. To compare the effects of ReBound diathermy with silicate-gel moist hot packs on tissue temperature in the human triceps surae muscle. Crossover study. University research laboratory. A total of 12 healthy, college-aged volunteers (4 men, 8 women; age = 22.2 ± 2.25 years, calf subcutaneous fat thickness = 7.2 ± 1.9 mm). On 2 different days, 1 of 2 modalities (ReBound diathermy, silicate-gel moist hot pack) was applied to the triceps surae muscle of each participant for 30 minutes. After 30 minutes, the modality was removed, and temperature decay was recorded for 20 minutes. Medial triceps surae intramuscular tissue temperature at a depth of 1 cm was measured using an implantable thermocouple inserted horizontally into the muscle. Measurements were taken every 5 minutes during the 30-minute treatment and every minute during the 20-minute temperature decay, for a total of 50 minutes. Treatment was analyzed through a 2 × 7 mixed-model analysis of variance with repeated measures. Temperature decay was analyzed through a 2 × 21 mixed-model analysis of variance with repeated measures. During the 30-minute application, tissue temperatures at a depth of 1 cm increased more with the ReBound diathermy than with the moist hot pack (F6,66 = 7.14, P diathermy and moist hot packs increased tissue temperatures 3.69°C ± 1.50°C and 2.82°C ± 0.90°C, respectively, from baseline. Throughout the temperature decay, ReBound diathermy produced a greater rate of heat dissipation than the moist hot pack (F20,222 = 4.42, P diathermy increased tissue temperature to moderate levels, which were greater than the levels reached with moist hot packs.

  10. Thermal analysis method of high capacity communications satellite with heat pipes

    Science.gov (United States)

    Tsunoda, Hiroaki; Nakajima, Katsuhiko; Miyasaka, Akihiro

    Thermal analysis method for heat pipe embedded communications equipment panel is treated in this paper. The main problem of the thermal analysis is how to construct the mathematical model under the limitation of computer CPU memory size. The mathematical model for the heat pipe embedded panel is first established based on the experiments. The essence of this method is to divide panel area into several small regions and perform thermal analysis independently using the fact of low thermal conductivity of honeycomb sandwich panel. To check the correctness of this method, the experiment using the test panel which thermally simulates the north communications equipment panel of two-ton class high capacity communications satellite has been conducted. The experiment shows the method works well.

  11. Heat-conduction error of temperature sensors in a fluid flow with nonuniform and unsteady temperature distribution.

    Science.gov (United States)

    Khine, Soe Minn; Houra, Tomoya; Tagawa, Masato

    2013-04-01

    In temperature measurement of non-isothermal fluid flows by a contact-type temperature sensor, heat conduction along the sensor body can cause significant measurement error which is called "heat-conduction error." The conventional formula for estimating the heat-conduction error was derived under the condition that the fluid temperature to be measured is uniform. Thus, if we apply the conventional formula to a thermal field with temperature gradient, the heat-conduction error will be underestimated. In the present study, we have newly introduced a universal physical model of a temperature-measurement system to estimate accurately the heat-conduction error even if a temperature gradient exists in non-isothermal fluid flows. Accordingly, we have been able to successfully derive a widely applicable estimation and/or evaluation formula of the heat-conduction error. Then, we have verified experimentally the effectiveness of the proposed formula using the two non-isothermal fields-a wake flow formed behind a heated cylinder and a candle flame-whose fluid-dynamical characteristics should be quite different. As a result, it is confirmed that the proposed formula can represent accurately the experimental behaviors of the heat-conduction error which cannot be explained appropriately by the existing formula. In addition, we have analyzed theoretically the effects of the heat-conduction error on the fluctuating temperature measurement of a non-isothermal unsteady fluid flow to derive the frequency response of the temperature sensor to be used. The analysis result shows that the heat-conduction error in temperature-fluctuation measurement appears only in a low-frequency range. Therefore, if the power-spectrum distribution of temperature fluctuations to be measured is sufficiently away from the low-frequency range, the heat-conduction error has virtually no effect on the temperature-fluctuation measurements even by the temperature sensor accompanying the heat-conduction error in

  12. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  13. Effect of the rate of temperature increase on water quality during heating in electromagnetic- and gas-heated pans.

    Science.gov (United States)

    Hiratsuka, Hiroshi; Sasaki, Ken

    2004-04-01

    More rapid increases in the pH value and hardness during electromagnetic heating of a pan of water were observed than when the pan was heated by LNG or LPG. The water quality changed universally in several tap water samples across Japan. This quality change was closely correlated with the rate of temperature increase, irrespective of heating by electromagnetic induction, LNG or LPG.

  14. Heat capacities of xenotime-type ceramics: An accurate ab initio prediction

    Science.gov (United States)

    Ji, Yaqi; Beridze, George; Bosbach, Dirk; Kowalski, Piotr M.

    2017-10-01

    Because of ability to incorporate actinides into their structure, the lanthanide phosphate ceramics (LnPO4) are considered as potential matrices for the disposal of nuclear waste. Here we present highly reliable ab initio prediction of the variation of heat capacities and the standard entropies of these compounds in zircon structure along lanthanide series (Ln = Dy, …,Lu) and validate them against the existing experimental data. These data are helpful for assessment of thermodynamic parameters of these materials in the context of using them as matrices for immobilization of radionuclides for the purpose of nuclear waste management.

  15. Mössbauer and heat capacity studies of ErZnSn2

    Directory of Open Access Journals (Sweden)

    Łątka Kazimierz

    2017-06-01

    Full Text Available Heat capacity results obtained for the intermetallic compound ErZnSn2 were re-analysed to also consider, apart from the classical Debye model, the anharmonicity of the crystal lattice and the proper set of Einstein modes. The 119mSn Mössbauer technique was applied to derive the hyperfine interaction parameters characteristic of the two inequivalent crystallographic Sn sites in the compound studied. Quadrupole interaction constants, as measured by 119mSn Mössbauer spectroscopy, allowed for estimations of Vzz components of the electric field gradient tensor that exist at both Sn sites in the discussed compound.

  16. Optimum radiator control to reach a low district heating return temperature; Optimal radiatorreglering foer att naa laag fjaerrvaermereturtemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Ljunggren, Patrick; Wollerstrand, Janusz [Lund Univ. (Sweden). Energy Sciences

    2005-12-15

    The advantages of an improved cooling of primary water in district heating systems are well-known. E.g. heat losses and pumping work can be reduced and the capacity in the network increased. Many kinds of heat production, such as combined heat and power, heat pumps, waste heat and flue gas condensation, are favoured. The choice of connection scheme of district heating substations is nowadays considered to be of less significance for the cooling since the district heating cost only marginally is affected. Of at least the same interest for the cooling, and the cost when flow accounting is applied, is the temperature in the secondary systems connected to the substation. For every combination of space heating system and substation, at given load and supply temperature, there is an optimum magnitude of the flow in the space heating circuit that produces an optimum primary return temperature. It can be shown that, if highest possible cooling of primary water is aimed at, the magnitude of the flow in the circuit should be reduced at part load while the supply temperature should be reduced less than is done with constant flow. One can then speak of a moving transition, with decreasing load, from a high flow balanced system to a low flow balanced system. Oversizing of space heating systems and its components is a rule rather than an exception and implies the possibility to substantially improve the cooling. The calculations and simulations performed show that it is possible, with measurements of temperatures and energy consumption in a space heating system, to estimate the existing oversizing and with that information to establish a temperature program that best fits the system's characteristics. Complete optimization is possible with measurement of the indoor temperature. Online optimization is obstructed by hysteresis in thermostatic valves if the radiators are equipped with these. Both low flow balancing and low temperature adjustment of the oversized space heating

  17. Containment for the low temperature district nuclear-heating reactor

    Energy Technology Data Exchange (ETDEWEB)

    He Shuyan (Institute of Nuclear Energy Technology, Tsinghua Univ., Beijing (China)); Dong Duo (Institute of Nuclear Energy Technology, Tsinghua Univ., Beijing (China))

    1993-04-01

    An integral arrangement is adopted for the Low Temperature District Nuclear-Heating Reactor. The primary heat exchangers, control rod drives and spent fuel elements are put in the reactor pressure vessel together with the reactor core. The primary coolant flows in natural circulation through the reactor core and the primary heat exchangers. The primary coolant pipes penetrating the wall of the reactor pressure vessel are all of small diameters. The reactor vessel constitutes the main part of the pressure boundary of the primary coolant. Therefore a small sized metallic containment closed to the wall of the reactor vessel can be used for the reactor. Design principles and functions of the containment are the same as for the containment of a PWR. But the adoption of a small sized containment brings about some benefits such as a short period of manufacturing, relatively low cost, and ease for sealing. A loss of primary coolant accident would not be happening during a rupture accident of the primary coolant pressure boundary inside the containment owing to its intrinsic safety. (orig.).

  18. Diamond thin film temperature and heat-flux sensors

    Science.gov (United States)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  19. Students’ Conception on Heat and Temperature toward Science Process Skill

    Science.gov (United States)

    Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.

    2017-09-01

    This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.

  20. Heat capacity measurement and EXAFS study of (U{sub 0.85}Mg{sub 0.15})O{sub 2{minus}x} for x = 0 and 0.1

    Energy Technology Data Exchange (ETDEWEB)

    Atita, Y; Matsui, T. [Nagoya Univ. (Japan); Ohno, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Office of Synchrotron Radiation Facility Project; Kobayashi, K. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan). Photon Factory

    1997-03-01

    Heat capacities and electrical conductivities of (U{sub 0.85}Mg{sub 0.15})O{sub 2{minus}x} (x = 0 and 0.1) were measured simultaneously by means of a direct heating pulse calorimeter (DHPC) in the temperature range from 300 to 1500 K. Anomalous increases in the heat capacity curves of (U{sub 0.85}Mg{sub 0.15})O{sub 2{minus}x} (x = 0 and 0.1) were observed above about 800 and 1150 K, respectively. The values for the enthalpy of oxygen Frenkel defect formation were calculated from the excess heat capacity and were found to be similar to those for UO{sub 2} doped with rare earth elements. On the other hand, no anomaly was seen in the electrical conductivity curve around the onset temperature of the anomalous increase in the heat capacity. It was, therefore, concluded that the excess heat capacity originates from the predominant contribution of the formation of Frenkel pair-like defects of oxygen. An extended X-ray absorption fine structure (EXAFS) experiment shows a different environment of oxygen around uranium and magnesium, and this should be a cause of the onset temperature difference.

  1. Avian thermoregulation in the heat: evaporative cooling capacity in an archetypal desert specialist, Burchell's sandgrouse (Pterocles burchelli).

    Science.gov (United States)

    McKechnie, Andrew E; Smit, Ben; Whitfield, Maxine C; Noakes, Matthew J; Talbot, William A; Garcia, Mateo; Gerson, Alexander R; Wolf, Blair O

    2016-07-15

    Sandgrouse (Pterocliformes) are quintessential examples of avian adaptation to desert environments, but relatively little is known about the limits to their heat tolerance and evaporative cooling capacity. We predicted that evaporative cooling in Burchell's sandgrouse (Pterocles burchelli) is highly efficient and provides the basis for tolerance of very high air temperature (Ta). We measured body temperature (Tb), resting metabolic rate (RMR) and evaporative water loss (EWL) at Ta between 25°C and ∼58°C in birds exposed to successive increments in Ta Normothermic Tb averaged 39.0°C, lower than typical avian values. At Ta>34.5°C, Tb increased linearly to a maximum of 43.6°C at Ta=56°C. The upper critical limit of thermoneutrality (Tuc) was Ta=43.8°C, closely coinciding with the onset of panting and gular flutter. Above the Tuc, RMR increased 2.5-fold to 2.89 W at Ta=56°C, a fractional increase far exceeding that of many other species under comparable conditions. Rates of EWL increased rapidly at Ta>42.9°C to 7.84±0.90 g h(-1) at Ta=56°C, an 11-fold increase above minimal levels. Maximum evaporative cooling efficiency (ratio of evaporative heat loss to metabolic heat production) was 2.03, but could be as high as 2.70 if our assumption that the birds were metabolising lipids is incorrect. Thermoregulation at very high Ta in P. burchelli was characterised by large increases in RMR and EWL, and is much less efficient than in taxa such as columbids and caprimulgids. © 2016. Published by The Company of Biologists Ltd.

  2. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  3. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  4. Water-filled heat pipe useful at moderate temperatures

    Science.gov (United States)

    Mc Kinney, B. G.

    1970-01-01

    Heat pipe is used in the primary heat exchanger for nuclear power plants, as a heat sink for high-power electronic devices, and in a closed-cycle heat rejection mechanism for cryogenic storage tanks. It serves simultaneously as a heat transfer device and as a structural member.

  5. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride.

    Science.gov (United States)

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-03-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.

  6. Heat flow evolution of the Earth from paleomantle temperatures: Evidence for increasing heat loss since ∼2.5 Ga

    Science.gov (United States)

    Ruiz, Javier

    2017-08-01

    Earth currently loses two to five times as much heat through its surface as it is internally produced by radioactivity. This proportion cannot be extrapolated into the past, because it would imply high interior temperatures and catastrophic melting of the planet in ancient times. The heat loss evolution of the Earth cannot therefore be described by a constant heat flow decreasing. This is consistent with previous work finding that the mantle heated up until ∼2.5-3.0 Ga and then progressively cooled down. The present work derives a first-order heat loss evolution of the Earth by comparing the evolution of the total heat content of the silicate Earth (as described by mantle potential temperatures deduced from the melting conditions of ancient non-arc basalts) with the total radioactive heat production. The results show that the heat flow was declining, and the mantle heating-up, until ∼2.5 Ga, but that after this time the heat flow has been slowly (but constantly) increasing, and the mantle cooling-down, until the present-day. The change in heat loss trend is roughly coeval with other major geological, geochemical and environmental changes, and could indicate the starting of the modern-style of plate tectonics. This work provides therefore the first quantitative evidence of change in terrestrial heat loss regime, and suggests that substantial variations in the internal heat budget occurred during Earth's history.

  7. Investigation of small scale solar concentration parabolic dish with heat storage: (low to medium temperature application

    Energy Technology Data Exchange (ETDEWEB)

    Madessa, Habtamu Bayera

    2012-07-01

    This PhD thesis focuses on the development and testing of a small scale concentrating parabolic dish with heat storage for low to medium temperature applications. The system consists of a parabolic dish solar concentrator that concentrates solar radiation, a fibrous mat solar absorber that captures concentrated solar rays and converts them to thermal energy and a packed bed with pebble rock as a thermal energy storage unit. This research has targeted several issues in which there is a lack of knowledge on small scale concentrating solar energy technologies, with the work summarized in eight papers. Paper 1 concerns experimental measurement of the dynamic temperature profiles along a rock bed heat storage unit during thermal charging and degradation. The study examined both finned and non-finned types of rock bed storages. The effects of the long fins. which are incorporated to transport heat from the bottom to the top surface of the heat storage, were investigated in relation to temperature distribution. As an extension of Paper 1, the performance of a rock bed fitted with long fins was studied as a heat storage unit and a cooking device. The bed charging efficiency, as well as the capacity to store thermal energy and extract heat for boiling of water was discussed. Paper 3 describes the implemention of a 1D numerical model in the MATLAB environment to simulate the transient temperature profiles of rock bed heat storage units. Conservation equations were formulated for the air, rock pebble and fins. The equations were solved on a staggered grid, and the model predicts the experimental results reasonably well. The thesis also investigates two types of volumetric solar absorbers (a fibrous wire mesh and a ceramic) that could be incorporated with a small scale solar concentrating parabolic dish system. Both the fibrous mesh and ceramic type absorbers display a better performance, as discussed in Paper 4. Another contribution of the PhD work is to investigate a 1D sun

  8. High temperature heat recovery systems; Les recuperateurs de chaleur a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.

    2003-07-15

    A state-of-the-art of high temperature heat recovery systems has been made to highlight the advantages of recovery in different energy cycles, and to compare the different geometries, materials and fabrication processes used by the different manufacturers. This leads to define the criteria that a heat recovery system must satisfy in gas turbine cogeneration applications. The pre-dimensioning of a recovery system has been performed in order to compare different geometries and to evaluate them with respect to the criteria defined in the bibliographic study. Finally, the new configuration of the 'Claire' loop has permitted to experimentally characterize a recovery system with an innovative technology based on an helical geometry. These tests have permitted to obtain the global data of the recovery system (efficiency, pressure drop, global exchange coefficient, friction coefficient, velocity and temperature profiles) and to position it with respect to the criteria defined in the bibliographic study. (J.S.)

  9. Heat capacity and sticking probability measurements of sup 4 He submonolayers adsorbed on evaporated Ag films: Bose statistics in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, T.W.; Richards, P.L. (Department of Physics, University of California, Berkeley, Berkeley, CA (USA) Materials and Chemical Sciences Division, Lawrence Berkeley Laboratories, Berkeley, CA (USA))

    1990-05-14

    We have measured the heat capacity of submonolayers of {sup 4}He adsorbed on Ag films between 1.7 and 3.3 K. Good fits to the results are obtained with a model of a noninteracting two-dimensional Bose gas. The sticking probability for room-temperature {sup 4}He atoms on cold Ag has been measured as a function of substrate temperature and {sup 4}He coverage. The sticking probability is 4% at low coverage, and abruptly drops to 1% for coverages above 0.5 monolayer.

  10. Prediction of mean skin temperature for use as a heat strain scale by introducing an equation for sweating efficiency

    Science.gov (United States)

    Kubota, H.; Kuwabara, K.; Hamada, Y.

    2014-09-01

    The present paper made the heat balance equation (HBE) for nude or minimally clad subjects a linear function of mean skin temperature ( t sk) by applying new equations for sweating efficiency ( η sw) and thermoregulatory sweat rate ( S wR). As the solution of the HBE, the equation predicting t sk was derived and used for a heat strain scale of subjects. The η sw was proportional to the reciprocal of S w/ E max ( S w, sweat rate; E max maximum evaporative capacity) and the S wR was proportional to t sk with a parameter of the sweating capacity of the subject. The errors of predicted t sk from observations due to the approximation of η sw were examined based on experimental data conducted on eight young male subjects. The value of errors of t sk was -0.10 ± 0.42 °C (mean ± sample standard deviation (SSD)). We aim to apply the predicted t sk of a subject at a level of sweating capacity as a heat strain scale of a function of four environmental factors (dry- and wet-bulb temperatures, radiation, and air velocity) and three human factors (metabolic rate, sweating capacity, and clothing (≤0.2clo)).

  11. Responses to dry heat of men and women with similar aerobic capacities.

    Science.gov (United States)

    Frye, A J; Kamon, E

    1981-01-01

    Four men and four women with similar VO2max (56.33 +/- 4.05 and 54.08 +/- 4.27 ml.kg-1.min-1, respectively) exercised up to 3 h at 30% VO2max during heat stress tests (HST) before and after acclimation to dry heat [dry-bulb temperature (Tdb)/wet-bulb temperature (Twb) = 48/25 degrees C]. Rectal (Tre), tympanic sweat on the chest (msw), and total sweat rate (Msw) were recorded. There were no differences in the responses of the women between phases of the menstrual cycle. Tre, Tty, Tsk, and Tdb at the onset of sweating were similar in both sexes before and after acclimation. The nonacclimated men had significantly higher Msw and slower rise in Tre as compared to the nonacclimated women. Following acclimation these differences were no longer evident. Acclimation produced an increase in Msw in both sexes that was characterized by an increase in sweating sensitivity (delta msw/delta Tre). It was concluded that sex alone does not determine responses to heat stress. Consideration should also be given to the relative cardiovascular strain, state of acclimation, and the ambient conditions.

  12. Optimum efficiencies and phase change temperatures in latent heat storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Aceves-Saborio, S.; Nakamura, H. (Daido Inst. of Tech., Nagoya (Japan). Dept. of Mechanical Engineering); Reistad, G.M. (Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering)

    1994-03-01

    This paper presents an analysis of a class of latent heat storage systems (LHSS). The analysis is based on a lumped model (the basic model) that allows a broad class of LHSSs to be completely specified, with only two parameters and a set of operating temperatures, while still retaining the main thermodynamic aspects associated with its operation. Characterization of the performance in this manner permits the broad base application potential of such systems to be viewed. This modeling is in contrast to most studies to date, which employ many parameters to include details of specific systems, and therefore obscure, to a great extent, this broad-based application potential. The basic model is later modified in three ways to analyze operating conditions that either occur in practical units or are desirable for an improved operation of the units. The modifications include, first, the consideration of the LHSS as being formed by many independent phase-change material (PCM) capsules. Second, the possibility of having PCMs with different phase change temperatures filling the capsules. Third, the case when the PCM melts over a temperature range. The results indicate that the efficiency of the basic model represents a higher bound for the efficient operation of LHSSs with negligible sensible storage capacity, and a single PCM. Using multiple PCMs within a LHSS results in higher efficiencies. These efficiencies set higher bounds for efficiency of any sensible or latent heat storage system, and also represent the only possibility for reversible operation of LHSS.

  13. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [University of Central Florida, Florida Solar Energy Center; Withers, Chuck [University of Central Florida, Florida Solar Energy Center; McIlvaine, Janet [University of Central Florida, Florida Solar Energy Center; Chasar, Dave [University of Central Florida, Florida Solar Energy Center; Beal, David [University of Central Florida, Florida Solar Energy Center

    2018-02-07

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. The problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.

  14. Experimental and theoretical analysis of nanofluids based on high temperature-heat transfer fluid with enhanced thermal properties

    Science.gov (United States)

    Navas, Javier; Sánchez-Coronilla, Antonio; Martín, Elisa I.; Gómez-Villarejo, Roberto; Teruel, Miriam; Gallardo, Juan Jesús; Aguilar, Teresa; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2017-04-01

    In this work, nanofluids were prepared using commercial Cu nanoparticles and a commercial high temperature-heat transfer Fluid (eutectic mixture of diphenyl oxide and biphenyl) as the base fluid, which is used in concentrating solar power (CSP) plants. Different properties such as density, viscosity, heat capacity and thermal conductivity were characterized. Nanofluids showed enhanced heat transfer efficiency. In detail, the incorporation of Cu nanoparticles led to an increase of the heat capacity up to 14%. Also, thermal conductivity was increased up to 13%. Finally, the performance of the nanofluids prepared increased up to 11% according to the Dittus-Boelter correlation. On the other hand, equilibrium molecular dynamics simulation was used to model the experimental nanofluid system studied. Thermodynamic properties such as heat capacity and thermal conductivity were calculated and the results were compared with experimental data. The analysis of the radial function distributions (RDFs) and the inspection of the spatial distribution functions (SDFs) indicate the important role that plays the metal-oxygen interaction in the system. Dynamic properties such as the diffusion coefficients of base fluid and nanofluid were computed according to Einstein relation by computing the mean square displacement (MSD). Supplementary online material is available in electronic form at http://www.epjap.org

  15. High Performance Cascading Adsorption Refrigeration Cycle with Internal Heat Recovery Driven by a Low Grade Heat Source Temperature

    OpenAIRE

    Yuki Ueda; Atsushi Akisawa; Aep Saepul Uyun; Takahiko Miyazaki

    2009-01-01

    This paper presents the performance of an advanced cascading adsorption cycle that utilizes a driven heat source temperature between 90–130 ºC. The cycle consists of four beds that contain silica gel as an adsorber fill. Two of the beds work in a single stage cycle that is driven by an external heat source, while the other two beds work in a mass recovery cycle that is driven by waste heat of sensible and adsorption heat of the high temperature cycle. The performances, in terms of the coeffic...

  16. Temperature patterns in the gas infrared radiator heating area

    Directory of Open Access Journals (Sweden)

    Kurilenko N.I.

    2015-01-01

    Full Text Available The obtained results of experimental studies provide the basis for the heat transfer mechanism specification on the studied conditions that are typical for many practical applications. It was proved appropriateness of the natural convection and heat conduction process simulation while analyzing the heat transfer in rectangular enclosures with the radiant heating sources at the high bound.

  17. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is proposed for a Portable Life Support System to remove and reject heat and carbon dioxide...

  18. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    Science.gov (United States)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  19. Heat Transport in Interacting Magnetized Electron Temperature Filaments

    Science.gov (United States)

    Sydora, Richard; Karbashewski, Scott; van Compernolle, Bart; Poulos, Matt; Morales, George

    2017-10-01

    Results are presented from basic heat transport experiments and numerical simulations of multiple magnetized electron temperature filaments in close proximity. This arrangement samples cross-field transport from nonlinear drift-Alfven waves and large scale convective cells. Experiments are performed in the Large Plasma Device (LAPD) at UCLA. The setup consists of three biased CeB6 crystal cathodes that inject low energy electrons (below ionization energy) along a strong magnetic field into a pre-existing large and cold plasma forming 3 electron temperature filaments embedded in a colder plasma, and far from the machine walls. A triangular spatial pattern is chosen for the thermal sources and multiple axial and transverse probe measurements allow for determination of the cross-field mode patterns and axial filament length. We have characterized the spontaneous thermal waves and drift-Alfven waves that develop on an individual filament when a single source is activated. When the 3 sources are activated, and in close proximity, a complex wave pattern emerges due to interference of the various wave modes leading to enhanced cross-field transport and chaotic mixing. Steep thermal gradients develop in a periphery region of the filaments where higher azimuthal wavenumber drift-Alfven modes are excited. Detailed spectral analysis and comparison with nonlinear fluid and gyrokinetic simulations will be reported. Work Supported by NSERC, Canada and NSF-DOE, USA.

  20. Analysis of heat capacity and Mössbauer data for LuZnSn2 compound

    Directory of Open Access Journals (Sweden)

    Łątka Kazimierz

    2015-03-01

    Full Text Available New analysis of heat capacity data is presented for LuZnSn2 compound that takes into account anharmonic effects together with the existence of Einstein modes. 119mSn Mössbauer spectroscopy was used to monitor the hyperfine parameters at the two crystallographically inequivalent Sn sites in the studied compound. The problem of non-unique mathematical resonance spectrum description and the problem how to choose physically meaningful set of hyperfine parameters will be thoroughly discussed. Measured quadrupole interaction constants by 119mSn Mössbauer spectroscopy give estimations for Vzz component of electric field gradient tensor at both Sn sites in LuZnSn2.

  1. Lithium-ion battery structure that self-heats at low temperatures.

    Science.gov (United States)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-28

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the 'all-climate battery' cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  2. Lithium-ion battery structure that self-heats at low temperatures

    Science.gov (United States)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-01

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the ‘all-climate battery’ cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  3. Improving thermal performance of an existing UK district heat network: a case for temperature optimization

    DEFF Research Database (Denmark)

    Tunzi, Michele; Boukhanouf, Rabah; Li, Hongwei

    2018-01-01

    This paper presents results of a research study into improving energy performance of small-scale district heat network through water supply and return temperature optimization technique. The case study involves establishing the baseline heat demand of the estate’s buildings, benchmarking...... the existing heat network operating parameters, and defining the optimum supply and return temperature. A stepwise temperature optimization technique of plate radiators heat emitters was applied to control the buildings indoor thermal comfort using night set back temperature strategy of 21/18 °C....... It was established that the heat network return temperature could be lowered from the current measured average of 55 °C to 35.6 °C, resulting in overall reduction of heat distribution losses and fuel consumption of 10% and 9% respectively. Hence, the study demonstrates the potential of operating existing heat...

  4. A GPU Heterogeneous Cluster Scheduling Model for Preventing Temperature Heat Island

    Directory of Open Access Journals (Sweden)

    Cao Yun-Peng

    2017-01-01

    Full Text Available With the development of GPU general-purpose computing, GPU heterogeneous cluster has become a widely used parallel data processing solution in modern data center. Temperature management and controlling has become a new research hotspot in big data continuous computing. Temperature heat island in cluster has important influence on computing reliability and energy efficiency. In order to prevent the occurrence of GPU cluster temperature heat island, a big data task scheduling model for preventing temperature heat island was proposed. In this model, temperature, reliability and computing performance are taken into account to reduce node performance difference and improve throughput per unit time in cluster. Temperature heat islands caused by slow nodes are prevented by optimizing scheduling. The experimental results show that the proposed scheme can control node temperature and prevent the occurrence of temperature heat island under the premise of guaranteeing computing performance and reliability.

  5. Industrial heat pumps for high temperatures - a pilot project; Industrielle varmepumper for hoeje temperaturer - et forprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M. [Dansk Energi Analyse A/S, Frederiksberg (Denmark); Weel, M.; Mikkelsen, J. [Weel and Sandvig, Kgs. Lyngby (Denmark)

    2012-03-15

    This project investigates the possibility of using mass produced and inexpensive turbo compressor technology for heat pumping in the industry. The compressors are designed for the compression of air and used by the automotive industry in connection with turbo-chargers. The heat pumps are primarily intended to use water as the working medium, which in addition to having no environmental loads, is suitable for the heat pumping at temperatures above about 60 deg. C and up to about 200 deg. C, a temperature level which is considerably higher than what has previously been observed covered with heat pumping. In this project, a Danish-produced high-speed gear (Rotrex) is used, which has just been developed to said compressor technology. In cooperation with Rotrex, the modifications relevant to a standard unit were analyzed and assessed. The project identified some areas of industry where heat pumping using this technology is considered to be attractive. A pilot plant operating with steam in a total of 12 hours is demonstrated. In more than 3 hours, the pilot plant was coupled so that it delivered useful heat supply to the evaporator. The plant has during the tests worked satisfactorily, and there is no evidence of problems with leaks in the compressor shaft sealings, neither in relation to the leakage of oil or steam, which was one of the central issues to clarify with the demonstration. In the limited testing period no problems were detected that could not be immediately resolved, i.e. the transmission in the form of a belt drive with high speed from the engine to the friction gear. In the determination of the performance of the compressor during the trial operation with steam as a working medium, it is shown that the conversion efficiency are within the expected range when taking into account the uncertainties in the measurements and the calculation method. In the experiment, no measurement of steam flow through the compressor was made, because of a greatly reduced

  6. Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature

    OpenAIRE

    Oyelami, Benjamin Oyediran

    2013-01-01

    In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

  7. Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature

    Directory of Open Access Journals (Sweden)

    Oyelami, Benjamin Oyediran

    2013-09-01

    Full Text Available In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

  8. An Empirical Temperature Variance Source Model in Heated Jets

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  9. Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles

    Science.gov (United States)

    Gupta, Amit; Kane, Ravi S.; Borca-Tasciuc, Diana-Andra

    2010-09-01

    This paper describes a new technique employing fluorescent quantum dots as temperature probes for measuring the temperature rise in the proximity of nanoparticles heated by a radio frequency (rf) electromagnetic field. The remote heating of nanoparticles by an rf field is a promising approach to control biological transformations at the molecular level. In principle, the heat dissipated by each nanoparticle might produce a temperature increase in its proximity, facilitating a change in the molecules directly attached to it but not in the others. Although this method has been demonstrated to provide control over biological transformations, the proposed mechanism involves producing and maintaining large temperature differences across small distances, in the range of several degrees Celsius across tens of nanometers. Existing theories for heat generation and transfer in rf heated nanoparticle systems cannot account for these gradients. To better understand the limitations of local heating, the temperature in the vicinity of rf heated nanoparticles was measured. Dilute aqueous suspensions of gold and magnetite nanoparticles were remotely heated by an rf field between 600-800 kHz. Two systems were investigated: a control sample consisting of quantum dots mixed with nanoparticles and a solution of quantum dots covalently linked to nanoparticles. The temperature of the fluorescent probes represents the average temperature in the former and the local temperature in the later. For the experimental conditions employed in this study, the measured temperature rise in the vicinity of rf heated nanoparticles were similar to the average or "bulk" temperature, in agreement with theoretical predictions.

  10. Cryogenic Heat Load and Refrigeration Capacity Management at the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Serio, L; Tavian, L; Van Weelderen, R; Wagner, U

    2009-01-01

    The Large Hadron Collider (LHC) is a 26.7 km high-energy proton and ion collider based on several thousand high-field superconducting magnets operating in superfluid helium below 2 K, now under commissioning at CERN. After a decade of development of the key technologies, the project was approved for construction in 1994 and the industrial procurement for the cryogenic system launched in 1997, concurrently with the completion of the R&D program. This imposed to base the sizing of the refrigeration plants on estimated and partially measured values of static and dynamic heat loads, with adequate uncertainty and overcapacity coefficients to cope with unknowns in machine configuration and in physical processes at work. With the cryogenic commissioning of the complete machine, full-scale static heat loads could be measured, thus confirming the correctness of the estimates and the validity of the approach, and safeguarding excess refrigeration capacity for absorbing the beam-induced dynamic loads. The metho...

  11. Measurement uncertainties when determining heat rate, isentropic efficiency and swallowing capacity

    Energy Technology Data Exchange (ETDEWEB)

    Snygg, U.

    1996-05-01

    The objective of the project was to determine the uncertainties when calculating heat rate, isentropic efficiencies and swallowing capacities of power plants. Normally when a power plant is constructed, the supplier also guarantee some performance values, e.g. heat rate. When the plant is built and running under normal conditions, an evaluation is done and the guarantee values are checked. Different measured parameters influence the calculated value differently, and therefore a sensitivity factor can be defined as the sensitivity of a calculated value when the measured value is changing. The product of this factor and the uncertainty of the measured parameter gives an error of the calculated value. For every measured parameter, the above given factor has to be determined and then the root square sum gives the overall uncertainty of the calculated parameter. To receive acceptable data during the evaluation of the plant, a test code is to be followed. The test code also gives guidelines how big the errors of the measurements are. In this study, ASME PTC6 and DIN 1943 were used. The results show that not only the test code was of vital importance, but also the distribution of the power output of the HP-IP turbines contra LP turbines. A higher inlet pressure of the LP turbine gives a smaller uncertainty of the isentropic efficiency. An increase from 6 to 13 bar will lower the uncertainty 1.5 times. 10 refs, 24 figs, 23 tabs, 5 appendixes

  12. Change in Water-Holding Capacity in Mushroom with Temperature Analyzed by Flory-Rehner Theory

    NARCIS (Netherlands)

    Paudel, Ekaraj; Boom, R.M.; Sman, van der R.G.M.

    2015-01-01

    The change in water-holding capacity of mushroom with the temperature was interpreted using the Flory-Rehner theory for swelling of polymeric networks, extended with the Debye-Hückel theory for electrolytic interactions. The validity of these theories has been verified with independent sorption

  13. Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment

    DEFF Research Database (Denmark)

    Brand, Marek; Svendsen, Svend

    2013-01-01

    Denmark is aiming for a fossil-free heating sector for buildings by 2035. Judging by the national heating plan, this will be achieved mainly by a further spread of DH (district heating) based on the renewable heat sources. To make the most cost-effective use of these sources, the DH supply...... and, for 98% of the year, to below 60 °C. However for the temperatures below 60 °C a low-temperature DH substation is required for DHW (domestic hot water) heating. This research shows that renewable sources of heat can be integrated into the DH system without problems and contribute to the fossil...

  14. Comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia

    DEFF Research Database (Denmark)

    Sgro, Carla M.; Overgaard, Johannes; Kristensen, Torsten Nygård

    2010-01-01

    We examined latitudinal variation in adult and larval heat tolerance in Drosophila melanogaster from eastern Australia. Adults were assessed using static and ramping assays. Basal and hardened static heat knockdown time showed significant linear clines; heat tolerance increased towards the tropics......, particularly for hardened flies, suggesting that tropical populations have a greater hardening response. A similar pattern was evident for ramping heat knockdown time at 0.06 degrees C min-1 increase. There was no cline for ramping heat knockdown temperature (CTmax) at 0.1 degrees C min-1 increase. Acute...

  15. Heat capacity and density of solutions of calcium and cadmium nitrates in N-methylpyrrolidone at 298.15 K

    Science.gov (United States)

    Novikov, A. N.; Rassokhina, L. Yu.

    2013-08-01

    The heat capacity and density of solutions of calcium and cadmium nitrates in N-methylpyrrolidone (MP) at 298.15 K are studied by calorimetry and densimetry. The obtained data are discussed in relation to certain features of solvation and complex formation in solutions of these salts. The standard partial molar heat capacities and volumes (overline {C_{p^2 }^0 } and overline {V_2^0 }) of the electrolytes in MP are calculated. The standard heat capacities overline {C_{p^i }^0 } and volumes overline {V_i^0 } of Ca2+ and Cd2+ ions in MP at 298.15 K were determined, along with the contribution from specific interactions to the values of overline {C_{p^i }^0 } and overline {V_i^0 } of Cd2+ ions in MP solution.

  16. Heat capacity and density of solutions of lithium and sodium nitrates in N-methylpyrrolidone at 298.15 K

    Science.gov (United States)

    Novikov, A. N.

    2013-09-01

    The heat capacity and density of solutions of lithium and sodium nitrates in N-methylpyrrolidone (MP) at 298.15 K are studied by calorimetry and densimetry. The standard partial molar heat capacities and volumes ( C¯ p,2° and V¯ 2°) of LiNO3 and NaNO3 in MP are calculated. The standard heat capacities C¯ p,i ° and volumes V¯ i ° of Li+ and Na+ ions in MP at 298.15 K are determined on the basis of a proposed scale of ionic contributions of C¯ p,2° and V¯ 2° values. The obtained data are discussed in relation to certain features of solvation in solutions of the investigated salts.

  17. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  18. EXPERIENCE OF UTILIZATION OF CAPACITY BANKS AND SCHEMES OF FREQUENCY REGULATION IN MUNICIPAL CENTRALIZED HEATING SYSTEM OF CHISINAU

    Directory of Open Access Journals (Sweden)

    CHERNEI M

    2013-04-01

    Full Text Available The current paper provides a brief summary of the district heating system of the municipality Chisinau, including heat power sources, heat distribution network, production and consumption development over the past two decades and other data. Also, the priority investment projects realized by JSC "Termocom" are being presented. The company had implemented an automated monitoring system for the heat power production, transportation and distribution. For many years, the company used bellows pipes with polyurethane insulation, ball valves and plate heat exchangers. 14 out of 21 district heating boiler stations were upgraded 10 were completely automated having as a result no further need in full-time duty personnel there. The experience gained in the implementation of capacity banks and frequency inverters, summarizing the benefits and achieved results, is also presented in the current paper. It is to be underlined that in 2011 the company achieved decrease in electricity consumption by about 30% in comparison with 2005.

  19. Experimental study of temperature distribution in rubber material during microwave heating and vulcanization process

    Science.gov (United States)

    Chen, Hai-Long; Li, Tao; Liang, Yun; Sun, Bin; Li, Qing-Ling

    2017-03-01

    Microwave technology has been employed to heat sheet rubber, the optical fiber temperature online monitor and optical fiber temperature sensor have been employed to measure the temperature in sheet rubber. The temperature of sheet rubber increased with increase of heating time during microwave heating process in which the maximum of temperature was vulcanization process in which the maximum of temperature was vulcanization process of sheet rubber, the maximum of rate of temperature rising and the maximum of temperature belong to the central zone of sheet rubber, so the distribution of electric field was uneven in heating chamber, which led to the uneven temperature distribution of sheet rubber. The higher electric field intensity value converges on the central zone of sheet rubber.

  20. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, J.T. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  1. Thermodynamics of aqueous uranyl ion: Apparent and partial molar heat capacities and volumes of aqueous uranyl perchlorate from 10 to 55°C

    Science.gov (United States)

    Hovey, Jamey K.; Nguyen-Trung, Chinh; Tremaine, Peter R.

    1989-07-01

    Apparent molar heat capacities and volumes of aqueous solutions containing UO2(ClO4)2 in dilute (≈0.06 molal) HClO4 have been determined from 10 to 55°C. These results have been analyzed using Young's rule to obtain apparent molar volumes and heat capacities for the solute UO2(ClO42). The temperature dependences of the conventional standard-state heat capacity and volume functions for UO22+ (aq) are well represented by the following equations: V¯°/cm(30 mo1P-1) -80.94 + 0.6091 T - 0.001063T2 andC¯/p0/(J K-1 mol-1) = 350.5 - 0.8722T - 5308/T -90) that are valid from 10 to 55°C. These results differ substantially from results of earlier measurements employing different uranyl salts. These differences are likely due to the presence of ion-paired or hydrolyzed U (VI) species in the earlier studies.

  2. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  3. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  4. Negative heat capacity in the critical region of nuclear fragmentation: an experimental evidence of the liquid-gas phase transition

    Science.gov (United States)

    D'Agostino, M.; Gulminelli, F.; Chomaz, P.; Bruno, M.; Cannata, F.; Bougault, R.; Gramegna, F.; Iori, I.; Le Neindre, N.; Margagliotti, G. V.; Moroni, A.; Vannini, G.

    2000-02-01

    An experimental indication of negative heat capacity in excited nuclear systems is inferred from the event by event study of energy fluctuations in Au quasi-projectile sources formed in Au+Au collisions at 35 A.MeV. Equilibrated events are selected and the excited source configuration is reconstructed through a calorimetric analysis of its de-excitation products. Fragment partitions show signs of a critical behavior at about 4.5 A.MeV excitation energy. Around this value the heat capacity shows a negative branch providing a direct evidence of a first order liquid gas phase transition.

  5. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

    Science.gov (United States)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex

    2018-01-01

    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100–250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150–750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070–2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  6. Diurnal variability of upper ocean temperature and heat budget in ...

    Indian Academy of Sciences (India)

    On the other hand, during the fair weather conditions, at the central and northern locations, the upper layer gained heat energy, while the sea surface lost (gained) heat energy at northern (central) location. This and lower values of eddy diffusivity coefficient of heat (0.0045 and 0.0150m2/s) and the northward intensification ...

  7. RECUPERATOR FOR HIGH-TEMPERATURE HEATING OF BLOWING

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2011-01-01

    Full Text Available Heat recovery is an effective method of shortening specific energy consumption. New constructions of recuperators for heating and cupola furnaces have been designed and successfully introduced. Two-stage recuperator with computer control providing blast heating up to 600 °C and reducing fuel consumption by 30% is of special interest.

  8. Differential tolerance capacity to unfavourable low and high temperatures between two invasive whiteflies.

    Science.gov (United States)

    Xiao, Na; Pan, Li-Long; Zhang, Chang-Rong; Shan, Hong-Wei; Liu, Shu-Sheng

    2016-04-15

    Thermal response and tolerance to ambient temperature play important roles in determining the geographic distribution and seasonal abundance of insects. We examined the survival and performance, as well as expression of three heat shock protein related genes, of two species of invasive whiteflies, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), of the Bemisia tabaci species complex following exposure to a range of low and high temperatures. Our data demonstrated that the MED species was more tolerant to high temperatures than the MEAM1 species, especially in the adult stage, and this difference in thermal responses may be related to the heat shock protein related genes hsp90 and hsp70. These findings may assist in understanding and predicting the distribution and abundance of the two invasive whiteflies in the field.

  9. Basal metabolic rate, maximum thermogenic capacity and aerobic scope in rodents: interaction between environmental temperature and torpor use.

    Science.gov (United States)

    Careau, Vincent

    2013-04-23

    When torpid animals arouse and warm up to restore normal body temperature (T(b)), they produce heat at levels that can reach up to 10 times basal metabolic rate (BMR), close to the cold-induced summit metabolism (VO(2)-sum). Because torpor is an adaptation aimed at conserving energy over periods of low ambient temperature (T(a)) and food availability, selective forces that have led to the evolution of torpor may have simultaneously favoured high thermogenic capacity (i.e. VO(2)-sum) relative to the maintenance costs (i.e. BMR), hence a higher factorial aerobic scope (FAS; the ratio of VO(2)-sum to BMR). My objective was to test this adaptive hypothesis using a phylogenetically informed comparative approach with data on BMR and VO(2)-sum in rodents. I found a strong negative correlation between FAS and the average of the daily minimum T(a) (T(min)) in species using torpor, which was due to differential effects of T(a) on BMR (but not VO(2)-sum) in species that use torpor compared with species that do not. In addition, FAS was negatively correlated with the lowest torpid T(b) in a subset of nine species. These results suggest that in species using torpor, selective forces may have acted to maximize the efficiency of thermogenic capacity (VO(2)-sum) relative to maintenance costs (BMR), resulting in an increasing FAS with decreasing T(a).

  10. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...... biological and chemical oxidation processes and heat source depletion over time. Inputs to the model are meteorological measurements, physical properties of the waste rock material and measured subsurface heat-production rates. Measured mean annual subsurface temperatures within the waste rock pile are up...

  11. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    Science.gov (United States)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  12. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  13. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  14. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Science.gov (United States)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  15. Analysis of the Potential of Low-Temperature Heat Pump Energy Sources

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2017-11-01

    Full Text Available The paper deals with an analysis of temperatures of ground masses in the proximities of linear and slinky-type HGHE (horizontal ground heat exchanger. It evaluates and compares the potentials of HGHEs and ambient air. The reason and aim of the verification was to gain knowledge of the temperature course of the monitored low-temperature heat pump energy sources during heating periods and periods of stagnation and to analyse the knowledge in terms of the potential to use those sources for heat pumps. The study was conducted in the years 2012–2015 during three heating periods and three periods of HGHEs stagnation. The results revealed that linear HGHE had the highest temperature potential of the observed low-temperature heat pump energy sources. The average daily temperatures of the ground mass surrounding the linear HGHE were the highest ranging from 7.08 °C to 9.20 °C during the heating periods, and having the lowest temperature variation range of 12.62–15.14 K, the relative frequency of the average daily temperatures of the ground mass being the highest at 22.64% in the temperature range containing the mode of all monitored temperatures in a recorded interval of [4.10, 6.00] °C. Ambient air had lower temperature potential than the monitored HGHEs.

  16. HIGH-TEMPERATURE STERILIZATION OF TINNED COMPOTE FROM PEARS IN THE STREAM OF HEATED AIR WITH PRELIMINARY HEATING OF FRUITS IN EMP OF THE MICROWAVE OVEN

    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova

    2014-01-01

    Full Text Available In work results of researches on improvement of technological process of production of tinned compote from pears with use of EMP microwave oven and high-temperature sterilization are presented.On the basis of the conducted pilot researches and with use of mathematical planning the approximation equation for determination of reference temperature of a product in bank before sterilization (T, °C, depending on three factors is received: container volume (V, k, microwave heating capacities (Р, kW and processing durations (t, c:New modes of high-temperature sterilization of compote from pears in various container are developed and offered.

  17. Heat capacity studies of single-crystalline CePt{sub 4}In

    Energy Technology Data Exchange (ETDEWEB)

    Pikul, A.P. [Polish Academy of Sciences, Institute of Low Temperature and Structure Research, P Nr 1410, 50-950 Wroclaw 2 (Poland); Max Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, 01187 Dresden (Germany)], E-mail: A.Pikul@int.pan.wroc.pl; Kaczorowski, D.; Bukowski, Z. [Polish Academy of Sciences, Institute of Low Temperature and Structure Research, P Nr 1410, 50-950 Wroclaw 2 (Poland); Steglich, F. [Max Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, 01187 Dresden (Germany)

    2008-04-01

    Single crystals of CePt{sub 4}In have been studied by means of specific heat measurements performed at low temperatures (down to 60 mK) and in high magnetic fields (up to 9 T). In zero magnetic field the {delta}C/T ratio strongly increases with decreasing temperature down to about 250 mK, where a broad maximum ({approx}1.75Jmol{sup -1}K{sup -2}) occurs. At lower temperatures {delta}C/T slightly diminishes and finally saturates at a value of about 1.7Jmol{sup -1}K{sup -2}. Upon applying magnetic field the maximum in {delta}C/T(T) disappears (it is not visible already in 0.5 T) and the magnitude of {delta}C/T becomes significantly lower. We argue that the observed anomaly in {delta}C(T)/T is due to some magnetic ordering of the cerium magnetic moments, in line with our previous statement on the localized character of the 4f-electrons in this compound.

  18. Mathematical Simulation of Heat Transfer in Heterogenous Forest Fuel Layer Influenced by Heated Up to High Temperatures Steel Particle

    Directory of Open Access Journals (Sweden)

    Baranovskiy Nikolay V.

    2014-01-01

    Full Text Available Heterogeneity of forest fuel layer renders the important influence on forest fire occurrence processes. One of sources of the raised temperature on forested territories is metal particles heated up to high temperatures. Such particles can be formed as a result of welding of metals on forested territories. The present paper represents the heat transfer research in forest fuel at the influence of metal particle heated up to high temperatures. The heterogonous forest fuel layer with inclusions of small wooden branches and chips is considered. Such object research is urgent especially at fire forecasting on forest cutting. The technology of mathematical simulation is used. The two-dimensional problem of heat transfer in forest fuel layer structure with wood inclusions is solved.

  19. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants

    Directory of Open Access Journals (Sweden)

    Pezzotti Mario

    2011-07-01

    Full Text Available Abstract Background Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many crop plants. Tolerance to such a stress can be achieved by constitutive gene expression or by rapid changes in gene expression, which ultimately leads to protection against thermal damage. We have used cDNA-AFLP and microarray analyses to compare the early response of the tomato meiotic anther transcriptome to moderate heat stress conditions (32°C in a heat-tolerant and a heat-sensitive tomato genotype. In the light of the expected global temperature increases, elucidating such protective mechanisms and identifying candidate tolerance genes can be used to improve breeding strategies for crop tolerance to heat stress. Results The cDNA-AFLP analysis shows that 30 h of moderate heat stress (MHS alter the expression of approximately 1% of the studied transcript-derived fragments in a heat-sensitive genotype. The major effect is gene down-regulation after the first 2 h of stress. The microarray analysis subsequently applied to elucidate early responses of a heat-tolerant and a heat-sensitive tomato genotype, also shows about 1% of the genes having significant changes in expression after the 2 h of stress. The tolerant genotype not only reacts with moderate transcriptomic changes but also exhibits constitutively higher expression levels of genes involved in protection and thermotolerance. Conclusion In contrast to the heat-sensitive genotype, the heat-tolerant genotype exhibits moderate transcriptional changes under moderate heat stress. Moreover, the heat-tolerant genotype also shows a different constitutive gene expression profile compared to the heat-sensitive genotype, indicating genetic differences in adaptation to increased temperatures. In

  20. Adjusting temperatures to heating needs in rooms equipped with heating floors; Ajuster les temperatures aux besoins dans les locaux equipes de planchers chauffants

    Energy Technology Data Exchange (ETDEWEB)

    Didier, G.

    2003-03-01

    The water temperature at the input of a heating floor grid can vary for several reasons. The lack of a balancing system or a bad adjustment can lead to a variation of the flow rate in the loops. These two criteria which control the thermal-hydraulic equilibrium of a room can also disturb the thermal comfort of the occupants (lack of heating, overheating, flow noise etc..). This technical paper analyzes numerically the impacts of water temperature and flow rate changes on the thermal-hydraulic behaviour of a heating floor. (J.S.)

  1. Direct experimental evidence for a negative heat capacity in the liquid-to-gas like phase transition in hydrogen cluster ions backbending of the caloric curve

    CERN Document Server

    Gobet, F; Carré, M; Farizon, B; Farizon, M; Gaillard, M J; Maerk, T D; Scheier, P

    2002-01-01

    By (i) selecting specific decay reactions in high energy collisions (60 keV/amu) of hydrogen cluster ions with a helium target (utilizing event-by-event data of a recently developed multi-coincidence experiment) and by (ii) deriving corresponding temperatures for these microcanonical cluster ensembles (analyzing the respective fragment distributions) we are able to construct caloric curves for ii sub 3 sup + (ii sub 2) sub m cluster ions (6 <= m <= 14). All individual curves and the mean of these curves show a backbending in the plateau region thus constituting direct evidence for a negative microcanonical heat capacity in the liquid-to-gas like transition of these finite systems.

  2. Heat exchanger temperature response for duty-cycle transients in the NGNP/HTE.

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Nuclear Engineering Division

    2009-03-12

    Control system studies were performed for the Next Generation Nuclear Plant (NGNP) interfaced to the High Temperature Electrolysis (HTE) plant. Temperature change and associated thermal stresses are important factors in determining plant lifetime. In the NGNP the design objective of a 40 year lifetime for the Intermediate Heat Exchanger (IHX) in particular is seen as a challenge. A control system was designed to minimize temperature changes in the IHX and more generally at all high-temperature locations in the plant for duty-cycle transients. In the NGNP this includes structures at the reactor outlet and at the inlet to the turbine. This problem was approached by identifying those high-level factors that determine temperature rates of change. First are the set of duty cycle transients over which the control engineer has little control but which none-the-less must be addressed. Second is the partitioning of the temperature response into a quasi-static component and a transient component. These two components are largely independent of each other and when addressed as such greater understanding of temperature change mechanisms and how to deal with them is achieved. Third is the manner in which energy and mass flow rates are managed. Generally one aims for a temperature distribution that minimizes spatial non-uniformity of thermal expansion in a component with time. This is can be achieved by maintaining a fixed spatial temperature distribution in a component during transients. A general rule of thumb for heat exchangers is to maintain flow rate proportional to thermal power. Additionally the product of instantaneous flow rate and heat capacity should be maintained the same on both sides of the heat exchanger. Fourth inherent mechanisms for stable behavior should not be compromised by active controllers that can introduce new feedback paths and potentially create under-damped response. Applications of these principles to the development of a plant control strategy for

  3. Investigation on medium temperature heat pipe receiver used in parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Dongdong; Zhang, Hong; Liu, Yun; Li, Sihai; Zhuang, Jun [Nanjing Univ. of Technology (China). Inst. of Thermal Energy Engineering

    2008-07-01

    In this paper, a novel medium temperature (250{proportional_to}500 C) heat pipe receiver was developed for parabolic trough solar collector and the feasibility study on the receiver was carried out. The lifetime analysis, thermal analysis and economic analysis of the heat pipe receiver were presented. The result showed that the heat pipe receiver was flexible, easily maintained, low manufacture cost and could be working reliability in the temperature and heat flux conditions of parabolic trough solar collector with a high heat collect efficiency. (orig.)

  4. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the a.......03 kg NOx per heating square meter for a typical case in Harbin.......A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance...... with the actual heat demand. This results in 15-30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance...

  5. Thermoregulation During Extended Exercise in the Heat: Comparisons of Fluid Volume and Temperature.

    Science.gov (United States)

    Hailes, Walter S; Cuddy, John S; Cochrane, Kyle; Ruby, Brent C

    2016-09-01

    This study aimed to determine the physiological and thermoregulatory responses of individuals exercising in the heat (US military red flag conditions, wet-bulb globe temperature 31.5-32.2ºC) while consuming varied volumes of ambient temperature water and ice slurry. Participants (N = 12) walked on a treadmill for 3 hours at approximately 40% peak aerobic capacity in a hot environment while consuming ambient temperature (35.5°C) water (W), ice slurry (0°C, two-thirds shaved ice and one-third water) at a ratio of 2 g·kg(-1) body mass every 10 minutes (FS), and reduced volume ice slurry as described at a rate of 1 g·kg(-1) body mass every 10 minutes (HS). Trials were completed at least 14 days apart, in a randomized, repeated measures design. Percent body weight loss was higher during the HS trial (1.8 ± 0.01%) compared with FS (0.5 ± 0.01%; P thermoregulation and other physiological responses for extended work in hot environments. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  6. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  7. Effect of crystallinity and irradiation on thermal properties and specific heat capacity of LDPE and LDPE/EVA

    Energy Technology Data Exchange (ETDEWEB)

    Borhani zarandi, Mahmoud, E-mail: mborhani@yazduni.ac.ir [Physics Department, Yazd University, Yazd (Iran, Islamic Republic of); Amrollahi Bioki, Hojjat; Mirbagheri, Zahra-alsadat [Physics Department, Yazd University, Yazd (Iran, Islamic Republic of); Tabbakh, Farshid [Institute of Nuclear Science and Technology, Tehran (Iran, Islamic Republic of); Mirjalili, Ghazanfar [Physics Department, Yazd University, Yazd (Iran, Islamic Republic of)

    2012-01-15

    In this paper a series of low-density polyethylene (LDPE) blends with different percentages (10%, 20%, and 30%) of EVA and sets of low-density polyethylene sheets were prepared. This set consists of four subsets, which were made under different cooling methods: fast cooling in liquid nitrogen, cooling with cassette, exposing in open air, and cooling in oven, to investigate the crystallinity effects. All of the samples were irradiated with 10 MeV electron-beam in the dose range of 0-250 kGy using a Rhodotron accelerator system. The variation of thermal conductivity (k) and specific heat capacity (C{sub p}) of all of the samples were measured. We found that, for the absorption dose less than 150 kGy, k of the LDPE samples at a prescribed temperature range decreased by increasing the amount of dose, but then the change is insignificant. With increasing the crystallinity, k of the LDPE samples increased, whereas C{sub p} of this material is decreased. In the case of LDPE/EVA blends, for the dose less than 150 kGy, C{sub p} (at 40 Degree-Sign C) and k (in average) decreased, but then the change is insignificant. With increasing the amount of additive (EVA), C{sub p} and k increased.

  8. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature.

    Science.gov (United States)

    Millward, Andrew R; Yaghi, Omar M

    2005-12-28

    Metal-organic frameworks (MOFs) show high CO2 storage capacity at room temperature. Gravimetric CO2 isotherms for MOF-2, MOF-505, Cu3(BTC)2, MOF-74, IRMOFs-11, -3, -6, and -1, and MOF-177 are reported up to 42 bar. Type I isotherms are found in all cases except for MOFs based on Zn4O(O2C)6 clusters, which reveal a sigmoidal isotherm (having a step). The various pressures of the isotherm steps correlate with increasing pore size, which indicates potential for gas separations. The amine functionality of the IRMOF-3 pore shows evidence of relatively increased affinity for CO2. Capacities qualitatively scale with surface area and range from 3.2 mmol/g for MOF-2 to 33.5 mmol/g (320 cm3(STP)/cm3, 147 wt %) for MOF-177, the highest CO2 capacity of any porous material reported.

  9. Biomass Pyrolysis: Comments on Some Sources of Confusions in the Definitions of Temperatures and Heating Rates

    Directory of Open Access Journals (Sweden)

    Jacques Lédé

    2010-04-01

    Full Text Available Biomass pyrolysis is usually characterized on the basis of temperature and heating rate. Unfortunately, these parameters are badly defined in processing reactors as well as in laboratory devices. From the results of simplified models, the present paper points out the significant mistakes that can be made when assuming that the actual temperature and heating rate of reacting biomass particles are the same as those of the external heating medium. The difficulties in defining these two parameters are underlined in both cases of a heat source temperature supposed to be constant or to increase with time.

  10. Identifying the optimal supply temperature in district heating networks - A modelling approach

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2014-01-01

    The number of low-energy and energy renovated buildings with considerably low heating demand has been continuously increasing in recent years. Combined with utilizing low temperature sources, this development raises the necessity of introducing a new generation of District Heating [DH] Systems...... of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...

  11. Note: Heated sample platform for in situ temperature-programmed XPS.

    Science.gov (United States)

    Samokhvalov, Alexander; Tatarchuk, Bruce J

    2011-07-01

    We present the design, fabrication, and performance of the multi-specimen heated platform for linear in situ heating during the Temperature-Programmed XPS (TPXPS). The platform is versatile, compatible with high vacuum (HV) and bakeout. The heater platform is tested under in situ linear heating of typical high surface area sorbent∕catalyst support--nanoporous TiO(2). The platform allows the TPXPS of multiple samples located on specimen disk that can be transferred in and out of the TPXPS chamber. Electric characteristics, temperature and pressure curves are provided. Heating power supply, PID temperature controller, data-logging hardware and software are described.

  12. Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davis, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).

  13. Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity

    NARCIS (Netherlands)

    Voort, van der M.; Abee, T.

    2013-01-01

    Aim Heat resistance, germination and outgrowth capacity of Bacillus cereus spores in processed foods are major factors in causing the emetic type of gastrointestinal disease. In this study, we aim to identify the impact of different sporulation conditions on spore properties of emetic

  14. Influence of heating rate on sorbitic transformation temperature of tempering C45 steel

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2011-04-01

    Full Text Available In this paper the analysis of speed heating influence on sorbitic transormation temperature of tempering C45 steel is presented. On thebasis of dilatometric research, functions associating heating time with initial and final temperature of sorbitic transformation have beendetermined as well as the size structural (γ and thermal (α expansion coefficients of quenching and tempering structures have beenestimated.

  15. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  16. Improving efficiency of heat pumps by use of zeotropic mixtures for different temperature glides

    DEFF Research Database (Denmark)

    Zühlsdorf, Benjamin; Jensen, Jonas Kjær; Cignitti, Stefano

    2017-01-01

    The present study demonstrates the optimization of a heat pump for an application with a large temperature glide on the sink and a smaller temperature glide on the source side. The study includes a simulation of a heat pump cycle for all possible binary mixtures from a list of 14 natural...

  17. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  18. The Expression of Carnosine and Its Effect on the Antioxidant Capacity of Muscle in Finishing Pigs Exposed to Constant Heat Stress

    Directory of Open Access Journals (Sweden)

    Peige Yang

    2014-12-01

    Full Text Available The objective of this study was to assess the effects of constant high ambient temperatures on meat quality, antioxidant capacity, and carnosine expression in longissimus dorsi muscle of finishing pigs. Castrated 24 male DLY (crossbreeds between Landrace×Yorkshire sows and Duroc boars pigs were allocated to one of three treatments: constant ambient temperature at 22°C and ad libitum feeding (CON, n = 8; constant high ambient temperature at 30°C and ad libitum feeding (H30, n = 8; and constant ambient temperature at 22°C and pair-fed with H30 (PF, n = 8. Meat quality, malondialdehyde (MDA content, antioxidant capacity, carnosine content, and carnosine synthetase (CARNS1 mRNA expression in longissimus dorsi muscle were measured after three weeks. The results revealed that H30 had lower pH24 h, redness at 45 min, and yellowness at 24 h post-mortem (p<0.05, and higher drip loss at 48 h and lightness at 24 h post-mortem (p<0.01. Constant heat stress disrupted the pro-oxidant/antioxidant balance in longissimus dorsi muscle with higher MDA content (p<0.01 and lower antioxidant capacity (p<0.01. Carnosine content and CARNS1 mRNA expression in longissimus dorsi muscle of H30 pigs were significantly decreased (p<0.01 after three weeks at 30°C. In conclusion, constant high ambient temperatures affect meat quality and antioxidant capacity negatively, and the reduction of muscle carnosine content is one of the probable reasons.

  19. Design and modelling of a novel compact power cycle for low temperature heat sources

    DEFF Research Database (Denmark)

    Wronski, Jorrit; Skovrup, Morten Juel; Elmegaard, Brian

    2012-01-01

    Power cycles for the efficient use of low temperature heat sources experience increasing attention. This paper describes an alternative cycle design that offers potential advantages in terms of heat source exploitation. A concept for a reciprocating expander is presented that performs both, work...... calculation results for use with a steady state cycle evaluation. An organic Rankine cycle model is developed and used for a comparison. The performance of the expander itself and the different requirements regarding heat source and temperature levels are studied....

  20. Demonstration of Mg2FeH6 as heat storage material at temperatures up to 550 °C

    Science.gov (United States)

    Urbanczyk, R.; Meggouh, M.; Moury, R.; Peinecke, K.; Peil, S.; Felderhoff, M.

    2016-04-01

    The storage of heat at high temperatures, which can be used to generate electricity after sunset in concentrating solar power plants, is one of the most challenging technologies. The use of metal hydride could be one possibility to solve the problem. During the endothermic heat storage process, the metal hydride is decomposed releasing hydrogen, which then can be stored. During the exothermic reaction of the metal with the hydrogen gas, the stored heat is then released. Previous research had shown that Mg and Fe powders can be used at temperatures up to 550 °C for heat storage and shows excellent cycle stability over hundreds of cycles without any degradation. Here, we describe the results of testing of a tube storage tank that contained 211 g of Mg and Fe powders in 2:1 ratio. Twenty-three dehydrogenations (storage) and 23 hydrogenations (heat release) in the temperature range between of 395 and 515 °C and pressure range between 1.5 and 8.6 MPa were done. During the dehydrogenation, 0.41-0.42 kWhth kg-1 of heat based on material 2 Mg/Fe can be stored in the tank. After testing, mainly Mg2FeH6 was observed and small amounts of MgH2 and Fe metal can be detected in the hydride samples. This means that the heat storage capacity of the system could be further increased if only Mg2FeH6 is produced during subsequent cycles.

  1. SURVIVAL CAPACITY OF Arcobacter butzleri INOCULATED IN POULTRY MEAT AT TWO DIFFERENT REFRIGERATION TEMPERATURES

    OpenAIRE

    Yanán BADILLA-RAMÍREZ; FALLAS-PADILLA, Karolina L.; Heriberto FERNÁNDEZ-JARAMILLO; ARIAS-ECHANDI,María Laura

    2016-01-01

    Arcobacter spp. are emerging enteropathogens and potential zoonotic agents that can be transmitted by food and water, being considered a public health risk. The high isolation rate of these bacteria from poultry products suggests that it may be a major source of human infections. One hallmark for differentiating the genus Arcobacter fromCampylobacter includes their growing capacity at low temperatures (15-30 °C) under aerobic conditions. However, little is known about the population density v...

  2. Vase life and rehydration capacity of dry-stored gladiolus flowers at low temperature

    Directory of Open Access Journals (Sweden)

    Lucas Cavalcante da Costa

    Full Text Available ABSTRACT: Normally, it is not recommended the conditioning of gladiolus stems in water during storage or transport. Hydration of petals may accelerate flower opening, even at a low temperature, which compromises quality at marketing moment. However, for this species, neither the effect of prolonged dry cold storage nor its behavior when transferred to water at room temperature has been evaluated. The present study aimed to evaluate the vase life and the rehydration capacity of gladiolus flowers ( Gladiolus grandiflora Hort. after dry storage at low temperature. Flower stems of cultivars Blue Frost, Gold Field, Traderhorn, and Jester were dry-stored at a temperature of 5 ± 1 ºC and relative humidity of 85% for 12, 24, 36, and 48h. Control stems remained always in deionized water. After storage, they were returned to the water at room temperature and evaluated for vase life (adopting the discard criterion when 50% of the basal flowers displayed loss of color and wilting, fresh weight change (%, water uptake rate and transpiration rate, as well as relative water content of the petals (%. In dry cold storage conditions, for up to 36h, the vase life was not affected although incomplete rehydration of the flowers. Rehydration capacity of the stem is linked to the staggered opening of flowers along the inflorescence.

  3. SURVIVAL CAPACITY OF Arcobacter butzleri INOCULATED IN POULTRY MEAT AT TWO DIFFERENT REFRIGERATION TEMPERATURES.

    Science.gov (United States)

    Badilla-Ramírez, Yanán; Fallas-Padilla, Karolina L; Fernández-Jaramillo, Heriberto; Arias-Echandi, María Laura

    2016-01-01

    Arcobacter spp. are emerging enteropathogens and potential zoonotic agents that can be transmitted by food and water, being considered a public health risk. The high isolation rate of these bacteria from poultry products suggests that it may be a major source of human infections. One hallmark for differentiating the genus Arcobacter from Campylobacter includes their growing capacity at low temperatures (15-30 °C) under aerobic conditions. However, little is known about the population density variation of these bacteria at different refrigeration temperatures. The aim of this study was to determine the survival behavior of two different Arcobacter butzleri concentrations (10(4) CFU/mL and 10(7) CFU/mL) inoculated on chicken legs and held at two different refrigeration temperatures (4 and 10 °C) throughout storage time. Results have shown that A. butzleri had growing capacity both at 4 and 10 °C. No statistical difference between the survival trends was found for both bacterial concentrations and temperatures tested. This study shows that A. butzleri is a robust species with regard to storage temperature, and represents a potential health risk for poultry meat consumers.

  4. SURVIVAL CAPACITY OF Arcobacter butzleri INOCULATED IN POULTRY MEAT AT TWO DIFFERENT REFRIGERATION TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Yanán BADILLA-RAMÍREZ

    2016-01-01

    Full Text Available Arcobacter spp. are emerging enteropathogens and potential zoonotic agents that can be transmitted by food and water, being considered a public health risk. The high isolation rate of these bacteria from poultry products suggests that it may be a major source of human infections. One hallmark for differentiating the genus Arcobacter fromCampylobacter includes their growing capacity at low temperatures (15-30 °C under aerobic conditions. However, little is known about the population density variation of these bacteria at different refrigeration temperatures. The aim of this study was to determine the survival behavior of two different Arcobacter butzleri concentrations (104 CFU/mL and 107 CFU/mL inoculated on chicken legs and held at two different refrigeration temperatures (4 and 10 °C throughout storage time. Results have shown that A. butzleri had growing capacity both at 4 and 10 °C. No statistical difference between the survival trends was found for both bacterial concentrations and temperatures tested. This study shows that A. butzleri is a robust species with regard to storage temperature, and represents a potential health risk for poultry meat consumers.

  5. The use of ESR technique for assessment of heating temperatures of archaeological lentil samples

    Science.gov (United States)

    Aydaş, Canan; Engin, Birol; Dönmez, Emel Oybak; Belli, Oktay

    2010-01-01

    Heat-induced paramagnetic centers in modern and archaeological lentils ( Lens culinaris, Medik.) were studied by X-band (9.3 GHz) electron spin resonance (ESR) technique. The modern red lentil samples were heated in an electrical furnace at increasing temperatures in the range 70-500 °C. The ESR spectral parameters (the intensity, g-value and peak-to-peak line width) of the heat-induced organic radicals were investigated for modern red lentil ( Lens culinaris, Medik.) samples. The obtained ESR spectra indicate that the relative number of heat-induced paramagnetic species and peak-to-peak line widths depends on the temperature and heating time of the modern lentil. The g-values also depend on the heating temperature but not heating time. Heated modern red lentils produced a range of organic radicals with g-values from g = 2.0062 to 2.0035. ESR signals of carbonised archaeological lentil samples from two archaeological deposits of the Van province in Turkey were studied and g-values, peak-to-peak line widths, intensities and elemental compositions were compared with those obtained for modern samples in order to assess at which temperature these archaeological lentils were heated in prehistoric sites. The maximum temperatures of the previous heating of carbonised UA5 and Y11 lentil seeds are as follows about 500 °C and above 500 °C, respectively.

  6. Organic Thiocarboxylate Electrodes for a Room-Temperature Sodium-Ion Battery Delivering an Ultrahigh Capacity.

    Science.gov (United States)

    Zhao, Hongyang; Wang, Jianwei; Zheng, Yuheng; Li, Ju; Han, Xiaogang; He, Gang; Du, Yaping

    2017-10-05

    Organic room-temperature sodium-ion battery electrodes with carboxylate and carbonyl groups have been widely studied. Herein, for the first time, we report a family of sodium-ion battery electrodes obtained by replacing stepwise the oxygen atoms with sulfur atoms in the carboxylate groups of sodium terephthalate which improves electron delocalization, electrical conductivity and sodium uptake capacity. The versatile strategy based on molecular engineering greatly enhances the specific capacity of organic electrodes with the same carbon scaffold. By introducing two sulfur atoms to a single carboxylate scaffold, the molecular solid reaches a reversible capacity of 466 mAh g(-1) at a current density of 50 mA g(-1) . When four sulfur atoms are introduced, the capacity increases to 567 mAh g(-1) at a current density of 50 mA g(-1) , which is the highest capacity value reported for organic sodium-ion battery anodes until now. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Implementation of Fuzzy Logic Based Temperature-Controlled Heat ...

    African Journals Online (AJOL)

    This paper discusses the performance analysis of a heat exchanger using simulations for an Adaptive Network based Fuzzy Inference System toolbox developed with MATLAB. The plant transfer function is derived based on process reaction curve obtained from a heat exchanger pilot plant and then the model is used to ...

  8. Exergy and Energy Analysis of Low Temperature District Heating Network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    . The network thermal and hydraulic conditions were simulated under steady state with an in-house district heating network design and simulation code. Through simulation, the overall system energetic and exergetic efficiencies were calculated and the exergy losses for the major district heating system...

  9. TEMPERATURE DISTRIBUTION MONITORING AND ANALYSES AT DIFFERENT HEATING CONTROL PRINCIPLES

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten; Olesen, Bjarne W.

    2010-01-01

    control sensor which was already installed. The room was heated by means of electrical radiators, which should be able to control the indoor environment to guarantee the desired thermal conditions for the occupants and to supply heat according to desired load patterns. Five series of experiments were done...

  10. Overcoming heat shock protein inhibition at critical temperature vital ...

    African Journals Online (AJOL)

    Bengyella

    2012-06-12

    Jun 12, 2012 ... Conclusion. The ability to rapidly escape heat mediated HSPs inhibition at the onset of severe heat-stress is crucial for survival in potato. This potential can serve as a selection criterion for breeding primal varieties and generating thermo tolerant genotypes adaptable to the estimated mean global warming ...

  11. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2015-01-01

    In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed...... that the maximum differences between the calculated surface temperature and heat transfer using the proposed model and the measured data were 0.8 ºC and 8.1 W/m2 for radiant floor heating system when average water temperature between 40 ºC and 60 ºC. For the corresponding values were 0.3 ºC and 2.0 W/m2...... for radiant floor cooling systems when average water temperature between 10 ºC and 20 ºC. Numerically simulated data in this study were also used to validate the proposed model. The results showed that the surface temperature and heat transfer of radiant floor calculated by the proposed model agreed very well...

  12. Intermediate Temperature Fluids for Heat Pipes and Loop Heat Pipes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop heat pipe and loop heat pipe (LHP) working fluids for what is known as the intermediate...

  13. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    Science.gov (United States)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  14. Experimental investigation of stabilization of flowing water temperature with a water-PCM heat exchanger

    Directory of Open Access Journals (Sweden)

    Charvat Pavel

    2014-03-01

    Full Text Available Experiments have been carried out in order to investigate the stabilization of water temperature with a water-PCM heat exchanger. The water-PCM heat exchanger was of a rather simple design. It was a round tube, through which the water flowed, surrounded with an annular layer of PCM. The heat exchanger was divided into one meter long segments (modules and the water temperature was monitored at the outlet of each of the segments. A paraffin-based PCM with the melting temperature of 42 °C was used in the experiments. The experimental set-up consisted of two water reservoirs kept at different temperatures, the water-PCM heat exchanger, PC controlled valves and a data acquisition system. As the first step a response to a step change in the water temperature at the inlet of the heat exchanger was investigated. Subsequently, a series of experiments with a square wave change of temperature at the inlet of the exchanger were carried out. The square wave temperature profile was achieved by periodic switching between the two water reservoirs. Several amplitudes and periods of temperature square wave were used. The results of experiments show that a water-PCM heat exchanger can effectively be used to stabilize the flowing water temperature when the inlet temperature changes are around the melting range of the PCM.

  15. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential.

    Directory of Open Access Journals (Sweden)

    Jing Liu-Helmersson

    Full Text Available Dengue is a mosquito-borne viral disease that occurs mainly in the tropics and subtropics but has a high potential to spread to new areas. Dengue infections are climate sensitive, so it is important to better understand how changing climate factors affect the potential for geographic spread and future dengue epidemics. Vectorial capacity (VC describes a vector's propensity to transmit dengue taking into account human, virus, and vector interactions. VC is highly temperature dependent, but most dengue models only take mean temperature values into account. Recent evidence shows that diurnal temperature range (DTR plays an important role in influencing the behavior of the primary dengue vector Aedes aegypti. In this study, we used relative VC to estimate dengue epidemic potential (DEP based on the temperature and DTR dependence of the parameters of A. aegypti. We found a strong temperature dependence of DEP; it peaked at a mean temperature of 29.3°C when DTR was 0°C and at 20°C when DTR was 20°C. Increasing average temperatures up to 29°C led to an increased DEP, but temperatures above 29°C reduced DEP. In tropical areas where the mean temperatures are close to 29°C, a small DTR increased DEP while a large DTR reduced it. In cold to temperate or extremely hot climates where the mean temperatures are far from 29°C, increasing DTR was associated with increasing DEP. Incorporating these findings using historical and predicted temperature and DTR over a two hundred year period (1901-2099, we found an increasing trend of global DEP in temperate regions. Small increases in DEP were observed over the last 100 years and large increases are expected by the end of this century in temperate Northern Hemisphere regions using climate change projections. These findings illustrate the importance of including DTR when mapping DEP based on VC.

  16. Energetic and Exergetic Analysis of Low and Medium Temperature District Heating Network Integration

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can ...... will reduce the amount of water supply from the MTDH network and improve the system energy conversion efficiency. Through the simulation, the system energetic and exergetic efficiencies based on the two network integration approaches were calculated and evaluated.......In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can...

  17. Application of customized absorption heat pumps with heating capacities above 500 kW: Project: VIVO, Warngau (near Munich)

    OpenAIRE

    Zachmeier, Peter; Radspieler, Michael; Schweigler, Christian

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] In 2005 a gas fired single effect absorption heat pump was installed at the area of VIVO GmbH, who runs a local civic waste collection point. Besides other recyclable materials, biodegra...

  18. Imaging heat transfer processes in a fluid with temperature sensitive paint

    Science.gov (United States)

    Huang, Jun; Liu, Tianshu; Luo, Weili

    2014-03-01

    The temperature profile inside a fluid was imaged by temperature sensitive paint in a quasi one-dimensional cell, where temperature gradients were established by heating on one side of the sample and cooling on the other. Similar experiment was performed on colloids consisting nanoparticles suspended in solvent. The change of the profile for different heat-transfer processes as functions of time will be discussed.

  19. Analysis of geothermal temperatures for heat pumps application in Paraná (Brasil)

    OpenAIRE

    Santos Alexandre F.; de Souza Heraldo J. L.; Cantao Mauricio P.; Gaspar Pedro D.

    2016-01-01

    Geothermal heat pumps are broadly used in developed countries but scarcely in Brazil, in part because there is a lack of Brazilian soil temperature data. The aims of this work are: to present soil temperature measurements and to compare geothermal heat pump system performances with conventional air conditioning systems. Geothermal temperature measurement results are shown for ten Paraná State cities, representing different soil and climate conditions. The measurements ...

  20. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer

    Science.gov (United States)

    Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.

    2017-04-01

    In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.

  1. Deconvoluting physical and chemical heat: Temperature and spiciness influence flavor differently.

    Science.gov (United States)

    Kapaun, Camille L; Dando, Robin

    2017-03-01

    Flavor is an essential, rich and rewarding part of human life. We refer to both physical and chemical heat in similar terms; elevated temperature and capsaicin are both termed hot. Both influence our perception of flavor, however little research exists into the possibly divergent effect of chemical and physical heat on flavor. A human sensory panel was recruited to determine the equivalent level of capsaicin to match the heat of several physical temperatures. In a subsequent session, the intensities of multiple concentrations of tastant solutions were scaled by the same panel. Finally, panelists evaluated tastants plus equivalent chemical or physical "heat". All basic tastes aside from umami were influenced by heat, capsaicin, or both. Interestingly, capsaicin blocked bitter taste input much more powerfully than elevated temperature. This suggests that despite converging percepts, chemical and physical heat have a fundamentally different effect on the perception of flavor. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effect of heat treatment on transformation temperatures and bending properties of nickel-titanium endodontic instruments.

    Science.gov (United States)

    Yahata, Y; Yoneyama, T; Hayashi, Y; Ebihara, A; Doi, H; Hanawa, T; Suda, H

    2009-07-01

    To investigate the effect of heat treatment on the bending properties of nickel-titanium endodontic instruments in relation to their transformation behaviour. Nickel-titanium super-elastic alloy wire (1.00 mm Ø) was processed into a conical shape with a 0.30 mm diameter tip and 0.06 taper. The heat treatment temperature was set at 440 or 500 degrees C for a period of 10 or 30 min. Nonheat-treated specimens were used as controls. The phase transformation behaviour was examined using differential scanning calorimetry. A cantilever-bending test was used to evaluate the bending properties of the specimens. Data were analyzed by ANOVA and the Tukey-Kramer test (P = 0.05). The transformation temperature was higher for each heat treatment condition compared with the control. Two clear thermal peaks were observed for the heat treatment at 440 degrees C. The specimen heated at 440 degrees C for 30 min exhibited the highest temperatures for M(s) and A(f), with subsequently lower temperatures observed for specimens heated at 440 degrees C for 10 min, 500 degrees C for 30 min, 500 degrees C for 10 min, and control specimens. The sample heated at 440 degrees C for 30 min had the lowest bending load values (P treatment time was less than that of heat treatment temperature. Change in the transformation behaviour by heat treatment may be effective in increasing the flexibility of nickel-titanium endodontic instruments.

  3. Evaporation of oil-water emulsion drops when heated at high temperature

    Science.gov (United States)

    Strizhak, P. A.; Piskunov, M. V.; Kuznetsov, G. V.; Voytkov, I. S.

    2017-10-01

    An experimental study on conditions and main characteristics for high-temperature (more than 700 K) evaporation of oil-water drops is presented. The high-temperature water purification from impurities can be the main practical application of research results. Thus, the heating of drops is implemented by the two typical schemes: on a massive substrate (the heating conditions are similar to those achieved in a heating chamber) and in a flow of the heated air. In the latter case, the heating conditions correspond to those attained while moving water drops with impurities in a counter high-temperature gaseous flow in the process of water purification. Evaporation time as function of heating temperature is presented. The influence of oil product concentration in an emulsion drop on evaporation characteristics is discussed. The conditions for intensive flash boiling of an emulsion drop and its explosive breakup with formation of the fine droplets cloud are pointed out. Heat fluxes required for intensive flash boiling and explosive breakup of a drop with further formation of the fine aerosol are determined in the boundary layer of a drop. The fundamental differences between flash boiling and explosive breakup of an emulsion drop when heated on a substrate and in a flow of the heated air are described. The main prospects for the development of the high-temperature water purification technology are detailed taking into account the fast emulsion drop breakup investigated in the paper.

  4. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  5. Recovery of low temperature heat in oil mills

    Directory of Open Access Journals (Sweden)

    Carré Patrick

    2012-11-01

    Full Text Available Energy consumption in oil mills is a major item of costs and a sensitive point in the production of biofuels. To improve their performance, industrials can recover lowtemperature heat thanks to a new technology of heat exchangers suitable for treating granular solid materials. Information about the energy requirements of the rapeseed crushing being not readily available, the article gives a detailed assessment of consumption items (per ton of seed: 263 MJ for preparation operations and 284 MJ for solvent extraction. These exchangers used as pre-conditioners saves about 55 MJ.t−1 of heat by use of steam condensates. We could go further in use of these devices on the one hand to recover heat from press cake and meal, and secondly to use recovered energy to dry and warm up the seeds before pre-pressing. In this configuration, the energy savings could reach 38% of current needs.

  6. Heat treated 9 Cr-1 Mo steel material for high temperature application

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  7. Preventing Heat Injuries by Predicting Individualized Human Core Temperature

    Science.gov (United States)

    2015-10-14

    hardware/software warning system of an impending rise in TC and generate alerts to potentially prevent heat injuries. PREVENTING HEAT INJURIES BY...real-time warning system. 4.0 CONCLUSIONS In conclusion, we developed an alert algorithm to provide reliable ahead-of-time warning of an impending... warning system that can be deployed in ambulatory settings. Currently, we are in the process of integrating this model with the alert algorithm in a

  8. Thermolysis, nonisothermal decomposition kinetics, specific heat capacity and adiabatic time-to-explosion of [Cu(NH3)4](DNANT)2 (DNANT= dinitroacetonitrile).

    Science.gov (United States)

    Zhang, Yu; Wu, Hao; Xu, Kangzhen; Zhang, Wantao; Ren, Zhaoyu; Song, Jirong; Zhao, Fengqi

    2014-02-20

    A new energetic copper complex of dinitroacetonitrile (DNANT), [Cu(NH3)4](DNANT)2, was first synthesized through an unexpected reaction. The thermal decomposition of [Cu(NH3)4](DNANT)2 was studied with DSC and TG/DTG methods. The gas products were analyzed through a TG-FTIR-MS method. The nonisothermal kinetic equation of the exothermic process is dα/dT = 10(10.92)/β4(1 - α)[-ln(1 - α)](3/4) exp(-1.298 × 10(5)/RT). The self-accelerating decomposition temperature and critical temperature of thermal explosion are 217.9 and 221.0 °C. The specific heat capacity of [Cu(NH3)4](DNANT)2 was determined with a micro-DSC method, and the molar heat capacity is 512.6 J mol(-1) K(-1) at 25 °C. Adiabatic time-to-explosion of Cu(NH3)4(DNANT)2 was also calculated to be about 137 s.

  9. Temperature Effects on Information Capacity and Energy Efficiency of Hodgkin-Huxley Neuron

    CERN Document Server

    Wang, Long-Fei; Liu, Xiao-Zhi; Song, Ya-lei; Yu, Lian-Chun

    2015-01-01

    Recent experimental and theoretical studies show that energy efficiency, which measures the amount of information processed by a neuron with per unit of energy consumption, plays an important role in the evolution of neural systems. Here, we calculated the information rates and energy efficiencies of the Hodgkin-Huxley (HH) neuron model at different temperatures in a noisy environment. We found that both the information rate and energy efficiency are maximized by certain temperatures. Though the information rate and energy efficiency cannot be maximized simultaneously, the neuron holds a high information processing capacity at the temperature corresponding to maximal energy efficiency. Our results support the idea that the energy efficiency is a selective pressure that influences the evolution of nervous systems.

  10. Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009.

    Science.gov (United States)

    Sherbakov, Toki; Malig, Brian; Guirguis, Kristen; Gershunov, Alexander; Basu, Rupa

    2018-01-01

    Investigators have examined how heat waves or incremental changes in temperature affect health outcomes, but few have examined both simultaneously. We utilized distributed lag nonlinear models (DLNM) to explore temperature associations and evaluate possible added heat wave effects on hospitalizations in 16 climate zones throughout California from May through October 1999-2009. We define heat waves as a period when daily mean temperatures were above the zone- and month-specific 95th percentile for at least two consecutive days. DLNMs were used to estimate climate zone-specific non-linear temperature and heat wave effects, which were then combined using random effects meta-analysis to produce an overall estimate for each. With higher temperatures, admissions for acute renal failure, appendicitis, dehydration, ischemic stroke, mental health, non-infectious enteritis, and primary diabetes were significantly increased, with added effects from heat waves observed for acute renal failure and dehydration. Higher temperatures also predicted statistically significant decreases in hypertension admissions, respiratory admissions, and respiratory diseases with secondary diagnoses of diabetes, though heat waves independently predicted an added increase in risk for both respiratory types. Our findings provide evidence that both heat wave and temperature exposures can exert effects independently. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Accuracy of Zero-Heat-Flux Cutaneous Temperature in Intensive Care Adults.

    Science.gov (United States)

    Dahyot-Fizelier, Claire; Lamarche, Solène; Kerforne, Thomas; Bénard, Thierry; Giraud, Benoit; Bellier, Rémy; Carise, Elsa; Frasca, Denis; Mimoz, Olivier

    2017-07-01

    To compare accuracy of a continuous noninvasive cutaneous temperature using zero-heat-flux method to esophageal temperature and arterial temperature. Prospective study. ICU and NeuroICU, University Hospital. Fifty-two ICU patients over a 4-month period who required continuous temperature monitoring were included in the study, after informed consent. All patients had esophageal temperature probe and a noninvasive cutaneous device to monitor their core temperature continuously. In seven patients who required cardiac output monitoring, continuous iliac arterial temperature was collected. Simultaneous core temperatures were recorded from 1 to 5 days. Comparison to the esophageal temperature, considered as the reference in this study, used the Bland and Altman method with adjustment for multiple measurements per patient. The esophageal temperature ranged from 33°C to 39.7°C, 61,298 pairs of temperature using zero-heat-flux and esophageal temperature were collected and 1,850 triple of temperature using zero-heat-flux, esophageal temperature, and arterial temperature. Bias and limits of agreement for temperature using zero-heat-flux were 0.19°C ± 0.53°C compared with esophageal temperature with an absolute difference of temperature pairs equal to or lower than 0.5°C of 92.6% (95% CI, 91.9-93.4%) of cases and equal to or lower than 1°C for 99.9% (95% CI, 99.7-100.0%) of cases. Compared with arterial temperature, bias and limits of agreement were -0.00°C ± 0.36°C with an absolute difference of temperature pairs equal to or lower than 0.5°C of 99.8% (95% CI, 95.3-100%) of cases. All absolute difference of temperature pairs between temperature using zero-heat-flux and arterial temperature and between arterial temperature and esophageal temperature were equal to or lower than 1°C. No local or systemic serious complication was observed. These results suggest a comparable reliability of the cutaneous sensor using the zero-heat-flux method compared with esophageal or

  12. The effect of air velocity on heat stress at increased air temperature

    DEFF Research Database (Denmark)

    Bjerg, Bjarne Schmidt; Wang, Xiaoshuai; Zhang, Guoqiang

    to the temperature difference between the surfaces of animals and the surrounding air, and this temperature difference declines when the air temperature approaches the animal body temperature. Consequently it can it by expected that the effect of air velocity decreases at increased air temperature. The literature...... on different categories of farm animals to determine how the effect of air velocity depends on the air temperature. A new expression to calculate the chilling effect of increased air velocity was suggested. In addition to the parameters air velocity and air temperature this new expression included three......Increased air velocity is a frequently used method to reduce heat stress of farm animals housed in warm conditions. The main reason why the method works is that higher air velocity increases the convective heat release from the animals. Convective heat release from the animals is strongly related...

  13. Investigations of Temperatures of Phase Transformations of Low-Alloyed Reinforcing Steel within the Heat Treatment Temperature Range

    Directory of Open Access Journals (Sweden)

    Kargul T.

    2017-06-01

    Full Text Available The paper presents the results of DSC analysis of steel B500SP produced in the process of continuous casting, which is intended for the production reinforcement rods with high ductility. Studies were carried out in the temperature range below 1000°C in a protective atmosphere of helium during samples heating program. The main objective of the study was to determine the temperature range of austenite structure formation during heating. As a result of performed experiments: Ac1s, Ac1f – temperatures of the beginning and finish of the eutectoid transformation, Ac2 – Curie temperature of the ferrite magnetic transformation and the temperature Ac3 of transformation of proeutectoid ferrite into austenite were elaborated. Experimental determination of phase transformations temperatures of steel B500SP has great importance for production technology of reinforcement rods, because good mechanical properties of rods are formed by the special thermal treatment in Tempcore process.

  14. 5 LASER SPOT HEAT TRANSFER ACCOMPANIED BY PARABOLIC TEMPERATURE DISTRIBUTION INSIDE THE ROD

    Directory of Open Access Journals (Sweden)

    Doroshenko Ekaterina Sergeevna

    2013-01-01

    Full Text Available The co-authors have solved the problem of an unsteady temperature field inside a structural beam, if one of its ends is exposed to heating. The problem was solved using a traditional Fourier method. The solution derived by the co-authors was verified by the comparison of the final temperature field and the input data. MathCAD-14 software was employed to make calculations and to generate figures. Application of analytical methods, like Fourier series formalism, in combination with computing aids makes it possible to study both qualitative and quantitative constituents of the process of heat redistribution inside structural units in case of exposure to contingency actions. There will be no uniform temperature reduction in the course of intensive cooling of rod ends after the thermal exposure. If the value of the temperature conductivity coefficient is equal to .01, in 12 hours the residual heating may reach 20 % of the initial heating temperature.

  15. Determination of Radiative Heat Transfer Coefficient at High Temperatures Using a Combined Experimental-Computational Technique

    Science.gov (United States)

    Kočí, Václav; Kočí, Jan; Korecký, Tomáš; Maděra, Jiří; Černý, Robert Č.

    2015-04-01

    The radiative heat transfer coefficient at high temperatures is determined using a combination of experimental measurement and computational modeling. In the experimental part, cement mortar specimen is heated in a laboratory furnace to 600°C and the temperature field inside is recorded using built-in K-type thermocouples connected to a data logger. The measured temperatures are then used as input parameters in the three dimensional computational modeling whose objective is to find the best correlation between the measured and calculated data via four free parameters, namely the thermal conductivity of the specimen, effective thermal conductivity of thermal insulation, and heat transfer coefficients at normal and high temperatures. The optimization procedure which is performed using the genetic algorithms provides the value of the high-temperature radiative heat transfer coefficient of 3.64 W/(m2K).

  16. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  17. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  18. Heat transfer and temperature distribution in a catalyst oven of 250mm diameter

    Energy Technology Data Exchange (ETDEWEB)

    Kling, G.

    1942-01-29

    The catalyst oven tested was a tube, which was surrounded by a steam-heated jacket, had air passing upward through it, and was filled with cylindrical pills of catalysts. Measurement of heat flow, temperature, and pressure drop was taken at various places in the tube and at various flow rates of air. Higher flow rates of air produced a quicker reaching of a steady-state temperature distribution in the catalyst tube, but even then there was strong temperature gradient from the heated walls of the tube down to the middle of the tube. The report gave formulas for calculating the heat-conductivity coefficient for the catalyst from temperatures at various positions, specific heat of the air, amount of air, and dimensions of catalyst space. Also it gave a formula for calculating the Reynolds number from the specific gravity of the air, velocity of the air in an empty tube, viscosity of the air, and the dimensions of the catalyst pills. Among other graphs with the report was a graph plotting the heat-conductivity coefficient against the Reynolds number. The report also contained some discussion about how the functions would change if different gases were used, if temperature conditions were changed, or if the gas were heated before entry into the tube. The report also gave formulas for calculating pressure drops, heat transfer coefficients, Nusselt numbers, and Peclet numbers. 1 figure, 1 table, 8 graphs.

  19. Temperature, Heat Flow and Dynamics of The Lithosphere: The East European Platform

    Science.gov (United States)

    Khristoforova, N.

    The experimental study of temperature and heat flow anomalies was made on the East European platform and adjacent regions. Temperature measurements were made on 360 structures in 1230 deep boreholes which had steady-state temperature regime. Research results convince us that there is the spatial periodical pattern of terrestrial heat flow. The detailed analysis of temperature and heat flow maps and profiles shows the periodical structure of the field but not its fluctuational inhomogeneity. Maps of this sort can be used to identify the geometry of asthenosphere convection flows. The most realistic numerical experiments to date have been conducted. The experimental geothermic data assumes that there are sets of convection cells in the upper mantle. Be- sides, the peculiarities of the heat flow and temperature distribution may be explained by the existence of hexagonal convection cells in the asthenosphere. The cellular pat- tern of heat flow where large maxima of a certain form are closely connected with heat flow minima should be specially emphasized. The variation of terrestrial heat flow is closely related to recent vertical crustal movements. An adequate simplified mathe- matical model is suggested to describe this dependence, and the calculated heat flows are remarkably consistent with the experimental ones.

  20. The electronic heat capacity of YBa{sub 2}Cu{sub 3}O{sub 7−δ} superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anu, E-mail: anuiiser@gmail.com; Singh, Hempal; Indu, B. D., E-mail: drbdindu@gmail.com [Department of Physics, Indian Institute of Technology Roorkee 247667, Uttarakhand (India)

    2016-07-15

    The contributions due to the point defects or disorder and anharmonicities which play deterministic role in the understanding of electronic heat capacity (EHC) of high temperature superconductors (HTS) have been investigated via electron density of states (EDOS) approach on the basis of quantum dynamical many body theory. The evaluation of EDOS has been carried out with the help of most versatile method of double time temperature dependent electron Green’s functions (GF) via a Hamiltonian (non BCS type) which includes the effects of electrons, phonons, defects, anharmonicity, and electron-phonon interactions which enables to account the effects of cubic anharmonicity besides with both the force constant changes and mass difference caused by the impurities in developing the results for EDOS and EHC. The new results reveal some striking features of EHC of HTS.

  1. Theoretical overview of heating power and necessary heating supply temperatures in typical Danish single-family houses from the 1900s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    As existing buildings are renovated and energy-efficiency measures are implemented to meet requirements for reduced energy consumption, it becomes easier to heat our homes with low-temperature heating. This study set out to investigate how much the heating system supply temperature can be reduced...

  2. Bench heating for potplant cultivation : analysis of effects of root- and air temperature on growth, development and production

    NARCIS (Netherlands)

    Vogelezang, J.V.M.

    1993-01-01

    This thesis deals with the application of bench heating systems for potplant cultivation, which were developed for application of low temperature heating water from flue gas condensers and external waste heat sources. Compared to the traditional way of heating, a 'reversed' temperature

  3. Application of thermohydraulic dispatcher in low temperature district heating systems for decreasing heat carrier transportation energy cost and increasing reliability of heat supply

    Science.gov (United States)

    Yavorovsky, Y. V.; Romanov, D. O.; Sennikov, V. V.; Sultanguzin, I. A.; Malenkov, A. S.; Zhigulina, E. V.; Lulaev, A. V.

    2017-11-01

    Low pressure district heating systems have low breakdown rate and allow decreasing heat carrier transportation energy cost by means of avoiding throttling of available water head. One of the basic elements of such systems is thermohydraulic dispatcher (THD) which separates primary circuit and secondary circuit (or circuits) that allows avoiding mutual hydraulic influence of circuits on each other and reducing water heads of network pumps. Analysis of perspective ways of using thermohydraulic dispatcher (THD) in low temperature district heating systems is made in this paper. Principal scheme and mathematical model of low pressure and temperature district heating system based on CHP generation with THD are considered. The main advantages of such systems are pointed out.

  4. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R [ORNL; BushPE, John D [Electric Power Research Institute (EPRI)

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heater (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.

  5. Influence of Drying Temperature on Total Phenolic Content And Antioxidant Capacity of Grape Seeds

    Directory of Open Access Journals (Sweden)

    Dilara Konuk

    2015-12-01

    Full Text Available Grape seed, which is an organic waste arise from production of wine, juice and molasses, is considered as a functional food ingredient in food formulations because of its rich content of bioactive compounds. This study was performed in order to evaluate the effect of air-drying temperature on the bioactive compounds of grape seeds. In the study, total phenolic content and antioxidant activity of grape seeds that are dehydrated at different drying temperatures (40, 50 and 60°C were determined. When comparing the fresh grape seeds with the corresponding dehydrated samples, it was shown that the drying operation led to reduction of total phenolic contents and the total phenolic contents decreased with an increase of the drying temperature. According to ABTS radical scavenging method, Trolox Equivalent Antioxidant Capacity (TEAC was found to be highest for fresh grape seeds and presented lower values for grape seeds dried at three different temperatures. As a result of the study, it was demonstrated that grape seed is a powerful antioxidant source and it has still high antioxidant activity after drying process. However, drying at low temperatures was put forward to be advantageous in order to reduce the losses of phenolic components.

  6. Stevia rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners.

    Science.gov (United States)

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Honores, Carolina; Moraga, Nelson O

    2016-03-01

    Stevia leaves are usually used in dried state and undergo the inevitable effect of drying process that changes the quality characteristics of the final product. The aim of this study was to assess temperature effect on Stevia leaves through analysis of relevant bioactive components, antioxidant capacity and content of natural sweeteners and minerals. The drying process was performed in a convective dryer at constant temperatures ranging from 30 to 80 °C. Vitamin C was determined in the leaves and as expected showed a decrease during drying proportional to temperature. Phenolics and flavonoids were also determined and were found to increase during drying below 50 °C. Antioxidant activity was determined by DPPH and ORAC assays, and the latter showed the highest value at 40 °C, with a better correlation with the phenolics and flavonoids content. The content of eight natural sweeteners found in Stevia leaves was also determined and an increase in the content of seven of the sweeteners, excluding steviol bioside, was found at drying temperature up to 50 °C. At temperatures between 60 and 80 °C the increase in sweeteners content was not significant. Stevia leaves proved to be an excellent source of antioxidants and natural sweeteners.

  7. Heat-tolerant versus heat-sensitive Bos taurus cattle: Influence of air temperature and breed on the acute phase response to a provocative immune challenge

    Science.gov (United States)

    The difference in the response of a heat-tolerant and a heat-sensitive Bos taurus breed to lipopolysaccharide (LPS) challenge when housed at different air temperatures (Ta) was studied. Angus (ANG; heat-sensitive; n = 11; 306 ± 26 kilograms body weight) and Romosinuano (RO; heat-tolerant; n = 10; 31...

  8. Researching of the possibility of using absorption heat exchangers for creating the low return temperature heat supply systems based on CHP generation

    Science.gov (United States)

    Yavorovsky, Y. V.; Malenkov, A. S.; Zhigulina, Y. V.; Romanov, D. O.; Kurzanov, S. Y.

    2017-11-01

    This paper deals with the variant of modernization of the heat point within urban heat supply network in order to create the system of heat and cold supply on its basis, providing the suppliers with heat in cold months and with heat and cold in warm months. However, in cold months in the course of heating system operation, the reverse delivery water temperature is maintained below 40 °C. The analysis of heat and power indicators of the heat and cold supply system under different operating conditions throughout the year was conducted. The possibility to use the existing heat networks for the cold supply needs was estimated. The advantages of the system over the traditional heat supply systems that use Combined Heat and Power (CHP) plant as a heat source as exemplified by heat supply system from CHP with ST-80 turbine were demonstrated.

  9. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Science.gov (United States)

    Wen, Tong; Zhao, Yunliang; Xiao, Qihang; Ma, Qiulin; Kang, Shichang; Li, Hongqiang; Song, Shaoxian

    The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol) compared with the conventional heating (43.9 kJ/mol). However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite.

  10. Optimized space heating system operation with the aim of lowering the primary return temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ljunggren, Patrick; Johansson, Per-Olof; Wollerstrand, Janusz. e-mail:patrick.ljunggren@energy.lth.se

    2008-09-15

    The paper presents results from a study aiming at minimizing the primary return temperature from a district heating (DH) substation by optimizing the control algorithm for a space heating system connected to the DH grid via a heat exchanger (HEX). As shown in a previous study, an optimal (i.e. minimum) DH return temperature exists for each and every heat load. By varying the radiator flow and the radiator supply temperature this optimum can be found. A space heating system is traditionally designed for a constant circulation flow rate combined with a suitable control curve for the space heating supply temperature as a function of the outdoor temperature. Optimal choice of the control curve varies from case to case and is an issue both we and others have dealt with in previous work. In the paper, theoretical control curves for optimal control of the space heating system in order to minimize the DH return temperature has been derived by calculating how supply temperature and circulation flow should be varied with the heat load. The estimated gain was found to vary strongly, depending on the actual conditions; however, assuming realistic conditions, it was seen that the gain can be as much as a reduction of 6 deg C of the DH return temperature from the radiator HEX on yearly average. This paper presents theoretical knowledge and shows results supported with practical experiments. Based on these results a method for adaptive choice of parameter values for an optimized controller can be developed. One of the advantages with such an algorithm is that it will automatically adapt to changed conditions, e.g. variation in primary supply temperature

  11. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  12. Effect of heat treatment temperature on microstructure and ...

    Indian Academy of Sciences (India)

    Administrator

    Keywords. Hollow carbon spheres; heat treatment; gas pressure; lithium ion battery. 1. Introduction. The development of portable devices in recent years has ..... project of Shanghai Municipal Education Commission and. Shanghai Education Development Foundation Science and. Technology (No. 09CG53), Science and ...

  13. Laser Measurement of the Speed of Sound in Gases: A Novel Approach to Determining Heat Capacity Ratios and Gas Composition

    Science.gov (United States)

    Baum, J. Clayton; Compton, R. N.; Feigerle, Charles S.

    2008-01-01

    The speed of sound is measured in several gases using a pulsed laser to create a micro-spark on a carbon rod and a microphone connected to a digital oscilloscope to measure the time-of-flight of the resulting shockwave over a known distance. These data are used to calculate the heat capacity ratios (C[subscript p]/C[subscript V]) of the gases and…

  14. Magneto-heat capacity study on Kondo lattice system Ce(Ni1−xCux ...

    Indian Academy of Sciences (India)

    Abstract. Heat capacity studies on the Kondo lattice system Ce(Ni1−xCux)2Al3, in the presence of magnetic fields, were reported for x = 0.0−0.4. The physical properties of the intermediate compositions like x = 0.3 and 0.4 were known for their enhanced thermoelectric power and hence have been analysed with an extra ...

  15. Native and Heated Hydrolysates of Milk Proteins and Their Capacity to Inhibit Lipid Peroxidation in the Zebrafish Larvae Model.

    Science.gov (United States)

    Carrillo, Wilman; Guzmán, Xavier; Vilcacundo, Edgar

    2017-09-14

    Casein and whey proteins with and without heat treatment were obtained of whole milk and four commercial milks in Ecuador, and were hydrolyzed. Then, their capacity to inhibit the lipid peroxidation using the TBARS method was evaluated at concentrations of 0.02, 0.04, 0.2, and, 0.4 mg/mL. Native and heated hydrolysates of milk proteins present high inhibitions of lipid peroxidation with a dose dependent effect both in vivo and in vitro tests. Casein and whey proteins obtained from whole milk were the ones with the highest anti-oxidant activity in vitro and in vivo test. Native casein hydrolysate at 0.4 mg/mL present a value of 55.55% of inhibition of lipid peroxidation and heated casein hydrolysate at 0.4 mg/mL presents a value of 58.00% of inhibition of lipid peroxidation. Native whey protein at 0.4 mg/mL present a value of 34.84% of inhibition of lipid peroxidation, and heated whey protein at 0.4 mg/mL presents a value of 40.86% of inhibition of lipid peroxidation. Native and heated casein hydrolysates were more active than native and heated whey protein hydrolysates. Heat treatments have an effect of increasing the in vitro inhibition of lipid peroxidation of hydrolysates of milk protein. Casein and whey hydrolysates were able to inhibiting lipid peroxidation in the zebrafish larvae model. Native casein hydrolysate obtained of whole milk presents 48.35% of inhibition TBARS in vivo, this activity was higher in heated casein hydrolysate obtained of whole milk with a value of 56.28% of inhibition TBARS in vivo. Native whey protein hydrolysate obtained of whole milk presents 35.30% of inhibition TBARS, and heated whey protein hydrolysate obtained of whole milk was higher, with a value of 43.60% of inhibition TBARS in vivo.

  16. Thermo-mechanics in packed beds: Modeling and design of high temperature heat storage

    OpenAIRE

    Dreißigacker, Volker

    2015-01-01

    Several novel power plant technologies, such as concentrating solar power (CSP) plants or adiabatic compressed air storage (ACAES), depend on heat storage systems as a central plant element. Where gaseous heat transfer media at elevated temperature levels are used, a regenerator-type heat storage is a particularly cost-effective solution. A large-scale design based on a packed bed inventory can further reduce investment costs, but is fraught with the risk of mechanical failures caused by the ...

  17. Heat-capacity changes in host-guest complexation by Coulomb interactions in aqueous solution.

    Science.gov (United States)

    Kano, Koji; Ishida, Yoshiyuki; Kitagawa, Kohei; Yasuda, Mayuko; Watanabe, Maki

    2007-10-01

    Heat-capacity changes (deltaC(p)0) were determined for the complexation of 1-alkanecarboxylates with protonated hexakis(6-amino-6-deoxy)-alpha-cyclodextrin (per-NH3(+)-alpha-CD) and heptakis(6-amino-6-deoxy)-beta-cyclodextrin (per-NH3(+)-beta-CD). DeltaC(p)0 decreased with an increase in the binding constant (K) and plateaued at K = 4000 M(-1). The complexes of 1-pentanoate, 1-hexanoate, and 1-heptanoate with per-NH3(+)-alpha-CD are classified as the host-guest system in which the size of the guest fits the CD cavity well. In such a system, van der Waals interaction is the major force for complexation, leading to a negative deltaH0 value. Simultaneously, the water molecules around the hydrophobic alkyl chain of the guest and inside the CD cavity are released to the aqueous bulk phase, leading to a positive deltaS0 value. The negative deltaC(p)0 value in such complexation is ascribed to dehydration of the hydrophobic alkyl chain of the guest and extrusion of the water molecules inside the CD cavity. Meanwhile, the complexes that show positive deltaC(p)0 values are characterized by complexation in which the guest molecules are significantly smaller than the CD cavities. In such a case, the complexation is endothermic and driven by the entropy gain. When the guest is much smaller than the CD cavity, the main binding force should be Coulomb interaction. To form an ionic bond, dehydration of the charged groups must occur. This process is endothermic and leads to positive deltaH0 and deltaS0 values. As the top of the CD cavity is capped by a small but hydrophobic alkyl chain, the water molecules inside the CD cavity may form the iceberg structure. This process must be accompanied by a positive deltaC(p)0 value. Hence, the complexation of a small guest with the CD with a large cavity through Coulomb interactions shows positive and large deltaC(p)0 values. These conclusions were applied to the electrostatic binding of proteins with an anionic ligand.

  18. Temperature Impact on the Forage Quality of Two Wheat Cultivars with Contrasting Capacity to Accumulate Sugars

    Directory of Open Access Journals (Sweden)

    Máximo Lorenzo

    2015-08-01

    Full Text Available Wheat is increasingly used as a dual-purpose crop (for forage and grain production worldwide. Plants encounter low temperatures in winter, which commonly results in sugar accumulation. High sugar levels might have a positive impact on forage digestibility, but may also lead to an increased risk of bloat. We hypothesized that cultivars with a lower capacity to accumulate sugars when grown under cold conditions may have a lower bloat risk than higher sugar-accumulating genotypes, without showing significantly lower forage digestibility. This possibility was studied using two wheat cultivars with contrasting sugar accumulation at low temperature. A series of experiments with contrasting temperatures were performed in controlled-temperature field enclosures (three experiments and growth chambers (two experiments. Plants were grown at either cool (8.1 °C–9.3 °C or warm (15.7 °C–16.5 °C conditions in field enclosures, and at either 5 °C or 25 °C in growth chambers. An additional treatment consisted of transferring plants from cool to warm conditions in the field enclosures and from 5 °C to 25 °C in the growth chambers. The plants in the field enclosure experiments were exposed to higher irradiances (i.e., 30%–100% than those in the growth chambers. Our results show that (i low temperatures led to an increased hemicellulose content, in parallel with sugar accumulation; (ii low temperatures produced negligible changes in in vitro dry matter digestibility while leading to a higher in vitro rumen gas production, especially in the higher sugar-accumulating cultivar; (iii transferring plants from cool to warm conditions led to a sharp decrease in in vitro rumen gas production in both cultivars; and (iv light intensity (in contrast to temperature appeared to have a lower impact on forage quality.

  19. Development of two tier test to assess conceptual understanding in heat and temperature

    Science.gov (United States)

    Winarti; Cari; Suparmi; Sunarno, Widha; Istiyono, Edi

    2017-01-01

    Heat and temperature is a concept that has been learnt from primary school to undergraduate levels. One problem about heat and temperature is that they are presented abstractly, theoretical concept. A student conceptual frameworks develop from their daily experiences. The purpose of this research was to develop a two-tier test of heat and temperature concept and measure conceptual understanding of heat and temperature of the student. This study consist of two method is qualitative and quantitative method. The two-tier test was developed using procedures defined by Borg and Gall. The two-tier test consisted of 20 question and was tested for 137 students for collecting data. The result of the study showed that the two-tier test was effective in determining the students’ conceptual understanding and also it might be used as an alternative for assessment and evaluation of students’ achievement

  20. What are the relative roles of heating and cooling in generating solar wind temperature anisotropies?

    Science.gov (United States)

    Maruca, B A; Kasper, J C; Bale, S D

    2011-11-11

    Temperature anisotropy in the solar wind results from a combination of mechanisms of anisotropic heating (e.g., cyclotron-resonant heating and dissipation of kinetic Alfvén waves) and cooling (e.g., Chew-Goldberger-Low double-adiabatic expansion). In contrast, anisotropy-driven instabilities such as the cyclotron, mirror, and firehose instabilities limit the allowable departure of the plasma from isotropy. This study used data from the Faraday cups on the Wind spacecraft to examine scalar temperature and temperature components of protons. Plasma unstable to the mirror or firehose instability was found to be about 3-4 times hotter than stable plasma. Since anisotropy-driven instabilities are not understood to heat the plasma, these results suggest that heating processes are more effective than cooling processes at creating and maintaining proton temperature anisotropy in the solar wind.